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Abstract 

This thesis reports on work performed in the development and application of an automated plate reading 

microscope implementing wide field time gated fluorescence lifetime imaging technology.  

High content analysis (HCA) imaging assays enabled by automated microscopy platforms allow hundreds 

of conditions to be tested in a single experiment. Though fluorescence lifetime imaging (FLIM) is 

established in life sciences applications as a method whereby quantitative information may be extracted 

from time-resolved fluorescence signals, FLIM has not been widely adopted in an HCA context. The 

FLIM plate reader developed throughout this PhD has been designed to allow HCA-FLIM experiments 

to be performed and has been demonstrated to be capable of recording multispectral, FLIM and bright 

field data from 600 fields of view in less than four hours.  

FLIM is commonly used as a means of reading out Förster resonance energy transfer (FRET) between 

fluorescent fusion proteins in cells. Using the FLIM plate reader to investigate large populations of cells 

per experimental condition without significant user input has allowed statistically significant results to be 

obtained in FRET experiments that present relatively small changes in mean fluorescent lifetime. This 

capability has been applied to investigations of FOXM1 SUMOylation in response to anthracycline 

treatment, and to studies of the spatiotemporal activation profiles of small GTPases. Furthermore, the 

FLIM plate reader allows FLIM-FRET to be applied to protein-protein interaction screening. The 

application of the instrument to screening RASSF proteins for interaction with MST1 is discussed.  

The FLIM plate reader was also configured to utilise ultraviolet excitation radiation and optimised for the 

measurement of autofluorescence lifetime for label-free assays of biological samples. Experiments 

investigating the autofluorescence lifetime of live cells under the influence of metabolic modulators are 

presented alongside the design considerations necessary when using UV excitation for HCA-FLIM.   
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Chapter 1: Thesis overview 

This thesis describes the development and application of an automated fluorescence lifetime imaging 

(FLIM) multiwell plate reader utilising wide field time gating FLIM technology. The work has aimed to 

explore the broad potential of fluorescence lifetime imaging as a readout for high content analysis assays. 

Its applications have included investigations of cell signalling pathways and protein-protein interactions 

using Förster resonance energy transfer (FRET) and the measurement of lifetimes associated with 

endogenous fluorophores linked to cell metabolism and structural proteins. For these applications the 

capability of the FLIM plate reader to provide automated acquisition of large data sets has proved 

invaluable to enable statistically robust quantitative analysis of the underlying biology.  

Chapter 2: introduces basic principles of fluorescence and its measurable properties, including 

fluorescence lifetime. In particular, FRET measurements are discussed as a means to investigate protein-

protein interactions by FLIM. An overview of approaches to implementing FLIM experiments is 

presented with particular focus on the wide field time gating method employed for high content FLIM 

assays on the automated plate reader. The concept of high content assays is introduced and literature 

pertaining to previous implementations plate reader implementations of FLIM experiments is 

summarised.  

In Chapter 3:, the FLIM plate reader that I have developed over the course of the PhD project is 

presented. The hardware components that make up the FLIM plate reader are outlined with justification 

for the decisions that I made in the design process. Elements of the software that was continuously 

developed throughout the project are described. A series of experiments characterising the enabling high 

rate imager technology are presented and a study using standard FRET constructs to illustrate the 

performance of the FLIM plate reader is discussed.  

Two separate projects that make use of intermolecular FRET are presented in Chapter 4:. The first of 

these projects is concerned with the addition of small ubiquitin-like modifier (SUMO) to the transcription 

factor and oncoprotein FOXM1 in response to DNA damage caused when cells are treated with 

anthracycline anti-cancer drugs. The challenges and optimisation of the experimental protocol, including 

the investigation of the effect of treatment time on FOXM1-SUMOylation, are described with the 

resulting FLIM data. The intermolecular FRET project presented in the second part of the chapter is a 

screening assay to identify binding partners for mammalian sterile 20-like kinase 1 protein from the 

RASSF family of proteins: this series of experiments illustrates the potential for the FLIM plate reader to 

be used in the context of protein-protein interaction screening.  

Chapter 5 concerns FLIM assays of intramolecular FRET using genetically expressed biosensors to read 

out the activation of small GTPase proteins associated with the formation of cell-cell junctions between 
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keratinocytes. Two separate intramolecular FRET biosensors are utilised in separate studies to investigate 

the spatio-temporal profile of RhoA activation in response to calcium stimulation and the effects on the 

localisation of Rac1 activation induced by overexpression of the GTPase activating protein CdGAP.  The 

experimental challenges are discussed and a new software tool that I developed for tablet-based image 

segmentation is presented.  

Chapter 6: is concerned with the application of the automated FLIM plate reader to label-free lifetime-

based readouts of endogenous fluorophores. The modifications to the plate reader necessary to facilitate 

autofluorescence readouts with ultraviolet excitation are outlined, alongside the experimental protocols 

developed to take account of the particular challenges such measurements present. The first report of 

automated FLIM assays utilising readouts of metabolite autofluorescence lifetime is presented with their 

application to assay cellular responses to drug treatments. In addition, the application of the ultraviolet-

excited FLIM plate reader to label-free readouts of tissue matrix properties is presented.  Here FLIM was 

applied to ex vivo cartilage tissue to study the potential of autofluorescence lifetime to read out stages of 

biochemical degradation, which served as a model of osteoarthritis.  This work supports the development 

of a FLIM-based instrumentation that could be used to stage progression of the disease.  

Chapter 7: provides a summary of the developments and findings presented in this thesis, as well as 

outlining a number of potential avenues for future research utilising automated FLIM multiwell plate 

readers.  
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Chapter 2: Introduction 

Over the past half century, fluorescence techniques have become ever more ubiquitous in the life 

sciences, providing a class of non-destructive methods capable of resolving spatio-temporal dynamics in 

live biological systems that are typically obscured when performing biochemical assays. This chapter 

introduces the phenomenon of fluorescence and seeks to provide an overview of associated methods and 

their application to biological experiments. This chapter serves as an introduction to the concepts of 

Förster Resonance Energy Transfer (FRET) and Fluorescence Lifetime Imaging (FLIM), and provides 

context for the application of these methods to high content analysis (HCA) experiments investigating 

protein interactions in cells. Topics covered in this chapter include: 

 The molecular basis for and measurable properties of fluorescence.  

 Biological applications of fluorescence and the different means of fluorescently labelling 

intracellular molecules of interest.  

 The phenomenon of FRET, different approaches to designing FRET probes and methods for 

measuring FRET.  

 Fluorescence microscopy instrumentation; including an overview of methods and hardware for 

the acquisition of FLIM data.  

 An overview of recent advances in automated microscopy and high content analysis hardware 

and applications in the life sciences.  
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2.1 Introduction to fluorescence 

2.1.1 Molecular basis of fluorescence 
Fluorescence is a type of luminescence and is  the emission of a photon by a molecule following 

excitation by a photon of higher energy (shorter wavelength). The molecular processes involved in 

fluorescence can be represented using a Jabłoński diagram: Figure 2-1 presents such a simplified picture 

of the energy levels associated with a fluorescent molecule (fluorophore). The diagram outlines the 

possible transitions between ground- and first excited singlet states (S0 and S1), as well as those involving 

the triplet state T1. Within each of these states, there are numerous vibrational and rotational sublevels. 

For clarity, only three vibrational levels are shown for each state.  

 

Figure 2-1 Jabłoński diagram outlining molecular processes involved in luminescence.  

Sn, Tn denote nth singlet and triplet states, respectively. The first three vibrational levels for each state are labelled 
0, 1, 2. Rotational levels at each vibrational level are not shown. The approximate timescales of transitions are 
given in seconds. Coloured lines show transitions linked to the absorption or emission of photons of different 
energies/wavelengths, dotted lines show transitions linked to thermal (vibrational) relaxation, and dashed lines 
show other processes.  

Several key phenomena relating to fluorescence are illustrated in the Jabłoński diagram. The relative 

transition rates shown indicate the favourability of transitions1. Critically, absorption and internal 

conversion to the lowest vibrational level of the S1 state are fast, as predicted respectively by application 

of Einstein’s coefficients combined with the spectral energy density of the excitation field2, and the 

Franck-Condon principle which predicts that transitions occur more readily between states with 

overlapping wave functions (i.e. small energy gaps). This latter factor is the origin of Kasha’s rule: stated 

simply, since all fluorescence emission originates from the lowest S1 level, the emission wavelength will be 

independent of the wavelength of excitation light3.  

