
1

On The Systematic Creation of Faithfully
Rounded Truncated Multipliers and Arrays

Theo Drane, Thomas Rose and George A. Constantinides

Abstract—Often, when performing fixed-point multiplication, it is sufficient to return a faithfully rounded result, i.e. the machine
representable number either immediately above or below the arbitrary precision result, if the latter is not exactly representable.
Compared to correctly rounded multipliers, i.e. those returning the nearest machine representable number, faithfully rounded multipliers
use considerably less silicon area, typically by implementing a truncation scheme within the partial product array. A number of such
heuristically inspired schemes exist in the literature, however their use in industrial practice is hampered by the absence of verification,
and exhaustive simulation is typically infeasible, e.g. a 32 bit multiplier requires 264 simulations. We present three truncated multiplier
schemes which subsume the majority of existing schemes and derive both closed form necessary and sufficient conditions for faithful
rounding. For two of the schemes we provide closed form expressions for the bit vectors giving rise to the worst-case error and the
probability of encountering these inputs during Monte-Carlo simulation. From these expressions, we show how HDL code can be
created that performs correct-by-construction faithfully rounded multiplication. We also present a method for truncating an arbitrary
array while maintaining faithful rounding, creating two novel truncated multiplier schemes in the process.

Index Terms—Data-path design, parallel circuits, high-speed arithmetic, worst-case analysis.

F

1 INTRODUCTION
There are many applications in which the full result of a
fixed point multiplication is not required, but an appro-
priately rounded result can be returned. The challenge
is to create the most effective trade off between area
and error properties. Even for simple truncation schemes
there are a wealth of design options and trade offs
that can be made, but gathering error statistics for even
modestly sized multipliers is extremely time consuming.
Such is this problem, there has even been research into
how to perform the exhaustive simulation of truncated
multipliers efficiently [1]. In order to facilitate high level
datapath synthesis capable of searching the design space
of single or interconnected truncated multipliers in an
acceptable time, analytic formulae must be found.

The structure of the majority of truncated multiplica-
tion schemes of two n by n bit inputs a and b producing
an n bit output y is as follows: truncate the multiplier
array by removing the value contained in the least
significant k columns, denoted 4k, prior to the addition
of the partial products [2]. A hardware-efficient function
of the two multiplicands f(a, b) is then introduced as
compensation into column k. Once the resultant array
is summed, a further n − k columns are truncated, the
result is then the approximation to the multiplication.
The structure of the general multiplier truncation scheme
is shown in Figure 1, the array in the figure is that of a

• T. Drane and T. Rose are with Imagination Technologies, Imagination
House, Home Park Estate, Kings Langley, Hertfordshire, WD4 8LZ. E-
mails:{theo.drane,thomas.rose}@imgtec.com

• G. Constantinides is with the Department of Electrical and Electronic
Engineering, Imperial College London, Exhibition Road, London, SW7
2BT. E-mail: g.constantinides@imperial.ac.uk

�
�
�

�
�
�
�

-�
-�

n

k

f(a, b) +

HHY4k

︸ ︷︷ ︸︸ ︷︷ ︸
y T

v= ai AND bj
retainedf= ai AND bj

discarded

v v v v v v v v v v v v v v vv v v v v v v v v vv v v v v v v v v vv v v v v v v v v vv v v v v v v v v vv v v v v v v v v vv v v v v v v v v fv v v v v v v v f fv v v v v v v f f fv v v v v v f f f fv v v v v f f f f f

Fig. 1. Structure of AND Array Multiplier Truncation
Schemes.

traditional AND array multiplier. The underlying array
may of course differ in structure, ranging from Booth
arrays of various radix to squarer arrays and constant
multiplication, etc, [3]. We will first concentrate on the
truncations of the AND array before exploring other
array types.

The scheme may be summarised algebraically:

y = 2n
⌊
ab+ 2kf(a, b)−4k

2n

⌋
a, b, n, k ∈ Z+ (1)

The error, compared to the precise answer, introduced
by doing so is

ε = ab− 2n
⌊
ab+ 2kf(a, b)−4k

2n

⌋
ε =

((
ab+ 2kf(a, b)−4k

)
mod 2n

)
+4k − 2kf(a, b)

ε = T +4k − 2kf(a, b)

where T =
(
ab+ 2kf(a, b)−4k

)
mod 2n. A design that

2

exhibits faithful rounding is one such that:

∀a, b |ε| < 2n

Note that if the correct answer is exactly representable,
which occurs when the lower n bits of the multiplier
result are all zero, then this perfect answer must be
returned by a faithfully rounded scheme, otherwise
|ε| ≥ 2n. Early truncation schemes considered f(a, b)
being constant [2] and [4], referred to as Constant Cor-
rection Truncated schemes (CCT). Following these, the
proposal to make f(a, b) a function of a and b appeared,
termed Variable Correction Truncation (VCT) where the
most significant column that is truncated is used as the
compensating value for f(a, b) [5]. A hybrid between
CCT and column promoting VCT has been proposed
which only uses some of the partial product bits of the
promoted column, termed Hybrid Correction Truncation
[6]. Arbitrary functions of the most significant truncated
column have been considered along with their lineariza-
tion; one of these linearisations requires promoting all
but the four most extreme partial products bits and
adding a constant, called LMS truncation due to the fact
it targets the least mean square error [7] [8]. Forming
approximations to the carries produced by 4k has also
been put forward, termed carry prediction [9].

For Booth arrays, typically radix-4, their truncation
history followed a similar path to that of the AND
arrays, first following a CCT type truncation [10] and
column promotion [11]. Exhaustive simulation of the
truncated part of the Booth array was used to design
compensation circuitry based upon the conditional ex-
pectation of the error [12], or in order to construct
Karnaugh maps of the ideal correction [13]. Recent work
has focused on purely analytic techniques for computing
the expected errors [14], [15].

Truncated arrays also have been considered for squar-
ers, radix-4 and 16 and Booth squarer arrays [16], [17],
[18]. Truncated arrays that perform multiplication by a
fixed constant have been considered in [19] and [20],
the former requiring exhaustive simulation in order to
establish the truncation scheme and the latter perform-
ing analytic calculations to establish the optimal linear
compensation factor that minimises the mean square
error.

In terms of applications, DSP has been the main focus
area but they also appear in creating floating point
multipliers, where a one unit in the last place (ulp) accu-
racy is permitted [21]. The evaluation of transcendental
functions has also been considered, utilising truncated
multipliers as well as truncated squarers [22].

In general, given the focus has been on DSP appli-
cations, second order statistics of the error have been
important. New truncation schemes often require ex-
haustive simulation as part of their construction or their
validation. In advanced compensation schemes such as
[9], it is commented that it is difficult to know what kind
of error is being generated and while exhaustive searches
were conducted for n ≤ 8, for sizes above this, the only

option was to resort to random test vectors. In [23], find-
ing the best compensation function requires searching a
space exponential in n and is only feasible for n < 13.
Further the schemes either find compensating functions
heuristically or attempt to minimise the average absolute
error or mean square error.

Research looking at the absolute maximum error is
less common. In [24] bounds for a truncated radix-
4 Booth array are created. Truncated multipliers have
been designed to minimise second order error [25],
and their maximum absolute error has been bound. An
explicit attempt to create faithfully rounded multipliers,
constructed by truncating, deleting and rounding the
multiplication during the array construction, reduction
and final integer addition can be found in [26].

