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Abstract

We consider a solution xt to a generic Markovian jump diffusion and show that for any t0 > 0 the law

of xt0 has a C∞ density with respect to the Lebesgue measure under a uniform version of the Hörmander

conditions. Unlike previous results in the area the result covers a class of infinite activity jump processes.

The result is accomplished using carefully crafted refinements to the classical arguments used in proving

the smoothness of density via Malliavin calculus. In particular, we provide a proof that the semimartingale

inequality of J. Norris persists for discontinuous semimartingales when the jumps are small.

c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

This paper focuses on the study of the stochastic differential equation

xt = x +
∫ t

0

Z(xs−)ds +
∫ t

0

V (xs−)dWs +
∫ t

0

∫
E

Y (xs−, y)(μ − ν)(dy, ds), (1.1)

and addresses the fundamental problem of finding a sufficient condition for the existence of a

smooth (C∞) density for the solution at positive times. For diffusion processes the pioneering

work of Bismut [5] and Stroock [16,17] provides a probabilistic framework for establishing such

a result under the Hörmander conditions on the vector fields. As is pointed out in [17] it is, given

the existence of alternative methods based on partial differential equations, difficult to justify the
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effort involved in the probabilistic proof of this result purely for the sake of diffusion processes.

From the outset it was always understood that this approach should be used as a template

for investigating the smoothness properties for different probabilistic objects, not amenable to

analysis by the PDE theory. We now switch our focus to the question: when does a solution to
the SDE (1.1) admit a smooth density?

We point out that we are by no means the first to consider this problem and several prominent

landmarks are worthy of comment. The first comprehensive account of these ideas was presented

in [4], where a smoothness result is proved under a uniform ellipticity on the diffusion vector

fields (in fact [4] also explores how a smooth density can be acquired through the jump

component). Further progress was made in [13] and [11] where existence of the density was

shown under a version of the Hörmander conditions which are local in the starting point. Both

these works were successful in establishing a criterion for a smooth density namely that the

inverse of the (reduced) Malliavin covariance matrix has finite L p norms for p ≥ 2.

Verification of this criterion usually occurs by way of subtle estimates on the reduced

covariance matrix which are in general difficult to establish. In the diffusion case a streamlined

approach to obtaining these estimates has been achieved by a semimartingale inequality known as

Norris’s lemma (see [12] or [14]). This result, interesting in its own right, provides an estimate for

the probability that a continuous semimartingale is small on a set where its quadratic variation

is comparatively large. Traditionally, this result has been presented as a quantitative form of

the uniqueness of the Doob–Meyer decomposition for continuous semimartingales, however the

appearance of similar estimates in the context of fractional Brownian motion with H > 1/2

(not a semimartingale, see [2]) has made it seem as though Norris’s lemma expresses something

fundamental rather than anything tied to the particular structure of continuous semimartingales.

Some recent work in the case of jump diffusions has been undertaken in [6,9,10,15]. The

article [9] proves a smoothness result under uniform Hörmander conditions and under the

assumption that the underlying jump process is of finite activity. This is achieved by fixing

some T > 0, conditioning on NT = n, the number of jumps until time T , and noticing that

this gives rise to some (random) interval [S1(ω), S2(ω)) with 0 ≤ S1 < S2 < T such that

S2(ω) − S1(ω) ≥ T (n + 1)−1 and{
xx

t : S1 ≤ t < S2

} D={x̃
x x

S1
t : 0 ≤ t < S2 − S1

}
where x̃ x

t is the diffusion process

x̃ x
t = x +

∫ t

0

Z(x̃ x
s )ds +

∫ t

0

V (x̃ x
s )dWs .

The usual diffusion Norris lemma may be applied to give estimates for the Malliavin covariance

matrix arising from x̃t on this interval which can then easily be related to the covariance matrix

for xt . In this paper we pursue this idea further by proving that the quality of the estimate which

features in Norris’s lemma is preserved when jumps are introduced provided that these jumps are

small enough so that they do not interfere too much. We then develop the conditioning argument

outlined above by splitting up the sample path into disjoint intervals on which the jumps are

small, and then estimating the Malliavin covariance matrix on the largest of these intervals. The

outcome of this reasoning will be the conclusion that a solution to (1.1) has a smooth density

under uniform Hörmander conditions (indeed, the same conditions as in [9]) and subject to some

restrictions on the rate at which the jump measure accumulates small jumps. These conditions

are sufficiently flexible to admit some jump diffusions based on infinite activity jump processes.



This paper is arranged as follows. We first present some preliminary results and notation

on Malliavin calculus. Subsequently, we state and prove our new version of Norris’s lemma and

then illustrate how it may be utilized in concert with classical arguments to verify the C∞ density

criterion for the solution to (1.1).

2. Preliminaries

Let xt denote the solution to the SDE

xx
t = x +

∫ t

0

Z(xx
s−)ds +

∫ t

0

V (xx
s−)dWs +

∫ t

0

∫
E

Y (xx
s−, y)(μ − ν)(dy, ds), (2.1)

where Wt = (
W 1

t , . . . , W d
t
)

is an R
d -valued Brownian motion on some probability space

(Ω ,Ft , P) and μ is a (Ω ,Ft , P)-Poisson random measure on E × [0, ∞) for some

topological1space E such that ν, the compensator of μ, is of the form G(dy)dt for some σ -

finite measure G. The vector fields Z : R
e → R

e, Y (·, y) : R
e → R

e and V = (V1, . . . , Vd),

where Vi : R
e → R

e for i ∈ {1, . . . , d}, and where we will understand throughout that∫ t

0

U (s)dWs =
d∑

i=1

∫ t

0

Ui (s) dW i
s ,

for any U (t) = (U1(t), . . . , Ud(t)), with U (t) ∈ R
e and such that the stochastic integral makes

sense. At times we will write simply xt , dropping the emphasis on the starting point.
We introduce some notation, firstly for p ∈ R let

L p
+(G) =

{
f : E → R

+ :
∫

E
f (y)pG(dy) < ∞

}
,

and define

L p,∞
+ (G) =

⋂
q≥p

Lq
+(G).

We will always assume that at least the following conditions are in force.

Condition 1. Z , V1, . . . , Vd ∈ C∞
b (Re).

Condition 2. For some ρ2 ∈ L2,∞
+ (G) and every n ∈ N

sup
y∈E,x∈Re

1

ρ2(y)
|∇n

1 Y (x, y)| < ∞.

Condition 3. supy∈E,x∈Re | (I + ∇1Y (x, y))−1 | < ∞.

