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Abstract

Black hole solutions of supergravity theories form families that realizing the deep
nonlinear “duality” symmetries of these theories. They form orbits under the action
of these symmetry groups, with extremal (i.e. BPS) solutions at the limits of such
orbits. An important technique in the analysis of such solution families employs
timelike dimensional reduction and exchanges the stationary black-hole problem
for a nonlinear sigma-model problem. Families of extremal or BPS solutions are
characterized by nilpotent orbits under the duality symmetries, based upon a tri-
graded or penta-graded decomposition of the corresponding duality-group algebra.

Andrei Slavnov and the key role of symmetry in physics

It is a great honor for me to add my congratulations to Professor Andrei Alekseevich
Slavnov on the occasion of his 75th birthday. As well as being a great friend for
most of my scientific life, Andrei’s work has shown the pathways in many of my
own scientific efforts, on topics ranging from the general theory of gauge fields [1]
and the crucial importance of symmetry in the renormalization of field theories
[2] to the incorporation of higher-derivative terms in quantum field theories [3],
the possible rôles of higher dimensions [4, 5], to the relation between unitarity
and BRST quantization methods [6], and to many other central issues in modern
theoretical physics. And through all these developments, it has always been a
delight to discuss with Andrei, and to share in his great friendliness and warm
hospitality during my visits to Russia.

It is accordingly a great pleasure for me to devote this article to Andrei on
the occasion of his 75th birthday. I look forward to many more years of scien-
tific enlightenment from Andrei, and to many more opportunities to share in his
camaraderie.

1email: k.stelle@imperial.ac.uk
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Black holes and duality symmetries in supergravity

Aside from the general mathematical interest in classifying black hole solutions
of any kind, the study of families of such solutions is of particular current inter-
est because it touches other important issues in theoretical physics. For example,
the classification of BPS and non-BPS black holes forms part of a more general
study of branes in supergravity and superstring theory. Branes and their inter-
sections, as well as their worldvolume modes and attached string modes, are key
elements in phenomenological approaches to the marriage of string theory with
particle physics phenomenology. The related study of nonsingular and horizon-
free BPS gravitational solitons is also central to the “fuzzball” proposal of BPS
solutions as candidate black-hole quantum microstates.

The search for supergravity solutions with assumed Killing symmetries can be
recast as a Kaluza-Klein problem [7, 8, 9]. To see this, consider a 4D theory with a
nonlinear bosonic symmetry G4 (e.g. the “duality” symmetry E7 of maximal N = 8
supergravity). Scalar fields take their values in a target space Φ4 = G4/H4, where
H4 is the corresponding linearly realized subgroup, which is generally the maximal
compact subgroup of G4 (e.g. SU(8) ⊂ E7 for N = 8 SG). This search will be con-
strained by the following considerations:
• We assume that a solution spacetime is asymptotically flat or asymptotically
Taub-NUT and that there is a ‘radial’ function r which is divergent in the asymp-
totic region, gµν∂µr∂νr ∼ 1 +O(r−1).
• Searching for stationary solutions amounts to assuming that a solution possesses
a timelike Killing vector field κµ(x). Lie derivatives with respect to κµ are as-
sumed to vanish on all fields. The Killing vector κµ will be assumed to have
W := −gµνκµκν ∼ 1 +O(r−1).
• We also assume asymptotic hypersurface orthogonality, i.e.κν(∂µκν − ∂νκµ) ∼
O(r−2). In any vielbein frame, the curvature will then fall off as Rabcd ∼ O(r−3).