The aim of this paper is to systematically create
truncated multipliers which are known a priori to be
faithfully rounded, without the need for simulation or
exploration, and as such are amenable to an industry
standard synthesis flow. Leading synthesis tools are
extremely efficient at performing the summation of an
arbitrary number of summands by avoiding expensive
carry-propagations and using redundant representations
such as carry-save [27]. The array reduction is context-
driven depending on the timing and area constraints
and standard cell libraries in use. Access to the array
reduction or carry-save redundant signals is not possible
from within the HDL code. Creating HDL code which
explicitly states which compressor cells to use (full-
adders, 4-to-2 compressors, etc.) in order to gain access
to the intermediate redundant representation will lack
the timing and context driven reduction achievable by
the synthesis tool and will thus produce lower qual-
ity results. For these reasons we do not consider the
approach of [26] as a viable option, as it modifies the
multiplier array reduction directly and requires access
to intermediate carry-save signals. We also seek the
most hardware efficient multiplier structure for a given
architecture, so we require the necessary and sufficient
conditions for faithfully rounding. To our knowledge the
only tight error bound held within the literature is for
the LMS schemes [25] and [28]. We aim to construct a
variety of faithfully rounded truncated multipliers for
a range of schemes found within the literature and to
compare their synthesis properties. Our first interest will
be in truncated AND arrays as these are invariably
commutative but then go on to consider other array
types. The contributions of this paper are:
• the first tight analytic error bounds for CCT and

VCT,
• analytic necessary and sufficient conditions for

faithfully rounding for CCT, VCT and LMS schemes,
• worst case error and associated error vectors for

CCT and VCT as well as the probability of encoun-
tering this during simulation,

• procedure for constructing the smallest faithful
rounding of an arbitrary array,

• procedure for constructing the smallest faithfully

3

rounded multipliers,
• experimental synthesis comparison of schemes,
• general construction of a faithfully rounded floating

point multiplier.
The paper is
organized as follows. The definitions of the three

truncation schemes of interest are given in Section 2.
Faithful rounding analysis of each scheme is presented
in sections 3, 4 & 5. How to faithfully round an arbitrary
array is presented in Section 6 and two resultant novel
truncation schemes are given in sections 6.4 and 6.5.
How to construct faithfully rounded truncated multiplier
schemes is given in Section 7, experimental results in
Section 8 and finally how these fixed-point multipliers
can be used to construct faithfully rounded floating point
multipliers is presented in Section 9.

2 CCT, VCT AND LMS MULTIPLIER TRUNCA-
TION
CCT uses a single constant C as the compensating
function f(a, b), as first put forward in [2], so in this
case:

fCCT (a, b) =C

Column promoting truncated multiplication (VCT) takes
f(a, b) to be the most significant column of 4k (denoted
colk−1) as put forward in [5], [21]:

fV CT (a, b) = C + colk−1

The LMS scheme, as put forward in section 8 of [7],
promotes the interior of colk−1 into colk leaving the
extreme four partial products bits and adding a con-
stant one into column n − 1. This can be represented
algebraically by noting that elements of colk−1 are
a0bk−1, a1bk−2, ..., ak−2b1, ak−1b0 as follows:

fLMS(a, b) =2n−k−1 +

k−3∑
i=2

aibk−1−i

+
1

2
(a0bk−1 + a1bk−2 + ak−2b1 + ak−1b0)

3 NECESSARY AND SUFFICIENT CONDITIONS
FOR CCT FAITHFUL ROUNDING
In the case of CCT the error is:

εCCT = T +4k − 2kC

3.1 Bounding CCT Error
Now T is the result of the summation in columns n− 1
down to k, so its smallest value is 0 and its largest 2n−2k
hence we have the bound 0 ≤ T ≤ 2n− 2k. Now 4k can
be full of zeros when ak−1:0 = bk−1:0 = 0 (where ak−1:0
denotes the bits of a in columns k − 1 down to 0) and
full of ones when ak−1:0 = bk−1:0 = 2k − 1, hence:

0 ≤ 4k ≤
k−1∑
i=0

(2k − 2i) = (k − 1)2k + 1

So our initial bound on εCCT becomes:

−C2k ≤ εCCT ≤ 2n − (C − k + 2)2k + 1 (2)

The important question is whether or not there exists
values for a and b where T and 4k can simultaneously
achieve their lower/upper bound. The next section will
prove that this is possible and, hence, that this initial
bound is, in fact, tight.

3.2 CCT Error Bounds are Attained
The lower bound is achieved when T = 4k = 0.
Consider the case when ak:0 = 100...000, then:

T =
((
an−1:k+12

k+1 + 2k
)
b+ C2k

)
mod 2n

T2−k − C = (2an−1:k+1 + 1) b mod 2n−k

Now 2an−1:k+1+1 is odd, hence coprime to 2n−k, hence,
regardless of the value of C, we can always find a and
b such that any given T can be achieved when 4k is
minimal.

The upper bound is achieved when T and4k are both
maximal. In the case when ak−1:0 = bk−1:0 = 2k − 1:

T =
((
an−1:k2

k + 2k − 1
) (
bn−1:k2

k + 2k − 1
)

+C2k −max(4k)
)

mod 2n

T2−k − an−1:k
(
2k − 1

)
− C − 2k + k + 1

= bn−1:k
(
an−1:k2

k + 2k − 1
)

mod 2n−k

Now an−1:k2
k + 2k − 1 is odd hence coprime to 2n−k

hence, regardless of the value of C, we can always find
an−1:k and bn−1:k such that any given T can be achieved
when 4k is maximal.

3.3 CCT Worst Case Error Vectors
Given the bounds on εCCT the error is positive
when the scheme has largest absolute worst case er-
ror if C2k < 2n − (C − k + 2)2k + 1 which simplifies to
2C − k + 1 < 2n−k. The error is largest positive when4k

is maximal and T = 2n− 2k, the previous section shows
that once an−1:k is chosen, bn−1:k is fixed; hence there
are 2n−k possible worst case error vectors.

The error is largest negative when 4 = T = 0. The
previous section shows how this can be achieved when
ak:0 = 100...000 and −C = an−1:kb mod 2n−k. Now let x
be the largest integer such that 2x divides C, then this
implies that bx−1:0 = 0 and the equation reduces to:

an−x−1:kbn−k−1:x + C/2x = 0 mod 2n−k−x

This leaves n− 1 bits of the inputs unconstrained, hence
there are 2n−1 such error vectors. We assumed ak = 1
but a× b is divisible by 2k+x so we can distribute these
powers of 2 between a and b. There are k + x+ 1 ways
of doing so, hence in total there are (x+ k+1)2n−1 total
error vectors. In summary:

Theorem 3.1: CCT Error Vectors
If 2C − k + 1 < 2n−k there are 2n−k worst case CCT

4

error vectors, specified by:

ak−1:0 = bk−1:0 = 2k − 1
bn−1:k = −p

(
2k + C − k + an−1:k

(
2k − 1

))
mod 2n−k

where p is an integer satisfying p × a = 1 mod 2n−k.
Hence there is a 2−n−k probability of encountering such
inputs in simulation, provided all input sequences are
equally likely.

Otherwise there are (k + x+ 1)2n−1 worst case error
vectors, where x be the largest integer, such that 2x

divides C, for m = 0, 1, 2..., k + x specified by:

am = 1 bk+x−m−1:0 = am−1:0 = 0
an−k−x+m−1:mbn−m−1:k+x−m + C/2x = 0 mod 2n−k−x

Hence there is a (k + x + 1)2−n−1 probability of
encountering such inputs in simulation in this case,
provided all input sequences are equally likely.