The Jabłoński diagram illustrates the necessity for excitation photons to have energies greater than the 

energy gap between the ground and first excited states, Δ𝐸𝑆0,0→𝑆1,0
. In terms of the maximum wavelength 

of light 𝜆 required to transition to the first excited state, this can be restated 
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 ℎ𝑐

𝜆
≥  𝛥𝐸𝑆0,0→𝑆1,0

 
2.1 

where 𝑐 is the speed of light, and ℎ is Planck’s constant. Excess energy imparted by absorption of the 

photon is transferred into the rotational and vibrational energy states of S1; thus a range of wavelengths 

may be absorbed leading to broad fluorescence excitation spectra. By similar arguments, the existence of a 

multiplicity of vibrational and rotational levels in the ground state leads to broad fluorescence emission 

spectra, which appear continuous because of collisions with solvent molecules further broadening 

rotational levels4. Since vibrational levels are similar in ground and excited states, it is typical to see 

emission spectra resembling a mirror image of excitation spectra: the so-called “mirror image rule”5.  

Stokes’ shift is another important property of fluorescence that can be understood with reference to the 

Jabłoński diagram. The relatively fast relaxation to the lowest excited state (S1) means that excitation 

photons generally have more energy than emitted photons. Thus, as stated above, fluorescent emission is 

typically of longer wavelength than the light used to excite the sample.  Stoke’s shift is of key importance 

in the practical application of fluorescence, since the difference between excitation and emission 

wavelengths allows separation of emitted fluorescence from scattered excitation light using spectral 

filters4. Stoke’s shift, along with Kasha’s rule and the mirror image rule are illustrated in the example 

spectra shown in Figure 2-2.  

 

Figure 2-2 Exemplar absorption and emission spectra. 

TagYFP excitation and emission spectra provided by Evrogen6. Δ indicates Stoke’s shift between excitation and 
emission spectra. Excitation and emission spectra illustrate the mirror image rule.  

Finally, the Jabłoński diagram presented in Figure 2-1 indicates the possibility of molecules undergoing 

intersystem crossing, a classically forbidden transition to the triplet state. When molecules are in the T1 state, 

decay to the ground state is also classically forbidden and so occurs at a much slower rate than from S1; 

thus photons are emitted at a much slower rate, giving rise to phosphorescence. The relatively long-lived 

nature of the excited T1 state can lead to deleterious effects: reactions that transform the fluorophore into 

a non-fluorescent species, an effect known as irreversible photobleaching, are more probable from the triplet 

state4. In addition, triplet excited states of fluorescent species can interact with molecular oxygen to form 
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singlet oxygen, which is highly reactive with other singlet species and highly toxic to cells7. Generation of 

these reactive oxygen species and the resultant damage to cells is an example of phototoxicity.  

2.1.2 Properties of fluorescence 
Several different properties of fluorescent molecules may be exploited in an experimental setting. A 

number of these properties are outlined below.  

Absorption 

Knowledge of the absorption properties of molecular species at specific wavelengths allows 

measurements of absorption to be linked to concentration by the Beer-Lambert law,  

 𝐼

𝐼0
=  10−𝜀(𝜆)𝐿𝐶 

2.2 

where 𝐿 is path length through the sample in cm, 𝐶 is the concentration of species in M and ε(λ) is the 

molar extinction coefficient for the species: therefore, a monochromatic light source and a photodetector 

may be sufficient to determine the concentration of a species if ε(λsource) is known.  

(Emission) intensity 

Measured changes in fluorescence intensity of a fluorophore population can reflect the changes in 

concentration or quantum yield 𝜂, defined as the ratio of emitted photons (𝑁𝑒) to absorbed photons (𝑁𝑎). 

The quantum yield may also be expressed in terms of radiative (Γ) and non-radiative decay (𝑘𝑛𝑟) rates:  

 
𝜂 =

𝑁𝑒

𝑁𝑎
=  

𝛤

𝛤 + 𝑘𝑛𝑟
. 

2.3 

Radiative and non-radiative decay rates can depend on many factors, including solvent refractive index4, 

rotational mobility and collisional quenching of fluorophores. As such, measurements of fluorescence 

intensity may be used to infer changes in binding state or conformation of fluorescent species, or 

viscosity, pH or ion concentration of its environment. Quantitative measurements based on fluorescence 

intensity are hampered by the effects of scattering of excitation and emission light, and the presence of 

background signal.  

Fluorescence emission spectra 

Different molecules have different energy level structures (see section 2.1.1 above), and thus have 

different emission (and absorption) spectra. Measurements in which emitted fluorescence is resolved by 

wavelength, either across a continuous spectrum or in specific spectral windows, can also yield useful 

information on the fluorophore or its environment. The contributions to fluorescent signal of molecular 

species with distinct spectral profiles can be determined by unmixing algorithms, allowing conclusions to 

be drawn regarding relative concentrations of fluorescent species8. In imaging applications, the ability to 

separate fluorescence emission from different dye label species permits colocalisation imaging. Here, the 
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presence of fluorescence signal in the same pixel across multiple channels simultaneously is taken to 

indicate colocalisation of the specifically labelled molecules. Further, because fluorescence emission 

spectra depend on energy level structures, they can be modified through changes in the fluorophore 

environment; thus measurements of emission spectra can be used to report on parameters such as solvent 

polarity9.  

Fluorescence lifetime 

The fluorescence lifetime of a fluorophore is the average time it spends in the excited state, and is related 

to the radiative and non-radiative decay rates by 

 
𝜏 =  

1

𝛤 + 𝑘𝑛𝑟
=

𝜂

𝛤
. 

2.4 

The lifetime of the excited state, and hence the fluorescence lifetime, is typically on the order of 

nanoseconds. The number of molecules in the excited state, 𝑛(𝑡), depends on the decay rates according 

to the differential equation 

 𝜕𝑛(𝑡)

𝜕𝑡
= −(𝛤 + 𝑘𝑛𝑟)𝑛(𝑡). 

2.5 

The observed fluorescence intensity of a homogeneous population of fluorophores following excitation 

with a 𝛿-function pulse therefore exhibits a decay, following 

 𝐼(𝑡) = 𝐼0 exp(−𝑡
𝜏⁄ )  for 𝑡 ≥ 0, 

2.6 

where 𝐼0 is the initial intensity of the sample, such that the fluorescence intensity decays to 1 𝑒⁄  of that 

value in time 𝜏. Such a monoexponential decay profile is only observed for the simplest fluorescent 

samples; typically more complex decays are observed that can be described by linear sums of exponentials 

with characteristic decay times 𝜏𝑖 and pre-exponential factors 𝛽𝑖:  

 𝐼(𝑡) = 𝐼0 ∑ 𝛽𝑖 exp(−𝑡
𝜏𝑖

⁄ ),

𝑖

 
2.7 

In such cases, it can be useful to define a single “mean lifetime” parameter, which we define: 

 𝜏̅ = ∑ 𝛽𝑖𝜏𝑖

𝑖

 
2.8 

Consideration of measured fluorescence lifetimes can inform on many of the same parameters (pH, 

conformation, quencher concentration) as quantum yield. Pre-exponential factors from complex 

exponential models can yield information on the concentration ratios of mixtures of fluorescent species. 

Measurements of fluorescence lifetime are inherently ratiometric, meaning that they are less susceptible to 
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fluctuations in excitation laser power and fluorophore concentrations that make inferences of molecular 

parameters from intensity (quantum yield) measurements prone to artefact.  

Fluorescence polarisation 

Fluorophores typically possess an excitation dipole moment defined by a direction within the molecule 

along which electrons can move more easily. When plane polarised light is incident on an isotropic 

disordered population of fluorophores, those fluorophores possessing excitation dipole moments with 

components aligned with the electric field of the excitation light are preferentially excited. This process is 

known as photoselection5. If the excited state lifetime of the fluorophore is short compared to the rotational 

correlation time of the molecule – a measure of how fast the molecule rotates – any fluorescence is 

therefore emitted with a polarisation parallel to the emission dipole of the molecule.  If, however, 

molecules reorientate between excitation and emission, then typically the emitted fluorescence from an 

ensemble will be more depolarised – that is, will exhibit lower fluorescence anisotropy, 𝑟, calculated as 

 
𝑟 =

𝐼∥ − 𝐼⊥

𝐼∥ + 2𝐼⊥
 

2.9 

where 𝐼∥ represents fluorescence emission polarised parallel to the excitation light, and 𝐼⊥ represents 

emission polarised perpendicular to the excitation light. The degree of depolarisation of fluorescence can 

be used to report on factors affecting rotational diffusion time, including viscosity and protein folding5. 

Furthermore, depolarisation of fluorescence can result from non-radiative energy transfer between like 

fluorophores (homo-FRET), and thus be used to report on molecular association and clustering10,11. 

Time-resolved fluorescence anisotropy measurements, though requiring more complex instrumentation, 

permits more robust quantification of parameters and simultaneous measurement of fluorescence lifetime 

and rotational diffusion times12.  

