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Abstract 
Nitric oxide (NO) negatively regulates platelets and impaired NO signalling can lead 

to arterial thrombosis. The source of platelet-derived NO is unclear with recent 

proposals of NO synthase (NOS) independent NO sources, such as S-nitrosothiols 

(RSNOs) and inorganic nitrate/nitrite. Sildenafil citrate, a phosphodiesterase 5 

(PDE5) inhibitor, enhances NO/cGMP signals in cells expressing PDE5 such as 

platelets. The aims of this study were to investigate the antiplatelet properties of 

sildenafil, its mechanism of action and to determine the upstream sources of NO 

affecting platelet function. 

The functional effect of sildenafil was determined using a range of in vitro and in vivo 

platelet assays. The mechanism of action of sildenafil and upstream sources of 

NO/cGMP signals were assessed pharmacologically using established methods of in 
vitro and in vivo platelet aggregation. Bioconversion of nitrate to nitrite was 

determined using gas-phase chemiluminescence. The functional significance of 

NO/cGMP signalling events in platelets were investigated in vivo in W.T and eNOS-/- 

(a model of vascular dysfunction) mice.  

Sildenafil exerted an antiplatelet effect by enhancing transient NO/cGMP signals 

generated by platelets independent of NOS activity in vitro. Inhibition of proposed 

mechanisms of NO release from RSNOs did not modify the inhibitory effect of 

sildenafil suggesting that RSNOs did not mediate platelet NO/cGMP signals. Nitrite 

was able to drive inhibitory cGMP signalling events in platelets in vitro. Furthermore, 

nitrate inhibited platelet function in eNOS-/- mice in vivo following enhanced 

bioconversion to nitrite, potentially as a compensatory mechanism due to impaired 

NO signalling. 

In conclusion, inorganic nitrate/nitrite may critically regulate platelets following 

bioconversion to NO and dietary sources of nitrate/nitrite may generate 

compensatory NO during vascular disease. Furthermore, sildenafil may be beneficial 

in reducing the risk of platelet-driven cardiovascular disease by enhancing NO/cGMP 

signalling derived from both enzymic and inorganic sources and restoring impaired 

NO signalling during endothelial dysfunction. 
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Platelets 
Platelets (also known as thrombocytes) were first described in 1882 and are small 

(~2.5µm), anucleate cytoplasmic fragments that play a key role in haemostasis 

(Bizzozero, 1882). They are derived from megakaryocytes found in bone marrow 

(Djaldetti et al., 1979). Platelets are known to circulate in the blood for an average of 

7-10 days (Stuart et al., 1975) before being phagocytosed and subsequently 

destroyed in the spleen and liver (Hjort and Paputchis, 1960; Neiman et al., 1987). 

They are a major blood component and have an important role in haemostasis. At 

sites of vessel injury, platelets interact with the vessel wall and with each other to 

form a haemostatic plug and avoid uncontrollable haemorrhage. However, 

inappropriate activation of platelets can drive a condition known as arterial 

thrombosis and cause potentially fatal ischemic events such as myocardial infarction 

and stroke (Antithrombotic Trialists’ Collaboration, 2002; Dyken et al., 1973). Due to 

their central role in disease, platelets are an important drug target to prevent the 

occurrence of platelet-driven cardiovascular events and antiplatelet therapies are 

usually the first line of treatment for those most at risk. However, there is a need for 

new antiplatelet therapies because current drugs on the market are limited by their 

lack of efficacy and adverse events. 

Platelets in the cardiovascular system 
Platelets are involved in a diverse range of roles in the body. They have been 

implicated in immune responses (Mayadas et al., 1993), growth and tissue 

regeneration (Anitua et al., 2004; Intini, 2009) and tumour metastasis (Takagi et al., 

2013). 

Platelets are the first line of defence against bleeding. During vascular damage the 

underlying extracellular matrix (ECM) is exposed and triggers platelet adhesion, 

activation and aggregation through the stimulation of platelet surface receptors. 

Prothrombotic substances released from the platelet act as positive feedback 

mechanisms by inducing further platelet activation, recruiting more platelets from the 

blood stream and facilitating platelet-platelet interactions to form a haemostatic plug 

and control excessive bleeding (see ‘Platelet activity’ for more information of 

platelets in primary haemostasis). 
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In addition, activated platelets are involved in secondary haemostasis (Monroe and 

Hoffman, 2006; Rumbaut and Thiagarajan, 2010). They provide an efficient catalytic 

surface for the assembly of cofactor enzyme complexes (Heemskerk et al., 1997). 

This is essential to enable the occurrence of the propagation phase of coagulation. 

Platelet activation causes an increase in intracellular Ca2+ which activates the ATP-

independent enzyme scramblase. This enzyme is able to ‘flip’ phosphatidylserine 

and other anionic phospholipids from the inner aspect of the lipid bilayer to the outer, 

creating a negative charge on the outer platelet membrane (Comfurius et al., 1996; 

Wolfs et al., 2005). Coagulation factors FIX, FVIII and FV are able to bind to the 

platelet surface in preparation for large-scale thrombin generation known as the 

amplification phase. In the propagation phase, FVIIIa/FIXa complex forms and 

activates FX (Monroe and Hoffman, 2006).  FXa is able to associate with FVa on the 

platelet surface converting FII (prothrombin) to FIIa (thrombin) producing a localised 

burst of thrombin generation (Scandura and Walsh, 1996). Thrombin induces the 

formation of a stable clot by catalysing the reaction of fibrinogen to fibrin (forming a 

fibrin mesh) and recruiting more platelets from the circulation. Dissolution of the clot 

occurs after the blood vessel has healed and blood flow to the area is restored. 

Conditions such as a low platelet count (thrombocytopenia), genetic mutations 

affecting platelet function (Nurden, 1999) or systemic bacterial infections 

(thrombocytopenia purpura) (Fitzgerald et al., 2006) can cause excessive bleeding 

problems and emphasise the importance of platelets in haemostasis. 

Platelet morphology 
This section will briefly discuss the complex structure and ultrastructure of platelets.  

Inactive platelets are thought to consist of 3 zones; the peripheral zone, the sol-gel 

zone and the organelle zone (Figure 1) (Werner and Morgenstern, 1980). 

The peripheral zone is mainly associated with the adhesion and aggregation of 

platelets as it presents receptors for major agonists such as collagen, thrombin, 

adenosine diphosphate (ADP) and others. It consists of the platelet membrane, 

cytoskeleton (consisting of actin and myosin filaments) and a glycocalyx coating 

surrounding the cell fragment. 
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The sol-gel zone is responsible for the contraction and support of the channel 

networks of the platelet, the open canalicular system (OCS) and the dense tubular 

system (DTS) (Behnke, 1967). The OCS is formed by invaginations of the plasma 

membrane providing a larger surface area during platelet aggregation. This structure 

is a connected series of channels which enable plasma substances to enter the 

cytoplasm and platelet products to exit (White and Escolar, 1991). The DTS is a 

smooth endoplasmic reticulum membrane system present internally in the 

cytoplasm. The DTS is important for platelet function because it is a receptor-

mediated calcium (Ca2+) store (Cutler et al., 1978) essential for initiating 

morphological changes necessary for platelet aggregation (Ebbeling et al., 1992) 

and the DTS is a site of cyclooxygenase (COX) expression, an important enzyme 

involved in thromboxane A2 (TxA2) and prostaglandin synthesis (Gerrard et al., 1978, 

1976; Laposata et al., 1987). 

The organelle zone contains the dense body system consisting of mitochondria, 

glycogen granules (rare and unknown role - potentially an energy store; (White, 

1999)), alpha granules (functions as a metabolic pool containing proteins involved in 

platelet aggregation and adhesion; (Gerrard et al., 1980; Harrison and Cramer, 

1993)), dense granules (functions as a secretary pool containing substances 

essential for platelet-platelet and platelet-protein interactions; (Dale et al., 2002; de 

Korte et al., 1990)) and lysosomal granules (unknown role but thought to contain 

enzymes that resolve haemostatic plugs or assist with endosomal digestion; 

(Neiman et al., 1987)) (Werner and Morgenstern, 1980). 
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Figure 1: Platelet morphology.  

A: Basic diagram demonstrating the structure and organisation of platelets. DTS-dense tubular system; OCS-
open canalicular system. Adapted from (White, 1979).  

B: Electron microscopy image of a platelet from our laboratory (Emerson, unpublished). 

A 

B 
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Platelet activity 
Platelets are complex cells and are equipped with a plethora of receptors for many 

agonists, antagonists and ligands. Here I will discuss the process by which platelets 

are activated and recruited to the site of vessel injury and then I will briefly review the 

signal transduction mechanisms occurring after receptor occupancy. Under normal 

healthy conditions the platelet rarely interacts with the vessel wall. Platelet-ECM 

interaction induces a cascade of events known as platelet adhesion, activation and 

aggregation.  

In the instance of a damaged blood vessel, the underlying ECM containing 

prothrombotic substances, such as collagen and von Willibrand Factor (vWF), 

become exposed and interact with platelet surface glycoprotein (GP) receptors. 

Under high shear flow rates (>1000s-1) the platelet surface receptor GPIb-V-IX 

interacts with immobilised vWF (Yago et al., 2008) and possibly other candidates 

(Jurk et al., 2003) to induce tethering of the platelet to the damaged vessel wall. At 

lower shear flow rates (<1000s-1) platelets are able to bind to additional 

prothrombotic molecules such as the potent adhesion mediator collagen. Collagen 

interacts with the tyrosine kinase linked receptor GPVI and integrin α2β1 to induce 

platelet activation and downstream stable adhesion, forming a monolayer of platelets 

over the damaged vessel. Activation of the integrin αIIbβ3 into its high affinity state 

mediates firm adhesion by binding to immobilised vWF and fibrinogen (Savage et al., 

1996). Other integrins such as α5β1 and α6β1 have been reported to have platelet 

adhesive properties, however their physiological relevance is unclear (Grüner et al., 

2003). 

Tyrosine kinase mediated signalling initiated by the occupancy of platelet surface 

receptors such as GPVI promotes platelet activation and shape change. Platelet 

activation induces release of prothrombotic substances, stored in granules or 

synthesised upon stimulation, to recruit more platelets to the damaged area, induce 

amplification of the platelet response and to facilitate platelet-platelet interactions. 

Secondary agonists (adenosine diphosphate (ADP) and TxA2) released from the 

activated platelet and endogenous mediators generated by the coagulation cascade 

(thrombin) can stimulate a range of G-protein coupled receptors to induce further 
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activation of platelets and ultimately lead to the stabilisation of platelet aggregates. 

Platelet activation results in ‘inside-out’ signalling events, which cause integrins, 

such as αIIbβ3 and α2β1, to undergo a conformational change to their high affinity 

state – a process essential for stable adhesion to the vessel wall and platelet 

aggregation. 

Platelet activation ultimately results in platelet aggregation. Platelet aggregation is a 

dynamic process which involves platelet-platelet interactions. Activation of platelets 

induces the emptying of platelet granules to provide essential components for 

platelet-platelet interactions such as fibrinogen and vWF. Platelets form divalent 

bonds with other platelets through integrin αIIbβ3 and, under high shear flow rates, 

GPIbα (Ruggeri et al., 2006). In addition, thrombin from the coagulation cascade 

cleaves fibrinogen to fibrin and, in combination with FXIII, forms a stable fibrin mesh 

(Dickneite et al., 2002). This not only supports the platelet aggregates but also traps 

blood cells from the circulation to form a stable clot. 

Platelet agonists 

Platelets have limited ability to synthesise proteins and therefore come well equipped 

with a plethora of receptors for many ligands. In turn, this makes the platelets highly 

receptive to their surrounding environment. This section will briefly review the major 

platelet agonists. 

Collagen 
There are 28 types of collagens expressed in humans, 7 present in the vessel wall. 

However, collagen type I and III are the major collagens interacting with platelets 

(Farndale, 2006; Saelman et al., 1994). Collagen is a potent platelet agonist that is 

present in the ECM and only interacts with blood cells upon vessel damage. The 

large blood-borne multimeric glycoprotein vWF can bind to exposed collagen fibres 

type I, III and IV (Flood et al., 2012), which enables collagen to indirectly interact with 

platelets via the adhesive glycoprotein GPIb-IX-V. Direct collagen receptors include 

the tyrosine kinase linked GPVI (Gibbins et al., 1997) and integrin α2β1 (Inoue et al., 

2003). The binding of platelets to collagen induces platelet activation, which results 

in the conformational change of integrins via ‘inside-out’ signalling and stable 

adhesion to the vessel wall. 
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Thrombin 
Thrombin is one of the most potent platelet agonists. The serine protease is 

produced by cleavage of prothrombin (a liver synthesised protein) by the 

prothrombinase complex, activated factors Xa and Va (Monroe et al., 2002; Rosing 

et al., 1980). G-protein coupled protease activated receptors (PARs) are the most 

established receptors for thrombin on platelets (Kahn et al., 1998). Thrombin 

activates PARs by cleaving and exposing N-terminus which subsequently acts as a 

ligand by activating itself (Brass et al., 1992; Vu et al., 1991). PAR activation results 

in intracellular Ca2+ increases, platelet shape change, attenuation of inhibitory 

platelet responses and ultimately platelet aggregation. In humans there are 2 PAR 

receptors activated by thrombin; PAR1 and PAR4 (Kahn et al., 1999). PAR4 is only 

active at high concentrations of thrombin and therefore PAR1 is considered to be the 

main thrombin receptor (Kahn et al., 1998). See Figure 3 for PAR-1 and PAR-4 G-

protein α subunit coupling and downstream events. 

Another receptor involved in thrombin-induced platelet activation is the GPIb-IX-V 

complex, however its mechanism of activation is not well understood. It is known that 

patients lacking GPIb (Bernard-Soulier disease) have reduced platelet responses to 

thrombin (Jamieson and Okumura, 1978). Moreover, GPV-/- mice were 

hypersensitive to thrombin and developed larger thrombi in response to thrombin 

than W.T mice in vivo (Ramakrishnan et al., 2001, 1999). 

Adenosine diphosphate (ADP) 
ADP is a weak platelet agonist that results in platelet shape change and reversible 

aggregation (Born, 1962). It acts more as a ‘secondary’ agonist as it amplifies 

platelet responses and stabilises thrombus formation (Gachet, 2008). Upon 

activation, large amounts of ADP are released from platelet dense granules further 

activating surrounding platelets. ADP acts on the G-protein coupled purinergic (P2) 

receptors; P2Y₁ and P2Y₁₂ (Gachet et al., 1995; Wang et al., 2003). The activation of 

both is necessary to induce full platelet aggregation. P2Y12 is the most abundant 

platelet P2 receptor (Wang et al., 2003) and the target of thienopyridine antiplatelet 

drugs (i.e clopidogrel) (Gachet, 2005). P2Y12 is Gi-coupled and activation of this 

receptor results in amplification of the aggregatory response by inhibiting adenylate 
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cyclase activity and cAMP production (Yang et al., 2002). P2Y1 accounts for 20-30% 

of total ADP binding sites on the platelet surface (Savi et al., 1998). This receptor is 

expressed on the platelet surface membrane, the membrane of α granules and the 

open canalicular system (Nurden et al., 2003). P2Y1 is a Gq- coupled protein and 

therefore activates phospholipase C (PLC), protein kinase C (PKC) and Ca2+ 

mobilisation and influx from external pools to induce major platelet responses 

(Offermanns et al., 1997; Sage et al., 1990). 

Thromboxane (TxA2) 
TxA2 is a prostanoid derived from cyclooxygenase (COX) mediated arachidonic acid 

metabolism. COX-1 is present in platelets and can synthesise TxA2 upon platelet 

activation. TxA2 is then released in a paracrine fashion exerting its activity as a 

secondary agonist and amplifying the platelet response. TxA2 activates G-protein 

coupled thromboxane receptors (TP) on platelets. TP is coupled to G13  which results 

in platelet shape change (Moers et al., 2003) and Gq which increases cytosolic Ca2+ 

from intracellular stores (Offermanns et al., 1997). The most common antiplatelet 

therapy, aspirin, irreversibly inhibits COX-1 in platelets and in general attenuates 

excessive platelet aggregation by blocking platelet TxA2 synthesis (see ‘Common 

platelet drugs’). 

Signal transduction in platelets 

The previous section discussed common platelet agonists and receptors by which 

they induce their activity. This section will briefly discuss platelet signalling pathways 

associated with receptor occupancy and the subsequent effect on platelet function. 

Tyrosine kinase mediated signalling 
Receptors GPVI and GPIb are associated with immunoreceptor tyrosine-based 

activation motifs (ITAMs), which induce platelet activation via protein tyrosine kinase 

phosphorylation events (Gibbins et al., 1996; Suzuki-Inoue et al., 2006; Wu et al., 

2001). GPVI is currently the best characterised tyrosine kinase signal transduction 

event (schematic overview of tyrosine kinase signal transduction of GPVI is depicted 

in Figure 2). GPVI is a member of the immunoglobulin superfamily and has a mucin-

like stalk, transmembrane region and short cytoplasmic tail (Horii et al., 2006). Src 

tyrosine kinases, Fyn and Lyn, are bound to the cytoplasmic tail via src homology 3 
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(SH3) domain (Suzuki-Inoue et al., 2002). The cytoplasmic tail of GPVI is associated 

with the Fc receptor γ (FcRγ) chain that bears the important signalling region, ITAM. 

Upon receptor occupancy, Fyn and Lyn are activated and phosphorylate ITAMs 

present on the FcRγ chain (Gibbins et al., 1996). The FcRγ chain acts as a docking 

site for the tyrosine kinase Syk via its src homology 2 (SH2) domain (Benhamou et 

al., 1993; Dangelmaier et al., 2005). Syk then phosphoryates and activates the 

‘Linker for Activation of T-cells’ (LAT), which in turn act as a secondary docking site 

for kinases such as phosphoinositide 3-kinase (PI3K) and phospholipase Cγ2 

(PLCγ2) (Gibbins et al., 1998; Gross et al., 1999). Membrane bound PLCγ2 

hydrolyses phosphatidylinositol (4,5)-bisphosphate (PIP2) to inositol (1,4,5)-

trisphosphate (IP3) and diacylglycerol (DAG). IP3 initiates an increase in cytoplasmic 

Ca2+ by binding to IP3 receptors (IP3R) present on the DTS (El-Daher et al., 2000). 

DAG initiates the activation of protein kinase C (PKC) by inducing its translocation 

from the cytoplasm to the platelet membrane. Increases in intracellular Ca2+ and 

activated PKC initiate major platelet responses such as cytoskeletal assembly 

(Barkalow et al., 2003), secretion of storage granules (Konopatskaya et al., 2009),  

the expression of integrins αIIbβ3 and α2β1 in their high affinity state (inside-out 

signalling) (Bennett and Vilaire, 1979), arachidonic acid mobilisation and 

phospholipid scrambling (creating a procoagulant surface for clotting factors to bind) 

(Heemskerk et al., 1997). 
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Figure 2: Tyrosine kinase signal transduction.  

Upon receptor occupancy, src kinases Fyn and Lyn are activated and phosphorylate immunoreceptor tyrosine-
based activation motifs present on the associated FcRγ chain. FcRγ acts as a docking site for  the tyrosine 
kinase Syk via its src homology (SH) 2 domain. Activated Syk induces a signalling cascade and phosphorylates 
the ‘Linker for Activation of T-cells’ (LAT)  which acts as a docking site for the recruitment of phosphoinositide 3-
kinase (PI3K), phospholipase Cγ2 (PLCγ2)  and adaptor proteins. Through the generation of phosphatidylinositol 
(3,4,5)-trisphosphate (PIP3), among other products, PLCγ2 is recruited and activated. PLCγ2 hydrolyses 
phosphatidylinositol (4,5)-bisphosphate (PIP2) to inositol (1,4,5)-trisphosphate (IP3) and diacylglycerol (DAG). IP3 
induces calcium (Ca2+) release via activation of IP3 receptors (IP3R) present on the dense tubular system (DTS). 
DAG stimulates protein kinase C (PKC) which translocates to the platelet membrane and becomes active. 
Increases in intracellular Ca2+ and PKC activation causes platelet activation and initiates major platelet 
responses. Image adapted from (Gibbins, 2004). 

 

G-protein coupled receptors 
Platelets express a number of G-protein coupled receptors that can induce 

stimulatory or inhibitory signals. Heterotrimeric G-proteins are composed of α, β and 

γ subunits, the former bound to guanine nucleotides. Upon activation, the α subunit 

becomes GTP-bound, dissociates from its β and γ subunits and interacts with 

downstream effectors (Shen et al., 2012). The α subunit classification determines the 
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target proteins affected by G-protein coupled receptor activation and downstream 

signalling events. 

The α subunit Gq activates PLC which generates DAG and IP3 and initiates major 

platelet responses through increased Ca2+ concentration. Gq is coupled to the 

thrombin receptors PAR-1 and PAR-4, ADP receptor P2Y1 and TxA2 receptor TP. 

The α subunit G13 activates the Rho/Rho kinase pathway which regulates myosin 

light chain phosphatase and results in the phosphorylation of myosin light chain 

(MLC). Activated MLC enhances actin filament cross-linkage and results in platelet 

shape change and aggregation (Moers et al., 2003). G13 is coupled to the thrombin 

receptors PAR-1 and PAR-4, TP receptors and fibrinogen receptor αIIbβ3 (Gong et 

al., 2010) (also see ‘Outside-in signalling’). 

The α subunit Gi inhibits adenylate cyclase activity and enhances platelet 

aggregation by lowering intraplatelet cAMP concentration (Jantzen et al., 2001). In 

addition, Gi  has been shown to stimulate PI3K, which results in further Ca2+ release 

and platelet aggregation (Garcia et al., 2010). 

The α subunit Gs is inhibitory and is detailed under ‘Prostacyclin (PGI2)’ in the 

‘Physiological inhibitors of platelet function’ subsection of this chapter. 
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Figure 3: G-protein coupled receptor signal transduction in platelets.  

Thromboxane (TxA2; TP), thrombin (PAR-1 and PAR-4) and fibrinogen (αIIbβ3 by outside-in signalling) receptors 
are coupled to G13 that activates Rho/Rho kinase mediated signalling, phosphorylates myosin light chain (MLC) 
and induces platelet shape change. P2Y1 (by ADP) in addition to TxA2 and thrombin receptors are coupled with 
Gq. Gq activates phospholipase C (PLC) which elevates intracellular calcium (Ca2+) concentration. Thrombin-
stimulated PAR-1 and PAR-4 and ADP-stimulated P2Y12 activates Gi which stimulates phosphoinositide 3-kinase 
(PI3K; leading to increased Ca2+ concentration) and inhibits adenylate cyclase (attenuating inhibitory cyclic 
adenosine monophosphate (cAMP) signalling). And finally prostacyclin (PGI2 via the prostacyclin receptor (IP)) is 
coupled to Gs which stimulate inhibitory cAMP signalling through adenylate cyclase activation. Image adapted 
from (Broos et al., 2011). 

Platelet integrins 
Platelet integrins are essential for stable adhesion and platelet aggregation. Platelet 

integrins have bidirectional signalling. Platelet activation is necessary for high affinity 

integrin binding (inside-out signalling) and ligand binding induces intracellular 

signalling (outside-in signalling). This section will discuss the activity and function of 

integrin signalling. 

Inside-out signalling 
Platelet activation results in increased cytoplasmic Ca2+ concentration and PKC 

activation, which induces the conformational change of integrins from their low 

affinity to high affinity state. This process is known as inside-out signalling and 

activates integrins αIIbβ3 and α2β1. The activation of integrin αIIbβ3 was first identified 

in 1979 and is the best characterised (Bennett and Vilaire, 1979). Therefore inside-

out signalling will be discussed in the context of the integrin αIIbβ3. PKC and ‘Ca2+ 
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and diacylglycerol regulated guanine nucleotide exchange factor I’ (CalDAG-GEFI; 

activated by Ca2+ and DAG) activate the small GTP binding protein Rap1b 

(Chrzanowska-Wodnicka et al., 2005). Rap1b forms an ‘activation complex’ by 

associating with Rap1-interacting adaptor molecule (RIAM) and talin. This complex 

activates αIIbβ3 by regulating cytoskeletal rearrangement and disrupting the 

interaction between α and β subunits to expose the ligand binding site (Di Minno et 

al., 1983). Kindlin3 has been reported to be essential for integrin αIIbβ3 activation by 

interaction with talin (Moser et al., 2008). The exact mechanism by which kindlin3 

and talin interacts is unknown; however, the haematopoietic-restricted adapter 

protein ADAP has recently been reported to be involved (Kasirer-Friede et al., 2014). 

 

Figure 4: Activation of integrin αIIbβ3 by inside-out signalling.  

Platelet activation induces intracellular calcium (Ca2+) increase and diacylglycerol (DAG) synthesis which 
stimulates protein kinase C/phosphoinositide 3-kinase (PKC/PI3K) and ‘Ca2+ and diacylglycerol regulated 
guanine nucleotide exchange factor I’ (CalDAG-GEFI) activity. This activates Rap1 which forms a complex with 
Rap1-interacting adaptor molecule (RIAM) and talin. The ‘activation complex’ results in cytoskeletal 
rearrangements and induces a conformational change in integrin affinity from low to high. Kindlin3 is essential in 
integrin activation but the exact mechanism is unknown. Image taken from (Broos et al., 2011). 

 

Outside-in signalling 
Receptor occupancy of integrin αIIbβ3 triggers signalling known as ‘outside-in’. The β3 

subunit bears the conserved integrin cytoplasmic tyrosine (ICY) domain, which can 

initiate intracellular signalling by tyrosine phosphorylation. The same conserved motif 
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has been described in many β subunits, which suggests that other integrins can also 

mediate outside-in signalling (Inoue et al., 2003; Phillips et al., 2001). Outside-in 

signalling mediated by αIIbβ3 is necessary for clot retraction and platelet aggregation. 

Genetically modified mice with point mutations in the ICY domain (DiYF mice) of 

αIIbβ3 exhibit an aggregatory and bleeding defect (Law et al., 1999). The β3 subunit is 

associated with G-protein α subunit Gα13 which stimulates SFKs (Gong et al., 2010; 

Suzuki-Inoue et al., 2007). SFKs promote RhoGAP (Rho GTPase-activating 

proteins) which accelerates the conversion of RhoGTP to the inactive RhoGDP and 

promotes cell spreading. Activation of calpain (calcium-dependent protease) cleaves 

the β3 subunit and dissociates SFKs (mainly c-src) which promotes Rho activation 

and induces clot retraction (Flevaris et al., 2007) (Figure 5). In addition, SFKs have 

been shown to activate Syk and initiate signalling similar to that seen by GPVI 

tyrosine kinase activation (Boylan et al., 2008). 

 

Figure 5: Outside-in signalling controlling platelet spreading and clot retraction.  

Activation of G-protein Gα13 promotes platelet shape change and granule secretion by stimulating RhoGEF (Rho 
guanine nucleotide-exchange factors). Occupancy of the integrin αIIbβ3 associates Gα13 with the β3 subunit, 
stimulating src family kinases (SFKs) such as c-src and stimulates RhoGAP (Rho GTPase-activating proteins). 
This accelerates the inactivation of RhoA-GTP and favours cell spreading. The calcium-dependent protease 
(calpain) acts as a molecular switch to cleave the src binding site of the β3 subunit and stimulate RhoGEF which 
reactivates RhoA and induces clot retraction. Image taken from (Li et al., 2010). 
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Physiological inhibitors of platelet function 

Nitric oxide (NO) 
NO is synthesised in the vascular endothelium by an enzyme known as endothelial 

nitric oxide synthase (eNOS) (further detail in ‘Enzymic NO sources – nitric oxide 

synthases’ later in this chapter). NO produced by eNOS is released in a paracrine 

fashion and diffuses into surrounding cells such as vascular smooth muscle cells and 

platelets (Azuma et al., 1986; Palmer et al., 1987). More recently, other sources of 

NO affecting platelet function have been elucidated, however this will be addressed 

later in this chapter. This section will focus on NO signalling in platelets. 

cGMP-dependent signalling 
NO acts via the NO/sGC/cGMP (nitric oxide/soluble guanylate cyclase/cyclic 

guanosine monophosphate) pathway (Figure 6).  The lipophilic nature of NO allows 

the molecule to diffuse through the platelet membrane and bind to the haem moiety 

of sGC enzyme (Ignarro et al., 1982). The histidine ligand is displaced and the 

enzymatic activity of sGC increases by 200-fold (Lawson et al., 2000). sGC 

catalyses the conversion of GTP to cGMP which can then regulate 2 sets of protein 

effectors, protein kinase G (PKG; mainly PKGIβ) and phosphodiesterases (PDEs). 

PDEs act as feedback regulators, promoting or terminating the signal. PKG causes 

the majority of the effects of NO by phosphorylating a number of proteins that 

regulate platelet activity. This was established using PKG knockout (PKG-/-) mice, as 

they had increased platelet sensitivity and a lack of response to NO stimulation 

(Massberg et al., 1999). Platelet functions inhibited by NO include Ca2+ mobilisation, 

cytoskeletal rearrangement, secretion of secondary agonists and platelet adhesion. 
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Figure 6: Schematic diagram of nitric oxide signalling in platelets via the NO/sGC/cGMP pathway.   

NO is able to diffuse into the platelet and activate soluble guanylate cyclase.  sGC catalyses the conversion of 
GTP to cGMP which can in turn phosphorylate and activate PKG. cGMP is also able to inhibit PDE3 activity 
which increases the concentration of cAMP and the phosphorylation of PKA. Both PKG and PKG can 
phosphorylate a range of targets which reduce platelet activity and negatively regulate platelet function. The 
effect of cGMP is terminated via the PDE5 enzyme which breaks down cGMP to its inactive form and therefore 
acts as a negative feedback regulator. 

NO-nitric oxide; sGC-soluble guanylate cyclase; GTP-guanosine triphosphate; cGMP-cyclic monophosphate; 
PKG-protein kinase G; PKA-protein kinase A; PDE3-phosphodiesterase 3; PDE5-phosphodiesterase 5; GMP-
guanosine monophosphate. 

 

Ca2+ mobilisation 
Activated PKG phosphorylates the IP3receptor IP3R (Cavallini et al., 1996) and 

inositol-1,4,5-trisphosphate receptor-associated cGMP kinase substrate (IRAG) (Antl 

et al., 2007) which decreases the release of Ca2+ from intracellular stores 

(Trepakova et al., 1999). 

Cytoskeletal rearrangement 
NO inhibits platelet shape change by targeting the actinomyosin contractile 

machinery. Activated PKG phosphorylates vasodilator activated phosphoprotein 

(VASP) at ser239, ser157 (preferred by PKA) and thr278 (weakly phosphorylated by 
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both PKG and PKA) which prevents binding to F-actin and suppresses actin 

polymerisation (Bachmann et al., 1999; Massberg et al., 2004; Smolenski et al., 

1998). PKG regulates the phosphorylation state of MLC and is therefore able to 

modify actin-myosin interactions (Roberts et al., 2009). However, it is unclear 

whether NO signalling inhibits MLC kinase or activates MLC phosphatase (Somlyo, 

2007). Heat shock protein 27 (HSP27) is also a target of PKG which reduces actin 

polymerisation and contributes to the inhibitory effect of NO (Butt et al., 2001).  

Secretion of secondary agonists 
Secondary agonists are agonists that enhance platelet recruitment, such as ADP 

and TxA2. NO decreases ADP signalling by reducing Ca2+ mobilisation and 

preventing activation of PKC, thereby inhibiting dense granule secretion and release 

of ADP (Durante et al., 1992; Morrell et al., 2005). Activated PKG directly 

phosphorylates TP receptors and prevents TxA2 activation of downstream signalling 

events (Wang et al., 1998). 