3.4 The CCT Theorem

Given the error bounds are tight we can derive the
necessary and sufficient conditions for the CCT scheme
to be faithfully rounded from Equation 2:

Theorem 3.2: The CCT Theorem
The necessary and sufficient condition for the CCT
scheme to be faithfully rounded is:

|εCCT | < 2n ⇐⇒ 2n−k > C > k − 2

4 NECESSARY AND SUFFICIENT CONDITIONS
FOR VCT FAITHFUL ROUNDING

In the case of VCT the error is:

εV CT = T +4k − 2kcolk−1 − 2kC

We will first deal with providing tight bounds for
µ = 4k − 2kcolk−1.

4.1 Bounding Maximum VCT µ Error

Exhaustive simulation for small k show particular forms
for 4k when µ is maximal. When k is odd, e.g. 7 these
forms are:

0 1 0 1 0 1 1 0 0 1 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0 1
0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 1
0 1 1 0 0 0
0 0 0 1
0 0

When k is even, e.g. 8 these forms are:

0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1
0 0 0 0 0 0 0 0 1 0 1 0 1 1
0 1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 1
0 1 0 1 0 0 0 0
0 0 0 0 1 1
0 1 0 0
0 0

These simulations gave rise to the following theorem:

Theorem 4.1: The VCT Maximal Theorem

µ = 4k − 2kcolk−1
is maximal ⇐⇒ colk−1 = 0 and

colk−2 is alternating

Proof:
• µ(a0, bk−1) = a0(−2k−1bk−1 + bk−2:0) + const. Max-

imising µ over a0 and bk−1 gives a0 = 1, bk−1 = 0
and bk−2:0 > 0. By a symmetrical argument we get
a0 = b0 = 1 and ak−1 = bk−1 = 0.

• µ(aj , bk−1−j) = −2k−1ajbk−1−j + 2jajbk−2−j:0 +
2k−1−jbk−1−jaj−1:0 + const. Maximising µ over aj
and bk−1−j given that a0 = b0 = 1 gives rise to
aj 6= bk−1−j and hence colk−1 = 0.

• Consider the case when there are two adjacent
zeroes in colk−2 so we have a location where:

aj−1bk−j aj−1bk−j−1 = 0 0

ajbk−j−1 ajbk−j−2 = 0 0

Assuming that aj 6= bk−1−j for all j and, by sym-
metry, we may assume aj−1 = 1. Solving the above
equations means aj:j−1 =11 and bk−j:k−j−2=000. If
we had set aj:j−1 =01 and bk−j:k−j−2=010 then we
would have increased µ by:

2k−2 + 2k−j−1aj−2:0 − 2jbk−j−3:0

>2k−2 + 2k−j−1aj−2:0 − 2j(2k−j−2 − 1)

=2j + 2k−j−1aj−2:0 > 0

Hence when µ is maximal, adjacent zeroes never
appear in colk−2.

• If adjacent ones were to appear in colk−2 then there
would be a one in column colk−1, which contradicts
the fact that when µ is maximal colk−1 = 0.

We can conclude from these four observations that
colk−1 = 0 and colk−2 is an alternating binary sequence
when µ is maximal. In fact these two conditions heavily
restrict a and b. When k is odd these conditions imply
ak−1:0 = (2k−1 − 1)/3 and bk−1:0 = (2k + 1)/3. When
k is even we have ak−1:0 = bk−1:0 = (2k − 1)/3 or
ak−1:0 = bk−1:0 = (2k−1 + 1)/3. After much arithmetic,
from these cases we can derive the following tight upper
bound on µ:

µ ≤ (3k − 2)2k−1 + (−1)k

9

5

4.2 Bounding Minimum VCT µ Error

Exhaustive simulation for small k show particular forms
for 4k when µ is minimal. When k is odd, e.g. 7 these
forms are:

1 0 1 0 1 0 1 1 1 0 1 0 1 1
0 0 0 0 0 0 1 0 1 0 1 1
1 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 1
1 0 1 0 0 0
0 0 1 1
1 1

When k is even, e.g. 8 these forms are:

1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0 1 0 1
1 0 1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1
1 0 1 1 0 0 0 0
0 0 0 1 0 1
1 1 0 0
1 1

These simulations gave rise to the following theorem:

Theorem 4.2: The VCT Minimal Theorem

µ = 4k − 2kcolk−1
is minimal ⇐⇒ colk−1’s extremes are 1

colk−1’s interior alternates

The proof can be found in the supplemental material
associated with this paper. These two conditions heavily
restrict a and b. When k is odd these conditions imply
ak−1:0 = bk−1:0 = (2k+1 − 1)/3 or ak−1:0 = bk−1:0 = (5 ×
2k−1 + 1)/3. When k is even we have unique a and b
(up to swapping): ak−1:0 = (5×2k−1−1)/3 and bk−1:0 =
(2k+1 + 1)/3 . After much arithmetic, from these cases
we can derive the following tight lower bound on µ:

µ ≥ − (3k + 7)2k−1 + (−1)k

9

So in summary we have:

εV CT = T + µ− 2kC

Inserting the bounds for µ and knowing that
0 ≤ T ≤ 2n − 2k we get:

εV CT
≥ − 2k−1(3k+18C+7)+(−1)k

9

≤ 2n + 2k−1(3k−18C−20)+(−1)k
9

(3)

The important question is whether or not there exists
values for a and b where T and µ can simultaneously
achieve their lower/upper bound. The next section will
prove that this is possible and, hence, that this initial
bound is, in fact, tight.

4.3 VCT Error Bounds are Attained
The lower bound is achieved when T and 4k are both
minimal. When k is even µ is minimised by setting
ak−1:0 = (5 × 2k−1 − 1)/3 and bk−1:0 = (2k+1 + 1)/3,
in this case T is:

T =

((
an−1:k2

k +
5× 2k−1 − 1

3

)(
bn−1:k2

k +
2k+1 + 1

3

)
+C2k −min(µ)

)
mod 2n

T2−k − C − 5× 2k+1 + 3k + 8

18
− an−1:k

2k+1 + 1

3

= bn−1:k

(
an−1:k2

k +
5× 2k−1 − 1

3

)
mod 2n−k

Now an−1:k2
k+(5×2k−1−1)/3 is odd hence coprime to

2n−k hence, regardless of the value of C, we can always
find a and b such that any given T can be achieved
when µ is minimal and k is even. Similarly when k
is odd we have ak−1:0 = bk−1:0 = (2k+1 − 1)/3 or
ak−1:0 = bk−1:0 = (5 × 2k−1 + 1)/3 and the argument
proceeds in an identical manner. We therefore conclude
that regardless of the value of C we can always find a
and b such that any given T can be achieved when µ is
minimal.