The 3D theory obtained after dimensional reduction with respect to a timelike
Killing vector κµ will have an Abelian principal bundle structure, with a metric

ds2 = −W (dt+Bidx
i)2 +W−1γijdx

idxj (1)

where t is a coordinate adapted to the timelike Killing vector κµ and γij is the
metric on the 3-dimensional hypersurface M3 at constant t. If the 4D theory also
has Abelian vector fields Aµ, they similarly reduce to 3D as

4
√

4πGAµdxµ = U(dt+Bidx
i) +Aidx

i (2)

The timelike reduced 3D theory will have a G/H∗ coset-space structure similar
to the G/H coset-space structure of a 3D theory reduced with respect to a spacelike
Killing vector. Thus, for the spacelike reduction of maximal supergravity down to
3D, one obtains an E8/SO(16) theory from the sequence of dimensional reductions
descending from D = 11 [10]. The resulting 3D theory has this exceptional symme-
try because 3D Abelian vector fields can be dualized to scalars; this also happens
for the analogous theory subjected to a timelike reduction to 3D. The resulting 3D
theory contains 3D gravity coupled to a G/H∗ nonlinear sigma model.
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Although the numerator group G for a timelike reduction is the same as that
obtained in a spacelike reduction, the divisor group H∗ for a timelike reduction
is a noncompact form of the spacelike divisor group H [8]. A consequence of this
H → H∗ change and of the dualization of vectors is the appearance of negative-sign
kinetic terms for some 3D scalars.

Consequently, maximal supergravity, after a timelike reduction down to 3D and
the subsequent dualization of 29 vectors to scalars, has a bosonic sector containing
3D gravity coupled to a nonlinear sigma model with 128 scalar fields. As a conse-
quence of the timelike dimensional reduction and the vector dualizations, however,
the scalars do not all have the same signs for their “kinetic” terms:
• There are 72 positive-sign scalars: 70 descending directly from the 4D theory,
one emerging from the 4D metric and one more coming from the D = 4→ D = 3
Kaluza-Klein vector, which is subsequently dualized to a scalar.
• There are 56 negative-sign scalars: 28 descending directly from the time compo-
nents of the 28 4D vectors, and another 28 emerging from the 3D vectors obtained
from spatial components of the 28 4D vectors, becoming then negative-sign scalars
after dualization.

The sigma-model structure of this timelike reduced maximal theory is E8/SO∗(16).
The SO∗(16) divisor group is not an SO(p, q) group defined via preservation of an
indefinite metric. Instead it is constructed by starting from the SO(16) Clifford al-
gebra {ΓI ,ΓJ} = 2δIJ and then by forming the complex U(8)-covariant oscillators
ai := 1

2(Γ2i−1 + ıΓ2i) and ai ≡ (ai)
† = 1

2(Γ2i−1 − ıΓ2i). These satisfy the standard
fermi-oscillator annihilation/creation anticommutation relations

{ai, aj} = {ai, aj} = 0 , {ai, aj} = δi
j (3)

The 120 SO∗(16) generators are then formed from the 64 hermitian U(8) gen-
erators ai

j plus the 2 × 28 = 56 antihermitian combinations of aij ± aij . Under
SO∗(16), the vector representation and the antichiral spinor are pseudo-real, while
the 128-dimensional chiral spinor representation is real. This is the representation
under which the 72+56 scalar fields transform in the E8/SO∗(16) sigma model.

The 3D classification of extended supergravity stationary solutions via timelike
reduction thus generalizes the 3D supergravity systems obtained from spacelike
reduction [11]. This also connects with N = 2 models with coupled vectors [12]
and N = 4 models with vectors, where solutions have also been generated using
duality symmetries [13, 14]

Stationary solutions and harmonic maps

The process of timelike dimensional reduction down to 3 dimensions together with
dualization of all form-fields to scalars produces an Euclidean gravity theory cou-
pled to aG/H∗ nonlinear sigma model, Iσ =

∫
d3x
√
γ(R(γ)−1

2GAB(φ)∂iφ
A∂jφ

Bγij),
where GAB(φ) is the G/H∗ sigma-model target-space metric and γij is the 3D met-
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ric. Varying this action produces the 3D field equations

1
√
γ
∇i(
√
γγijGAB(φ)∂jφ

B) = 0 (4)

Rij(γ) = 1
2GAB(φ)∂iφ

A∂jφ
B (5)

where ∇i is a doubly covariant derivative (both for the 3D space M3 and for the
G/H∗ target space).