We now define the processes J x,I
t←0 and J x,I

0←t considered as linear maps from R
e to R

e as the

solutions to the following SDEs

J x,I
t←0 = I +

∫ t

0

∇Z(xx
s−)J x,I

s−←0ds +
∫ t

0

∇V (xx
s−)J x,I

s−←0dWs

+
∫ t

0

∫
E

∇1Y (xx
s−, y)J x,I

s−←0(μ − ν)(dy, ds) (2.2)

1 We will later need some vector space structure on E and will principally be concerned with the case E = Rn .



and

J x,I
0←t = I −

∫ t

0

J x,I
0←s−

(
∇Z(xx

s−) −
d∑

i=1

∇Vi (xx
s−)2

−
∫

E
(I + ∇1Y (xs−, y))−1∇1Y (xx

s−, y)G(dy)

)
ds −

∫ t

0

J x,I
0←s−∇V (xx

s−)dWs

−
∫ t

0

∫
E

J x,I
0←s−(I + ∇1Y (xx

s−, y))−1∇1Y (xx
s−, y)(μ − ν)(dy, ds). (2.3)

The following result may then be verified (see for instance [11]).

Theorem 1. Under Conditions 1–3 the systems of SDEs (2.1), (2.2) and (2.1), (2.3) have unique
solutions with

sup
0≤s≤t

|J x,I
s←0| and sup

0≤s≤t
|J x,I

0←s | ∈ L p

for all t ≥ 0 and p < ∞. Moreover,

J x,I
0←t =

(
J x,I

t←0

)−1
for all t ≥ 0 almost surely.

We define the reduced Malliavin covariance matrix

Cx,I
0,t = Cx,I

t =
∫ t

0

d∑
i=1

J x,I
0←s−Vi (xx

s−) ⊗ J x,I
0←s−Vi (xx

s−)ds

which we will sometimes refer to simply as Ct suppressing the dependence on the initial

conditions. The following well-known result provides a sufficient condition for the process xt
to have a C∞ density in terms of the moments of the inverse of Ct (see [11]).

Theorem 2. Fix t0 > 0 and x ∈ R
e and suppose that for every p ≥ 2

∣∣∣∣(Cx,I
t0

)−1
∣∣∣∣ ∈ L p, then xx

t0

has a C∞ density with respect to the Lebesgue measure.

3. Norris’s lemma

From now on we set E = R
n . The following result provides an exponential martingale type

inequality for a class of local martingales based on stochastic integrals with respect to a Poisson

random measure when the jumps of the local martingale are bounded. Interesting discussions on

results of this type can be found in [1,7].

Lemma 1. Let μ be a Poisson random measure on E × [0, ∞) with compensator ν of the form
ν(dy, dt) = G(dy)dt. Let f (t, y) be a real-valued previsible process having the property that

sup
y∈E

sup
0≤s≤t

| f (s, y)| < A a.s.

and ∫ t

0

∫
E

f (s, y)2 G(dy)ds < ∞ a.s.



for every 0 < t < ∞ and some A < ∞. Then, if Mt = ∫ t
0

∫
E f (s, y)(μ − ν)(dy, ds) the

following inequality holds

P

(
sup

0≤s≤t
|Ms | ≥ δ, 〈M〉t < ρ

)
≤ 2 exp

(
− δ2

2(Aδ + ρ)

)
.

Proof. Consider Zt = exp(θ Mt − α 〈M〉t ) with 0 < θ < A−1 and α = 2−1θ2(1 − θ A)−1. For

any x ∈ R we have

gθ (x) := eθx − 1 − θx =
∞∑

k=2

θk xk

k! ≤ θ2x2

2

∞∑
k=0

(θ A)k = θ2x2

2(1 − θ A)
= αx2. (3.1)

We may deduce that Z is a supermartingale by writing

Zt = exp

(
θ Mt −

∫ t

0

∫
E

gθ ( f (s, y))G(dy)ds
)

exp

(∫ t

0

∫
E

(
gθ ( f (s, y)) − α f (s, y)2

)
G(dt)ds

)
and, using Itô’s formula the first term of the product is a non-negative local martingale (and

hence a supermartingale) and the second term decreases in t by (3.1). Define the stopping time

T = inf
{
s ≥ 0 : 〈M〉s > ρ

}
then, since Z0 = 1, taking θ = δ(ρ + Aδ)−1 and applying Doob’s

supermartingale inequality give

P

(
sup

0≤s≤t
|Ms | ≥ δ, 〈M〉t < ρ

)
≤ P

(
sup

0≤s≤T
Zs ≥ eδθ−αρ

)
≤ exp

(
− δ2

2(Aδ + ρ)

)
.

Finally, we complete the proof by applying the same argument to −M. �
From now on we will assume that the following technical conditions on the jump measure G

and the jump vector field Y are in force:

Condition 4. sup
x∈Re

∫
E |Y (x, y)|G(dy) < ∞.

Condition 5. For some κ ≥ n we have

lim sup
ε↓0

1

f (ε)

∫
|y|>ε

G(dy) < ∞, (3.2)

where f : (0, ∞) → R is defined by

f (x) =
{− log x−1 if κ = n

x−κ+n if κ > n.
(3.3)

Moreover, for any β > 0 we have∫
E

|y|κ−n+βG(dy) < ∞,

and

lim sup
ε↓0

1

εβ

∫
|y|<ε

|y|κ−n+βG(dy) < ∞. (3.4)



Condition 6. There exists a function φ ∈ L1+(G) which has the properties that for some α > 0

lim sup
y→0

φ(y)

|y|κ−n+α
< ∞,

and, for some positive constant C < ∞ and every k ∈ N ∪ {0}
sup

x∈Re
|∇k

1 Y (x, y)| ≤ Cφ(y).

Conditions 4–6 may at first sight appear somewhat opaque, however they will be a crucial

ingredient in our subsequent arguments, in particular they enable us to quantify the rate at which

the total mass of the jump measure increases near zero. To develop intuition for their implications

consider the following straightforward example: take n = 1 and Y (x, y) = Ỹ (x)y for some C∞-

bounded Ỹ : R
e → R

e (this puts us in the setup of [9]). Also, define the measure G on R by

taking G(dy) = |y|−κ1{|y|≤1}dy. We then see what is needed to verify each of the conditions in

turn, firstly, Condition 4 will be satisfied provided

sup
x∈Re

∫
E

|Ỹ (x)y|G(dy) = sup
x∈Re

|Ỹ (x)|
∫

E
|y|G(dy) = 2 sup

x∈Re
|Ỹ (x)|

∫ 1

0

y1−κdy < ∞,

which will hold so long as κ < 2. The constraint that κ ≥ 1 in Condition 5 ensures that the jump

measure is of infinite activity and (3.2) and (3.3) are trivially verified by integration. Since we are

in the setting 1 ≤ κ < 2, we may find α ∈ (0, 1) such that κ + α < 2 to ensure that φ(y) := |y|
is O(|y|κ−n+α) as y → 0 and hence Condition 6 is also satisfied.