The upper bound is achieved when T and4k are both
maximal. When k is odd these conditions imply ak−1:0 =
(2k−1 − 1)/3 and bk−1:0 = (2k + 1)/3, in this case T is:

T =

((
an−1:k2

k +
2k−1 − 1

3

)(
bn−1:k2

k +
2k + 1

3

)
+C2k −max(µ)

)
mod 2n

T2−k − C − 2k − 3k + 1

18
− an−1:k

2k + 1

3

= bn−1:k

(
an−1:k2

k +
2k−1 − 1

3

)
mod 2n−k

Now an−1:k2
k+(2k−1−1)/3 is odd hence coprime to 2n−k

hence, regardless of the value of C, we can always find
a and b such that any given T can be achieved when µ is
maximal and k is odd. Similarly when k is even we have
ak−1:0 = bk−1:0 = (2k − 1)/3 or ak−1:0 = bk−1:0 = (2k−1 +
1)/3 and the argument proceeds in an identical manner.
We therefore conclude that regardless of the value of C
we can always find a and b such that any given T can
be achieved when µ is maximal.

4.4 VCT Worst Case Error Vectors
Given the bounds on εV CT the error is positive when the
scheme has largest worst case error in absolute value if

2k−1(3k + 18C + 7) + (−1)k

9

< 2n +
2k−1(3k − 18C − 20) + (−1)k

9

This simplifies to

4C + 3 < 2n−k+1

6

TABLE 1
X values for VCT worst case error vectors.

4C + 3 < k ak−1:0 bk−1:0 X
2n−k+1 odd

X X 00101...10101 01010...01011 2k − 3k + 19

X X 01010...01011 00101...10101 2k − 3k + 19

X x 01010...10101 01010...10101 2k+1 − 3k + 16

X x 00101...01011 00101...01011 2k−1 − 3k + 22

x X 10101...10101 10101...10101 2k+3 + 3k − 1

x X 11010...01011 11010...01011 2k−125 + 3k + 17

x x 11010...10101 10101...01011 2k+15 + 3k + 8

x x 10101...01011 11010...10101 2k+15 + 3k + 8

Note that equality is not possible given the integer
nature of n, k and C. The exact error vectors can be
found by following through the proofs in the previous
sections, maximising and minimising µ and T . Note that
in every case there are precisely 2n−k+1 error vectors.
In summary:

Theorem 4.3: VCT Error Vectors
There are 2n−k+1 worst case VCT vectors for any given
n, k and C. Table 1. defines two different sets of values
for ak−1:0 and bk−1:0. Further, an−1:k can take any value,
bn−1:k is then required to be:

bn−1:k = −p (C +X/18 + an−1:kbk−1:0) mod 2n−k

where p is an integer satisfying p× a = 1 mod 2n−k and
X is defined in Table 1. The probability of encountering
these worst case errors in simulation is thus 2−n−k−1,
provided all input sequences are equally likely.

4.5 The VCT Theorem

Given the error bounds are tight we can derive the
necessary and sufficient conditions for the VCT scheme
to be faithfully rounded from 3:

Theorem 4.4: The VCT Theorem
The necessary and sufficient condition for the VCT
scheme to be faithfully rounded is:
|εV CT | < 2n ⇐⇒ 3× 2n−k+1 − k − 2 > 6C > k − 7

5 NECESSARY AND SUFFICIENT CONDITIONS
FOR LMS FAITHFUL ROUNDING

Error bounds for the LMS scheme were first reported in
[28]:

−2n−1 − 1

9

(
2k−4

(
24k − 19 + 3(−1)k

)
− 3 + 4(−1)k

)
≤ εLMS ≤

2n−k−1

9

(
2k(3k + 1) + 8(−1)k

)
As stated in [28], in absolute value, the most negative
error dominates. From this condition we can derive the
necessary and sufficient condition for faithful rounding
of the LMS scheme:

-� n

C +︸ ︷︷ ︸
F ′

v retained

f discarded

v v v v v v v v v v v v v v v vv v v v v v v f f f fv v v v v v v f f f fv v v v v v v v v v v v v f f f f fv v v v v v v v v v v v v v f f f fv v v v v v v v v fv v v v v v v v f fv v v v v v v f f fv v v v v v f f f fv v v v f f f f f f

Fig. 2. Structure of an arbitrary array truncation scheme.

Theorem 5.1: The LMS Theorem
The necessary and sufficient condition for the LMS
scheme to be faithfully rounded is:

|εLMS | < 2n ⇐⇒ 9× 2n−k+1 > 6k + 3 + (−1)k

6 SUFFICIENT CONDITIONS FOR THE FAITH-
FUL ROUNDING OF AN ARBITRARY ARRAY

There is a range of multiplier arrays found throughout
the literature, AND arrays, Booth arrays of various
radices, MUX arrays as well merged arrays performing
multiply-add or sums-of-products. It would be useful
to be able to truncate an arbitrary array such that the
result is faithfully rounded. Given we are considering an
arbitrary array, we cannot exploit any a priori correlations
found within the array. Thus we proceed with a strategy
akin to a CCT scheme, consider a truncated arbitrary
array as in Figure 2.

We assume that each partial product bit can vary
independently and takes values {0, 1}. We discard some
partial product bits, we call this set 4 and compensate
by a fixed additive constant C. We wish the scheme to
return F ′ which should be a faithful rounding of the true
full summation F when the least significant n bits are
ignored. Algebraically, F can be defined as:

F ′ = 2n
⌊
F − val(4) + C

2n

⌋
where val(4) is the value of all the elements in 4 while
respecting their binary weight. The error introduced by
performing this approximation is:

ε = F − F ′

= ((F − val(4) + C) mod 2n) + val(4)− C

We can bound this error by noting the modulo term
ranges between 0 and 2n − 1, note that these bounds
may not be tight due to lack of knowledge of the array:

−C ≤ ε ≤ 2n − 1 + val(4)− C

For the scheme to be faithfully rounded then:

|ε| < 2n

val(4) < C + 1 ≤ 2n

Setting C to its maximal possible value, 2n−1, places the
least restriction on 4. Our goal is to minimise the cost

7

v v v v v v v v v v v v f f f f f fv v v v v v v v v v v v v f f f f fv v v v v v v v v f f f f fv v v v v v v v f f f f fv v v v v v v f f f f fv v v v v v v f f fv v v v v v f f fv v v v v v v fv v v v v v
hi 2 2 2 2 3 4 6 8 9 9 9 9 9 9 7 8 5 5
li 0 0 1 7 7 8 5 5

Fig. 3. Illustration of hi of li.

of implementing the truncated array while maintaining
faithful rounding, we use the heuristic that summing
fewer partial product bits will result in the smallest
implementation cost. Therefore we wish to maximise the
number of elements in 4, we notate this as |4|. Our
optimisation problem then becomes:

max |4|
s.t. val(4) < 2n

To solve this optimisation problem we introduce vari-
ables hi, the height of the array in column i and li,
the number of bits we truncate from column i; example
values for Figure 2 are illustrated in Figure 3.

Note that the optimisation places no ordering on the
bits in each column, merely their number. Our optimi-
sation problem then becomes:

max

n−1∑
i=0

li

s.t.

n−1∑
i=0

li2
i < 2n

li ≤ hi

Let k be the largest number of least significant columns
we could truncate while maintaining faithful rounding,
more precisely (using the notation max(k : cond) which
returns the largest value of k which satisfies the condi-
tion cond):

k = max

(
k :

k−1∑
i=0

hi2
i < 2n

)
As we shall see, the answer to the optimisation problem
is closely related to k. Let lopti be the optimal values of
li which maximise the objective function. The following
lemmas contribute to the solution of the optimisation
problem.

6.1 Lemma 1: lopti = hi for i < k

Proceeding by contradiction:
• If lopti = 0 for i ≥ k and there exists j < k such

that loptj < hj then by the definition of k we can
increase lj to hj thus increasing the objective while
not violating the constraint.

