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An assessment of the Domain Reduction 

Method as an advanced boundary condition and 

some pitfalls in the use of conventional 

absorbing boundaries 

ABSTRACT: This paper assesses the performance of two commonly used absorbing 

boundaries in dynamic finite element analysis of geotechnical problems in 

conjunction with the domain reduction method (DRM). The DRM was originally 

developed by Bielak et al [1] to reduce the computational cost of seismological 

applications, while Yoshimura et al [2] showed that it can be effectively used as a 

boundary condition. In the present study a practical methodology is proposed which 

employs the cone boundary of Kellezi [3] on the outer boundary of the reduced (step 

II) model of the DRM. To verify the applicability of the proposed methodology, the 

results using both the cone boundary and the standard viscous boundary are compared 

with those using an extended mesh. Finally results using the DRM as a boundary 

condition are compared with those using conventional boundary conditions. Some 

common pitfalls in the use of absorbing boundaries are highlighted and guidance for 

their correct use in engineering practice is given.  

1 Introduction 
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 One of the major issues in dynamic finite element analyses of soil-structure 

interaction (SSI) problems is to model accurately and economically the far-field 

medium. The most common way is to restrict the theoretically infinite computational 

domain to a finite one with artificial boundaries. The reduction of the solution domain 

makes the computation feasible, but spurious reflections from the artificial boundaries 

can seriously affect the accuracy of the results. Numerous artificial boundaries have 

been proposed in the literature over the last 30 years, which can be broadly 

categorized into three major groups [4]: elementary, local and consistent. Elementary 

boundaries are the ones commonly used for static analyses (i.e. zero stress or zero 

displacement boundary conditions) and they thus cannot model the geometric 

spreading of energy towards infinity. However, they are efficient in cases where the 

radiation damping is not important, like soft soil – stiff rock interfaces. On the other 

hand, consistent boundaries (e.g. Lysmer and Waas [5] and Kausel [6]) have 

mathematically complex formulations and satisfy exactly the radiation condition at 

the artificial boundary. However they are rarely used in practice as they are 

computationally expensive, frequency dependent and their implementation in finite 

element codes is often problematic. Finally in the case of local boundaries, the 

radiation condition is satisfied approximately at the artificial boundary, as the solution 

is local
1
 in space and time. Local absorbing boundary conditions are widely used in 
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practice as they provide results in most cases of acceptable accuracy and are far less 

computationally expensive than the more rigorous consistent boundaries. While 

numerous boundary conditions have been proposed in the literature (e.g. Clayton and 

Engquist [7], Enqguist and Majda [8], Barry et al [9], Komatitsch and Tromp [10], 

etc), the standard viscous boundary of Lysmer and Kuhlemeyer [11] remains the most 

widely used one. Detailed reviews of the various boundary conditions can be found in 

Kausel and Tassoulas [4], Givoli [12], Tsykov [13] and Kontoe [14].  

 The present study assesses the performance of simple absorbing boundary 

conditions (i.e. local boundaries) when they are used in conjunction with the Domain 

Reduction Method (DRM). The DRM was originally developed for seismological 

applications by Bielak et al [1]. It is a two-steps sub-structuring procedure that aims at 

reducing the domain that has to be modelled numerically by a change of governing 

variables. The DRM has been implemented in the finite element code ICFEP (Potts & 

Zdravković [15] and further developed to deal with dynamic coupled consolidation 

problems (Kontoe [14]; Kontoe et al [16]). Figure 1 summarizes the two steps of the 

DRM. In the first step of the DRM, a simplified background model is analysed that 
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includes the source of excitation and the wave propagation path in a half-space, but 

only a crude representation of the area of interest (that contains localised geological 

features or geotechnical structures). Since structures or geological features of short 

wavelengths are eliminated from the background model, the computation cost of the 

step I analysis is very small compared to the cost of analysing the complete domain 

(Figure 1a), as larger elements can be used. The second step is performed on a 

reduced domain (Figure 1b) that comprises of the area of interest Ω and of a small 

external region Ω̂
+
. The seismic excitation is directly introduced into the 

computational domain, in the form of equivalent forces (and fluid flows if a coupled 

consolidation analysis is performed) calculated in the first step. Hence the effective 

nodal forces ΔP
eff

 (and fluid flows), calculated from the incremental displacements, 

velocities and accelerations computed in step I, are applied to the model of step II in 

the elements located within the boundaries Гe and Г. The perturbation in the external 

area ̂
+
 is only outgoing and corresponds to the deviation of the area of interest from 

the background model. 

Cremonini et al [17] used an earlier version of the DRM to show that this sub-

structuring technique can be successfully used in conjunction with local absorbing 

boundary conditions. Yoshimura et al [2] showed the applicability of the DRM in 

large scale three dimensional domains containing the causative fault and strong 

geological and topographical irregularities (e.g. sedimentary basins). Based on the 

results of their case study, they concluded that the method improves the performance 

of conventional boundary conditions like the standard viscous boundary of Lysmer 

and Kuhlemeyer [11]. Yoshimura et al [2] suggested that since the perturbation in the 

external area ̂
+
 corresponds only to the deviation of the area of interest from the 
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background model, the absorbing boundaries are required to absorb less energy and 

they therefore perform better. Assimaki et al [18] used a similar sub-structuring 

methodology to examine topographic effects on the seismic ground motion. In their 

model they prescribe the input motion in the form of effective forcing functions and 

they employ absorbing elements around the discretized domain.  