Platelet adhesion and aggregation 
NO/cGMP signals are able to block platelet functions that occur after platelet 

activation.  For example, NO exerts no effect on GPVI and GPIb binding (which are 

able to bind when platelets are inactivated); however, NO is able to block platelet 

adhesion and aggregation via the integrins α2β1 and αIIbβ3 which are only present in 

the high affinity state after platelet activation (Graaf et al., 1992; Horstrup et al., 

1994; Roberts et al., 2008). 

Does NO-cGMP have a stimulatory effect on platelet function? 
Agonist-stimulated cGMP increase upon platelet activation raised suspicion that 

cGMP may have a simulatory role in platelet aggregation (Wu et al., 1993). Du and 

colleagues found that NO-cGMP had a stimulatory effect on platelet function 

however this effect was time and concentration-dependent (i.e. stimulatory at low 

concentrations of NO-cGMP) (Li et al., 2003b). Further investigation identified that 

PKG inhibitors (KT5823 and Rp-pCPT-cGMP) were able to reverse the platelet 

secretion-dependent secondary wave of platelet aggregation induced by the vWF 

modulator ristocetin (Stojanovic et al., 2006). They also found that Akt-/- (mice lacking 

the serine/threonine protein kinase, Akt) and PKG-/- mice had reduced platelet 
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secretion and aggregation compared to WT mice (Li et al., 2003b; Stojanovic et al., 

2006) and concluded that platelet agonists were able to stimulate NO-cGMP 

synthesis via eNOS through PI3K-Akt signalling. However, this doesn’t explain how 

NO-cGMP signalling can then stimulate and promote platelet secretion and 

aggregation which remains unresolved. Gambaryan and colleagues have fiercely 

debated against the stimulatory role of cGMP by 1) disproving that platelets contain 

eNOS (Gambaryan et al., 2008), 2) demonstrating that sGC-/- mice have normal 

platelet aggregation responses but are insensitive to NO-induced platelet inhibition 

(Dangel et al., 2010) and 3) establishing that thrombin does not induce sGC 

activation, increases in cGMP or VASP phosphorylation (Gambaryan et al., 2012). 

To date only one research team has identified a stimulatory role for NO-cGMP in 

platelets and therefore it is generally accepted that NO-cGMP has an inhibitory effect 

on platelet function. 

cGMP-independent signalling 
Other cGMP-independent pathways have previously been identified such as 

reversible protein S-nitrosation and irreversible protein nitration.  

Protein S-nitrosation is a posttranslational modification by which NO is covalently 

attached to the sulphur moiety of a cysteine thiol group (-SH) forming what is known 

as an S-nitrosothiol (RSNO) (Stamler et al., 1992). N-ethylmaleimide-sensitive factor 

(NSF) (Matsushita et al., 2003; Morrell et al., 2005) and integrin αIIbβ₃ (Oberprieler et 

al., 2007) are known to be subjected to S-nitrosation which consequently inhibits 

platelet activity. Interestingly, NO synthesis has been reported to be regulated by S-

nitrosation which in turn will impact platelet function. The enzyme responsible for L-

arginine catabolism, arginase, can be activated by S-nitrosation at cysteine 303 

resulting in decreased bioavailability of L-arginine and therefore NO (Santhanam et 

al., 2007). NOS itself can undergo auto-S-nitrosation which can negatively regulate 

NO synthesis (Patel et al., 1996; Ravi et al., 2004).  

Protein nitration is an irreversible post-translational protein modification where a nitro 

group (-NO2) is added to protein tyrosine residues to form 3-nitrotyrosine. Platelet 

proteins, such as α-actinin, can be nitrated by peroxynitrite resulting in inhibition of 

actinomyosin contractile machinery and platelet aggregation (Marcondes et al., 
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2006). Although not a direct effect on platelets, fibrinogen can be subjected to 

nitration resulting in accelerated fibrin mesh formation in vivo and in vitro which then 

acts by stabilising platelet clots (Parastatidis et al., 2008). 

Prostacyclin (PGI2) 
Prostacyclin (also known as prostaglandin I2) is a member of the eicosanoid family 

and a product of the COX pathway. In platelets, prostacyclin binds to the 

prostaglandin I2 (IP) receptors (Dutta-Roy and Sinha, 1987) which are coupled to the 

G-protein receptor, Gs. Gs is converted to its active GTP-bound form which activates 

adenylate cyclase (AC) and catalyses the conversion of ATP into cAMP (Figure 7; 

Paul et al., 1998). cAMP stimulates two effector proteins, PDEs and protein kinase A 

(PKA type I or PKA type II) (Fetalvero et al., 2007). PKA inhibits platelet function by 

targeting virtually the same protein targets as PKG causing inhibition of Ca2+ 

mobilisation, modulation of actin cytoskeletal dynamics, decrease in platelet 

adhesion, granule secretion and aggregation (Smolenski, 2012). To date, there are a 

few exceptions as PKA has been shown to phosphorylate G13 (inhibits RhoA which 

promotes MLC phosphatase activity (Manganello et al., 2003)), GPIbβ (involved in 

cell adhesion (Wardell et al., 1989)), filamin-A (provides protection against 

proteolysis (Chen and Stracher, 1989)) and caldesmon (unknown function – 

potentially acting as a calmodulin binding protein and inhibiting shape change 

(Hettasch and Sellers, 1991)) which has not currently been associated with PKG. 
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Figure 7: Schematic diagram of prostacyclin signalling in platelets via the IP receptor-mediated signalling. 

PGI2 released from the vascular endothelium binds to the IP receptor which in turn activates adenylate cyclase.  
AC catalyses the conversion of ATP to cAMP which can stimulate the activation of PKA.  Activation of PKA 
enables phosphorylation of a range of targets which reduce platelet activity and negatively regulate platelet 
function. Activation of PDE2 and PDE3 terminates this pathway by breaking down cAMP to its inactive form and 
therefore acting as a negative feedback regulator. 

PGI2-prostacyclin; IP-prostacyclin receptor; Gs-stimulatory GTP-binding protein; AC-adenylate cyclase; ATP-
adenosine diphosphate; cAMP-cyclic adenosine monophosphate; PKA-protein kinase A; PDE2/3-
phosphodiesterases; AMP-adenosine monophosphate. 
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Platelet function in cardiovascular disease 
Platelets play a pivotal role in arterial thrombosis, which is a common cause of fatal 

ischaemic conditions such as myocardial infarction and stroke. Arterial thrombosis is 

characterised by the inappropriate activation of platelets that lead to the formation of 

platelet aggregates and blockade of blood vessels. The exact causes of the 

inappropriate activation of platelets are unclear; however, hypertension (increased 

shear stress promotes platelet aggregation) and damaged vascular endothelium 

(reduced production of platelet inhibitors) are believed to be major contributors 

(Löwenberg et al., 2010). The vascular endothelium is known to regulate platelet 

function by synthesising and releasing inhibitors of platelet function such as NO and 

PGI2 (Nucci et al., 1988) and therefore damage to the vascular endothelium results in 

the enhanced ability of platelets to aggregate. Atherosclerosis is the formation of 

fatty deposits in blood vessels (atherosclerotic plaques) which attenuate blood flow 

and cause endothelial dysfunction (Anderson, 2003). Platelets play a critical role in 

atherogenesis by releasing inflammatory and immune modulating factors upon 

activation (Huo et al., 2003). This enables interaction with leukocytes and endothelial 

cells which induces chronic inflammation and cell proliferation. In fact, P-selectin 

deficiency in a mouse model of atherosclerosis significantly delayed lesion formation 

in the aorta (Burger and Wagner, 2003) and highlighted the significant role platelets 

play in atherosclerotic plaque formation. High shear stress can rupture 

atherosclerotic plaques and instigate arterial thrombosis by exposing the underlying 

ECM and initiating platelet adhesion, activation and aggregation (Broos et al., 2011). 

Overall, an imbalance in positive and negative regulators of platelets can lead to 

arterial thrombosis which is a major cardiovascular complication that accounts for 

over 25% of all deaths worldwide (World Health Organisation, 2010). This highlights 

the need for antiplatelet therapies to reduce the inappropriate activation of platelets 

and, in turn, reduce the risk of platelet-driven cardiovascular events. 

Common platelet drugs 
Antiplatelet therapy is the most commonly prescribed medicine to prevent and 

manage arterial thrombosis. These drugs target common pathways of platelet 

aggregation such as the synthesis and release of TxA2 (aspirin), ADP-induced 

platelet activation (thienopyridines such as clopidogrel) and the activation of integrin 
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αIIbβ3 receptor (abciximab). Aspirin is the most commonly prescribed antiplatelet 

therapy. A meta-analysis of 145 randomised clinical trials showed reduced risk of 

vascular events and death in 25% of high risk patients (Antithrombotic Trialists’ 

Collaboration, 2002). Aspirin irreversibly antagonises COX-1 by acetylating serine 

529 (Roth et al., 1975) which inhibits the synthesis of TxA2 and amplification of the 

platelet aggregatory response. Thienopyridines (clopidogrel, ticagrelor, prasugrel) 

selectively and irreversibly inhibit P2Y12 receptors and therefore target and reduce 

secondary agonist platelet activation. This drug is usually coadministered with aspirin 

in patients at high risk of thrombosis (e.g acute coronary syndromes and post-

percutaneous coronary intervention) (Nagakawa et al., 1990). Integrin αIIbβ3 

inhibitors (abciximab, eptifibatide and tirofiban) are potent antiplatelet drugs that 

inhibit platelet surface integrin αIIbβ3 receptors (Ostrowska et al., 2014). These drugs 

are only given as a short term treatment due to their intravenous administration 

(Coller, 2001). 

Current antiplatelet drugs can induce severe adverse effects such as increased 

incidence of bleeding, a multitude of effects on the gastrointestinal tract and hepatic 

dysfunction (Burger et al., 2005). A considerable number of patients still experience 

cardiovascular events and, due to clinical (pharmacodynamics, poor compliance, 

unsuitable dose; Biondi-Zoccai et al., 2006), genetic (polymorphisms of cytochrome 

P450 and target molecules; Jia et al., 2013; Lau et al., 2004) and cellular factors 

(compensatory mechanisms, pharmacokinetic issues; Halushka et al., 1981), drug 

resistance has been known to occur in some patients (Angiolillo et al., 2008; 

Zimmermann and Hohlfeld, 2008). Some of the more potent antiplatelet therapies 

(such as abciximab) have unsuitable administration routes and safety profiles and 

therefore can only be taken short-term and under surveillance by a healthcare 

professional (Gonzalez, 1998). In addition, oral administration of integrin αIIbβ3 

inhibitors has been disappointingly unsuccessful (Chew et al., 2001). These issues 

highlight the need to find new antiplatelet therapies that will reduce inappropriate 

platelet activation with minimal adverse effects. 
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Nitric oxide in cardiovascular function and disease 
NO is implicated in many biological processes such as immunology, muscle 

contraction and neurotransmission. However, a major role of NO is in the 

cardiovascular system. NO is a small gaseous molecule made up of 1 nitrogen and 1 

oxygen atom covalently bound with a half-life of only a few seconds (Lim et al., 

2006). NO was first acknowledged in the 1980s as the endothelium-derived relaxing 

factor (EDRF) due to acetylcholine initiating vasodilation only in the presence of the 

vascular endothelium (Furchgott and Zawadzki, 1980; Ignarro et al., 1987). NO is 

produced endogenously by a group of enzymes known as nitric oxide synthases 

(NOSs). Recent research has uncovered other sources of NO generation such as 

the bioconversion of dietary inorganic nitrates (Lundberg et al., 2008) and 

metabolism of S-nitrosothiols (Singh et al., 1996). The physiological importance of 

these mechanisms in regulating cardiovascular function is unclear (see ‘The source 

of NO’ for more information regarding the generation of NO). 

NO is known for its cardioprotective properties. NO generation by eNOS within 

endothelial cells is released into the surrounding tissues such as vascular smooth 

muscle and the blood. NO activity on vascular smooth muscle cells induces 

vasodilation (Huang et al., 1995). This enables ‘fine tuning’ of vessel tone which, in 

turn, improves cardiac function. NO has been reported to reduce leukocyte 

adherence to the vessel wall (Kubes et al., 1991; Lefer et al., 1999) which potentially 

accounts for its protective effect against atherogenesis (Kuhlencordt et al., 2001). 

Most important for this thesis is the effect of NO on platelet function. NO can inhibit 

platelet aggregation in vitro in whole blood (Yoshimoto et al., 1999) and in vivo 

(Emerson et al., 1999; Freedman et al., 1999; Moore et al., 2010). Therefore NO 

counteracts atherogenesis and platelet hypersensitivity that could potentially lead to 

arterial thrombosis. 

Due to the cardioprotective effects of NO, defects in its signalling have been linked to 

cardiovascular disease. In fact an impairment of the NOS pathway is thought to be 

one of the earliest events in atherogenesis (Kuhlencordt et al., 2001; Napoli and 

Ignarro, 2001). In vascular disease endothelial NO production is impaired, possibly 

by an increase in oxidative stress and uncoupling of the eNOS enzyme 



Georgina Apostoli 
Targeting the NO signalling pathway to modulate platelet function  
Platelet Biology, Molecular Medicine 
National Heart and Lung Institute 
 
 

41 
 

(Forstermann and Munzel, 2006). eNOS knockout (eNOS-/-) mice have been shown 

to have hypertension (Huang et al., 1995), hypercoagulability (Freedman et al., 

1999), increased susceptibility to atherosclerosis (Kuhlencordt et al., 2001) and 

increased leukocyte-endothelial interactions (Lefer et al., 1999) compared to the wild 

type (W.T) control, which are all contributors to cardiovascular disease. Overall, 

there is a significant body of research indicating that the bioavailability of NO can be 

reduced in cardiovascular disease (Chirkov et al., 2002; Ekmekçi et al., 2013; 

Erdmann et al., 2013; Forstermann et al., 1988; Kuhlencordt et al., 2001; Ludmer et 

al., 1986; Pieper, 1999; Raitakari et al., 2001; Schmidt et al., 2012; Yamashiro et al., 

2010) and this demonstrates the appeal of developing drugs that can target NO 

synthesis, regulation and signalling pathway (as reviewed Huang, 2009; Napoli and 

Ignarro, 2001). 

The source of NO affecting platelet function 
As mentioned previously, NO is a major negative regulator of platelet function. This 

section will cover the sources of NO that are potentially able to modify platelet 

function. 

Enzymic NO sources – nitric oxide synthases 

NO is produced by the catalytic conversion of the amino acid L-arginine to L-citrulline 

by NOS enzymes (Boucher et al., 1992). These enzymes are dimeric flavoproteins 

which use tetrahydrobiopterin (BH4) as a cofactor and contain a haem group as 

shown in Figure 8 (Pollock et al., 1991). NO synthesised by NOS is released in a 

paracrine fashion and diffuses into nearby cells to exert its biological effect (Azuma 

et al., 1986; Radomski et al., 1987). 
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Figure 8: Schematic diagram of the NOS enzyme.  

NOS enzymes metabolise the conversion of L-arginine and O2 to L-citrulline and NO, a reaction facilitated by 
cofactors such as nicotinamide adenine dinucleotide phosphate (NADPH). They are dimeric enzymes that bind to 
cofactors such as haem groups, tetrahydrobiopterin (BH4), flavin adenine dinucleotide (FAD), flavin 
mononucleotide (FMN) and a zinc atom (Zn). On calcium-calmodulin binding (CAL) the enzyme is able to 
catalyse the reaction to produce NO. Image adapted from (Vallance and Leiper, 2002). 

 

There are 3 known NOS isoforms expressed constitutively or induced when 

necessary. The isoform inducible NOS (iNOS) is synthesised in response to 

pathological stimuli and generates NO independent of intracellular Ca2+ 

concentrations (Huang et al., 1998). In contrast, endothelial (eNOS) and neuronal 

(nNOS) are constitutively expressed and are dependent on calcium-calmodulin 

binding for the synthesis of NO to occur (Bredt and Snyder, 1990). 

NOS provides a major source of NO that affects platelet function. Administration of 

NOS inhibitors significantly enhanced platelet aggregation in vivo in W.T mice 

(Emerson et al., 1999; Moore et al., 2010). The eNOS isoform is potentially the main 

contributor to platelet NO. Previous studies reported hypercoagulability (Freedman et 

al., 1999) and increased platelet aggregation (Moore et al., 2011) in eNOS -/- mice 

compared to W.T mice. Previous reports have suggested that nNOS can be 

expressed in arterial vessels after hypoxic events (Ward et al., 2005) and therefore 
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may contribute to NO signalling in ischaemic conditions such as atherosclerosis. 

However, work from our group has shown that other forms of NOS (iNOS and 

nNOS) have negligible effects on in vivo platelet aggregation (Moore et al., 2011). 

The presence of platelet NOS 
Platelets have been reported to generate NO via their own form of NOS. 

Researchers have reported the presence of the L-arginine/NO pathway (Freedman 

et al., 1997; Radomski et al., 1990) and NO release from platelets in vitro (Malinski 

et al., 1993; Zhou et al., 1995). Furthermore, the hypercoagulability seen in eNOS-/- 

mice was restored by the transfusion of W.T platelets which suggested that platelets 

were generating NO by a form of eNOS (Freedman et al., 1999). eNOS protein and 

mRNA expression has been reported in some publications (Aytekin et al., 2012; 

Berkels et al., 1997; Mehta et al., 1995; Patel et al., 2006) however, the presence of 

eNOS in platelets is a subject of fierce debate. Contrary to the above studies, other 

research groups have reported a lack of eNOS mRNA and protein expression in 

platelets (Gambaryan et al., 2008; Ozuyaman et al., 2005; Tymvios et al., 2009). In 

fact, Gambaryan et al. (Gambaryan et al., 2008) addressed the issue of contradiction 

and have published that some commercially available eNOS antibodies 

inappropriately detect eNOS expression in eNOS-/- mice. Gambaryan et al. (2008) 

emphasise the need to have appropriate positive and negative controls when 

detecting protein expression, a method adopted by Tymvios et al. (Tymvios et al., 

2009). All things considered, it is unclear whether platelets generate NO via their 

own form of NOS. 

Non-enzymic NO sources 

S-nitrosothiols 
S-nitrosothiols (also termed thionitrites and RSNOs) are a class of compounds that 

contain a nitroso group attached to the sulphur atom of sulphydryl compounds 

collectively known as thiols (chemical structure RSNO). These compounds can be 

found endogenously as large (S-nitrosoalbumin and S-nitrosohaemoglobin) or small 

(S-nitrosocysteine (CysNO) and S-nitrosoglutathione (GSNO)) molecules (Gow et 

al., 2002). RSNOs are produced by the addition (S-nitrosation) or transfer 

(transnitrosation) of a nitroso group to a reduced sulphydryl group (Figure 9). 
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Figure 9: Schematic diagram of RSNO formation (nitrosation) and metabolism (denitrosation).  

Denitrosation occurs by reduction (removal of an electron) and therefore breakage of the disulphide bond.  

RSH – thiol; NOx – nitrogen oxides; RSNO – S-nitrosothiol; e- - electron; NO – nitric oxide. 

 

RSNOs have been suggested to act as active intermediates of NO signalling by 

preserving NO bioavailability and compartmentalising its activity (Matsumoto and 

Gow, 2011; Myers et al., 1990; Stamler et al., 1992). In fact, RSNOs were a 

proposed candidate for EDRF (Myers et al., 1990). Therefore RSNOs have attracted 

research into their therapeutic potential (Richardson and Benjamin, 2002). RSNOs 

can activate cGMP-independent (Crane et al., 2005) and cGMP-dependent NO 

signalling (Bell et al., 2007; Ignarro et al., 1980) and subsequent research has 

validated that RSNOs can act as NO ‘reservoirs’ (Al-Ani et al., 2006; Chvanov et al., 

2006; Diesen et al., 2008; Shah et al., 2007; Singh et al., 1996). Previous work 

established that spontaneous decomposition of RSNOs and NO production did not 

correlate with biological activities suggesting the presence of cell-specific 

mechanisms. Therefore RSNOs cannot be considered to be typical NO donors 

(Gordge et al., 1998; Mathews and Kerr, 1993). RSNOs are believed to contribute to 

NO signalling via an array of mechanisms that either transport RSNOs into the cell 

(Riego et al., 2009) or catabolism of the compound by enzymatic or non-enzymatic 

mechanisms which NO can elicit its activity by diffusing into the cell (Freedman et al., 

1995; Root et al., 2004). 

A large body of research has proven that RSNO compounds have the ability to 

inhibit platelet adhesion (Irwin et al., 2009), granule secretion (Morrell et al., 2005), 

fibrinogen binding (Simon et al., 1993) and aggregation (Mellion et al., 1983; Priora 
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et al., 2011). The effect on platelet function was proven to be mediated via cGMP-

dependent and independent NO-related pathways (Irwin et al., 2009; Mathews and 

Kerr, 1993; Sogo et al., 2000). The inhibitory effect of RSNO compounds on platelets 

has also been identified in vivo (Miller et al., 2003; Vilahur et al., 2004). In fact, 

GSNO selectively stimulates inhibitory NO signalling in platelets whilst preserving 

vascular tone in vivo, which has brought interest of these compounds as anti-

thrombotic agents (de Belder et al., 1994; Xiao and Gordge, 2011). RSNOs are 

known to be present in platelets and have been suggested to deliver NO by various 

mechanisms (Hirayama et al., 1999; Mathews and Kerr, 1993). Metabolising 

enzymes such as the thiol isomerase protein disulphide isomerase (PDI) and 

membrane transporters such as the amino acid transporter system-L (L-AT) have 

been proposed as possible mechanisms of RSNO NO-related activity in platelets 

(Gordge and Xiao, 2010). 

Amino acid transporter system-L 
L-AT belongs to a family of proteins known as the heterodimeric amino acid 

transporters. Collectively, they are responsible for the uptake of amino acids from the 

diet to a wide range of cells in the body (Wagner et al., 2001). It has also been 

identified that L-AT can transport RSNOs across plasma membranes (Li and 

Whorton, 2005; Zhang and Hogg, 2004). The ability of L-AT to transport low-

molecular weight RSNOs such as CysNO from the extracellular to intracellular space 

has been well characterised in many cell types (Satoh et al., 1997; Zhang and Hogg, 

2005, 2004). Riego et al. (Riego et al., 2009) demonstrated that CysNO could 

increase intracellular cGMP, potentially by stimulation of sGC, by L-AT mediated 

transport. In platelets, CysNO has been reported to significantly inhibit platelet 

aggregation which coincided with an increase in sGC stimulation (Mathews and Kerr, 

1993); however, the involvement of L-AT-mediated RSNO transport in platelets has 

not been fully defined. 

Protein disulphide isomerase 
PDI is primarily an endoplasmic reticulum (ER) protein that regulates disulphide 

bond modification and therefore can exchange, oxidise or reduce disulphide bonds 

between thiols. Recent identification has established thiol isomerase expression in 
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locations other than the ER (Turano et al., 2002; van Nispen Tot Pannerden et al., 

2009). For example, inactivated platelets have been identified to express PDI and 

other thiol isomerases on their cell surface and activated platelets have the ability to 

release these enzymes from intracellular stores (Chen et al., 1995, 1992; Holbrook 

et al., 2010). Thiol isomerases regulate platelet function, predominantly via integrin-

mediated platelet activation (as reviewed in (Cho, 2013)). In fact, PDI function is 

required for thrombus formation but has limited effect on haemostasis suggesting 

that PDI may potentially be a good target for antithrombotic therapy (Jasuja et al., 

2012; Kim et al., 2013). Blockade of platelet PDI has been reported to inhibit platelet 

function by αIIbβ3 (Kim et al., 2013; Manickam et al., 2008) and α2β1 integrin 

activation (Lahav et al., 2003, 2000) independent of platelet activation. In addition, 

PDI has been reported to positively stimulate platelets by regulating thrombin-

mediated thrombin generation (Jurk et al., 2011) and potentially vWF-GPIbα binding 

(Burgess et al., 2000). 

In contrast to PDI inhibition as a potential antithrombotic target, its reducing ability 

has been identified as a method of RSNO denitrosation and a mechanism of NO 

delivery. Previous research validated that inhibition of PDI decreased GSNO-

stimulated NO release in WP (Root et al., 2004). Furthermore, the free radical NO 

was proven to be a product of PDI-GSNO interaction (Sliskovic et al., 2005). Most 

interestingly, Gordge and colleagues have identified that PDI inhibition reversed the 

increase in intraplatelet cGMP seen after stimulation with GSNO (Bell et al., 2007; 

Shah et al., 2007) which provided evidence for the involvement of PDI in NO delivery 

from administered RSNOs. However, the involvement of PDI in releasing NO from 

endogenous RSNOs has not been elucidated. 

Although the previous work regarding RSNO-derived NO looks promising, the ability 

of endogenous RSNOs to modulate platelet function by generating NO is unclear 

and the mechanisms by which NO generation occur are unknown. 

Inorganic nitrate and nitrite 
Inorganic nitrate, and to some extent nitrite, is present in our diet and found in high 

concentrations in vegetables (rocket, celery, beetroot) and cured meats. Until the last 

decade, oxidative metabolites nitrite (NO2 -) and nitrate (NO3 -) were considered to be 



Georgina Apostoli 
Targeting the NO signalling pathway to modulate platelet function  
Platelet Biology, Molecular Medicine 
National Heart and Lung Institute 
 
 

47 
 

inert by-products of the eNOS-derived NO pathway. Recent research has reported 

the bioconversion of nitrate to nitrite and NO as an alternative and potentially 

valuable source of bioactive NO (as reviewed in (Gilchrist et al., 2010; Kapil et al., 

2010)). For centuries, organic nitrates have been known to reduce blood pressure 

and platelet activity. However, only recently has it been identified that inorganic 

nitrate from our diet can have vasodilatory and antiplatelet properties (Larsen et al., 

2006; Lundberg and Govoni, 2004; Webb et al., 2008b). Dietary inorganic nitrate can 

reduce ex vivo platelet aggregation in healthy human volunteers (Larsen et al., 2006; 

Richardson et al., 2002; Velmurugan et al., 2013; Webb et al., 2008b). Moreover, 

W.T mice on a low nitrate-containing diet exhibited a significant increase in ex vivo 

platelet aggregation compared with W.T mice on a normal diet (J. Park et al., 2013). 

So far, however, there have been no studies investigating the impact of nitrate 

bioconversion to NO on platelet function in vivo and therefore the contribution of NO 

derived from dietary nitrate in the presence of endogenous NO sources remain 

unknown. 

Mechanism of nitrate mediated bioactivity 
Once ingested, nitrate is rapidly absorbed with a high bioavailability of ~100% (van 

Velzen et al., 2008). Potentially due to specific transporters (Qin et al., 2012), nitrate 

is retained in the salivary glands and secreted in the saliva. Nitrate-reducing bacteria 

present on the dorsal surface of the tongue can reduce nitrate to nitrite which is 

subsequently absorbed into the blood (Govoni et al., 2008). However, the essential 

involvement of bacteria has been debated as the same research group identified an 

increase in nitrate-induced plasma nitrite concentration in germ-free mice (Jansson 

et al., 2008). Nitrite is subsequently reduced to bioactive NO however the 

mechanism(s) behind nitrite reduction has not been verified. Many possible 

mechanisms have been reported such as the reduction of nitrite to NO due the acidic 

environment of the stomach (Benjamin et al., 1994) and in hypoxic conditions (Maher 

et al., 2008; Webb et al., 2004), the presence of nitrite reducing enzymes (Jansson 

et al., 2008), the reducing ability of haem proteins (Cosby et al., 2003) and reducing 

agents such as vitamin C (Gago et al., 2007). 
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The exact mechanism by which nitrate can inhibit platelet aggregation is unclear. 

Original experimentation correlated an increase in gastric, but not plasma, S-

nitrosothiol concentration with significantly reduced platelet aggregation ex vivo in 

healthy human volunteers after ingestion of nitrate (Richardson et al., 2002). Further 

studies identified that it was the increase in plasma nitrite that correlated with a 

decrease in ex vivo platelet aggregation and reduced blood pressure (Larsen et al., 

2006; Velmurugan et al., 2013; Webb et al., 2008b). In fact, interruption of the 

enterosalivary circulation (via spitting) reversed the increase in plasma nitrite and the 

inhibitory effect on platelets after ingestion of beetroot juice (a source of nitrate) 

(Webb et al., 2008b). The nitrate-mediated plasma nitrite concentration and reduced 

platelet activity have also been observed in mice (Jansson et al., 2008; J. Park et al., 

2013). The mechanism by which plasma nitrite was able to inhibit platelet function is 

more elusive. Previous research has identified that the inhibitory effect of nitrite on 

platelet aggregation is dependent on the presence of erythrocytes (Srihirun et al., 

2012; Velmurugan et al., 2013). Therefore, currently it is believed that nitrite is 

reduced to NO at the level of the erythrocyte and not the platelet. 

Inorganic nitrate/nitrite in cardiovascular disease 
A previous study identified that participants with atrial fibrillation had decreased 

plasma nitrite and platelet cGMP concentrations compared to age matched controls 

which suggested that the nitrate/nitrite/NO pathway could be dysregulated in 

cardiovascular disease (Minamino et al., 1997). Interestingly, dietary 

supplementation with nitrate reversed the metabolic syndrome seen in eNOS-/- mice, 

an animal model of vascular dysfunction (Carlström et al., 2010). Previous studies 

have reported that eNOS-/- mice have enhanced platelet activity (Freedman et al., 

1999; Moore et al., 2010). It was recently reported that eNOS-/- mice have 

significantly lower nitrate and nitrite plasma concentrations however this only 

corresponded with a trend in enhanced platelet aggregation ex vivo (J. Park et al., 

2013). The effect of nitrate on human platelet aggregation during vascular disease is 

unknown. In summary, the effects of nitrate on in vivo platelet function during 

endothelial dysfunction are unknown. 
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Phosphodiesterases in platelets 

Phosphodiesterases are enzymes that hydrolyse cAMP and cGMP to cease their 

activity. There are 11 phosphodiesterase (PDE) enzyme families found in humans. In 

platelets there are 3 PDE isoenzymes, PDE2, PDE3, and PDE5 (Hidaka and Asano, 

1976) that have been identified via their substrates, kinetics and sensitivity to 

inhibitors (Gresele et al., 2011). 

Phosphodiesterase 2 
To date, one gene has been identified with 3 splice variants (PDE2A1, PDE2A2 and 

PDE2A3) (Martins et al., 1982). PDE2A is capable of hydrolysing both cAMP and 

cGMP, but binds with a low affinity (Martins et al., 1982). It was originally named 

cGMP-stimulated phosphodiesterases because cGMP promotes the hydrolysis of 

cAMP by PDE2 (Figure 10). cGMP binding to PDE2 stimulates the hydrolysis of 

cAMP by 10-fold (Grant et al., 1990). The enzyme has shown to be localised in 

cardiac myocytes, endothelial cells, neurons, the adrenal medulla and platelets 

(Haslam et al., 1999). PDE2A is a homodimer of 105kDa subunits containing 

allosteric regulatory sites and catalytic sites (Stroop and Beavo, 1991). 

 

Figure 10: Schematic diagram of platelet phosphodiesterase crosstalk. 

The blue arrows indicate cyclic nucleotide hydrolysis and the red arrows indicate enzyme modification (positive 
and negative stimulation) by cyclic nucleotides. Details’ regarding how modulation occurs is in the text. 

cAMP-cyclic adenosine monophosphate; AMP-adenosine monophosphate; cGMP-cyclic guanosine 
monophosphate; GMP-guanosine monophosphate; PDE-phosphodiesterase. 
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Phosphodiesterase 3 
Two PDE3 genes have been identified, PDE3A (implicated in cardiac function and 

fertility; Choi et al., 2001; Masciarelli et al., 2004) and PDE3B (implicated in lipolysis; 

Reinhardt et al., 1995). PDE3A is found in cardiac muscle, vascular smooth muscle 

cells, oocytes and platelets (Bender and Beavo, 2006; Grant and Colman, 1984). 