Suppose now that Υ : [0, t0] × E → R is some given, real-valued, previsible process. It will

at times be important for us to impose the following condition on Υ .

Condition 7. Let G satisfy Condition 5. Then there exists some previsible process Dt taking
values in [0, ∞) with sup0≤t≤t0 Dt ∈ L p for all p ≥ 1, and a function φ ∈ L1+(G) such that

|Υ(t, y)| ≤ Dtφ(y) for all t ∈ [0, t0] and y ∈ E, (3.5)

and for some α = αΥ > 0

Kφ := lim sup
y→0

φ(y)

|y|κ−n+α
< ∞. (3.6)

Equipped with these remarks we are now in a position to state and prove the following lemma

which will be fundamental to providing the estimates on the reduced covariance matrix we need

later.

Lemma 2 (Norris-Type Lemma). Fix t0 > 0 and for every ε > 0 suppose βε(t), γ ε(t) =
(γ ε

1 (t), . . . , γ ε
d (t)), uε(t) = (uε

1(t), . . . , uε
d(t)) are previsible processes taking values in R, R

d

and R
d respectively. Suppose further that ζ ε(t, y) and f ε(t, y) are real-valued previsible

processes satisfying Condition 7 such that the functions φζ and φ f do not depend on ε and
moreover for every q ≥ 1

sup
ε>0

E

[
sup

0≤t≤t0

(
Dζ,ε

t

)q + sup
0≤t≤t0

(
D f,ε

t

)q
]

< ∞. (3.7)



Let α = min(αζ , α f ), δ > 0, z = 3δ(κ − n + α)−1 and define the processes aε and Y ε as the
solutions to the SDEs

aε(t) = α +
∫ t

0

βε(s)ds +
d∑

i=1

∫ t

0

γ ε
i (s)dW i

s +
∫ t

0

∫
|y|<εz

ζ ε(s, y)(μ − ν)(ds, dy)

Y ε(t) = y +
∫ t

0

aε(s)ds +
d∑

i=1

∫ t

0

uε
i (s)dW i

s +
∫ t

0

∫
|y|<εz

f ε(s, y)(μ − ν)(ds, dy).

Assume that for some p ≥ 2 the quantity

sup
ε>0

E

[
sup

0≤t≤t0

(|βε(t)| + |γ ε(t)| + |aε(t)| + |uε(t)|

+
∫

E
(|ζ ε(t, y)|2 + | f ε(t, y)|2)G(dy)

)p
]

(3.8)

is finite, and for some ρ1, ρ2 ∈ L2,∞
+ (G) we have

sup
ε>0

(
E

[(
sup

0≤t≤t0
sup
y∈E

|ζ ε(t, y)|
ρ1(y)

)p]
+ E

[(
sup

0≤t≤t0
sup
y∈E

| f ε(t, y)|
ρ2(y)

)p])
< ∞.

Then we can find finite constants c1, c2 and c3 which do not depend on ε, such that for any q > 8

and any l, r, v, w > 0 with 18r + 9v < q − 8, there exists ε0 = ε0(t0, q, r, v, l) such that if
ε ≤ ε0 < 1 and δw−1 > max(q/2 − r + v/2, (κ − n + α)/4α) we have

P

(∫ t0

0

(
Y ε(t)

)2
dt < εqw,

×
∫ t0

0

(∣∣∣∣aε(t) −
∫

|y|<εz
f ε(t, y)G(dy)

∣∣∣∣2 + |uε(t)|2
)

dt ≥ lεw

)
≤ c1ε

rwp + c2ε
wp/4 + c3 exp

(
−ε−vw/2

)
.

Moreover, we have ε0(t0, q, r, v, l) = t−k
0 ε0(q, r, v, l) for some k > 0.

Proof. Let 0 < C < ∞ denote a generic constant which varies from line to line and which does

not depend on ε. We begin with some preliminary remarks. Firstly, the hypotheses of the theorem

are sufficient to imply (by Theorem A6 of [3]) that

sup
ε>0

(
max

(
E

[
sup

0≤t≤t0
|Y ε(t)|p

]
, E

[
sup

0≤t≤t0
|aε(t)|p

]))
< ∞.

Secondly, by hypothesis we can find previsible processes Dζ,ε
t and D f,ε

t and functions φζ and

φ f not depending on ε such that

|ζ ε(t, y)| ≤ Dζ,ε
t φζ (y) and | f ε(t, y)| ≤ D f,ε

t φ f (y). (3.9)

Let Dε
t = max(Dζ,ε

t , D f,ε
t ) and φ(y) = max(φζ (y), φ f (y)) and (using the notation of (3.6))

K = max(Kζ , K f , 1), then for some ε∗ > 0 we have

φ(y) ≤ K |y|κ−n+α (3.10)



for |y| ≤ ε∗. Consequently taking ε ≤ min(ε∗, 1) and using the definition of z we see that for

|y| < εz

φ(y) ≤ K εz(κ−n+α) = K ε3δ. (3.11)

Now, we define

A =
{∫ t0

0

(
Y ε(t)

)2
dt < εqw,

∫ t0

0

(∣∣∣∣aε(t) −
∫

|y|<εz
f ε(t, y)G(dy)

∣∣∣∣2 + |uε(t)|2
)

dt ≥ lεw

}
and let

θt = |βε(t)| + |γ ε(t)| + |aε(t)| + |uε(t)| +
∫

|y|<εz
(|ζ ε(t, y)|2 + | f ε(t, y)|2)G(dy).