2.2 Biological applications of fluorescence 

Fluorescence is widely exploited in the biological sciences, both for imaging and single point 

measurement applications. In imaging applications, fluorescence labelling can be used to elucidate 

structural information at a cellular level, as well as functional information, for example pertaining to 

metabolism, cell cycle, and (co)localisation for proteins involved in a wide range of signalling pathways. In 

general, colocalisation studies are limited in spatial precision by the resolution of the imaging 

instrumentation. However, spectroscopic readouts of fluorescence can be sensitive to changes in the local 

fluorophore environment, including the proximity of the fluorophore to other molecules on scales below 

the imaging resolution. Forster resonance energy transfer (FRET) is an example of such a spectroscopic 

approach and is discussed in greater depth in section 2.3. In this section, a summary of the use of 

molecular labelling techniques that might be used for FRET or other fluorescence-based experiments in 

the life sciences is presented. In addition, the concept of exploiting endogenous fluorophores for 

fluorescence measurements of biological samples is introduced.  
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2.2.1 Biological applications of fluorescent dyes 
A significant number of synthetic organic compounds exhibit fluorescence and are commonly described 

as fluorescent dyes. Typically, such molecules exhibit aromatic or conjugated chain structures, as 

illustrated in Figure 2-3, that have weakly bound or delocalised electrons giving rise to energy level 

structures that yield visible wavelength transitions between the ground and first excited states4. Synthetic 

fluorophores cover a range of wavelengths from UV to IR, and can be tuned to some degree to specific 

wavelengths13. Fluorescent dyes also typically have large extinction coefficients, high quantum yields and 

low molecular weights meaning that labelling density can be high: these factors result in high brightness 

for fluorescence imaging.  

 

Figure 2-3 Example structures of fluorescent dyes. 

(a) 4’,6-Diamidino-2-phenylinodole dihydrochloride (DAPI), a DNA-binding dye. (b) Erythrosin B, used in 
viability assays. (c) Fluorescein isothiocyanate isomer I (FITC), commonly used as a fluorescence label in 
immunofluorescence assays. Images adapted from sigmaaldrich.com 

Fluorescent dyes are used in various contexts in the life sciences, either in staining methods or in 

molecular labelling techniques. Membrane-permeant DNA-binding dyes such as DAPI or Hoechst are 

used ubiquitously to identify cell nuclei in fluorescence imaging applications, and can also inform on 

progression of the cell cycle. These dyes benefit from reduced background since the quantum yield 

increases by approximately 20-fold upon formation of dsDNA:dye complexes in which the DAPI is 

shielded from solvent14,15. Fluorescent dyes such as acridine orange, ethidium bromide and erythrosine 

can be used as stains to differentiate between necrotic, apoptotic and healthy cells by highlighting changes 

in membrane integrity, chromatin condensation and nuclear fragmentation16–18.  

(a) (b) (c)
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Figure 2-4 Contrasting approaches in immunofluorescence imaging. 

(a) Direct approach to immunofluorescence staining. (b) Indirect approach to immunofluorescence staining, 
illustrating signal amplification observed when using this technique.  

Dye-conjugated antibodies allow fluorescent staining to be targeted to specific proteins of interest. 

Immunofluorescent staining allows intracellular localisation of proteins of interest to be investigated by 

fluorescence imaging. Typically, one of two approaches is adopted: a dye-conjugated antibody against an 

antigen of interest may be introduced to the sample, leading to fluorescent staining of the protein of 

interest. Alternatively, the primary antibody may be introduced to bind to the antigen of interest, followed 

by introduction of a secondary dye-conjugated antibody that binds to the primary. The latter method is 

more complicated to implement but exhibits less non-specific binding, and has the advantage of 

amplifying the fluorescent signal at each antigen as illustrated in Figure 2-4. Though immunofluorescence 

imaging generally requires fixation and permeablisation of cell samples, membrane-associated proteins 

with domains on the cell surface may be investigated in live cells19,20 and in vivo21. Research is ongoing into 

methods of introducing antibodies to the cytoplasm of living cells to further the applicability of antibody 

staining methods to protein dynamics. Such techniques are discussed in a 2014 review by Kaiser et al.22, in 

which methods are classified according to focus: either on the uptake of antibodies by live cells, or on 

expression of genetically-encoded fluorescent-fusion antibody fragments (intrabodies). Recent studies 

have investigated the potential for labelling endogenous oncoproteins using GFP-fusion intrabodies23. 

This work highlights the possibility for labelling endogenous proteins and potential application of dual-

labelling techniques to avoid potential issues with background signal, and represents a combination of 

immunofluorescence labelling methods with techniques revolving around expression of genetically 

encoded proteins, discussed below.   

2.2.2 Genetically expressed fluorescent constructs: fluorescent proteins 
Direct fluorescent labelling of proteins in live cells allows visualisation of the dynamics of protein 

trafficking and localisation, as well as providing insights into interactions between two or more proteins in 

approximately physiological conditions. Over the past two decades, since the isolation of Green 

Fluorescent Protein (GFP) from Aequorea victoria24, labelling of cellular proteins with genetically expressed 

fluorescent proteins has become ubiquitous in life sciences labs using fluorescence assays. By inserting the 

DNA sequence encoding the fluorescent protein into the gene encoding the protein under investigation 

and introducing the resulting plasmid into cells by standard transfection techniques, it is possible to 

Transmembrane protein

Primary Ab

Secondary Ab

Fluorescent label

(a) (b)
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conduct fluorescence-based assays on the protein of interest with high labelling specificity, and without 

further labelling steps.  

GFP might be considered the “original” genetically encoded fluorescent protein, and has been extensively 

studied and refined since its first use as a genetically encoded fluorescent label25. Mutations of the wild-

type GFP to improve folding efficiency, decrease multimerisation and offer superior photophysical 

properties have increased the practicality of using GFP-derived fluorescent protein labelling in a wide 

range of biological experiments26. Further mutations of GFP allow fluorescent proteins with different 

excitation and emission profiles to be generated. In parallel, many longer wavelength fluorescent proteins 

have been derived from various other marine species. The “original” FP in this class was DsRed; again, 

numerous point mutations have led to increased spectral coverage and improved applicability.  

Despite these differences, FPs across the board exhibit broadly similar structures. All have a molecular 

weight of ~27-30kDa; all consist of a tripeptide chromophore enclosed within a beta-barrel structure 

made up of eleven β-sheets, as shown in Figure 2-5. Once folded into an almost-native conformation, the 

residues comprising the fluorophore undergo chemical alterations, typically involving molecular oxygen, 

before becoming fluorescent26,27. This multistep process is known as maturation, and since slow or 

incomplete maturation of genetically expressed fluorescent constructs is deleterious to many fluorescence 

measurements, maturation time is a parameter considered in the rational design of fluorescent proteins 

and FP-based biosensors. An overview of the mutations and resulting differences in photophysical and 

structural properties of a range of fluorescent proteins is given in Shaner et al.28  

 

Figure 2-5 Structure of Green Fluorescent Protein. 

(a) Structure of GFP, accessed from PDB 1GFL29 and rendered in PyMOL. (b) Structure of GFP with two β-
sheets removed to expose the chromophore, rendered as a space filling model.  

The properties of a huge range of fluorescent proteins have been discussed in depth elsewhere30–32; for 

brevity, only properties of those FPs employed in the work presented in this thesis are summarised in 

Table 2-1. The development of FPs is an active field of research, as further improvements in 

photophysical properties33, more diverse wavelengths34, and methods of functional imaging using FPs 

alone are sought35.  

(a) (b)
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FP 

𝜆𝑒𝑥
𝑚𝑎𝑥, 

nm 

𝜆𝑒𝑚
𝑚𝑎𝑥, 

nm 𝜂 

𝜀(𝜆𝑒𝑥
𝑚𝑎𝑥), 

M-1cm-1 Chromphore28 Parent FP + selected relevant mutations References 

EGFP 488 507 0.64 51 000 TYG wtGFP + F64L (improved folding at 37oC); 
S65T (faster maturation, higher extinction 
coefficient) 

Heim et al.36, 
Tsien26 

mCherry 587 610 0.22 72 000 MYG DsRed + GFP-ised temini; M163Q 
(suppresses short wavelength absorption); 
V7I, M182K (improved folding) 

Shaner et al.37  

TagRFP-T 555 584 0.41 81 000 CYG eqFP578 + multiple (monomeric form); 
S158T (improved photostability) 

Merzlyak et al.38, 
Shaner et al.39 

mRFP 584 607 0.25 44 000 QYG DsRed + multiple (monomeric form); 
N42Q, V44A (faster maturation) 

Shaner et al.37, 
Campbell et al.40 

mCerulean 433 475 0.62 43 000 TWG ECFP + S72A (improved folding at 37oC); 
Y145A (improved photostability); H148D 
(monoexponential decay); A206K 
(monomeric form) 

Rizzo et al.41,  
Rizzo et al.42 

mVenus 515 528 0.57 92 200 GYG YFP + multiple (decreased Cl- sensitivity); 
F64L (improved folding at 37oC); A206K 
(monomeric form) 

Nagai et al.43, 
Rizzo et al.42 

Table 2-1 Summary of properties of selected fluorescent proteins. 