The aim of the present study is to show in a systematic way that the DRM, in 

conjunction with a conventional absorbing boundary (i.e. the standard viscous 

boundary of Lysmer and Kuhlemeyer [11]), can be efficiently used in the numerical 

modelling of geotechnical earthquake engineering problems as an advanced absorbing 

boundary condition. In this respect, a practical methodology is also proposed which 

employs the cone boundary of Kellezi [3] on the outer boundary of the reduced (step 

II) model of the DRM. To verify the applicability of the proposed methodology, the 

results using the cone boundary and the viscous boundary are compared with those 

using an extended mesh. The second part of the papers compares results using the 

DRM as a boundary condition with those obtained using conventional boundary 

conditions. Particular emphasis is placed on identifying common pitfalls in the use of 

conventional absorbing boundaries in engineering practice that can lead in erroneous 

results. 

2 Methodology 

 As noted earlier, the DRM has a dual role as it not only reduces the domain 

that has to be modelled numerically, but in conjunction with an absorbing boundary it 

serves as an advanced boundary condition. In particular, numerical examples by 
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Yoshimura et al [2] showed that the ground motion in the external area ̂
+ 

is 

generally small compared to the motion in the area Ω
+
 of the free-field model. Hence 

the absorbing boundaries perform better when incorporated in the DRM, as they are 

required to absorb less energy. In the present study the widely used standard viscous 

boundary of Lysmer and Kuhlemeyer [11] and the cone boundary of Kellezi [3] were 

incorporated in the DRM. 

 In two dimensions the mechanical equivalent of the standard viscous 

boundary is a system of two series of infinitesimal dashpots (which are integrated to 

give discrete nodal springs) oriented normal and tangential to the boundary of the 

mesh (Figure 2a), defined by: 

     uVρσ P
     (1) 

     vVρτ s
     (2) 

where u , v , σ and τ are the normal and the tangential velocities and stresses 

respectively, ρ is the mass density of the soil and VP,VS are the velocities of the P-

waves and S-waves respectively. In addition to the viscous dashpots, the cone 

boundary also consists of a series of infinitesimal springs oriented normal and 

tangential to the boundary of the mesh (Figure 2b). For plane strain analysis, the 

springs are defined by: 

     u
r2

V
ρσ

2

P     (3) 

     v
r2

V
ρτ

2

S     (4) 
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where r is the distance from the boundary node to the source location and u, v are the 

normal and the tangential displacements respectively. Thanks to the spring term, the 

cone boundary approximates the stiffness of the unbounded soil domain and it 

eliminates the permanent movement that occurs if only the viscous boundary is preset 

at low frequencies. This shortcoming of the viscous boundary has been widely 

recognised (e.g. Cohen & Jennings [19], Simons & Randolph [20], Siller et al [21] 

and Kellezi [3]). The limitation however of the cone boundary is the fact that the 

spring stiffness is a function of the distance (r) of the boundary from the source of 

excitation. Consequently, to date, the cone boundary has only been employed in 

problems with surface excitations (e.g. dynamic pile loading, moving vehicles) where 

the distance of a boundary from the source is known. In seismic SSI problems the 

distance from the seismic source (fault) is difficult to be accurately determined. 

Furthermore, even in cases where the location of the fault is known, modelling of the 

fault is rarely undertaken because it results in excessively large computational 

domains. The seismic excitation is typically applied along the bottom mesh boundary. 

If this is applied at the boundary nodes in terms of accelerations, equivalent velocities 

or displacements no absorbing boundary condition can be specified at the bottom 

boundary together with the excitation due to the finite element node constraints 

imposed. Absorbing boundary conditions can be applied at the bottom of the mesh 

together with the excitation, only if the excitation is in the form of forcing functions 

that result to the target input motion (i.e. step I of the DRM), since in that case the 

response of the bottom boundary nodes is not constrained. In addition, the cone 

boundary cannot be used at the lateral boundaries of the mesh, since the concept of 

geometrical spreading towards infinity does not apply in this case (i.e. it is not 

possible to determine r, as the source of excitation occurs along a complete mesh 
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boundary). In this section, a practical methodology is proposed which employs the 

cone boundary on the outer boundary of the reduced (step II) model of the DRM.  

 According to the DRM formulation, waves reaching the outer boundary Γ̂  

of the reduced domain (i.e. step II model) are only due to the deviation of the area of 

interest from the background model (i.e. step I model). In cases where the only 

additional element of the reduced domain is a structure (e.g. tunnel, retaining wall), 

the perturbation in Ω̂  is only due to waves reflected from this structure. Therefore 

this structure can be considered as the “excitation source” for the external area Ω̂ . 