Taking ψ = α(κ − n + α)−1 ≤ 1 we see using (3.9) and (3.11) that on the set{
sup0≤t≤t0 |Dε

t | ≤ K −1ε−ψδ
}

we have

sup
0≤t≤t0

max(|ζ ε(t, y)|, | f ε(t, y)|) ≤ ε−ψδε3δ ≤ ε2δ. (3.12)

Define the stopping time T = min(inf
{
s ≥ 0 : sup0≤u≤s θs > ε−rw

}
, t0), let A1 =

{T < t0} , A2 = {sup0≤t≤t0 |Dε
t | > K −1ε−ψδ

}
, A3 = A ∩ Ac

1 ∩ Ac
2 and observe that

P(A) ≤ P(A1) + P(A2) + P(A3).

Using (3.7), the finiteness of (3.8) and Chebyshev’s inequality gives

P(A1) ≤ εrwp E

[
sup

0≤t≤t0
θ

p
s

]
≤ Cεrwp and P(A2) ≤ εδψp E

[
sup

0≤t≤t0
D p

t

]
≤ Cεδψp,

while on the set A3 the processes aε and Y ε satisfy, by virtue of (3.12), the SDEs

daε(t) = βε(t)dt +
d∑

i=1

γ ε
i (t)dW i

t +
∫

|y|<εz
ζ ε(t, y)1{|ζ ε(t,y)|<ε2δ}(μ − ν)(dt, dy),

dY ε(t) = aε(t)dt +
d∑

i=1

uε
i (t)dW i

t +
∫

|y|<εz
f ε(t, y)1{| f ε (t,y)|<ε2δ}(μ − ν)(dt, dy),

with aε(0) = α, Y ε(0) = y. We now define the following processes

At =
∫ t

0

aε(s)ds, Mt =
d∑

i=1

∫ t

0

uε
i (s)dW i

s , Qt =
d∑

i=1

∫ t

0

A(s)γ ε
i (s)dW i

s ,

Nt =
d∑

i=1

∫ t

0

Y ε(s−)uε
i (s)dW i

s ,

Pt =
∫ t

0

∫
|y|<εz

f ε(s, y)1{| f ε (s,y)|<ε2δ}(μ − ν)(ds, dy),



Lt =
∫ t

0

∫
|y|<εz

Y ε(s−) f ε(s, y)1{| f ε (s,y)|<ε2δ}(μ − ν)(ds, dy),

Ht =
∫ t

0

∫
|y|<εz

A(s)ζ ε(s, y)1{|ζ ε(s,y)|<ε2δ}(μ − ν)(ds, dy),

Jt =
∫ t

0

∫
|y|<εz

f ε(s, y)21{| f ε (s,y)|<ε2δ}(μ − ν)(ds, dy),

and for δ j > 0, ρ j > 0, j ∈ {1, . . . , 7} define the sets

B1 =
{

〈N 〉T < ρ1, sup
0≤t≤T

|Nt | ≥ δ1

}
, B2 =

{
〈M〉T < ρ2, sup

0≤t≤T
|Mt | ≥ δ2

}
,

B3 =
{

〈Q〉T < ρ3, sup
0≤t≤T

|Qt | ≥ δ3

}
, C1 =

{
〈P〉T < ρ4, sup

0≤t≤T
|Pt | ≥ δ4

}
,

C2 =
{

〈L〉T < ρ5, sup
0≤t≤T

|Lt | ≥ δ5

}
, C3 =

{
〈H〉T < ρ6, sup

0≤t≤T
|Ht | ≥ δ6

}
,

C4 =
{

〈J 〉T < ρ7, sup
0≤t≤T

|Jt | ≥ δ7

}
.

The exponential martingale inequality for continuous semimartingales gives P(B j ) ≤ 2e
−δ2

j /2ρ j

for j = 1, 2, 3. Since the jumps in P and J are bounded by ε2δ and ε4δ respectively, an

application of Lemma 1 gives

P(C1) ≤ 2 exp

(
−δ2

4

2(ε2δδ4 + ρ4)

)
and P(C4) ≤ 2 exp

(
−δ2

7

2(ε4δδ7 + ρ7)

)
.

For C2 and C3 we use the fact that sup0≤t≤T |aε(t)| ∈ L p and sup0≤t≤T |Y ε(t)| ∈ L p uniformly

in ε to see

P(C2) ≤ P

(
〈L〉T < ρ5, sup

0≤t≤T
|Lt | ≥ δ5, sup

0≤t≤T
|Y ε(t)| ≤ ε−δ

)

+ P

(
sup

0≤t≤T
|Y ε(t)| > ε−δ

)

≤ 2 exp

(
−δ2

5

2(εδδ5 + ρ5)

)
+ Cεδp,

where the second term comes from Chebyshev’s inequality and the first follows from Lemma 1

in concert with the observation that, on the set
{
sup0≤t≤T |Y ε(t)| ≤ ε−δ

}
, we have

Lt =
∫ t

0

∫
|y|<εz

Y ε(s−) f ε(s, y)1{| f ε (s,y)|<ε2δ,|Y ε (s−)|≤ε−δ}(μ − ν)(ds, dy)



for 0 ≤ t ≤ T . Hence, the jumps in L are bounded by εδ on this set. The same argument may

also be applied to C3 to give

P(C3) ≤ 2 exp

(
−δ2

6

2(εδδ6 + ρ6)

)
+ Cεδp.

We now show that A3 ⊂
(
∪3

j=1 B j

)
∪
(
∪4

j=1 C j

)
whence on choosing appropriate values

for δ j and ρ j the proof shall be complete. To do this suppose that ω �∈
(
∪3

j=1 B j

)
∪(

∪4
j=1 C j

)
, T (ω) = t0,

∫ T
0 Y ε

t (ω)2dt < εqw and sup0≤t≤T |Dε
t (ω)| < K −1ε−ψδ . Then

〈N 〉T =
∫ T

0

(Y ε(t−))2|uε(t)|2dt < ε(−2r+q)w =: ρ1,

and since ω �∈ B1, sup0≤t≤T

∣∣∣∑d
i=1

∫ t
0 Y ε(s−)uε

i (s)dW i
s

∣∣∣ < δ1 := εq1 , where q1 = (q/2 − r −
v/2)w. By the same reasoning we have

〈L〉T =
∫ T

0

∫
|y|<εz

Y ε(t−)2 f ε(s, y)21{| f ε (t,y)|<ε2δ}G(dy)dt < ε(−2r+q)w =: ρ5,

since ω �∈ C2 we may let δ5 = εq1 to give sup0≤t≤T |Lt | < δ5. Since we also have

sup
0≤t≤T

∣∣∣∣∫ t

0

Y ε(s−)aε(s)ds
∣∣∣∣ ≤ (t0

∫ T

0

Y ε(s−)2aε(s)2ds
)1/2

< t1/2
0 ε(−r+q/2)w,

it follows that

sup
0≤t≤T

∣∣∣∣∫ t

0

Y ε(s−)dY ε(s)
∣∣∣∣ < t1/2

0 ε(−r+q/2)w + 2εq1 .

