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Abstract

A possible fundamental physical mechanism by which instability modes generate
sound waves in subsonic jets is presented in the present paper. It involves a wavepacket
of a pair of helical instability modes with nearly the same frequencies but opposite
azimuthal wavenumbers. As the wavepacket undergoes simultaneous spatial-temporal
development in a circular jet, the mutual interaction between the helical modes gen-
erates a strong three-dimensional, slowly modulating, ‘mean-flow distortion’. It is
demonstrated that this ‘mean field’ radiates sound waves to the far field. The emit-
ted sound is of very low frequency, with characteristic time and length scales being
comparable with those of the envelope of the wavepacket, which acts as a noncom-
pact source. A matched-asymptotic-expansion approach is used to determine, in a
self-consistent manner, the acoustic field in terms of the envelope of the wavepacket
and a transfer factor characterising the refraction effect of the background base flow.
For realistic jet spreading rates, the nonlinear development of the wavepacket is found
to be influenced simultaneously by non-parallelism and non-equilibrium effects, and
so a composite modulation equation including both effects is constructed in order to
describe the entire growth-attenuation-decay cycle. Parametric studies pertaining to
relevant experimental conditions indicate that the acoustic field is characterised by a
single-lobed directivity pattern beamed at an angle about 45o − 60o to the jet axis,
and a broadband spectrum centred at a Strouhal number St ≈ 0.07−0.2. As the non-
linear effect increases, the radiation becomes more efficient and the noise spectrum
broadens, but the gross features of the acoustic field remain robust, and are broadly
in agreement with experimental observations.

1 Introduction

The idea that instability waves in transitional flows, or more broadly, large-scale coherent
structures in fully turbulent flows, could be an important source of noise has attracted a
great deal of interest. It was first proposed by Tam (1971) and Bishop, Ffowcs Williams
& Smith (1971), among others, in order to explain some distinctive features of supersonic
jet noise. Following the discovery of orderly structures in subsonic jets (Bradshaw, Ferriss
& Johnson 1964, Crow & Champagne 1971), it was soon suggested that these structures
might be related to sound emission in the subsonic regime as well (Crow 1972).

The physical mechanisms by which instability modes radiate sound are by no means
obvious. The reason is that shear flows (e.g. jets and boundary layers) act as waveguides
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so that instability modes propagate primarily in the streamwise direction while in the
transverse direction they attenuate rapidly. The energy carried by instability waves thus
remains ‘trapped’ in the shear layer, with little or no radiation into the far field.

In supersonic flows such as jets or mixing layers, there exist so-called supersonic in-
stability modes when the free stream Mach number exceeds unity by a sufficient amount.
The propagation velocity of these modes relative to the free stream is greater than the
ambient sound speed. In the majority of the flow field, the eigenfunction of a supersonic
mode decays exponentially in the transverse direction. However, in the vicinity of its
neutral position, the eigenfunction remains finite or decays algebraically, and part of its
energy radiates into the far field in the form of Mach waves. This mechanism can easily
be understood in terms of the ‘wavy-wall analogy’, which explains the phase propagation
of the radiated Mach waves (Tam 1995). In reality, however, instability waves are usually
modulated in space rather than purely sinusoidal, and the radiated Mach waves then ap-
pear as beams, a feature that cannot be explained by the usual ‘wavy-wall analogy’. Tam
& Burton (1984) formulated an asymptotic theory to calculate the sound emitted by a
linearly evolving supersonic mode. Wu (2005) recently considered Mach-wave radiation by
nonlinearly evolving supersonic waves or wavetrains. By taking advantage of the fact that
the time and length scales of the phase and envelope of a Mach wave are asymptotically
distinct, Wu was able to express the acoustic field explicitly in terms of the amplitude
of the instability mode. This solution represents an ‘extended wavy-wall analogy’ as it
shows how the envelope of a wavepacket propagates to form a distinct Mach-wave beam.
In the high Mach-number regime where supersonic modes are dominant, instability waves
may indeed act as a dominant source of noise, and Mach-wave radiation by supersonically
propagating large-scale structures, as a fundamental mechanism, underpins much of our
current understanding of noise generation by turbulent jets; see the review by Tam (1995).

Almost all commercial aircrafts currently in service however operate in the subsonic
or moderate supersonic regime, in which relevant instability modes are subsonic, i.e. they
propagates subsonically relative to the ambient stream. Their role in noise generation
remains a topic of debate. The eigenfunction of a subsonic mode evolving linearly in a
parallel flow exhibits exponential decay in the transverse direction everywhere including
at the neutral position, and a purely sinusoidal mode thus emits no sound wave. However,
under the combined effects of nonlinearity and mean-flow spreading instability waves actu-
ally undergo amplification followed by saturation and decay over a long length scale. Such
a spatially modulated wave contains a supersonic Fourier component, and hence emits a
sound wave with the same frequency as that of the instability mode. This mechanism,
which may be termed ‘direct radiation’, was demonstrated by Tam & Morris (1980) in the
case of a subsonic jet, and by Crighton & Huerre (1990) in a somewhat abstract setting.
The latter work revealed some delicate dependence of the radiated sound on the envelope
shape of the instability wave. Acoustic emission of wavepackets modulated in both time
and space was analysed by Akylas & Toplosky (1986) and Haj-Hariri & Akylas (1986).

The intensity of the sound waves generated via the ‘direct radiation’ mechanism by a
subsonic mode modulated over a length scale much longer than its wavelength is typically
exponentially small (with respect to the ratio of these scales). Strong radiation occurs
when a wavetrain experiences a rapid change in the sense that its amplitude varies over a
length scale comparable with its own wavelength. Abrupt adjustments of this kind often
arise due to externally imposed geometric features, such as sharp edges (e.g. the trailing
edge of an airfoil) and isolated surface roughness. As an instability mode propagates
through such a region, part of its energy is scattered into sound waves. Such a sound
generation process has been investigated theoretically by Wu & Hogg (2006) using a model
problem, where a Tollmien-Schlichting wave interacts with a local surface roughness.
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Abrupt changes may also occur due to the intrinsic dynamics of the flow. For jets
and mixing layers, a particular case of interest is vortex pairing, which causes a sudden
thickening of the local shear-layer width. Emission of sound from this process has been
studied experimentally (Kibens 1980, Laufer & Yen 1983, Bridges & Hussain 1992) and
by means of DNS (e.g. Mitchell, Lele & Moin 1999). A theoretical model was proposed
by Goldstein (1984), but this calculation suggests the emission is not strong enough to
explain the experimental findings.

Experimental studies conducted since the early 1960s have accumulated a vast collec-
tion of data for subsonic jet noise (e.g. Mollo-Christensen, Kolpin & Martuccelli 1964, Lush
1971, Ahuja et al. 1982, Bogey et al. 2007). In the following, we highlight some of the key
features which cannot be explained by existing mechanisms. The most striking one is the
disparity between the time scales of the dominant hydrodynamic and acoustic fluctuations
within the jet and in far field respectively. The spectral peak of the far-field noise is cen-
tred at Strouhal number St ≡ f ∗D/UJ ≈ 0.2, where f ∗ is the dimensional frequency, and
D and U denote the nozzle diameter and exit velocity respectively. The peak frequency
of hydrodynamic fluctuations in the noise production region, which may extend up to 20
diameters from the jet nozzle up to the end of the potential core, is a decreasing function
of the downstream distance: the corresponding characteristic Strouhal number decreases
continuously from St ≈ 4 near the nozzle, to St ≈ 0.5 towards the end of potential core.
This disparity of the time scales suggests that the most energetic fluctuations within the
jet do not directly emit dominant noise. Generation of noise must involve an ‘inverse
cascade’ process, through which the energy in relatively high-frequency components is
transferred to low-frequency ones before being radiated in the form of sound. The overall
noise, while less directional than the supersonic counterpart, appears to concentrate along
the direction that makes an angle about 30o to the jet axis.

A particularly interesting and curious behaviour of subsonic jets is ‘noise amplifica-
tion’ by tonal excitation, a phenomenon in which exciting a jet at a pure tone leads to
significant enhancement of broadband far-field noise. This was first observed by Bechert &
Pfizenmaier (1975) and Moore (1979) for axisymmetric modes. Subsequently, Bechert &
Pfizenmaier (1977) and Ahuja et al. (1982) found that exciting helical modes had a similar
effect. Further investigations (Zaman (1985, Hussain & Hasan 1985) showed that exciting
a relatively high-frequency shear-layer mode may suppress broadband noise instead.

Considerable efforts have been devoted to identifying and characterising vortical struc-
tures which might be relevant for noise generation. Large-scale, coherent structures were
found to dominate the noise-producing region in both natural unexcited (Bradshaw et

al. 1964, Moore 1977, Zaman & Hussain 1984) and excited (Crow & Champagne 1971,
Chan 1974, Zaman & Hussain 1980) jets. They exhibit the characteristics of wavepack-
ets undergoing amplification-saturation-decay in the axial direction. A remarkable fact
is that even though the jet is fully turbulent, the wavelengths, propagation speeds and
radial distributions of these structures are quite well described by local linear instability
modes supported by the background mean flow (e.g. Michalke 1971, Suzuki & Colonius
2006). Their axial development is significantly influenced by nonlinear effects in typical
laboratory and practical conditions; only the evolution of a small-amplitude disturbance
may be predicted approximately by a linear non-parallel theory which accounts for the
slow divergence of the jet (Crighton & Gaster 1976).

Recently, POD (proper orthogonal decomposition) has been applied to extract dom-
inant structures from experimental data. By performing POD analysis of the hydrody-
namic pressure signal measured at the outer edge of the shear layer, Arndt, Long & Glauser
(1997) found axisymmetric and helical modes with azimuthal wavenumber m = ±1 to be
the most energetic components in the near field. Among these, high-frequency components
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saturate earlier than low-frequency ones, and as a result, the frequency of the dominant
structure decreases in the axial direction. The POD analysis of the streamwise velocity
showed that in addition to the axisymmetric and first helical modes, modes with m up
to ±6 are present in the near field (Citriniti & George 2000, Jung, Gamard & George
2004, Iqbal & Thomas 2007). The axisymmetric mode and helical modes with |m| > 2
gradually diminish as x increases, while the first helical modes (m = ±1) remain domi-
nant. These results are fully consistent with the linear stability properties of axisymmetric
jets (cf. Strange & Crighton 1983, Cohen & Wygnanski 1987). Indeed, the temporal and
spatial properties of the extracted POD modes closely resemble those of inviscid unstable
modes, although a single POD mode does not always represent the entire evolution of an
instability wave (Suzuki & Colonius 2006). The most interesting finding is that beyond
the end of the potential core, near-zero frequency modes with m = ±2 and m = 0 acquire
significant amplitudes (Gamard, Jung & George 2004). We believe that these components
are not linear eigen modes; rather they represent the ‘mean-flow distortion’ driven by the
nonlinear interaction between two slightly detuned helical m = ±1 modes. Such a non-
linear generation of exceptionally large azimuthally dependent mean flow was observed
experimentally in laminar transitional jets long time ago (Cohen & Wygnanski 1987b,
Long & Petersen 1992). Gamard et al. (2004) also cited some evidence which suggests
that the near-zero frequency m = ±2 modes may be linked to noise generation. Prompted
by the above observations, in the present paper we shall develop a mathematical theory
to demonstrate how the m = ±2 modes are produced by nonlinear interactions, and more
importantly, how they emit sound.

Measurements of both hydrodynamic motions within the jet and the far-field acoustics
have been made in order to seek a cause-effect relation. The experiment of Stromberg,
Mclaughlin & Troutt (1980) for a Mach number 0.9 jet at a low Reynolds number is
of particular interest because a laminar shear layer exists close to the nozzle, where the
fluctuations consist of a narrow-band of instability waves with frequencies centred at St =
0.44. The acoustic field, however, has a broadband spectrum with a peak at St ≈ 0.22,
which led the authors to suggest that the noise was generated through vortex pairing.
DNS pertaining to this low-Reynolds-number condition (Freund 2001) shows that the peak
radiating component of the source coincides with neither the peak of the fully unfiltered
source nor that of the kinetic energy. Filtering out the non-radiating components of
the full source at a single frequency reveals the relevant source to be a non-compact,
modulated wavepacket. Measurements in a high Reynolds number turbulent jet (Zaman
1986) indicate that the noise source of a given frequency is located at the position where the
axial velocity spectral component at that frequency is maximum, but this does not mean
that the strongest fluctuation radiates the strongest sound. Hileman et al. (2005) sought
for the relation between coherent structures and noise generation in the time domain, by
detecting and comparing distinctive features of hydrodynamic events during the relative
short noise generation and the prolonged quiet periods. Their study lends further support
to the earlier suggestion by Morrison & McLaughlin (1979) that dominant noise is emitted
when coherent structures disintegrate and break down into small-scale motions.