PDE3 is able to hydrolyse both cGMP and cAMP, however the Vmax for cAMP is 4-10 

fold higher than that for cGMP (Grant and Colman, 1984). In fact, PDE3 was 

originally named cGMP-inhibited cAMP phosphodiesterases as cGMP competitively 

binds with cAMP thereby inhibiting its hydrolysis (Grant and Colman, 1984; Tang et 

al., 1997) (Figure 10). The enzyme is a dimer containing 61kDa subunits. Unique to 

other phosphodiesterases, PDE3 has a 44 amino acid insert which could be involved 

in membrane association and inhibitor specificity (Tang et al., 1997). Inhibition of 

PDE3A potentially could be cardiotonic, antithrombotic and vasodilatory however 

little clinical success has arisen from these inhibitors (as reviewed in Bender and 

Beavo, 2006). 

Phosphodiesterase 5 
As with PDE2, only one PDE5 gene has been identified with 3 splice variants 

(PDE5A1, PDE5A2 and PDE5A3) (Lin et al., 2000). However, it is unknown which 

splice variants are expressed in platelets. PDE5A1 and PDE5A2 cDNA have been 

identified in most tissues and PDE5A3 mainly in smooth muscle. However, PDE5 

activity has only been identified in vascular smooth muscle and platelets (Lin, 2004). 

PDE5 is known to specifically hydrolyse cGMP (Francis et al., 1980; Wallis et al., 

1999). Originally named cGMP-binding cGMP-specific phosphodiesterases (cG-

BPDEs), cGMP must be bound to both allosteric binding sites to activate the enzyme 

and allow phosphorylation by PKG or PKA (Corbin et al., 2000; Mullershausen et al., 

2003; Rybalkin et al., 2003) (Figure 10). PDE5 is a homodimer of 190kDa with a C-

terminal catalytic domain and N-terminal allosteric regulatory domain (Sung et al., 

2003; Figure 11). 
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Figure 11: Schematic representation of phosphodiesterase 5 (PDE5) structure.  

Allosteric binding domains a and b bind cGMP (also known as GAF domain).  This allows for phosphorylation of 
Ser92 by PKG. Taken from (Puzzo et al., 2008).  

P-phosphorylation; cGMP-cyclic guanosine monophosphate; PKG-protein kinase G. 

 

Phosphodiesterase 5 (PDE5) inhibitors 
PDE5 inhibitors selectively enhance NO signalling by inhibiting negative feedback 

mechanisms. PDE5 inhibitors are the drug of choice for the treatment of erectile 

dysfunction (ED) and the class includes sildenafil (Viagra®), vardenafil (Levitra®) and 

tadalafil (Cialis®) (Toque et al., 2008). This section will discuss the mechanism of 

action, pharmacokinetics and therapeutic uses of PDE5 inhibitors. 

Sildenafil 

Sildenafil (originally called UK-92,480) was the first PDE5 inhibitor developed by 

Pfizer European research laboratories in Sandwich, UK, which was originally 

investigated as a treatment for hypertension and angina (Jackson et al., 2005).  After 

unsuccessful clinical trials it was noted that sildenafil was an effective treatment for 

ED (Boolell et al., 1996; Terrett et al., 1996); a condition known to affect 1 in 10 men 

Ser92

Ser92
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worldwide. Sildenafil, under the trade name Viagra®, received approval from the 

Food and Drug Agency (FDA) and European Medicines Evaluation Agency (EMEA) 

in 1998 (Ghofrani et al., 2006). Viagra® is now the most widely used drug for the 

treatment of ED. 

Mechanism of action 
The structure of sildenafil is very similar to that of cGMP as it bears the same 

guanine ring (Figure 12). Corbin and colleagues demonstrated that sildenafil 

competitively binds to the catalytic site on the PDE5 enzyme and therefore inhibits 

the breakdown of cGMP to its inactive form GMP (Corbin et al., 2003). 

 

Figure 12:  Basic chemical structure of sildenafil. 

Sildenafil is a heterocyclic compound with a pyrazolo-pyrimidinone nucleus.  It is structurally very similar to cGMP 
because it has the same pyrazolo-pyrimidinone nucleus (5 member pyrazolo ring and 6 member pyrimidinone 
ring) as the guanine ring present in cGMP (Francis and Corbin, 2005). 

 

As demonstrated in the signalling pathway, sildenafil selectively inhibits PDE5 

enzymes, blocking the breakdown of cGMP and therefore prolonging its activity and 

amplifying the NO signal (Corbin et al., 2003; Terrett et al., 1996; Figure 13). Other 

mechanisms of action have been identified as sildenafil is thought to improve NO 

signalling by activating phosphatidylinositol 3-kinase (PI3K)/Akt and thereby 

activating eNOS by phosphorylation (Musicki et al., 2005).  Most interestingly, a 

recent study by Bivalacqua et al. (2013) has proven that sildenafil is able to reduce 

oxidative/nitrosative stress in cardiovascular disease by reversing the uncoupling of 

eNOS and restoring NO signalling. The mechanism by which this occurs is to be 

determined. 
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Figure 13: Schematic diagram of the mechanism of action of sildenafil.  

Sildenafil inhibits PDE5 which stops the breakdown of cGMP to its inactive form and therefore enhances NO 
signalling by prolonging the activity of cGMP. cGMP increases the activation of PKA and PKG which can 
phosphorylate many targets and induce an inhibitory response. 

NO-nitric oxide; GTP-guanosine triphosphate; cGMP-cyclic monophosphate; PKG-protein kinase G; PDE5-
phosphodiesterase 5; GMP-guanosine monophosphate; PKA-protein kinase A; PDE3-phosphodiesterase 3. 

 

Pharmacokinetics 
Sildenafil is a relatively lipophilic drug that is completely absorbed from the 

gastrointestinal tract after oral administration (Boolell et al., 1996). Maximal plasma 

concentrations of ~200-610 ng mL-1 (~0.5 - 1µM) are reached at ~1.5 hours after a 

single oral dose of sildenafil and ~96% of the drug is bound to plasma proteins 

(Muirhead et al., 2002; Walker et al., 1999). The majority of sildenafil is metabolised 

before it is excreted (Walker et al., 1999). Sildenafil is metabolised by N-

demethylation by the cytochrome P450 enzymes CYP2C9 and CYP3A4 present in 

the liver (Hyland et al., 2001; Warrington et al., 2000). Sildenafil has a terminal 

elimination half-life of ~4 hours (Muirhead et al., 2002). 
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Therapeutic uses 
Sildenafil will exert an effect where PDE5 is expressed and therefore its therapeutic 

use has concentrated on its effect on vascular beds. In fact, sildenafil may potentially 

become the treatment of choice for a range of conditions that result in regional blood 

supply deficiencies (Ghofrani et al., 2006). 

Sildenafil was first approved for the use in erectile dysfunction (ED) in 1998. The 

PDE5 inhibitor was the first oral therapy that acts by enhancing natural endogenous 

signalling. Erectile function is dependent on a psychogenic stimulus which releases 

NO from non-adrenergic non-cholinergic nerves causing smooth muscle relaxation 

and increase in blood flow in the corpus cavernosum (Rajfer et al., 1992). The 

increase in blood flow induces shear stress which stimulates more NO production by 

eNOS (Hurt et al., 2002). In cardiovascular disease, eNOS function is impaired 

which can lead to ED and therefore Viagra® can enhance NO signalling by inhibiting 

the breakdown of cGMP and combating ED (Ballard et al., 1998). 

Following this, PDE5 was found to be highly expressed in lung tissue (Corbin et al., 

2005). In 2005, sildenafil was approved by the FDA and EMEA for the symptomatic 

relief of Pulmonary Arterial Hypertension (PAH) under the trade name Revatio® 

(Ghofrani et al., 2006). PAH is a fatal condition that is caused by increased vascular 

resistance in the pulmonary arteries and may lead to right ventricular heart failure. 

Revatio® administration enhances NO signalling, cGMP concentration and smooth 

muscle relaxation and therefore reduces pulmonary vascular resistance and  

provides more surface area for gas exchange (Corbin et al., 2005; Rubin et al., 

2011). 

Other potential uses for sildenafil that are currently under research are for the 

treatment of Raynauds Phenomenon (Fries et al., 2005), altitude sickness (Ghofrani 

et al., 2004; Richalet et al., 2005), Chronic Obstructive Pulmonary Disease (COPD) 

(Alp et al., 2006) and for the prevention of ischaemia-reperfusion injury (Gori et al., 

2005; Ockaili et al., 2002).  
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Other PDE5 inhibitors 
Since the development of sildenafil, 2 more PDE5 inhibitors have been developed 

and approved for use in ED, vardenafil hydrochloride and tadalafil (Figure 14). 

 

Figure 14: Chemical structures of phosphodiesterase 5 inhibitors.  

A: vardenafil hydrochloride B: tadalafil. Adapted from (Wright, 2006). 

 

Vardenafil is similar in structure to sildenafil and hence has very similar 

pharmacokinetics, efficacy and toxicity profiles (Klotz et al., 2001). The active 

metabolite of vardenafil only accounts for 7% of total pharmacological activity 

(compared to sildenafil’s 20%) and therefore may be more beneficial in patients with 

slower metabolism (Bischoff, 2004). It is worth noting that vardenafil may have 

additional activities by directly blocking store-operated Ca2+ channels (Toque et al., 

2008) however the pharmacological and physiological importance of this is yet to be 

established. 

Tadalafil was developed as a long-term treatment of ED to allow more spontaneous 

erectile function by providing the patient with a longer therapeutic window of activity. 

Tadalafil has a very different chemical structure which is reflected in its different 

pharmacokinetic properties compared to sildenafil and vardenafil. The most 

prominent characteristic of tadalafil is that it has a half-life of 17.5 hours (Young et 

al., 2005). 

The effect of PDE5 inhibition on platelets has been somewhat controversial. There 

are few studies that investigate the effects of vardenafil and tadalafil on platelet 

function and therefore I used the best characterised PDE5 inhibitor sildenafil citrate 

in this study. 
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Could sildenafil be used as an antiplatelet drug? 
NO is an important physiological inhibitor of platelet function. Deficiency in NO 

signalling can cause an increase in platelet activity and the risk of arterial thrombosis 

(Erdmann et al., 2013; Freedman et al., 1999; Minamino et al., 1997; Moore et al., 

2010). Therefore enhancing the NO pathway may be a good therapeutic approach to 

reduce the risk of platelet-driven cardiovascular events. The PDE5 inhibitor sildenafil 

improves NO signalling by antagonising the breakdown of cGMP and amplifying the 

NO signal. Despite the fact that platelets contain high concentrations of PDE5 

enzyme, the effect of sildenafil on platelets has been largely ignored. The current 

literature has reported a prothrombotic effect, inhibitory effect and lack of effect of 

sildenafil on platelet function. This section will review the previous work and 

controversies surrounding the effect of sildenafil on platelets. 

Since sildenafil has been approved for the treatment of ED there have been 

concerns regarding increased risk of ischaemic cardiovascular complications in 

patients taking sildenafil (Arora et al., 1999; Kekilli et al., 2005; Morgan et al., 2001). 

However, these were case reports based on individual observations and did not take 

into account that ED is usually caused by underlying vascular disease. Since, a 

series of clinical trials has proven that sildenafil does not increase patient risk of 

cardiovascular events, however this debate appears to remain unsolved (Jackson et 

al., 2006). A few studies have supported the pro-thrombotic effect of sildenafil by 

demonstrating that NO/PKG activity has a biphasic stimulatory effect on platelets in 
vitro (Blackmore, 2011; Li et al., 2003b). However, further investigations have 

identified that the stimulatory effect only occurs in certain conditions such as low 

cGMP concentrations (Stojanovic et al., 2006) and other groups have heavily 

disputed that cGMP can be stimulatory (Gambaryan et al., 2012, 2008). 

Some studies have identified a lack of effect of sildenafil on platelet function. 

Sildenafil administration had no adverse effect on bleeding time (Morales et al., 

1998) and, the authors concluded, no effect on platelet function in vivo. However, the 

relevance of bleeding time to platelet function is debatable. The majority of in vitro 

studies have reported that sildenafil enhances NO-induced inhibition of platelet 

aggregation but has no inhibitory effect on platelet activity in the absence of a NO 
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donor (Dunkern and Hatzelmann, 2005; Gudmundsdóttir et al., 2005; Schwarz et al., 

2007; Toque et al., 2008; Wallis et al., 1999; Wilson et al., 2008). This highlights the 

need to investigate the effects of sildenafil on platelet function in vivo in the presence 

of endogenous physiological inhibitors such as NO produced from the vascular 

endothelium. 

In contrast to the above findings, a significant body of research that has identified the 

antithrombotic and cardioprotective effects of NO/cGMP signalling (Carlström et al., 

2010; Emerson et al., 1999; Forstermann and Munzel, 2006; Freedman et al., 1999; 

Huang, 2009; Tymvios et al., 2009). Clinical studies have reported the inhibitory 

effect of sildenafil on platelets ex vivo. Berkels et al. (Berkels et al., 2001) 

demonstrated that orally administered sildenafil in healthy human subjects 

significantly inhibited collagen-induced, but not ADP-induced, platelet aggregation ex 
vivo. In support of this, Halcox et al. (Halcox et al., 2002) identified that sildenafil 

inhibited surface expression of activated integrin αIIbβ3 in unstimulated and ADP-

stimulated platelets ex vivo. Another interesting observation was that PAH patients 

treated with sildenafil exhibited decreased platelet function. The study has shown 

that 17 out of 21 patients participating in research had abnormal PFA-100 closure 

times, an in vitro measure of platelet function (Ma et al., 2011). Other markers of 

platelet inhibition such as in vitro intracellular Ca2+ studies have shown that pre-

treatment of platelets with sildenafil can inhibit thrombin-induced intracellular Ca2+ 

mobilisation (Wilson et al., 2008), once again supporting that sildenafil has an 

inhibitory effect on platelets. 

Although the majority of research suggests sildenafil has an inhibitory effect on 

platelet function, the effect of sildenafil on platelet function in vitro and in vivo is 

unclear. Given that the therapeutic uses of sildenafil are broadening, there is a 

crucial need to fully understand the effect of sildenafil on platelet function. The study 

presented here will investigate the antithrombotic potential of sildenafil by assessing 

its effect on platelet function in vitro in isolated platelets and in vivo in the presence 

of an intact vascular endothelium.  
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Objectives and aims of this thesis 
Inappropriately activated platelets are a major cause of fatal ischaemic 

cardiovascular events. Current antiplatelet therapies are limited by the variability of 

the patient response and adverse events. Imbalances between positive and negative 

regulators of platelet function are believed to be the pathogenesis behind these 

‘hypersensitive’ platelets. NO, a major negative regulator of platelet function, is 

impaired in cardiovascular disease potentially due to damage of the endothelial cells. 

This thesis investigated the therapeutic potential of targeting and enhancing NO 

signalling in platelets to prevent platelet-driven cardiovascular events. The broad 

hypothesis of this thesis was that enhanced NO/cGMP signalling in platelets would 

exert an antiplatelet effect during vascular dysfunction whilst preserving normal 

platelet function in vascular health. The PDE5 inhibitor, sildenafil citrate, would have 

therapeutic potential as an antithrombotic agent by enhancing NO/cGMP signalling 

generated by enzymic and non-enzymic NO sources. 

The aims of this thesis were to:- 

x Determine the effect of sildenafil citrate on platelet function in vitro and in vivo. 

x Investigate the mechanism of action of sildenafil on platelet activity. 

x Investigate the upstream sources of NO modifying platelet function by using 

sildenafil as a pharmacological tool. 

x Determine the functional significance of NO/cGMP platelet signalling during 

vascular health and in endothelial dysfunction. 

This study was performed using a range of in vivo and in vitro techniques to 

investigate functional, molecular and biochemical effects. A range of 

pharmacological interventions and animal models was utilised to further dissect 

mechanistic pathways and therapeutic potential. 
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Chapter 2: Materials and Methods 
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Materials 

Compound Supplier 
111Indium Oxine (In¹¹¹) GE healthcare (Bucks, UK) 
1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one 
(ODQ) Sigma-Aldrich (Poole, UK) 

3-isobutyl-1-methylxanthine (IBMX) Sigma-Aldrich (Poole, UK) 
4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid (HEPES) Sigma-Aldrich (Poole, UK) 

Acid citrate dextrose (ACD) Sigma-Aldrich (Poole, UK) 
Acrylamide-Bis (30%, 1:37.5) Sigma-Aldrich (Poole, UK) 
Adenosine diphosphate (ADP) Sigma-Aldrich (Poole, UK) 
Ammonium persulfate (APS) Sigma-Aldrich (Poole, UK) 
Anti-rabbit horseradish peroxidase-conjugated 
antibody Dako (Cambridgeshire, UK) 

Apyrase Sigma-Aldrich (Poole, UK) 
Ascorbic acid Sigma-Aldrich (Poole, UK) 
Bacitracin Sigma-Aldrich (Poole, UK) 
Bovine serum albumin (BSA) Sigma-Aldrich (Poole, UK) 
Citric acid Sigma-Aldrich (Poole, UK) 

Collagen (type I) Takeda Pharmaceuticals International 
(Linz, Austria) 

D-arginine Sigma-Aldrich (Poole, UK) 
DC protein reagent assay Bio-rad (Hercules, USA) 
Dimethyl sulfoxide (DMSO) Sigma-Aldrich (Poole, UK) 
D-Leucine Sigma-Aldrich (Poole, UK) 
ECL plus detection kit Thermoscientific (Basingstoke, UK) 
GAPDH antibody Santa Cruz (California, USA) 
Glucose Sigma-Aldrich (Poole, UK) 
Glycine Sigma-Aldrich (Poole, UK) 
Haemoglobin (from bovine blood) Sigma-Aldrich (Poole, UK) 
Hydrochloric acid Sigma-Aldrich (Poole, UK) 
Hydroxocobalamin hydrochloride Sigma-Aldrich (Poole, UK) 
Iloprost Cayman Chemicals (Washington, USA) 
Lactate dehydrogenase assay kit Roche (West Sussex, UK) 
L-arginine Sigma-Aldrich (Poole, UK) 
L-Leucine Sigma-Aldrich (Poole, UK) 
Magnesium chloride (MgCl₂) Sigma-Aldrich (Poole, UK) 
Mercury dichloride Sigma-Aldrich (Poole, UK) 
Methanol Sigma-Aldrich (Poole, UK) 
Methyl acetate Sigma-Aldrich (Poole, UK) 
Milk powder (non-fat) Marvel (Knighton, UK) 
Nitrate/Nitrite Colorimetric Assay Kit Cayman Chemicals (Washington, USA) 
Nu-PAGE LDS sample buffer Life Technologies (Paisley, UK) 
Nω-Nitro-D-arginine methyl ester hydrochloride 
(D-NAME) Sigma-Aldrich (Poole, UK) 
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Nω-Nitro-L-arginine methyl ester hydrochloride 
(L-NAME) Sigma-Aldrich (Poole, UK) 

Para-nitrophenylphosphate (pNPP) Sigma-Aldrich (Poole, UK) 
Phosphatase inhibitor cocktail 1 Sigma-Aldrich (Poole, UK) 
Phosphatase inhibitor cocktail 3 Sigma-Aldrich (Poole, UK) 
p-nitrophenylphosphate Invitrogen (Paisley, UK) 
Potassium chloride (KCl) Sigma-Aldrich (Poole, UK) 
Protease inhibitor - cOmplete ULTRA Tablets, 
Mini, EASYpack  Roche (West Sussex, UK) 

RIPA buffer Sigma-Aldrich (Poole, UK) 
Sildenafil citrate Pfizer (Peapack, NJ, USA) 
Sodium bicarbonate (NaHCO₃) Sigma-Aldrich (Poole, UK) 
Sodium chloride (NaCl) Sigma-Aldrich (Poole, UK) 
Sodium dodecyl sulphate (SDS) Sigma-Aldrich (Poole, UK) 
Sodium hydroxide (NaOH) Sigma-Aldrich (Poole, UK) 
Sodium nitrate Sigma-Aldrich (Poole, UK) 
Sodium nitrite Sigma-Aldrich (Poole, UK) 
Sodium nitroprusside (SNP) Sigma-Aldrich (Poole, UK) 
Sodium phosphate dibasic dodecahydrate 
(NaHPO₄) Sigma-Aldrich (Poole, UK) 

Tetramethylethylenediamine (TEMED) Sigma-Aldrich (Poole, UK) 
Thrombin Sigma-Aldrich (Poole, UK) 
Tris(2-carboxyethyl)phosphine hydrochloride 
(TCEP HCl) Sigma-Aldrich (Poole, UK) 

Trisodium citrate Sigma-Aldrich (Poole, UK) 
Triton-X Sigma-Aldrich (Poole, UK) 
Trizma base Sigma-Aldrich (Poole, UK) 
Tween 20 Sigma-Aldrich (Poole, UK) 
Urethane Sigma-Aldrich (Poole, UK) 
VASP antibody Cell Signaling (Hertfordshire, UK) 
VASP-P(239) antibody Cell Signaling (Hertfordshire, UK) 

 

Equipment 

Equipment and software Supplier 
Aggrolink software Chronolog Corp (Havertown, USA) 
Chronolog optical aggregometer Chronolog Corp (Havertown, USA) 
Chronolog siliconised stir bars Chronolog Corp (Havertown, USA) 

Ettan DIGE Imager Amersham Biosciences (Piscataway, 
USA) 

Glass cuvettes LabMedics (Oxfordshire, UK) 
Graphpad Prism 5.0 software GraphPad (CA, USA) 
Image Quant software GE healthcare (Bucks, UK) 

ImageJ software National Institutes of Health (Maryland, 
USA) 



Georgina Apostoli 
Targeting the NO signalling pathway to modulate platelet function  
Platelet Biology, Molecular Medicine 
National Heart and Lung Institute 
 
 

62 
 

KC4 data analysis software BioTek (Bedfordshire, UK) 
Microsoft office Excel Microsoft (Reading, UK) 
Mini-PROTEAN tetra-cell western blotting kit Bio-Rad (Hercules, USA) 
Polyvinylidene fluoride membrane (PVDF) Bio-Rad (Hercules, USA) 
Sievers Nitric Oxide Analyzer-280i Analytix Ltd (Bolden, UK) 
Single point extended area ratio (SPEAR) 
detector  eV Products (Saxonburg, USA) 

Specialist radioactive count software Mumed Systems (London,UK) 
Sysmex F-820 Haematology Analyser Sysmex UK Ltd (Milton Keynes, UK) 
Trans-Blot SD semi-dry electrophoretic transfer 
cell Bio-Rad (Hercules, USA) 

UCS-20 spectrometer Spectrum Techniques (TN, USA) 

Whatman 3MM chromatography paper Thermo Fisher Scientific 
(Loughborough, UK) 

Buffers 

Buffer Compound Molarity 
modified tyrodes-HEPES buffer (mTHB) Sodium chloride 133.47mM 
  Potassium chloride 2.68mM 
  NaHPO₄ 335µM 
  Sodium bicarbonate 11.9mM 
  HEPES 19.97mM 
  MgCl₂ 840.2µM 
  Glucose 5mM 
Acid citrate solution Citric acid 41.64mM 
  Trisodium citrate 74.8mM 
Tyrodes (in vivo) Sodium chloride 136.89mM 
  Potassium chloride 2.68mM 
  NaHCO₃ 11.9mM 
  Glucose 5.55mM 
Running buffer Trizma base 25.01mM 
  Glycine 191.82mM 
  SDS 3.47mM 
TBS-T Trizma base 50mM 
  NaCl 48.66mM 

  
Tween 20 (NB: pH to 7.4 
before addition) 1% 

Semi-dry transfer buffer Trizma base 25.01mM 
  Glycine 191.82mM 
  Methanol 2% 
  SDS 3.47mM 
Adhesion buffer Trisodium citrate 0.1M 
  Triton-X 0.1% 
  HCl pH 5.4 
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Methods 

Mice 

Male C57BL/6 mice weighing 20-25g were purchased from Harlan (Bicester, UK) 

and left for 1 week to acclimatise to their environment before any procedures were 

carried out. eNOS knockout mice (NOS-3-/-, i.d: 0026847) purchased from Jackson 

Laboratory (ME, USA) were bred in-house and weighed ~20-25g before any 

procedures were carried out. All mice were kept in 12 hour light/dark cycles and 

provided regular rodent chow and water ad libitum. All procedures were conducted 

under the Home Office project license PPL 70/7190 and approved by the Ethical 

Review Panel at Imperial College London and procedures were refined in 

association with the National Centre for the Replacement, Refinement and 

Reduction of Animals in Research (NC3Rs). 

Platelet preparation 

In vitro 
Human: Blood was collected from aspirin-free healthy human volunteers via 
venepuncture from the antecubital fossa. Blood was obtained using a 21 gauge 

butterfly cannula attached to a 60mL syringe containing 1:9 volume acid citrate 

solution. Informed consent was obtained from donors before procedures were 

carried out. Procedures were approved by the National Research Ethics Service 

(REC reference number: 07/H0708/72).   

Blood was centrifuged at 100 g for 20 minutes to separate the platelet rich plasma 

(PRP). To produce a washed platelet (WP) solution, PRP was collected, transferred 

into a new falcon tube containing acid citrate solution (1:100) and 175nM PGE1 and 

centrifuged at 1400 g for 10 minutes. The supernatant (platelet poor plasma) was 

discarded and the pellet resuspended in mTHB. The final centrifugation was 

repeated with the addition of acid citrate solution (1:20) and 175nM PGE1. The 

platelet count was determined using a Sysmex F-820 Haematology Analyser (Milton 

Keynes, UK) and was diluted in mTHB to obtain an overall washed platelet count of 

2.5 x 105 μL-1. The platelets were then left to rest at room temperature for 30 

minutes. 
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In vivo 
Mouse: Donor mice were anaesthetised with an i.p. administration of urethane 

(10mL kg-1 of 25% (w/v)). Cardiac puncture was performed using a 15G needle on a 

2mL syringe containing 200μL ACD (Sigma Aldrich, UK) to avoid blood clotting (as 

shown in Figure 15). The mice were terminated by cervical dislocation. 

Blood was centrifuged at 300 g for 3 minutes. The supernatant was transferred to a 

new eppendorf and the PRP and remaining blood was centrifuged for a further 300 g 

for 3 minutes with the addition of 400μL of tyrodes/ACD/PGE1 (720:10:1) buffer. The 

supernatant from the remaining blood was pipetted into a new eppendorf and 

centrifuged for a further 2 minutes at 200 g. The combined PRP was centrifuged at 

1500 g for 7 minutes to obtain a platelet pellet then resuspended in 

tyrodes/ACD/PGE1 buffer (250µL per mouse donor). 

The platelets were incubated with 1.8MBq Indium Oxine (In111) for 10 minutes. To 

remove excess radioactivity the platelets were centrifuged at 1500 g for 5 minutes. 

The pellet was washed gently with tyrodes and then resuspended in 250µL of 

tyrodes per mouse donor. The radiolabelled platelets were then left to rest at room 

temperature for 30 minutes. 

In vivo methods 

In vivo measurement of platelet aggregation 
Recipient mice (~25g) were anaesthetised with an i.p. administration of urethane 

(10mL kg-1 of 25% (w/v)) and placed supine on a heat mat. Minor surgery was 

performed to expose the left femoral vein into which 220μL of the radiolabelled 

platelets were injected using a 29G insulin syringe (Figure 15). The circulating 

radioactive platelets were left to equilibrate for 15 minutes prior to any subsequent 

experimental procedures. Radiolabelled platelets were monitored in the pulmonary 

circulation using a single point extended area ratio (SPEAR) detector (eV Products, 

Saxonburg, PA) placed over the thorax as demonstrated in Figure 15. As previously 

shown, thrombi generated in the circulation accumulates in the small vessels of the 

pulmonary circulation which results in an increase in radioactive counts in the 

SPEAR probe (Tymvios et al., 2008). Radioactivity (γ counts) was recorded 
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continuously using a UCS-20 spectrometer connected to a laptop. Specialised 

software supplied by Mumed Systems (London, UK) was used to measure changes 

in radioactive counts over time (Figure 15). For administration of compounds, the 

right femoral vein was exposed and kept moist using tyrodes to avoid collapsing of 

the vein. The mice were terminated by cervical dislocation after the experiment. 

 

Figure 15: In vivo measurement of platelet function in a model of pulmonary thromboembolism.  

A) Cardiac puncture for blood collection from anaesthetised donor mice. B) Exposure of the femoral vein for 
injection of In111 radiolabelled washed platelets or drug administration. C) Placement of probes over the thoracic 
region and abdomen. D) The set up of the equipment used to monitor the radiolabelled platelets. 

 

Plasma and salivary gland extractions 
After drug treatment, mice (~25g) were anaesthetised with an i.p. administration of 

urethane (10mL kg-1 of 25% (w/v)). Cardiac puncture was performed using a 15G 

needle on a 2mL syringe containing 200μL ACD (Sigma Aldrich, UK) to avoid blood 

clotting. The blood was centrifuged for 2 minutes at 15700 g and the plasma 
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removed and snap frozen in liquid nitrogen. Meanwhile the mouse was placed on its 

dorsal side, tail facing the investigator. A midline incision was made along the neck 

below the jaw (see Figure 16). Blunt dissection was used to expose the salivary 

glands. The submandibular and major sublingual glands were removed and snap 

frozen in liquid nitrogen (Jonjic, 2001). The samples were stored in -80ºC until 

analysis was carried out. 

 

Figure 16 : Diagram of salivary gland dissection (Jonjic, 2001) 
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In vitro methods 

Optical platelet aggregometry 
Aliquots of human PRP or WP (450μL) were placed in an optical platelet 

aggregometer in siliconised glass cuvettes under stirring conditions (~1200rpm). 

Platelet agonists (50μL) were administered and the extent of platelet aggregation 

was measured by light transmission (Born, 1962). Changes in optical density were 

recorded using AggroLink software (Chrono-log Corporation, Havertown, PA, USA). 

Western blotting 

Protein preparation 
WP were incubated with test drugs and centrifuged for 1 minute at 13,700 g at 4ºC. 

The pellet was resuspended in 100µL of lysis buffer (RIPA buffer with 1:1000 

phosphatase cocktails 1 and 3, 50µM Tris (2-carboxyethyl) phosphine hydrochloride 

(TCEP HCl), 2x protease inhibitor (cOmplete Protease Inhibitor Cocktail Tablets, 

Roche)). These samples were left on ice over 1 hour, vortexing occasionally. 

Centrifugation was repeated and the supernatant collected. These samples were 

then stored at -80ºC until further analysis. Protein content of samples were analysed 

using DC protein assay kit (Bio-rad, Hercules, USA) and were compared to known 

concentrations of BSA in lysis buffer (0-10µg/mL).  Sample densities were measured 

at 750nm on a 96-well plate reader (PowerWave HT Microplate Spectrophotometer, 

Bio-Tek, Bedfordshire, UK). For SDS-PAGE, samples were diluted to 1.5mg mL-1 

and Nu-PAGE lithium dodecyl sulphate (LDS) sample buffer (1:4) was added. 

SDS-PAGE 
20µg of protein was run on a 10% acrylamide gel (resolving gel: 10% acrylamide-bis 

(1:37.5), 0.375M Tris pH 8.8, 40.4% H₂O, 0.1% SDS, 0.04% APS and 0.002% 

TEMED. Stacking gel: 4% acrylamide-bis (1:37.5), 0.124M Tris pH6.8, 60.4% H₂O, 

0.1% SDS, 0.02% APS and 0.002% TEMED) at 70V through stacking gel and then 

increased to 100V for around 1.5 hours. The gels were transferred onto PVDF 

membrane via semi-dry transfer method using trans-blot SD transfer cell (Bio-rad, 

Hercules, USA) at 80mA for around 1.5 hours. 