The idea is to calculate the stiffness terms of the cone boundary based on the distance 

of the structure from the boundary. Since the structure is not a point source and has 

finite dimensions, the theoretical value of the distance r for each boundary node needs 

to be approximated. Figure 3 illustrates a step II model of the DRM containing a 

structure ABCD. If the structure is considered as the “excitation source” for the area 

Ω̂ , the r of each boundary node can be approximated as the distance to the closest 

point of the structure. For example, along the boundary A1A2 r is the distance from the 

point A, along the boundary A2B1 r is constant equal to AA2  and along the boundary 

B1B3 r is the distance from the point B. In a similar way, the distance r can be 

calculated for the rest of the boundary nodes of Γ̂ . Numerical tests by Kellezi [22] 

and by Kontoe [14] show that the performance of the cone boundary is relatively 

insensitive to the dashpot and spring coefficients. Therefore, one would expect that 

the preceding approximation of r is sufficient.  
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3 Numerical results and discussions 

 In this section the proposed methodology is tested in a dynamic analysis of a 

cut and cover tunnel. Hence to verify the applicability of the cone boundary to the 

DRM, the reduced model of Figure 4 was used for the step II calculations. Prior to the 

dynamic analysis, a static analysis was undertaken to model the tunnel construction 

sequence. During the static analysis horizontal displacements were restricted along the 

outer boundary Γ̂  while vertical displacements were restricted along the bottom 

mesh boundary. Initially, the side walls of the tunnel were constructed as wished in 

place and the excavation was then performed in ten stages. During the excavation (i.e. 

of the elements originally occupying the tunnel), the walls were supported by 

restricting their horizontal movement. Subsequently, the bottom and the top slabs 

were constructed, the horizontal support to the wall was removed (i.e. the prescribed 

horizontal displacements were released) and the area above the top slab was 

backfilled with soil. In all analyses linear elastic drained soil behaviour was assumed. 

Equations 3 and 4 were used to calculate the springs’ stresses, treating the tunnel as 

the source of excitation, according to the procedure described in the previous section. 

Furthermore all step II analyses were repeated with the viscous boundary. 

 One of the advantages of the DRM is that one can achieve significant savings 

in the computational cost using a 1-D Finite Element column (extending down to the 

bedrock) as a background model in the step I analysis to calculate the free-field 

response. To demonstrate this feature of the DRM, a 1-D model of a soil column 4m 

wide and 612m deep was considered for the background analysis (i.e. step I). The 

column consists of 408 (2x204) 8-noded elements. Vertical displacements were 

restricted along the bottom and the side boundaries. The background analysis was 
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repeated for three acceleration sinusoidal pulses of periods To =1sec, 2sec and 4sec. 

The excitations with amplitude of 1m/sec
2
 were applied incrementally, with a time 

step equal to To/20, in the horizontal direction along the bottom boundary. The 

investigation time is only 6sec and the 1-D extended mesh is taken deep enough to 

prevent reflections from the bottom boundary to the area of interest. Although only 

the case of vertical incidence of the incoming seismic waves was considered in the 

present study, the DRM is generally applicable to arbitrary seismic excitation. 

  In all the analyses, the time integration was performed with the Generalised-

α method (Chung and Hulbert [23], Kontoe et al [24]) and both the soil and the cut 

and cover tunnel were modelled as linear elastic materials, with the material 

properties listed in Table 1. It should be noted that no material damping was 

considered for the validation examples. 

 To validate the applicability of the cone boundary, the step II analyses were 

also repeated with an extended mesh 933m wide and 466m deep. This model is taken 

big enough to prevent reflections from the boundary to the area of interest. Along the 

boundary Γ̂  of the extended mesh displacements were restricted in both directions. 

The validation model consists of 29522 8-noded elements and has the same element 

dimensions as the reduced model of Figure 4.  

 During the step I analyses the incremental displacements were calculated at 

various depths of the 1-D model. These were then used in the step II analyses to 

calculate the equivalent forces which were applied to the corresponding nodes of the 

step II models, located between the boundaries eΓ  and Г. It should also be highlighted 

that this verification example subjects the absorbing boundaries to severe test 
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conditions. It is widely accepted that the performance of local absorbing boundaries is 

more accurate for high frequencies (see for example Enqguist and Majda [8], Barry et 

al [9], Kellezi [22], Kontoe [14], etc). Therefore the selected low frequency excitation 

pulses challenge the limits of their capabilities. Furthermore, Kellezi [22] suggests 

that the absorbing boundary should not be placed closer than (1.2-1.5)λS from the 

excitation source, where λS is the wavelength of the SV-wave corresponding to the 

predominant period of the excitation. Considering the suggestion of Kellezi [22], it 

becomes clear that the absorbing boundaries have been placed very close (0.2 λS -0.7 

λS) to the tunnel, which in this case is the assumed “source” of excitation. 

 The response was monitored at the surface node C (50.0, 0.0) and at node D 

(60.0, -60.0) (Figure 4). It should be noted that these nodes lie in the internal area Ω, 

and they therefore record the total response (free-field response plus reflections from 

the structure). Figures 5-7 compare the predicted displacements of the three models 

(cone boundary, viscous boundary and extended mesh) for pulses of 3 periods (To = 

1.0s, 2.0s and 4.0s).  