Now one can make the simplifying assumption that φA(x) = φA(σ(x)), de-
pending on a single intermediate map σ(x). Subject to this assumption, the field
equations become

∇2σ
dφA

dσ
+ γij∂iσ∂jσ[

∂2φA

dσ2
+ ΓABC(G)

dφB

dσ

dφC

dσ
] = 0 (6)

Rij =

(
1
2GAB(φ)

dφA

dσ

dφB

dσ

)
∂iφ

A∂jφ
B (7)

Now one can use the gravitational Bianchi identity ∇i(Rij − 1
2γijR) ≡ 0 to obtain

1
4
d
dσ (GAB(φ)dφ

A

dσ
dφB

dσ )(∇iσ∂iσ) = 0 . Requiring separation of the σ(x) properties

from the d
dσ properties thus leads to the conditions

∇2σ= 0 (8)

d2φA

dσ2
+ ΓABC(G)

dφB

dσ

dφC

dσ
= 0 (9)

d

dσ

(
GAB(φ)

dφA

dσ

dφB

dσ

)
= 0 (10)

The first equation (8) above implies that σ(x) is a harmonic map from the 3D
space M3 into a curve φA(σ) in the G/H∗ target space. The second equation (9)
implies that φA(σ) is a geodesic in G/H∗. The third equation (10) implies that σ is
an affine parameter. The decomposition of φ :M3 → G/H∗ into a harmonic map
σ :M3 → R and a geodesic φ : R→ G/H∗ is in accordance with a general theorem
on harmonic maps [15] according to which the composition of a harmonic map
with a totally geodesic one is again harmonic. Such factorization into geodesic
and harmonic maps is also characteristic of general higher-dimensional p-brane
supergravity solutions [7, 9].

Here is a sketch of the map composition:

xi

σ(x)

∇ σ = 02

GH*/

D=3 Space M
3

φ  (σ
)

ge
od

esi
cΑ
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As an example [8] of the way in which the above construction emerges naturally
for single-center solutions, consider 4D gravity together with an Abelian U(1) vector
field, i.e. 4D Maxwell-Einstein theory. One can search for stationary solutions
depending on a single intermediate variable. For this intermediate variable, one
starts simply with the radius r =

√
xixi, so in supposing that solutions have just

this radial dependence, one is actually looking for spherically symmetric solutions
with isometry group SO(3). Changing to 3D polar coordinates, the metric on M3

can be parametrized as ds2 = γijdx
idxj = dr2 + f(r)2(dϑ2 + sin2 ϑdϕ2). The

reduced 3D equations of motion then become

f−2 d

dr
(f2dφ

A

dr
) + ΓABC(φ)

dφA

dr

dφB

dr
= 0 (11)

Rrr = −2f−1d
2f

dr2
= GAB(φ)

dφA

dr

dφB

dr
(12)

Rϕϕ = Rθθ = f−2(
d

dr
(f
df

dr
)− 1) = 0 . (13)

Equation (13) has the general solution f(r)2 = (r− r0)2 + c2. Introducing then
σ(r) := −

∫∞
r f−2(s)ds, one obtains a harmonic intermediate function onM3 with

respect to with the metric γij , and equation (11) then becomes

d2φA

dσ2
+ ΓABC(φ)

dφB

dσ

dφC

dσ
= 0 (14)

with φA(r) = φA(σ(r)). This is the equation for a geodesic in the 4-dimensional
symmetric space G/H∗ = SU(2, 1)/S(U(1, 1) × U(1)), with signature (+ + −−).
Owing to the indefinite character of this sigma-model target space, there are a
variety of different solution orbits, depending on the “spacelike”, “lightlike” or
“timelike” character of the geodesic φA(σ).

Restricting attention to the subspace of static solutions with electric charge only
(magnetic charge can also be included by a duality transformation), the relevant
sigma-model structure simplifies to (G/H∗)static = SO(2, 1)/SO(1, 1). The line

element in this two-dimensional target space is ds2 = d∆2

2∆2 − 2dA2

∆ , where ∆ and A
are respectively the gravitational and electric potentials. This is actually just the
metric for two-dimensional de Sitter space, for which the corresponding geodesic
equations are

∆̈−∆−1∆̇2 − 2Ȧ2 = 0 Ä−∆−1∆̇Ȧ = 0 ; (15)

these can be explicitly solved subject to the boundary conditions ∆(0) = 1, A(0) =
0, corresponding to the desired asymptotic behavior as r →∞.