Itô’s formula now gives Y ε(t)2 = y2 + 2
∫ t

0 Y ε(s−)dY ε(s)+〈M〉t + [P]t , and we notice that

because

〈J 〉T =
∫ T

0

∫
|y|<εz

f ε(s, y)41{| f ε (s,y)|<ε2δ}G(dy)dt

≤ ε4δ

∫ T

0

∫
|y|<εz

f ε(s, y)21{| f ε (s,y)|<ε2δ}G(dy)dt ≤ ε4δ−rw =: ρ7,

and since ω �∈ C4 we must have sup0≤t≤T |Jt | = sup0≤t≤T | [P]t − 〈P〉t | ≤ δ7 := ε2δ−(r+v)w.

Consequently,

〈M〉t + 〈P〉t ≤ Y ε(t)2 − y2 − 2

∫ t

0

Y ε(s−)dY ε(s) + sup
0≤t≤T

| [P]t − 〈P〉t |

and hence,∫ T

0

〈M〉t dt +
∫ T

0

〈P〉t dt < εqw + t3/2
0 ε(−r+q/2)w + 2t0εq1 + t0ε2δ−(r+v)w.

We notice that 2δ− (r +v)w > (q −3r)w > q1, qw > q1 and (q/2−r)w > q1 and so provided

ε < min
(

1, t−1/(2δ−(r+v)w−q1)

0 , t−3/2((−r+q/2)w−q1)

0

)



we get∫ T

0

〈M〉t dt +
∫ T

0

〈P〉t dt < (2t0 + 3)εq1 .

〈M〉t and 〈P〉t are increasing processes, so for any 0 < γ < T

γ 〈M〉T −γ < (2t0 + 3)εq1 and γ 〈P〉T −γ < (2t0 + 3)εq1 .

Since these processes are also continuous we get 〈M〉T ≤ γ −1(2t0 + 3)εq1 + γ ε−2rw and

〈P〉T ≤ γ −1(2t0 + 3)εq1 + γ ε−2rw. By defining ρ2 = ρ4 := 2(2t0 + 3)1/2ε−2rw+q1/2 and

γ = (2t0 + 3)1/2εq1/2, we get 〈M〉T < ρ2 and 〈P〉T < ρ4, and since ω �∈ B2 ∪ C1 we have

sup
0≤t≤T

|Mt | < δ2 := ε(q/8−5r/4−5v/8)w =: εq2 , sup
0≤t≤T

|Pt | < δ4 = εq2 .

Since
∫ T

0 Y ε(t)2dt < εqw, Chebyshev’s inequality gives

Leb
{

t ∈ [0, T ] : ∣∣Y ε
t (ω)

∣∣ ≥ εqw/3
}

≤ εqw/3

so that

Leb
{

t ∈ [0, T ] : |y + At (ω)| ≥ εqw/3 + 2εq2

}
≤ εqw/3.

Then, for each t ∈ [0, T ], there exists some s ∈ [0, T ] such that |s − t | ≤ εqw/3 and

|y + As(ω)| < εqw/3 + 2εq2 , which yields

|y + At | ≤ |y + As | +
∣∣∣∣∫ t

s
aε(τ )dτ

∣∣∣∣ < (1 + ε−rw)εqw/3 + 2εq2 .

In particular we have |y| < (1+ε−rw)εqw/3+2εq2 and, for all t ∈ [0, T ], since q2 < (q/3−r)w,

we have

|At | < 2
(
(1 + ε−rw)εqw/3 + 2εq2

)
≤ 8εq2 .

This implies that

〈Q〉T =
∫ T

0

A(t)2|γ ε(t)|2dt < 64t0ε2q2−2rw =: ρ3

〈H〉T =
∫ T

0

∫
|y|<εz

A(t)2ζ ε(t, y)21{|ζ ε(t,y)|<ε2δ}G(dy)dt ≤ ρ3 =: ρ6,

and since ω �∈ B3 ∪ C3 we must have

sup
0≤t≤T

|Qt | = sup
0≤t≤T

∣∣∣∣∣ d∑
i=1

∫ t

0

A(s)γ ε
i (s)dWi (s)

∣∣∣∣∣ < δ3 := ε(q/8−9r/4−9v/8)w =: εq3

sup
0≤t≤T

|Ht | = sup
0≤t≤T

∣∣∣∣∫ t

0

∫
|y|<εz

A(s)ζ ε(s, y)1{|ζ ε(s,y)|<ε2δ}(μ − ν)(ds, dy)

∣∣∣∣ < δ6 := εq3 .

Now we observe using (3.9), (3.10), Condition 5, sup0≤t≤T |Dε
t (ω)| < K −1ε−ψδ , the definition

of ψ , and the fact that φ f does not depend on ε



∫ t0

0

∣∣∣∣∫|y|<εz
f ε(t, y)G(dy)

∣∣∣∣2 dt ≤ t0

(
ε−δψ

∫
|y|<εz

|y|κ−n+αG(dy)

)2

≤ Ct0ε−2δψ+2zα = Ct0ε4δα/(κ−n+α).