 Since the loading is applied only in the horizontal direction, the horizontal 

response is dominant. However, due to multiple reflections from the tunnel, vertical 

displacements are also recorded at both nodes. Regarding the horizontal 

displacements, the results of both absorbing boundaries (cone, viscous) compare near 

perfectly with the ones of the extended mesh, irrespective of the period of the loading. 

 On the other hand, the accuracy of the vertical response predicted by both 

absorbing boundaries deteriorates as the period of the loading increases. However, 

considering that this numerical test is quite challenging for both absorbing boundaries, 
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it can be said that their performance is unexpectedly good. This can be attributed to 

their application in the external area of the DRM model, where they are required to 

absorb less energy. Comparing the viscous boundary with the cone boundary, it is 

clear that the cone boundary performs better for all periods. 

 Figure 8 shows the vertical acceleration response at nodes C, D for pulses of 

2 periods (To = 2.0s and 4.0s). Both absorbing boundaries seem to give more accurate 

results in terms of vertical accelerations than in terms of vertical displacements. This 

is not surprising, as the acceleration response is dominated by the higher frequencies 

of the system. Figure 9 shows the displacement response at node G (82.0, -82.0) (see 

Figure 4), which is located very close to the outer boundary Γ̂ , for pulses of 2 

periods (To = 2.0s and 4.0s). The response recorded at node G is purely due to 

reflections from the structure. Hence, the horizontal displacements are much smaller 

than the ones recorded at nodes C, D, whereas the vertical displacements are of the 

same order of magnitude. The errors associated with both absorbing boundaries are 

larger in the plots of horizontal displacements. The vertical displacements predicted 

by the cone boundary are however more accurate than those predicted by the viscous 

boundary. For example in Figure 9b the error in predicting the maximum response of 

the viscous boundary is 62% at t=3.8s, while the corresponding error of the cone 

boundary is 16%.  

 Figure 10 plots the vertical displacement response recorded at nodes Q (13.0, 

-1.0), R (15.0, -2.0) of the structure and the corresponding axial force time histories at 

integration points Q’(13.5, -1.0) and R’ (15.0, -2.5) computed by the three models for 

T=4.0s. The structural response reveals that the two absorbing boundaries compare 

very well with the extended mesh both in terms of displacements and axial forces. 
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However, the viscous boundary is consistently slightly less accurate than the cone 

boundary. For example in Figure 10a the viscous boundary under predicts the 

maximum displacement by 7.0%, while the corresponding error for the cone boundary 

is 0.5%. 

 Overall, the validation examples have shown that the cone boundary can be 

used in the reduced model of the DRM. It has also been observed that the ability of 

both absorbing boundaries to absorb reflected waves is very similar, although the cone 

boundary seems to give slightly more accurate results. 

 In the preceding example the excitation was a simple pulse and the 

investigation time was limited to avoid reflections from the Dirichlet boundaries of 

the extended model. In order to compare the performance of the two absorbing 

boundaries in a more realistic scenario, the previous analysis was repeated with an 

earthquake excitation. The UNAM acceleration time history, recorded during the 

1985 Mexico earthquake, was the input motion for the step I analysis. The 1-D 

background model was subjected to 60 seconds of the filtered recording with a time 

step of 0.01 sec (Figure 11a). A fourth order band-pass Butterworth filter was used to 

remove the extreme low (f<0.1Hz) and high frequency (f>25Hz) components of the 

record. The Mexico acceleration time history was specifically selected for its low 

frequency content (see Figure 11b).  

 Figure 12 shows the displacement response recorded at nodes C, D for both 

absorbing boundaries. As observed with the sinusoidal excitation results, both 

boundaries give near identical results in terms of horizontal displacements. Regarding 

the vertical displacements the viscous boundary predicts up to a 30% lower response 
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than the cone boundary. Furthermore, the two absorbing boundaries predict identical 

acceleration time histories, which are not included herein for brevity. As the system 

was subjected to a particularly low frequency excitation, one would expect 

considerable differences in the predicted responses of the two boundaries. This is not 

the case, due to the improved performance of the viscous boundary when used in the 

external area of the DRM model. 

4 Comparison with a conventional method of analysis 

 One of the basic requirements in dynamic analyses of SSI problems is that 

the width of the mesh and the lateral boundary conditions are such that free-field 

conditions (i.e. one-dimensional soil response) occur near to the lateral boundaries of 

the mesh. As mentioned earlier, in conventional analyses the seismic excitation is 

typically applied as an acceleration time history along the bottom mesh boundary at 

the soil-rock interface. Furthermore, local boundaries are usually applied along the 

lateral sides of the mesh. The major limitation of this approach is that free-field 

conditions are very difficult to recover along the lateral sides of the mesh. There are 

numerous examples of dynamic SSI analyses in the literature where such a 

configuration is adopted: analyses of piles [25, 26], retaining walls [27, 28], tunnels 

[29] etc. 

 In this section the ability of the DRM as a boundary condition to attain free-

field conditions at the lateral sides of the mesh is compared with that of conventional 

analysis. The numerical model of Figure 4 was employed for the conventional 

analysis, applying the standard viscous boundary along the lateral sides of the mesh. 
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The DRM model (denoted as DRM+SVB in future discussions) was compared with 

the conventional one (denoted as SVB in future discussions) for two sets of analyses. 