• If there exists i ≥ k and lopti > 0 and j < k with
loptj < hj then we can decrement lopti and increment
loptj . The objective is unchanged and the constraint
is still met as the left hand side of the constraint is
reduced by 2i − 2j > 0.

Conclude that if there exists a supposedly optimal set
of values for li such that lopti < hi for some i < k, then
by repeated application of the second point, truncations
in column k or above can be exchanged for truncations
in the least significant k columns. If all the truncations
occur in the least significant k columns then these can
include all partial product bits of the k columns, by the
definition of k. Hence we may assume that optimal li
values satisfy lopti = hi for i < k.

Restate the optimisation problem as a consequence of
this lemma:

max

n−1∑
i=k

li

s.t.

n−k−1∑
i=0

lk+i2
i < 2n−k −

k−1∑
i=0

hi2
i−k

li ≤ hi
It is useful to note that by the definition of k:

k−1∑
i=0

hi2
i < 2n ≤

k∑
i=0

hi2
i

0 < 2n−k −
k−1∑
i=0

hi2
i−k ≤ hk

So we can qualify the optimisation problem as:

max

n−1∑
i=k

li

s.t.

n−k−1∑
i=0

lk+i2
i < 2n−k −

k−1∑
i=0

hi2
i−k ≤ hk

li ≤ hi

6.2 Lemma 2: lopti = 0 for i > k

Proceeding by contradiction: say there exists j > k such
that loptj > 0 then that implies that the constraint term
contains terms of the following form:

...+ loptj 2j−k + loptk < 2n−k −
k−1∑
i=0

hi2
i−k ≤ hk

If we were to make the transformations lj → lj − 1 and
lk → lk + 2j−k then the objective function is strictly
increased and the first constraint is still maintained.
However does the new lk still satisfy lk ≤ hk? The first
constraint is bounded by hk hence it was already true
that:

loptj 2j−k + loptk < hk

(loptj − 1)2j−k + (loptk + 2j−k) < hk

loptk + 2j−k < hk

8v v v v v v v v v v v v v f f f f fv v v v v v v v v v v v v f f f f fv v v v v v v v v f f f f fv v v v v v v v f f f f fv v v v v v v f f f f fv v v v v v v f f fv v v v v v f f fv v v v v v f fv v v v v f
1 1 1

Fig. 4. Optimal Truncation of an Arbitrary Array.

Hence the transformation still results in a feasible lk.
Conclude optimal values of li for i > k are all zero. This
lemma shows that if there is a set of supposedly optimal
values for li which have truncations in a column above
k then these can be exchanged for more truncations in
column k.

Restating the optimisation problem as a result of this
lemma:

max lk

s.t. lk < 2n−k −
k−1∑
i=0

hi2
i−k ≤ hk

Whose trivial solution is:

loptk =

⌈
2n−k − 1−

k−1∑
i=0

hi2
i−k

⌉

6.3 Faithfully Rounded Array Theorem
We can now state the result of the optimisation problem:

Theorem 6.1: Faithfully Rounded Array Theorem
The optimal truncations li for an array with heights hi
returning a faithfully rounded result to the nth column
are:

lopti =

hi i < k⌈

2n−k − 1−
∑k−1

j=0 hj2
j−k
⌉

i = k

0 i > k

where k = max

k :

k−1∑
j=0

hj2
j < 2n

Given the uneven truncation of the optimal form we
term truncations performed using this method as ragged.
As an example if we take Figure 3 we have n = 8
and array heights for the least significant 8 columns
{9, 9, 9, 9, 7, 8, 5, 5}. Computing k gives 5 and l5 = 0.
The optimal truncations can be seen in Figure 4. Recall
that the additive constant is always 2n− 1, therefore a 1
needs to be added to every column (it is not added to
the least significant k columns as its addition will have
no impact).

6.4 Ragged Truncated Multipliers - AND Array (RAT)
Applying this technique to a traditional AND array
multipliers, in the case of the multiplication of two
unsigned n bit numbers with a faithfully rounded n bit

v v v f f f f f f f f fv v v v f f f f f f f fv v v v v f f f f f f fv v v v v v f f f f f fv v v v v v v f f f f fv v v v v v v v f f f fv v v v v v v v v f f fv v v v v v v v v v f fv v v v v v v v v v v vv v v v v v v v v v v vv v v v v v v v v v v vv v v v v v v v v v v v
1 1 1 1

Fig. 5. Ragged Truncated Multiplier - AND Array.v vv vv vv v v v v v v v v v v v v v v v v v vv v v v v v v v v v v v v v v v vv v v v v v v v v v v v v v vv v v v v v v v v v v v vv v v v v v v v v v vv v v v v v v v vv v v v v v vv v v v vv v vv
Fig. 6. Radix-4 Booth Array - Least Significant Columns.

output; the array height of the ith column in the least
significant n columns is i + 1. Applying the Faithfully
Rounded Array Theorem:

lopti =

i+ 1 i < k⌈

2n−k − 1−
∑k−1

j=0 (j + 1)2i−k
⌉

i = k

0 i > k

where k = max

k :

k−1∑
j=0

hj2
j < 2n

Simplifying we get:

lopti =

 i+ 1 i < k
2n−k − k i = k

0 i > k

where k = max
(
k : (k − 1)2k < 2n

)
As an example consider n = 12, then k = 8 and l8 = 8,
as illustrated in Figure 5.

Note that the truncations into column k can be cho-
sen such that the resultant truncated multiplier is still
commutative.

6.5 Ragged Truncated Multipliers - Booth Array
(RBT)
In the case of a radix-4 Booth array multipliers. For the
multiplication of two unsigned n bit numbers with a
faithfully rounded n bit output, the least significant n
columns of the multiplier array take the form as in Figure
6.

Given the specific structure of the array we can
compute the maximal value of any least significant k

9v v v fv v v fv v v f f f f f f f f f f f f f f f f f fv v v f f f f f f f f f f f f f f f fv v v f f f f f f f f f f f f f fv v v v f f f f f f f f f f fv v v v f f f f f f f f fv v v v f f f f f f fv v v v f f f f fv v v v f f fv v v v fv v vv
1 1 1 1
Fig. 7. Ragged Truncated Multipliers - Radix-4 Booth
Array.

columns of the array as:

k−1∑
i=0

hi2
i =

⌊
k + 1

2

⌋
2k

Now applying the Faithfully Rounded Array Theorem:

lopti =

hi i < k⌈

2n−k − 1−
⌊
k+1
2

⌋⌉
i = k

0 i > k

where k = max

(
k :

⌊
k + 1

2

⌋
2k < 2n

)
Simplifying we get:

lopti =

hi i < k

2n−k − 1−
⌊
k+1
2

⌋
i = k

0 i > k

where k = max
(
k : (k + 1)2k < 2n+1

)
As an example we can truncate the example in Figure
6 where n = 24, in which case k = 20 and l20 = 5. The
resultant truncation is illustrated in Figure 7.

Note that truncated Booth multipliers are non com-
mutative.