Extensive research efforts in the past 40 years have provided an abundant collection
of data about the characteristics of subsonic jet noise and the dynamics of large-scale
structures, and thereby significantly improved our understanding of the relation between
them. However, much of this understanding stays at the level of intuitive phenomenological
descriptions. The assertion by Zaman (1986) that ”the precise noise production mechanism
in terms of [the large-scale structure] dynamics still remains largely unknown” holds true
to the present day. It may be stressed that understanding this mechanism is especially
important. This is because these quasi-deterministic structures are known to be sensitive
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to ambient (naturally present or artificially excited for control purpose) perturbations,
and therefore are unlikely to possess the statistical universality implied in current popular
engineering methodologies based on unsteady Reynolds averaged Navier-Stokes equations
and acoustic analogy (e.g. Khavaran & Bridges 2004). An improved prediction scheme
may emerge if the noise produced by these structures can be accounted for separately
in a framework based on their quasi-deterministic nature and the underlying physical
mechanism of radiation.

In this paper, we shall describe a new physical mechanism by which an instability
wavepacket generates sound. A high-Reynolds-number asymptotic approach will be taken
to describe the nonlinear evolution of the wavepacket, and to analyse and predict the
acoustic radiation on the basis of first principles. Strictly speaking, the formulation is for
a laminar jet undergoing transition, but given the connection between coherent structures
in turbulent flows and instability waves as presented above, the basic mechanism identified
in this paper is expected to operate in turbulent jets. On the basis of this, theoretical
predictions will be related to experimental results for turbulent jets. Alternatively, one
might view the present analysis as being applied to the averaged profile of a turbulent
flow, with the direct influence of small-scale turbulence1 on the coherent structures being
neglected; this issue will be discussed further at the end of this paper.

The rest of the paper is organized as follows. In §2, the problem is formulated. The
disturbance is assumed to be a wavepacket consisting of a pair of helical modes, which is
modulated simultaneously in both time and space on an axisymmetric jet. Its nonlinear
development in the non-equilibrium critical-layer regime is considered first in §3.1. The
evolution equation for the amplitude function is deduced, by a minor modification, from
the one given by Wu, Lee & Cowley (1993) for oblique modes in a plane shear layer.
The nonlinear interaction between the helical modes within the critical layer generates a
‘mean-flow distortion’, which is modulated in space but also slowly ‘breathes’ in time, as
will be shown in §3.2. By analyzing the asymptotic behaviour of this spatially-temporally
modulated ‘mean field’ far away from the jet axis, we show that it emits low-frequency
sound waves. The latter are determined by an asymptotic approach in §3.3. In §4, we
consider the evolution in the equilibrium critical-layer regime in which the nonparallel
effect is included. Finally, a composite amplitude equation accounting for non-equilibrium,
nonlinearity and non-parallelism is formed. Results of parametric studies are presented in
§5. A summary and concluding remarks are given in §6.

2 Formulation

We consider a circular jet, for which it is natural to use cylindric polar coordinates (x, r, φ).
The velocity components in the axial, radial and azimuthal directions are denoted by
(u, v, w). The nozzle radius RJ and the exit speed UJ will be taken as reference length
and velocity so that the reference time is RJ/UJ . The density ρ (temperature θ) is non-
dimensionalized by the jet density ρJ (temperature ΘJ), and the pressure p by ρJU2

J . The
Mach number and Reynolds number are defined as

M = UJ/cJ , R = UJRJ/νJ , (2.1)

where cJ is the sound speed and νJ the kinematic viscosity at the jet exit. Note that the
present R is half the usual Reynolds number RD based on the diameter D. We assume

1Small-scale turbulence usually refers to fluctuations which are on scales smaller than the integral length
scale of the turbulence and hence are little directly influenced by external perturbations.
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that M = O(1) and R is asymptotically large, i.e. R � 1. The velocity profile of the shear
flow is given by (

U(x3, r), R−1V (x3, r)
)

with x3 = x/R.

The disturbance of interest is a wavepacket consisting of a pair of helical modes with
nearly the same streamwise wavenumber α and frequency ωc, but opposite azimuthal
wavenumbers ±m. As the disturbance propagates downstream, it will amplify until ap-
proaching its neutral position, xn say, after which it starts to decay if its amplitude is
sufficiently small. However, if a certain threshold order of magnitude is reached before
approaching xn, the disturbance then evolves into a nonlinear stage, because of the emer-
gence of a critical layer, i.e. a thin region surrounding the level at which the velocity of
the basic flow equals the phase speed of the instability modes. Nonlinearity becomes sig-
nificant in this layer because the disturbance attains its largest amplitude. The continued
development can be described by nonlinear critical-layer theory. The reader is referred to
Goldstein (1995) and Cowley & Wu (1995) for reviews.

Depending on the initial amplitude, two nonlinear regimes are possible in principle, the
so-called non-equilibrium parallel regime, and the equilibrium non-parallel regime. These
will be considered in turn. Eventually, a composite solution will be constructed to unify
both regimes.

3 Non-equilibrium critical-layer regime

3.1 Instability modes

The nonlinear evolution of a pair of interacting helical modes on a circular jet is similar
to that of a pair of oblique modes in a planar shear layer, considered by Goldstein &
Choi (1989) and Wu et al. (1993). The nonlinear regime that the helical modes can
enter depends on ε, their magnitude in the main part of shear flow. When ε ∼ R−1, the
nonlinear interaction occurs in the so-called non-equilibrium viscous critical-layer regime,
taking place at

x3 ≈ xn + R−1/3∆,

where ∆ = O(1). The growth rate has diminished to O(R−1/3) so that the appropriate
slow space and time variables to describe the ensuing nonlinear evolution are

x̃ = R−1/3(x − x0) ≡ R2/3
(
x3 − (xn + R−1/3∆)

)
, t̃ = R−1/3t, (3.2)

where the origin of x̃ is shifted in order to facilitate the discussion of non-parallelism later.
In view of the threshold amplitude stated earlier, we may set

ε = R−1.

The velocity and temperature profiles of the base flow can be approximated, to the
required order, by

(
Ū(r, x3), T̄ (r, x3)

)
≈

(
Ū(r, xn), T̄ (r, xn)

)
+ R−1/3

(
Ū1(r), T̄1(r)

)
(∆ + R−1/3x̃). (3.3)

In the following, unless otherwise stated, Ū and T̄ are to be understood to stand for
Ū(r, xn) and T̄ (r, xn) respectively.

In the main part of the jet, the disturbance expands as (cf. Wu et al. (1993))

(u, v, w, p, θ, ρ) = εÃ(x̃, t̃ )(u0, v0, w0, p0, θ0, ρ0)E cos mφ

+ε(um, R−1/3vm, R−1/3wm, R−2/3pm, θm, ρm) cos(2mφ)

+εR−1/3(u1, v1, w1, p1, θ1, ρ1)E cos mφ + c.c. + . . . ; (3.4)
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here ε measures the magnitude of the helical modes, which for simplicity are assumed
to have a common envelope function Ã(x̃, t̃ ). The dependence on suitable slow space
and time variables, x̃ and t̃, is introduced to account for simultaneous temporal-spatial
modulation, which is crucial for acoustic radiation. For convenience, we have set

E = ei(αx−ωct) .

In expansion (3.4), the variables with subscripts 0, 1, and m represent, respectively, the
eigenfunction of the neutral helical modes, and the deviation of the disturbance from the
neutrality, and the nonlinearly generated slowly modulated ‘mean-flow distortion’. The
disparity between the scales of the carrier waves and their envelope determines the order
of-magnitude relation in expansion (3.4).

The governing equations, at leading order, are

iα(Ū − c)ρ0 + R̄′v0 + R̄
(
iαu0 +

∂v0

∂r
+

v0

r
+

m

r
w0

)
= 0,

iα(Ū − c)u0 + Ū ′v0 = −iαT̄p0,

iα(Ū − c)v0 = −T̄
∂p0

∂r
,

iα(Ū − c)w0 =
T̄m

r
p0,

iα(Ū − c)θ0 + T̄ ′v0 = −iαM2(γ − 1)(Ū − c)p0,

where c = ωc/α is the phase speed. On eliminating u0, v0, w0, ρ0 and θ0 in favour of the
pressure, we obtain

{
∂2

∂r2
+

1

r

∂

∂r
+

( T̄ ′

T̄
− 2Ū ′

Ū − c

) ∂

∂r
+

(α2M2

T̄
(Ū − c)2 − α2 − m2

r2

)}
p0 = 0. (3.5)

In the vicinity of the critical level rc, where Ū(rc)− c = 0, p0 has the local asymptotic
solution (cf. Leib 1991, Wu 2005)

p0 ∼ Ū ′
c

T̄c

{ ᾱ2

3
a±φa + φb +

ᾱ2

3
k̂ ln |η|φa

}
, (3.6)

where η ≡ r − rc � 1, and

φa = η3 − 3
4χaη

4 + . . . , φb = 1 − 1
2 ᾱ2η2 + χbη

4 + . . . , (3.7)

with χb being given by (5.7) in Wu (2005), and

ᾱ = (α2 + m2/r2
c )

1/2, k̂ = (
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

+
1

rc
) − 2m2

ᾱ2r3
c

, χa =
T̄ ′

c

T̄c
− Ū ′′

c

Ū ′
c

+
1

rc
.

Although our main focus will be on subsonic modes, for which k̂ = 0, the analysis will
cover supersonic modes as well. The nonlinear evolution equation and the formulae for
the low-frequency acoustic field apply equally to supersonic modes. Evidence that the
same low-frequency radiation mechanism may operate in supersonic jets may be found in
Hileman et al. (2005), where a strong correlation was found to exist between the far-field
sound and the low-frequency density fluctuations.
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For helical modes, the streamwise and spanwise velocity components both exhibit a
singularity of a single-pole type at the critical level, i.e.

u0 ∼ (
m2

α2r2
c

)
1

η
, w0 ∼ −(

im

αrc
)
1

η
. (3.8)

Consideration of (u1, v1, w1, p1, θ1) shows that p1 satisfies an inhomogeneous Rayleigh
equation, for which the solvability condition is derived as (Wu 2005)

− rc

Ū ′
c

{
3(c+ − c−) −

[2iᾱ2

αT̄c
(
∂A

∂t̃
+c

∂A

∂x̃
)χa − ᾱ2d

]
(a+ − a−)

}
=

2i

α

[
cI2

∂A

∂x̃
+ I3

∂A

∂t̃

]
, (3.9)

where I2 and I3 are given in Wu (2005), d(x̃, t̃ ) is an unknown function, and the jumps
(a+ − a−) and (c+ − c−) have to be determined by analysing the critical-layer dynamics.

The singularity in the outer solution is to be smoothed out by reintroducing the non-
equilibrium and viscous effects within the critical layer. As noted for example by Wu
(2005), this thin region is locally flat because the radial variation is much more rapid
than the azimuthal variation, and the dynamics is thus similar to (incompressible) planar
shear layers considered in Wu et al. (1993). For the interaction of pairs of helical (oblique)
modes, the critical layer is also minimally influenced by compressibility because although
the temperature fluctuation acquires a large amplitude, it remains fairly passive in that
its nonlinear effect on the amplitude evolution (Leib & Lee 1995) is O(R−1/3) weaker than
the dominant contribution by the velocity fluctuations2. It therefore suffices to give an
outline of the theory, highlighting only the key aspects that are relevant for the generation
of sound.