The seismic excitation in the first set of analyses was the north-south KJMA 

acceleration time history, recorded during the 1995 Kobe earthquake, while for the 

second set of analyses the north-south Veliki acceleration time history, recorded 

during the 1978 Montenegro earthquake, was used. Figure 13 shows the normalised, 

with respect to the peak ground acceleration, acceleration response spectra of the two 

excitations. In both sets of analyses, the acceleration time history was applied 

incrementally in the horizontal direction along the base of the mesh, while the 

corresponding vertical displacements were restricted. For the step I DRM analysis a 1-

D model of a soil column 2m wide and 86m deep, consisting of 172 8-noded 

elements, was considered. Vertical displacements were restricted along the bottom 

and the side boundaries. To allow comparison with the conventional analysis the 

numerical model of Figure 4 was also employed in the step II DRM analysis. The 

standard viscous boundary was applied along the lateral sides of the mesh, while 

horizontal and vertical displacements were restricted along the bottom boundary. Prior 

to the dynamic analyses, the construction sequence was simulated to establish the 

initial stress state as described in the previous section. In all analyses 2% Rayleigh 

damping was employed. The values of the Rayleigh damping coefficients (A and B) 

are listed in Table 1. 

 As the main focus of this section is to compare the ability of the two 

boundary conditions to simulate the free-field response in the far field, i.e. at some 

distance away from the structure, the response at various distances from the axis of 

symmetry of the 2D FE models (see Figure 4), is compared with the one computed 
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with the 1D model. Hence, Figure 14 plots the loci of maximum horizontal 

displacement with depth computed with the DRM+SVB model (at x=58.0), the SVB 

model (at x=58.0 and 78.0m) and the 1D model. The DRM+SVB response compares 

very well with the 1D one for both excitations. Thus the free-field conditions seem to 

be attained at x=58.0m. Note that the two points for z=-68.0 and -78.0m of the 

DRM+SVB model have not been plotted as they refer to the external area of the 

DRM, where only the relative response to the free field one is computed. On the other 

hand the SVB model response significantly differs from the 1D one for both 

excitations. The inability of the SVB model to reproduce free-field conditions appears 

to be more pronounced for the KJMA excitation than for the Veliki one. As 

previously discussed it is widely accepted that the performance of local absorbing 

boundaries is less accurate for low frequencies. Therefore the difference in the 

performance of the SVB for the two excitations could be attributed to the richer 

frequency content of the KJMA in the low frequency range (i.e. T>0.5s in Figure 13). 

Furthermore, one would expect the predicted response by the SVB model to match the 

1D response for large distances from the axis of symmetry. On the contrary, it is 

interesting to note that the greater is the distance from the axis of symmetry the lower 

is the SVB response.  

 Figures 15 and 16 compare the horizontal displacement time histories 

recorded at node T (see Figure 4) of the DRM+SVB and SVB models with the 

corresponding ones of the 1D model for the KJMA and Veliki excitations 

respectively. The curves for the DRM+SVB and 1D models are indistinguishable for 

both excitations, verifying the ability of the DRM+SVB model to reproduce free-field 

conditions away from the structure. Conversely the predicted response by the SVB 
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model is significantly different from the 1D situation both in terms of amplitude and 

frequency content. These differences are again more pronounced for the KJMA 

excitation. Since the main objective of a SSI analysis is the realistic modelling of the 

structural response, Figure 17 compares the axial force, bending moment and shear 

force time histories computed by the DRM+SVB and SVB models monitored at the 

integration point Q’ (13.5, -1.0) of the structure. Significant differences can be 

observed in the plots of axial force, bending moment and shear force time histories. 

The differences in terms of the maximum predicted value are 6%, 28% and 29% for 

the axial force, bending moment and shear force time histories respectively.  

 The inability of the SVB model to reproduce the 1D free-field response at the 

side boundaries of the mesh seems to significantly affect the structural response and it 

can be attributed to the poor performance of the viscous dashpots. It is widely known 

that the viscous boundary is exact for perpendicularly impinging waves. Furthermore, 

for both 2D and 3D cases, optimal absorption is achieved for angles of incidence 

greater than 30 (when the angle is measured from the direction parallel to the 

boundary). At large distances from the excitation source the waves propagate one-

dimensionally in approximately the direction of the normal to the artificial boundary. 