An application of Itô’s formula then gives∫ T

0

(∣∣∣∣aε(t) −
∫

|y|<εz
f ε(t, y)G(dy)

∣∣∣∣2 + |uε(t)|2
)

dt

≤ 2

∫ T

0

aε(t)2dt +
∫ T

0

|uε(t)|2dt + 2

∫ T

0

∣∣∣∣∫|y|<εz
f ε(t, y)G(dy)

∣∣∣∣2 dt

≤ 2

∫ T

0

aε(t)dA(t) + 〈M〉T + 2Ct0ε4δα/(κ−n+α)

= 2

(
aε(T )A(T ) −

∫ T

0

A(t)βε(t)dt −
d∑

i=1

∫ T

0

A(t)γ ε
i (t)dW i

t

−
∫ T

0

∫
|y|<εz

A(s)ζ ε(s, y)1{|ζ ε(s,y)|<ε2δ}(μ − ν)(ds, dy)

)
+ 〈M〉T

+ 2Ct0ε4δα/(κ−n+α)

≤ 16(1 + t0)εq2−rw + 4εq3 + 4(2t0 + 3)1/2ε−2rw+q1/2 + 2Ct0ε4δα/(κ−n+α)

≤ lεw

provided

ε < min

⎛⎝( l
64(1 + t0)

)(q2−rw−w)−1

,

(
l

16

)(q3−w)−1

,

(
l

16 (2t0 + 3)1/2

)(−2rw+q1/2−w)−1

,

(
l

8Ct0

)( 4δα
κ−n+α

−w
)−1⎞⎠ ,

where the last inequality follows from q2 − rw > w, q3 > w, q1/2 − 2rw > w and

δ > w(κ − n + α)/4α. Finally, by the choice of δ j and ρ j and the assumption that δ >

(−r + q/2 + v/2)w (which also implies that δ > −rw + q1/2 − q2/4 and δ > 2q2 − 2rw − q3)

we see that εδδ5 < ρ5, ε
2δδ4 < ρ4, and ε4δδ7 < ρ7 if

ε <
(

2 (2t0 + 3)1/2
)(2δ+q2−q1/2+2rw)−1

.

We also note that 64t0εδδ6 < ρ6, giving

P(C3) ≤ 2 exp

⎛⎝− δ2
6

2
(

1
64t0

+ 1
)

ρ6

⎞⎠+ Cεδp ≤ 2 exp

(
− ε−vw

2 (1 + 64t0)

)
+ Cεδp.

Putting all of this together, these choices for δ j and ρ j enable us to deduce that

P

(
3⋃

j=1

B j

)
≤ 2

(
exp

(
−1

2
ε−vw

)
+ exp

(
− 1

4(2t0 + 3)1/2
ε−vw

)
+ exp

(
− 1

128t0
ε−vw

))
,



and

P

(
4⋃

j=1

C j

)
≤ 2

(
2 exp

(
−1

4
ε−vw

)
+ exp

(
− 1

8(2t0 + 3)1/2
ε−vw

)

+ exp

(
− ε−vw

2(1 + 64t0)

)
+ Cεδp

)
.

The proof is finished on noting that δp > w/4, and the dependence of ε0 on t0 follows

immediately from the proof. �

4. Uniform Hörmander condition

We now present our uniform Hörmander condition.

Condition 8 (UH). Let V0 = Z − 1
2

∑d
i=1 ∇Vi Vi and assume that Conditions 2 and 4 hold.

Recursively define the following families of vector fields

L0 = {V1, . . . , Vd}
Ln+1 = Ln ∪ {[Vi , K ], i = 1, . . . , d : K ∈ Ln}
∪
{

[V0, K ] −
∫

E
[Y, K ](·, y)G(dy) : K ∈ Ln

}
.

Then there exists some smallest integer j0 ≥ 1 and a constant c > 0 such that for any u ∈ R
e

with |u| = 1 we have

inf
x∈Re

j0∑
j=0

∑
K∈L j

(
uT K (x)

)2 ≥ c.

The next important result is a development of an idea presented in [9], it enables us to estimate

the Malliavin covariance matrix on a time interval where the Poisson random measure records no

jumps of size greater than some truncation parameter. As in [9] the key idea is to make explicit

the dependence of the estimate on the length of the time interval under consideration.

Theorem 3. Let t > 0 and let xt satisfy the SDE

xt = x +
∫ t

0

Z(xs−)ds +
∫ t

0

V (xs−)dWs +
∫ t

0

∫
E

Y (xs−, y)(μ − ν)(dy, ds)

and assume that the following conditions are satisfied:

Z , V1, . . . , Vd ∈ C∞
b (Re), (4.1)

for every y ∈ EY (·, y) ∈ C∞
b (Re) and, for some ρ2 ∈ L2,∞

+ (G) and every n ∈ N ∪ {0}

sup
y∈E,x∈Re

1

ρ2(y)
|∇n

1 Y (x, y)| < ∞, (4.2)

sup
y∈E,x∈Re

| (I + ∇1Y (x, y))−1 | < ∞ and sup
x∈Re

| (I + ∇1Y (x, ·))−1 | ∈ L2,∞
+ (G).



Further assume Conditions 4–6 and condition (UH) hold. For some 0 < t < t0, δ, α > 0 and
z = 3δ(κ − n + α)−1 define the set At = At (ε) by

At = {ω : (supp μ(·, ·)) ∩ [0, t) × E ⊆ [0, t) × {|y| ≤ εz}} .

Then, P
({

sup0≤s≤t |xs − xs(ε)| > 0
} ∩ At

) = 0, where xt (ε) is the solution to the SDE

dxt (ε) =
(

Z(xt−(ε)) −
∫

|y|≥εz
Y (xt−(ε), y)G(dy)

)
dt + V (xt−(ε))dWt

+
∫

|y|<εz
Y (xt−(ε), y)(μ − ν)(dy, dt). (4.3)

Moreover if we let the reduced Malliavin covariance matrix associated with xt (ε) be denoted by
Ct (ε) then we have for any p ≥ 1 and some ε0(p) > 0, K (p) ≥ 1, that

sup
|u|=1

P
({

uT Ct u ≤ ε
}

∩ At

)
= sup

|u|=1

P(uT Ct (ε)u ≤ ε) ≤ ε p

for 0 ≤ ε ≤ t K (p)ε0(p), provided that

16δ > max

(
8 − r + v

2
,
κ − n + α

4α

)
,

where r, v > 0 are such that 18r + 9v < 8.

Proof. The indistinguishability of the processes x and x(ε) on At is trivial. For the remainder

of the proof we first note that condition (UH) enables us to identify a smallest integer j0 and a

constant c > 0 such that, for any u ∈ R
e with |u| = 1

inf
x∈Re

j0∑
j=0

∑
K∈L j

(
uT K (x)

)2 ≥ c.