The appropriate local transverse coordinate is

Y = (r − rc)/R
−1/3,

and the solution for the disturbance expands as

u = εR1/3U1(Y, x̃, t̃ )E cos mφ + εUm(Y, x̃, t̃ ) cos mφ + . . . ,

w = εR1/3W1(Y, x̃, t̃ )E sinmφ + εR−1/3Wm(Y, x̃, t̃ ) sin 2mφ + . . . ,

θ = εR1/3Θ1(Y, x̃, t̃)E cos mφ + εΘm(Y, x̃, t̃) cos 2mφ + . . . ,

v = ε(iᾱ2/α)ηAE cos mφ + εR−1/3Vm(Y, x̃, t̃ ) cos 2mφ + . . . ,

p = ε
Ū ′

c

T̄c
AE cos mφ + εR−2/3

(
pm(x̃, t̃) + R−1/3Pm(Y, x̃, t̃)

)
cos 2mφ + . . . ,





(3.10)

where we have put ᾱ = (α2 + m2/r2
c )

1/2. The leading-order solution for v and p is just
the trivial continuation of the outer expansion, but the streamwise and spanwise velocities
as well as the temperature/density acquire a magnitude larger by a factor R1/3 than that
outside the critical layer. They are governed by equations

L(U1,W1,Θ1) =
( im2Ū ′

c

αr2
c

,
mŪ ′

c

rc
,

iᾱ2T̄ ′
c

α

)
Ã, (3.11)

where

L =
∂

∂t̃
+ c

∂

∂x̃
+ iŪcY

∂

∂x
− µcTc

∂2

∂Y 2
. (3.12)

2However, for the case of a single helical/oblique or axisymmetric/planar mode, the temperature fluc-
tuation would contribute the leading-order nonlinear effect (Goldstein & Leib 1989, Leib 1991, Churilov
& Shukhman 1994).
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The solution is (cf. Wu et al. 1993, Leib & Lee 1995)

(U1,W1,Θ1) =
( im2Ū ′

c

αcr2
c

,
mŪ ′

c

crc
,

iᾱ2T̄ ′
c

αc

) ∫ ∞

0
e−sξ3−i(αŪ ′

c/c)Y ξ Ã(x̃ − ξ, t̃ − ξ/c)dξ, (3.13)

where
s = 1

3α2Ū ′2
c (Tcµc/c

3).

The mutual interaction between the helical pair induces an azimuthal dependent ‘mean-
flow flow distortion’, (Um, Vm,Wm,Θm), among which the axial velocity

Um = − ᾱ2Ū ′2
c

αc3
(
m

rc
)2

∫ ∞

0

∫ ∞

0
e−iŪ ′

cY ξ/(2c) sin[Ū ′
cY ξ/(2c)]

ξ
Iu(ξ, η; s)

×Ã∗(x̃ − η, t̃ − η/c)Ã(x̃ − η − ξ, t̃ − η/c − ξ/c)dξdη + c.c. + Dm(x̃, t̃), (3.14)

where Dm will have to be determined by matching with the global outer solution (see
§5.2). It can be shown that as Y → ∞ (cf. (3.49) in Wu et al. (1993)),

Um → ±1
2Ju(x̃, t̃ ) + Dm, (3.15)

where we have put

Ju(x̃, t̃) = −16πŪ ′2
c (m/rc)

4/(αc3)

∫ ∞

0
Ku(η)|Ã(x̃ − η, t̃ − η/c)|2dη, (3.16)

with

Ku(η) =

∫ η

0
(η − ζ) e−2sζ3

dζ.

Clearly, Ju(x̃, t̃) represents a streamwise velocity jump, Ju(x̃, t̃) ≡ um(r+
c , x̃, t̃)−um(r−c , x̃, t̃),

through which an O(ε) ‘mean’ streamwise velocity um is generated in the main part of the
jet (cf. Goldstein & Choi 1989). A similar large ‘mean temperature’ is also induced (cf.
Leib & Lee 1995).

The analysis of the critical-layer (Wu 2005) shows that

a+ − a− = −k̂πi, (3.17)

c+ − c− = − ᾱ2

3T̄c

[ i

α
(
∂Ã

∂t̃
+ c

∂Ã

∂x̃
)
]
j πi − ᾱ2

3
k̂dπi + JN . (3.18)

It may be noted that (a+ − a−) and the linear part of (c+ − c−) correspond to the
familiar (−π) phase jump in the logarithmic singularity in the outer solution for p0 and p1

respectively. The nonlinear part of (c+ − c−), JN , can be inferred from equation (3.84) in
Wu et al. (1993), by identifying the spanwise wavenumber β with m/rc, or sin θ = m/(ᾱrc).
The resulting jump is inserted into (3.9) to obtain the amplitude equation

∂Ã

∂x̃
+ c−1

g

∂Ã

∂t̃
= σ∆Ã + l

∫ ∞

0

∫ ∞

0
K(ξ, η; s)Ã(x̃ − ξ, t̃ − ξ/c)

×Ã(x̃−ξ−η, t̃−ξ/c−η/c)Ã∗(x̃−2ξ−η, t̃−2ξ/c−η/c)dξdη, (3.19)

where the coefficients of the linear terms, cg and σ, are given by (5.31) and (5.32) in Wu
(2005). The coefficient for the nonlinear term is

l = −iα rc

[παŪ ′
c|Ū ′

c|3
T̄cc5

(α2 +
m2

r2
c

)2
m2

r2
c

]
/(cŪ ′

cG), (3.20)
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with G being given on page 143 of Wu (2005). The kernel function K is given by (3.85)
of Wu et al. (1993).

Equation (3.19) is to be solved subject to an initial condition

Ã → ã0 eσ∆x̃ Ãl(x̃ − cg t̃ ), (3.21)

where ã0 is the scaled amplitude of the disturbance at x̃ = 0 i.e. at x3 = xn + R−1/3∆.
The parameters ã0 and ∆ are not independent because ∆ (which measures the scaled
distance to the neutral position) has so far only been loosely defined. In order to specify
the latter precisely, let a0 denote the unscaled nominal amplitude exactly at the neutral
position that the disturbance would have attained via its linear growth. Then a0 and ã0

are related by the relation

a0 = R−1ã0 exp
{
R

∫ x3

x3+R−1/3∆
α(x̃3)dx̃3

}
= R−1ã0 exp

{
− 1

2 σR1/3∆2
}
, (3.22)

where α is approximated by its Taylor expansion about xn = 0. We can then take ã0 = 1
by choosing ∆ to satisfy

a0 = R−1 exp
{
− 1

2 σR1/3∆2
}
, (3.23)

which gives a precise definition of ∆. Strictly speaking, a0 represents the ‘saturation
amplitude’ projected on the basis of linear growth, but will be referred to as ‘initial
amplitude’ in view of (3.22).

Our principal interest is in the sound that may be radiated by such an instability
wavepacket/wavetrain that undergoes amplification, followed by attenuation and decay.
If the modes are supersonic, their eigenfunction is oscillatory and decays algebraically
like r−1/2 rather than exponentially, and they emit sound directly in the form of Mach
waves (Tam & Burton 1984, Tam 1995, Wu 2005). The aim of the present study is to
demonstrate that an instability wavepacket modulated simultaneously in time and space
radiates low-frequency sound waves whose time and length scales are comparable with
those of the envelope, regardless whether the modes are supersonic or subsonic.

3.2 The nonlinearly generated slowly breathing ‘mean field’

An important feature of the nonlinear interaction between a pair of helical modes is that
it generates a large three-dimensional ‘mean-flow distortion’, with the magnitude of the
streamwise velocity and the temperature and density components all being comparable
with that of the fundamental modes (cf. Goldstein & Choi 1989, Leib & Lee 1995). Unlike
the steady distortion in these paper, the nonlinearly induced ‘mean field’ in the present
study is slowly breathing in time due to the temporal modulation of the wavepacket. This
unsteadiness is of course crucial for generation of sound. The ‘mean field’ is governed by
equations

R̄

{
∂um

∂x̃
+

∂vm

∂r
+

vm

r
+

2m

r
wm

}
+

∂ρm

∂t̃
+ Ū

∂ρm

∂x̃
= 0, (3.24)

{∂um

∂t̃
+ Ū

∂um

∂x̃

}
+ Ū ′vm = 0, (3.25)

R̄
{∂vm

∂t̃
+ Ū

∂vm

∂x̃

}
= −∂pm

∂r
, (3.26)

R̄
{∂wm

∂t̃
+ Ū

∂wm

∂x̃

}
=

2m

r
pm, (3.27)

{∂θm

∂t̃
+ Ū

∂θm

∂x̃

}
+ T̄ ′vm = 0, (3.28)
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supplemented by the state equation

R̄θm + T̄ ρm = 0. (3.29)

These are homogeneous equations. The forcing comes from the critical layer through the
velocity jump across the critical layer, which can easily be inferred from the planar case,
i.e. (3.49) in (Wu et al. 1993), by replacing β by m/rc.

Eliminating um, vm, wm, θm and ρm in favour of pm, we obtain

{ ∂

∂t̃
+ Ū

∂

∂x̃

}{ ∂2

∂r2
+

1

r

∂

∂r
− 4m2

r2
+

T̄ ′

T̄

∂

∂r

}
pm − 2Ū ′∂

2pm

∂x̃∂r
= 0. (3.30)

With the second-order derivative with respect to x̃ being absent, this is the long-wavelength
limit of the compressible Rayleigh equation. Across the critical layer, the pressure pm is
continuous, but it follows from (3.25)-(3.26) and (3.16) that the pressure gradient exhibits
a jump

p ′
m(r+

c , x̃, t̃) − p ′
m(r−c , x̃, t̃) = − R̄c

Ū ′
c

( ∂

∂t̃
+ c

∂

∂x̃

)2
Ju(x̃, t̃) ≡ Jp(x̃, t̃), (3.31)

where by integration by parts, we find that

Jp(x̃, t̃) = j0

∫ ∞

0
e−2sη3 |Ã(x̃ − η, t̃ − η/c)|2dη, (3.32)

with j0 = 16πR̄cŪ
′
c(m/rc)

4/(αc). The jump Jp acts as a radially compact, low-frequency
physical source embedded in a shear flow.

As r → 0, Ū ′, T̄ ′ → 0 so that (3.30) reduces simply to the Laplace equation

{ ∂2

∂r2
+

1

r

∂

∂r
− 4m2

r2

}
pm = 0,

and the regularity requirement implies that

pm ∼ C0(x̃, t̃)r2m as r → 0. (3.33)

The same limiting equation holds for r � 1, and it follows that

pm ∼ B(x̃, t̃)

r2m
as r → ∞, (3.34)

where C0(x̃, t̃) and B(x̃, t̃) are functions to be determined numerically. Obviously, helical
modes with azimuthal wavenumbers m ± 1 are most efficient in radiating sound.

As will become clear later, it is the Fourier transform of B(x̃, t̃) that is needed for the
purpose of calculating the radiated sound. Thus we take the Fourier transform of (3.30)
and (3.31) with respect to both x̃ and t̃ to obtain

{
∂2

∂r2
+

1

r

∂

∂r
− 4m2

r2
+

( T̄ ′

T̄
− 2Ū ′

Ū + ω/k

) ∂

∂r

}
p̂m(k, ω) = 0, (3.35)

p̂ ′
m(r+

c , k, ω) − p̂ ′
m(r−c , k, ω) = Ĵp(k, ω). (3.36)

Equation (3.35) has two linearly independent solutions, Y1(r) and Y2(r) say. Without
losing generality, we may require

Y1 ∼ r2m for r � 1, and Y2 ∼ r−2m for r � 1, (3.37)
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for convenience. Then the solution for p̂ can be expressed as a linear combination

p̂m = C±
1 Y1(r) + C±

2 Y2(r) (3.38)

where ± indicates that the constants C±
1 and C±

2 take different values depending on r > rc

or r < rc. Since Y1 ∼ r2m for r � 1 and Y2 ∼ r−2m for r � 1, one has to set C+
1 = 0 and

C−
2 = 0 to render p̂m bounded at infinity and r = 0. Now applying the continuity of p̂m

and the jump condition, we have

C+
2 Y2(rc) = C−

1 Y1(rc), C+
2 Y ′

2(rc) − C−
1 Y ′

1(rc) = Ĵp(k, ω), (3.39)

from which it follows

B̂(k, ω) = C+
2 = Ĵp(k, ω)Y1(rc)/(Y1Y

′
2 − Y2Y

′
1). (3.40)

Functions Y1 and Y2 have to be found by numerically solving (3.35), which is essentially
the long wavelength limit of the compressible Rayleigh equation. The equation is singular
at the radial position r̂c where Ū(r̂c) = −ω/k; here r̂c may be referred to as the ‘envelope
critical layer’ in order to distinguish it from the usual (phase) critical layer rc. A critical
layer of the former type appears in certain generalized formulation of acoustic analogy
(Goldstein & Leib 2008), where the singularity has to be removed by reintroducing the
weak non-parallel effect of the base flow since all other terms are predesignated as sources.
In our study, the signature pm is of hydrodynamic nature for r = O(1), and thus viscous
effects are at our disposal and can be used to smoothed out the singularity. It turns out
that for evaluating the noise radiated from a subsonic jet, one only needs Y1 and Y2 for
those values of k and ω for which an envelope critical layer does not arise. In this case,
Y1 and Y2 can be obtained by integrating (3.35) in a straightforward manner using the
respective asymptotes in (3.37) for small and large r as boundary conditions.

