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Abstract

We consider an evolving network of a fixed number of nodes. The allocation
of edges is a dynamical stochastic process inspired by biological reproduction dy-
namics, namely by deleting and duplicating existing nodes and their edges. The
properties of the degree distribution in the stationary state is analysed by use of
the Fokker-Planck equation. For a broad range of parameters exponential degree
distributions are observed. The mechanism responsible for this behaviour is illumi-
nated by use of a simple mean field equation and reproduced by the Fokker-Planck
equation. The latter is treated exactly except for an approximate treatment of the
degree-degree correlations. In the limit of zero mutations the degree distribution
becomes a power law with exponent one.

Keywords: Networks, Dynamics, Evolution, Degree distribution

1 Introduction: Networks and evolutionary dynam-

ics

Whenever a phenomena can be thought of in terms of components and relations between
components, the mathematical language of graph theory or networks may be helpful to
the description, analysis and the understanding of the relevant problem of interest. A
large amount of work is currently being done with the aim to understand the structure
and statistical properties of networks in the hope that certain aspects of the general
mathematical characterisation of network structure may be related to common functional
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properties, e.g. vulnerability to breakdown of part of the network (Biggs, 1994; Albert
& Barabasi, 2002; M. Newman, 2003).

Our aim in the present paper is to discuss an example of a persistently evolving
network of fixed size. The dynamics is driven by a Moran process(Moran, 1962) inspired
by evolutionary dynamics. A time step consists of two events. 1) a randomly selected
node is removed with all its attached edges and 2) a randomly selected node is selected
for duplication. When a node is removed all its edges disappear obviously as well. The
duplication event involves the creation of new edges. The daughter node inherits edges
with tunable probabilities. Mutations are represented in two ways. Firstly, the daughter
inherits edges to neighbours of the parent with a probability that can be smaller than
one. Secondly, edges to nodes not connected to the parent are added to the daughter
with a probability that may be larger than zero. Both these processes tends to make the
daughter differ from the parent. Finally the parent-daughter relationship suggests that
an edge should be established between daughter and parent with a certain probability.

Other models in the literature have considered aspects of the network dynamics de-
scribed above. For persistently growing networks the process consisting solely of the sec-
ond (duplication) step has been considered, e.g. in (Vázquez, 2003; Ipolatov, Krapivsky,
& Yuryev, 2005; Krapivsky & Redner, 2005). One finds typically power law degree distri-
butions. A model considering a stochastic combination of rewiring, addition of new links
and creation of new nodes were studied by Albert and Barabási in (Albert & Barabási,
2000). They found power law degree distributions with exponents above 2. When the
probability for rewiring of edges is above a certain limit the degree distribution becomes
exponential. A model consisting of adding and removing edges to a fixed set of nodes was
studied by Epstein and Wang(Epstein & Wang, 2002). The model generates power law
degree distributions. Power law degree distributions with exponents above 2 were also
found in other models of fixed node number in which preferential attachment is an explicit
part of the dynamics, see e.g. (Sarshar & Roychowdhury, 2004; Cheng & Tang, 2004;
Salathe, May, & Bonhoeffer, 2005). Our model, consisting of a fixed number of nodes,
produces typically exponential degree distributions, except in the limit of perfect inher-
itance where a degree distribution P (k) ∝ 1/k is obtained, i.e. power law distribution
with an exponent one.

The paper is organised as follows. In the next section we describe the dynamical
algorithm of the model and, to develop some intuition, discuss the degree distribution by
a simple mean field argument. Next we derive the Fokker-Planck equations for the degree
distribution and discuss approximations involved in these equations. In the discussion
and summary section we relate the simple node-and-edge model to emerging network
structures in the individual based Tangled Nature model (Anderson & Jensen, 2005;
Laird & Jensen, 2006b, 2007) of evolutionary ecology and we also discuss more broadly
the relevance of the simple node-and-edge dynamics and the results derived.