Consequently, the performance of the viscous boundary improves significantly the 

farther it is placed away from the source of excitation. In the 2D model of Figure 4, 

the dashpots were placed very close to the seismic excitation (which was applied 

along the bottom boundary of the mesh), especially at the bottom corners of the mesh, 

and the shear waves propagate in a direction parallel to the viscous boundary. To 

further investigate this, analyses were carried out with wider meshes. The two sets of 

analyses (i.e. for the Veliki and KJMA records) were initially repeated with a mesh of 



18 

total width of 204.0m. Figure 18 compares the loci of maximum horizontal 

displacement with depth computed by the DRM+SVB (at x=58.0) and the SVB (at 

x=58.0, 78.0 and 98.0m) models using the 204x86m mesh, with the one obtained by 

the 1D model. Comparing Figures 14 and 18, it can be observed that the DRM+SVB 

model is insensitive to the width of the mesh, predicting very well the free-field 

response for both meshes and excitations. Conversely the performance of the SVB 

model appears to be mesh dependent, tending to improve as the width of the mesh 

increases. The improvement of the SVB performance is more noticeable for the Veliki 

record, while for the KJMA it still severely over-damps the response. Hence, once 

more, the accuracy of the SVB model seems to depend on the frequency content of 

the excitation. Therefore when using the SVB configuration the same mesh width 

cannot be necessarily used for excitations of different frequency content. To further 

investigate the sensitivity of the SVB model to the width of the mesh, the analyses for 

the KJMA record were repeated using a mesh of total width of 300.0m. Some 

indicative results from these analyses are presented in Figure 19. Clearly the SVB 

model, even when a 300m wide mesh is used, still under-predicts the free-field 

response. Comparing Figures 15b and 19b it becomes evident that when a large mesh 

is used the SVB response is more comparable with the 1D one, especially for the first 

10sec of the earthquake. However, in order to get acceptable representation of the 

free-field response for the KJMA record with the SVB model, one should clearly use 

an even wider mesh. 

 Table 2 summarizes the computational cost of all the analyses. The 

computational cost of the DRM+SVB model is no more than 2.3% higher than the 

cost of the SVB model for all the analyses. However it was shown that when using the 
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DRM method one can use a very small mesh, while the SVB model requires the use 

of a significantly wider mesh (actually an even larger mesh is needed to obtain similar 

accuracy as explained above). Therefore for the KJMA excitation the computational 

cost of the SVB model is at least 30% higher than the one of the DRM+SVB model. 

Acceptable accuracy would be achieved with the conventional configuration only 

using uneconomically large meshes. This demonstrates the superiority of the DRM 

solution, as it gives accurate predictions using a significantly smaller model than 

conventional methods.  

 It has also been demonstrated that the poor performance of the SVB model 

can be attributed to the misuse of the viscous boundary. The excellent performance of 

the viscous dashpots in the DRM+SVB model verifies this speculation. In the DRM 

simulation the excitation was introduced into the mesh and the motion in area Ω̂
+
 (see 

Figure 4) was only outgoing, due to reflections from the structure. Hence in the 

DRM+SVB model the viscous boundary performed well because it was placed away 

from the excitation and had to absorb less energy.  

5 Conclusions 

 The great advantage of the DRM is that the excitation is directly introduced 

into the computational domain, leaving more flexibility in the choice of appropriate 

boundary conditions. Hence, a methodology has been suggested which employs the 

cone boundary on the external boundary Γ̂  of the reduced domain. A cut and cover 

tunnel was analysed with both the cone and the viscous boundary. To verify the 

applicability of the cone boundary, the step II analyses were repeated with an 
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extended mesh. The cone boundary was found to be slightly superior to the viscous 

boundary. Both boundaries were subjected to a challenging numerical test and they 

both performed very well.  

 Furthermore the ability of the DRM as a boundary condition to attain free-

field conditions near the far boundaries of the mesh was compared with that of 

conventional analysis. For the conventional model a widely used configuration was 

employed: the excitation was applied at the bottom of the mesh, while the standard 

viscous boundary was applied along the two lateral sides. This arrangement failed to 

reproduce the free-field response and led to underestimation of both the soil and the 

structural response in the near field with respect to the DRM analysis. Furthermore, 

the conventional model was found to be very sensitive both to the mesh size and the 

frequency content of the excitation. The poor performance of the conventional model 

can be attributed to the fact that the dashpots were placed very close to the excitation 

(i.e. bottom boundary of the mesh). Conversely the viscous dashpots performed very 

well when they were used together with the DRM method. The DRM model 

essentially allowed the dashpots to be placed at some distance from the excitation as 

they only had to absorb the scattered energy from the structure.  

 Although all the above considerations where performed for a linear elastic 

system, the procedures are expected to be applicable to problems with nonlinear 

material behaviour (in the internal area of the DRM model). However the magnitude 

of any errors introduced due to the use of local boundaries with constant viscosity and 

stiffness values in the analysis needs to be further investigated. 



21 

6 References 

1 Bielak J., Loukakis K., Hisada Y. & Yoshimura C. (2003), “Domain Reduction 

Method for Three-Dimensional Earthquake Modeling in Localized Regions, Part 

I: Theory”, Bulletin of the Seismological Society of America, Vol. 93, No 2, pp. 

817-824. 

2 Yoshimura C., Bielak J., Hisada Y. & Fernández A. (2003), “Domain Reduction 

Method for Three-Dimensional Earthquake Modeling in Localized Regions, Part 

II: Verification and Applications”, Bulletin of the Seismological Society of 

America, Vol. 93, No 2, pp. 825-840. 

3 Kellezi L. (2000), “Local transmitting boundaries for transient elastic analysis”, 

Soil Dynamics and Earthquake Engineering, Vol.19, pp. 533-547.  