3.3 The acoustic far field

The long-wavelength Rayleigh equation (3.30) governing the slowly modulating mean flow
is no longer valid in the far field corresponding to r = O(R1/3), because the transverse
and streamwise length scales become comparable. We thus introduce the radial variable

r̃ = R−1/3r. (3.41)

For r̃ = O(1), the instability modes and their harmonics all have diminished completely
owing to exponential transverse attenuation. In contrast, the slowly breathing ‘mean field’,
which decays algebraically, acquires the character of sound, and the solution expands as

(u, v, w, p, θ, ρ) = εR−4/3(ũs, ṽs, w̃s, p̃s, θ̃s, ρ̃s) + . . . .

As expected, functions ũs, ṽs etc. satisfy the standard linearised equations for an acoustic
perturbation in a uniform background flow Ū = 0 and T̄ = Ta. Specifically, the governing
equation for p̃s is

M2
a

∂2p̃s

∂t̃2
−

{ ∂2

∂r̃2
+

1

r̃

∂

∂r̃
− 4m2

r̃2
+

∂2

∂x̃2

}
p̃s = 0, (3.42)

where the acoustic Mach number Ma = M/T
1/2
a with Ta being the ambient air temper-

ature. For r̃ � 1, p̃m ∼ B(x̃, t̃)/r̃2m in order to match with (3.34). This indicates that
B(x̃, t̃) acts as the apparent acoustic source, which can be expressed via (3.40) in terms of
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the physical source Jp. The source is non-compact in the axial direction because its spatial
extent is comparable with the wavelength of the emitted sound, both being of O(R1/3RJ).

On taking the Fourier transform with respect to both x̃ and t̃, equation (3.42) reduces
to the Helmholtz equation

{ ∂2

∂r̃2
+

1

r̃

∂

∂r̃
+ (M2

aω2 − k2 − 4m2

r̃2
)
}
p̂s = 0, (3.43)

subject to the matching condition

p̂s →
B̂(k, ω)

r̃2m
as r̃ → 0, (3.44)

with B̂(k, ω) denoting the Fourier transform of B(x̃, t̃).
The appropriate solution to (3.43)-(3.44) can be expressed as

p̂s = q(k, ω)H
(1)
2m(Kr̃), (3.45)

where H
(1)
2m denotes the first-kind Hankel function of order 2m, and

K(k, ω) = (M 2
aω2 − k2)1/2. (3.46)

By matching, the coefficient q(k, ω) is found to be

q(k, ω) =
22mπ

(2m)!
K2m(k, ω)B̂(k, ω). (3.47)

The inversion of the Fourier transform then yields the acoustic pressure in physical space

p̃s =
22mπ

(2m)!

∫ ∞

−∞

∫ ∞

−∞
K2m(k, ω)B̂(k, ω)H

(1)
2m(Kr̃) e−i(kx̃+ωt̃ ) dkdω. (3.48)

For r̃ � 1, we may approximate H
(1)
2m by its asymptotic expansion to obtain

p̃s ∼ 22mπ

(2m)!
(

2

πr̃
)1/2 e−i(mπ+π/4)

×
∫ ∞

−∞

∫ ∞

−∞
K2m−1/2(k, ω)B̂(k, ω) exp

{
−i(kx̃ −Kr̃) − iωt̃

}
dkdω. (3.49)

Of primary interest is the far field of the acoustic region, corresponding to

R̃ = (r̃2 + x̃2)1/2 � 1.

The acoustic pressure there can be approximated by using the stationary phase method.
The phase of the integrand, φ(k) ≡ k cos θ −K(k, ω) sin θ, has a stationary point at

k = ks = −Maω cos θ, (3.50)

where θ = tan−1(r̃/x̃). Thus the instantaneous pressure in the far field is given by

p̃s ∼
22m+1π

(2m)!R̃
e−i(mπ+π/2)(sin θ)2m

∫ ∞

−∞
(Maω)2mB̂(−Maω cos θ, ω) eiω(MR̃−t̃) dω. (3.51)

To obtain B̂(−Maω cos θ, ω), one has to solve (3.35). Since the equation depends on
ω/ks, which is a function of θ but independent of ω, we may write

B̂(−Maω cos θ, ω) = T (θ)Ĵp(−Maω cos θ, ω), (3.52)
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where T (θ) is determined by solving (3.35) with −ω/k = 1/(Ma cos θ), subjected to a unit
jump, namely

{
∂2

∂r2
+

1

r

∂

∂r
− 4m2

r2
+

( T̄ ′

T̄
− 2Ū ′

Ū − 1/(Ma cos θ)

) ∂

∂r

}
p̂m = 0,

p̂m(r+
c ) − p̂m(r−c ) = 0, p̂ ′

m(r+
c ) − p̂ ′

m(r−c ) = 1,

p̂ ∼ r2m as r̃ → 0, p̂ → T (θ)

r2m
as r → ∞.





(3.53)

There is no need to consider an envelope critical layer in a subsonic jet since |ω/ks| =
|1/(Ma cos θ)|> 1 ≥ Ū . As T (θ) relates the forcing Ĵp to the output B̂, it will be referred
to as a transfer function. It is determined by the velocity and temperature profiles of the
basic flow, and the critical level rc, which in turn depends on the carrier-wave frequency ωc.
Clearly, T (θ) characterises the basic-flow refraction (shielding and amplification) effects
(cf. Goldstein 1975), which is present despite the fact that the characteristic wavelength
is much larger than the width of the shear layer.

The radiated sound is of broadband nature. It follows from (3.51)–(3.52) that its
normalized spectrum at an arbitrary point (R̃, θ) (polar coordinates) can be defined as

I(ω; θ) = ω4m
∣∣∣Ĵp(−Maω cos θ, ω)

∣∣∣
2
. (3.54)

The intensity of the acoustic pressure at an arbitrary point (R̃, θ) is then given by the
root-mean-square value √

p̃2
s =

22m+1π

(2m)!
M2m

a

D(θ)

R̃
, (3.55)

where the directivity function D(θ) is given by

D(θ) = T (θ)(sin θ)2m
[∫ ∞

−∞
ω4m

∣∣∣Ĵp(−Maω cos θ, ω)
∣∣∣
2
dω

]1/2
. (3.56)

Note that equation (3.42) remains invariant if x̃, r̃ and t̃ are rescaled by the same
factor. This means that while the results for the acoustic field are expressed in terms of
the Fourier transforms with respect to x̃ and t̃, they would remain valid if the Fourier
transforms with respect to some simultaneously renormalised variables, e.g. x̄ and t̄ (see
§4 and §5.4), are substituted in, with the only difference being some multiplicative factors.
This property will be used later.

In general, a numerical procedure is required to evaluate the directivity and spectrum
of the acoustic field radiated by a wavepacket. The analysis can be taken a step further
for a linear wavepacket with a Gaussian spectrum, as will be shown in §5.4.

3.4 An appraisal of the mechanism

It is worth noting that the mathematical problem of the acoustic radiation is somewhat
similar to that of a multipolar source embedded in a shear flow (Goldstein 1975, 1976;
Balsa 1975), in that the sources are radially compact and of low-frequency. However, the
crucial differences are (a) the physical source Jp in the present problem is unambiguously
identified by analysing the hydrodynamic field, and (b) the source is non-compact in the
axial direction, and thus cannot be modelled appropriately by acoustic multipoles.

Although the wavepacket is modulated over a lengthscale much longer than its wave-
length as in theories of Tam & Morris (1980) and Crighton & Huerre (1990), the present
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mechanism is fundamentally different from theirs. Firstly, the intensity of the radiated
sound waves is algebraically rather than exponentially small. Secondly, the characteristic
frequency of the sound emitted is comparable with the beating frequencies, rather than
the main frequency, of the instability modes. Thirdly, the generation of sound waves in-
volves an ‘inverse energy cascade’: the hydrodynamic energy in relatively short-scale wave
motions is first transferred to the unsteady mean-flow distortion of large scale before being
radiated. Since sound waves are emitted through the streaming effect and the source is
a functional of the envelope, the mechanism may be referred to ‘streaming acoustics’ or
‘envelope radiation’. The latter is suggested here also because the general wave mechanics
involved is quite similar to the ‘envelope radiation’ mechanism proposed by Fritt (1982)
and Chimonas & Grant (1984) for the generation of gravity waves, where two Kelvin-
Helmholtz waves with short but similar wavelengths interact to generate a difference-
wavenumber mode of long-wavelength, which radiates as a gravity wave (Scinocca & Ford
2000). An interaction of this kind between two two-dimensional temporally evolving in-
stability modes on a subsonic planar jet was recently explored in the framework of the
acoustic analogy by Sandham, Morfey & Hu (2006), and was found to be able to ex-
plain certain features of sound generation. In a more recent paper, Sandham & Salgado
(2008) further investigate the role of difference-frequency modes arising from interactions
between spatially developing axisymmetric and helical modes on a circular jet; see further
discussion below.

As a matter of fact, the interpretation of the upper-scale or inverse energy transfer in
terms of the interaction of two purely sinusoidal eigenmodes is too simplistic because the
Reynolds stresses produced often do not consist of significant supersonic components (see
e.g. figure 6(b) of Sandham & Salgado 2008). It follows that the resulting beating mode,
with a difference wavenumber or frequency, is not a radiating component, and thus acous-
tically behaves more or less like the original eigen modes; see further discussion below. In
order to produce a radiating response, the interacting modes must be strongly modulated
in both time and space over the beating time and length scales. Their interaction gener-
ates an unsteady slowly breathing ‘mean-field’, and the inverse cascade is achieved via a
streaming process. It should be pointed out that the inverse cascade is a hydrodynamic
process in general. In our problem, it takes place within the critical layer (Wu et al.

1993), and so is influenced by both viscous and non-equilibrium effects at leading order.
These effects are reflected respectively by the exponential kernel and the convolution in
the resulting physical source, the pressure gradient jump Jp (see (3.31)–(3.32)). Since
the physical source is embedded within the shear layer, the generation of sound is further
influenced by the mean-flow refraction, the effect of which is properly characterised by a
transfer function T (3.52).

It is interesting to contrast the present asymptotic approach with the acoustic analogy.
When the latter is applied to the present problem, one may evaluate the so-called ‘nonlinear
source’, i.e. the Reynolds stresses contributed by the wave-wave interaction, using the
available solution for the instability mode, and then solve (i) the Lighthill’s wave equation,
or (ii) the Lilley’s equation, to predict the acoustic field. Either version of the acoustic
analogy involves an inverse cascade of energy from the relatively high-frequency instability
modes to the lower-frequency sound waves, but the fact that the calculation is based on
a wave or wave-like equation implies that the inverse cascade is treated as an acoustic as
opposed to a full hydrodynamic process. Obviously, method (i) ignores both the viscous
and mean-flow refraction effects, while method (ii) includes the latter but neglects viscosity.
Consequently, even if our analytical solution for the instability waves is used to compute
the ‘nonlinear source’, the acoustic field predicted by method (i) or (ii) would differ at
least quantitatively from the first-principles solution given in the present paper. Another
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example where viscous effects play a leading-order role in the upper-scale energy transfer
leading to sound radiation was described by Wu & Hogg (2006). These observations
suggest that conventional descriptions of the inverse cascade by ‘nonlinear forcing’ acting
on Lighthill’s wave equation, or on Lilley’s equation, may not always be adequate.