Georgina Apostoli 
Targeting the NO signalling pathway to modulate platelet function  
Platelet Biology, Molecular Medicine 
National Heart and Lung Institute 
 
 

68 
 

Protein visualisation 
The membranes were incubated in 5% non-fat milk in TBS-T at room temperature for 

1 hour. Following, the membranes were incubated in a falcon tube containing 5mL of 

the appropriate primary antibody at 4°C overnight. The membranes were then 

washed in TBS-T for 5 minutes 4 times and incubated in a falcon tube containing 

5mL of  secondary anti-rabbit horseradish peroxidase-conjugated antibody (HRP 

antibody) at room temperature for 1 hour.  The washings in TBS-T were repeated 

and the blots were visualised using an enhanced chemiluminescence detection kit 

(ECL plus kit;Thermoscientific, Basingstoke, UK) on a charge-coupled device imager 

(Ettan DIGE Imager, Amersham Biosciences Corp, Piscataway, USA). 

Nitrate/nitrite colorimetric assay 
mTHB and washed platelets were incubated with the appropriate drugs and snap 

frozen in liquid nitrogen. Samples were stored in -80°C until analysis. Nitrate/nitrite 

measurements were performed using the Cayman Chemicals nitrate/nitrite 

colorimetric assay kit (Michigan, USA). In this kit nitrite is measured by the use of 

Griess reagents which convert nitrite to the deep purple compound azo. The 

absorbance of this compound was measured at 540nm. Total nitrate/nitrite 

concentrations were measured by using nitrate reductase to reduce nitrate to nitrite 

before adding the Griess reagents. 

Nitrate/nitrite gas-phase chemiluminescent assay 
Mouse salivary glands were homogenised with phosphate-buffered saline (PBS) 

using a Mixer Mill MM 400 homogeniser for 3 minutes at a fibrational frequency of 

30Hz. Salivary gland solution or plasma was deproteinised by the addition of NaOH 

(0.5M – 5 minute incubation at room temperature) and ZnSO4 (10% w/v – sample 

vortexed and incubated for 15 minutes). After deproteinisation, samples were 

centrifuged at 17,500 g for 5 minutes and the supernatant was extracted and 

analysed for nitrate/nitrite concentration. Nitrate/nitrite concentrations were 

measured using a Sievers nitric oxide analyser.  Samples were refluxed in vanadium 

III chloride (0.1M) and HCl (1M) at 95ºC (nitrate analysis) or in sodium iodide (0.3M) 

and glacial acetic acid at 35ºC (nitrite analysis). In these conditions, nitrate and nitrite 

were reduced to NO. The interaction of NO with O3 caused light emission which was 
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detected using chemiluminescence. Nitrate/nitrite concentrations were determined 

using standard concentration curves. 

Clot retraction 
In sterile glass test tubes, 4:17 PRP to mTHB, desired test drug and 5µL of the 

donors red blood cells (obtained from centrifugation)  were added to a total of 950µL 

and incubated before the addition of 2.5U mL-1 of thrombin. Sealed pasteurised 

glass pipettes were placed in the test tubes and left for 2 hours. The clots were 

weighed and given as a percentage of the total weight. 

Lactate dehydrogenase assay 
Lactate dehydrogenase (LDH) release is a measure of membrane integrity and 

therefore an indirect measure of cytotoxicity. WP were prepared as stated previously 

and made up to a concentration of 5x104µL-1. Platelets were incubated with the drug 

of interest for 30 minutes and the amount of LDH released was measured using the 

LDH cytotoxcity detection kit (Roche, West Sussex, UK). Lysis buffer provided by the 

kit was added to platelets as a positive control and unstimulated platelets were used 

as a negative control. LDH concentration in the platelet samples is measured via an 

enzymatic test. Released LDH reduces NAD+ to NADH/H+ by the conversion of 

lactate into pyruvate. The kit contains the catalyst diaphorase which transfers the 

proton (H+) to reduce the tetrazolium salt INT to formazan salt which is red in colour. 

Absorbance can be read at 490nm on an optical plate reader. 

Collagen adhesion assay 
Prior to the experiment, 96 well plates were incubated with 50µL of 50µg mL-1 equine 

collagen type I overnight at 4ºC on a shaker table (leaving at least 3 wells collagen-

free).  Excess collagen was washed off using mTHB. Non-specfic binding was 

blocked using 100µL of 1% bovine serum albumin (BSA) at room temperature for 1 

hour and then washed twice using mTHB. WP were prepared as detailed above. 

Apyrase (1U mL-1) and indomethacin (10uM) was added to avoid secondary agonist 

ADP and thromboxane signalling, respectively and the platelets were left to incubate 

for 30 minutes at 37ºC. The washed platelets were incubated with the drug of 

interest and then added to the wells (50µL) in triplicate. The ‘adhered’ concentration 

curve was also added (50µL) in triplicate at this time, ensuring the collagen-free 
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wells were left blank. The plate was incubated for 45 minutes at 37ºC before the 

non-adherent platelets were washed off twice using mTHB. The ‘total’ concentration 

curve was added in triplicate at this point. A mixture of adhesion buffer plus 0.01% of 

the chromogenic substrate para-nitrophenylphosphate (pNPP) was added at 50µL in 

all wells. The plate was left to incubate for 45 minutes at 37ºC and the reaction was 

stopped using 100µL of 2M sodium hydroxide (NaOH). The plate was read at 405nm 

using an optical plate reader. 

Data and statistical analysis 
All data were expressed as mean ± standard error of the mean (SEM). In vivo 

platelet aggregation data was expressed as the percentage increase in maximal 

radioactive counts from the baseline recording (% aggregation), arbitrary values of 

area under the curve (AUC) or time taken (seconds) for response to return to 

baseline (duration of response). In vitro platelet aggregation data were arbitrary ‘area 

under the curve’ values generated by the Aggrolink software (version 5.2.1, Chrono-

log, Havertown, USA). All graphs and statistical tests were carried out using 

GraphPad Prism 5.0 software package (GraphPad, CA, USA). Data was displayed 

as normalised values for clarity. All statistical tests were performed on raw data. 

Where statistical comparisons were made, it was determined whether the data was 

normally distributed using an F-test. Following this, appropriate parametric or non-

parametric statistical tests were used to compare mean values (statistical tests are 

detailed in the figure legends). P-value < 0.05 was considered to denote statistical 

significance. 
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Chapter 3: Establishing agonist 
concentrations 
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Objectives and aims 
Before assessing the inhibitory effects of compounds on platelet aggregation it was 

necessary to determine suitable concentrations of platelet agonists. Submaximal 

agonist concentrations that cause 75% of maximal platelet aggregation (EC75) are 

necessary to determine the inhibitory effect of a compound on platelet function. If the 

chosen agonist concentration is too low or too high it may mask the inhibitory effect 

of the compound and therefore it is important to use the appropriate agonist 

concentration in subsequent experiments. To accurately determine submaximal 

agonist concentrations, I performed platelet agonist concentration responses in vitro 

and in vivo using optical platelet aggregometry and in vivo measurement of 

radiolabelled platelet aggregation.  

In vivo measurement of platelet aggregation was dependent on the radiolabelling of 

platelets. To confirm that platelets would be detected in vivo, I assessed my ability to 

successfully radiolabel platelets before carrying out further experiments. 

The following experiments were therefore conducted: 

x Agonist concentration-responses (collagen, thrombin and ADP) using optical 

platelet aggregometry. 

x Quantification of platelet radiolabelling and detection of radioactivity in vivo 

after administration of platelets into a recipient mouse. 

x Collagen dose-response in vivo in mice. 
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Methods 

Optical platelet aggregometry 

Agonist concentration responses 
PRP or WP were analysed in an optical platelet aggregometer (stirring at 1200rpm).  

After baseline recording for 1 minute, collagen (0.05-50µg mL-1 for PRP and 0.78-

50µg mL-1 for WP), ADP (0.3-30µM) or thrombin (0.008-0.5U mL-1) was added to the 

cuvette and platelet aggregation was recorded for 4 minutes. The data were 

collected using Aggrolink software (Chronolog Corp,Havertown, USA) and analysed 

using GraphPad prism 5 (GraphPad, CA, USA). 

In vivo measurement of platelet aggregation 

Measuring platelet radiolabelling 
In vivo methodology was carried out as detailed in chapter 2. In brief, isolated 

platelets were prepared using blood from donor mice and radiolabelled using a 

gamma emitter, indium oxine (In111). The radiolabelled platelets were then 

administered into an anaesthetised recipient mouse. During this process, platelet 

radioactivity was recorded after initial addition of In111 (during the 10 minute 

incubation), after resuspension of radiolabelled platelets (during the 30 minute 

incubation) and in the mouse thoracic cavity after administration using a SPEAR 

detector. The data was recorded using UCS-20 spectrometer and specialist 

radioactive counting software and analysed using Excel and GraphPad prism 5.0. 

Collagen dose response 
C57BL/6 male mice (~25g) were anaesthetised and administered radiolabelled 

platelets as described in chapter 2. 50µL of collagen (25, 50, 75µg kg-1) was 

administered into the femoral vein and the aggregation response was measured for 

10 minutes. Changes in radioactive counts were recorded and analysed as 

mentioned previously. 
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Results 

In vitro concentration-response to collagen, thrombin and ADP 

In order to determine submaximal concentrations of platelet agonists to use in 

subsequent in vitro experiments, in vitro concentration-response experiments were 

carried out. Collagen induced concentration-dependent platelet aggregation in WP 

and PRP. Collagen was ~9 times more potent in PRP than WP. The EC75 for 

collagen was 5.62µg mL-1 in WP and 0.63µg mL-1 in PRP (see Figure 17A and 

Figure 17B). Thrombin promotes blood clotting by cleaving fibrinogen into fibrin, 

facilitating the formation of a fibrin mesh (Greenberg et al., 1985). To investigate the 

effect of thrombin directly on platelet function (and not due to secondary fibrin mesh 

formation), the effect of thrombin was investigated in WP. Thrombin caused 

concentration-dependent platelet aggregation in WP. The EC75 value of thrombin 

was 0.05U mL-1 (see Figure 17C). ADP was investigated in PRP because of the 

impaired aggregation response of ADP in WP due to the reduced presence of 

fibrinogen (Solum, 1970) and platelet desensitisation (Ardlie et al., 1971). ADP 

caused concentration-dependent platelet aggregation in PRP. The EC75 value of 

ADP was 0.91µM (see Figure 17D).  
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Figure 17: In vitro concentration-response curves of a variety of platelet agonists 

Platelet preparations were stimulated with a range of agonist concentrations in vitro using optical platelet 
aggregometry. The Aggrolink software calculated area under the curve (arbitrary units) and this was used as a 
measure of platelet aggregation. EC75 values were generated using Graphpad prism 5.0 and the data expressed 
as mean ± SEM. Human washed platelets were stimulated with (A) collagen (0.78-50µg mL-1), n=5, EC75 = 
5.62µg mL-1 or (C)  thrombin (0.008-0.5U mL-1), n=5, EC75 = 0.05U mL-1. Human platelet-rich plasma was 
stimulated with (B) collagen (0.05-50µg mL-1), n=4, EC75 = 0.63µg mL-1 or (D) ADP (0.3-30µM), n=5, EC75 = 
0.91µM. WP-washed platelets; PRP-platelet-rich plasma; ADP-adenosine diphosphate. 
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Efficiency of radiolabelling platelets 

In order to demonstrate my ability to successfully radiolabel platelets and detect 

them in vivo in the murine circulation, platelet radioactivity and in vivo baseline 

radioactive counts were measured. Mouse platelets were radiolabelled by 64.4% of 

total radioactivity added. A baseline radioactive count of ~40,000 per 8 seconds was 

achieved in vivo (see Table 1). 

Table 1: Efficiency of radiolabelling platelets. 

Radioactivity was recorded after initial administration of the In111 (incubation period), after centrifugation, washing 
and resuspension of platelets in tyrodes (during resting period) and after administration in anaesthetised recipient 
mice (baseline radiolabelled platelets detected in vivo). N=6. 

 

In vivo dose-response to collagen 

To determine the submaximal dose of collagen to use in subsequent in vivo 

experiments, an in vivo collagen dose-response was carried out. Collagen 25-75 µg 

kg-1 induced a dose-dependent increase in radioactive counts within the pulmonary 

circulation; Figure 18A is an example trace of this effect. The collagen response was 

measured by recording the percentage increase in radioactive counts (Figure 18B), 

area under the curve (AUC) of the response (Figure 18C) and duration of the 

response (Figure 18D). AUC and duration of response demonstrated positive linear 

trends in radioactivity whereas the percentage increase in radioactive counts was 

maximal at a concentration of 50µg kg-1. 
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Figure 18: In vivo dose response to collagen.  

Isolated platelets from donor mice were radiolabelled with In111 and administered to anaesthetised recipient mice.  
Radioactive counts were measured using a probe over the thoracic cavity. Collagen (25, 50 and 75µg kg-1) was 
administered i.v and changes in radioactive counts were recorded over 10 minutes. (A) Mean trace of collagen 
response (percentage increase from the baseline radioactive counts) vs time (seconds). Data expressed as 
mean (error bars omitted for clarity). (B) The maximum percentage increase from baseline radioactive counts. (C) 
Area under the curve (arbitrary values). (D) The time it takes for the radioactive counts to return to baseline 
(seconds). Data expressed as mean ± SEM. N=5. 
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Discussion 
The aim of this chapter was to assess the efficacy of radiolabelling platelets and to 

determine appropriate concentrations of platelet agonists to take forward into further 

experimentation. Platelet agonists were investigated in platelet aggregation assays 

in vitro using optical platelet aggregometry (Born, 1962) and in vivo using a well 

established model of measuring murine platelet aggregation (Apostoli et al., 2014; 

Moore et al., 2010; Smyth et al., 2014; Solomon et al., 2013; Tymvios et al., 2008). 

The submaximal concentrations of platelet agonists in optical platelet aggregometry 

were determined using concentration-response curves. The submaximal 

concentrations (EC75) were used as a guide for agonist concentrations to use in 

future experiments. Based on these results, collagen at a concentration of 5µg mL-1 

was used optical platelet aggregometry using WP. A higher concentration of 

thrombin (0.1U mL-1) was chosen for subsequent experiments because thrombin is a 

potent agonist and has a very steep concentration response curve. These agonist 

concentrations are consistent with the current literature (Antl et al., 2007; 

Gambaryan et al., 2010; Moore et al., 2010; Solomon et al., 2013). 

Before carrying out in vivo experimentation it was necessary to assess the ability of 

platelets to be radiolabelled. The results showed that platelets were efficiently 

radiolabelled and a stable baseline radioactive count could be detected in vivo. 

Based on these results, subsequent in vivo experiments to record platelet agonist 

responses could be performed. In vivo collagen dose-responses were performed to 

determine a suitable agonist concentration to assess in vivo platelet aggregation. We 

have previously published that increases in radioactive counts upon administration of 

platelet agonists in our model represents the formation of platelet aggregates 

accumulating in the small vessels of the pulmonary vasculature (Moore et al., 2010; 

Tymvios et al., 2008). Due to the complexitiy of in vivo experimentation, more than 

one parameter was considered when deciding on a suitable agonist concentration. 

Although 50µg kg-1 of collagen induced a maximal platelet response, it only caused 

~50% response for the other parameters (AUC and duration of response) and 

therefore was chosen for subsequent experimentation. These results have been 
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previously observed within my group who established this technique (Moore et al., 

2011, 2010; Tymvios et al., 2008). 

In conclusion, this chapter determined appropriate concentrations to use in 

subsequent platelet aggregation experiments.  
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Chapter 4: The functional effect of 
sildenafil on platelets 
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Objectives and aims 
The effect of sildenafil on vascular smooth muscle cells has been well established 

(Boolell et al., 1996). However, the effect of sildenafil on platelets has been largely 

ignored despite the fact that platelets contain high concentrations of PDE5 enzyme 

(Schwarz et al., 2007; Wallis et al., 1999). Although previous studies have shown 

that sildenafil can enhance NO-mediated inhibition of platelet aggregation, the ability 

of sildenafil to directly modulate the aggregation of isolated platelets is unknown. 

In this chapter the ability of sildenafil to modulate platelet aggregation to a range of 

agonists will be investigated using optical platelet aggregometry. VASP is commonly 

used as a biomarker of cyclic nucleotide signalling in platelets. In order to link the 

functional events with platelet signalling, the effect of sildenafil on the 

phosphorylated status of VASP (VASP-P) will be investigated. To determine the 

broader functional role of sildenafil on platelets, experiments will be extended to 

other in vitro functional assays such as platelet adhesion and clot retraction. 

Finally, although sildenafil has been shown to reduce bleeding time and inhibit 

platelet aggregation ex vivo (Berkels et al., 2001), the direct effects on in vivo platelet 

aggregation are unclear and will also be investigated. 

Aims of this chapter were to: 

x Assess the functional effect of sildenafil on platelets using optical 

aggregometry using a range of platelet agonists. 

x Establish the effect of sildenafil on the phosphorylation status of VASP at 

Serine239 (VASP-P(239)). 

x Investigate the effect of sildenafil on clot retraction, a simple measure of 

integrin αIIbβ3 function. 

x Investigate the effect of sildenafil on platelet adhesion to collagen. 

x Assess the effect of sildenafil on in vivo platelet aggregation in the presence 

of an intact vascular endothelium. 
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Methods 

Optical platelet aggregometry 

Sildenafil on platelet-rich plasma and washed platelets 
Human PRP or WP were incubated with sildenafil (10, 100 or 1000nM), vehicle 

control (mTHB containing 0.01% (v/v) DMSO) or mTHB for 5 minutes before 

stimulation with a range of ADP concentrations (0.3-30µM), thrombin (0.1U mL-1) or 

collagen (5µg mL-1). Platelet aggregation was recorded for 4 minutes.  

Lactate dehydrogenase assay 

Effect of DMSO on platelets 
Diluted human WP were incubated with a range of dimethyl sulphoxide (DMSO) 

percentage concentrations (0.01-5%) or mTHB for 30 minutes prior to the assay. 

Clot retraction 

Effect of sildenafil on clot retraction 
Diluted human PRP aliquots were incubated with mTHB, sildenafil (1, 10µM), vehicle 

control (mTHB containing 0.5% (v/v) DMSO) or SNP (10µM) for 5 minutes before the 

stimulation of thrombin (1U mL-1). 

Adhesion assays 

Sildenafil and SNP concentration responses 
Human WP were incubated with sildenafil (1, 10, 100 or 1000nM), sodium 

nitroprusside (SNP; 1, 10, 100 or 1000nM) or their respective vehicles (sildenafil; 

vehicle control (mTHB containing 0.01% (v/v) DMSO), SNP; mTHB vehicle) for 10 

minutes before carrying out the adhesion assay. 

Western blotting 

Sildenafil concentration response on VASP-P(239) 
Human WP were incubated with sildenafil (10, 100 or 1000nM), vehicle control 

(mTHB containing 0.01% (v/v) DMSO) or positive control SNP (1µM) for 5 minutes 

before carrying out the sample preparation. The protein content of the samples were 
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standardised, run on an SDS-PAGE gel and transferred onto a PVDF membrane as 

detailed in chapter 2. The primary antibodies used were rabbit anti-VASP (1:1000), 

rabbit anti-phospho-VASP (Ser239) (1:1000) and the housekeeping protein rabbit 

anti-GAPDH (1:500) all left to incubate overnight at 4ºC.  The secondary antibody 

used for all the above primary antibodies was anti-rabbit HRP antibody (1:2000) left 

to incubate for 1 hour at room temperature before protein visualisation as detailed in 

chapter 2. 

In vivo measurement of platelet aggregation 

The effect of sildenafil in vivo in W.T mice 
C57BL/6 male mice (~25g) were anaesthetised and radiolabelled platelets were 

administered as described in chapter 2. Sildenafil (50µg kg-1) or vehicle control 

(mTHB containing 0.1% (v/v) DMSO)  was administered into the femoral vein of the 

recipient mouse. After 5 minutes, 50µg kg-1 collagen (50µL) was intravenously 

administered and the aggregation response was measured for 10 minutes. 
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Results 

Sildenafil reduced platelet aggregation in vitro 
Sildenafil alone had no significant effect on ADP-induced platelet aggregation in vitro 

in PRP (Figure 19A). Sildenafil demonstrated significant (P<0.05) concentration-

dependent inhibition of collagen (Figure 19B and Figure 19C) and thrombin (Figure 

19D and Figure 19E) induced platelet aggregation in WP compared to vehicle 

treated platelets expressed as representative traces (Figure 19B and Figure 19D) 

and graphs of mean responses (Figure 19C and Figure 19E). Sildenafil caused no 

significant inhibitory effect on collagen-induced platelet aggregation at 10nM (~10% 

inhibition). However sildenafil caused significant inhibition of collagen-induced 

platelet aggregation at 100nM (~30% inhibition) and 1µM (~35% inhibition) (Figure 

19C). Sildenafil caused no significant inhibitory effect on thrombin-induced platelet 

aggregation at 10nM (~5% inhibition) and 100nM (~15% inhibition) but did cause 

significant inhibition at a concentration of 1µM (~25% inhibition) (Figure 19E).  
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Figure 19: Sildenafil reduced platelet aggregation in vitro.  

Platelet preparations (A: platelet-rich plasma (PRP) B-E: washed platelets (WP)) were pre-incubated with vehicle 
(veh, DMSO, 0.01%) or sildenafil citrate (sil, 10 nM - 1 µM) for 5 minutes before stimulation with (A) adenosine 
diphosphate (ADP, 0.3-30µM), (B-C) collagen (5 µg mL-1) and (D-E) thrombin (0.1 U mL-1). Platelet aggregation 
was analysed in an optical platelet aggregometer. (A) Vehicle EC50 = 0.585 µM, sildenafil EC50 = 0.447 µM. An F-
test was used to identify statistical significance between the EC50 values. Ns = non-significant (B, D) Example 
traces representative of 7-8 independent experiments. (C,E) Data expressed as mean±S.E.M. Repeated 
measures one way ANOVA with Dunnett’s post-hoc test. *P<0.05, **P<0.01, ***P<0.001.  

A 

C
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B
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DMSO (0.01%) was used as a vehicle for sildenafil. The cytotoxic effect of DMSO 

was investigated using an LDH assay to determine membrane integrity.  The positive 

control (platelets treated with lysis buffer) caused maximum LDH release. 

Concentrations of DMSO up to 5% caused no significant increase in LDH release 

compared to the negative control (untreated platelets) (Figure 20). 

 

Figure 20: DMSO concentration-response on lactate dehydrogenase (LDH) release.  

Human washed platelets were pre-incubated with DMSO (0.01-5%) and cytotoxicity was measured as a release 
of LDH from the platelets. The negative control (-ve) contained washed platelets alone and the positive control 
(+ve) contained washed platelets with lysis buffer to produce maximum LDH release. Repeated measures one 
way ANOVA with Dunnett’s post-hoc test, DMSO concentration vs negative control. ns=non-significant. Data is 
expressed as mean±SEM. N=6. 

 

Sildenafil increased the phosphorylation of VASP-P(239) 

To associate the antiplatelet effect of sildenafil with signalling events, the effect of 

sildenafil on VASP phosphorylation at Serine239 was investigated. VASP-P(239) 

was chosen because it is one of the best characterised sites of PKG phosphorylation 

in vitro. Figure 21A shows a representative blot of total VASP, VASP-P(239) and the 

loading control GAPDH. Figure 21B shows a bar chart of the mean densitometry 

data which expresses the percentage of VASP-P(239) compared to total VASP. The 

positive control SNP (1µM) induced significant VASP phosphorylation compared to 

vehicle treated platelets (Figure 21A and Figure 21B). Sildenafil induced a 

concentration-dependent increase in VASP-P(239) which was statistically significant 

at a concentration of 1µM compared to vehicle treated platelets (Figure 21A and 

Figure 21B).  
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Figure 21: Sildenafil increased the phosphorylation of VASP-P(239).  

Vehicle (DMSO, 0.01%), sildenafil citrate (sil, 10-1000nM) and sodium nitroprusside (SNP, 1µM) were pre-
incubated with human washed platelets for 5 minutes. Sildenafil concentration dependently induced VASP-
P(239) phosphorylation, data presented as (A) Western blot representative of 5 independent experiments and  
(B) ratio of VASP-P(239) compared to total VASP. N=5. Data expressed as mean±SEM. Repeated measures 
one way ANOVA with Dunnett’s post-hoc test. *P<0.05, compared to vehicle treated.   

A
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Sildenafil had no effect on collagen adhesion under static conditions 

Increasing concentrations of sildenafil (1-1000nM) had no significant effect on 

platelet adhesion to collagen under static conditions (Figure 22A). Similarly, SNP 

(0.01-100µM) also caused no significant effect on platelet adhesion to collagen 

compared to vehicle-treated platelets (Figure 22B). 

Sildenafil had no effect on clot retraction 

The treatment of PRP with SNP demonstrated an increased trend in clot weight 

(therefore a decrease in clot retraction) however sildenafil treatment had no effect 

(Figure 23). This was shown as typical images of the clots (n=1) (Figure 23A) and as 

a bar chart (Figure 23B). 
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Figure 22: Sildenafil had no effect on collagen adhesion in static conditions. 

Human washed platelets were preincubated with vehicle (0.01% DMSO or mTHB), sildenafil (1-1000nM) or the 
NO donor sodium nitroprusside (SNP – 0.01-100µM) before carrying out collagen platelet adhesion assays. (A) 
sildenafil concentration response (B) SNP concentration response. Repeated measures ANOVA with Dunnett’s 
post-hoc test vs vehicle. ns=non significant. Data is expressed as mean±SEM. N=4. 

 

 

Figure 23: Sildenafil had no effect on clot retraction. 

Platelet-rich plasma was incubated with the negative control mTHB, the positive control sodium nitroprusside 
(SNP - 10µM), vehicle (DMSO – 0.5%) or sildenafil (1µM or 10µM) before the addition of thrombin. (A) Photos of 
the clot representative of 3 independent experiments. (B) Mean percentage of clot weight compared to the 
control. Data is expressed as mean±SEM. N=3. Repeated measures ANOVA with Dunnett’s post-hoc test vs 
vehicle. Statistical test performed on raw values (clot weight).  

B

 

A 

A B 



Georgina Apostoli 
Targeting the NO signalling pathway to modulate platelet function  
Platelet Biology, Molecular Medicine 
National Heart and Lung Institute 
 
 

90 
 

Sildenafil reduced platelet aggregation in vivo in W.T mice 

The effect of sildenafil on in vivo platelet aggregation was determined. Sildenafil at a 

concentration of 50µg kg-1 significantly reduced in vivo collagen-induced platelet 

aggregation compared to vehicle as demonstrated by an example trace (Figure 

24A), mean peak response as a percentage increase from baseline counts (Figure 

24B) and duration of response in seconds (Figure 24D). The area under the curve 

(AUC) showed a non-significant trend towards inhibition of platelet aggregation 

(Figure 24C). 
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Figure 24: Sildenafil reduced platelet aggregation in vivo in W.T mice. 

Sildenafil (50 µg kg-1) or vehicle (DMSO, 0.1%) were administered to C57BL/6 mice 5 minutes before collagen 
(50 µg kg-1). Platelet aggregation was measured as changes in radioactive counts in the pulmonary vasculature. 
(A) Mean trace of collagen response expressed as percentage increase from baseline, error bars omitted for 
clarity. (B) Maximum percentage increase from baseline (C) area under the curve and (D) the time it takes for the 
response to return to baseline was expressed as mean ± SEM. Unpaired Student’s t-test. ns= non-significant, 
*P<0.05 compared to vehicle treated. N=6.  
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Discussion 
Prior to this study, the direct effect of sildenafil on platelets in vitro and in vivo was 

unclear. This chapter investigated the effect of sildenafil on platelets in vivo and in 
vitro using a range of functional and molecular techniques. 

I first wanted to establish the effect of sildenafil on platelet aggregation in vitro. Wallis 

and colleagues demonstrated that in PRP sildenafil had no effect on ADP-induced 

platelet aggregation in vitro in the absence of the NO donor sodium nitroprusside 

(SNP) (Wallis et al., 1999). My data is in agreement with this study, as sildenafil had 

no significant effect on ADP-induced platelet aggregation in vitro in PRP. However, 

in WP sildenafil caused significant concentration-dependent inhibition of platelet 

aggregation by collagen and thrombin. Previous literature suggested that sildenafil 

only exerted an inhibitory effect on platelets in vitro in the presence of an external 

source of NO (Berkels et al., 2001; Gudmundsdóttir et al., 2005; Wallis et al., 1999), 

however all these studies were carried out in PRP and not isolated platelets. 

Sildenafil has previously been proven to be highly plasma protein bound which may 

have reduced the concentration of sildenafil able to act directly on platelets in PRP 

preparations (Walker et al., 1999). In addition, PRP contains substances known to 

enhance platelet aggregation (for example fibrinogen, vWF and enzymes such as 

thrombin (Born and Cross, 1964; Cazenave et al., 2004)) and lacks potential sources 

of negative regulation (for example NO produced by erythrocytes (Kleinbongard et 

al., 2006; Srihirun et al., 2012; Webb et al., 2008a)) and therefore promotes platelet 

aggregation. This highlights the necessity to investigate the effect of sildenafil on 

platelet signalling in isolated platelets and then translate results in vivo to investigate 

the physiological relevance. Overall, it was established using Figure 19 that sildenafil 

was able to inhibit platelet function in vitro but the physiological relevance of this in 
vivo remained to be determined. 

The solvent DMSO was used as a vehicle due to the poor water solubility of 

sildenafil. Due to concerns of the safety and toxicity of DMSO (Galvao et al., 2013), a 

lactate-dehydrogenase (LDH) assay was used as a test of cytotoxity. DMSO 

concentrations up to 5% had no significant effect on platelet LDH release compared 

to the negative control and therefore the solvent did not damage platelet membrane 
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integrity. The results from the LDH assay and platelet aggregation studies (vehicle-

treated platelets exhibited full aggregatory response compared to control platelets) 

implied that DMSO concentrations used in this study did not cause cytotoxicity. 

Other studies using sildenafil have used similar concentrations of DMSO and, in 

agreement with this study, have not seen any evidence of DMSO cytotoxicity in their 

experiments (Dunkern and Hatzelmann, 2005; Gudmundsdóttir et al., 2005). It is 

unlikely that the vehicle DMSO caused any non-specific effects throughout this 

thesis. 

VASP-P(239) has been identified as a molecular marker of NO/cGMP signalling 

events (Ibarra-Alvarado et al., 2002) and is one of the best characterised sites of 

PKG phosphorylation in vitro (Smolenski et al., 1998). In this study, VASP-P(239) 

was used as a biomarker of platelet signalling. Sildenafil, similar to the positive 

control SNP, caused a significant increase in VASP phosphorylation at Serine239 

compared to the vehicle treated platelets. This confirms that sildenafil was able to 

inhibit platelet signalling events and indicated that sildenafil-mediated inhibition of 

platelet aggregation is, at least in part, due to protein kinase activity. VASP-deficient 

mice are resistant to the inhibitory effects of NO on platelet adhesion (Massberg et 

al., 2004) which supports my finding that sildenafil and SNP reduced platelet 

aggregation via the NO/sGC/cGMP pathway. However the mechanism behind 

sildenafil-mediated inhibition cannot be deciphered from this result because both 

PKG and PKA are known to phosphorylate VASP at Serine239 (Burkhardt et al., 

2000). In addition, VASP phosphorylation at Serine239 has previously shown to be 

reversed in the presence of a PKA inhibitor (Li et al., 2003a). This suggested that 

there is a complex interplay between cGMP and cAMP signalling and therefore the 

involvement of cAMP signalling in sildenafil-mediated platelet inhibition is to be 

further investigated.  

To determine the inhibitory effect of sildenafil on the adhesive ability of platelets, I 

investigated platelet adhesion to collagen in the presence and absence of sildenafil. 