For j = 0, 1, . . . , j0 set m( j) = 2−4 j and define

E j =
⎧⎨⎩ ∑

K∈L j

∫ t

0

(
uT (ε)J0←s(ε)K (xs(ε))

)2
ds ≤ εm( j)

⎫⎬⎭ ,

where Jt←0(ε) denotes the Jacobian of the flow associated with xt (ε) and J0←t (ε) denotes

its inverse (which exists by the assumptions on the vector fields as in Theorem 1). It is

straightforward to note, using (4.2), L p inequalities for stochastic integrals based on Poisson

random measures (see [3], Lemma A.14) and Gronwall’s inequality that for any p < ∞

sup
ε≥0

E

[
sup

0≤s≤t
|Jt←0(ε)|p

]
< ∞. (4.4)

Let C denote a constant which varies from line to line and does not depend on ε. Then, as usual

we have{
uT Ct (ε)u ≤ ε

}
= E0 ⊂ (E0 ∩ Ec

1

) ∪ (E1 ∩ Ec
2) ∪ · · · ∪ (E j0−1 ∩ Ec

j0) ∪ F



where F = E0 ∩ E1 ∩ · · · ∩ E j0 . Define the stopping time

S = min

(
inf

{
s ≥ 0 : sup

0≤z≤s
|J0←z(ε) − I | ≥ 1

2

}
, t

)
,

and notice that by choosing 0 < β < m( j0) we discover that P(F) ≤ P(S < εβ) ≤ Cεqβ/2 for

ε ≤ ε1and any q ≥ 2 (see [14,9] for details), where as in [9], ε1 satisfies

ε1 < min

(
t1/β,

(
c

4( j0 + 1)

)1/(m( j0)−β)
)

.

We notice that for any K ∈ C∞
b (Re) we have

duT J0←t (ε)K (xt (ε)) = uT J0←t−(ε)

(
[V0, K ] (xt−(ε)) −

∫
E

[Y, K ] (xt−(ε), y)G(dy)

+ 1

2

d∑
i=1

[Vi , [Vi , K ]] (xt−(ε)) +
∫

|y|<εz
((I + ∇1Y (xt−(ε), y)−1)K (xt−(ε)

+ Y (xt−(ε), y)) − K (xt−(ε))G(dy))

)
dt + uT J0←t−(ε)

d∑
i=1

[Vi , K ] (xt−(ε))dW i
t

+ uT J0←t−(ε)

∫
|y|<εz

(I + ∇1Y (xt−(ε), y)−1)K (xt−(ε)

+ Y (xt−(ε), y)) − K (xt−(ε))(μ − ν)(dy, dt).

We now verify the conditions of Lemma 2 in the case where

Y ε(t) = uT J0←t (ε)K (xt (ε))

aε(t) = uT J0←t (ε)

(
[V0, K ] (xt (ε)) −

∫
E

[Y, K ] (xt (ε), y)G(dy)

+ 1

2

d∑
i=1

[Vi , [Vi , K ]] (xt (ε))

+
∫

|y|<εz
((I + ∇1Y (xt (ε), y)−1)K (xt (ε) + Y (xt (ε), y)) − K (xt (ε))G(dy))

)
.

=: uT J0←t K̃ (xt (ε)),

where K̃ ∈ C∞
b (Re). To do this we observe, using the notation of Lemma 2 that

f ε(t, y) = uT J0←t−(ε)(I + ∇1Y (xt−(ε), y)−1)K (xt−(ε) + Y (xt−(ε), y)) − K (xt−(ε))

and hence for some 0 < C < ∞
| f ε(t, y)| ≤ C

∣∣∣uT J0←t−(ε)

∣∣∣max

(
sup
x∈Re

|K (x)| , sup
x∈Re

|∇K (x)|
)

(
sup

x∈Re,y∈E
| (I + ∇1Y (x, y))−1 ||∇1Y (xt−(ε), y)| + |Y (xt−(ε), y)|

)
.

Condition 6 then gives that | f ε(t, y)| ≤ C
∣∣uT J0←t−(ε)

∣∣φ(y) where φ ∈ L1+(G) does not

depend on ε, C = C(K ) < ∞ and where and for some α > 0 (which does not depend on ε



or K !) we have

lim sup
y→0

φ(y)

|y|κ−n+α
< ∞.

Finally, using the notation of (3.7), we notice that Cauchy–Schwarz gives

|uT J0←t−(ε)|2 ≤
e∑

i=1

|J0←t−(ε)ei |4 =: D f,ε
t , (4.5)

where ei is the standard basis in R
e. Hence by (4.4) we have for any p < ∞

sup
ε≥0

E

[
sup

0≤s≤t

(
D f,ε

s

)p
]

< ∞.

We have therefore verified the conditions of Lemma 2 for the process f ε(t, y) and they

may be also checked for the process ζ ε(t, y) in the same manner. Now let us note that for

j ∈ {0, 1, . . . , j0 − 1}

P(E j ∩ Ec
j+1

) = P

⎛⎝ ∑
K∈L j

∫ t

0

(
uT J0←s(ε)K (xs(ε))

)2
ds ≤ εm( j),

∑
K∈L j+1

∫ t

0

(
uT J0←s(ε)K (xs(ε))

)2
ds > εm( j+1)

⎞⎠
≤
∑

K∈L j

P

(∫ t

0

(vT J0←s(ε))K (xs(ε))
2ds ≤ εm( j),

d∑
k=1

∫ t

0

(uT J0←s(ε)Vk(xs(ε))
2)ds +

∫ t

0

uT J0←s−(ε)

(
[V0, K ] (xs−(ε))

−
∫

E
[Y, K ] (xs−(ε), y)G(dy) + 1

2

d∑
i=1

[Vi , [Vi , Vk]] (xs−(ε))

)
ds >

εm( j+1)

n( j)

)
. (4.6)

Since the other hypotheses of Lemma 2 are trivial to verify we estimate the terms in the sum on

the right-hand side of (4.6) by j0 applications of this lemma, with z = 3δ(κ − n + α)−1 and the

choices

q = 16, r, v > 0 such that 18r + 9v < 8 and w j = 2−4( j+1).

Since w j ≤ w0 = 16−1 we see that the right-hand side of (4.6) will be o(ε p) for all

j ∈ {0, 1, . . . , j0 − 1} if

16δ > max

(
8 − r + v/2,

κ − n + α

4α

)
,

and ε ≤ ε2(p) where ε2 can be chosen as ε3t−k∗
for some k∗ > 0 with ε3 independent of t .

Setting ε0 = min(ε1, ε2) and noticing by (4.5) that all the estimates are uniform over |u| = 1

gives the result. �



5. C∞ density under the Hörmander condition

We now state and prove our main result.