2 Simple node model

Let us consider the following simple node-and-edge model of a network of N nodes and
associated edges. The dynamics conserves the number of nodes. A timestep consists of
choosing a node at random and remove it together with all its connected edges. Next
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another node, a parent , is randomly selected from the remaining N−1 nodes and is
duplicated in the form of a daughter . All nodes connected to the parent are now given
connections to the daughter with probability Pe. All nodes unconnected to the parent are
given connections to the daughter with probability, Pn. An edge between the daughter
and parent is placed with probability Pp (For a similar model with Pn = 0 see (Farid &
Christensen, 2006)). These probabilities represent the degree of similarity or correlations
between daughter and parent. The daughter will be a complete copy of the parent if Pe =
1 and Pn = 0. It seems natural to allow for possible “interaction” between parent and
offspring, which is represented by the possibility of establishing an edge between parent
and offspring with probability pp. It it is straight forward to check in mean field(Laird &
Jensen, 2006a) that the described edge and node dynamics converges towards a steady
state network with a time averaged connectance

〈C〉 ≡ number of edges

maximum number of edges
=

Pn(N − 2) + Pp

N − 1 − (Pe − Pn)(N − 2)
. (1)

The dynamics is simple to simulate. The results are independent of initial configuration.
To make the transient very short one may start the simulation from a binomial network
of N nodes where edges between any two nodes are established with a probability equal
to the mean field connectance given in Eq. (1). After a short transient a steady state
is established. The time averaged degree distribution behave exponentially for all values
of the control parameters Pe, Pn and Pp (see Fig. 1 below and (Laird & Jensen, 2006a))
except in the limit Pe → 1 and vanishing Pn and Pp where the distribution falls of like
one over the degree. Inspired by the relation between the node-and-edge model and the
Tangled Nature model (see Sec. 4 below for details) we choose Pp equal to the connectance
in Eq. (1). I.e. we link Pe, Pn and Pp together by solving the equation Pp = 〈C〉 and
obtain

Pn =
Pp(1 − Pe)

1 − Pp
(2)

We will in a moment write down the complete Fokker-Planck equation for the degree
distribution of a network evolving according to the process described above. The full
equation is, however, rather involved and can only be solved by numerical iteration. It is
therefore illuminating to make the following simplistic and heuristic considerations. Let
nk(t) denote the number of nodes of degree k after t timesteps. Let us focus solely on
the following aspects of the dynamics:
1) Removal: a node of degree k is selected for annihilation, this occurs with probability
nk(t)/N . Nodes sharing edges with the removed node decreases their degree by one. The
probability that a node of degree k ends up as a degree k − 1 node through this process
is krnk(t)/N �→ 〈k〉nk(t)/N , where the degree kr of the removed node is replaced by the
average degree.
2) Duplication: the process of attaching edges to the new daughter node will increase
the degree of existing nodes with probabilities that depend on whether these share edges
with the parent node or not. A node receives an edge because it is selected to become a
neighbour of the daughter (of a degree kp parent) with probability

(Pekp + Pn(N − 1 − kp))]
nk(t)

N
] �→ [Pe〈k〉 + Pn(N − 1 − 〈k〉)]nk(t)

N
. (3)
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As we are seeking a qualitative self-consistent mean field equation, we substituted the
average degree 〈k〉 in the last expression. A parent node of degree k receives an edge to
the daughter, this occurs with probability Ppnk(t)/N . It is in general rather complicated
to estimate the probability with which the new daughter node ends up with a specific
degree (see Sec. 3 below for details). However in the limit Pe → 1 and Pn → 0 the
probability that the daughter is allocated k edges can be estimated as

Pp
nk−1

N
+ (1 − Pp)

nk

N
+ O(Pn). (4)

The first term corresponds to the daughter connecting to the parent and inheriting k− 1
edges from the parent. The second term corresponds to no edge between parent and
daughter and k edges inherited. Here, and in the following few equations, we denote by
O(Pn) those terms of order Pn arising from the allocation of edges between the daughter
and nodes not connected to the parent node. We combine these events to obtain the
mean field equation for the evolution of nk(t)

nk(t + 1) = nk(t) +
1

N
[−nk + 〈k〉(nk+1 − nk)

+ (Pp + Pe〈k〉 + Pn(N − 1 − 〈k〉))(nk−1 − nk) + Ppnk−1 + (1 − Pp)nk]

+ O(Pn). (5)