4 Kausel E. & Tassoulas J. L. (1981), “Transmitting Boundaries: A closed-form 

comparison”, Bulletin of the Seismological Society of America, Vol. 71, No 1, 

pp.143-159. 

5 Lysmer J. & Waas G. (1972), “Shear waves in plane infinite structures”, Journal 

of Engineering Mechanics Division, ASCE Vol. 98, No. 1, pp.85-105. 

6 Kausel E. (1994), “Thin-layer method: formulation in time domain”, International 

Journal for Numerical Methods in Engineering, Vol.37, pp.927-941. 

7 Clayton R.W. & Engquist B. (1977), “Absorbing boundary conditions for acoustic 

and elastic wave equation”, Bulletin of the Seismological Society of America, 

Vol. 67, No 6, pp. 1529-1541. 



22 

8 Engquist, M. & Majda, A. (1977), “Absorbing boundary conditions for the 

numerical simulation of waves” Journal of Mathematics of Computation, Vol.31, 

No.139, pp.629-651. 

9 Barry, A., Bielak J. & MacCamy, R.C. (1988), “On absorbing boundary 

conditions for wave propagation” Journal of Computational Physics, Vol. 79, 

No.2, pp.449-468. 

10 Komatitsch, D. & Tromp J.(2003), “A perfectly matched layer absorbing 

boundary condition for the second-order seismic wave equation”, International 

Geophysical Journal, Vol. 154, No.1, 146–153. 

11 Lysmer J. & Kuhlemeyer R.L. (1969), “Finite dynamic model for infinite media” 

Journal of the Engineering Mechanics Division, ASCE, Vol.95, No.4, pp. 859-

877. 

12 Givoli D., (1991) “Non-reflecting boundary conditions” Journal of Computational 

Physics, Vol. 94, No.1, pp.1-29. 

13 Tsynkov, S.V. (1998), “Numerical solution of problems on unbounded domains. 

A review.”, Applied Numerical Mathematics, Vol.27,pp. 465-532.  

14 Kontoe S. (2006), “Development of time integration schemes and advanced 

boundary conditions for dynamic geotechnical analysis”, PhD thesis, Imperial 

College, London. 

15 Potts D.M. & Zdravković L.T. (1999), Finite element analysis in geotechnical 

engineering: theory, Thomas Telford, London. 



23 

16 Kontoe S., Zdravković L. & Potts D.M. (2007) “The Domain Reduction Method 

for dynamic coupled consolidation problems in geotechnical engineering” 

International Journal for Numerical and Analytical Methods in Geomechanics, in 

press, doi: 10.1002/nag.641.  

17 Cremonini M.G. & Christiano P. & Bielak J. (1988), “Implementation of the 

effective seismic input for soil-structure interaction systems”, Earthquake 

Engineering & Structural Dynamics, Vol. 16, pp. 615-625. 

18 Assimaki, D., Gazetas, G. & Kausel, E. (2005), “Effects of local soil conditions on 

the topographic aggravation of seismic motion: parametric investigation and 

recorded field evidence from the 1999 Athens earthquake”, BSSA, Vol.95, No.3, 

pp. 1059-1089. 

19 Cohen M. & Jennings P.C. (1983), “Silent boundary methods for transient 

analysis” in Belytschko T. & Hughes T.J.R eds., Computational Methods for 

transient analysis, pp.301-360. 

20 Simons, H.A. & Randolph, M.F. (1986), Short Communication, “Comparison of 

transmitting boundaries in dynamic finite element analyses using explicit time 

integration”, International Journal for Numerical and Analytical Methods in 

Geomechanics, Vol.10, pp.329-342. 

21 Siller, T.J., Christiano, P.P. & Bielak, J. (1991), “ Seismic response of tied-back 

retaining walls”, Earthquake Engineering & Structural Dynamics, Vol.20, pp.605-

620.   



24 

22 Kellezi L. (1998), “Dynamic soil-structure interaction transmitting boundary for 

transient analysis”, PhD Thesis, Department of Structural Engineering and 

Materials, Technical University of Denmark. 

23 Chung J. & Hulbert, G.M. (1993), “A time integration algorithm for structural 

dynamics with improved numerical dissipation: the generalized-α method”, 

Journal of Applied Mechanics, Vol. 60, pp. 371–375. 

24 Kontoe S., Zdravković L. & Potts D.M. (2007) “An assessment of time integration 

schemes for dynamic geotechnical problems”, Computers and Geotechnics, 

accepted, in press. doi:10.1016/j.compgeo.2007.05.001. 

25 Brown D.A., O’Neill M.W., Hoit M., McVay M., El Naggar M.H. & Chakraborty 

S., (2001), “Static and Dynamic Lateral Loading of Pile Groups”, NCHRP report 

461, National Academy Press, Washington, D.C. 

26 Maheshwari B.K., Truman K.Z., El Naggar M.H. & Gould P. L. (2004), “Three-

dimensional finite element nonlinear dynamic analysis of pile groups for lateral 

transient and seismic excitations” Canadian Geotechnical Journal, Vol. 41, pp. 

118-133. 