Standard single letter codes for amino acids used to describe chromophores and point mutations. ECFP and 
YFP derived from wtGFP isolated from the jellyfish Aequorea victoria, DsRed isolated from the mushroom coral 
Discosoma sp., eqFP578 isolated from the sea anemone Entacmaea quadricolor.  

In comparison to immunofluorescence techniques presented above, labelling of proteins of interest with 

fluorescent proteins has the advantage of high specificity, as well as being easy to adapt from membrane-

based to cytosol- or nucleus-based protein assays. However, the size of fluorescent proteins relative to the 

protein of interest that they are used to label presents a potential problem in investigations of protein 

localisation and protein-protein interactions due to potential steric hindrances. Furthermore, traditional 

methods of transfection result in levels of expression of the protein of interest that deviate significantly 

from physiologically relevant conditions. Possible alternative labelling techniques that bypass the need to 

attach a large label to the protein of interest are presented in section 2.2.3; some methods of labelling 

endogenous proteins for investigations of proteins at physiologically relevant concentrations are 

presented in section 2.2.5. Despite these issues, fluorescent protein labelling remains a popular technique 

due to the existence of well-established protocols for development of fluorescent protein constructs, the 

flexibility afforded by a large palette of excitation and emission wavelengths available, and the continued 

development of ever-brighter, more photostable, monomeric versions of fluorescent proteins with 

monoexponential lifetime decay profiles.  

2.2.3 Other genetically expressed fluorescent constructs 
In addition to fluorescent protein fusions, other genetically encoded modifications can be used to 

facilitate fluorescent labelling of proteins of interest. It is possible to engineer bio-orthogonal unnatural 

amino acids into proteins of interest, either to allow subsequent specific labelling using a fluorescent dye 

or to yield an intrinsically fluorescent protein product by use of fluorescent artificial amino acids44–46. 

Biarsenical labelling techniques (FlAsH or ReAsH) exploit the high affinity of binding between arsenic 

and thiol groups. FlAsH compounds are rendered non-fluorescent in complexes with 1,2-ethanedithiol 
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(EDT); upon encountering a six-amino acid domain containing four cysteine residues that might be 

engineered into a protein of interest, EDT is displaced and the FlAsH compound becomes fluorescent, 

effectively labelling the protein47,48. Biarsenical labelling, like labelling with artificial amino acids, has the 

benefit over fluorescent protein labelling that the fluorescent label is relatively small, decreasing the 

chances of erroneous results caused by steric hindrances imposed by large labels. Finally, incorporation of 

fluorogen activating proteins (FAPs) into fusion proteins can allow protein-specific labelling upon 

addition of fluorogens: molecules that only become fluorescent upon binding to FAPs49.  

2.2.4 Techniques for transfecting genetically encoded fluorescent constructs 
In order that cell samples might express the genetically encoded fluorescent fusion proteins, DNA 

plasmids must be introduced into the cells in a process known as transfection; multiple different methods 

exist to achieve this goal. Lipid-based transfection methods are based on the concept of negatively 

charged vector DNA becoming associated with cationic lipid structures – often liposomes – which 

subsequently fuse with cell membranes and release the plasmid into the cell. Many transfection reagents 

are available for the practical application of this method, including LipofectamineTM (Invitrogen) and 

XtremeGene HPTM (Roche). Such an approach often requires multiple incubation and washing steps, but 

is easily scalable. Electroporation – the permeablisation of cell membranes by application of an electric 

field – is another method of introducing exogenous DNA into cells. Care must be taken that buffers used 

for electroporation have an appropriate salt balance since the cells’ ability to regulate ion fluxes is 

compromised. Furthermore, dependent on the instrumentation available, the necessity to transfect a 

specific minimum number of cells per condition means that electroporation is not always practically 

applicable in well plate assays, for example in screening applications where many different transfection 

conditions are required. Reverse transfection techniques have been demonstrated to be useful in the 

context of high content imaging50,51, but have not been pursued in the work presented in this thesis. 

Microinjection of plasmid DNA directly into cell nuclei is of crucial importance in organism- and tissue-

based studies of genetically expressed fluorescent fusion proteins52, but this technique is less applicable to 

studies where large populations of cells must be transfected.  

 

Figure 2-6 Illustration of processes of transfection. 

(a) Lipid transfection: DNA forms complexes with cationic lipids which be taken up by endocytosis; DNA is 
subsequently released and trafficked to the nucleus. Adapted from Parker et al.53 (b) Electroporation: application 
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of a pulsed electric field permeablises the cell membrane allowing DNA in the surrounding buffer to enter the 
cell. Membranes subsequently heal, and DNA is trafficked to the nucleus.  

2.2.5 Strategies for obtaining stable cell lines expressing genetically encoded 

constructs 
In transient transfection techniques, the cells express the exogenous DNA fragment but do not 

incorporate it into the genome; thus expression is lost over several days by cell division. Rather than 

perform transient transfections before every experiment, which may lead to repeat experiments being less 

consistent due to the potential for different levels of protein expression between experiments, it is 

possible to establish stably-transfected cell lines. Following introduction of the plasmid to the cell by any 

of the methods outlined above, there is a certain probability that the exogenous DNA will be integrated 

into the genome via non-homologous recombination54. If DNA coding for the protein of interest is 

cotransfected alongside a gene conferring antibiotic resistance, selection pressure can be applied on the 

population of transfected cells; thus after a period of days to weeks, only those cells that have 

incorporated the fluorescent fusion protein-resistance vector into the genome will survive, and all 

progeny will express the fusion. This results in the generation of a stably-transfected cell line.  

Application of the transfection techniques presented in section 2.2.4 above result in the fluorescent fusion 

protein of interest being expressed in parallel with the endogenous copies of the protein of interest. 

Generally speaking, such an approach leads to overexpression of the protein, though this is less marked in 

stable cell lines than in transient transfections. In applications investigating cell signalling, this deviation 

from physiological conditions may have a significant impact on the biological relevance of results gained 

from such experiments. Genome editing transfection methods overcome this issue. Using zinc-finger 

nuclease (ZFN)55,56, transcription activator-like effector nuclease (TALEN), or clustered regularly 

interspaced short palindromic repeat (CRSIPR)57 methodologies, it is possible to target specific regions of 

genomic DNA for insertion of exogenous DNA coding for fluorescent proteins, leading to the 

generation of labelled endogenous proteins and thus restricting copy number of the protein of interest to 

physiological levels. In cases where multiple copies of the gene encoding the protein of interest exist, it 

may be important to ensure that cells are homozygous for the labelled protein – the importance of this 

factor is likely to vary between applications, and is an active area of research.  

2.2.6 Endogenous fluorophores 
As an alternative to introducing exogenous fluorophores into samples, the endogenous autofluorescence 

of certain biomolecules may be exploited in cell or tissue samples. Tryptophan residues present in many 

proteins present a fluorescent signal at 300-350 nm when excited around 280 nm; spectral properties of 

this fluorescent signal have been used to investigate protein folding and environment. Metabolites such as 

reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) cause cellular 

autofluorescence which may be exploited in the study of metabolic state in both cell and tissue samples. 

Alternatively, structural proteins such as collagen exhibit a fluorescent signal that can be used to study 
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tissue organisation at a molecular level. The applications of measurements of endogenous fluorescence 

are discussed in greater detail in Chapter 6:.  

2.3 Förster Resonance Energy Transfer 

Förster resonance energy transfer (FRET) is the phenomenon whereby energy may be non-radiatively 

transferred from an excited donor fluorophore to an acceptor fluorophore by dipole-dipole coupling. 

Originally proposed by Theodor Förster in 194858,59,  the rate of resonant energy transfer between a 

FRET donor and a FRET acceptor depends strongly on their separation over length scales of 1-10 nm. 

This property of FRET in particular has led to its adoption as a fluorescence imaging technique in the life 

sciences, where spatio-temporal dynamics of events occurring on such length scales (protein-protein 

interactions, changes in protein conformation, DNA hybridisation) are inaccessible to traditional 

fluorescence imaging methods that are subject to the limits of diffraction. The following sections provide 

an overview of the principles of FRET that describe the phenomenon outlined in Förster’s work, 

followed by a discussion of the practical consequences of these principles for the measurement of FRET 

efficiency.  

2.3.1 FRET principles 
When FRET occurs, an additional non-radiative means of losing energy is accessible to excited donors. 