In the stationary limit nk(t + 1) = nk(t) we obtain the following solution

nk+1 = αnk − βnk−1, (6)

where

β =
2Pp + (Pe − Pn)〈k〉 + Pn(N − 1)

〈k〉 + O(Pn) (7)

and α = 1 + β. Using the normalisation and the self-consistent equation

N =

N−1∑
k=0

nk and 〈k〉 =
1

N

N−1∑
k=0

knk, (8)

we obtain the exponential solution nk = n0 exp(−k/k0) with n0 = N(1−exp[−1/k0]) and

k0 = −1/ ln[1 − 1 + Pn − Pe

2Pp + Pn(N − 1) + 1
+ O(Pn)] 	 −1/ ln(

Pe + 2Pp

1 + 2Pp

), (9)

where the approximation refers to N 
 1 and the limit Pn → 0. The divergence of the
exponential cutoff in he limit Pe → 1 and Pp → 0 is in qualitative agreement with the
change in the exponential part of the degree distribution obtained in simulations of the
network, see Fig. 1. However, this simplistic mean field discussion is only of heuristic
value. We now present the full Fokker-Planck like equation for the process.
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Figure 1: Simulated degree distributions of the node model for N = 200 and Pp = 0.01
using the imperfect duplication process. From short to long tail we have Pe = 0.01, 0.25,
0.75, 0.95, 0.99, 0.999 and Pn was chosen to be given by Eq. (2) in order to keep the
connectance fixed (Laird & Jensen, 2007).

3 Fokker-Planck equation

Some care has to be observed when we develop the Fokker-Planck equation for the en-
semble averaged time dependent number of nodes of degree k, nk(t), constrained by the
condition,

∑
k nk(t) = N . Firstly, it is worth to mention that the equations are con-

cerned with the ensemble averaged quantity nk(t) and accordingly neglect “microscopic”
fluctuations in the number of nodes of degree. Secondly, to make a closed set of equa-
tions one needs to perform some kind of truncation of a hierarchy of equations which
couples the degree distribution to the degree-degree correlation function, which in turn
is coupled to triple correlation functions etc. This is usually the case. We will first write
down the equations formally including the needed degree-degree correlation function and
then make clear the nature of the heuristic approximation we have used to estimate this
correlation function.

We structure the analysis in the following way. Removal (R): The effect of removing,
from a population of N , a node and its edges described by a rate term ΓR(N, k, t).
Duplication (D): The effect of introducing, into a population of N − 1, a new daughter
node and attaching edges described by a rate term ΓDu(N − 1, k, t). Our equation has
accordingly the form.

nk(t + 1) = nk(t) + ΓR(N, k, t) + ΓDu(N − 1, k, t). (10)

Removal of a node affects the network in two ways: (Γr
R) the node removed from the

network and (Γa
R) the effect on the nodes adjacent, i.e. sharing edges, with the node

being removed. Therefore

ΓR(k) = −Γr
R(k) + Γa

R(k+1) − Γa
R(k). (11)

The effect of the duplication process is conveniently broken up into three sub-effects:
(Γp

Du) the effect on the parent, (Γd
Du) the effect on the daughter, (Γa

Du) the effect on the
adjacent nodes, i.e. those that will receive an extra edge as a result of the duplication.
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Hence
ΓDu(k) = Γp

Du(k−1) − Γp
Du(k) + Γd

Du(k) + Γa
Du(k−1) − Γa

Du(k). (12)

We have suppressed the timestep, t, and network size, N , for notational ease.
Next we derive detailed expressions for each of the terms above. The direct effect on

nk of removing a node of degree k is to decrement nk. The probability of selecting a node
of degree k is nk/N , and therefore,

Γr
R(k) =

nk

N
. (13)

After the removal, the degree of the nodes connected to the removed node, i.e. the
adjacent nodes, will decrease by one. For this we need the Edge probability,

PEd(k1, k2, q) = Prob{node of degree k1 is connected to q nodes of degree k2}. (14)

In general we do not have a closed analytic expression for PEd(k1, k2, q), but below we
give approximate forms neglecting, or treating non-rigorously, degree-degree correlations.
Here we note

Γa
R(k) =

N−1∑
kr=1

nkr

N

kr∑
q=1

qPEd(kr, k, q). (15)

The first sum is over the degree of the removed node, the second sum is over the number,
q, of nodes of degree k = 0, 1, ..., N−1 the removed node is connected to.