In this way, one obtains three families of Reissner-Nordstrom solutions, with
solution classes separating according to the sign of the integration constant v2 =
1
2GAB

dφA

dσ
dφB

dσ characterizing the geodesic on SO(2, 1)/SO(1, 1) as spacelike (v2 >
0), lightlike (v2 = 0) or timelike (v2 < 0).

To understand such solution orbits more generally [16], we need to define the
appropriate “charges” that will characterize the individual solutions. Towards this
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end, consider the Komar two-form K ≡ ∂µκνdx
µ ∧ dxν . This is invariant under

the action of the timelike isometry and, by the asymptotic hypersurface orthogo-
nality assumption, is asymptotically horizontal. This condition is equivalent to the
requirement that the scalar field B dual to the Kaluza-Klein vector arising out of
the 4D metric must vanish like O(r−1) as r →∞. In this case, one can define the
Komar mass and NUT charge by (where s∗ indicates a pull-back to a section) [17]

m ≡ 1

8π

∫
∂M3

s∗ ? K n ≡ 1

8π

∫
∂M3

s∗K . (16)

The Maxwell field also defines charges. Using the Maxwell field equation d?F =
0, where F ≡ δL/δF is a linear combination of the two-form field strengths F
depending on the 4D scalar fields, and using the Bianchi identity dF = 0, one
obtains conserved electric and magnetic charges:

q ≡ 1

2π

∫
∂M3

s∗ ? F p ≡ 1

2π

∫
∂M3

s∗F . (17)

Now consider these charges from the three-dimensional point of view in order to
clarify their transformation properties under the 3D duality group G. The three-
dimensional theory is described in terms of a coset representative V ∈ G/H∗. The
Maurer–Cartan form V−1dV for the Lie algebra g decomposes as

V−1dV = Q+ P , Q ≡ Qµdxµ ∈ h∗ , P ≡ Pµdxµ ∈ g	 h∗ . (18)

Then the three-dimensional scalar-field equation of motion can be rewritten as
d ? VPV−1 = 0, so the g-valued “Noether current” is ?VPV−1. Since the three-
dimensional theory is Euclidean, one cannot really properly speak of a conserved
charge. Nevertheless, since ?VPV−1 is d-closed, the integral of this 2-form over
a given homology cycle does not depend on the particular representative of that
cycle. So in this sense we may consider that the integral over this 2-form yields a
charge.

Accordingly, for stationary solutions, the integral of this 3D 2-form current
?VPV−1, taken over any spacelike closed surface ∂M3 containing in its interior all
the singularities and topologically non-trivial subspaces of a given solution, defines
a g	 h∗-valued Noether-charge matrix C :

C ≡ 1

4π

∫
∂M3

?VPV−1 . (19)

This transforms in the adjoint representation of the duality group G in accordance
with the standard non-linear action of G on V ∈ G/H∗. For asymptotically-flat
solutions, V can be arranged to tend asymptotically at infinity to the identity
matrix. The charge matrix C in that case is simply given by the asymptotic value
of the one-form P :

P = C
dr

r2
+O(r−2) . (20)
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Graded structure

Now let us follow the evolution of the duality group G down a couple of steps
in dimensional reduction. In D = 5, maximal supergravity has the maximally
noncompact duality group E6,6, with the 42 D = 5 scalar fields taking their values
in the coset space E6,6/USp(8), while the 1-form (i.e. vector) fields transform in
the 27 of E6,6.