Associated with this additional decay path is a transition rate, given by 

 
𝑘𝐹𝑅𝐸𝑇 = (𝑘𝑟 + 𝑘𝑛𝑟) (

𝑅0

𝑟
)

6

, 
2.10 

where 𝑟 gives the separation of donor and acceptor fluorophores, and 𝑘𝑟 and 𝑘𝑛𝑟 are the radiative and 

non-radiative decay rates in the absence of FRET. 𝑅0 is known as the “Förster radius”, and is given by 

 
(𝑅0)6 = 𝜂𝐷𝜅2

9000 ln(10)

128𝜋5𝑁𝐴𝑛4
𝐽  

2.11 

Here 𝜂𝐷 is the quantum yield of the donor fluorophore, 𝑛 is the refractive index of the medium and 𝑁𝐴 is 

Avogadro’s number. 𝐽 is a measure of the degree of spectral overlap between the donor emission and 

acceptor excitation spectra: 

 
𝐽 = ∫ 𝑞𝐷(𝜆)𝜀𝐴(𝜆)𝜆4𝑑𝜆, 

2.12 

where 𝑞𝐷(𝜆) is the normalised donor emission intensity as a function of wavelength, 𝜆, and 𝜀𝐴(𝜆) is the 

extinction coefficient of the acceptor as a function of wavelength.  
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Figure 2-7 Definition of angles between donor and acceptor dipole moments, and orientation factors 

resulting from different relative orientations of donor- and acceptor dipole moments. 

(a) Definition of angles which are used in the definition of orientation factor 𝜅2: 𝜃𝐷 is the angle between the 

donor dipole moment d and the vector defining the separation of donor and acceptor, r; 𝜃𝐴 is the angle between 

the acceptor dipole moment a and the vector defining the separation of donor and acceptor, r; 𝜃𝑇 is the angle 

between the donor dipole moment d and the acceptor dipole moment a. Π denotes the planes containing pairs 

of vectors; 𝜙 is the angle between the planes Π𝑟𝑑 and Π𝑟𝑎. (b) The effect of different donor and acceptor dipole 

orientations on 𝜅2. Adapted from Valeur1.  

𝜅2 is known as the “orientation factor”, calculated from the angles between the dipoles, thus: 

 𝜅2 = (cos 𝜃𝑇 − 3cos 𝜃𝐷 cos 𝜃𝐴)2 

=  (sin 𝜃𝐷 sin 𝜃𝐴 cos 𝜙 − 2 cos 𝜃𝐷 cos 𝜃𝐴)2 2.13 

where 𝜃𝐷 is the angle between the emission dipole moment of the donor and the vector joining the donor 

and acceptor dipole moments r, 𝜃𝐴 is the angle between the absorption dipole moment of the acceptor 

and r, 𝜃𝑇 is the angle between the donor and acceptor moments, and 𝜙 is the angle between the planes 

defined by r and the donor moment and r and the acceptor moment. These parameters are defined as 

shown in Figure 2-7 (a).  
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Figure 2-8 Illustration of the dependence of FRET efficiency on fluorophore separation. 

Separation displayed in units of Förster radius. Cartoons overlaid to illustrate high-FRET efficiency and low-
FRET efficiency cases. 

It is convenient to use the concept of FRET efficiency, 𝐸, defined as the ratio between the rate of energy 

transfer by FRET and the total decay rate in the presence of acceptor, which gives the expression 

 
𝐸 =

𝑘𝐹𝑅𝐸𝑇

𝑘𝐹𝑅𝐸𝑇 + 𝑘𝑟 + 𝑘𝑛𝑟
=

𝑘𝐹𝑅𝐸𝑇

(𝜏𝐷)−1 + 𝑘𝐹𝑅𝐸𝑇
, 

2.14 

where 𝜏𝐷 = (𝑘𝑟 + 𝑘𝑛𝑟)−1, the lifetime of the donor in the absence of the acceptor. Combining 

equations 2.10 and 2.14, FRET efficiency may be expressed in terms of the Forster radius and the 

separation between donor and acceptor fluorophores: 

 
𝐸 =

𝑅0
6

𝑅0
6 + 𝑟6

. 
2.15 

From the preceding formulae (equations 2.10 – 2.15), it is clear that FRET efficiency depends on three 

main factors, summarised in Figure 2-7 – Figure 2-9. Firstly, there is a strong (6th power) dependence on 

the separation between donor and acceptor fluorophores, 𝑟: for FRET to occur, the separation must be 

on the order of 2𝑅0 or less (Figure 2-8). In practical FRET systems, 𝑅0 is such that this condition implies 

that FRET occurs on scales smaller than ~10 nm. This is a useful length scale in molecular biology, and 

is crucially much less than the practical optical resolution limit (~250 nm). This leads to the application 

of FRET both as a “spectral ruler” to attempt to determine separations between two fluorophores, for 

example at each terminus of a protein, and also as a reporter on protein-protein interactions. Such 

practical applications are discussed further in section 2.3.2  

Secondly, the angle formed between donor and acceptor dipoles captured by the orientation factor 𝜅2 

plays an important role in determining the FRET efficiency at a given fluorophore separation. In 

particular, if the dipoles are aligned perpendicular to each other, no FRET occurs as there can be no 



40 
 

coupling between the dipoles in this configuration (Figure 2-7 (b)). In estimations of 𝑅0, 𝜅2 is often taken 

to be 2 3⁄ : this approximation is true in the dynamic averaging regime in which the dipole orientation is 

quickly randomised. The validity of this approximation is discussed further in section 2.3.4 below.  

 

Figure 2-9 Illustration of spectral overlap between FRET donor emission and FRET acceptor excitation 

spectra for an EGFP-mCherry FRET pair.  

Shaded area labelled J represents the spectral overlap integral. The value presented for 𝑅0 is calculated using 

𝜅2 = 2
3⁄ , and agrees with literature values60. Reference spectra are generated by the Tsien lab, accessed online61.  

Finally, the degree to which the donor emission spectrum overlaps with the acceptor excitation spectrum 

plays a crucial role in determining 𝑅0, and thus the suitability of two fluorophores to act as FRET pairs 

(Figure 2-9). Such considerations are clearly crucial in choosing fluorescent proteins in the design of 

probes for use in FRET experiments.  

If the Stokes’ shift associated with a fluorophore is small, there is significant overlap between the 

emission and excitation spectra, and FRET between two identical fluorophores (homoFRET) is possible. 

This effect, first evident in measurements of highly concentrated fluorescent dyes58,62, is generally 

measured by means of polarisation anisotropy, though homoFRET can also be manifest in changing 

fluorescence lifetimes if excited state structure is sufficiently complex. Potential benefits of exploiting 

homoFRET in biological applications include the relative ease of transfecting a single construct for 

protein clustering assays63, the lack of mismatched donor and acceptor fluorescent protein maturation 

rates, and the increased potential for spectral multiplexing.  

2.3.2 FRET biosensors 
A wide variety of fluorescent probes have been used to investigate biological processes by means of 

FRET. These may be broken down into two main categories: intramolecular and intermolecular FRET 

constructs, each of which have a range of applications, advantages and disadvantages.  
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Figure 2-10 Illustration of different means of implementing FRET biosensors. 

(a) Intermolecular FRET biosensor, FRET increases on binding event. (b) Intramolecular FRET biosensor, 
FRET increases due to conformational change on ligand binding. (c) Intramolecular FRET biosensor, FRET 
increases due to binding event on protein activation. (d) Intramolecular FRET biosensor, FRET decreases upon 
cleavage by proteinase.  

Intermolecular FRET 

Intermolecular (bimolecular) FRET biosensors comprise two distinct proteins, each of which is labelled 

with a fluorophore to act as donor and acceptor in a FRET pair as illustrated in Figure 2-10 (a). This 

approach is conceptually simple, and is amenable to studies of protein-protein interactions or protein 

aggregation by FRET. Intermolecular FRET systems benefit from having a high dynamic range due to 

basal FRET being low, and are relatively easy to design as long as fluorophores are positioned in such a 

way as to avoid interfering with the protein binding. An additional benefit comes from the relative ease of 

cloning if different fluorescent proteins are to be substituted to allow imaging to be performed in a 

different spectral window: donor and acceptor construct cloning can be performed in parallel. 

Intermolecular FRET experiments have in the past included investigations of Gag protein clustering in 

HIV virion formation63, small GTPase activity64, and growth factor receptor phosphorylation65.  

Intramolecular FRET 

Intramolecular FRET biosensors consist of a single molecule, typically labelled at opposing termini with 

donor and acceptor fluorescent proteins. Intramolecular FRET sensors may be applied in multiple 

configurations depending on the biology under investigation. The region between the two fluorophores 

may be a single protein or domain which undergoes a change in conformation upon binding of a ligand, 

changing the distance between the fluorophores and allowing changes in FRET efficiency to be used to 

sense levels of ligands such as Ca2+ or ATP64,66,67 (Figure 2-10 (b)). Alternatively, domains from two 

different proteins that interact when one is activated by an upstream signalling event may be used to 

report on that event; binding of the proteins results in the donor and acceptor being brought within 
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FRETting distance, for example GTPase activity sensing in cell signalling pathways68,69 (Figure 2-10 (c)). 

Finally, intramolecular FRET sensors may be used to report on the activity of a proteinase which acts to 

cleave the sensing domain, ostensibly removing any means of donor and acceptor fluorophores being 

found within FRETting distance of one another – this modality has been used in studies of caspase 

activity70 (Figure 2-10 (d)).  