Figure 22 of this study showed that sildenafil had no significant effect on collagen-

induced platelet adhesion. Similarly, SNP also had no effect on collagen-induced 

platelet adhesion which suggested that NO/cGMP signalling had no effect on the 
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adhesive properties of platelets. Therefore NO/cGMP signalling has a specific 

inhibitory effect on platelet aggregation, potentially due to affecting activation-

dependent platelet function. In support of this finding, Michelson et al. (Michelson et 

al., 1996) identified that the inhibitory effect of NO was activation-dependent and had 

limited effect on GPIb-IX signalling and previous findings have reported that sildenafil 

was able to inhibit platelet activation (Dunkern and Hatzelmann, 2005; Halcox et al., 

2002). Interestingly, Wu et al. (Wu et al., 1997) previously demonstrated that cGMP-

elevating agents could inhibit platelet adhesion to collagen in static conditions 

however high concentrations of SNP were unable to cause significant inhibition of 

platelet adhesion. A subsequent study by Roberts et al. (Roberts et al., 2008) 

identified that the inhibitory effect of NO on collagen-induced platelet adhesion was 

reversed in the presence of apyrase and indomethacin and hence could only affect 

the activation-dependent component of adhesion. Due to the addition of apyrase and 

indomethacin in experimentation, my results support those published by Roberts et 
al. (Roberts et al., 2008). Unfortunately, this study was limited due to investigation of 

sildenafil on platelet adhesion in WP and under static conditions. Further 

investigations could include determining the effect of sildenafil on platelet adhesion 

in a more physiological setting such as under flow conditions (Graaf et al., 1992) and 

in vivo (Massberg et al., 2004). This study was also limited by the lack of a positive 

control to prove that static platelet adhesion could be inhibited. A positive control 

would be necessary to accurately conclude the effect of sildenafil on static platelet 

adhesion. Overall, my data suggests that sildenafil had a specific inhibitory effect on 

platelet aggregation and therefore is able to modify activation-dependent platelet 

function. 

Clot retraction is platelet-driven and characterised by the contraction of a fibrin clot to 

pull the edges of a wound together and therefore a simple method of assessing the 

efficiency of ‘outside-in’ signalling through the platelet integrin αIIbβ3 (Tucker et al., 

2012). Previous work has identified that NO inhibits the activation of platelet integrin 

αIIbβ3 and myosin light chain (Roberts et al., 2009) and therefore the effect of 

sildenafil on clot retraction was investigated. The positive control SNP demonstrated 

a non-significant trend in clot retraction creating a larger, heavier clot. Interestingly, 

sildenafil had no effect on clot retraction which suggests that sildenafil has no effect 
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on integrin αIIbβ3 signalling and may not affect the platelet component of wound 

healing. 

Due to the limited effect on platelet collagen adhesion and clot retraction, 

subsequent experiments focussed on the effect of sildenafil on platelet aggregation. 

The ability of sildenafil to have a specific negative impact on platelet aggregation 

may be beneficial in preserving normal platelet activity whilst reducing platelet 

hypersensitivity in the treatment of thrombotic risk however further experimentation 

will be necessary to determine this. 

Finally, I wanted to determine the importance of the inhibitory effect of sildenafil on 

platelet aggregation in vivo. To achieve this, I investigated the effect of sildenafil in a 

mouse model of platelet aggregation. The animal model used in this study enabled 

the assessment of platelet aggregation in vivo in the presence of an intact vascular 

endothelium and platelet mediators such as eNOS-derived NO. This was an 

important factor in this study due to the involvement of the vascular endothelium in 

modulating platelet function (Moore et al., 2010; Tymvios et al., 2009, 2008). The in 
vivo results showed that sildenafil was able to cause significant inhibition of collagen-

induced platelet aggregation compared to the vehicle control in W.T mice. This effect 

was specific to platelet aggregation and was not dependent on vessel tone (Moore et 

al., 2010). Previous research has reported that sildenafil had an inhibitory effect on 

platelet function in vivo by increasing bleeding time 1 hour post administration. 

Interestingly, the increased bleeding time did not correlate with ex vivo platelet 

aggregation which was maximally inhibited 4 hours post administration, several 

hours after bleeding time returned to normal. This highlighted the inability to 

specifically measure in vivo platelet activity using this method. Other research has 

also reported the inhibitory effect of sildenafil on platelet aggregation ex vivo (Halcox 

et al., 2002). The work presented in this thesis is the first to demonstrate that 

sildenafil could exert an inhibitory effect on in vivo platelet aggregation in the 

presence of endogenous physiological inhibitors without the need to induce vascular 

or haemostatic factors. The work in this chapter suggests that sildenafil 

demonstrates therapeutic benefit as an antithrombotic agent however the 



Georgina Apostoli 
Targeting the NO signalling pathway to modulate platelet function  
Platelet Biology, Molecular Medicine 
National Heart and Lung Institute 
 
 

96 
 

physiological relevance in cardiovascular disease and in humans is to be further 

investigated. 

The conclusion of this chapter is that sildenafil had an inhibitory effect on platelet 

aggregation in vitro and in vivo which was mediated in part via intracellular signalling 

indicative of protein kinase activity. Sildenafil-mediated platelet inhibition preserved 

activation-independent platelet activities such as adhesion and clot retraction which 

suggests that sildenafil may be beneficial as an antithrombotic agent. Contrary to 

previous studies, the activity of sildenafil occurred in the absence of exogenous 

physiological inhibitors, therefore the mechanism of action in platelets was 

determined in Chapter 5.  
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Chapter 5: Mechanism of action of 
sildenafil on platelets 
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Objectives and aims 
Chapter 4 established that sildenafil exerted an inhibitory effect on platelet 

aggregation in vitro and in vivo. The mechanism of action of sildenafil in vascular 

smooth muscle cells is well established (Boolell et al., 1996; Terrett et al., 1996). 

Although it has been proven that sildenafil can enhance NO-mediated inhibition of 

platelet aggregation (Gudmundsdóttir et al., 2005) the mechanism of action by which 

sildenafil directly inhibits platelet aggregation was not known. The overall aim of this 

chapter was to explore the mechanism of action by which sildenafil directly inhibits 

platelet aggregation in the absence of exogenous NO. Specifically, I aim to explore 

the issues of cGMP/cAMP crosstalk and determine the dependence of the effects of 

sildenafil upon sGC, endogenous NO and NOS. 

The aims of this chapter were to: 

x Investigate the ability of sildenafil to modify cGMP- or cAMP-mediated 

inhibition of platelet aggregation using optical platelet aggregometry. 

x Establish whether sildenafil-mediated inhibition of platelet aggregation in vitro 

was dependent upon:  

o sGC activation. 

o presence of NO. 

o NOS activity. 

x Investigate the effect of sildenafil on in vivo platelet aggregation in mice 

lacking functional eNOS. 
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Methods 

Optical platelet aggregometry 

Effect of sildenafil on sodium nitroprusside- or iloprost-mediated platelet 
inhibition of platelet aggregation 
Human WP were incubated with sildenafil (10nM), vehicle (mTHB containing 0.01% 

(v/v) DMSO) or mTHB for 5 minutes before the addition of SNP (0.01-100µM), 

iloprost (0.1-1000pM) or their respective vehicles (mTHB or mTHB containing 0.01% 

(v/v) methyl acetate ). WP were incubated for a further 5 minutes before stimulation 

with collagen (5µg mL-1). Platelet aggregation was recorded for 4 minutes. 

Sildenafil concentration response in the presence of modulators of the NO 
pathway 
Human WP were incubated with sGC inhibitor ODQ (10µM), vehicle (mTHB or 

mTHB containing 0.05% (v/v) of DMSO), the NO scavengers hydroxocobalamin 

(100µM) or haemoglobin (5µM), the NOS substrate L-arginine (1mM) or its inactive 

isomer D-arginine (1mM)  for 5 minutes before the addition of sildenafil (10-1000nM), 

vehicle control (mTHB containing 0.01% (v/v) DMSO) or NO donor SNP (1µM). WP 

were incubated for a further 5 minutes before stimulation with collagen (5µg mL-1). 

Platelet aggregation was recorded for 4 minutes. 

Sildenafil concentration response in the presence of L-NAME 
Human WP were incubated with the non-selective NOS inhibitor L-NAME (100µM), 

its inactive isomer D-NAME (100µM) or mTHB for 10 minutes before the addition of 

sildenafil (10-1000nM) or vehicle control (mTHB containing 0.01% (v/v) DMSO).  WP 

were incubated for a further 5 minutes before stimulation with collagen (5µg mL-1). 

Platelet aggregation was recorded for 4 minutes. 

Lactate dehydrogenase assay 

SNP concentration response 
Diluted human WP were incubated with SNP (1-100µM), mTHB or thrombin (0.1U 

mL-1) for 30 minutes prior to the assay. 
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Western blotting 

The effect of sildenafil on VASP(239) phosphorylation in the presence of ODQ 
and L-NAME 
Human WP were incubated with ODQ (10µM), L-NAME (100µM) vehicle control 

(mTHB containing 0.05% (v/v) DMSO) or mTHB (negative control) for 5 minutes 

before the addition of sildenafil (10nM), vehicle control (mTHB containing 0.01% (v/v) 

DMSO) or SNP (1µM – positive control). WP were then incubated for a further 5 

minutes before carrying out the sample preparation. The samples were quantified, 

run on an SDS-PAGE gel and transferred onto a PVDF membrane as detailed in 

chapter 2. The primary antibodies used were rabbit anti-VASP (1:1000), rabbit anti-

phospho-VASP (Ser239) (1:1000) and the housekeeping protein rabbit anti-GAPDH 

(1:500) all left to incubate overnight at 4ºC. The secondary antibody used for all the 

above primary antibodies was anti-rabbit HRP antibody (1:2000) left to incubate for 1 

hour at room temperature before protein visualisation as detailed in chapter 2. 

In vivo measurement of platelet aggregation 

The effect of sildenafil in vivo in eNOS-/- mice 
eNOS-/- mice (~25g) were anaesthetised and radiolabelled platelets were 

administered as described in chapter 2. Sildenafil (50µg kg-1) or DMSO vehicle 

(0.2%) was administered into the femoral vein of the recipient eNOS-/- mouse.  After 

5 minutes, 50µg kg-1 collagen (50µL) was intravenously administered and the 

aggregation response was measured for 10 minutes. 
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Results 

Sildenafil enhanced inhibition of platelet aggregation mediated by cGMP, but not 

cAMP, signalling 

Sildenafil at a concentration of 10nM (previously shown to not significantly inhibit 

platelet function - Figure 19C) was used as a tool to investigate whether PDE5 

antagonism modified cGMP- and cAMP-mediated inhibition of platelet aggregation. 

SNP (0.01-100µM) caused a concentration-dependent inhibitory effect on collagen-

induced platelet aggregation. The presence of sildenafil significantly shifted the SNP 

concentration response curve to the left reducing the IC50 from 170.0nM to 20.9nM 

(Figure 25A). An LDH assay was performed to assess the cytotoxic effect of SNP on 

platelets. The positive control (platelets treated with lysis buffer) caused maximum 

LDH exposure. SNP (1-100µM) did not cause a significant increase in LDH release 

compared to the negative control (untreated platelets) (Figure 25B).  

The prostacyclin mimetic iloprost (0.1-1000pM) caused a concentration-dependent 

inhibitory effect on collagen-induced platelet aggregation. Figure 25C shows that 

there was no significant effect on the concentration-response of iloprost in the 

presence and absence of sildenafil. Sildenafil did not significantly modify the IC50 

value (sildenafil treated – 0.15nM, vehicle treated – 0.19nM) or shift the inhibitory 

curve (Figure 25C). 
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The soluble guanylyl cyclase inhibitor ODQ reversed sildenafil-induced inhibition of 

in vitro platelet aggregation 

ODQ alone had no significant effect on collagen-induced platelet aggregation (Figure 

26B). SNP significantly inhibited collagen-induced platelet aggregation which was 

reversed in presence of ODQ and therefore validated that ODQ inhibited sGC 

activity (Figure 26A). ODQ significantly reversed sildenafil-induced inhibition of 

platelet aggregation (Figure 26B). 

To associate the platelet aggregation results with signalling events, sildenafil-

induced VASP phosphorylation in the presence of ODQ was investigated. As shown 

in Figure 27, sildenafil and the positive control SNP caused a significantly increase in 

VASP-P(239) compared to vehicle treated platelets. In support of the functional 

aggregation data, sildenafil in the presence of ODQ caused no significant increase in 

VASP-P(239) compared to vehicle treated platelets. Data is expressed as a 

representative blot showing the expression of VASP-P(239), total VASP and loading 

control GAPDH (Figure 27A) and a graph of the mean densitometry data of the 

percentage of VASP-P(239) compared to total VASP (Figure 27B). 
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Figure 25: Sildenafil enhanced inhibition of platelet aggregation mediated by cGMP, but not cAMP, 
signalling. 

Human washed platelets were pre-incubated with sildenafil (10nM) or vehicle (mTHB containing 0.01% (v/v) 
DMSO) and (A) SNP (0.01-100µM) or (C) iloprost (0.1-1000pM) before stimulation with collagen (5µg mL-1) in 
optical platelet aggregometry. N=5. An F-test was used to identify statistical significance between IC50 values. 
Ns= non-significant, *P<0.05. (B) Human washed platelets were pre-incubated with mTHB, SNP (1-100µM) or 
thrombin (0.1U mL-1) prior to performing the lactate dehydrogenase (LDH) assay. N=7. Repeated measures 
ANOVA with Dunnett’s post-hoc test. All data is expressed as mean±SEM. Veh-vehicle; sil-sildenafil; SNP-
sodium nitroprusside. 

A 

B 

C 



Georgina Apostoli 
Targeting the NO signalling pathway to modulate platelet function  
Platelet Biology, Molecular Medicine 
National Heart and Lung Institute 
 
 

104 
 

 

 

 

Figure 26: The soluble guanylyl cyclase inhibitor ODQ reversed sildenafil-induced inhibition of in vitro 
platelet aggregation. 

Human washed platelets were pre-incubated with ODQ (10µM) or vehicle (veh, DMSO 0.05%) and sodium 
nitroprusside (SNP, 1µM), sildenafil (sil, 10-1000nM) or vehicle (veh, DMSO 0.05%) before stimulation with 
collagen (5µg mL-1) in optical platelet aggregometry. (A) Control data. ODQ reversed SNP-induced inhibition of 
platelet aggregation. Repeated measures one-way ANOVA with Bonferroni post-hoc test. (B) ODQ reversed 
sildenafil-induced inhibition of platelet aggregation. Repeated measures two-way ANOVA with Bonferroni post-
hoc test ***P<0.001. N=7. All data is expressed as mean ± SEM. 

A 
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Figure 27: Western blot showing VASP-P(239) of sildenafil in the presence and absence of ODQ and L-
NAME.  

In human washed platelets sildenafil (sil, 100nM) induced VASP-P(239) phosphorylation was abolished by ODQ 
(10µM) whereas L-NAME (100µM) had no effect, data presented as (A) Western blot representative of 5 
independent experiments and  (B) ratio of VASP-P(239) compared to total VASP. N=5. Data expressed as 
mean±SEM. One way ANOVA with Bonferroni post-hoc test. *P<0.05, **P<0.01 compared to vehicle treated, ns 
= not significant compared to sildenafil treated. Sodium nitroprusside (SNP, 1µM) was used as a positive control. 
Veh-vehicle; ODQ-1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; L-NAME-Nω-Nitro-L-arginine methyl ester 
hydrochloride. 
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NO scavengers reversed sildenafil-induced inhibition of platelet aggregation 

NO scavengers, hydroxocobalamin (HXB - internal NO scavenger) and haemoglobin 

(Hb – external NO scavenger), were used to assess the dependence of the 

antiplatelet effect of sildenafil on the presence of NO. HXB and Hb did not 

significantly modify collagen-induced platelet aggregation (Figure 28C). The positive 

control SNP significantly inhibited collagen-induced platelet aggregation and this 

inhibition did not occur in the presence of HXB or Hb (Figure 28A and Figure 28B). 

Sildenafil-mediated inhibition of platelet aggregation was significantly reversed in the 

presence of HXB and Hb. As seen in Figure 28C, the NO scavengers significantly 

reversed the antiplatelet effect of sildenafil at 100nM and 1µM concentrations. 

The non-selective NOS inhibitor L-NAME had no effect on sildenafil-induced 

inhibition of platelet aggregation 

L-NAME was used to investigate the dependence of the antiplatelet effect of 

sildenafil on NOS activity. L-NAME and its inactive isomer D-NAME had no 

significant effect on platelet aggregation compared to vehicle treated platelets 

(Figure 29A). Sildenafil exerted an inhibitory effect on platelet aggregation in the 

presence of L-NAME which was demonstrated by the lack of significance using a 

two-way ANOVA statistical test (Figure 29B). 

In order to associate the aggregation results with platelet signalling, sildenafil-

induced VASP phosphorylation in the presence of L-NAME was investigated (Figure 

27). Sildenafil significantly increased VASP phosphorylation at Serine239 compared 

to vehicle treated platelets. The presence of L-NAME had no significant effect on 

sildenafil-mediated VASP-P(239) compared to sildenafil treated platelets. Data is 

expressed as a representative blot showing the expression of VASP-P(239), total 

VASP and loading control GAPDH (Figure 27A) and a graph of the mean 

densitometry data of the percentage of VASP-P(239) compared to total VASP 

(Figure 27B). 
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Figure 28: NO scavengers reversed sildenafil-induced inhibition of platelet aggregation.  

Human washed platelets were pre-incubated with haemoglobin (Hb, 5µM), hydroxocobalamin (HXB, 100µM) or 
vehicle (veh, mTHB) and sodium nitroprusside (SNP, 1µM), sildenafil (sil, 10-1000nM) or vehicle (veh, DMSO 
0.01%) before stimulation with collagen (5µg mL-1) in optical platelet aggregometry. (A, B) Control data. Hb (A) 
and HXB (B) reversed SNP-induced inhibition of platelet aggregation. Repeated measures one-way ANOVA with 
Bonferroni post-hoc test. (C) Hb and HXB reversed sildenafil-induced inhibition of platelet aggregation. Repeated 
measures two-way ANOVA with Bonferroni post-hoc test. **P<0.01, ***P<0.001. N=7. All data is expressed as 
mean ± SEM. 
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Figure 29: The non-selective NOS inhibitor L-NAME had no effect on sildenafil-induced inhibition of 
platelet aggregation. 

Human washed platelets were pre-incubated with L-NAME (100µM), D-NAME (100µM) or vehicle (veh, mTHB) 
and vehicle (DMSO 0.01%) or sildenafil (10-1000nM) before stimulation with collagen (5µg mL-1) in optical 
platelet aggregometry. (A) Control data. L-NAME and D-NAME had no significant (ns) effect on platelet 
aggregation. Repeated measures one-way ANOVA with Dunnett’s post-hoc test. (B) L-NAME and D-NAME had 
no significant effect on sildenafil-induced inhibition of platelet aggregation. Repeated measures two-way ANOVA 
with Bonferroni post-hoc test. ns=non significant. N=7. All data is expressed as mean ± SEM. L-NAME-Nω-Nitro-
L-arginine methyl ester hydrochloride; D-NAME-Nω-Nitro-D-arginine methyl ester hydrochloride. 

 

 

 

Figure 30: NOS substrate L-arginine had no effect on sildenafil-induced inhibition of platelet aggregation. 

Human washed platelets were pre-incubated with L-arginine (L-arg, 1mM), D-arginine (D-arg, 1mM) or vehicle 
(veh, mTHB) and vehicle (DMSO 0.01%) or sildenafil (10-1000nM) before stimulation with collagen (5µg mL-1) in 
optical platelet aggregometry. (A) Control data. L-arginine and D-arginine had no significant (ns) effect on platelet 
aggregation. Repeated measures one-way ANOVA with Dunnett’s post-hoc test. (B) L-arginine and D-arginine 
had no significant effect on sildenafil-induced inhibition of platelet aggregation. Repeated measures two-way 
ANOVA with Bonferroni post-hoc test. ns=non significant. N=7. All data is expressed as mean ± SEM.  
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The NOS substrate L-arginine had no effect on sildenafil-induced inhibition of platelet 

aggregation 

L-arginine, a rate limiting substrate for NOS-derived NO synthesis, was used to 

further investigate the dependence of the antiplatelet effect of sildenafil on NOS 

activity. L-arginine and its inactive isomer D-arginine had no significant effect on 

platelet aggregation compared to vehicle treated platelets (Figure 30A). L-arginine 

also had no significant effect on sildenafil-mediated inhibition of platelet aggregation 

compared to vehicle or D-arginine treated platelets at sildenafil concentrations of 

10nM, 100nM and 1µM (Figure 30B). 

Sildenafil had no effect on collagen-induced platelet aggregation in vivo in eNOS-/- 

mice 

In order to assess the in vivo relevance of in vitro findings in isolated platelets, the 

effect of sildenafil on platelet aggregation was investigated in vivo in eNOS-/- mice. 

Firstly, the mice were genotyped to ensure they lacked functional eNOS gene. 

eNOS-/- and W.T mice displayed bands at 2 different sites, eNOS-/- mice at 258 bp 

(non-functional eNOS genotype) and W.T mice at 337 bp (functional eNOS 

genotype). The W.T control (W.T) matched that of Charles Rivers W.T control (C). A 

DNA mix from W.T and eNOS-/- mice (HET) confirmed that WT and mutant PCR 

fragments could be detected in the same polymerase chain reaction experiment. No 

bands were present in the water control (H2O) (Figure 31). 

In vivo, sildenafil had no significant effect on the peak response, AUC or duration of 

response of collagen-induced platelet aggregation in eNOS-/- mice compared to 

vehicle treated eNOS-/- mice (see Figure 32). 
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Figure 31: Genotyping of eNOS-/- mice.  

337 bp correlates to  functional eNOS genotype. 258 bp correlates to inactive eNOS genotype. MW= DNA 
ladder. W.T= Our wild type control. eNOS (1-4)= samples from the eNOS-/- mice used. HET= heterozygous 
control. Due to homozygous breeding, a heterozygous control wasn’t present and therefore a DNA mix from both 
W.T and knockout mice were used to confirm WT and mutant PCR fragments could be detected in the same 
PCR reaction. C= Charles River Laboratories W.T control. H2O= water control to show no contamination of the 
master mix. Courtesy of Charles River Laboratories (Margate, UK). 
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Figure 32: Sildenafil had no effect on collagen-induced platelet aggregation in vivo in eNOS-/- mice.  

Sildenafil (50 µg kg-1) or vehicle (DMSO, 0.1%) was administered to eNOS-/- mice 5 minutes before collagen (50 
µg kg-1). Platelet aggregation was measured as changes in radioactive counts in the pulmonary vasculature. (A) 
Mean trace of collagen response expressed as percentage increase from baseline, error bars omitted for clarity. 
(B) Maximum percentage increase from baseline (C) area under the curve and (D) the time it takes for the 
response to return to baseline was expressed as mean ± SEM. Unpaired Student’s t-test. ns= non-significant 
compared to vehicle treated. N=4.  
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Discussion 
Chapter 4 showed that sildenafil exerted an inhibitory effect on platelet aggregation 

in vitro and in vivo. Sildenafil was able to modify platelet function in the absence of 

the vascular endothelium and exogenous physiological inhibitors such as NO. The 

aim of this chapter was to investigate the mechanism of action of sildenafil on 

platelet aggregation. 

SNP has been established to solely activate sGC and induce cGMP-dependent NO 

signalling (Dangel et al., 2010; Gudmundsdóttir et al., 2005) hence it was used as a 

positive control in subsequent experiments. SNP is an intracellular sGC/cGMP-

dependent NO donor that spontaneously releases NO upon diffusing into the cell 

(Sogo et al., 2000). SNP-induced cytotoxicity was an experimental concern because 

it has been reported that 5 cyanide molecules are released for every NO moiety 

within the cell (Friederich and Butterworth, 1995). Experimentation in this study 

showed no signs of SNP cytotoxicity because the inhibitory effect on platelet 

aggregation was reversed in the presence of ODQ (sGC inhibitor - Figure 26A) and 

the NO scavenger haemoglobin (Hb - Figure 28A) and there was no significant 

damage to platelet membrane integrity (Figure 25B). Therefore I have shown that 

SNP, at concentrations up to 100µM, was a relatively non-toxic drug to use as a 

positive control in subsequent in vitro experiments. 

Given the reported crosstalk between cyclic nucleotides and PDEs (Burkhardt et al., 

2000; Dunkern and Hatzelmann, 2005; Grant et al., 1990; Li et al., 2003a) the effect 

of sildenafil on the functional effect of cGMP and cAMP-mediated inhibition of 

platelet aggregation was determined. In agreement with previous research, sildenafil 

(10nM) enhanced the inhibitory effect of the NO donor SNP (Gudmundsdóttir et al., 

2005; Wallis et al., 1999; Wilson et al., 2008). This result was supported by the 

western blot data in Chapter 4 which showed that sildenafil increased VASP-P(239) 

expression, a biomarker of PKG activity. In contrast, sildenafil (10nM) had no effect 

on iloprost-mediated (and therefore cAMP stimulated) inhibition of platelet 

aggregation. This provided evidence that sildenafil acted via the cGMP, but not 

cAMP pathway. Unfortunately, in this study it was not possible to determine 

biochemical cGMP/cAMP concentrations in platelets in the presence and absence of 
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sildenafil potentially due to subtle changes in cyclic nucleotide concentrations. In 

other studies, researchers have amplified the cGMP signal with high concentrations 

of PDE inhibitors (Velmurugan et al., 2013), an approach which could not be used in 

this study as it would mask the detection of subtle changes in cGMP concentration. 

However, sildenafil is a well-established PDE5 inhibitor known to enhance cGMP 

signalling which further validates these results (Boolell et al., 1996; Corbin et al., 

2003; Corbin and Francis, 1999). Previous studies have shown that the inhibitory 

effect of sildenafil on platelet activation was partly due to PDE crosstalk and 

inhibition of PDE3 (Dunkern and Hatzelmann, 2005). Using Figure 25 of this study, it 

was shown that sildenafil did not enhance iloprost-induced inhibition of platelet 

aggregation and therefore did not functionally effect cAMP signalling in platelets. 

This work provided evidence that sildenafil selectively enhances NO/cGMP signalling 

with no measurable functional effect on prostacyclin-mediated inhibition despite the 

suggested downstream crosstalk between these pathways. 

Further investigations determined whether sildenafil enhanced cGMP signalling via 

sGC activation. This was achieved in vitro by pre-treating platelets with a selective 

irreversible sGC inhibitor ODQ. ODQ completely reversed the inhibitory effect of 

SNP on platelet aggregation which validated that ODQ inhibited sGC activity 

(Garthwaite et al., 1995). Sildenafil did not exert an inhibitory effect on platelet 

aggregation in the presence of ODQ which demonstrated the dependence of 

sildenafil on sGC activation. This was further proven using molecular techniques 

which demonstrated that sildenafil-induced increase of VASP-P(239), a marker of 

protein kinase activity in platelets, did not occur in the presence of ODQ (Figure 27). 

Thus, sildenafil exerted an inhibitory effect on collagen-induced platelet aggregation 

via the sGC/cGMP pathway. This finding was supported by other work that 

established the ability of ODQ to reverse cGMP-mediated accumulation 

(Gudmundsdóttir et al., 2005; Lies et al., 2013; Zhao et al., 2000). Overall, I have 

suggested that sildenafil caused an antiplatelet effect by enhancing intracellular 

cGMP signalling in platelets via sGC activation. 

Due to sildenafil modifying platelet function in an isolated platelet preparation in the 

absence of exogenous sources of NO, it was investigated whether the inhibitory 
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effect of sildenafil on platelet aggregation was dependent on the presence of NO. 

Two distinct NO scavengers, an intracellular (hydroxocobalamin (HXB)) and 

extracellular (haemoglobin (Hb)), were used. However, it is known that Hb has high 

affinity for NO and could potentially compete with sGC by drawing the SNP-derived 

NO outside the cell, acting as an intracellular NO scavenger (Sogo et al., 2000). This 

effect was apparent in this study as Hb was able to reverse SNP-mediated inhibition 

of platelet aggregation, an effect that was proposed to be solely intracellular (Bates 

et al., 1991; Sogo et al., 2000). The inhibitory effect of sildenafil on platelet 

aggregation was NO dependent and did not occur in the presence of either NO 

scavenger. However, the impact of intracellular or extracellular NO source on 

sildenafil activity was unclear. The NO-dependence of sildenafil further proves that 

NO caused stimulation of sGC (Dangel et al., 2010) which generated transient cGMP 

signals in platelets (Gambaryan et al., 2013). In agreement with the results 

presented here, other researchers have established that sildenafil inhibits platelet 

function by enhancing NO/sGC/cGMP signalling initiated by the addition of NO 

donors (Berkels et al., 2001; Gudmundsdóttir et al., 2005; Wallis et al., 1999). I have 

shown that sildenafil caused a NO/sGC dependent antiplatelet effect in isolated 

platelets in the absence of exogenously applied NO donors. Therefore I conclude 

that platelets have the intrinsic ability to generate NO/cGMP signals in platelets that 

can be enhanced by the PDE5 inhibitor sildenafil. 

The ability of NOS to generate NO in platelets and drive sildenafil-mediated inhibition 

of platelet aggregation was explored. The presence of NOS in platelets has been a 

subject of controversy over years (Naseem and Riba, 2008). Platelets have been 

reported to produce their own NO which was thought to be generated via platelet 

NOS (Alves de Sá Siqueira et al., 2011; De Meirelles et al., 2007; Freedman et al., 

1999, 1997). However, studies have proven that platelets do not contain NOS 

(Gambaryan et al., 2008; Ozuyaman et al., 2005; Tymvios et al., 2009) whereas 

other studies revealed no functional evidence of platelet-derived NO 

(Gudmundsdóttir et al., 2005; Wallis et al., 1999). Here I have shown that the 

antiplatelet effect of sildenafil occurred independently of NOS as a non-selective 

NOS inhibitor, L-NAME and NOS substrate, L-arginine did not modify the inhibitory 

effect of sildenafil on platelet aggregation. Therefore I conclude that platelets do not 
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generate endogenous NO/cGMP signalling through NOS activity. Drug 

concentrations and incubation times used in this study were based on previous 

publications that have investigated and successfully modified NOS activity. L-NAME 

has been shown to inhibit NOS with an IC50 of 0.81PM (Babbedge et al., 1993). We 

have previously shown that off-target effects of L-NAME occur at around 1mM 

(Tymvios et al., 2009) and therefore the L-NAME concentration 100µM was chosen 

to selectively and effectively inhibit NOS activity. L-arginine has been reported to 

stimulate NOS activity with an EC50 of 7.5µM (Tsai et al., 2005) and has been 

reported to stimulate NOS activity at concentrations 300µM and 1mM (Alfieri et al., 

2014; Gambaryan et al., 2008). Therefore it was reasonably assumed that L-arginine 

at 1mM would stimulate NOS acitivity in my experiments. In support of my findings, 

other studies have reported the lack of NOS expression in platelets (Gambaryan et 

al., 2008; Tymvios et al., 2009). Therefore, the work in this chapter has established 

that platelets are able to generate NO/cGMP signals independent of NOS activity. 

To determine the effect of NOS-independent NO/cGMP signals on platelet function 

in vivo, the effect of sildenafil was investigated in mice that did not express functional 

eNOS (eNOS-/- mice). Genotyping verified that the genetically modified mice used in 

this thesis lacked the expression of functional eNOS. Interestingly, sildenafil had no 

effect on in vivo collagen-induced platelet aggregation in eNOS-/- mice which 

suggested that the presence of eNOS was necessary for NO/cGMP signalling in 

platelets in vivo. Although this result supported work from our laboratory establishing 

eNOS as a critical regulator of platelet aggregation in vivo (Moore et al., 2011, 2010), 

it opposed my in vitro results demonstrating sildenafil’s ability to enhance NOS-

independent platelet NO/cGMP signals in the absence of a functional vascular 

endothelium. Previous studies have suggested the presence of NOS-independent 

NO synthesis (Gordge and Xiao, 2010; Lundberg et al., 2008) and these 

mechanisms have been proposed as long-term storage of NO (Lundberg and 

Govoni, 2004; Stamler et al., 1992). Therefore, it is possible that NO activity could be 

preserved via a long-term storage mechanism in platelets and sildenafil could be 

enhancing a NO/cGMP signal initiated by a storage pool of NO during in vitro 

experiments. This could potentially provide an explanation for the lack of effect of 

sildenafil in vivo in eNOS-/- mice because the platelets of these mice have never 
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been exposed to eNOS-derived NO which could be essential for long-term NO 

storage (for example, for S-nitrosothiol formation or nitrate/nitrite source). Additional 

experiments would be necessary to validate this theory. 