Proceeding on down to 4D, the 27 D = 5 vectors produce new scalars upon
dimensional reduction, and one also gets a new Kaluza-Klein scalar emerging from
the D = 5 metric, making up the total of 70 scalars in the 4D theory. These take
their values in E7,7/SU(8), while the 4D vector field strengths transform in the 56
of E7,7. The new KK scalar corresponds to a gl1 grading generator of E7,7, leading
to a tri-graded decomposition of the E7,7 algebra as follows:

e7,7 ' 27
(−2) ⊕ (gl1 ⊕ e6,6)(0) ⊕ 27(2) (21)

where the superscripts indicate the gl1 grading.
Continuing on down to 3D via a timelike reduction, one encounters a new phe-

nomenon: 3D vectors can now be dualized to scalars. This is already clear in
the timelike reduction of pure 4D GR to 3D, where one obtains a two-scalar sys-
tem taking values in SL(2,R)/SO(2), where SL(2,R) is the Ehlers group [18]. Its
generators can be written

γh⊕ εe⊕ ϕf =

(
γ ε
ϕ−γ

)
(22)

and its Lie algebra is [h, e] = 2e , [h,f ] = −2f , [e,f ] = h.
Accordingly, in reducing from 4D to 3D a supergravity theory with 4D sym-

metry group G4, with corresponding Lie algebra g4 and with vectors transforming
in the l4 representation of g4, one obtains a penta-graded structure for the 3D Lie
algebra g, with the Ehlers generator h now acting as the grading generator 1(0):

g ' 1(−2) ⊕ l4
(−1) ⊕ (1⊕ g4)(0) ⊕ l

(+1)
4 ⊕ 1(2) (23)

For example, in 3D maximal supergravity one obtains in this way e8,8:

e8,8 ' 1(−2) ⊕ 56
(−1) ⊕ (1⊕ e7,7)(0) ⊕ 56(+1) ⊕ 1(2) (248 generators) (24)

Now apply this to the decomposition of the coset-space structure for the 3D
scalar fields and for the charge matrix C . In 4D, the scalars are associated to
the coset generators g4 	 h4, where h4 is the Lie algebra of the 4D divisor group
H4. The representation carried by the 4D electric and magnetic charges q and p
is l4. Then the 3D scalars and the charge matrix C can be decomposed into three
irreducible representations with respect to so(2)⊕ h4 according to

g	 h∗ ∼=
(
sl(2,R)	 so(2)

)
⊕ l4 ⊕

(
g4 	 h4

)
(25)

The metric induced by the g algebra’s Cartan-Killing metric on this coset space
is positive definite for the first and last terms, but is negative definite for l4. One
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associates the sl(2,R)	so(2) components to the Komar mass and the Komar NUT
charge, while the l4 components are associated to the electromagnetic charges. The
remaining g4 	 h4 charges belong to the Noether current of the 4D theory.

Characteristic equation

Breitenlohner, Gibbons and Maison [8] proved that if G is simple, all the non-
extremal single-black-hole solutions of a given theory lie on the H∗ orbit of a
Kerr solution. Moreover, all static solutions regular outside the horizon with a
charge matrix satisfying Tr C 2 > 0 lie on the H∗-orbit of a Schwarzschild solution.
(Turning on and off angular momentum requires consideration of the D = 2 duality
group generalizing the Geroch A1

1 group; we shall not go into that symmetry
structure here.)

Using Weyl coordinates, where the 4D metric takes the form

ds2 = f(x, ρ)−1[e2k(x, ρ)(dx2 + dρ2) + ρ2dφ2] + f(x, ρ)(dt+A(x, ρ)dφ)2 , (26)

the coset representative V associated to the Schwarzschild solution with mass m
can be written in terms of the non-compact generator h of the Ehlers sl(2,R) alone,
i.e.

V = exp

(
1

2
ln
r −m
r +m

h

)
→ C = mh . (27)

For the maximal N = 8 theory with symmetry E8(8) (and also for the ex-
ceptional ‘magic’ N = 2 supergravity [19] with symmetry E8(−24)), one has h =
diag[2, 1, 0,−1,−2], so

h5 = 5h3 − 4h (28)

Consequently, the charge matrix C satisfies in all cases the characteristic equation

C 5 = 5c2C 3 − 4c4C (29)

where c2 ≡ 1

Tr (h2)
Tr (C 2) is the extremality parameter (c2 = 0 for extremal static so-

lutions, while c2 = m2 for Schwarzschild). Moreover, for all but the two exceptional
E8 cases, a stronger constraint is actually satisfied by the charge matrix C :

C 3 = c2C . (30)

The characteristic equation selects acceptable orbits of solutions, i.e. orbits not
exclusively containing solutions with naked singularities. It determines C in terms
of the mass and NUT charge and the 4D electromagnetic charges.