With the exception of cleavage-based single chain FRET probes, it is generally expected that the dynamic 

range of intramolecular FRET biosensors tends to be lower than for intermolecular models since the 

distance between the donor and acceptor fluorophores is constrained even in the inactive state. This 

situation may be improved by optimising linker design69 and, in general, intramolecular FRET biosensors 

require considerably more care in design than intermolecular systems: in particular, the choice of 

fluorophores affects 𝑅0, which can be important in determining the dynamic range. Furthermore, the 

dissociation constant that determines the sensitivity of the FRET sensor is likely to be artificially 

increased by the co-localisation of interacting components imposed by the sensor. An advantage of 

unimolecular FRET is reduced sensitivity to inter-cell variability in expression, since the stoichiometry 

between donor and acceptor fluorophores is always unity for a well-expressed construct with favourable 

fluorophore maturation properties. Thus, intramolecular sensors allow more quantitative information to 

be gleaned when measurement methods incapable of unwrapping population binding fraction from 

FRET efficiency are used.  

2.3.3 Means of measuring FRET 
There are multiple means of measuring the occurrence of FRET in biological systems, relating to the 

different ways in which energy transfer affects the fluorescence properties of the fluorophores involved. 

Different measurement methods require instrumentation with different levels of complexity, often 

reflecting the robustness of the measurement and the ability to extract quantitative data from the FRET 

measurement: all, however, can be useful for generating contrast in FRET experiments.  

Intensity-based FRET measurement 

In the most conceptually simple case, the energy lost from the donor by FRET can be considered to be 

represented by the loss of intensity in the donor channel when FRET occurs, giving 

 
𝐸 = 1 −

𝐹𝐷𝐴

𝐹𝐷
, 

2.16 

where 𝐹𝐷𝐴 is the donor intensity in the presence of acceptor, and 𝐹𝐷 is the donor intensity in the absence 

of acceptor. In practice, 𝐹𝐷 is measured following photobleaching of the acceptor fluorophores. The 

phototoxicity associated with the bleaching process mean that this technique may be harmful to samples. 

Furthermore, irreversible photobleaching means that this technique can be applied to only one 

measurement per sample, making it unsuitable for time course experiments.  
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Spectral FRET measurement 

 

Figure 2-11 Illustration of the effects of FRET as measured by sensitised emission. 

Curves serve as exemplar sample spectra in the presence and absence of FRET; blue shaded area represents 
donor emission channel, orange shaded area represents acceptor emission channel.  

As well as a decrease in donor emission when FRET occurs, there is a corresponding increase in acceptor 

emission as energy is transferred. This phenomenon underpins the measurement of FRET by sensitised 

emission, whereby FRET efficiency is calculated based on measurements of donor- and acceptor-channel 

fluorescence under donor excitation. Though this technique is ratiometric and therefore robust against 

fluctuations in excitation power, spectral cross-talk nevertheless renders it difficult to gain quantitative 

FRET data from sensitised emission data. Various methods of correcting for spectral bleed-through 

between detection channels and direct acceptor excitation have been proposed71, though these invariably 

require control measurements of additional fluorescent constructs, and typically degrade the signal-to-

noise ratio of the resulting FRET images. Even when corrections for spectral cross-talk have been 

applied, sensitised emission measurements are still restricted as they report only “effective FRET 

efficiency”: that is, the product of the fraction of FRETting donors and the FRET efficiency. The 

stoichiometry of interactions between donor and acceptor fusions is therefore inaccessible unless positive 

control constructs can be cloned which reflect the exact FRET efficiency (fluorophore separation and 

orientation) expected from the donor-acceptor interaction associated with protein binding: alternatively, 

spectral FRET may be used in parallel with lifetime-based reference measurements to extract information 

on binding stoichiometry72.  
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Lifetime-based FRET measurement 

 

Figure 2-12 Illustration of the effects of FRET as measured by fluorescence lifetime. 

Curves illustrate fluorescence decay as a function of time in the presence and absence of FRET.  

When a donor fluorophore undergoes FRET, it may be considered that an extra means of non-radiative 

decay has been introduced to the system. Rearranging equation 2.14 gives an expression for the donor 

lifetime in the presence of acceptor,  

 𝜏𝐷𝐴 = (1 − 𝐸)𝜏𝐷 , 
2.17 

which tends to 𝜏𝐷 in the case of low FRET efficiency. Thus by measuring the lifetime in the presence of 

acceptor, with knowledge of the donor-only (i.e. non-FRETting) lifetime, FRET efficiencies can be 

extracted from lifetime measurements. In contrast to intensity- and spectral-based measurements, the 

measured parameter is independent of the concentration of fluorophores in the sample and the spectral 

characteristics of both sample and instrument. Lifetime measurements are inherently ratiometric, and 

therefore insensitive to fluctuations in excitation source power. Moreover, FLIM-FRET measurements 

are more quantitative than other means of measuring FRET73, and the use of dark acceptors74 or homo-

FRET63,75 in lifetime measurements allows greater scope for spectrally multiplexing more than one FRET 

probe.  

In cases where not all donors in an interrogation volume (pixel) are associated with acceptors, 

monoexponential fitting typically returns an “effective FRET efficiency” similar to that described above 

for spectral ratiometric measurements. If a complex decay model (c.f. equation 2.7) can be fit to data, 

lifetime measurements can be used to decouple FRET efficiency from stoichiometry: 

 𝐼(𝑡) = 𝐼0(𝛽𝐷exp(−𝑡
𝜏𝐷

⁄ ) + 𝛽𝐷𝐴exp(−𝑡
𝜏𝐷𝐴

⁄ )). 
2.18 

Here, the fraction of FRETting donor 𝛽𝐷𝐴 is a parameter directly fitted to the data, whilst FRET 

efficiency 𝐸  might be calculated from 𝜏𝐷𝐴 and 𝜏𝐷 according to equation 2.17 above.  
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Polarisation-based FRET measurement 

Fluorescence polarisation anisotropy measurements can be used to inform on both homo- and hetero-

FRET systems. In the case of fluorescent protein labelling, the rotational correlation time is typically large 

compared to the fluorescence lifetime; therefore in the absence of FRET, anisotropy is high. When 

homoFRET occurs, energy is transferred to molecules with dipole orientations that would not otherwise 

have been excited due to photoselection rules, decreasing the anisotropy measurably10,11. When combined 

with spectral resolution, polarisation measurements of sensitised emission can increase the dynamic range 

of heteroFRET readouts: when FRET occurs, the donor emission shows higher anisotropy due to a 

reduced fluorescence lifetime, whilst sensitised emission shows a decrease in anisotropy as the orientation 

of acceptor-emitted light is not wholly constrained by the excitation polarisation and photoselection42,76. 

Alternatively, fluorescence anisotropy can be combined with time-resolved techniques: here, an additional 

short component in anisotropy decays is indicative of FRET occurring77.  

Polarisation anisotropy-based FRET measurements share the benefits of lifetime in terms of insensitivity 

to fluctuations in laser power, fluorophore concentration and scattering10, though spectral cross-talk can 

be an issue for sensitised emission polarisation measurements. The ability to read out homoFRET 

between like fluorophores regardless of energy level composition is unique amongst FRET measurement 

techniques, and the dynamic range of homoFRET measurements can be increased by the application of 

time-resolved fluorescence anisotropy imaging11. Separately, sensitised emission anisotropy has been 

claimed to offer as much as 15 times greater contrast than that of fluorescence lifetime in certain 

circumstances42. Disadvantages of polarisation-based FRET imaging relate to the trade-off between 

instrumental complexity and the degree to which the contrast observed can be used to quantify FRET 

parameters (efficiency and FRETting donor fractions). Complex time-resolved models must be fit in 

order to determine all relevant parameters, which require large numbers of photons for robust 

determination – although this issue may be addressed by careful choice of model in global fitting77,78. It 

has been observed that the specific polarisation properties of microscope optics should be considered 

when implementing fluorescence anisotropy as, in even the simplest cases, these can make such methods 

challenging42.   

2.3.4 FRET issues 
Though FRET provides a means of measuring biological events on a cellular level inaccessible though 

traditional means of imaging, there are nevertheless issues which must be considered both when 

designing FRET experiments, and when analysing FRET data. Some such issues relating to particular 

means of measuring FRET have been described above; others are inherent to FRET as applied in the life 

sciences. The design of FRET biosensors as discussed in section 2.3.2 above requires considerations not 

only of the sensitivity of the biological system being exploited to generate the probe, but also of 

photophysical aspects. As mentioned previously, the placement of fluorophores can affect the dynamic 

range of FRET biosensors. In addition, differences in maturation rates of the donor and acceptor 

fluorescent proteins on a biosensor, or indeed the failure of one of the fluorophores in the FRET pair to 
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mature fully, can lead to anomalous FRET results. In the case of mCherry and EGFP  this effect has 

been suggested to be a potentially significant source of erroneous results79,80.  