Since both the present work and that of Sandham & Salgado (2008) address sound
radiation from relatively low-frequency components driven by nonlinear wave-wave inter-
actions, it is appropriate to comment on the relation between them. In the paper by
Sandham & Salgado, Lilley’s equation was employed to compute far-field sound waves
radiated from the interactions between two axisymmetric modes, one axisymmetric mode
and one helical mode, and between two helical modes both with m = 1. In each case,
the forcing (or ‘source’) was taken to be the so-called ‘streamwise quadrupole’, which was
further assumed to be located at the inflection point. None of these approximations can be
justified in the context of acoustic analogy approach; it is not clear a priori that the com-
binations of modes chosen are most relevant, or why only the steamwise quadrupole was
retained, and why it concentrates at the inflection point. In contrast, the present asymp-
totic approach, which is based on a detailed analysis of the hydrodynamic field and its
radiating property, shows that the interaction between the helical pair (m = ±1) is most
efficient in the sense that it leads to an exceptionally large radiating ‘mean-distortion’;
the forcing (or physical source) comes from the critical layer locally because dominant
interactions take place there. Moreover, the contribution to the dominant streaming is
not from the ‘streamwise quadrupole’, but from the ‘spanwise quadrupole’. This can be
deduced by noting that the jump (3.15) in this paper is essentially (3.49) of Wu et al.

(1993), and the latter comes from V̂
(0,2)
2,Y ∼ Ŵ (0,2) in (3.45), which is driven by the ‘span-

wise quadrupole’ (see (3.32)), whilst the ‘streamwise quadrupole’ S
(0,2)
11 in (3.45) does not

contribute to jump (3.49).
Sandham & Salgado (2008) found that for combinations considered the ‘streamwise

quadrupole’ turned out to be strongest for the difference mode with St ≈ 0.2, apparently
in agreement with the acoustic spectral peak observed in experiments. Unfortunately,
the significance of this result is undermined by two facts: (a) the spanwise quadrupole,
which may be just as and even more important (see discussion above), was neglected, and
(b) the ‘streamwise quadrupole’, which is modulated in space only, consists principally
of subsonic components (see their figure 6(b)). As the authors realised, the radiation
efficiency is actually determined by small-amplitude supersonic components in its spectral
tail (rather than by the overall strength of the quadrupole). In order to elaborate this point
a little further, suppose that the instability modes have frequencies ω1 and ω2 (ω1 > ω2),
and streamwise wavenumbers α1 and α2. Then the ‘nonlinear source’ and hence the
difference-frequency mode can be represented in the form

D(X)φd(r) ei(α1−α2)x−i(ω1−ω2)t +c.c., (3.57)

where the dependence on the azimuthal coordinate is suppressed. The functions φd(r)
and D(X) characterise respectively the radial variation and axial modulation over a slow
variable X ≡ ε̃x, where ε̃ � 1. Since the carrier wave has a subsonic phase speed
(ω1 − ω2)/(α1 − α2) < 1/Ma, radiating supersonic components may arise only when the
spatial modulation D(X) is considered. Let D̂(k) be the Fourier transform of D(X) with
respective to X. Typically, D̂(k) is of order one for k = O(1), but D̂(k) � 1 for large

k � O(1). The Fourier transform of (3.57) can be written as D̂
(
k− (α1 −α2)/ε̃

)
. A com-

ponent with wavenumber k is radiating if its phase speed (ω1 −ω2)/(ε̃k) is supersonic, i.e.
if |(ω1−ω2)/(ε̃k)| > 1/Ma; the corresponding amplitude is D̂(ks), with ks = k−(α1−α2)/ε̃
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in the interval

−
[
Ma(ω1 − ω2) + (α1 − α2)

]
/ε̃ < ks <

[
Ma(ω1 − ω2) − (α1 − α2)

]
/ε̃ < 0.

Obviously, D̂(ks) must be very small since ks = O(1/ε̃) � 1 is in the spectral tail of
D. The result shows that although the difference-frequency mode (3.57) may emit some-
what more efficiently than the original instability waves, the radiation might be viewed as
being as essentially due to the mechanism described by Crighton & Huerre (1990) for a
subsonically propagating spatially-modulated wavetrain, which (3.57) is. In contrast, the
slowly breathing ‘mean-distortion’ resulting from our streaming mechanism is modulated
simultaneously in both time t̄ and space x̄, and decays algebraically in radial direction
(3.34). When it is Fourier transformed with respect to the slow variables t̄ and x̄, domi-
nant components concentrate in the frequency-wavenumber domain (ω, k) where ω = O(1)
and k = O(1). The radiating supersonic components (ω, k) = (ω,−Maω cos θ) (see (3.50))
are clearly within in this prime energy-containing domain. These components occupy two
fan-shaped subregions defined by |k| < Ma|ω|, implying that for Ma = O(1) the slowly
breathing ‘mean-distortion’ consists primarily of supersonic components.

4 Non-parallelism and the composite amplitude equation

4.1 Non-parallel-flow regime

In the non-equilibrium regime considered in §3, the nonlinear evolution of the instability
modes takes place on a relatively short scale, for which non-parallelism is negligible at
leading order. If the initial amplitude is reduced, nonlinear evolution would occur in an
O(R−1/2) vicinity of the neutral position xn, i.e.

x3 = xn + R−1/2x̄ with x̄ = O(1). (4.1)

Non-parallelism then becomes a leading-order effect in the sense that the linear growth
rate of the modes varies over a length scale comparable with the length scale over which the
amplitude evolves. In the region specified by (4.1), the local basic velocity and temperature
profiles can be approximated, to the required order, by

(
Ū(r, x3), T̄ (r, x3)

)
≈

(
Ū(r, xn), T̄ (r, xn)

)
+ R−1/2

(
Ū1(r), T̄1(r)

)
x̄.

Corresponding to the spatial variable x̄ (see (4.1)), the slow time variable to describe
the simultaneous temporal modulation is

t̄ = R−1/2t.

The nonlinear evolution in this regime is considered in Wu (2005), where it is shown
that the threshold magnitude is

ε = O(R−7/6). (4.2)

The disturbance may be expressed at leading order as

(u, v, w, p, θ, ρ) = εĀ(x̄, t̄ )(p0, u0, v0, w0, θ0, ρ0)E cos mφ + c.c..

The evolution equation for Ā, which is related to Ã by Ā = R1/6Ã, is found to be

∂Ā

∂x̄
+ c−1

g

∂Ā

∂t̄
= σx̄Ā + l̄Ā

∫ ∞

0
|Ā(x̄ − ξ, t̄ − ξ/c)|2dξ, (4.3)
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where

l̄ = −iπrc/(c
2T̄cG)α−2/3|Ū ′

c|1/3(µcTc)
−4/3(2

3 )2/3Γ(1
3)(α2 − m2

r2
c

)
m4

r4
c

.

The modulating mean-flow in the main part of the jet remains unaltered, except that
the jump (3.31) simplifies to

Jp = 8π(2
3 )2/3Γ(1

3 )R̄cα
−5/3|Ū ′

c|1/3 sgn(Ū ′
c)(m/rc)

4(Tcµc)
−1/3|Ā(x̄, t̄ )|2. (4.4)

4.2 Composite amplitude equation

Equations (3.19) and (4.3) describe the nonlinear evolution in two distinguished regimes
respectively: the former includes the non-equilibrium effect but neglects non-parallelism,
while the latter does the opposite. It is desirable to construct a single composite amplitude
equation, which includes both effects, thereby unifying the two regimes. This can be
achieved by observing that the operator governing the critical-layer dynamics is

R−1/6
( ∂

∂t̄
+

∂

∂x̄

)
+ iαŪ ′

cY − µcTc
∂2

∂Y 2
.

In the derivation of (4.3), the O(R−1/6) non-equilibrium term was neglected, but it had to
be re-introduced in a diffusion layer governing the mean-flow distortion (Wu et al. 1993).
However, if this formally small term is retained within the critical layer, then we arrive at
the amplitude equation

∂Ā

∂x̄
+ c−1

g

∂Ā

∂t̄
= σx̄Ā + lR2/3

∫ ∞

0

∫ ∞

0
K(ξ, η; s̄)Ā(x̄ − ξ, t̄ − ξ/c)

×Ā(x̄−ξ−η, t̄−ξ/c−η/c)Ā∗(x̄−2ξ−η, t̄− 2ξ/c −η/c)dξdη, (4.5)

where l is the same as (3.20), and K is given by (3.85) of Wu et al. (1993), but with s̄ =
sR1/2. We shall assume that the disturbance upstream is of sufficiently small amplitude
that nonlinearity is negligible. The appropriate initial condition then is of the form

Ā → ā0 e
1
2 σx̄2

Āl(x̄ − cg t̄ ) as x̄ → −∞, (4.6)

where Āl = O(1), and ā0 is the rescaled overall amplitude of the disturbance.
Alternatively, a composite amplitude equation can be obtained in the non-equilibrium

regime by retaining the O(R−2/3) term in (3.3), which was ignored in deriving (3.19). The
linear term in (3.19) is then modified to σ(∆ + R−1/3x̃)Ã. The resulting equation, when
written in terms of x̄ by using the relation (see (4.1) and (3.2))

x̄ = −R1/6∆ + R−1/6x̃,

acquires the same form as (4.5). In the appendix, it is demonstrated that the evolution
problem (4.5)-(4.6) accommodates both regimes, each of which is realised for a character-
istic size of ā0.

It is informative, as well as convenient for computational purpose, to introduce nor-
malized variables

x̂ = |σr|1/2x, t̂ = |σr|1/2t, A = R−7/6Ā,

in terms of which, amplitude equation (4.5) and initial condition (4.6) are rewritten as

∂A

∂x̂
+ c−1

g

∂A

∂t̂
= σ̂x̂A + l̂

∫ ∞

0

∫ ∞

0
K(ξ, η; ŝ)A(x̂−ξ, t̂−ξ/c)

×A(x̂−ξ−η, t̂−ξ/c−η/c)A∗(x̂−2ξ−η, t̂−2ξ/c−η/c)dξdη, (4.7)
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A → a0Al(x̂ − cg t̂) as x̂ → −∞, (4.8)

where
σ̂ = σ/|σr|, l̂ = R3l/|σr|3, ŝ = sR1/2/|σr|3/2.

Note that A = R−1Ã = R−7/6Ā is the unscaled amplitude, and the ‘initial condition’ a0 is
measured by the projected ‘linear saturation amplitude’ at the neutral position; see (3.22).

5 Results and discussions

In the numerical computation to be presented, the basic velocity profile is taken to be

Ū =





1 r ≤ h,

exp{−(
r − h

b
)2} r > h,

(5.1)

which was suggested by Tam & Burton (1984), and has been used in a number of papers
including Wu (2005). Its applicability is restricted to the region before the end of the
potential core, after which the axial velocity decreases with the downstream distance. For
simplicity the Prandtl number is assumed to be unity so that the temperature profile is
given by Crocco’s relation

T̄ =
(
1 +

γ − 1

2
M2

)[
Ta + (1 − Ta)Ū

]
− γ − 1

2
M2Ū2. (5.2)

The parameters h and b in (5.1) characterise the local centre and width of the shear
layer respectively, and are related by equation (6.3) in Wu (2005) in order to conserve the
momentum. Both of h and b are functions of x3, but a global relation is not needed here
since the present analysis focuses on the vicinity of the neutral position xn. The local
variation is controlled by σs ≡ b′(xn), which is related to the usual spreading rate of the
‘half-velocity width’ b′1/2(xn) by relation

σs = b′1/2(xn)/
(
h′(b) + ln

√
2
)
. (5.3)

5.1 Characteristics of subsonic instability modes

The Rayleigh equation (3.5) is solved for three representative Mach numbers, M = 0.3,
0.5 and 0.9, by using a shooting-method based on a fourth-order Runge-Kutta integrator.
For each value of b, the neutral wavenumber α, phase speed c and hence frequency ω are
obtained. For the convenience of comparing with experimental results, the usual Strouhal
number St = 2RJf∗/UJ = ω/π is introduced, where f ∗ is the physical frequency in Hertz.