7 CONSTRUCTING FAITHFULLY ROUNDED
MULTIPLIERS

We now have the necessary and sufficient conditions for
faithful rounding of three truncation schemes as well as
the construction of ragged AND and Booth arrays. For
the three original truncation schemes, we aim to create
the lowest cost faithfully rounded designs. We use the
design heuristic that larger k values remove more partial
product bits and are thus more efficient to implement.
Varying C has extremely limited impact on hardware
resources used, however as an heuristic we assume that
a small Hamming weight and small numerical value is
desirable, so let minHamm(a, b) return number of small-
est value within the integers with smallest Hamming
weight which exist in the interval [a, b]. The following
values for k and C thus guarantee faithful rounding

while minimising hardware costs for the three truncation
schemes CCT, VCT & LMS:

kCCT = max
(
k : ∃ C s.t. 2n−k > C > k − 2

)
= max

(
k : 2n > (k − 1)2k

)
CCCT = minHamm(kCCT − 1, 2n−kCCT − 1)

kV CT = max
(
k : ∃Cs.t.3× 2n−k+1 − k − 2 > 6C > k − 7

)
= max

(
k : 3× 2n ≥ k2k

)
CV CT = minHamm

(⌈
k

6

⌉
− 1,

⌊
3× 2n−k+1 − k − 3

6

⌋)
kLMS = max

(
k : 9× 2n−k+1 > 6k + 3 + (−1)k

)
Summarising the ragged truncation schemes we have k,
the number of least significant columns to remove, C,
the constant added into the array and l, the number of
bits to remove from column k:

kRAT = max
(
k : 2n > (k − 1)2k

)
kRBT = max

(
k : 2n+1 > (k + 1)2k

)
CRAT = 2n − 2kRAT

CRBT = 2n − 2kRBT

lRAT = 2n−kRAT − kRAT

lRBT = 2n−kRBT − 1−
⌊
kRBT + 1

2

⌋
Figure 8 contains the number of fewer partial product
bits than CCT that the VCT, LMS and RAT schemes
contain for n = 8..32. Note that for certain regions,
particularly around n = 16 and n = 32, the RAT scheme
has the fewest partial product bits and for n = 24 the
LMS and VCT scheme have the minimal count. It can
be shown analytically that kV CT ≥ kLMS , so the VCT
scheme will generally have no more partial product bits
than LMS. RAT has been designed to minimise partial
product bit count without reference to bit correlations,
its error bounds may not be tight. In contrast, LMS and
VCT have tight error bounds but a different architecture.
Hence the partial product bit counts and synthesis will
not strictly favour one architecture over another. Note
that the values for k are strictly less than n−1, therefore
the truncations are independent of the input bits an−1
and bn−1 in the cases of the truncated AND arrays. So if
we had considered a and b to be two’s complement then
the analysis that gave rise to the necessary and sufficient
conditions for faithful rounded would be unchanged.
Therefore a standard AND array for two’s complement
inputs can be truncated in an identical fashion to the
unsigned multipliers presented here.

All these functions are simple enough to be embed-
dable directly into HDL code. As such it is possible to
create fully parameterisable RTL whose only input pa-
rameter is n, where HDL functions compute the relevant
k, C and l signals (where appropriate) and a partial prod-
uct array can be formed and summed. Example VHDL
fragments can be found in the supplemental material for
calculating kCCT , kLMS , a minHamm function given an

10

10 15 20 25 30
0

5

10

15

20

n

nu
m

be
r

of
 fe

w
er

 p
ar

tia
l p

ro
du

ct
 b

its
 th

an
 C

C
T

VCT
LMS
RAT

Fig. 8. Comparison of the Number of Partial Product Bits
for the Faithfully Rounded Multipliers.

interval [a, b] and an example of how a partial product
array may be created and summed.

8 EXPERIMENTAL BENCHMARKS

We created five parameterisable pieces of HDL code that
return a faithful rounding of an unsigned multiplication
result as well as a reference multiplier which return the
correctly rounded round towards nearest, ties to even
(RTE) result, in order to see the benefit of truncation.
Note that the construction of the schemes CCT, VCT
and LMS as presented in the previous sections have the
fewest partial product bits of that architecture which are
faithfully rounded. This is due to the fact that their error
bounds are tight. The RAT and RBT schemes do not
necessarily have tight error bounds, but are of interest
given the generality of their construction. There are
schemes found within the literature whose error bounds
are not tight, but can still be used to produce HDL
which guarantees faithful rounding. We include these
in the synthesis comparisons, there is a variant on VCT
found in [29] and a CCT version of Booth radix-4 [10].
Note we do not compare against [26], [12], [13], [14] &
[15] as their approach cannot be embedded into HDL
as they require offline compensation circuit construction
or modifications to the synthesis process. We performed
synthesis comparisons for multipliers of size n =16, 24 &
32. Synopsys Design Compiler 2009.06-SP5 in ultra mode
using the TSMC 65nm library Tcbn65lpwc was used for
the synthesis experiments. We requested the synthesis
tool to synthesize the design to achieve different delays;
by applying Boolean optimization techniques and utiliz-
ing different standard cells, Design Compiler seeks the
design with smallest area that meets the required delay.
Thus we can see the full delay and area trade off of the
various multipliers. These experiments were performed

for each value of n, generating a range of delay and
area points. Truncated multipliers based upon an AND
array are commutative and are compared against an
AND array implementation of RTE in Figures 9, 10 and
11 (note the split y-axis). Truncated multipliers based
upon a radix-4 Booth array are non-commutative and are
compared against a radix-4 Booth array implementation
of RTE in Figures 12, 13 and 14.

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

1800

1850

1900

1950

2000

2050

2100

2150

2200

Delay (ns)

A
re

a
(µ

m
2)

2500

3000

CCT
VCT
LMS
RAT
[28]

RTE AND

Fig. 9. Area/Delay Comparisons of Faithfully Rounded
AND Array Multipliers n=16.

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2

3800

4000

4200

4400

4600

4800

Delay (ns)

A
re

a
(µ

m
2)

5500

6500

7500

CCT
VCT
LMS
RAT
[28]

RTE AND

Fig. 10. Area/Delay Comparisons of Faithfully Rounded
AND Array Multipliers n=24.

These figures demonstrate that truncated AND array
multipliers can provide an area benefit of 30-43% over
the correctly rounded, RTE multiplier, which increases
as n grows. As predicted from the inspecting the partial
product counts, the RAT scheme consistently exhibits the
smallest area for n = 16, 32, whereas LMS and VCT
dominates for n = 24. Truncated Booth arrays, in the

11

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4
6600

6800

7000

7200

7400

7600

7800

8000

8200

8400

Delay (ns)

A
re

a
(µ

m
2)

12000

14000

CCT
VCT
LMS
RAT
[28]

RTE AND

Fig. 11. Area/Delay Comparisons of Faithfully Rounded
AND Array Multipliers n=32.

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
1600

1800

2000

2200

2400

2600

2800

3000

3200

Delay (ns)

A
re

a
(µ

m
2)

RTE Booth
[9]
RBT

Fig. 12. Area/Delay Comparisons of Faithfully Rounded
Booth Array Multipliers n=16.

form of the RBT design, offers a consistent improvement
of 34-46% area compared to a radix-4 Booth RTE design.
The RBT scheme is slightly superior to [10], due to the
fact that [10] is CCT applied to a Booth array and RBT
removes at least as many partial products as a CCT
approach. It is interesting to note that within the set of
non-Booth truncated multipliers none of the schemes has
a strictly superior area for all bit widths, designer will
have to choose based upon their particular hardware,
accuracy and commutativity requirements. The synthesis
tool uses a timing, area and driven parallel reduction
of the arrays using a range of compression cells (full-
adders, half-adders and 4-to-2 compressors). The final

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4

6000

7000

8000

9000

10000

11000

Delay (ns)

A
re

a
(µ

m
2)

RTE Booth
[9]
RBT

Fig. 13. Area/Delay Comparisons of Faithfully Rounded
Booth Array Multipliers n=24.