 

Figure 2-13 Illustration of 𝜿𝟐 and FRET efficiency distributions in the static averaging regime.  

(a) Distribution of 𝜅2 in the static averaging regime, calculated by Monte Carlo methods following Vogel et al.81 
(b) Resulting distribution of FRET efficiencies in the static averaging regime at 3 different fluorophore 

separations, calculated based on 𝜅2 in (a). (c) Resulting distribution of FRETting lifetimes at 3 different 

fluorophore separations, calculated based on 𝐸 in (b). 

Another potential source of erroneous FRET results was highlighted by Vogel et al. in a 2012 paper82, 

having previously been raised by Dale in a 1978 publication83. The authors discussed the validity of the 

generally adopted assumption of complete rotational freedom such that donor and acceptor rotate 

randomly, rapidly and independently during the fluorescence decay that leads to the use of 𝜅2 = 2
3⁄ . 

This paper stresses that FRET measurements conducted with fluorescent proteins are more likely to fall 

into the static averaging regime where the rotation time of the fluorophore’s dipole is long compared to the 

excited state lifetime, and in which the assumption of  𝜅2 = 2
3⁄  is not applicable, resulting in a 

distribution of FRET efficiencies and lifetimes such as that shown in Figure 2-13. Clearly the presence of 

this distribution of FRETting lifetimes (𝜏𝐷𝐴) will have consequences for the accurate quantification of 
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FRET efficiencies and FRETting donor fractions measured by fluorescence lifetime. Subsequently, Vogel 

et al. have published a lookup table based on Monte Carlo simulations to relate measured (apparent) 

FRET efficiencies to fluorophore separations in FP-based FRET systems81.  

2.4 Fluorescence microscopy instrumentation 

2.4.1 Epifluorescence microscopy 

 

Figure 2-14 A schematic diagram showing features of a microscope configured for measurement of 

epifluorescence. 

In epifluorescence microscopy, the same objective lens is used to excite fluorescence from a sample and 

to collect the emitted light. Excitation light is provided using a broadband source, typically a mercury or 

halogen lamp, and an excitation interference filter. A dichroic mirror is used to separate excitation light 

from emitted fluorescence, which is typically orders of magnitude less intense: correct choice of filters 

allows very weak fluorescence to be measured with appropriate detectors, down to single photon 

detection from single molecule emitters84. Observation, through an emission interference filter, is 

conducted by eye through eyepieces or on a camera, typically a charge coupled device (CCD).  

2.4.2 Sectioning methods in fluorescence microscopy 
In epifluorescence microscopy, the fluorescence that may be collected from a single point in the sample 

forms a solid cone extending above and below focus85. Thus, fluorescence originating from points outside 

the focal plane can degrade contrast in the image captured at that plane. Additionally, regions of the 

sample outside the focal plane are illuminated by excitation light, potentially leading to out-of-plane 

photobleaching that acts to confound z-stack imaging. The former problem may be addressed by use of a 

confocal pinhole in a scanning confocal microscope configuration such that only fluorescence originating 

from a plane optically conjugate (confocal) to that of the pinhole is detected, as proposed by Minksy in 
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195786. A similar method using an array of pinholes scanned across the sample by means of a rotating 

disk87 – known as a Nipkow disk – offers an increase in imaging speed over single-point scanning 

methods by effectively parallelising the scanning process. This increase in imaging speed, along with the 

reduced photobleaching afforded by lower local excitation intensity88, make Nipkow disk optical 

sectioning particularly useful for imaging biological samples. The relatively low transmission of light 

through a standard Nipkow disk can be improved by the addition of a matching array of microlenses, as 

implemented in a CSU-X1 system (Yokogawa). Unlike most modern confocal laser scanning microscopy 

(CLSM) systems, however, pinhole size and spacing in Nipkow disk systems are typically fixed, so that 

optimal sectioning performance and axial resolution is only realised for a specific objective numerical 

aperture. This constraint is addressed to some extent in the CrESTTM X-LightTM Confocal Module, which 

in the ArrayScan XTU High Content Analysis reader (Thermo Scientific)89 allows a choice between two 

pinhole sizes in the Nipkow disk. Alternatively, parallelisation can be achieved using swept field confocal 

(SFC) scanning, exemplified in the Opterra system (Bruker). Here, a 1-D linear array of pinhole images is 

swept across the sample using galvanometer and piezoelectric scanners: in this setup, four different 

pinhole configurations are available, increasing flexibility in choice of objective NA90,91.   

An alternative means of achieving optical sectioning microscopy is multiphoton excitation, first realised 

by Denk et al. in 199092. In the case of 2-photon excitation, fluorophores are only excited if two photons 

are simultaneously absorbed, the probability of which depends on the square of the average power of 

incident light and inversely on the pulsewidth of the incident light93. Since excitation probability falls off 

according to 1
𝑧2⁄  with distance 𝑧  from the focal plane, two-photon microscopy mitigates for out-of-

focal plane photobleaching93 as well as affording optical sectioning. For a given fluorophore, the 

wavelength of illumination required for two-photon excitation is typically twice that used for standard 

one-photon fluorescence measurements. This requirement has the benefit of allowing near-infrared light 

to be used for measurements of thick biological samples to reduce the deleterious effects of scattering 

and absorption on fluorescence imaging; however, the same requirement for longer wavelength excitation 

light causes multiphoton microscopy to have lower inherent spatial resolution than confocal imaging94. As 

with CLSM, the necessity to scan an excitation point across the sample limits acquisition speed; 

acquisition time can be decreased by employing multiple scanning beams to parallelise acquisition95.  

2.4.3 Fluorescence lifetime imaging microscopy 
Fluorescence lifetime imaging microscopy is the technique whereby fluorescence lifetime measurements 

are made across all pixels in an image, adding spatial information to the molecular-level information 

conferred by fluorescence lifetime measurements. Multiple methods exist to generate FLIM images; these 

can broadly be categorised according to their implementation in the time- or frequency-domains, and 

whether the method of generating images depends on spot scanning or wide field detection.  
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Wide field frequency domain FLIM 

In frequency domain FLIM measurements, the sample illumination is modulated at a defined frequency, 

𝜔. The emitted fluorescent signal will be modulated at the same frequency, but will exhibit a phase lag 

and magnitude offset due to the delay between excitation of and emission by the fluorophore. The ratio 

of the AC and DC components of the signal as illustrated in Figure 2-15 may be used to calculate 

fluorescence lifetimes using  

 

𝜏𝑚 = √
1 − (

𝐵 ∙ 𝑎
𝐴 ∙ 𝑏

)
2

𝜔2 (
𝐵 ∙ 𝑎
𝐴 ∙ 𝑏

)
2 . 

2.19 

 

 

Figure 2-15 Illustration of relevant measurements in frequency domain FLIM. 

A and B represent the amplitudes of excitation and emission signal respectively; a and b represent the DC offsets 

of excitation and emission signal respectively. Δ𝜙 represents the phase shift between excitation light and emitted 
fluorescence.  

Alternatively, the phase lag between excitation and emission signal may be used to calculate the lifetime: 

 
𝜏𝜙 =

tan(Δ𝜙)

𝜔
 

2.20 

For a monoexponential decay, these two lifetimes are identical. In practice, data is often acquired either 

using an image intensifier modulated at the same frequency as the source (homodyne detection) read out 

by a CCD, or using a directly modulated CCD/CMOS camera96. Multiple images are read out at different 

phase shifts, from which the parameters outlined in Figure 2-15, and subsequently the lifetime parameters 

in equations 2.19 and 2.20, may be calculated97.  Frequency domain FLIM benefits from wide-field 

detection such that all pixels in a field of view are interrogated for lifetime simultaneously. Global, fit-free 
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data analysis can be performed using the polar or phasor technique for frequency domain FLIM data98; 

alternatively, quantitative data analysis by “lifetime unmixing”, based on prior knowledge of fluorophore 

lifetime, has been proposed99.  

Point scanning frequency domain FLIM 

Though frequency domain FLIM is most commonly implemented using a wide field approach, it is also 

possible to modify point-scanning microscopes to measure lifetime data in the frequency domain. One 

example of this approach is digital frequency domain (DFD) FLIM, whereby a heterodyne detection 

method deployed on a field programmable gate array (FPGA) chip generates frequency domain lifetime 

data with photon efficiency comparable to time domain single photon counting methods100. One example 

of the application of DFD-FLIM has been a study of the activity of Ca2+/calmodulin-dependent protein 

kinase II by FLIM-FRET101. However, point scanning FLIM is most commonly implemented in the time 

domain, usually using time correlated single photon counting.  

Point scanning time domain FLIM 

 

Figure 2-16 Illustration of the principles of time correlated single photon counting for fluorescence 

lifetime measurement.  