Figures 1a,b show the predicted phase speeds and the wavenumbers for a range of
St. Also shown are the experimental data of Stromberg et al. (1980) and Suzuki &
Colonius (2006) for cold jets. The former experiments was performed at a low Reynolds
number R = 1800, for which the initial shear layer was laminar. The latter was for a
high R = 3.5 × 105 turbulent jet. By assuming that the flow signature at the outer edge
of jet consists of predominantly linear instability modes, (an assumption well justified
since nonlinear effects are confined within the critical layer), the phase and amplitude
information of relevant modes was extracted by projecting the measured pressure signal
to the local eigenfunctions of the compressible Rayleigh equation. The phase speed for
each frequency shown was calculated from the phase evolution at the saturation point,
and thus can be appropriately compared with that of the neutral mode. A remarkably
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Figure 1: (a) Wavenumbers α, (b) phase speed c of neutral modes vs. frequency St, and
(c) Strouhal number Stb ≡ bSt vs. b. M = 0.3 (dotted lines), M = 0.5 (solid lines)
and M = 0.9 (dashed lines). o: experiment of Suzuki & Colonius (2006) (M = 0.5); •:
experiment of Stromberg et al. (1980) (M = 0.9).
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Figure 2: Eigenfunctions of subsonic instability modes at M = 0.9 with St = 1.0 (solid
line) and St = 0.44 (dashed line).

good agreement is noted. The Mach number appears to have very little effect. The phase
speed of relatively high-frequency modes (St > 0.4) is almost independent of St.

The frequency of a neutral mode depends on the local shear-layer width b, which is
a monotonically increasing function of the streamwise location. Relatively low-frequency
modes are of jet-column type; they correspond to large b. As b decreases, high-frequency
modes arise, and their wavelengths become progressively shorter, and eventually acquire
the character of shear-layer modes, so-called because they concentrate in the thin shear
layer centred at r = 1. This change of character is demonstrated in figure 1c, where
Stb ≡ bSt is plotted against b. For b < 0.5, Stb is almost independent of b, implying that
the modes scale on the local shear-layer width b. Figure 2 displays the eigenfunctions of
neutral modes with St = 0.44 and St = 1.0; the former features a jet-column mode while
the latter appears more like a shear-layer mode. Subsonic modes attenuate exponentially,
as opposed to the algebraic decay of neutral supersonic modes (cf. Wu 2005).

5.2 The nonlinear development of pairs of helical modes

In order to assess the relative importance of non-parallelism, nonlinearity and non-equilibrium
effects, we first solve the composite amplitude equation (4.5) numerically for the special
case where the temporal modulation is absent, i.e. A is independent of t̂. The spreading
rate σs is a key parameter, and the regimes in which one or more of the effects dominate
can be readily delineated for small spreading rates. We take σs = 1.36 × 10−4, equivalent
to a half width spreading rate b′1/2 = 5.5 × 10−5, which is about three orders of magni-
tude smaller than typical realistic values. Figure 3 shows the amplitude development for
different values of a0. The predictions by the composite equation (4.5) are compared with
those by its limiting forms (3.19) and (4.3).

Consistent with the result of Wu et al. (1993), in the parallel theory there exists a
critical threshold initial amplitude, above which the amplitude develops a finite-distance
singularity. The largest a0 shown in figure 3 (curve-1) is close to but slightly above
the critical threshold, and so the singularity occurs in the solution given by the parallel
theory. With the non-parallelism included, the amplitude remains bounded. Although
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Figure 3: Nonlinear development of a subsonic instability mode with St = 1 at M = 0.9
and R = 1800 for an artificially small spreading rate σs = 1.36 × 10−4. Curves (1)-(5)
represent the result for ‘initial amplitude’ a0 = 2.68 × 1021, 6.71 × 1016 , 8.18 × 108,
5.10 × 102, 1.54 × 10−2. The dashed lines in (a) and (b) represent the predictions by
the non-equilibrium parallel theory and equilibrium non-parallel theory respectively. The
dashed-dotted line stands for the linear evolution.
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Figure 4: Nonlinear development of subsonic instability modes on a jet at M = 0.9 and
R = 1800 with a realistic σs = 0.043. (a) St = 1 and the initial amplitude a0 = 1.77×10−2

(curve 1), 3.31 × 10−2 (curve 2), 4.12 × 10−2 (curve 3) and 5.16 × 10−2 (curve 4). (b)
St = 0.44 and a0 = 4.56 × 10−3 (curve 1), 6.09 × 10−3 (curve 2), 7.61 × 10−3 (curve 3)
and 9.13 × 10−3 (curve 4). The dashed lines represent the linear evolution.
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Figure 5: The axial distribution of the peak density fluctuation R1 ≡ εR−1/3(−Θ1/T
2
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(the solid line) of a mode with St=0.44 and a0 = 7.61 × 10−3, and comparison with the
amplitude development (the dashed line). The axial coordinate is the distance to the jet
exit normalised by the diameter.

not shown here, it was found that as a0 is increased further, the predictions by the two
theories overlap to a great degree, and both feature a singularity, indicating that a critical
threshold ac exists also in the non-parallel theory. For a0 < ac, nonlinearity is found
to have a stabilizing effect, causing the amplitude to attenuate at a location upstream
of the linear neutral position. Overall, the larger initial amplitude is, the earlier does
nonlinearity come into play, with the evolution occurring over a shorter scale. For these
relatively large a0 values both theories yield broadly similar results, suggesting that (3.19)
is a valid leading-order approximation. The non-parallelism nevertheless modifies the
solution quantitatively, e.g. it increases the critical threshold ac required for the solution
to remain bounded. On the other hand, as a0 decreases, one might expect the instability
modes to enter the equilibrium regime for which (4.3) holds. The prediction by the latter is
displayed in figure 3b. The comparison with the composite theory indicates that for the σs

considered, the equilibrium theory gives qualitatively similar results, but the quantitative
agreement is rather poor: the attenuation occurs too early and the maximum amplitude
turns out to be too small. In conclusion, for the present extremely small σs, one may
identify a parallel non-equilibrium regime (figure 3a) and non-parallel equilibrium regime
(3b), the key features of which can be captured by simplified amplitude equations, (3.19)
and (4.3), respectively. However, the composite evolution equation (4.5) has to be used
for quantitative predictions.

Figures 4a,b shows the nonlinear development of subsonic modes on a jet with a realistic
σs = 0.043, extracted from a half-width spreading rate b′1/2 = 0.017, which is typical of

experimental conditions (e.g. Iqbal & Thomas 2007). The Reynolds number is R = 1800.
As expected, there exists a critical ac such that for a0 > ac, the amplitude terminates at a
finite-distance singularity. Then it is necessary to construct a uniformly valid solution for
A by removing the singularity, which requires considering fully nonlinear Euler equations
(Goldstein & Choi 1989), before the emitted sound can be calculated. Waves of such larger
amplitude and relative fast modulation would be a stronger source, but the radiation
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mechanism remains the same as elucidated here. In what follows, we shall focus on a0 <
ac, for which the amplitude remains bounded. For σs values typical of experiments, it
is no longer possible to identify any limiting regime, and instead all three factors now
operate simultaneously. With the non-equilibrium effect included, nonlinearity has a slight
stabilising effect near the peak amplitude, after which its role is destabilizing, causing
the disturbance to decay much more slowly than in the linear case. This differs even
qualitatively from the equilibrium nonlinearity, which would have been entirely stabilizing
since the Landau coefficient lr < 0. Such a slower-than-Gaussian decay was noted in the
experiments of Suzuki & Colonius (2006; see their figure 12(a)), and the overall growth-
saturation-decay predicted for moderate a0 is reminiscent of their measurements. The
oscillatory feature exhibited by the amplitude at relatively large a0, e.g. curve (3) in figure
4a and curves (3)-(4) in figure 4b, qualitatively resembles some experimental observations
made for helical modes in a turbulent jet, e.g. figure 5.26(b) of Ahuja et al. (1982).

It should be pointed that while the amplitude A is proportional to the maximum
pressure fluctuation, it does not have such a simple relation with the axial velocity or
density fluctuations, which acquire their respective maximum magnitudes in the critical
layer. Due to the non-equilibrium effect, both depend on the history of A, as indicated by
(3.13). Figure 5 shows the axial development of the local maximum density fluctuation,
which is proportional to the maximum axial velocity fluctuation according to (3.13). The
density evolution is contrasted with the amplitude A, renormalised such that its maximum
equals that of the density. Their shapes are quite similar, but the density attenuates
farther downstream, suggesting a strong non-equilibrium effect. It may be noted that the
density development appears quite similar to the experimental result shown in figure 7 of
Stromberg et al. (1980). Here for the convenience of comparison, the axial coordinate is
taken to be the distance to the nozzle by assuming that the neutral position of the modes
is located 5 diameters downstream.

In the absence of temporal modulation, the mean-flow distortion due to the mutual
interaction between a pair of helical modes induces a steady mean-flow distortion, which
is of interest in its own right, and has been studied experimentally by several authors
(Cohen & Wygnanski 1987b, Long & Petersen 1992).

We can write
pm(x̃, r) = Jp(x̃)qm(r).

It follows from (3.30) that q(r) satisfies

{ ∂2

∂r2
+

1

r

∂

∂r
− 4m2

r2

}
qm +

( T̄ ′

T̄
− 2Ū ′

Ū

)∂qm

∂r
= 0,

qm(r+
c ) − qm(r−c ) = 0, q′m(r+

c ) − q′m(r−c ) = 1,

q′m → Ū2 as r → ∞,





(5.4)

where the behaviour of qm for large r is derived by noting that for the profile (5.1) and
(5.2), T̄ ′/T = 0 but Ū ′/Ū 6= 0, at infinity.

In terms of qm, the axial velocity um, which is of special interest, can be expressed as

um(x̃, r) = c2/(T̄cŪc)Ju(x̃)
T̄ Ū ′

Ū2
q′m(r).

Matching with the corresponding critical-layer solution (3.14) yields

Dm =
(
q′m(r+

c ) − 1
2

)
Ju(x̃).
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Figure 6: Normalised transfer function T (θ;St)/T0 vs. θ at (a) M = 0.5 and (b) M = 0.9.

Using the multiplicative rule, we may construct a composite solution

U (c)
m =





um(r)Um

(
(r − rc)R

1/3, x̃, t̃
)
/q′m(r+

c ) for r ≥ rc,

um(r)Um

(
(r − rc)R

1/3, x̃, t̃
)
/q′m(r−c ) for r < rc,

which is uniformly valid for all r. The distorted axial flow, (Ū + εU
(c)
m cos 2mφ), would

become increasingly azimuthally dependent as it evolves downstream, and its contours in
the (r, φ) plane would appear elliptic as observed in experiments (Cohen & Wygnanski
1987b, Long & Petersen 1992).

5.3 Transfer function T (θ; St)

The transfer function T (θ;St) is determined by solving (3.53). Its dependence on St
comes from the critical level rc, which is a function of ωc, the carrier-wave frequency of
the instability wavepacket. If we artificially set Ū ′ = T̄ ′ = 0, i.e. neglect the refraction of
the background shear flow, (3.53) can be easily solved analytically to obtain

T0 = −r2m+1
c /(4m),

which is independent of θ. The refraction effect can then be quantified by the transfer
function T normalised by T0.

Figures 6a,b show the variation of |T (θ;St)/T0| with θ for M = 0.5 and M = 0.9.
At moderate Mach number (e.g. M = 0.5), T is a monotonic decreasing function of θ
for carrier-waves of relatively low frequencies. As St increases, a broad peak, centred at
θ ≈ π/3, starts to emerge. At M = 0.9, T exhibits a peak for all St at an angle which
increases with St. The peak becomes sharper at higher Mach numbers. An interesting
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Figure 7: The directivity (a) and spectrum at θ = 90o (b) of the acoustic field radiated
by a linear wavepacket with St = 0.44 and ∆ω = 0.5. Solid lines: non-equilibrium result;
dashed lines: equilibrium result. Reynolds number R = 1800 and σs = 0.043.
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Figure 8: The directivity (a) and spectrum (b) of the acoustic field radiated by a linear
wavepacket with St = 0.44 at R = 1800. Solid lines: σs = 0.043 and ∆ω = 0.3; solid
lines with symbols: σs = 0.0215 and ∆ω = 0.3; dashed lines without symbols: σs = 0.043
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(σs = 0.043 and ∆ω = 0.5).
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acoustic field radiated by a linear wavepacket with St = 0.44, ∆ω = 0.3 and σs = 0.043.
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and important fact is that |T (θ;St)/T0| > 1 around the peak angle, indicating that the
background shear flow acts as a ‘soundboard’ to amplify the emission along certain direc-
tions. Therefore, without taking into account the refraction effect, neither the directivity
nor the intensity can be predicted correctly.