Theorem 4. Suppose that xt is the solution to the SDE

xt = x +
∫ t

0

Z(xs−)ds +
∫ t

0

V (xs−)dWs +
∫ t

0

∫
E

Y (xs−, y)(μ − ν)(dy, ds)

and that the conditions of Theorem 3 are in force. Then, for any t0 > 0 the law of xt0 has a
C∞ density with respect to the Lebesgue measure under the uniform Hörmander Condition 8

provided, in the notation of Theorem 3, we have

16m( j0) > 3(κ − n) max

(
8 − r + v/2

κ − n + α
,

1

4α

)
, (5.1)

where m( j) = 2−4 j and j0 is the integer described in (UH).

Remark 1. Note that (5.1) is always true when κ = n.

Proof. By Theorem 2 it suffices to check that
∣∣∣C−1

t0

∣∣∣ ∈ L p for all p ≥ 2. Let Λ = inf|u|=1 uT Ct0 u

be the smallest eigenvalue of Ct0 . Then it is sufficient to show that Λ−1 ∈ L p for all p ≥ 2.

However, we may write

E[Λ−p] = C1

∫ ∞

0

ε−k P(Λ ≤ ε2)dε ≤ C2 + C3

∫ 1

0

ε−k P(Λ ≤ ε2)dε,

for some k > 1. By a routine compactness argument we may show (see [12]) that

P(Λ ≤ ε) ≤ C2ε
−e sup

|u|=1

P(uT Ct0 u ≤ ε),

so that for some k′ > 1

E[Λ−p] ≤ C3 + C4

∫ 1

0

ε−k′
sup
|u|=1

P(uT Ct0 u ≤ ε2)dε. (5.2)

Now we define a Poisson process Nε on R
+ for ε > 0 by

Nε(t) =
∫ t

0

∫
|y|>εz

μ(dy, ds),

whose rate is given as

λ(ε) =
∫

|y|>εz
G(dy).

By (3.2) we know that

lim sup
ε→0

λ(ε)

f (εz)
< ∞. (5.3)

We may find a (random) subinterval [t1, t2) ⊆ [0, t0) such that t2 − t1 ≥ t0(Nε(t0) + 1)−1 on

which the Poisson random measure μ records no jumps of absolute value greater than εz and, as

such, the underlying process xt solves the SDE (4.3) started at xt1 on this interval. We emphasize



the dependence of Ct0 on the starting point (x, I ) of the process (xt , J0←t ). Then, using the fact

that J x,V
0←t = V J x,I

0←t , J0←t = J−1
t←0, the (strong) Markov property, and the two observations that

t2 − t1 ≥ t0(Nε(t0) + 1)−1 and

span{uT J x,I
0←t : u ∈ R

e, |u| = 1} = R
e a.s. for every t > 0 and x ∈ R

e

we see that for any q < ∞
sup
|u|=1

P(uT Cx,I
t0 u ≤ ε2)

≤ sup
|u|=1

P

(
uT C

xx
t1

,J x,I
0←t1

t1,t2 u ≤ ε2

)

= sup
|u|=1

P
(

uT J x,I
0←t1

C
xx

t1
,I

t1,t2

(
J x,I

0←t1

)T
u ≤ ε2

)

= sup
|u|=1

P

⎛⎜⎝uT J x,I
0←t1

C
xx

t1
,I

t1,t2

(
J x,I

0←t1

)T
u

|uT J x,I
0←t1

|2 ≤ ε2

|uT J x,I
0←t1

|2

⎞⎟⎠
≤ sup

|u|=1

P
(

uT C
xx

t1
,I

t1,t2 u ≤ ε

)
+ sup

|u|=1

P
(
|uT J x,I

0←t1
|−1 ≥ ε−1/2

)
= sup

|u|=1

P
(

uT C
xx

t1
,I

t2−t1(ε)u ≤ ε

)
+ O(εq)

≤ sup
|u|=1

P
(

uT C
xt1 ,I
t0(Nε (t0)+1)−1(ε)u ≤ ε

)
+ O(εq). (5.4)

An application of Theorem 3 yields

sup
|u|=1

P
(

uT C
xt1 ,I
t0(Nε (t0)+1)−1(ε)u ≤ ε

)
is O (εq)

for any q ≥ 2 if ε ≤ ε0t1/K (q)

0 (Nε(t0)+ 1)−1/K (q) provided that δ > max(8 − r + v/2, (κ − n +
α)/4α). From this, (5.2) and (5.4) we get that

E[Λ−p] ≤ C5 + C6

∫ 1

0

ε−k′
P
(

Nε(t0) >

⌊
t0
(ε0

ε

)1/K (q)
⌋)

dε.

From the proof of Theorem 3 we see that K (q) = K (q, ε) = β−1 for ε small enough, where

β < m( j0), and hence to see that E[Λ−p] < ∞ it will suffice to show

P
(

Nε(t0) >

⌊
t0
(ε0

ε

)β
⌋)

is o(εq) as ε → 0 for any q > 0.

Chebyshev’s inequality and (5.3) yield

P
(

Nε(t0) >

⌊
t0
(ε0

ε

)β
⌋)

≤ exp

(
−t0

(ε0

ε

)β + (e − 1)t0λ(ε)

)
≤ exp

(
−t0

(ε0

ε

)β + C(e − 1)t0 f (εz)

)
as ε → 0,



which, by the definition of f is seen to be o(εq) for any q > 0 if

β >
3δ(κ − n)

(κ − n + α)
.

Since β and δ may take any values subject to the constraints β < m( j0) and 16δ > max(8 − r +
v/2, (κ − n + α)/4α), this condition becomes

16m( j0) > 3(κ − n) max

(
8 − r + v/2

κ − n + α
,

1

4α

)
. �

Condition (5.1) exposes the qualitative structure of the problem structure of the problem quite

well in that it becomes easier to satisfy with smaller values of j0 (so that R
e is spanned with

brackets of smaller length), or with smaller values of κ (less intense jumps) or larger values

of α (corresponding to better behaved vector fields). One might think that the use of the lower

bound t0(m + 1)−1 on the size of the longest interval is somewhat crude. Indeed, conditional on

Nε(t0) = m, the distribution function of the longest interval is known (see Feller [8]):

F(x) =
m∑

i=1

(−1)−i
(m

i

)(
1 − i x

t0

)i−1

+

and more explicit calculation may be performed using this, however they seem to lead to no

improvement in the eventual criterion obtained. Clearly, the use of only part of the covariance

matrix in forming the estimate is an area in which improvement would allow further insight to

be gained.
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