A node of degree k is selected for duplication with probability nk/(N − 1). The
daughter of this node receives an edge to the parent with probability Pp. Thus the parent
increases its degree by one with probability

Γp
Du(k) = Pp

nk

N − 1
. (16)

The new daughter node can add to nk by an amount determined by the probability of
finishing with k edges,

Γd
Du(k) = PpΛ(k − 1) + (1 − Pp)Λ(k). (17)

To keep track of the bookkeeping we have introduced a new probability

Λ(k) = Prob{daughter receives k edges to nodes different from the parent}, (18)

which is given by

Λ(k) =
N−2∑
kp=0

min[kp,k]∑
k1=0

min[N−2−kp,k]∑
k2=0

nkp

N − 1
δ(k1+k2−k)Ω(k1, k2, kp), (19)

The right hand side adds up the probabilities associated with the process where the
daughter inherits k1 edges to nodes already connected to the parent. Each of these edges
is inherited by the daughter with probability, Pe. The daughter may receive an additional
k2 = k−k1 edges to nodes not connected to the parent. Each of these edges are attached
to the daughter with probability Pn. The factor Ω(k1, k2, kp) denotes the probability that
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of k = k1 + k2 edges allocated to the daughter, k1 of the edges are inherited, i.e. these
edges connect to some of the kp nodes connected to the parent. In addition the daughter
receives k2 edges, which connect to nodes not connected to the parent. The probability
for this event is

Ω(k1, k2, kp) =

(
kp

k1

)
P k1

e (1−Pe)
kp−k1

(
N−2−kp

k2

)
P k2

n (1−Pn)N−2−kp−k2. (20)

Next we consider the effect of the duplication on the adjacent nodes and we need to
distinguish between nodes sharing an edge with the parent (Ed) and nodes not connect to
the parent (nEd). Let us first consider the Ed nodes. We introduced above PEd(kp, k, qE)
as the probability that a mode, here the parent, of degree kp is connected to qE nodes
of degree k. The duplication process will, with probability Pe, attach a new edge from
the daughter to each of these nodes and thereby increase their degree from k to k + 1.
Let us now turn to the nEd nodes. There are N − 2 − kp nodes which share no edge
with the parent. With probability PnPnEd(N − 2 − kp, k, qnE) a total of qnE of these
nodes are of degree k and will receive a new edged to the daughter. Here PnEd(N − 2 −
kp, k, qnE) is equivalent to PEd(N, k, q) introduced in Eq. (14), though PnEd(kp, k, qnE) is
concerned with the N − 2 − kp nodes that a node of degree kp (in a set of N − 1 nodes)
is not connected to. Among these N − 2 − kp nodes qnE have degree k with probability
PnEd(N − 2 − kp, k, qnE). Therefore we have,

Γa
Du(k) =

N−2∑
q=0

N−2∑
kp=0

kp∑
κ1=0

N−2−kp∑
κ2=0

κ1∑
q1=0

κ2∑
q2=0

δ(q1+q2−q)

q
nkp

N−1
PEd(kp, k, κ1)

(
κ1

q1

)
P q1

e (1−Pe)
κ1−q1

PnEd(kp, k, κ2)

(
κ2

q2

)
P q2

n (1−Pn)κ2−q2.

(21)

Degree-degree correlations induced by the evolutionary dynamics makes is difficult
to write an explicit form for PEd(k1, k2, q) and PnEd(k1, k2, q). The numerical simula-
tion show that the network is disassortative(M. E. J. Newman, 2003), i.e. nodes with
high degree tend to attach to nodes with low degree, and that the Pearson correla-
tion coefficient(M. E. J. Newman, 2003) decreases rapidly with size of the network and
with increased connectance. This numerical finding suggests that it makes sense to an-
alytically treat the degree correlations approximately. One can choose to neglect the
correlations altogether and try to estimate PEd and PnEd by purely binomial arguments
in the following way. First we deal with PEd(k1, k2, q). The k1 edges emerging from the
degree k1 node connects (in this approximation) to nodes of degree k2 with probability
(nk2 − δk1,k2)/(N −1) [remember there are N −1 nodes when the duplication takes place]
hence we use