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4

6000

7000

8000

9000

10000

11000

Delay (ns)

A
re

a
(µ

m
2)

RTE Booth
[9]
RBT

Fig. 14. Area/Delay Comparisons of Faithfully Rounded
Booth Array Multipliers n=32.

carry propagate adder will be formed by a hybrid of
adder architectures optimised to the delay profile of the
intermediate carry-save representation resulting from
the array reduction. This will typically comprise of ripple
adders for the least significant bits, carry look-ahead and
parallel prefix adders for the most significant bits.

9 APPLICATION TO THE CONSTRUCTION OF
FAITHFULLY ROUNDED FLOATING-POINT MUL-
TIPLIERS

Here we generalise the work found in [21], by showing
how any faithfully rounded fixed point multiplier ar-
chitecture can be used in floating-point multiplication.

12

Floating-point numbers are represented by the triple:
sign, exponent and mantissa, {s, exp,mant}. Excluding
denormals and exception cases, these numbers are in-
terpreted as (−1)s2exp−bias1.mant. Consider multipli-
cation of A & B represented by {sa, expa,manta} &
{sb, expb,mantb} respectively, returning Y in the form
{sy, expy,manty}. The equations governing the outputs
are:

sy = sa⊕ sb
expy = expa+ expb− bias

1.manty = 1.manta× 1.mantb

These equations need slight modification given that
1.manta×1.mantb produces numbers in the interval [1,4)
and so a one bit renormalisation may be required as well
as rounding. The fixed point steps to producing manty,
for n bit mantissas, are thus:

an:0 = 2n +manta// adding in the implicit one
bn:0 = 2n +mantb

cm−1:0 = multFR(a, b)

manty = if (cm−1 == 1) then cm−2:m−n−1

else cm−3:m−n−2

where multFR returns a faithful rounding of the top
m bits of the multiplication of a and b. Now multFR
can be any of the truncation schemes we have already
constructed. In order to construct the most hardware effi-
cient floating point multiplier, a design with the smallest
precision for the intermediate variable c is desirable.
What is the smallest value of m such that the floating
point multiplier is faithfully rounded?

9.1 A Faithfully Rounded Floating Point Multiplier is
Guaranteed if m = n+ 2

The proof splits into the following points:
• Case: cn+1 = 0 In this case manty = cn−1:0 which

is faithfully rounded due to definition of multFR
hence in this case the floating point multiplier is
faithfully rounded.

• Case: cn+1 = 1 and c0 = 0 If we say that c is a
fixed point number 2.n in length and the infinitely
precise answer is r. Then during renormalisation c0
is removed hence r and c are related as follows:

|r − c| < 2−n < 2−n+1

|r − c| < 2−n+1

In this case one ulp is 2−n+1, hence this meets the
accuracy condition.

• Case: cn+1 = 1 and c0 = 1 Then from the definition
of multFR we have

|r − c| < 2−n

−2−n <r − c < 2−n

0 <r −
(
c− 2−n

)
< 2−n+1∣∣r − (c− 2−n
)∣∣ < 2−n+1

TABLE 2
Floating Point Multiplier RTE versus Faithful Rounding.

Rounding Delay (ns) Area (µm2)
RTE 2.39 9975

Faithfully Rounded 2.32 7007

In this case one ulp is 2−n+1. Also, due to renormal-
isation, the answer we return is c− 2−n. Due to this
inequality we can see that, our result meets will be
within one ulp and hence faithfully rounded.

In conclusion, if the following fixed point algorithm is
used as part of a floating point multiplier the entire
design will be faithfully rounded:

an:0 = 2n +manta

bn:0 = 2n +mantb

cn+1:0 = multFR(a, b)

manty = if (cn+1 == 1) then cn:1 else cn−1:0

We used this to construct parameterisable correct-by-
construction faithfully rounded floating point multiplier
HDL code. In the case of a single precision multiplier
where the mantissa width n = 23 we performed a
synthesis experiment with Synopsys Design Compiler
2009.06-SP5 in ultra mode using the TSMC 65nm library
Tcbn65lpwc. We compared a round to nearest, even
single precision floating point multiplier to a faithfully
rounded floating point multiplier constructed using our
fixed point truncated multipliers. The result is shown
in Table 2. Our experiment targeted zero delay and we
found a 30% area improvement for a slightly improved
delay.

10 CONCLUSION
Necessary and sufficient closed form conditions for three
multiplier truncation schemes have been derived as well
as a method for faithfully rounding any array. In the
past, the industrial adoption of such schemes has been
hampered by the risk and/or time taken for exhaustive
verification. As a result of the conditions derived in this
paper, we have demonstrated a practical procedure for
the synthesis of such multipliers and arrays with a rigor-
ous guarantee of faithful rounding. Our approach covers
three techniques found in the literature, analytically pro-
vides faithful rounding conditions for all three and also
the worst-case error vectors for two schemes. We have
also shown how an arbitrary array may be optimally
truncated while returning a faithfully rounded result - by
applying this to any array, whose summation results in a
multiplication, we can automatically generate a myriad
of correct-by-construction faithfully rounded multipliers.
We have also shown a method for the creation of a
correct-by-construction faithfully rounded floating point
multiplier.

ACKNOWLEDGMENTS
The authors would like to acknowledge Imagination
Technologies Ltd for supporting this research.

13

REFERENCES

[1] E. Walters and M. Schulte, “Fast, bit-accurate simulation of
truncated-matrix multipliers and squarers,” in Signals, Systems and
Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth
Asilomar Conference on, Nov. 2010, pp. 1139–1143.

[2] M. J. Schulte and E. E. Swartzlander, Jr., “Truncated multiplication
with correction constant,” in Workshop on VLSI Signal Processing,
vol. 6, no. 20-22, Oct. 1993, pp. 388–396.

[3] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan
Kaufmann Publishers, 2004.

[4] S. S. Kidambi, F. El-Guibaly, and A. Antoniou, “Area-efficient mul-
tipliers for digital signal processing applications,” IEEE Transac-
tions on Circuits and Systems II: Analog and Digital Signal Processing,
vol. 43, no. 2, Feb. 1996, pp. 90–95.

[5] E. J. King and E. E. Swartzlander, Jr., “Data-dependent truncation
scheme for parallel multipliers,” in Thirty-First Asilomar Conference
on Signals, Systems & Computers, vol. 2, no. 2-5, Nov. 1997, pp.
1178–1182.

[6] J. E. Stine and O. M. Duverne, “Variations on truncated multi-
plication,” in Euromicro Symposium on Digital System Design, Sep.
2003, pp. 112–119.

[7] N. Petra, D. De Caro, V. Garofalo, E. Napoli, and A. Strollo, “Trun-
cated binary multipliers with variable correction and minimum
mean square error,” Circuits and Systems I: Regular Papers, IEEE
Transactions on, vol. 57, no. 6, Jun. 2010, pp. 1312–1325.

[8] ——, “Design of fixed-width multipliers with linear compensation
function,” Circuits and Systems I: Regular Papers, IEEE Transactions
on, vol. 58, no. 5, May 2011, pp. 947–960.