The parameter c2 is the same as the (target space velocity)2 of the above
harmonic-map discussion: c2 = v2. The Maxwell-Einstein theory is the simplest
example with an indefinite-signature sigma-model metric, with a scalar-field target
space G/H∗ = SU(2, 1)/S(U(1, 1)×U(1)). The Maxwell-Einstein charge matrix is

CME =

 m n −z/
√

2

n −m ız/
√

2

z̄/
√

2 ız̄/
√

2 0

 ∈ su(2, 2)	 u(1, 1) (31)
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where z = q + ıp is the complex electromagnetic charge. The Maxwell-Einstein
extremality parameter is c2 = m2 + n2 − zz̄. Solutions fall into three categories:
c2 > 0 nonextremal, c2 = 0 extremal and c2 < 0 hyperextremal. The hyperextremal
solutions have naked singularities, while the nonextremal and extremal solutions
have their singularities cloaked by horizons.

Dirac equation

Extremal solutions have c2 = 0, implying that the charge matrix C becomes nilpo-
tent: C 5 = 0 in the E8 cases and C 3 = 0 otherwise.

For N extended supergravity theories, one finds H∗ ∼= Spin∗(2N ) × H0 and
the charge matrix C transforms as a Weyl spinor of Spin∗(2N ), also valued in
a representation of h0 (where h0 acts on the matter content of reducible N = 4
theories). As in the SO∗(16) case considered earlier, one defines the Spin∗(2N )
fermionic oscillators

ai :=
1

2

(
Γ2i−1 + ıΓ2i

)
ai ≡ (ai)

† =
1

2

(
Γ2i−1 − ıΓ2i

)
(32)

for i, j, · · · = 1, . . . ,N . These obey standard fermionic annihilation & creation
anticommutation relations. Using this annihilation/creation oscillator basis, the
charge matrix C can be represented as a state (where ai |0〉 = 0)

|C 〉 ≡
(
W + Zija

iaj + Σijkla
iajakal + · · ·

)
|0〉 . (33)

From the requirement that the dilatino fields be invariant under the unbroken
supersymmetry of a BPS solution, one derives a ‘Dirac equation’ for the charge
state vector, (

εiαai + Ωαβε
β
i a

i
)
|C 〉 = 0 (34)

where (εiα, ε
α
i ) is the asymptotic (for r →∞) value of the Killing spinor and where

Ωαβ is a symplectic form on C2n in cases with n/N preserved supersymmetry.
This condition turns out to be equivalent to the algebraic requirement that C be
a pure spinor of Spin∗(2N ). For BPS solutions, it has the consequence that the
characteristic equations can be explicitly solved in terms of rational functions.

Note that c2 = 0 ⇐⇒ 〈C |C 〉 = 0 is a weaker condition than the supersym-
metry Dirac equation. Extremal and BPS are not always synonymous conditions,
although they coincide for N ≤ 5 pure supergravities. They are not synonymous,
for example, for N = 6 & 8 or for theories with vector matter coupling.

BPS Strata

Analysis of the ‘Dirac equation’ or the nilpotency degree of the charge matrix C
leads to a decomposition of the moduli space M of supergravity solutions into
strata of various BPS degrees. LettingM0 be the non-BPS stratum,M1 being the
1
N BPS stratum, etc., the dimensions of some of the strata for pure supergravity
theories turn out to be [16]