PEd(k1, k2, q) =

(
k1

q

)(
nk2 − δk1,k2

N − 1

)q (
1 − nk2 − δk1,k2

N − 1

)k1−q

. (22)

When we treat PnEd(k1, k2, q) in the same approximation we obtain PnEd(k1, k2, q) =
PEd(N − 2 − k1, k2, q) since we now pick q nodes among the N − 2 − k1 nodes not

7



connected to the degree k1 node under consideration. It appears to be better to treat the
correlations by a somewhat different argument, which focus on the edge dynamics. This
approach leads to better numerically convergence towards the results obtained by direct
simulation (See Fig. 1 and Fig. 2). We use the the following urn argument. We place
M =

∑
k nk edges in an urn. The edges are of two types. Type A edges correspond to

the |A| = k2(nk2 − δk1,k2) edges connecting to nodes of degree k2. In addition we have
|B| = M −|A| type B edges connecting nodes of degree different from k2. The probability
that among k1 randomly picked edges q are of type A and k1 − q are of type B is given
by

PEd(k1, k2, q) =

(
k1

q

) (k2nk2

M

)q(
1 − k2nk2

M

)k1−q
. (23)

Again we assume PnEd(k1, k2, q) = PEd(N − 2 − k1, k2, q). In general it is not simple to
find analytic solutions to this somewhat involved set of equations. The result of iterating
the Fokker-Planck Eq. (10) using these estimates is shown in Fig. 2 for diversity N = 20,
which makes the numerical iteration manageable. We notice good qualitative agreement
with the behaviour of simulation results presented Fig. 1.

10 20
k

0.01

1

n(
k)

1 10
k

0.01

1

n(
k)

Figure 2: The degree distribution obtained by iteration of the Fokker-Planck equation
(10). The exponential form is visible for a broad range of parameter values in the linear-
log plot to the left. The approach towards a 1/k dependence in the limit of Pe → 1
can be seen in the log-log plot to the right. The two straight lines have slope -1. The
parameters are N = 20, Pe = 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95 and Pp = 0.01. Pn was
chosen to be given by Eq. (2).

Let us finally mention that direct simulations (Laird & Jensen, 2006a) of the simple
model described in Sec. 2 show that in the limit Pe → 1, Pn → 0 and Pp � 1 the
degree distribution nk behaves like 1/k. The Fokker-Planck equation Eq. (10) confirms
this result. In the limit Pe = 1 and Pn → 0 (i.e. perfect replication) the Fokker-Planck
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equation reduces to

nk(t + 1) = nk(t) + nk(
1

N − 1
− 1

N
) +

2Pp

N − 1
(nk−1 − nk)

+
N−2∑
k1=1

k1∑
q=1

qnk1[
1

N
PEd(k1, k + 1, q) − 1

N − 1
PEd(k1, k, q)

− 1

N
PEd(k1, k, q) +

1

N − 1
PEd(k1, k − 1, q)]. (24)

Including only the leading terms from k1 = 1 and q = 1 one obtains

nk(t + 1) = nk +
nk

N(N − 1)
+

2Pp

N − 1
[nk−1 − nk]

+
n1

M
[
1

N
{(k + 1)nk+1 − knk} − 1

N − 1
{knk − (k − 1)nk−1}]. (25)

In the limit N 
 1 and Pp � 1 this equation has the stationary solution nk ∝ 1/k. For
detailed numerical study of the 1/k behaviour see (Laird & Jensen, 2006a).