In conclusion, sildenafil exerted an inhibitory effect on platelet aggregation by 

enhancing transient NO/cGMP signals generated by the platelet. Platelet NO/cGMP 

signals occurred independently of NOS activity in vitro but not in vivo and therefore 

the source of NO modulating platelet function upstream of cGMP was unknown. 

Chapters 6 and 7 of this thesis will further explore possible avenues for the NOS-

independent NO source. 
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Chapter 6: S-nitrosothiol activity on 
platelets 

  



Georgina Apostoli 
Targeting the NO signalling pathway to modulate platelet function  
Platelet Biology, Molecular Medicine 
National Heart and Lung Institute 
 
 

118 
 

Objectives and aims 
Chapter 5 established that sildenafil exerted an antiplatelet effect in vitro by 

enhancing NO/cGMP signals generated by the platelet. These NO/cGMP signals 

occurred independently of NOS activity and therefore the source of platelet 

NO/cGMP signals was unknown. 

Exogenous S-nitrosothiols (RSNOs) have been reported to exert an antiplatelet 

effect via the NO/sGC/cGMP pathway (de Belder et al., 1994; Mathews and Kerr, 

1993; Xiao and Gordge, 2011). RSNOs are known to be present in platelets 

(Hirayama et al., 1999) however the ability of RSNOs to drive NO/cGMP signals in 

platelets is unknown. 

The aim of this chapter is to investigate the ability of endogenous RSNOs to drive 

NO/cGMP signalling events in platelets and explain the inhibitory effect of sildenafil 

on platelet aggregation. This will be achieved by inhibiting suggested pathways of 

RSNO-derived NO release, L-AT (Riego et al., 2009) and PDI (Shah et al., 2007), in 

the presence and absence of sildenafil in optical platelet aggregometry. In addition, 

to directly investigate the ability of platelet RSNOs to drive NO/cGMP signalling 

events, mercury dichloride (forms a stable thiol-mercury bond and displaces NO 

moiety – known as the Saville reaction (Saville, 1958; Swift and Williams, 1997)) will 

be assessed in sildenafil-induced inhibition of platelet aggregation. 

The aims of this chapter were to: 

x Assess the effect of L-leucine, an L-AT inhibitor, on sildenafil-induced 

inhibition of platelet aggregation in vitro. 

x Assess the effect of bacitracin, a PDI inhibitor, on sildenafil-induced inhibition 

of platelet aggregation in vitro. 

x Examine the functional role of RSNOs on sildenafil-induced inhibition of 

platelet aggregation in vitro by displacing and releasing NO from the thiol 

using mercury dichloride (HgCl2). 
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Methods 

Optical platelet aggregometry 

Sildenafil concentration response in the presence of L-leucine, bacitracin or 
Mercury dichloride (HgCl2) 
Human WP were incubated with L-leucine (1mM), D-leucine (1mM), bacitracin (0.5 

or 1.75mM), HgCl2 (100nM) or mTHB for 5 minutes before the addition of sildenafil 

(10-1000nM) or vehicle (mTHB containing 0.05% (v/v) DMSO). WP were incubated 

for a further 5 minutes before stimulation with collagen (5µg mL-1). Platelet 

aggregation was recorded for 4 minutes. 

HgCl2 concentration response 
Human WP were incubated with HgCl2 (1nM - 100µM) or mTHB for 10 minutes 

before stimulation with collagen (5µg mL-1). Platelet aggregation was recorded for 4 

minutes. 
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Results 

L-leucine had no effect on sildenafil-induced inhibition of platelet aggregation 

L-leucine, a competitive L-AT inhibitor, and its inactive isomer D-leucine had no 

significant effect on collagen-induced platelet aggregation (Figure 33A). Sildenafil 

caused a concentration-dependent inhibitory effect on platelet aggregation. The 

presence of L-leucine or D-leucine had no significant effect on sildenafil-induced 

inhibition of platelet aggregation (Figure 33B). 
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Figure 33: L-leucine had no significant effect on sildenafil-induced inhibition of platelet aggregation. 

Human washed platelets were pre-incubated with L-leucine (L-leu; 1mM), D-leucine (D-leu; 1mM) or vehicle 
(saline) and sildenafil (sil, 10-1000nM) or vehicle (veh, DMSO 0.01%) before stimulation with collagen (5µg mL-1) 
in optical platelet aggregometry. (A) Control data. L-leucine and D-leucine had no effect on collagen-induced 
platelet aggregation. Repeated measures one-way ANOVA with Dunnett’s post-hoc test. (B) L-leucine and D-
leucine had no effect on sildenafil-induced inhibition of platelet aggregation. Repeated measures two-way 
ANOVA with Bonferroni post-hoc test, ns= non-significant. N=6. All data is expressed as mean ± SEM. 
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Bacitracin had no effect on sildenafil-induced inhibition of platelet aggregation 

Bacitracin, a PDI inhibitor, significantly inhibited collagen-induced platelet 

aggregation by ~30% at the concentration 1.75mM but had no significant effect at 

0.5mM (Figure 34A). Bacitracin at the higher concentration (1.75mM) caused further 

reduction of sildenafil-mediated inhibition of platelet aggregation that was significant 

at 10nM, but was non-significant at 100nM and 1µM of sildenafil (Figure 34B). 

Bacitracin at the lower concentration of 0.5mM did not significantly modify the 

concentration-dependent inhibitory effect of sildenafil on platelet aggregation (Figure 

34C).  
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Figure 34: Bacitracin had no significant effect on sildenafil-induced inhibition of platelet aggregation. 

Human washed platelets were pre-incubated with bacitracin (0.5 or 1.75mM) or vehicle (saline) and sildenafil (sil, 
10-1000nM) or vehicle (veh, DMSO 0.01%) before stimulation with collagen (5µg mL-1) in optical platelet 
aggregometry. (A) Control data. Bacitracin at 1.75mM, but not 0.5mM significantly inhibited collagen-induced 
platelet aggregation. Repeated measures one-way ANOVA with Dunnett’s post-hoc test. (B) Bacitracin at 
1.75mM significantly enhanced sildenafil-mediated inhibition of platelet aggregation at 10nM. (C) Bacitracin at 
0.5mM had no effect on sildenafil-induced inhibition of platelet aggregation. Repeated measures two-way 
ANOVA with Bonferroni post-hoc test, ns= non-significant,*P<0.05, **P<0.01, ***P<0.001. N=8. All data is 
expressed as mean ± SEM. 
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Mercury dichloride (HgCl2) had no effect on sildenafil-induced inhibition of platelet 

aggregation 

To investigate the ability of RSNOs to drive NO/cGMP signals generated by the 

platelet, HgCl2 was used to pharmacologically release the NO moiety from RSNOs 

(Saville, 1958). The effects of increasing concentrations of HgCl2 on collagen-

induced platelet aggregation were investigated to identify a subthreshold 

concentration of HgCl2 to subsequently investigate the ability of sildenafil to enhance 

the NO signal generated by HgCl2. HgCl2 caused significant concentration-

dependent inhibition of platelet aggregation at concentrations higher than 0.25µM 

(Figure 35A). To ensure the stability of the platelets throughout the experiment, 

vehicle-treated platelets were stimulated after the experiment (post-vehicle). ‘Post-

vehicle’ platelets were able to produce ~100% aggregation of the vehicle treated 

platelets. 

The pretreatment of platelets with 100nM of HgCl2, a concentration that did not 

cause significant inhibition of platelet aggregation, had no significant effect on 

sildenafil-induced inhibition of platelet aggregation (Figure 35B). 
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Figure 35: Mercury dichloride (HgCl2) had no significant effect on sildenafil-induced inhibition of platelet 
aggregation. 

Human washed platelets were pre-incubated with mercury dichloride (HgCl2; 1nM-100µM) or vehicle (mTHB) and 
sildenafil (sil, 10-1000nM) or vehicle (veh, DMSO 0.01%) before stimulation with collagen (5µg mL-1) in optical 
platelet aggregometry. (A) HgCl2 caused a concentration-dependent significant inhibition of collagen-induced 
platelet aggregation. Repeated measures one-way ANOVA with Dunnett’s post-hoc test. (B) HgCl2 at 100nM had 
no effect on sildenafil-induced inhibition of platelet aggregation. Repeated measures two-way ANOVA with 
Bonferroni post-hoc test, ns= non-significant,*P<0.05, ***P<0.001. N=4. All data is expressed as mean ± SEM. 
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Discussion 
Chapter 5 established that sildenafil exerted an antiplatelet effect by enhancing 

NO/cGMP signals generated by the platelet. These NO/cGMP signals occurred 

independently of NOS activity in vitro and therefore the source of platelet-derived NO 

was unknown. This chapter aimed to explore the role of platelet RSNOs in 

generating platelet NO/cGMP signals by targeting known mechanisms of RSNO-

mediated NO release. 

The amino acid transporter L-AT has been reported to transport RSNOs and 

stimulate sGC in a range of cells (Li and Whorton, 2005; Riego et al., 2009; 

Sandmann et al., 2005; Satoh et al., 1997). To investigate the involvement of L-AT in 

the generation of RSNO-derived NO/cGMP signals in platelets, sildenafil-mediated 

inhibition of platelet aggregation was investigated in the presence and absence of 

the L-AT inhibitor L-leucine. L-leucine, an L-AT substrate known to competitively 

inhibit L-AT RSNO transport (Riego et al., 2009), and its inactive isomer D-leucine 

had no significant effect on collagen-induced platelet aggregation (Figure 33A). L-

leucine had no significant effect on sildenafil-induced inhibition of platelet 

aggregation (Figure 33B). L-leucine at a concentration of 1mM successfully inhibited 

L-AT activity by significantly attenuating intracellular RSNO concentration in neuron 

and macrophage cell lines (Nemoto et al., 2003; Zhang and Hogg, 2004) and 

therefore this concentration was used in this study to effectively and selectively 

inhibit L-AT activity. Unfortunately, this experiment was limited by the lack of a 

positive control to prove that L-leucine at a concentration of 1mM could inhibit L-AT 

transport in platelets. CysNO, a known substrate of L-AT, could be used to confirm 

the activity of L-AT in platelets and that the concentrations used here inhibited its 

function. Further experiments investigating molecular and biochemical 

measurements such as intracellular cGMP and RSNO/NO concentrations before and 

after L-leucine treatment would support this result and provide more convincing 

conclusions. Overall, my results suggested that L-AT had no effect on the ability of 

platelets to generate NO/cGMP signals. Bell et al. (Bell et al., 2007) reported that L-

leucine did not significantly inhibit cGMP accumulation stimulated by an RSNO, 

GSNO in platelets which disputed the involvement of L-AT in RSNO-derived cGMP 

signalling events in platelets. In agreement with the exogenous application of 
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RSNOs on platelets, this chapter has established that L-AT is not involved in 

NO/cGMP signalling events in platelets driven by endogenous platelet RSNOs. In 

addition, previous studies reported that CysNO/L-AT-mediated effects were 

insensitive to NO scavengers (Riego et al., 2009; Zhang and Hogg, 2004). 

Previously I have shown that sildenafil-induced inhibition of platelet aggregation was 

sensitive to NO scavengers (see Chapter 5) which provides further evidence that L-

AT was not involved in the antiplatelet effect of sildenafil. My results, in combination 

with previous literature, provide no evidence for the involvement of L-AT in RSNO-

driven NO/cGMP signalling events in platelets. I have shown that L-AT activity was 

not essential for sildenafil-induced inhibition of platelet aggregation which 

established that L-AT was not involved in platelet NO/cGMP generation via potential 

NO release from RSNOs. 

PDI has been shown to exert oxidoreductase activity and mediate denitrosation of 

exogenously applied RSNOs to release NO in platelets (Bell et al., 2007; Sliskovic et 

al., 2005). This chapter explored the ability of platelet PDI to undergo denitrosation of 

endogenous RSNOs to deliver NO into platelets and explain sildenafil-mediated 

inhibition of platelet aggregation. Previous studies have inhibited PDI denitrosation in 

human WP by the use of the cell impermeant potent PDI inhibitor bacitracin (Bell et 

al., 2007; Shah et al., 2007) and therefore this drug was used in the current study. 

Due to the integral activity of PDI in integrin-mediated platelet function, bacitracin 

was able to significantly inhibit collagen-induced platelet aggregation. This is in line 

with previous studies that have investigated the function of PDI and other thiol 

isomerases on platelet activity (Holbrook et al., 2012; Kim et al., 2013, 2013; Root et 

al., 2004). Bacitracin at the higher concentration (1.75mM) significantly inhibited 

platelet aggregation and masked the potential denitrosation activity of PDI. Therefore 

the dependence of platelet-derived NO/cGMP signals on PDI activity could not be 

established using bacitracin at the concentration of 1.75mM. The lower concentration 

of bacitracin (0.5mM) did not cause significant inhibition of platelet aggregation 

(Figure 34A) and was previously reported to significantly inhibit cGMP accumulation 

by GSNO stimulation (Bell et al., 2007). Therefore it was reasonably assumed that 

bacitracin at the concentration of 0.5mM was selective for the denitrosation activity of 

PDI in platelets. A sildenafil concentration-response was performed in the presence 
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and absence of bacitracin at the concentration of 0.5mM. Bacitracin had no 

significant effect on sildenafil-induced inhibition of platelet aggregation which 

suggests that PDI inhibition had no effect on the ability of platelets to generate 

NO/cGMP signals. Therefore my data provides no evidence to suggest that PDI was 

involved in the generation of NO/cGMP signals in platelets via potential NO release 

from RSNOs.  

Future experiments associating the functional effects with biochemical analysis could 

be beneficial to further support my conclusions. The measurement of RSNO/NO 

concentrations before and after bacitracin treatment could give a clearer insight into 

the role of PDI in platelet NO signalling by demonstrating RSNO ‘consumption’ and 

NO ‘production’. The selectivity of bacitracin for PDI has recently been disputed 

(Karala and Ruddock, 2010) and therefore the additional use of other PDI inhibitors 

(such as phenylarsine oxide (PAO) and the PDI and ERp57 antibody RL90) and PDI 

knockout mice will ensure PDI specificity and verify the conclusion that PDI is not 

involved in the generation of NO/cGMP signals in platelets. Previous studies have 

reported the involvement of PDI  in the antiplatelet effect of RSNOs via NO/cGMP 

stimulation (Bell et al., 2007; Shah et al., 2007; Xiao and Gordge, 2011) which 

suggests that RSNOs were not involved in the antiplatelet effect of sildenafil in my 

study. However, previous studies only examined the effect of exogenous RSNOs 

and they did not associate their molecular and biochemical findings with functional 

studies. Therefore, I propose further investigation associating the aggregation results 

with molecular and biochemical analysis to verify the activity of PDI in the generation 

of NO/cGMP platelet signals (in detail under the heading ‘Recommendations for 

future work’ in chapter 8). 

The final figure investigated the ability of platelet RSNOs to mediate platelet-derived 

NO/cGMP signals by pharmacologically releasing thiol-bound NO and investigating 

the functional impact of RSNOs on sildenafil-mediated inhibition of platelet 

aggregation. Thiols are also known as mercaptans, originating from the Latin corpus 

mercurium captāns meaning ‘body capturing quicksilver’ which is in reference to their 

high affinity to bind mercury (Ravichandran, 2004). Here it was investigated whether 

HgCl2 could modify sildenafil-induced inhibition of platelet aggregation by binding to 
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platelet thiols and releasing NO from RSNOs (as shown in previous studies 

(Hirayama et al., 1999; Maejima et al., 2005; Sliskovic et al., 2005)). HgCl2 exerted a 

concentration-dependent inhibition on collagen-induced platelet aggregation which, 

based on previous studies, was reasonably assumed to be due to an increase in NO 

stimulation (Saville, 1958; Swift and Williams, 1997). The inhibitory effect of sildenafil 

was investigated in the presence and absence of HgCl2 at a concentration of 100nM, 

a concentration that did not significantly inhibit platelet aggregation. The presence of 

HgCl2 had no significant effect on sildenafil-induced inhibition of platelet aggregation 

which suggested that RSNOs did not modify the effect of sildenafil on platelets. 

Collectively, my results have shown that RSNOs are not involved in the generation of 

NO/cGMP signals in platelets. 

Future experiments investigating RSNO and NO concentrations of resting platelets 

and after pretreatment of HgCl2 would further support the aggregation results from 

this chapter and provide further evidence of RSNOs involvement in the intrinsic 

ability of platelets to generate NO/cGMP signals. To my knowledge, this is the first 

study to have investigated the ability of platelet RSNOs to mediate endogenous 

NO/cGMP signals, however studies have confirmed the effects of exogenous 

RSNOs on mediating a NO/cGMP antiplatelet effect (Bell et al., 2007; Shah et al., 

2007, 2003; Xiao and Gordge, 2011). This current study suggests that platelet-

derived RSNOs do not modify platelet function by generating NO/cGMP signals, 

however further experimentation is necessary to validate this theory. 

In conclusion, this chapter suggests that platelet RSNOs, in general or via 

mechanisms involving L-AT or PDI, are not involved in the generation of NO/cGMP 

signals in platelets in vitro. However, this was not an exhaustive investigation and I 

advise further experimentation to verify these findings.  
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Chapter 7: Nitrate/nitrite as a NO 
source in platelets 
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Objectives and aims 
Chapter 5 established the ability of sildenafil to inhibit platelet aggregation by 

enhancing transient NO/cGMP signals generated by the platelet. Platelet NO/cGMP 

signals occurred independently of NOS activity in vitro and therefore the source of 

these signals remains unknown.  

Inorganic nitrate and nitrite can be chemically reduced to NO in vivo and have been 

shown to exert antiplatelet effects ex vivo (Velmurugan et al., 2013; Webb et al., 

2008b). However, the ability of nitrate/nitrite to generate NO/cGMP signals in the 

platelet is unknown. The overall aim of this chapter is to assess the ability of 

inorganic nitrate and nitrite to generate platelet-derived NO/cGMP signals and 

explain the inhibitory effect of sildenafil on platelet aggregation. 

Detectable concentrations of nitrate and nitrite have been reported in the plasma 

(Govoni et al., 2008; Minamino et al., 1997), however the ability of intraplatelet 

nitrate/nitrite to generate platelet-derived NO/cGMP signals is unknown. Therefore, 

the concentration of nitrate and nitrite in WP will be investigated and the ability of 

platelet nitrate/nitrite (collectively known as nitrogen oxides (NOx)) to be reduced to 

bioactive NO will be assessed. The effect of inorganic nitrate/nitrite will be 

investigated on platelet aggregation in vitro to ascertain the direct effect of 

nitrate/nitrite on platelet function. 

Oral administration of nitrate has been reported to modestly reduce platelet 

aggregation ex vivo in healthy mice and humans (J. Park et al., 2013; Richardson et 

al., 2002; Velmurugan et al., 2013; Webb et al., 2008a). However, the ability of 

nitrate/nitrite to impact platelet function in vivo in the presence of an intact vascular 

endothelium (and therefore eNOS-derived NO) is unknown. Moreover, the impact of 

inorganic nitrate/nitrite on platelet function during endothelial dysfunction has not 

been identified. An additional aim of this chapter is to assess the ability of 

nitrate/nitrite to impact platelet function in vivo in W.T and eNOS deficient mice (as a 

model of endothelial dysfunction). 
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Finally, to confirm that the potential inhibitory effect of inorganic nitrate on in vivo 

platelet function is cGMP-mediated, the dual treatment of nitrate and sildenafil will be 

investigated on in vivo platelet aggregation in eNOS-/- mice. 

The aims of this chapter were to: 

x Identify the presence of nitrogen oxides (NOx; umbrella term for nitrate and 

nitrite) in WP. 

x Establish the ability of platelet NOx to be reduced to bioactive NO with the use 

of a mild reducing agent ascorbic acid. 

x Assess the ability of nitrate and nitrite to mediate NO/sGC/cGMP-driven 

inhibition of platelet aggregation and modify sildenafil’s activity on platelets in 
vitro. 

x Investigate the ability of nitrate to inhibit in vivo platelet aggregation in healthy 

(W.T) mice and in an animal model of endothelial dysfunction (eNOS-/- mice). 

x Investigate the ability of sildenafil to modify the effect of inorganic nitrate on 

platelet aggregation in vivo in eNOS-/- mice. 
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Methods 

Nitrate/nitrite colorimetric assay 

Nitrate/nitrite concentration of platelets 
Human WP and mTHB were snap frozen in liquid nitrogen and nitrate/nitrite 

concentrations were analysed using the Griess reaction (using the Cayman 

colorimetric assay kit) as described in chapter 2. 

Nitrate/nitrite concentration of platelets treated with ascorbic acid 
Human WP were incubated with ascorbic acid (10µM and 1mM) or mTHB for 5 

minutes. The samples were then snap frozen in liquid nitrogen and nitrate/nitrite 

concentrations were analysed using the Griess reaction (using the Cayman 

colorimetric assay kit) as described in chapter 2. 

Optical platelet aggregometry 

Effect of sildenafil and nitrate/nitrite 
Human WP were incubated with sildenafil (10nM), vehicle control (mTHB containing 

0.01% (v/v) DMSO) or mTHB for 5 minutes before the addition of sodium nitrate 

(NaNO3 - 0.01-100µM), sodium nitrite (NaNO2 - 0.01-100µM) or mTHB. The WP 

were incubated for a further 5 minutes before stimulation with collagen (5µg mL-1). 

Platelet aggregation was recorded for 4 minutes. 

Effect of sildenafil, nitrite and ODQ 
Human WP were incubated with ODQ (10µM), vehicle control (mTHB containing 

0.01% (v/v) DMSO) or mTHB then sildenafil (10nM), vehicle control (mTHB 

containing 0.01% (v/v) DMSO) or mTHB then NaNO2 (0.01-100µM), SNP (1µM) or 

mTHB. Each drug addition was incubated for 5 minutes before the next. WP were 

analysed in an optical aggregometer and stimulated with collagen (5µg mL-1). 

Platelet aggregation was recorded for 4 minutes. 

Ascorbic acid concentration response 
Human WP were incubated with ascorbic acid (0.1-1000µM) or mTHB for 5 minutes 

before stimulation with collagen (5µg mL-1). Platelet aggregation was recorded for 4 

minutes. 
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Effect of ascorbic acid and ODQ 
Human WP were incubated with ODQ (10µM), vehicle control (mTHB containing 

0.05% (v/v) DMSO) or mTHB for 5 minutes before the addition of ascorbic acid (0.1-

1000µM) or mTHB. WP were incubated for a further 5 minutes before stimulation 

with collagen (5µg mL-1). Platelet aggregation was recorded for 4 minutes. 

Western blotting 

Effect of nitrate and nitrite on VASP-P(239) in the presence of sildenafil and 
ODQ 
Human WP were incubated with ODQ (10µM) or DMSO vehicle (<0.05%) then 

sildenafil (10nM) or vehicle control (mTHB containing 0.01% (v/v) DMSO) then 

NaNO3 (100µM), NaNO2 (100µM), SNP (1µM) or mTHB. Each drug was incubated 

for 5 minutes before the next and the samples were prepared as detailed in chapter 

2. The samples were quantified, run on an SDS-PAGE gel and transferred onto a 

PVDF membrane as detailed in chapter 2. The primary antibodies used were rabbit 

anti-VASP (1:1000), rabbit anti-phospho-VASP (Ser239) (1:1000) and the 

housekeeping protein rabbit anti-GAPDH (1:500), all left to incubate overnight at 

4ºC. The secondary antibody used for all the above primary antibodies was anti-

rabbit HRP antibody (1:2000), left to incubate for 1 hour at room temperature before 

protein visualisation as detailed in chapter 2. 

Ex vivo measurement of nitrate and nitrite concentration. 

The effect of nitrate administration on salivary gland and plasma NOx 
concentration in W.T and eNOS-/- mice 
C57BL/6 W.T and eNOS-/- mice (~25g) were treated with 100µL of NaNO3 

(1mmol/kg) or saline (w/v 0.9%) i.p. After 1 hour the mice were anaesthetised and 

plasma and salivary glands extracted (as detailed in chapter 2). Gas-phase 

chemiluminescence was performed on these samples as detailed in chapter 2. 
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In vivo measurement of platelet aggregation 

The effect of nitrate administration on W.T or eNOS-/- mice 
C57BL/6 or eNOS-/- mice (~25g) were treated with 100µL of NaNO3 (1mmol/kg) or 

saline i.p for 30 minutes before they were anaesthetised and radiolabelled platelets 

administered as described in chapter 2. One hour after drug treatment, 50µg kg-1 

collagen (50µL) was administered i.v and the aggregation response was measured 

for 10 minutes. 

The dual effect of nitrate and sildenafil on eNOS-/- mice 
eNOS-/- mice (~25g) were treated with 100µL of NaNO3 (1mmol/kg) or saline and 

sildenafil citrate (10mg kg-1) or DMSO (0.1%) i.p for 30 minutes before they were 

anaesthetised and radiolabelled platelets administered as described in chapter 2.  

One hour after drug treatment, 50µg kg-1 collagen (50µL) was administered i.v and 

the aggregation response was measured for 10 minutes.  
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Results 

Platelets contain nitrate and nitrite which has the ability to be reduced to bioactive 

NO in vitro 

mTHB buffer contained no detectable concentrations of NOx. In contrast, WP 

contained ~30µM of NOx, mainly nitrate but containing some nitrite (~5µM) (Figure 

36A). The addition of a mild reducing agent, ascorbic acid caused a concentration-

dependent reduction in platelet NOx. Ascorbic acid at the concentration of 1mM 

significantly reduced nitrate/nitrite concentrations in platelets by approximately 80% 

compared to untreated platelets. A lower concentration of ascorbic acid (10µM) 

demonstrated a trend in reduced nitrate/nitrite concentrations in platelets (Figure 

36B). Functionally, ascorbic acid caused significant concentration-dependent 

inhibition of collagen-induced platelet aggregation compared to vehicle treated 

platelets (1mM caused ~25% reduction in platelet aggregation; Figure 36C). The 

inhibitory effect of ascorbic acid was reversed in the presence of ODQ which exerted 

~100% aggregation response compared to the control (Figure 36D). 
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Figure 36: Platelets contain nitrate and nitrite which has the ability to be reduced to bioactive NO in vitro. 

A-B: Nitrate and nitrite concentrations were measured in human washed platelets (A) untreated or (B) pre-
incubated with vehicle (saline) or ascorbic acid (10, 1000 µM) for 5 minutes. Repeated-measured one-way 
ANOVA with Dunnett’s post-hoc test. N=4. C: Collagen (5 µg mL-1) induced in vitro platelet aggregation was 
inhibited in human washed platelets treated with ascorbic acid (100nM-1mM). Repeated-measures one-way 
ANOVA with Dunnett’s post-hoc test. N=7. D: Ascorbic acid-induced inhibition of aggregation was reversed in the 
presence of ODQ (10 µM). Repeated-measures two-way ANOVA with Bonferroni post-hoc test. N=6. All data is 
expressed as mean±SEM. *P<0.05, **P<0.01, ***P<0.001 significance testing. NOx-nitrogen oxides; NO3-nitrate; 
NO2- nitrite; N.d-not detectable; ODQ-1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one. 
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Figure 37: Nitrate has no effect on platelet aggregation in vitro. 

Sodium nitrate (NaNO3  - 10nM-100µM) in the presence and absence of a low concentration of sildenafil (10nM) 
had no effect on collagen (5µg mL-1) induced platelet aggregation in vitro. Repeated measures two-way ANOVA 
with Bonferroni post-hoc test. ns=non-significant. N=6. 

 

Nitrate has no effect on platelet aggregation in vitro 

The pretreatment of platelets with nitrate at increasing concentrations (10nM-100µM) 

had no significant effect on collagen-induced platelet aggregation compared to 

vehicle-treated platelets. Nitrate in the presence of sildenafil also had no significant 

effect on collagen-induced platelet aggregation compared to vehicle-treated platelets 

(Figure 37).  

To associate the aggregation results with signalling events, the effect of nitrate 

(100µM) in the presence and absence of sildenafil (10nM) and ODQ (10µM) on 

VASP-P(239) was investigated. Data is expressed as a representative blot of VASP-

P(239), total VASP and protein loading control GAPDH (Figure 38A) and a bar chart 

showing the percentage of VASP-P(239) compared to total VASP (Figure 38B). 

Nitrate and sildenafil alone had no significant effect on VASP-P(239) phosphorylation 

compared to vehicle-treated platelets. SNP (positive control) induced significant 

VASP-P(239) phosphorylation compared to vehicle-treated platelets (Figure 38). 
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Figure 38: Western blot showing VASP-P(239) expression after nitrate/nitrite treatment in the presence 
and absence of sildenafil and ODQ. 

Pre-incubation of platelets with sodium nitrite (NO2, 100 µM) and sildenafil (sil, 10 nM) resulted in significant 
phosphorylation of VASP at serine 239 (VASP-P(239)) that was reversed in the presence of ODQ (10 µM). This 
effect was not seen with sodium nitrate (NO3 , 100 µM). Sodium nitroprusside (SNP, 1µM) was used as a positive 
control. Data presented as (A) Western blot representative of 5 independent experiments and (B) percentage of 
VASP-P(239) compared to total VASP. Data expressed as mean±SEM. One way ANOVA with Dunnett’s post-
hoc test. *P<0.05, ***P<0.001 compared to vehicle treated. n=5.  
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Nitrite in the presence of a low concentration of sildenafil inhibited platelet 

aggregation in vitro via the sGC pathway 

The pretreatment of platelets with nitrite (10nM-100µM) had no effect on collagen-

induced platelet aggregation compared to the vehicle treated platelets. However, 

nitrite in the presence of sildenafil (10nM) induced significant concentration-

dependent inhibition of collagen-induced platelet aggregation (up to 20% reduction) 

compared to nitrite treatment alone. The addition of the sGC inhibitor ODQ reversed 

the inhibitory effect of nitrite combined with sildenafil on platelet aggregation since 

~100% aggregation was induced (Figure 39). 

VASP phosphorylation was used as a biomarker of platelet signalling during drug 

treatments. Data was expressed as a representative blot of VASP-P(239), total 

VASP and protein loading control GAPDH (Figure 38A) and as a bar chart showing 

the mean percentage of VASP-P(239) compared to total VASP (Figure 38B). SNP 

(positive control) induced significant VASP-P(239) phosphorylation compared to 

vehicle treated platelets. Nitrite (100µM) in the presence of a low concentration of 

sildenafil (10nM) caused a significant increase in VASP phosphorylation at ser239 

which was not seen in the presence of ODQ. Nitrite and sildenafil treatment alone 

had no significant effect on platelet VASP-P(239) when administered separately. 
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Figure 39: Nitrite in the presence of a low concentration of sildenafil inhibited platelet aggregation in vitro 
via the sGC pathway. 

 Effect of sodium nitrite (NaNO2, 10nM-100µM) in the presence and absence of a low concentration of sildenafil 
(sil, 10nM) on collagen (5µg mL-1) induced platelet aggregation. The significant inhibitory effect of nitrite + 
sildenafil was reversed in the presence of ODQ (10µM). Repeated measures two-way ANOVA with Bonferroni 
post-hoc test. ns=non-significant, **P<0.01. N=6. 

 

In vivo administration of sodium nitrate increases nitrite concentrations in plasma 

and salivary glands of eNOS-/- mice 

In W.T and eNOS-/- mice, nitrate (1mmol kg-1) administration significantly increased 

the concentration of nitrate in the salivary glands (Figure 40A) and the plasma 

(Figure 40C) compared to saline-treated mice. Nitrate also induced a trend in 

increased salivary gland (Figure 40B) and plasma nitrite (Figure 40D) concentration 

compared to saline-treated in W.T mice however this was not statistically significant. 