9



N = 2N = 3N = 4 N = 5N = 6N = 8

dim(M0) 4 8 14 22 34 58

dim(M1) 3 7 13 21 33 57

dim(M0
1) 32 56

dim(M2) 8 16 26 46

dim(M4) 17 29

Where do such stratum dimensions come from? Take the non-extremal stratum
of N = 8 supergravity as an example, with 58 moduli. In order for this small
number to be related to an E8 group action, one needs to find a large isotropy
group to divide by. The existence of such a large subgroup is a peculiarity of non-
compact groups, analogous to the 4-generator Borel subgroup of the 4D Lorentz
group. For the non-extremal N = 8 supergravity stratum M0, there is a 190
generator parabolic subgroup P0 containing the 4D duality group E7, 56 generators
corresponding to the 56 electromagnetic charges of the 4D theory, plus one more
generator. The resulting E8/P0 coset is then 58 dimensional. However, as we shall
see, this gives a proper group action only on a dense subset of the full moduli space.
Analysis of the extremal strata of supergravity solutions requires understanding
the nilpotent orbits of the 3D duality group H∗. This analysis links up with the
established mathematical literature on nilpotent orbits, in particular by D– oković
[20].

Almost Iwasawa decompositions

Earlier analysis of the orbits of the 4D symmetry groups G4 [?] heavily used the
Iwasawa decomposition

g = u(g,Z) exp
(

lnλ(g,Z) z
)
b(g,Z) (35)

with u(g,Z) ∈ H4 and b(g,Z) ∈ BZ where BZ ⊂ G4 is the parabolic subgroup that
leaves the charges Z invariant up to a multiplicative factor λ(g,Z). This multi-
plicative factor can be compensated for by ‘trombone’ transformations combining
Weyl scalings with compensating dilational coordinate transformations, leading to
a formulation of active symmetry transformations that map solutions into other
solutions with unchanged asymptotic values of the spacetime metric and scalar
fields.

The 4D ‘trombone’ transformation finds a natural home in the parabolic sub-
group of the 3D duality group G. The 3D structure is characterized by the fact
that the Iwasawa decomposition breaks down for noncompact divisor groups H∗.
The Iwasawa decomposition does, however work “almost everywhere” in the 3D
solution space. The places where it fails are precisely the extremal suborbits of
the duality group. This has the consequence that G does not act transitively on
its own orbits. There are G transformations which allow one to send c2 → 0, thus
landing on an extremal (generally BPS) suborbit. However, one cannot then invert
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the map and return to a generic non-extremal solution from the extremal solution
reached on a given G trajectory.

Multi-centered solutions

The above framework applies equally to multi-centered as to single-centered solu-
tions [22, 23]. One may start from a general ansatz

V(x) = V0 exp(−
∑
n

Hn(x)Cn) (36)

with Lie algebra elements Cn ∈ g	h∗ and functions Hn(x) to be determined by the
equations of motion. Defining as above V−1dV = Q+P and restricting P to depend
linearly on the functions Hn(x), one finds the requirement [Cm, [Cn,Cp]] = 0. The
Einstein and scalar equations of motion then reduce to

Rµν −
1

2
gµνR =

∑
mn

∂µHm∂νHn Tr CmCn d ? dHn = 0 . (37)

Restricting attention to solutions where the 3-space is flat then requires Tr CmCn =
0. The resulting system generalizes that of Reference [9]. Solving [Cm, [Cn,Cp]] =
0 = Tr CmCn is now reduced to an algebraic problem amenable to the above
nilpotent-orbit analysis: multi-centered non-extremal and extremal stationary so-
lutions can accordingly be formed from extremal single-centered constituents.

Summary

What has been developed is a quite general framework for the analysis of stationary
supergravity solutions using duality-symmetry orbits. The Noether-charge matrix
C satisfies a characteristic equation C 5 = 5c2C 3 − 4c4C in the maximal E8 cases
and C 3 = c2C in the non-maximal cases, where c2 ≡ 1

Tr h2
Tr C 2 is the extremality

parameter. Extremal solutions are characterized by c2 = 0, and C becomes nilpo-
tent (C 5 = 0 or C 3 = 0) on the corresponding extremal suborbits. BPS solutions
have a charge matrix C satisfying an algebraic ‘supersymmetry Dirac equation’
which encodes the general properties of such solutions. This is a stronger condi-
tion than the c2 = 0 extremality condition. The orbits of the 3D duality group G
are not always acted upon transitively by G. This is related to the failure of the
Iwasawa decomposition for noncompact divisor groups H∗. The Iwasawa failure
set corresponds to the extremal suborbits.
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