5.4 The acoustic field of a linear wavepacket

It is instructive to consider first the case where the amplitude of a wavepacket is sufficient
small that it remains linear during its entire evolution. Let Â(x̄, ω) denote the Fourier
transform of Ā(x̄, t̄). Then it follows that Â(x̄, ω) takes the form

Â(x̄, ω) = Â0(ω) exp( 1
2 σx̄2 − ic−1

g ωx̄), (5.5)

where Â0(ω) is the upstream spectrum of the wave envelope. As an example, we consider
the special case where A0 is Gaussian

Â0(ω) =
√

2πâ0 e− d ω2

;

here â0 measures the overall intensity, and 1/
√

d characterises the scaled spectral band-
width, of the oncoming wavepacket. The wavepacket envelope in physical space is given
by

Ā(x̄, t̄ ) =
â0√
2d

exp
(

1
2 σx̄2 − (x̄/cg − t̄ )2/(4d)

)
, (5.6)

which is merely ‘quasi-Gaussian’, since its shape is deforming continuously when propa-
gating downstream due to a complex group velocity cg. Equation (5.6) indicates that the
wavepacket decays to zero as x̄ → ±∞. The wave envelope itself has an envelope,

Ā2 = â2
0

√
π

2d
exp(− 1

2 qx̄2), (5.7)

which is Gaussian, since

q = −(σ + σ∗) + (1/cg − 1/c∗g)
2/(4d) > 0

is real. The axial extent in which the wavepacket is significant is measured by 1/
√

q.
It can be shown further that

Ĵp(x̄, ω)

â2
0j0

=

√
π

2d

∫ ∞

0
exp

{
− 1

2

[
dω2 + q(x̄−η)2 +iω(1/cg+1/c∗g)(x̄−η)

]
− i(ω/c)η−2s̄η3

}
dη,

(5.8)
and that

Ĵp(k, ω)

â2
0j0

=
π√
qd

e
−

1
2

{
d ω2+ 1

q
(k+

1
2 (1/cg+1/c∗g)ω)

2

}

C(k, ω),

where the factor C(k, ω), defined as

C(k, ω; s̄) =

∫ ∞

0
e−2s̄η3−i(k+ω/c)η dη, (5.9)

represents the non-equilibrium effect. Inserting this into (3.54) yields the spectrum

I(ω; θ)/(â4
0j

2
0) = ω4m exp

{
−

[
d +

1

q
(Ma cos θ − 1

2(1/cg+1/c∗g))
2
]
ω2

}∣∣∣C(−Maω cos θ, ω)
∣∣∣
2
.

(5.10)
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The directivity is given by

D(θ) = T (θ)(sinθ)2m
[∫ ∞

−∞
ω4m e

−

{
d+ 1

q
(Ma cos θ−

1
2 (1/cg+1/c∗g))

2

}
ω2 ∣∣∣C(−Maω cos θ, ω)

∣∣∣
2
dω

]1/2
.

(5.11)
In the equilibrium regime (s̄ = sR1/2 � O(1)), C ≈ 1

3 (2s)−1/3Γ(1/3), independent of ω,
and so the expressions for I(ω; θ) and D(θ) reduce to

I(ω; θ)/(â4
0 j2

0) = ω4m exp
{
−

[
d +

1

q
(Ma cos θ − 1

2(1/cg + 1/c∗g))
2
]
ω2

}
C2, (5.12)

D(θ) = T (θ)(sin θ)2m
{
d +

(
Ma cos θ − 1

2(1/cg + 1/c∗g)
)2

/q
}−(m+

1
4 )
C. (5.13)

These results indicate that the acoustic field depends on all three parameters char-
acterising the envelope Ā and the physical source Jp: the group velocity cg, frequency
bandwidth 1/

√
d, and jet spreading rate σs. Since cg is complex, whose imaginary part

cgi is typically one-fourth of the real part cgr, both Ā and Jp appear to be convecting
downstream at speed cgr. However, their profiles undergo continuous deformation because
of a non-zero cgi. As will be shown later, nonlinear effects cause further distortion of the
wave envelope. The discussion above suggests that even in the present idealised situation,
it would be too simplistic to characterise the source by a simple convection velocity.

We first consider a wavepacket with Strouhal number St = 0.44, which is chosen
because it corresponds to the peak frequency of hydrodynamic fluctuations in the region
where the jet is nearly fully developed. The Reynolds number R = 1800 is taken to be
the same as in the experiments of Stromberg et al. (1980). Instead of 1/

√
d, the unscaled

frequency band width
∆ω ≡ 1/

√
Rd

will be used as a parameter because the latter is easily related to the carrier-wave frequency
ωc = πSt. For example, for the wavepacket with St = 0.44 to be considered, we take
∆ω = 0.3 and 0.5, which correspond to bandwidths of about ωc/5 and ωc/4 respectively.
Figures 7a,b display the directivity of the emitted sound and its spectrum at θ = 90o,
predicted by (5.11) and (5.10) respectively for ∆ω = 0.5. In order to assess the non-
equilibrium effect, also included is the prediction by formulae (5.13) and (5.12), which is
a valid approximation when the critical layer is equilibrium, i.e. when s � 1. At this low
Reynolds number, the results are quantitatively similar. The acoustic field features a single
lobed pattern, indicating that the sound concentrates in a beam which makes an angle
about θp = 46o to the jet axis. It consists of a band of low-frequency components. At 90o,
the spectrum peaks at Stp = 0.06 ∼ 0.08. Nevertheless, neglecting the non-equilibrium
effect leads to an appreciable over-prediction of the sound intensity as well as a slightly
smaller inclination angle of the beam. The difference becomes much more substantial for
high Reynolds numbers in typical experiments (e.g. R = O(106)). In the following, only
(5.11)-(5.10) will be used.

Figures 8a,b show the effects of σs (the jet spreading rate) and ∆ω (the bandwidth of
the spectrum). When σs is halved, θp is reduced from 54o to 50o, while Stp drops from
0.07 to 0.053, and meanwhile the acoustic intensity is more than doubled. Increasing ∆ω
(from 0.3 to 0.5) reduces θp (from 54o to 46o), but its primary effect is to enhance the
acoustic field as expected, while the peak frequency Stp is hardly altered. Also shown
in the figure is the spectrum at θ = θp = 46o. In comparison with the 90o-spectrum, a
broader peak centred at a higher St is observed.

The Reynolds number influences D(θ) and I(ω, π/2) spectrum via s; see (5.9)-(5.10),
and its effect is demonstrated in Figures 9a,b. At R = 5.4 × 105, the directivity remains
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Figure 10: The directivity (a) and spectrum (b) of the acoustic field radiated by a linear
wavepacket with St = 1.0 at R = 1800. Solid lines: σs = 0.043 and ∆ω = 0.5; solid
lines with symbols: σs = 0.0215 and ∆ω = 0.5; dashed lines without symbols: σs = 0.043
and ∆ω = 0.8. In (b), the dashed line with symbols represents the spectrum at θ = 55o

(σs = 0.043 and ∆ω = 0.8).
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Figure 11: The directivity (a) and spectrum (b) of a linear wavepacket with St = 1.0
at Reynolds number R = 2.7 × 105. Solid lines: σs = 0.043 and ∆ω = 0.5; solid lines
with symbols: σs = 0.0215 and ∆ω = 0.5; dashed lines without symbols: σs = 0.043
and ∆ω = 0.8. In (b), the dashed line with symbols represents the spectrum at θp = 53o

(σs = 0.043 and ∆ω = 0.8).
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similar to that in the R = 1800 case albeit with a slightly smaller θp = 50o. A notable
change is that the spectrum exhibits double peaks, and the acoustic energy shifts to lower-
frequency components.

The salient features of the acoustic field appear to be robust, and are qualitatively
consistent with experimental measurements. There are however noticeable quantitative
differences: the predicted θp (about 60o) is larger, and Stp (about 0.07) is smaller, than
typical experimental data θp ≈ 30o and Stp ≈ 0.2. It should be noted that in experiments
θ is defined with the origin being taken at the nozzle, while in our theory θ is defined with
the origin taken to be at the neutral position of the instability mode under consideration.
On taking into account the fact that the latter is usually about 4-6D downstream of the
nozzle, the experimental value (measured at a distance of 30D, Stromberg et al. 1980)
is converted to θp ≈ 40o, which is somewhat closer to the prediction, but appreciable
difference remains.

While a wavepacket with St = 0.44 is representative of the most energetic hydrody-
namic fluctuations in the region towards the end of the potential core, it does not neces-
sarily contribute the dominant noise (Freund 2001). Next, we consider the acoustic field
radiated by a wavepacket with St = 1.0, as a representative of relatively high-frequency
components, which are likely to be present in the upstream region before the end of the
potential core.

In figures 10a,b, the directivity and spectrum for selected values of σs and ∆ω (0.5
and 0.8) are displayed; here ∆ = 0.5 and 0.8 correspond to bandwidths of about ωc/6 and
ωc/4 respectively. The characteristics of the beam appears almost identical to that in the
St = 0.44 case (cf. Figure 8). The spectral peak shifts to higher frequencies as might be
expected. It is worth noting that while θp = 55o is larger than the experimental value, the
peak frequency in the spectrum in this direction is Stp = 0.22, which is well within the
range observed in experiments.

Increasing the Reynolds number to R = 2.7 × 105 does not substantially alter the
qualitative features of the directivity and spectrum, as is shown in figures 11a,b. However,
at high Reynolds numbers, a wavepacket with the same amplitude emits much more intense
sound than at low Reynolds numbers (cf. figure 10b and figure 11b).

5.5 The acoustic field of a nonlinear wavepacket

In order to compute the acoustic field of a nonlinear wavepacket, we solve the amplitude
equation (4.5) by taking the Fourier transform with respect to t̄ (cf. Wu 2005). The
amplitude in spectral space is inverted to evaluate the nonlinear term in physical space,
which is then Fourier transformed back to spectral space. For x̄ → −∞, the nonlinear
term is negligible so that (5.5) can be used as the ‘initial condition’, imposed at a large
negative x0. An Adams-Moulton (implicit) method of sixth-order accuracy was employed
to march the solution downstream.

Figure 12a shows the envelope development of a wavepacket with St = 1.0 for three
different values of initial amplitude a0. In the linear limit, the envelope follows a Gaussian
distribution (5.7). As a0 increases, the envelope deviates from this shape due to the
nonlinear effect. Interestingly, nonlinearity appears ‘dormant’ during the growing phase
of the wavepacket, and asserts its influence only in the decaying phase, causing the envelope
to decay at a slower rate than that in the linear limit. Double peaks appear for relatively
large a0. The axial profiles overall look quite similar to those in the non-modulated case
(cf. figure 4).

The directivity D(θ) of the acoustic field emitted by the wavepacket is shown in figure
12b for different sizes of ‘initial amplitude’ a0 = R−7/6â0/

√
2d. As a0 increases, the lobed
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Figure 12: The nonlinear development of a wavepacket (with St = 1.0, ∆ω = 0.5) and its

acoustic field. (a)
√

A2 v.s x̂. (b) Directivity pattern. (c) Spectrum at θ = 90o. ‘Initial
amplitude’ a0 = 2.53 × 10−2, a0 = 2.95 × 10−2 (curve 2), a0 = 3.38 × 10−2 (curve 3). The
dashed lines represent the result for a linear wavepacket with a0 = 2.53 × 10−2. Reynolds
number R = 1800 and σs = 0.043.
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beam is tilted slightly away from the jet axis, but its gross feature is not significantly
altered by nonlinearity. Since D(θ), or the distance of the tip of the lobe to the origin,
measures the efficiency of emission, the increase of the overall lobe size with a0 indicates
that as a wavepacket envelope is distorted by the nonlinear effect, it emits stronger sound.
Meanwhile, the spectrum of the acoustic field becomes broader, as shown in figure 12c.
For the largest a0 considered, the frequency band is approximately between 0.1 ∼ 0.3,
broadly consistent with the experimental observed range of the acoustic spectral peak.
Though not shown here, a similar effect of nonlinearity is observed for St = 0.44.