27 Woodward P.K. & Griffiths D.V. (1996), “Comparison of pseudo-static and 

dynamic behaviour of gravity retaining walls”, Geotechnical and Geological 

Engineering, Vol.14, pp. 269-290.  

28 Tsopanakis Y., Psarropoulos P.N. & Tsimpourakis S. (2007), “Dynamic 

interaction between retaining walls and retained structures”, Proceeding of the 4
th

 



25 

International Conference on earthquake Engineering, paper No1270, Thessaloniki, 

Greece.  

29 Bilotta E., Lanzano G., Russo G., Santucci de Magistris F., Aiello V., Conte E., 

Silvestri F. & Valentino M. (2007), “Pseudotsatic and dynamic analyses of tunnels 

in transversal and longitudinal directions.” Proceeding of the 4
th

 International 

Conference on earthquake Engineering, paper No1550, Thessaloniki, Greece.  



26 

 

7 Appendix: Notation 

E΄ Young’s modulus. 

u and v  Displacement components. 

r  Distance from the boundary nodes to the source location. 

VP Compression wave velocity of propagation. 

VS Shear wave velocity of propagation. 

 Bulk unit weight of soil. 

  Boundary between the internal (Ω) and the external area (  ) in the domain 

 reduction method. 

  Outer boundary of the external area (  ) in the domain reduction method. 

̂  Outer boundary of the external area ( ̂ ) of the reduced model in the domain 

 reduction method. 

eΓ  Boundary within the external area of the background model in the domain 

reduction method defining a strip of elements between eΓ  and  .  

Δt Incremental time step. 

λS Wavelength of the SV-wave corresponding to the predominant period of the 
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 excitation. 

v  Poisson’s ratio. 

ρ  Material density. 

σ, τ  Normal and tangential stresses respectively. 

Ω Internal area of both the reduced and the background models in the domain 

 reduction method. 

  External area of both the reduced and the background models in the domain 

 reduction method. 

0  Internal area of the background model in the domain reduction method. 

̂  External area of the reduced model in the domain reduction method.
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Figure 1: Summary of the two steps of DRM (after Bielak et al [13]) 
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Figure 2: Mechanical representation of the standard viscous boundary (a) and the cone 

boundary (b). 
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Figure3: Step II model of the DRM containing a structure ABCD 
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Figure 4: Mesh discretization. 
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Figure 5: Comparison of the displacement response at nodes C, D for a pulse of To =1.0s 
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Figure 6: Comparison of the displacement response at nodes C, D for a pulse of To =2.0s 
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Figure 7: Comparison of the displacement response at nodes C, D for a pulse of To=4.0s 
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Figure 8: Comparison of the acceleration response at nodes C, D for pulses of To=2.0, 

4.0s. 
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Figure 9: Comparison of the displacement response at node G for pulses of To=2.0s ,4.0s. 
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Figure 10: Comparison of vertical displacement and axial force time histories at nodes Q, 

R and integration points Q’, R’ respectively for T=4.0s. 
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Figure 11: Filtered acceleration time history (a) and response acceleration spectrum (b) 

of the 1985 Mexico earthquake. 
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Figure 12: Comparison of the displacement response of nodes C, D 
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Figure 13: Normalised acceleration response spectra of KJMA and Veliki records  
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Figure 14: Maximum horizontal displacement profiles for (a) KJMA and (b) Veliki 

excitations computed with the 1D, DRM+SVB and SVB models  
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Figure 15: Comparison of the horizontal displacement time histories recorded at node T 

of the (a) DRM+SVB and (b) SVB models with the corresponding ones of the 1D model 

for the KJMA excitation. 
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Figure 16: Comparison of the horizontal displacement time histories recorded at node T 

of the (a) DRM+SVB and (b) SVB models with the corresponding ones of the 1D model 

for the Veliki excitation. 
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Figure 17: Time histories of (a) axial force, (b) bending moment and (c) shear force 

computed by the DRM+SVB and SVB model integration point Q’ of the structure. 
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Figure 18: Maximum horizontal displacement profiles for (a) KJMA and (b) Veliki 

excitations computed with the 1D, DRM+SVB and SVB models using the 206x86 mesh. 
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Figure 19: Maximum horizontal displacement profiles (a) and comparison of the 

horizontal displacement time history recorded at node T of the SVB model with the 

corresponding one of the 1D model for the KJMA excitation using the 300x86mesh (b). 
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9 Tables 

Table 1: Material properties 

 Soil Concrete 

E΄ (kPa) 50.0x10
3
 30.0x10

6
 

Vs (m/sec) 101.6 

. 

2170.0 

ν΄ 0.25 0.2 

γ (kN/m
3
) 19.0 24.0 

A 0.06496 0.06496 

B 2.69E-3  2.69E-3 

 

Table 2: Comparison of computational cost 

 KJMA VELIKI 

 Mesh 

176x86m 

Mesh 

204x86m 

Mesh 

300x86m 

 Mesh 

176x86m 

Mesh 

204x86m 

Computational 

cost (min) 

DRM+SVB 845 960 1213 576 655 

SVB 827 947 1204 566 640 

Percentage difference 

between the DRM+SVB & 

SVB  

2.2 1.4 0.8 1.8 2.3 

 