Nitrate treatment caused a significant increase in salivary gland (~60%) (Figure 40B) 

and plasma (~30%) (Figure 40D) nitrite concentration compared to saline-treated in 

eNOS-/- mice. 
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Figure 40: In vivo administration of sodium nitrate increases nitrite concentrations in plasma and salivary 
glands of eNOS-/- mice  

Following treatment of mice with saline or sodium nitrate (1 mmol kg-1) for 1 hour, nitrate concentrations were 
significantly increased in (A) salivary glands and (C) plasma in both wild-type (W.T) and eNOS-/- mice. Salivary 
gland (B) and plasma (D) nitrite concentration was significantly increased in eNOS-/-, but not W.T. mice, following 
nitrate treatment. Data expressed as mean±S.E.M. Unpaired Student’s t-test (A and C) or Mann-Whitney U-test 
(B and D) was performed depending on whether the data fitted a normal distribution (F-test). *P<0.05, **P<0.01, 
***P<0.001, ns= non-significant (P>0.05), n=5-7. Result produced in collaboration with Dr Smallwood and Prof. 
Winyard, University of Exeter. 
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In vivo administration of nitrate significantly reduces platelet aggregation in eNOS-/- 

but not W.T mice 

The effect of nitrate (1mmol kg-1) upon in vivo platelet aggregation was investigated 

in W.T and eNOS-/- mice. In W.T mice nitrate had no significant effect on in vivo 

platelet aggregation compared to the saline-treated which is presented as an 

example trace (Figure 41A) and mean peak responses of 6 independent 

experiments (Figure 41B). 

In eNOS-/- mice, nitrate caused a significant decrease (~33.3% reduction) in platelet 

aggregation compared to saline-treated mice. The results of the eNOS-/- mice are 

presented as an example trace of the response (Figure 41C) and the mean peak 

responses of 4 independent experiments (Figure 41D). Saline-treated eNOS-/- mice 

exhibited a trend in increased platelet aggregation compared to saline-treated W.T 

mice (P=0.0651). Nitrate treatment restored the elevated platelet response of eNOS-

/- mice to normal W.T responses, which was around 15% aggregation from baseline.  
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Figure 41: In vivo administration of nitrate significantly reduces platelet aggregation in eNOS-/- but not 
W.T mice. 

Wild-type (W.T) and eNOS-/- mice were treated with saline or sodium nitrate (1mmol kg-1) 1 hour prior to collagen 
(50 µg kg-1) stimulation and radiolabelled platelet aggregation was measured as changes in radioactive counts in 
the pulmonary vasculature. (A,C) Mean trace of collagen response (percentage increase from the baseline 
radioactive counts) versus time in W.T (A) and eNOS-/- mice (C). Data expressed as mean (error bars omitted for 
clarity). (B,D) Maximum percentage increase from baseline radioactive counts in W.T (B) and eNOS-/- mice (D). 
Data expressed as mean ± S.E.M. Unpaired Student’s t-test. *P<0.05, ns = non-significant (P>0.05), n=4-6.  
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Sildenafil enhanced nitrate-mediated inhibition of platelet aggregation in vivo in 

eNOS-/- mice 

The effect of sildenafil and nitrate on in vivo platelet aggregation in eNOS-/- mice was 

investigated to establish that nitrate induced cGMP-mediated inhibition of platelet 

aggregation. As shown previously, nitrate caused a significant reduction (Figure 41C 

and Figure 41D) and sildenafil had no significant effect (Chapter 5, Figure 32) on 

collagen-induced platelet aggregation in vivo in eNOS-/- mice. The dual treatment of 

sildenafil and nitrate induced further inhibition of platelet aggregation compared to 

vehicle and nitrate treated mice. The results are presented as an example trace 

(Figure 42A) and mean peak response (Figure 42B). Data from Figure 42 is a 

sample size of 2 and therefore no statistics could be performed and the results are 

interpreted as a trend. Despite the small sample size, the dual treatment of sildenafil 

and nitrate caused considerable inhibition of platelet aggregation (~75% of vehicle 

treated) with tight error bars which further validates my interpretation. 

 

 

Figure 42: Sildenafil demonstrated a trend in enhancing nitrate-mediated inhibition of platelet aggregation 
in vivo in eNOS-/- mice 

eNOS-/- mice were treated saline or sodium nitrate (NO3, 1mmol kg-1) and sildenafil (sil, 10mg kg-1) or vehicle 
(DMSO, 0.1%) 1 hour prior to collagen (50 µg kg-1) stimulation and radiolabelled platelet aggregation was 
measured as changes in radioactive counts in the pulmonary vasculature. (A) Mean trace of collagen response 
(percentage increase from the baseline radioactive counts) versus time. Data expressed as mean (error bars 
omitted for clarity). (B) Maximum percentage increase from baseline radioactive counts. Data expressed as mean 
± SEM. N=2. 
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Discussion 
This chapter explored the possibility that inorganic nitrate/nitrite could generate 

NO/cGMP signals in platelets which drive the inhibitory effect of sildenafil on in vitro 

platelet aggregation. The importance of nitrate-derived NO on in vivo platelet 

aggregation during eNOS deficiency and vascular health was also investigated. 

First the presence of NOx in WP was assessed by the use of a colorimetric 

nitrate/nitrite assay. It was established that nitrate and nitrite were present in WP 

preparations. Ascorbic acid has previously been shown to have reducing properties 

(Borsook and Keighley, 1933; Kashiba-Iwatsuki et al., 1996) and was used as a mild 

reducing agent in Figure 36. The pretreatment of platelets with ascorbic acid 

decreased the presence of platelet nitrate/nitrite and consequently exerted an 

inhibitory effect on in vitro collagen-induced platelet aggregation. Ascorbic acid-

mediated inhibition of platelet aggregation was reversed in the presence of the sGC 

inhibitor ODQ. Collectively these results suggest that endogenous platelet nitrate 

and nitrite has the potential to be reduced to NO and exert an inhibitory effect on 

platelets by stimulating the NO/sGC/cGMP pathway. In support of the work 

presented here, other studies have reported similar concentrations of nitrate/nitrite in 

human plasma (J. W. Park et al., 2013; Velmurugan et al., 2013). It has previously 

been reported that ascorbic acid can inhibit platelet aggregation (Cordova et al., 

1982; Wilkinson et al., 1999) and increase intraplatelet cGMP concentration 

(Raghavan et al., 2003; Schoepflin et al., 1977). However, this inhibitory effect was 

reported to be due to the antioxidant effect (improving NO signalling by scavenging 

ROS species) or stimulation of NOS (chemical stabilisation of tetrahydrobiopterin) 

and not a NO-related effect mediated by nitrate/nitrite reduction as suggested here. 

In addition to previous literature, this work provides further evidence that the 

inhibitory effect of ascorbic acid was NO driven. Overall, Figure 36 established that 

platelets contain nitrate and nitrite and demonstrated that in principle, platelet 

nitrate/nitrite had the ability to inhibit platelet activity by reduction to bioactive NO. 

However, nitrate/nitrite reduction to NO was mediated pharmacologically by the 

addition of a mild reducing agent and my data did not demonstrate the capability of 

platelets to reduce nitrate/nitrite to NO endogenously. 
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To investigate the ability of platelets to bioconvert nitrate/nitrite to NO, the direct 

effect of nitrate or nitrite on collagen-induced platelet aggregation was assessed. 

The addition of sodium nitrate in vitro in the presence and absence of a low 

concentration of sildenafil had no effect on NO/cGMP platelet signalling (no increase 

in VASP-P(239)) or effect platelet aggregation. In contrast, sodium nitrite in the 

presence of a low concentration of sildenafil caused a concentration-dependent 

inhibitory effect on platelet aggregation in vitro. Nitrite-induced inhibition of platelet 

aggregation was reversed in the presence of ODQ and the signalling events were 

verified using a biomarker of protein kinase activity VASP-P(239). These results 

suggest that the exogenous addition of nitrite, but not nitrate, was able to induce a 

transient cGMP inhibitory signal that was evident in the presence of a PDE5 inhibitor 

as a mechanism to stop rapid hydrolysation of cGMP. Therefore, the data from this 

chapter suggests that platelets have an endogenous capacity to reduce nitrite to 

bioactive NO. Other researchers have reported that nitrite can inhibit platelet 

aggregation by cGMP signalling, however this effect was dependent on the presence 

of erythrocytes which suggested that erythrocytes bear nitrite reductase activity and 

not platelets (Srihirun et al., 2012; Velmurugan et al., 2013). However, these 

experiments were performed in the absence of a PDE5 inhibitor and, as suggested 

in the results presented here, the inhibitory effect of nitrite might be masked by rapid 

hydrolysation of cGMP by PDE5. In other cell types, mammalian enzymes such as 

xanthine oxidase (Jansson et al., 2008; Zhang et al., 1998) and aldehyde 

dehydrogenase (Lin et al., 2013) can reduce nitrite but these enzymes are not 

present in the platelet proteome (Boyanova et al., 2012). Therefore, the mechanism 

by which platelets reduce nitrite to NO is unknown. Interestingly, rat liver 

mitochondria, an organelle also present in platelets, have been reported to reduce 

nitrite, but not nitrate, to bioactive NO (Kozlov et al., 1999) which suggests that 

mitochondria may be a potential candidate for nitrite reduction in platelets (see 

‘Recommendations for future work’ in chapter 8). In summary, nitrite reduction may 

be a possible explanation for the endogenous ability of platelets to generate NOS-

independent NO/cGMP signals, however the mechanism by which platelets 

metabolise nitrite is unclear. 
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To investigate the physiological relevance of my in vitro data, the effect of sodium 

nitrate on ex vivo nitrate and nitrite plasma and salivary gland concentration and in 
vivo platelet aggregation were assessed. Previous research has established that 

nitrate is produced endogenously by NOS at a concentration of 0.2mmol kg-1 d-1 

(Wickman et al., 2003). One nitrate-rich vegetable portion contains a higher 

concentration of nitrate than that produced by all forms of NOS over a day (Lundberg 

et al., 2008) therefore the concentration of 1mmol kg-1 was chosen to investigate the 

effect of an external source of nitrate (via diet or supplementation) on platelet 

aggregation.  

Salivary glands have been proven to play an important role in dietary nitrate 

bioconversion (see ‘inorganic nitrate and nitrite’ in Chapter 1: Introduction). 

Therefore salivary gland and plasma nitrate and nitrite concentrations were 

determined after the treatment of sodium nitrate in W.T and eNOS-/- mice to 

investigate the ability of these mice to bioconvert nitrate to nitrite. Gas-phase 

chemiluminescence was adopted in this experiment to ensure sensitive and accurate 

measurements of NOx. The data presented here verified that sodium nitrate 

administration induced a significant increase in nitrate concentration in salivary 

glands and plasma of W.T and eNOS-/- mice compared to vehicle treated. Nitrate 

treatment significantly increased the concentration of nitrite in the salivary glands 

and plasma of eNOS-/- mice, an effect that was not seen in healthy W.T mice. This 

suggested that a mouse model of endothelial dysfunction had a greater capacity to 

bioconvert nitrate to nitrite in vivo. On the contrary, previous studies have shown that 

dietary nitrate increased the concentration of nitrite in whole blood and plasma of 

healthy participants and W.T mice (J. Park et al., 2013; Velmurugan et al., 2013). 

However, these previous studies chronically administered nitrate through the diet 

and used larger n numbers (increasing the statistical power to detect smaller 

differences) which potentially could have detected significance in my data. Results 

from this chapter establish that the lack of functional eNOS induces a greater 

capacity to bioconvert nitrate to nitrite and may suggest that inorganic nitrate/nitrite 

could compensate for impaired NO signalling during endothelial dysfunction. 
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To investigate the ability of inorganic nitrate to compensate for impaired NO 

signalling and modify platelet activity during endothelial dysfunction, the effect of 

nitrate on in vivo platelet aggregation in W.T and eNOS-/- mice was assessed. 

Similar to the effect of nitrate treatment on plasma nitrite concentration in W.T mice, 

nitrate had no significant effect on in vivo collagen-induced platelet aggregation in 

W.T mice. Collectively, my data suggests that nitrate has no effect on platelet 

function during vascular health. My results have contradicted other studies which 

have reported that dietary nitrate exerted a significant inhibitory effect on platelets in 

W.T mice and healthy participants (J. Park et al., 2013; Velmurugan et al., 2013). 

However both of these studies measured platelet aggregation ex vivo and not in the 

presence of endothelium-derived NO. Additionally, nitrate was administered 

chronically at high concentrations (~11.77mmol/L) which may have caused a 

significant difference between untreated and nitrate treated mice (J. Park et al., 

2013). The present study examined the effects of nitrate on in vivo platelet 

aggregation in the presence of a healthy vascular endothelium and ascertained that 

nitrate-derived NO did not significantly modify platelet function in W.T mice. These 

results suggest that the bioconversion of nitrate to NO may be a redundant NO 

source in vascular health and consequently has no effect on platelet function. 

Nitrate treatment significantly inhibited platelet aggregation in eNOS-/- mice which 

reversed the elevated thrombotic response to that seen in W.T mice. Although the 

data are only preliminary, sildenafil enhanced the inhibitory effect of nitrate on in vivo 
platelet aggregation in eNOS-/- mice, which suggests that nitrate-induced inhibition of 

platelet aggregation was at least partly cGMP-mediated. Collectively, the results 

from this chapter have determined that nitrate can exert a cGMP-mediated 

antiplatelet effect in eNOS-/- mice by bioconversion of nitrate to nitrite and potentially 

NO. My work bears similarities to the work of Carlström et al. (Carlström et al., 2010) 

who reported that dietary inorganic nitrate can compensate for the metabolic 

consequences of eNOS deficiency. Therefore, the results from this chapter suggest 

that nitrate-derived NO may compensate for impaired NO signalling during 

endothelial dysfunction and negatively regulate platelet function. To date there have 

been no investigations into the effect of inorganic nitrate on platelet function in 

patients with endothelial dysfunction and therefore the importance of this pathway in 
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human cardiovascular disease has not been established. The results presented in 

this chapter serve as a basis for future work to investigate the antiplatelet effect of 

inorganic nitrate in patients with endothelial dysfunction. 

In conclusion, nitrite can generate transient NO/cGMP signalling events in platelets 

and could potentially drive the inhibitory effect of sildenafil on platelet function. My 

work suggests that nitrite can be reduced to NO by an unidentified nitrite reduction 

mechanism in platelets. In an in vivo setting, eNOS deficiency caused a greater 

capacity to bioconvert nitrate to nitrite and initiated NO/cGMP antiplatelet effects. 

This chapter suggests that inorganic nitrate/nitrite can compensate for impaired NO 

signalling during endothelial dysfunction whilst preserving normal platelet function in 

vascular health.  
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Chapter 8: General discussion 
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The importance of this study and objectives 
Cardiovascular disease is the leading cause of death in the UK, with 152,000 

incidences of stroke and 103,000 incidences of myocardial infarction occurring every 

year (British Heart Foundation, 2013). Platelets play a major role in cardiovascular 

disease and antiplatelet therapy is a commonly prescribed treatment to reduce the 

risk of ischaemic events (Angiolillo et al., 2008). Current antiplatelet therapies such 

as aspirin and thienopyridines have many limitations such as hypersensitivity, 

resistance and excessive bleeding which highlights a need to develop new drug 

targets (Michelson, 2010). NO is a major negative regulator of platelets and a 

significant body of research has reported reduced bioavailability of NO in 

cardiovascular disease (Naseem, 2005). Endothelial damage can lead to 

atherosclerosis, impaired eNOS function and increased risk of platelet-driven 

cardiovascular events due to the increased ability of platelets to activate. Previous 

studies investigating the expression of NOS in platelets have been controversial 

(Aytekin et al., 2012; Gambaryan et al., 2008; Gkaliagkousi et al., 2007; Naseem and 

Riba, 2008; Radomski et al., 1990; Tymvios et al., 2009). However, there is 

convincing evidence to suggest that platelets generate their own NO (Freedman et 

al., 1999, 1997; Malinski et al., 1993). Thus the exact source of NO affecting platelet 

function was unclear. The overall hypothesis of this study was that improved NO 

signalling in platelets could reduce the risk of platelet-driven cardiovascular disease. 

NO signalling can be amplified in cells containing PDE5 by antagonising the 

breakdown of cGMP with the use of the selective inhibitor sildenafil citrate. Platelets 

express high concentrations of PDE5 and for that reason, sildenafil may attenuate 

platelet function in cardiovascular disease by enhancing cGMP signalling and 

restoring impaired NO regulation. 

The main objective of this thesis was to determine the therapeutic potential of 

enhancing NO/cGMP signals in platelets. This was achieved by assessing the 

antiplatelet effect of the PDE5 inhibitor sildenafil in vitro and in vivo. Following this, 

the upstream source driving cGMP signalling events in platelets was determined. 

Finally the functional significance of NO/cGMP signalling events in platelets was 

investigated during vascular health and endothelial dysfunction. 
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Summary of results 

The effect of sildenafil on platelets 

Sildenafil is a well-tolerated drug administered for the improvement of vascular 

function and approved for the treatment of ED and PAH (Muirhead et al., 2002; 

Rubin et al., 2011). Sildenafil is a selective PDE5 inhibitor and acts by enhancing NO 

signalling in cells expressing PDE5. A particularly appealing attribute of this drug is 

that it has limited effect on systemic blood pressure and therefore is an interesting 

candidate for antiplatelet therapy (Morales et al., 1998; Wallis et al., 1999). Current 

studies investigating the effect of sildenafil on platelet activity have been 

contradictory, potentially due to the inability to specifically investigate platelet 

function in vivo in the presence of an intact vascular endothelium. In this study, 

sildenafil exerted an antiplatelet effect which selectively targeted platelet aggregation 

by enhancing the NO/sGC/cGMP pathway. Sildenafil was able to exert an 

antiplatelet effect in vitro which demonstrated the presence of endogenous transient 

NO/cGMP signals upstream of PDE5 in platelets. The inhibitory effect of sildenafil 

was independent of NOS activity in vitro, but not in vivo in the absence of eNOS. 

This suggested the presence of an eNOS-dependent NO storage pool in platelets 

however further experimentation will be necessary to validate this. 

The ability of endogenous S-nitrosothiols to modify platelet function 

Exogenously applied RSNOs (CysNO and GSNO) can inhibit platelet function by 

stimulating the NO/sGC/cGMP pathway (Gordge and Xiao, 2010). The spontaneous 

release of NO from these drugs is much slower than their cellular effects and 

therefore suggested the presence of endogenous metabolising mechanisms able to 

drive NO release and bioactivity (Bell et al., 2007; Gordge et al., 1998; Mathews and 

Kerr, 1993). In vivo RSNOs have the selective ability to deliver NO/cGMP signals to 

platelets (de Belder et al., 1994; Xiao and Gordge, 2011), however the ability of 

endogenous RSNOs to generate NO and modify platelet function was unclear. 

Therefore this thesis investigated the ability of endogenous platelet RSNOs to 

generate NO/cGMP signalling events in platelets and explain the inhibitory effect of 

sildenafil on platelet function. The amino acid transporter L-AT is known to deliver 

RSNOs into many cell types (Riego et al., 2009; Zhang and Hogg, 2004). However, 
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in this study L-AT had no effect on the ability of platelets to generate NO/cGMP 

signals. Protein disulphide isomerase (PDI) has been reported to mediate the 

antiplatelet effects of exogenous RSNOs by its denitrosation activity (Bell et al., 

2007; Xiao and Gordge, 2011). However, in this study PDI was not involved in the 

ability of platelets to generate NO/cGMP signals. Furthermore, the pharmacological 

release of NO from RSNOs using HgCl2 did not modify sildenafil-mediated inhibition 

of platelet aggregation which suggested that endogenous RSNOs were not involved 

in NO/cGMP signalling events generated by the platelet. However, this work was 

only preliminary and further investigations are advised to support the conclusions 

drawn (see ‘Recommendations for future work’). 

Nitrate/nitrite/NO cycling and the impact on platelets 

Until recently, nitrate and nitrite were considered to be inert metabolites of NOS-

derived NO or substances from the diet. Now it is widely accepted that inorganic 

nitrate can generate NOS-independent NO by bioconversion to nitrite and 

subsequently NO in vivo and exert vasodilatory and antiplatelet effects (Lundberg 

and Govoni, 2004; Velmurugan et al., 2013; Webb et al., 2008b). The ability of 

inorganic nitrate and nitrite to drive platelet-derived NO/cGMP signalling events was 

unknown and investigated in this thesis. Furthermore, the functional impact of in vivo 

nitrate bioconversion on platelet activity was investigated in the presence and 

absence of eNOS. This study confirmed that platelets contain detectable 

concentrations of nitrate and nitrite which had the potential to be reduced to bioactive 

NO. Nitrite exerted an antiplatelet effect in vitro by driving transient NO/cGMP 

signals in platelets. Therefore, this study provides evidence that nitrite mediates 

platelet-derived NO/cGMP signalling events and may explain the inhibitory effect of 

sildenafil on platelet function. In vivo, eNOS-/- mice exhibited a greater capacity to 

bioconvert nitrate to nitrite and exert a cGMP-mediated antiplatelet effect. My work 

suggests that inorganic nitrate can compensate for impaired NO signalling and 

reduce the risk of platelet-driven cardiovascular events whilst preserving normal 

platelet function in vascular health. This study supports the growing body of literature 

to suggest that inorganic nitrate may account, at least in part, for the beneficial 

effects of a diet high in vegetables on cardiovascular health.  
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Impact of these results 
This work has furthered our knowledge on the somewhat controversial topic of 

platelet-derived NO. The novelty of this study includes the identification of the 

endogenous ability of platelets to generate NO/cGMP signals independently of NOS 

activity. Nitrite could potentially be an important regulator of platelet function due to 

its ability to drive transient NO/cGMP signalling events in platelets. This body of work 

has provided a greater insight into the regulation of platelets by NO and has opposed 

previous theories that platelets are solely regulated by the vascular endothelium or 

NO produced by platelet NOS. 

This thesis further suggests that inorganic nitrate contributes to the beneficial effects 

of a vegetable-rich diet on cardiovascular health. In addition, this study emphasised 

the importance of nitrate-derived NO on in vivo platelet function during endothelial 

dysfunction. Increased intake of inorganic nitrate, by the diet or supplementation, 

may provide a compensatory source of NO and reduce the risk of arterial 

thrombosis, and potentially atherogenesis, in patients at risk of impaired NO 

signalling. Future research in this area should question and re-evaluate the current 

exceptionally low guidelines for acceptable daily intake of dietary nitrate (3.7mg kg-1 

d-1) to allow for the beneficial effects on the cardiovascular system (Alexander et al., 

2008). 

The PDE5 inhibitor sildenafil citrate demonstrated therapeutic potential as an 

antithrombotic agent by enhancing NO/cGMP signalling derived from enzymic and 

inorganic sources in vitro and in vivo. I have shown that sildenafil was able to exert 

an antiplatelet effect at concentrations lower than those necessary for the 

symptomatic relief of ED. This study has highlighted the need to continue this 

research and perform clinical trials to assess the antithrombotic effect of low-dose 

long-term administration of sildenafil to treat the chronic condition that is arterial 

thrombosis. Similar to the effects of aspirin, I hypothesise that long-term treatment of 

sildenafil (similar to doses used in PAH) may reduce the risk of platelet-driven 

cardiovascular disease. Unlike aspirin, selectively enhanced NO signalling in 

platelets would target multiple pathways of platelet activation instead of just one and 

is therefore less likely to bear signs of drug resistance. Additionally, sildenafil may 
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even have a negative effect on platelet-driven atherogenesis. More investigations will 

need to be carried out to validate these hypotheses. 

Overall, this thesis has highlighted the therapeutic potential of improving NO 

signalling to reduce the risk of platelet-driven cardiovascular events in vascular 

disease and compounds targeting the NO pathway may be the next generation of 

antithrombotic therapies. In the next section I will discuss proposed future studies to 

further our knowledge and translate these findings into clinical trials. 

Recommendations for future work 

The role of eNOS on platelet NO signalling 

The inhibitory effect of sildenafil on platelet aggregation was NOS-independent in 
vitro but not in vivo (no effect on platelet aggregation in eNOS-/- mice) which 

suggested the potential of platelets to store NO produced from eNOS long-term. For 

example, RSNOs have been proposed as an intermediate of NO signalling by 

stabilising and extending the activity of NO (Ignarro et al., 1987; Stamler et al., 

1992). Freedman et al. (Freedman et al., 1999) recognised that platelets from W.T 

mice were able to reverse the decreased bleeding time in eNOS-/- mice which 

highlighted the presence of platelet-derived NO. A future experiment could be to 

determine the ability of sildenafil to inhibit in vivo platelet aggregation of W.T 

platelets in eNOS-/- mice. This would provide evidence for non-enzymic NO 

generation from a long-term storage pool and assess the physiological impact of 

platelet-derived NO on platelet function. Our group previously reported that the non-

selective NOS inhibitor L-NAME could significantly increase in vivo platelet 

aggregation compared to the vehicle treated (Moore et al., 2011; Tymvios et al., 

2009), however it was unknown whether NO was still able to modify platelet function. 

It would be of interest to determine whether sildenafil could inhibit in vivo platelet 

aggregation of mice or donor platelets pre-treated with L-NAME. Collectively, these 

studies would explain the lack of effect of sildenafil on eNOS-/- mice, provide 

evidence for NOS-dependent NO storage in platelets and further disprove the 

presence of platelet NOS. 
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Investigation into the antiplatelet effect of RSNOs 

This thesis provided no functional evidence to suggest that platelet RSNOs can 

stimulate endogenous NO/cGMP signalling events in platelets. However, the results 

presented here were preliminary and were limited by the inability to measure 

RSNO/NO concentration. Previous work has established the antiplatelet effect of 

exogenously applied RSNOs by the selective delivery of NO into the platelet and 

stimulating cGMP signals (Freedman et al., 1995; Riego et al., 2009; Xiao and 

Gordge, 2011). In addition, it has been established that RSNOs are present 

endogenously, more importantly in plasma (Rossi et al., 2001) and platelets 

(Hirayama et al., 1999). Therefore it is worth further investigating RSNOs as NO 

intermediates in platelet function. 

To validate the role of endogenous RSNOs in mediating platelet NO/cGMP signals, I 

would determine the functional and biochemical effects of HgCl2 on platelets. NO 

detection could be performed by fluorescence (4,5-diaminofluoreseine (DAF-2) 

reaction) (Kojima et al., 1998) or electrochemical methods (amperometric NO 

sensor) (Allen et al., 2005). RSNO/NO measurements would act as a control to verify 

that HgCl2 is displacing NO and releasing it from its bound thiol. This work would 

identify whether RSNOs can release NO in principle, but would not prove if this 

occurs physiologically.  

If platelets are able to release NO from RSNOs, I would further examine the role of 

PDI (the previously proposed mechanism by which therapeutic RSNOs exert their 

antiplatelet effects (Shah et al., 2007)) on platelet NO/cGMP signalling. As 

mentioned in Chapter 6, I would support the functional data with biochemical 

(RSNO/NO concentrations) and molecular (cGMP expression) analyses and use a 

positive control (such as GSNO) for verification. 

The mechanism of action of nitrite on generating transient NO/cGMP signals in 

platelets 

Nitrite was able to exert transient inhibitory NO/cGMP signals in platelets in vitro by 

unidentified mechanisms. I proposed that nitrite was reduced to NO before activating 

sGC and inducing cGMP accumulation. To validate this hypothesis, I would 

investigate the effect of nitrite and sildenafil on in vitro platelet aggregation in the 



Georgina Apostoli 
Targeting the NO signalling pathway to modulate platelet function  
Platelet Biology, Molecular Medicine 
National Heart and Lung Institute 
 
 

158 
 

presence of a NO scavenger. To further support nitrite reduction to NO, the 

biochemical analysis of platelet NO concentration in the presence and absence of 

nitrite could be detected using an electrochemical NO sensor or DAF-2 

chemiluminescence (Giustarini et al., 2004; Hunter et al., 2013). 

Nitrite has been proven to react with thiols to produce RSNOs (Smith and Marletta, 

2012), which have previously shown to inhibit platelet function (Miller et al., 2003; 

Vilahur et al., 2004). Therefore this lead to question the involvement of RSNOs in 

nitrite mediated NO/cGMP signalling in platelets. First I would detect whether nitrite 

can form RSNOs in platelets by using biochemical analysis. Then I would investigate 

proposed RSNO metabolism mechanisms identified in platelets (see above section 

‘Investigation into the antiplatelet effect of RSNOs’). 

Mitochondria and their role in platelet NO/cGMP signalling 

Mitochondria have attracted much attention in the NO field due to their ability to 

produce NOx (Benhar et al., 2008) and also as a target for NO activity (Broniowska et 

al., 2012; Maejima et al., 2005). It has been proven that mitochondria are able to 

produce NO, potentially by the reducing ability of cytochrome c oxidase (Castello et 

al., 2006; Kozlov et al., 1999). Platelets contain modest amounts of fully functioning 

mitochondria (White, 1979; Zharikov and Shiva, 2013). Hence, mitochondria may 

also be a candidate for RSNO metabolism/nitrite reductase activity in platelets which 

has not yet been investigated. The involvement of mitochondria in NO release by 

RSNOs or nitrite could be determined using the cytochrome c oxidase inhibitors 

myxothiazol and antimycin A (Arora et al., 2009; Castello et al., 2006; Kozlov et al., 

1999). 

Inorganic nitrate in human vascular disease 

This thesis demonstrated that the absence of eNOS in mice induced a greater 

capacity to bioconvert nitrate to nitrite and, in turn, negatively impact platelet 

function. Previous work has established that inorganic nitrate can reduce blood 

pressure and exert an antiplatelet effect via cGMP signalling in healthy human 

participants (Larsen et al., 2006; Velmurugan et al., 2013; Webb et al., 2008b). 

However, the functional significance of nitrate bioconversion in humans with 

cardiovascular disease (and therefore impaired NO signalling) is unknown. It would 
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be interesting to assess the effects of inorganic nitrate on plasma NOx concentration 

and ex vivo platelet aggregation in patients with known vascular impairment. This 

may provide insight into the functional impact of inorganic nitrate on platelet activity 

during vascular disease and establish if nitrate-derived NO can compensate for 

impaired NO signalling and reduce the risk of platelet-driven ischaemic events. 

Further investigating the therapeutic potential of sildenafil as an antithrombotic agent 

Here I have established that sildenafil significantly reduced platelet aggregation in 
vitro and in vivo via the NO/sGC/cGMP pathway. In support of this finding, other 

researchers have identified that sildenafil can reduce platelet function in healthy 

participants ex vivo (Berkels et al., 2001; Halcox et al., 2002). However, the 

functional significance of sildenafil-mediated inhibition of platelet aggregation in 

humans with vascular disease is unknown.  

It was identified that sildenafil had no significant effect on in vivo platelet aggregation 

in eNOS-/- mice in this thesis. Unfortunately, the use of this genetically modified 

mouse model is limited by the complete absence of functional eNOS and therefore 

does not physiologically reflect the human scenario. It may be of interest to 

investigate the effect of sildenafil on in vivo platelet aggregation using a more 

physiologically relevant mouse model of impaired NO signalling such as the 

apolipoprotein E-deficient (apoE−/−) mouse (Yamashiro et al., 2010). This will provide 

some insight into the use of sildenafil as an antithrombotic agent in disease states. 

Furthermore, platelets are known to play an integral role in the formation of 

atherosclerosis (Huo et al., 2003; Huo and Ley, 2004; Linden and Jackson, 2010), 

therefore in future the inhibitory effect of sildenafil on platelets could be investigated 

as a prevention of atherosclerotic development. 