[9] R. Michard, A. Tisserandt, and N. Veyrat-Charvillon, “Carry
predicition and selection for truncated multiplication,” in IEEE
Workshop on Signal Processing Systems Design and Implementation,
2006, pp. 339–344.

[10] A. A. Katkar and J. E. Stine, “Modified booth truncated
multipliers,” in Proceedings of the 14th ACM Great Lakes symposium
on VLSI, ser. GLSVLSI ’04. New York, NY, USA: ACM, 2004,
pp. 444–447.

[11] T.-B. Juang and S.-F. Hsiao, “Low-error carry-free fixed-width
multipliers with low-cost compensation circuits,” IEEE Transac-
tions on Circuits and Systems II, vol. 52, no. 6, Jun. 2005, pp. 299–
303, .

[12] H.-A. Huang, Y.-C. Liao, and H.-C. Chang, “A self-compensation
fixed-width booth multiplier and its 128-point fft applications,”
in Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE
International Symposium on, May 2006, pp. 3538–3541.

[13] Y.-H. Chen, T.-Y. Chang, and R.-Y. Jou, “A statistical error-
compensated booth multipliers and its dct applications,” in TEN-
CON 2010 - 2010 IEEE Region 10 Conference, Nov. 2010, pp. 1146–
1149.

[14] C.-Y. Li, Y.-H. Chen, T.-Y. Chang, and J.-N. Chen, “A probabilistic
estimation bias circuit for fixed-width booth multiplier and its
dct applications,” Circuits and Systems II: Express Briefs, IEEE
Transactions on, vol. 58, no. 4, Apr. 2011, pp. 215–219.

[15] Y.-H. Chen and T.-Y. Chang, “A high-accuracy adaptive
conditional-probability estimator for fixed-width booth multipli-
ers,” Circuits and Systems I: Regular Papers, IEEE Transactions on,
vol. 59, no. 3, Mar. 2012, pp. 594–603.

[16] V. Garofalo, M. Coppola, D. De Caro, E. Napoli, N. Petra, and
A. Strollo, “A novel truncated squarer with linear compensation
function,” in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE
International Symposium on, Jun. 2010, pp. 4157–4160.

[17] S. Datla, M. Thornton, and D. Matula, “A low power high
performance radix-4 approximate squaring circuit,” in Application-
specific Systems, Architectures and Processors, 2009. ASAP 2009. 20th
IEEE International Conference on, Jul. 2009, pp. 91–97.

[18] K.-J. Cho, W.-K. Kim, B.-K. Kim, and J.-G. Chung, “Design of low
error fixed-width squarer,” in Signal Processing Systems, 2003. SIPS
2003. IEEE Workshop on, Aug. 2003, pp. 213–218.

[19] S.-M. Kim, J.-G. Chung, and K. K. Parhi, “Low error fixed-width
csd multiplier with efficient sign extension,” IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing, vol. 50,
no. 12, 2003, pp. 984–993.

[20] N. Petra, D. De Caro, A. Strollo, V. Garofalo, E. Napoli, M. Cop-
pola, and P. Todisco, “Fixed-width csd multipliers with minimum
mean square error,” in Circuits and Systems (ISCAS), Proceedings of
2010 IEEE International Symposium on, Jun. 2010, pp. 4149–4152.

[21] K. E. Wires, M. J. Schulte, and J. E. Stine, “Variable-correction
truncated floating point multipliers,” in Thirty-Fourth Asilomar
Conference on Signals, Systems and Computers, vol. 2, 2000, pp. 1344–
1348.

[22] E. George Walters, III and M. J. Schulte, “Efficient function
approximation using truncated multipliers and squarers,” in 17th
IEEE Symposium on Computer Arithmetic, Jun. 2005, pp. 232–239.

[23] A. Strollo, N. Petra, and D. DeCaro, “Dual-tree error compensa-
tion for high performance fixed-width multipliers,” Circuits and
Systems II: Express Briefs, IEEE Transactions on, vol. 52, no. 8, Aug.
2005, pp. 501–507.

[24] K.-J. Cho, S.-M. Lee, S.-H. Park, and J.-G. Chung, “Error bound
reduction for fixed-width modified booth multiplier,” in Signals,
Systems and Computers, 2004. Conference Record of the Thirty-Eighth
Asilomar Conference on, vol. 1, Nov. 2004, pp. 508–512.

[25] V. Garofalo, N. Petra, and E. Napoli, “Analytical calculation of the
maximum error for a family of truncated multipliers providing
minimum mean square error,” Computers, IEEE Transactions on,
vol. 60, no. 9, Sep. 2011, pp. 1366–1371.

[26] H.-J. Ko and S.-F. Hsiao, “Design and application of faithfully
rounded and truncated multipliers with combined deletion, re-
duction, truncation, and rounding,” Circuits and Systems II: Express
Briefs, IEEE Transactions on, vol. 58, no. 5, May 2011, pp. 304–308.

[27] R. Zimmermann, “Coding guidelines for datapath synthesis,”
https://www.synopsys.com/dw/doc.php/wp/coding
guidelines.pdf, Jul. 2005.

[28] V. Garofalo, “Truncated binary multipliers with minimum mean
square error: analytical characterization, circuit implementation
and applications,” PhD, Universita degli Studi di Napoli Federico
II, 2009.

[29] H. Park and E. E. Swartzlander, Jr., “Truncated multiplication with
symmetric correction,” in Signals, Systems and Computers, 2006.
ACSSC ’06. Fortieth Asilomar Conference on, Nov. 2006, pp. 931–
934.

Theo A. Drane received the BA. degree (with honors) in the Mathemat-
ical Tripos from Emmanuel College, Cambridge, UK, in 2001. During
which he was the three times winner of the Braithwaite-Batty Prize
for mathematics and awarded an Honorary Bachelor Scholarship. He
has worked for the Datapath consultancy Arithmatica and now leads
Imagination Technologies’ Datapath Group which focuses on imple-
mentation, optimisation, verification and validation of mathematically
intensive hardware. He is currently undertaking an industrial PhD in
conjunction with Imperial College London, UK.

Thomas M. Rose received the BA. degree (with honors) and the
MMath degree in the Mathematical Tripos from University of Cambridge,
Cambridge, UK, in 2011. Since September 2011, he has been a
graduate hardware design engineer at Imagination Technologies Ltd.
From 2009-2011 he was a Senior scholar at Trinity College, University
of Cambridge.

14

George A. Constantinides (S’96-M’01-SM’08)
received the M.Eng. degree (with honors) in
information systems engineering and the Ph.D.
degree from Imperial College London, London,
UK, in 1998 and 2001, respectively. Since 2002,
he has been with the faculty at Imperial College
London, where he is currently Reader (Asso-
ciate Professor) in Digital Systems and Head of
the Circuits and Systems research group. He is a
recipient of the Eryl Cadwaladar Davies Prize for
the best doctoral thesis in Electrical Engineering

at Imperial College (2001), an Imperial College Research Excellence
Award (2006), and a fellowship from the EPSRC. He was Programme
Co-Chair of the IEEE International Conference on Field-Programmable
Technology (FPT) in 2006 and Field Programmable Logic (FPL) in
2003 and will be programme (general) chair of the ACM International
Symposium on Field-Programmable Gate Arrays in 2014 (2015). He
currently serves on the programme committees of several international
conferences, including FPGA, FPL, and FPT. He has published over 150
research papers in peer refereed journals and international conferences.
Dr Constantinides is a Senior Member of the IEEE and a Fellow of the
British Computer Society.