4 Summary and Discussion

Let us now briefly address the relevance of the simplistic network model discussed above.
The inspiration to the model came from a study of emergent networks in the individual
based Tangled Nature(Christensen, Collobiano, Hall, & Jensen, 2002; Laird & Jensen,
2006b, 2007). The basic of the Tangled Nature model (Christensen et al., 2002; Laird &
Jensen, 2006b, 2007) is as follows. Individuals, {α, β, ...} are described by type vectors
Tα = (Tα

1 ,Tα
2 , ...,Tα

L ). The number of individuals of type T at time t is denoted by
n(T, t). Different types influence each other through an interaction matrix (J-matrix)
that accounts for all possible interactions between any possible set of types. Once the
matrix J is defined it never changes. The dynamics consists of the configuration of
occupied types changing around in the fixed space given by the positions T and the
coupling matrix J. Selection leads to only a small fraction of types being occupied and
their interactions will be described by a small subset of the elements of this complete
matrix. Species are defined as emergent structures in the type space in the following way.
At time t the local maxima, Tmax, of the occupancy n(T, t) are identified. All occupied
types within a distance from a given Tmax smaller than the correlation length of the
matrix J are considered to belong to the species defined by Tmax.

The structure of the interaction network between extant species is found to depend on
the statistical properties of J. A proportion, θ, of the elements of the J-matrix, J(Tα,Tβ)
are assigned non-zero (and non symmetric) values all other elements are zero. The inter-
actions assigned in the type space can either be uncorrelated (Hall, Christensen, Collo-
biano, & Jensen, 2002; Anderson & Jensen, 2005), or correlated (Laird & Jensen, 2006b,
2007). If no correlations are present in the type space the evolved networks of interac-
tions between extant species exhibit a binomial degree distribution as does the underlying
network of non-zero J-matrix elements (Anderson & Jensen, 2005). The correlated case
is more interesting and the one of relevance to the this paper. Correlations are made to
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decay exponentially with separation in type space. This implies that off-spring will see a
set of interactions which are very similar to the interactions of the parent even when mu-
tations make the off-spring differ slightly from the parent. When correlations are present
in J the evolutionary dynamics is able to generate a network of interactions, between ex-
tant species, described by an exponential degree distributions. This is very different from
the binomial distributions exhibited by a network constructed by randomly seleceting
positions in the same type space. This is interesting since Stumpf and co-workers have
studied the properties of sub-networks obtained by random sampling nodes in a larger
network (Stumpf & Wiuf, 2005). They showed that only binomial (or Poisson) networks
are invariant under decimation. If the large network has a binomial degree distribution a
randomly sampled subset of the network will also exhibit a binomial degree distribution.
The results derived by Stumpf et al. are concerned with the statistical properties of sub-
nets obtained by random sampling. What we have found is that evolutionary dynamics is
able to generate sub-networks typically characterised by exponential degree distributions,
even when the full network has a binomial degree distribution.

The simple node-and-edge model discussed in Sec. 2 can be seen as the explanation
of how the evolutionary dynamics is able to produce sub-networks with a degree distri-
bution of a functional form totally different from the one describing the entire network,
from which they are sampled. A qualitative link between the Tangled Nature model and
the simple node-and-edge model can readily be established. To understand this phe-
nomenology of the Tangled Nature model we now neglect the fluctuations present at the
level of individual based dynamics and assume a more coarse grained view point in which
we consider species as either occupied or not. I.e. we turn the coarse grained measure
n(T, t) into a binary equal to 1 when n(T, t) > 0 and zero when n(T, t) = 0. We consider
the dynamics at the level of species which implies that creation events correspond to one
species splitting into two species (a speciation event) and annihilation events correspond
to a species going extinct. We elevate the dynamics of the individual based Tangled
Nature model to the level of species and describe this high level dynamics by the node-
and-edge model. The more correlated the interaction matrix J of the Tangled Nature
model is, the more similar will the offspring species be to the parent, implying that the
edge probabilities Pe should be large and Pn small, respectively. If the connectance of
the interaction matrix J is large it is likely that the off-spring will end up with a link
to the parent species, i.e. the probability Pp should by high. An exact link between the
set of probabilities (Pe, Pn,Pp) of the node-and edge model and the parameters defining
the Tangled Nature model is not possible, nor is it needed, since the obtained results are
robust for a broad range of control parameters.

The exponential degree distributions found in the Tangled Nature model and in the
node-and-edge model may also be of relevance to naturally occurring food webs, see
e.g. (Dunne, Williams, & Martinez, 2002) and may also be of interest to protein-protein
interaction networks(Ipolatov et al., 2005; Mering et al., 2002).
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