Dependent on the results of the proposed experiments in mouse models, it would 

then be necessary to investigate the potential antithrombotic effect of sildenafil in 

humans. Investigation into the effect of sildenafil on platelets in healthy participants 

may not be therapeutically relevant because this subgroup will have normal NO 

signalling and the NO/cGMP pathway may already be saturated. What would be 

interesting would be to determine the effect of sildenafil on platelet function (ex vivo 

platelet aggregation and bleeding time) in patients with impaired NO signalling such 
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as in vascular disease. Although these parameters are not fully representative of in 
vivo platelet function, this experiment may improve our understanding of the 

therapeutic potential of enhancing NO/cGMP signalling in these patients at risk of 

platelet-driven cardiovascular disease. 

The combined effect of inorganic nitrate and sildenafil 

Here I have suggested that sildenafil may substantially enhance the inhibitory effect 

of nitrate on platelets in preliminary investigations (n=2). This lead to concerns 

regarding the dual effect of sildenafil and inorganic nitrate on blood pressure and the 

effect of a diet high in inorganic nitrate on the incidence of sildenafil-induced adverse 

events. Currently there are major contraindications relating to the use of organic 

nitrates and sildenafil which can cause severe hypotension in some patients(Cheitlin 

et al., 1999; Francis and Corbin, 2005; Jackson et al., 2006). Hence I believe it 

would be necessary to further investigate the effects of inorganic nitrate and 

sildenafil use. I would investigate the effect of sildenafil and nitrate on in vivo murine 

platelet aggregation and blood pressure to determine the incidence of possible 

adverse events such as excessive bleeding and hypotension. This experiment would 

provide physiological insight into the dual treatment in a whole body system. 

I would also look into performing a clinical trial to investigate the effect of sildenafil in 

healthy human participants consuming a low- and high-nitrate containing diet. I 

would determine blood pressure, ex vivo platelet aggregation and bleeding time 

parameters to further investigate the safety profile of sildenafil and this may lead to 

identifying a contributing factor of sildenafil-mediated patient variability. Depending 

on the results from these experiments, it may be worth investigating the effect of 

sildenafil and inorganic nitrate in patients with known vascular disease to determine 

if they are more at risk of adverse events such as hypotension and excessive 

bleeding. 

  



Georgina Apostoli 
Targeting the NO signalling pathway to modulate platelet function  
Platelet Biology, Molecular Medicine 
National Heart and Lung Institute 
 
 

161 
 

Conclusions of this thesis 
Platelets were able to generate their own NO/cGMP signals potentially by the 

reduction of nitrite to NO. Inorganic nitrate and nitrite can compensate for impaired 

NO signalling in the absence of eNOS and therefore may be critical negative 

regulators of platelet function during endothelial dysfunction. The PDE5 inhibitor 

sildenafil citrate (Viagra®) demonstrated therapeutic potential as an antithrombotic 

agent in vitro and in vivo by enhancing NO- and nitrite-mediated cGMP signalling in 

platelets. Overall, this thesis has highlighted the beneficial effect of enhancing 

NO/cGMP signalling in platelets to reduce the risk of platelet-driven cardiovascular 

events. 
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Summary. Background: Nitric oxide (NO) is a critical nega-
tive regulator of platelets that is implicated in the pathol-
ogy of thrombotic diseases. Platelets generate NO, but the
presence and functional significance of NO synthase (NOS)
in platelets is unclear. Inorganic nitrate/nitrite is increas-
ingly being recognized as a source of bioactive NO,
although its role in modulating platelets during health and
vascular dysfunction is incompletely understood. Meth-
ods: We investigated the functional significance and
upstream sources of NO–cGMP signaling events in plate-
lets by using established methods for assessing in vitro and
in vivo platelet aggregation, and assessed the bioconversion
of inorganic nitrate to nitrite during deficiency of endothe-
lial NOS (eNOS). Results: The phosphodiesterase 5
(PDE5) inhibitor sildenafil inhibited human platelet aggre-
gation in vitro. This inhibitory effect was abolished by a
guanylyl cyclase inhibitor and NO scavengers, but unaf-
fected by NOS inhibition. Inorganic nitrite drove cGMP-
mediated inhibition of human platelet aggregation in vitro
and nitrate inhibited platelet function in eNOS!/! mice
in vivo in a model of thromboembolic radiolabeled platelet
aggregation associated with an enhanced plasma nitrite
concentration as compared with wild-type mice. Conclu-
sions: Platelets generate transient, endogenous cGMP sig-
nals downstream of NO that are primarily independent of
NOS and may be enhanced by inhibition of PDE5. Fur-
thermore, nitrite can generate transient NO–cGMP signals
in platelets. The absence of eNOS leads to enhanced

plasma nitrite levels following nitrate administration
in vivo, which negatively impacts on platelet function. Our
data suggest that inorganic nitrate exerts an antiplatelet
effect during eNOS deficiency, and, potentially, that dietary
nitrate may reduce platelet hyperactivity during endothelial
dysfunction.

Keywords: nitric oxide; nitrites; pharmacology; platelets;
thrombosis.

Introduction

Platelet activation is governed by a variety of positive and
negative stimuli that act to precisely regulate the process of
hemostasis. Positive stimulators of platelets include suben-
dothelial collagen, thrombin generated via the coagulation
cascade, and ADP and thromboxane A2, which are
released from platelets themselves. The major negative reg-
ulators of platelets are prostacyclin (prostaglandin I2
[PGI2]) and nitric oxide (NO), which are generated by the
vascular endothelium. An imbalance between positive and
negative platelet stimuli contributes to the pathogenesis of
thrombotic disorders such as myocardial infarction. NO is
conventionally described as being generated by NO syn-
thase (NOS) enzymes, which catalyze the conversion of L-
arginine to L-citrulline, resulting in NO release [1]. Many of
the effects of NO are mediated through activation of solu-
ble guanylyl cyclase (sGC), subsequent cGMP production,
and protein kinase activation, leading to further signaling
events, including phosphorylation of vasodilator-stimu-
lated phosphoprotein (VASP). The actions of cGMP are
terminated by phosphodiesterase 5 (PDE5), which hydro-
lyzes active cGMP to inactive GTP. PDE5 is expressed at
high levels in platelets, so that the effects of cGMP are
transient, owing to its rapid hydrolysis. PDE5 inhibitors,
e.g. sildenafil citrate, are used therapeutically in conditions
associated with regional blood flow deficiency, such as erec-
tile dysfunction and pulmonary arterial hypertension.
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Sildenafil was reportedly associated with adverse cardiovas-
cular events [2]; however, the risk was more recently shown
to arise from the cardiovascular risk profile of patients with
erectile dysfunction [3]. The focus can therefore shift
towards the exploration of PDE5 inhibition in cardiopro-
tection [3]. Sildenafil has also been shown to enhance NO-
mediated inhibition of human aggregation in vitro [4] and
to enhance collagen-induced aggregation ex vivo [5]. The
ability of sildenafil to directly modulate platelet activation
in the absence of exogenous or endothelial NO, as investi-
gated by determining its effect upon isolated platelets
in vitro, is poorly understood, although it had no effect on
ADP-induced aggregation in platelet-rich plasma [6].

Endogenous NO derived from endothelial NOS (eNOS)
in the vascular endothelium acts as a critical negative reg-
ulator of platelet function in vivo [7,8], and deficiency of
eNOS is associated with endothelial dysfunction and the
pathology of a range of cardiovascular diseases [9,10].
However, the intrinsic expression of eNOS in platelets
remains contentious [11,12], and a number of studies have
reported a lack of eNOS protein or mRNA in platelets,
as well as a lack of a functional role of platelet-derived
NO [13,14]. There is, however, considerable evidence that
platelets generate NO [15,16], so that the source of endog-
enous NO in platelets is unclear. More recently, NO has
been shown to be derived not only via NOS but also via
reduction of inorganic nitrite [17]. In humans, dietary
nitrate is concentrated and secreted by the salivary
glands, and is reduced to nitrite by anaerobic bacteria on
the tongue [18,19]. Nitrite is absorbed into the circulation
and is chemically reduced to NO by a variety of mecha-
nisms, including enzymatic processes that provide a mech-
anism for the localized delivery of NO to cells
independently of NOSs [17,20]. Oral administration of
nitrate lowered blood pressure [21] and modestly reduced
platelet aggregation ex vivo in healthy volunteers [22],
demonstrating the potential value of inorganic nitrate as
a modulator of cardiovascular function. The ability of
nitrate/nitrite to impact on platelets in the context of
endothelial dysfunction in vivo is unknown.

We hypothesized that platelets generate transient NO–
cGMP signals from upstream nitrate/nitrite. These signals
may be amplified by PDE5 inhibition to reveal endoge-
nous inhibitory signaling processes. Second, we hypothe-
sized that, during endothelial dysfunction, exogenously
administered inorganic nitrate acts as an alternative
source of bioactive NO to counteract impaired eNOS
activity by inhibiting platelet activation following biocon-
version to nitrite.

Materials and methods

Materials

The materials used were as follows: indium-111 oxine (GE
Healthcare, Amersham, UK); collagen (Takeda

Pharmaceuticals International, Linz, Austria); anti-VASP
and anti-VASP-P(Ser239) (Cell Signalling, Hitchin, UK);
iloprost (Cayman Chemicals, Washington, DC, USA);
anti-rabbit horseradish peroxidase-conjugated antibody
(Dako, Ely, UK); and anti-glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) (Santa Cruz Biotechnology,
Dallas, TX, USA). Sildenafil citrate was kindly donated by
Pfizer (Peapack, NJ, USA). All other materials were
purchased from Sigma-Aldrich (Poole, UK).

Light transmission aggregometry

Blood was collected in acid–citrate–dextrose (ACD) (1 : 9,
ACD : Blood) from aspirin-free volunteers aged 23–55
years and with an even sex distribution. Informed consent
from all blood donors was obtained, and procedures were
approved by the National Research Ethics Service. Plate-
let-rich plasma (PRP) was prepared by centrifugation at
100 9 g for 20 min. Washed platelets (WPs) were prepared
by the addition of ACD (1 : 80, ACD : PRP) and prosta-
glandin E1 (175 nM) to PRP, and centrifuged at 1400 9 g
for 10 min. The pellet was resuspended in Tyrodes/HEPES
buffer, and the final centrifugation step was repeated. WPs
were resuspended to a platelet count of 250 9 103 lL!1 in
tyrodes/HEPES buffer. Platelet preparations were incu-
bated for 5 min with test compounds prior to stimulation
with agonists, and aggregation was measured at 37 °C
under stirring conditions in an optical aggregometer
(Chrono-log Corporation, Havertown, PA, USA).

Western blotting

Human WPs were incubated with test compounds (as
detailed for light transmission aggregometry) before cen-
trifugation (15 700 9 g for 1 min) and pellet resuspension
in RIPA lysis buffer. Western blotting was performed as
detailed previously [23]. The antibody concentrations used
were as follows: rabbit anti-GAPDH, 1 : 500; anti-VASP,
1 : 1000; and anti-VASP-P(Ser239), 1 : 1000. Incubations
were performed at 4 °C overnight.

Nitrate/nitrite colorimetric assay

Human WPs (500 lL) were incubated in the presence or
absence of test compounds for 5 min before they were
snap frozen and stored at ! 80 °C. The nitrate/nitrite
concentration was determined in supernatants with a
nitrate/nitrite colorimetric assay kit (Cayman Chemicals,
Ann Arbor, MI, USA).

Animals

Male C57BL/6 mice (20–30 g) were purchased from Har-
lan (Bicester, UK). eNOS knockout mice (eNOS!/!,
strain 0026847) were purchased from Jackson Laboratory
(Bar Harbor, ME, USA) and bred in-house. Protocols
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involving the use of animals were licensed by the UK
Home Office and approved by the Ethical Review Panel
at Imperial College London. Procedures involving ani-
mals were conducted and are reported in accordance with
ARRIVE guidelines [24].

Ozone chemiluminescence

Wild-type or eNOS!/! mice were pretreated with saline or
sodium nitrate 1 h before they were anesthetized and plasma
and salivary glands were extracted [25]. One hour has previ-
ously been shown to provide adequate time for increases in
plasma nitrate/nitrite to occur following intraperitoneal or
oral administration of inorganic nitrate [18,26,27]. All sam-
ples were snap frozen and stored at ! 80 °C until further
analysis. Mouse salivary glands were homogenized with
phosphate-buffered saline, with a Mixer Mill MM 400
homogenizer at a vibrational frequency 30 Hz (1800 min!1)
for 3 min. Salivary gland homogenates or plasma were
deproteinized by incubation with sodium hydroxide (0.5 M)
and zinc sulfate (10% w/v) for 15 min at room temperature.
Samples were centrifuged (17 500 9 g for 5 min), and the
supernatant was extracted and analyzed for nitrate/nitrite
concentration with a Sievers nitric oxide analyzer (280;
Analytix, Boldon, UK). Samples were refluxed in vanadium
(III) chloride (0.1 M) and hydrochloric acid (1 M) at 95 °C
(nitrate analysis) or in sodium iodide (0.3 M) and glacial ace-
tic acid at 35 °C (nitrite analysis). Nitrate/nitrite concentra-
tions were detected according to ozone chemiluminescence,
as previously reported [28].

In vivo platelet aggregation

Platelets were isolated from wild-type or eNOS!/! donor
mice, and radiolabeled with 1.8 MBq of indium-111 oxine
as previously described [29]. Radiolabeled platelets of the
same genetic background were administered to anesthe-
tized (urethane 25% w/v, 10 lL g!1) recipient wild-type
or eNOS!/! mice via the femoral vein, and platelet
aggregation responses were measured as increases in
platelet-associated counts in the pulmonary vascular bed
following intravenous injection of collagen (50 lg kg!1).
In a typical experiment, five donor mice were bled, and
the resulting platelet pool was evenly distributed into four
recipient mice. The experimental protocol for sodium
nitrate involved pretreatment of the recipient mice with
saline (0.9% w/v) or sodium nitrate (1 mmol kg!1, intra-
peritoneal) 1 h before collagen injection, and the experi-
mental protocol for sildenafil involved the administration
of vehicle (< 0.05% dimethylsulfoxide) or sildenafil
(50 lg kg!1, intravenous) 5 min before collagen injection.

Data analysis and statistics

All data were expressed as mean " standard error of the
mean. In vivo platelet aggregation data were expressed as

the percentage increase in maximal radioactive counts
from the baseline recording. In vitro platelet aggregation
data were arbitrary ‘area under the curve’ values gener-
ated by AGGROLINK software (version 5.2.1; Chrono-log
Corporation). All statistical tests were performed on raw
data. Where statistical comparisons were made, Student’s
t-test, one-way ANOVA or a two-way ANOVA followed by a
Bonferroni post hoc multiple comparison test were used
to compare mean values. A P-value of > 0.05 was consid-
ered to denote statistical significance.

Results

Sildenafil inhibits platelet aggregation in vitro and in vivo

We investigated the presence of a functionally relevant,
intrinsic NO–cGMP signaling cascade in isolated human
platelets by enhancing transient cGMP signals via inhibition of
PDE5. The selective PDE5 antagonist sildenafil (10–1000 nM)
caused significant and concentration-dependent inhibition of
collagen-induced (Fig. 1A,B) and thrombin-induced WP
aggregation in vitro (Fig. 1C), but had no effect on ADP-
induced aggregation (Fig. 1D). In vivo, collagen-induced
platelet aggregation was significantly reduced following pre-
treatment ofmice with 50 lg kg!1 sildenafil (Fig. 1E,F).

Sildenafil selectively amplifies endogenous NO-mediated

signaling independently of NOS

Sildenafil (10 nM) significantly enhanced NO-mediated inhi-
bition of platelet aggregation (Fig. 2A) but, in contrast, had
no effect upon the inhibitory effect exerted by the PGI2
mimetic iloprost (Fig. 2B). Sildenafil also induced a concen-
tration-dependent increase in VASP-P(Ser239) phosphory-
lation (Fig. 1C–D) when applied to isolated platelets.
Sildenafil-mediated inhibition of platelet aggregation was
abolished in the presence of the sGCantagonist 1H-(1,2,4)-ox-
adiazolo[4,3-a] quinoxalin-1-one (ODQ) Fig. 2E) and the NO
scavengers hemoglobin and hydroxocobalamin (Fig. 2F). In
contrast, pretreatment of platelets with the NOS inhibitor
L-NAME, its inactive isomer D-NAME and vehicle had no
effect on sildenafil-mediated inhibition of aggregation
(Fig. 2G). Similarly, sildenafil-mediated VASP-P(Ser239)
phosphorylation was abolished by ODQ but not significantly
affected by L-NAME (Fig. 2H–I).

Nitrite reduction drives cGMP-mediated inhibition of

platelet aggregation

Having shown that isolated platelets generate inhibitory
NO–cGMP signals that arise predominantly from sources
other than NOS, we explored the ability of nitrate and
nitrite to drive NO–cGMP-mediated inhibition of platelet
aggregation. We first demonstrated the presence of both
nitrate and nitrite in platelet extracts and undetectable levels
in experimental buffers by using a colorimetric assay
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(Fig. 3A). Washing of platelet suspensions with the mild
reducing agent ascorbic acid lowered their nitrate and nitrite
content, presumably because of chemical reduction to NO
(Fig. 3B). Nitrate/nitrite depletion and any accompanying
NO release were associated with inhibition of platelet aggre-
gation (Fig. 3C). The inhibitory effect of nitrate/nitrite
reduction by ascorbic acid was abolished by ODQ and
hemoglobin (Fig. 3D).

Sodium nitrite (0.01–100 lM) caused concentration-
dependent inhibition of aggregation in the presence of sil-
denafil (Fig. 3E), whereas equivalent concentrations of
sodium nitrate had no effect (Fig. 3F). The inhibitory
effect of nitrite was abolished by ODQ, and did not occur
in the absence of sildenafil (Fig. 3E). Similarly, nitrite
increased phosphorylation of VASP at Ser239 in the pres-
ence of sildenafil, an effect that was prevented by ODQ,
whereas nitrate had no effect (Fig. 3G,H).

Inorganic nitrate inhibits platelet aggregation following

enhanced bioconversion to nitrite during endothelial

dysfunction in vivo

Sodium nitrate (1 mmol kg!1) administration to mice led
to increased concentrations of nitrate in salivary glands

(Fig. 4A) and increased plasma nitrate concentrations
(Fig. 4B) in wild-type and eNOS!/! mice as measured by
ozone chemiluminescence. There was also an accompany-
ing increase in plasma nitrite that was not significant in
wild-type mice but was significant in eNOS!/! mice as
compared with saline-treated controls (Fig. 4C). Nitrate
administration had no significant effect on subsequent
collagen-induced platelet aggregation in vivo in wild-type
mice, but significantly reduced platelet aggregation in
eNOS!/! mice (Fig. 5A,B).

Discussion

Sildenafil has already been shown to amplify the inhibi-
tory effect of exogenously applied NO on human plate-
let aggregation [4] and to reduce ADP-induced
glycoprotein IIb–IIIa activation [30] and aggregation [5]
ex vivo, indicating the ability of sildenafil to enhance
the platelet inhibitory activity of exogenous and endo-
thelial NO, respectively. The ability of sildenafil to
enhance intrinsic endogenous NO signals in platelets is
less well studied, although a lack of effect on ADP-
induced aggregation has been reported [6]. We found a
similar lack of effect when platelets were stimulated
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Fig. 1. Sildenafil inhibits platelet aggregation in vitro and in vivo. (A–D) Isolated human platelets were preincubated with vehicle or sildenafil
citrate (10 nM to 1 lM) for 5 min before stimulation with (A, B) collagen (5 lg mL!1), (C) thrombin (0.1 U mL!1), and (D) ADP (0.3–30 lM).
Platelet aggregation was measured as light transmission. (A) Example traces are representative of eight independent experiments. (B, C) Data
are expressed as mean " standard error of the mean (SEM), one-way ANOVA with Bonferroni post hoc test, *P < 0.05, **P < 0.01 and
***P < 0.001 as compared with vehicle. (D) Vehicle EC50 = 0.585 lM; sildenafil EC50 = 0.447 lM. (E, F) Sildenafil (50 lg kg!1) or vehicle was
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vasculature. (E) Mean trace of collagen response is expressed as percentage increase from baseline; error bars are omitted for clarity. (F) Maxi-
mum percentage increase from baseline is expressed as mean " SEM, unpaired Student’s t-test, *P < 0.05 as compared with vehicle, n = 5–8.
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© 2014 International Society on Thrombosis and Haemostasis

Nitrate/nitrite and platelet aggregation 1883



with ADP in the absence of exogenous NO but, in con-
trast, found inhibition of collagen-induced and throm-
bin-induced aggregation in isolated platelet suspensions.
This finding indicates not only the ability of sildenafil
to directly modulate platelet activation in the absence of
exogenous or endothelial NO, but also the presence of
transient, endogenous signals upstream of PDE5 in
platelets. The ability of sildenafil to modulate activation
downstream of collagen and thrombin suggests modula-
tion of pathways that were not triggered by the weaker
agonist ADP. In addition, experiments with ADP in
work published previously [6] and in the current study
were conducted in the presence of plasma proteins,
whereas experiments with collagen and thrombin were
conducted in preparations lacking plasma proteins. The
lack of effect of sildenafil in ADP experiments may
therefore be partially pharmacokinetic, owing to interac-

tion of the relatively lipophilic sildenafil [31] with
plasma proteins.

We confirmed that, in isolated platelets, sildenafil acts
downstream of the NO–cGMP signaling cascade by
showing that its inhibitory effects were completely abol-
ished by the sGC antagonist ODQ and two distinct NO
scavengers. We further confirmed that sildenafil mediates
inhibitory signaling events in platelets by demonstrating
phosphorylation of VASP at Ser239. Given the reported
crosstalk between cyclic nucleotides and phosphodiester-
ases [32], particularly at the level of protein kinases
[33,34], we investigated the selectivity of sildenafil
upstream of these signaling events, and showed an ability
of sildenafil to enhance the inhibitory effect of NO
(Fig. 2A) but not PGI2 (Fig. 2B). Sildenafil therefore
selectively amplifies the inhibitory effect of NO while hav-
ing no measurable functional effect on PGI2-mediated
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inhibition, despite downstream crosstalk between these
pathways.

A number of groups, including ours, have previously
suggested a lack of functional relevance of expression of
NOS in human platelets [13,14]. This led us to consider the
source of NO acting upstream of sildenafil to mediate inhi-
bition of platelet aggregation. Studies with a NOS inhibitor
(Fig. 2G) suggested that the effect of sildenafil occurred
independently of NOS, suggesting alternative sources of
bioactive NO. The validity of this conclusion depends
upon effective blockade of NOS at the concentration of

L-NAME employed. L-NAME inhibits NOS with an IC50

of 0.81 lM [35], and off-target effects in platelets emerge at
approximately 500 lM to 1 mM [14]. Our working concen-
tration of 100 lM can therefore be reasonably assumed to
result in effective and selective inhibition of NOS activity in
platelets, as previously reported [36]. Nonetheless, although
we have data suggestive of NOS-independent inhibitory
activity upstream of PDE5, we cannot entirely exclude the
possibility that NO derived from NOS, if expressed in
platelets, may have relevance under certain circumstances,
albeit insignificant in the present study. We proceeded by
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exploring the ability of inorganic nitrate and nitrite (admin-
istered as sodium nitrate and sodium nitrite) to modulate
platelet activation and VASP phosphorylation.

In mammals, inorganic nitrate can be bioconverted to
nitrite and subsequently reduced to NO by a variety of
mechanisms [20,37,38]. We first confirmed that platelets con-
tain nitrate/nitrite that could potentially be reduced to NO
to explain the presence of endogenous, NOS-independent
NO signals in platelets. Nitrate and nitrite levels in platelets
were then successfully depleted by incubation of platelets
with the mild and relatively non-toxic reducing agent ascor-
bic acid in buffer prepared with nitrate-free water. We
hypothesized that reduced endogenous nitrite would gener-
ate an NO–cGMP signal that could be amplified by sildena-
fil to inhibit agonist-induced aggregation, and found
evidence to support this when ascorbic acid induced ODQ-
sensitive inhibition of aggregation. In fact, the inhibitory
effect of ascorbic acid was entirely abolished by ODQ or
NO scavenging, suggesting that, under the prevailing experi-
mental conditions, ascorbic acid exerted functional effects
that were entirely mediated via sGC and NO. Reducing
agents exert a range of effects, including reduction of reac-
tive oxygen species and peroxynitrite, and showing that
reducing agents can drive inhibitory signaling, although
indicating that, in principle, platelet function can be affected
by reduced nitrite/nitrate, does not demonstrate an endoge-
nous ability of platelets to reduce nitrate or nitrite to NO.
We therefore investigated the functional impact of nitrate/
nitrite in the absence of exogenous reducing agents to
directly link nitrate/nitrite with platelet activity. Nitrite has
previously been reported to directly inhibit platelet aggrega-
tion, although the concentrations required were higher than
those found in plasma following nitrate administration to
humans [21,39]. In contrast, lower, more relevant concentra-
tions of nitrite were shown to have no effect on isolated
platelets [22], reflecting either an inability of platelets to
reduce nitrite or the generation of a transient signal without
functional impact. The application of a fixed concentration
of sildenafil in the current study revealed the ability of nitrite
but not nitrate to generate ODQ-sensitive inhibitory signals
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in platelets in the presence of sildenafil, suggesting an endog-
enous capacity to reduce nitrite. In line with earlier studies
[22], nitrite had no effect on platelet aggregation in the
absence of sildenafil, suggesting the generation of transient
signals that are, under normal circumstances, rapidly hydro-
lyzed by PDE5. Although some evidence for sGC-indepen-
dent effects of NO [40–42] has been reported, the effects of
nitrite reported here are entirely sGC-dependent. This is in
line with more recently reported data demonstrating the
absolute dependence of NO-mediated signaling on sGC in
platelets [43]. The mechanism by which platelets reduce
nitrite remains unclear. In other cell types, such as vascular
endothelial cells, nitrite is reduced enzymatically by xanthine
oxidases [17,20] and aldehyde dehydrogenase [44]; however,
these enzymes do not form part of the platelet proteome
[45]. In addition, nitrite reduction is also suggested to occur
in erythrocytes [22,46,47], implying an enhanced capacity to
reduce nitrite in whole blood and in vivo as compared with
isolated platelets or plasma. Therefore, alternative mecha-
nisms in platelets, such as mitochondrial activity or the pres-
ence of as yet unidentified mediators with reducing capacity,
may explain the efficacy of nitrite in isolated platelets
reported here. Given the absence of many of the proposed
nitrate reductase systems in platelets, we tentatively specu-
late that the most likely mechanism of nitrite reduction in
platelets is a mitochondrial nitrite reductase, such as
cytochrome c [48]. Demonstrating conclusively the role
of mitochondrial components with critical roles in
mitochondrial respiration and cellular metabolism in nitrite
reduction and inhibition of platelet activation is likely to be
challenging.

The presence of NOS in platelets has been contentious
for some time now [11,12], and there is increasing evi-
dence for a lack of importance of NOS-derived NO in
regulating platelet function [13,14] (the primary source of
NO affecting platelets physiologically being the vascular
endothelium [7]). Nonetheless, platelets are widely
reported to generate NO [15,16]. Our data provide one
potential explanation for these apparently contradictory
observations in addition to those previously suggested,
such as NO production via S-nitrosothiols [49] and pro-
tein disulfide isomerases [50].

We also explored the in vivo relevance of our data
obtained with isolated platelets. Sildenafil has previously
been reported to improve coronary artery patency in a
model of cyclic coronary occlusion [51]. The effect was
suggested to be potentially platelet-mediated, but may
also have resulted from coronary vasodilation. The model
used in the current study was selected because it has pre-
viously been shown to measure platelet aggregation inde-
pendently of any effect on vascular tone [7]. We can
therefore conclude that, as well as exerting a direct inhibi-
tory effect on platelets in vitro, sildenafil inhibits agonist-
induced platelet aggregation in vivo via a direct effect on
the platelet rather than via a secondary vascular effect.
As in vivo preparations contain a fully functional vascular

endothelium, it is reasonable to conclude that the effect
of sildenafil on platelets in vivo is, at least in part, medi-
ated via enhancement of NO derived from the vascular
endothelium as well as via any direct platelet-mediated
effect of nitrite.

Nitrate administration in humans has previously been
shown to induce a fall in blood pressure and to inhibit
ex vivo platelet aggregation [21,22]. In previously reported
mouse studies, a lowering of plasma nitrite concentration
was associated with enhanced platelet aggregation ex vivo
[52]. Daily, 0.2 mmol kg!1 nitrate has been estimated to
be produced endogenously by NOS [26,53]. One nitrate-
rich vegetable portion contains more nitrate that that pro-
duced by all forms of NOS daily [54]. Therefore, the dose
of 1 mmol kg!1 nitrate used in the current study reflects
a realistic dose that could be achieved through dietary
choices or supplementation. In the present study, the
increase in plasma nitrite concentration following admin-
istration of nitrate to wild-type mice, although not signifi-
cant, was similar to that reported previously in humans
following consumption of high-nitrate beetroot juice
(~ 0.2 lM) [21]. This increase in plasma nitrite
concentration did not lead to a change in platelet aggre-
gation in situ in our study, suggesting that NO was not a
limiting factor in the context of a healthy vasculature. In
eNOS!/! mice, however, nitrate administration led to an
approximately five-fold greater increase in plasma nitrite
concentration (~ 1 lM), indicating that bioconversion of
nitrate to nitrite was certainly evident and indeed greater
than that observed in wild-type mice. These data suggest
that eNOS!/! mice may compensate for the absence of
NO from conventional enzymatic sources by increasing
NO generation from nitrate. Our data showing nitrate
reduction in eNOS!/! mice also indicate that, although
eNOS has been shown to mediate nitrite reduction in a
previous study [55], this was not a primary mechanism of
systemic reduction in our study. Our data raise the ques-
tion of whether a similar switch in the physiologic source
of NO from NOS to nitrite occurs in humans with vascu-
lar disease. This issue has not been addressed in the cur-
rent study, and additional studies in humans and, in
particular, patients with cardiovascular conditions associ-
ated with deficient eNOS activity are required to translate
our mechanistic linking of eNOS with enhanced nitrite
reduction to human pathology. If this translation is estab-
lished, then nitrate/nitrite derived from the diet may
become critical as a source of bioactive NO during endo-
thelial dysfunction. We tested the functional relevance of
the differential changes in plasma nitrite in wild-type and
eNOS!/! mice by measuring platelet aggregation in vivo.
Interestingly, the higher bioconversion of nitrate occur-
ring in eNOS!/! mice was associated with a significant
reduction in platelet aggregation, an effect not seen in
wild-type mice. Our data therefore suggest that nitrate
exerted a specific effect on platelet function under condi-
tions of vascular dysfunction, namely eNOS deficiency,
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whereas, under conditions of vascular health, associated
with wild-type mice, normal platelet function was
retained. These data are potentially of great interest, as
they suggest targeted efficacy under conditions of endo-
thelial dysfunction.

In summary, we have shown that platelets generate
transient, endogenous cGMP signals that may be pharma-
cologically enhanced by inhibition of PDE5 activity.
These signals are generated downstream of NO, but are
primarily independent of NOS activity. Furthermore,
nitrite is able to generate transient NO–cGMP signals in
platelets that can be enhanced by sildenafil. The absence
of eNOS leads to an enhanced capacity to bioconvert
nitrate to nitrite, which, in turn, negatively impacts on
platelet function. Our study adds to the increasing body
of evidence suggesting that dietary nitrate may account,
at least partly, for the beneficial effects of healthy diets,
particularly those rich in green vegetables with high
nitrate content. Furthermore, inorganic nitrate may
potentially exert an antiplatelet effect specifically during
endothelial dysfunction while allowing retention of nor-
mal platelet function in conditions of vascular health.
Our study, combined with growing literature concerning
the impact of dietary nitrate on cardiovascular health,
suggests that the potential use of dietary nitrate supple-
mentation in the primary prevention of platelet-driven
cardiovascular events should be further explored.
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