6 Discussions and conclusions

In this paper, we have investigated sound waves emitted by a wavepacket consisting of a
pair of interacting helical instability waves with nearly identical frequencies. Based on rel-
evant previous theoretical work on nonlinear instability, a composite amplitude equation,
which takes into account the effects of nonequilibrium, nonlinearity and nonparallelism,
was proposed to describe the entire growth-attenuation-decay cycle of the wavepacket. The
streaming effect of the wave interaction generates a strong slowly breathing, azimuthally
dependent ‘mean flow distortion’. An analysis of its far-field asymptotic behaviour shows
that it acts as the dominant emitter of low-frequency sound waves. The latter was de-
termined by a matched-asymptotic expansion procedure. Parametric studies pertaining
to relevant experimental conditions indicate that the acoustic field is characterised by a
single-lobed directivity pattern beamed at an angle about 45o − 60o to the jet axis, and a
broadband spectrum centred at a Strouhal number St ≈ 0.07−0.2. A wavepacket evolving
nonlinearly was found to radiate more efficiently, and the spectrum of the noise broadens
considerably whilst its directivity remains almost unaltered.

In the present first-principles theory, the dominant noise ‘emitter’ (i.e. the streaming
induced ‘mean field’) is identified in an unambiguous manner by analysing the large-
distance behaviour of the hydrodynamic field, without making an ad-hoc attribution of
source. The theory therefore describes the precise physical process of sound generation,
which is found to involve an ‘inverse energy cascade’, a non-compact source, and the re-
fraction effect of the background shear flow. The streaming-acoustics mechanism revealed
here is likely to be of fundamental importance for understanding noise generation in sub-
sonic and moderate-Mach-number supersonic jets, just as the Mach-wave radiation is for
high-Mach-number jet noise, where dominant structures propagate supersonically. In par-
ticular, the present mechanism provides a possible explanation for the amplification of
the low-frequency portion of noise by pure-tone excitation, since forcing a jet at a single
frequency induces a response in the form of a narrow-band wavepacket (e.g. Stromberg et

al. 1982), which then emits broadband low-frequency sound waves.
As was remarked earlier, the present theory was prompted by the observations made

by Gamard et al. (2004). Further evidence supporting the theory can be inferred from
the experiments of Panda & Seasholtz (2002) and Panda (2007), who found that the far-
field sound correlates strongly with the low-frequency (St = 0.05 − 0.2) components of
the density fluctuation within the jet, while there is little correlation with high-frequency
(St > 0.4) components. The low-frequency density fluctuation seems most likely to be the
signature of the mean density distortion ρm induced by the nonlinear interaction. Since
ρm is proportional to the axial-velocity distortion um (3.14) (Leib & Lee 1995), the strong
correlation with ρm implies therefore a strong correlation with um, which is of course
entirely consistent with, and indeed expected by, our theory.

Our theory was formulated and predictions were made for a well-defined realizable
disturbance, and so they can be validated by numerical simulations and/or experiments
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in which the assumed instability modes (m = ±1) are excited in a controlled manner. In
the laminar case, direct calculations of the acoustic far field should be feasible, at least for
relatively low Reynolds numbers. For high Reynolds numbers, to reduce computational
costs one might have to take a ‘two-stage’ approach, in which the hydrodynamic near
field is resolved first, and the far field is subsequently predicted either by (a) using an
acoustic analogy equation forced by (distributed or concentrated) sources in the form of
Reynolds stress or quadrupoles, or by (b) propagating the relevant element of the near
field via solving a linear acoustic equation. Approach (a), though most popular and
successful in many occasions, suffers from several well-acknowledged problems such as a
rather ambiguous distinction of the source and propagation effects, and sensitivity to the
error in sources leading to spurious noise. To these, we would like to add a further note
of caution that this approach may not always adequately describe the ‘inverse energy
cascade’ as explained in §3.4. In contrast, approach (b) would appear conceptually clear
and natural, and its implementation may be aided by the understanding gained from the
present study. Since the slowly modulated standing wave in the azimuthal direction with
m = 2 has been identified as the emitter, one may extract this specific flow signature from
the hydrodynamic solution, and then propagate it to the far field to obtain the correct
solution for the acoustics. Usually, this method requires the computation domain to be
sufficiently large that the numerical solution at the outer edge of the domain has acquired
the large-radial-distance asymptotic behaviour. This stringent requirement, however, may
not be necessary in the present problem, because based on the fact that the emitter is
driven locally within the critical layer, the local solution in its immediate vicinity may
be continued to the entire field by solving a homogeneous Lilley’s equation. Note that
the forcing imposed is in terms of the slowly breathing ‘mean-flow distortion’ rather than
in the form of Reynolds stresses (or quadrupoles), and so the procedure described above
is subtly different from usual acoustic analogy (e.g. Sandham & Salgado 2008), in that
Lilley’s equation now merely governs propagation, but is no longer relied upon for the
inverse energy cascade.

At low speeds, it was possible in laboratory to introduce helical modes with specified
frequencies and azimuthal wavenumbers, and follow their nonlinear interaction (Cohen
& Wygnanski 1987b, Long & Petersen 1992, Corke & Kusek 1993). A verification of
the mechanism proposed in the present paper would require extending these controlled
excitation techniques to the compressible regime to generate m = ±1 modes, and to
carry out simultaneous acoustic measurements. An additional requirement is the capacity
of appropriately modulating each mode, so as to control the frequency content of the
resulting breathing ‘mean-flow’, which determines the emitted acoustic field. Intriguingly,
in the incompressible regime strong fluctuations in the the low-frequency band (see e.g.
figure 16 of Corke & Kusek (1993)) were observed. It would be interesting to exam the
role of these components in noise generation at high speeds, and their possible connections
with the mechanism presented here. We hope that the present theoretical work would spur
such experiments.

It is noted that while the gross features of the acoustic field predicted by the present
study mimic experimental observations qualitatively, considerable quantitative differences
exist: the angle between the direction of maximum emission and the jet axis is too large,
and the results cannot account for sound waves in the relatively high-frequency (0.3 <
St < 4) portion of the acoustic spectrum. The discrepancy and inadequacy may be due
in part to the fact that the analysis is for a wavepacket consisting of just two modulated
helical modes, which radiate sound waves with azimuthal wavenumber m = ±2 only,
while in reality noise is contributed by broadband instability waves (and also by small-
scale turbulence). Interaction of multiple modes is probably most significant close to
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the jet nozzle, because co-existing axisymmetric and helical shear-layer modes in that
region have comparable growth rates and magnitudes (e.g. Cohen & Wygnanski 1987a).
An investigation of their nonlinear development and the associated acoustic radiation is
currently in progress. In particular, the interaction of multiple modes can emit sound
waves with azimuthal numbers m = 0 and m = ±1, which tend to concentrate along the
directions that make shallow angles with the jet axis. Moreover, the shear-layer modes
have much higher frequencies (St ≈ 4), and so the beating interaction among them may
contribute to the medium-frequency (0.4 < St < 0.8 say) portion of the emitted noise. It
may be expected that once this extra contribution is accounted for, the discrepancies with
experiments would be reduced.

As we explained in the introduction, the present theory was primarily formulated for
a laminar jet. It was nevertheless found to capture some qualitative features of turbulent
jet noise. The demonstrated relevance is underpinned by two facts. Firstly, the physical
mechanism described is general and robust: provided that a wave-wave interaction gener-
ates a breathing ‘mean-flow’, low-frequency sound waves are emitted. Secondly, coherent
wave-like structures in turbulent jets closely resemble instability modes, as suggested by
overwhelming experimental measurements. In the literature on coherent structures, anal-
yses involving instabilities modes, such as the present one, are sometimes viewed as being
for the mean field of a turbulent flow. Unfortunately, it is impossible to justify this view-
point on a rigorous mathematical or fundamental physical footing, for the very notion of
‘instability of a turbulent flow’ is open to serious question. Inevitably, at the current stage
one has to approach coherent structures on an empirical basis. Characterizing them in
terms of instability modes, thereby constructing noise prediction models, appears to be
a potentially fruitful empirical framework. Even at this the empirical level, a number of
effects, unique to turbulent flows, remain to be investigated. First of all, while it has been
established (Suzuki & Colonius 2006) that coherent structures are well approximated by
linear eigen modes in an extensive radial region, the detailed dynamics in the nonlinear
region and its impact on the overall evolution is not understood. We believe that the
nonlinear critical-layer theory, developed for laminar flows, is broadly relevant. The new
factor to be considered for turbulent jets is the influence of small-scale turbulence on co-
herent structures. If an eddy-viscosity type of model is used, the net effect would be a
decreased equivalent Reynolds number, and so the qualitative behaviour would remain
similar. Further theoretical and experimental work is needed to test this speculation.
Secondly, coherent structures in a turbulent flow have a continuum of spectrum. It has
been observed that a small number of low-order POD or eigen modes may capture a
significant fraction of the hydrodynamic kinetic energy. However, how they interact and
radiate sound is yet to be fully understood. Furthermore, since sound emission depends
sensitively on the flow field, it is not at all certain that the same set of modes would form
an adequate basis for predicting the majority of the acoustic energy in the low-frequency
portion of the spectrum. Thirdly, small-scale turbulence is generally viewed as a distinc-
tive source emitting relatively high-frequency noise, but a first-principles description of
the precise mechanism does not actually exist, despite that acoustic analogy approach has
been regarded by many as a general framework. In summary, an ultimate model capable
of quantitatively accurate predictions relies on further progress on the identification of a
(hopefully small) set of large-scale modes responsible for noise generation, parameterisa-
tion of the effect of small-scale turbulence on coherent modes, quantitative descriptions of
their nonlinear interaction and the radiation process, and finally parameterization of the
noise of small-scale turbulence, (which may continue to rely upon acoustic analogy aided
by presumably universal statistic properties of small-scale motions).
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A The limiting forms of (4.5)-(4.6)

Here we demonstrate that the composite evolution system (4.5)-(4.6) describes both the
non-parallel equilibrium and parallel non-equilibrium regimes in the sense that it reduces
to the respective limit forms for suitable sizes of ā0.

For ā0 = O(1), equation (4.5) can readily be reduced to (4.3) by the same procedure
as in appendix B of Wu et al. (1993), namely, by performing the substitution ξ → R−1/4ξ
(and ζ → R−1/6ζ), and taking the limit R � 1.

On the other hand, when ā0 � O(1) we write

x̄ = −∆̄ + x†/∆̄, t̄ = t†/∆̄, Ā = ∆̄A†, (A.1)

where ∆̄ > 0 is chosen to be

∆̄ e−
1
2 σr∆̄2

= |ā0| (A.2)

so that ∆̄ � 1. The above relation determines the location where the disturbance first
enters the nonlinear regime in terms of the initial amplitude: the larger the amplitude is,
the earlier the nonlinear evolution commences. Inserting (A.1) into (4.5) shows that

∂A†

∂x†
+ c−1

g

∂A†

∂t†
= σ(−1 + x†/∆̄2)A† + (l/∆̄4)R2/3

∫ ∞

0

∫ ∞

0
K(ξ, η; s†)A†(x†−ξ, t†−ξ/c)

×A†(x†−ξ−η, t†−ξ/c−η/c)A†∗(x†−2ξ−η, t†−2ξ/c−η/c)dξdη, (A.3)

where s† = sR1/2/∆̄3. This indicates that the non-equilibrium effect is of secondary
importance provided ∆̄ � O(R1/6). The non-equilibrium regime corresponds to the dis-
tinguished scaling ∆̄ = R1/6∆ with ∆ = O(1), which is realised for

|ā0| = R1/6 exp(− 1
2 σr∆

2R1/3)∆.

On noting that x̃ = x†/∆ = O(1) and that the nonparallel effect x†/∆̄2 � O(1) is a
higher-order correction, equation (A.3) reduces to (3.19). The initial condition can be
rewritten as Ã → eσ∆x̃ Ãl(x̃ − cg t̃ ), the same as (3.21).
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