(a) Schematic showing components in a photon counting system running in reversed start-stop mode as 
implemented by Becker and Hickl. Green arrows represent excitation light, red arrows fluorescence photons, and 
blue arrows electronic signals. PMT: photo-multiplier tube, CFD: constant fraction discriminator, TAC: time-to-
amplitude converter, ADC: analogue-to-digital converter. Figure adapted from The bh TCSPC handbook102. (b) 
An exemplar histogram resulting from a TCSPC acquisition, from which lifetime parameters may be extracted.  

In time correlated single photon counting (TCSPSC), a point in the fluorescent sample is excited with a 

pulsed laser. As implemented in systems marketed by Becker & Hickl GmbH, individual fluorescence 

photons are detected and converted into electronic signals by a photo-multiplier tube (PMT) and a 

constant fraction discriminator (CFD), and time correlated with a reference signal from the excitation 
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pulse. This time correlation is achieved using a time-to-amplitude converter (TAC), which operates as a 

capacitor that starts charging upon a ‘start’ trigger; a voltage is built up across the TAC until a ‘stop’ pulse 

is received, at which point the voltage is read out using an analogue-to-digital converter (ADC). The 

arrival times of individual photons are plotted on a histogram, from which fluorescence decay parameters 

(equation 2.7) may be extracted. This process is summarised in Figure 2-16. Other implementations of 

TCSPC exist, including TimeHarp devices (Picoquant GmbH) that make use of fast time to digital 

converters (TDC) and field programmable gate array (FPGA)-based circuitry to minimise electronic dead 

time and increase readout speed103.  

In fluorescence lifetime imaging, TCSPC is typically implemented in a laser scanning confocal or 

multiphoton microscope. When correctly configured, TCSPC is extremely photon-efficient, offering 

optimal signal-to-noise per emitted photon104. However, the necessity to scan a beam across the field of 

view imposes a lower limit on acquisition time. This is exacerbated by the necessity to collect less than 

one photon per 100 excitation pulses to avoid potentially biasing lifetime measurements to shorter decay 

times due to pulse pile-up effectss102.  Furthermore, the high peak power in a scanned laser spot precludes 

increasing excitation power when imaging biological samples due to associated photobleaching and 

phototoxicity, making rapid imaging of cell line samples particularly challenging.  

An alternative method for acquiring FLIM images using laser scanning confocal or multiphoton 

microscopes is based on time gating electronics that assign photons to “bins” depending on arrival time 

at the detector105. This approach has been applied to imaging of lipid order in response to stimulation 

with epidermal growth factor106.  

It should be noted that regardless of the implementation of time domain FLIM employed, it is generally 

necessary that the response of the instrument to an impulse of light should be considered when analysing 

decay profiles: finite pulse width and the optical response of detection electronics result in the measured 

signal being the result of a convolution of the instrument response and the fluorescence decay of the 

sample. Instrument response can be determined using a sample that scatters part of the excitation signal 

into the detection optics; otherwise a fluorescent sample with a known lifetime can be used in the fitting 

algorithm78,107. In some approaches, the effect of the instrument response is effectively ignored by 

sampling the fluorescence decay profile from >500 ps after the peak105, though such an approach risks 

obscuring short-lifetime components in the data.  

Wide field time domain FLIM 

Wide field time domain FLIM allows time resolved fluorescence images to be built up without the need 

for scanning an excitation point across the sample. In one implementation, a photomultiplier with a 

quadrant detector is used to associate recorded photon events with their position of origin within the 

sample108. By combining such a detector with TCSPC electronics, FLIM images can be generated. In this 

approach, acquisition speed is no longer limited by concerns relating to high peak power of a scanned 



52 
 

spot, though TCSPSC detection rates act to place a lower limit on imaging time. When applied to imaging 

of tagRFP-EGFP FRET constructs, this method allowed robust lifetime data to be acquired across time 

course experiments with two FLIM images (at different emission wavelengths) acquired every 60 

seconds109.  

 

Figure 2-17 Illustration of the principles of wide field time gated FLIM. 

(a) Schematic showing the necessary components in a wide field time gated FLIM system. Green arrows 
represent excitation light, red arrows fluorescence photons, blue arrows electronic signals and orange arrows 
HRI phorsphorescence. PD: photodiode, HDG: delay generator. (b) Illustration of the means of acquiring time-
resolved fluorescence using wide field time gated FLIM: recorded signal at each “gate” is integrated by the 
camera over many laser pulses; the gate is moved relative to the excitation pulse using a delay line. Fluorescence 
lifetime images may be generated from the resulting intensity decay images in software.  

The method used throughout this thesis for the acquisition of wide field FLIM data is wide field, time 

gated FLIM. Conceptually, time gated FLIM may be considered equivalent to equipping a camera with an 

ultrafast shutter and a delay line, such that fluorescence decays may be sampled over “gates” at multiple 

delays with respect to the excitation pulse. In practice, this is achieved using a gated optical intensifier 

(HRI, Kentech). The critical elements of the HRI – the photocathode, the multichannel plate and the 

phosphor screen – are shown in Figure 2-18. Photons incident on the front face of the HRI cause 

photoelectrons to be ejected from the photocathode with a probability governed by the quantum 

efficiency of the particular photocathode. Under time gated operation, an onboard impulse generator 

produces pulses at MHz frequencies, switching the voltage on the photocathode. The front face of the 

MCP is grounded; the voltage between the photocathode and the microchannel plate is switched from a 

small positive potential (“off”) to a larger negative “gating” voltage (“on”). Thus in the “on” state, 

photoelectrons are accelerated to the MCP; in the “off” state, dark current is reduced. The MCP acts to 

amplify the signal by the generation of secondary electrons in multiple steps110, where the gain factor 

which gives the final number of secondary electrons is dependent on the user-defined gain voltage 

(typically 650-850 V). The final process of time gated image acquisition is the generation of photons by 
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phosphorescence following the acceleration of secondary electrons onto a phosphor screen. The resulting 

gated, intensified image can then be read out using a camera.  

 

Figure 2-18 A schematic showing the critical elements of a high rate imager system and the 

amplification steps in its operation as a gated optical intensifier.  

Voltages shown at each stage are typical nominal values.  

Time gated detection is less photon efficient than TCSPC, as only those photons arriving within the 

current gate “on” time are collected. Additionally, the sequential nature of acquisition may cause lifetime 

artefacts if the sample moves between the first and final gates of the acquisition, or if the sample bleaches 

in the course of the acquisition, or if background changes in the course of the acquisition. Such artefacts 

are also expected to cause anomalous results in wide field frequency domain FLIM, which requires 

sequential acquisition of phase-resolved images. However, wide field time gated FLIM allows all pixels in 

a field of view to be interrogated in parallel without beam scanning, increasing the speed of acquisitions 

compared to time domain point scanning measurements and increasing signal-to-noise ratio per unit 

acquisition time. In addition, there is no limit to the maximum photon flux as is the case in TCSPC. This 

makes wide field time gated detection particularly suited to applications of time domain FLIM that 

require high-speed acquisition, including tissue imaging in endoscopy111 and high content analysis. Time 

gated imaging provides a higher accuracy per photon detected than frequency domain FLIM with 

sinusoidal excitation112, and does not suffer from the problems associated with aliasing that are 

encountered with high speed frequency domain FLIM using pulsed excitation113.  
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2.5 Automated fluorescence microscopy and high content analysis 

Over a number of decades, the advancement of enabling technologies – particularly robotic sample 

handling and increased computing power – has led to increased usage of high throughput methods in the 

life sciences. Automated, high throughput methods allow the rapid testing of hundreds of thousands of 

experimental conditions; the ability to rapidly explore parameter space means that such methods are 

suitable for application throughout the process of drug discovery, including target identification, target 

validation and toxicology stages. Additionally, the statistical robustness conferred by the ability to 

examine multiple repeats per condition lead to high throughput methods being attractive across a range 

of applications in academia and the pharmaceuticals industry.   

The distinction between high throughput screening (HTS) and high content analysis (HCA) is discussed 

in greater depth in sections 2.5.2 and 2.5.4 below. In both cases, assays are designed to test a wide range 

of experimental conditions in a single experimental run. Types of readout in cell based assays vary from 

the relatively simple – for example, homogeneous colorimetric or fluorescence intensity readouts in HTS 

– to more complex, image-based phenotypic measurements based on cell morphology, translocation of 

labelled proteins or co-location of multiple labelled proteins in HCA. The aims of cell based assays 

include to the determination of “hits” in a screen for drug candidates, to measure the on-target dose 

response of compounds, or to investigate the dose-dependence of undesirable effects in toxicology 

assays. They can also be applied to screen for protein interactions or other molecular processes in order 

to analyse cell signalling responses.  

A subset of HTS and HCA assays are conducted in multiwell plate formats. Multiwell plates provide a 

growth substrate for imaging adherent cell lines that is not available in flow-based implementations, and 

permits different treatments to be applied to subpopulations of cells based on well position that would be 

impossible when using spotted coverslips. The multiwell plate chosen for a particular application will 

depend on several experiment parameters. For homogeneous measurements, round-bottomed wells can 

be used. For imaging experiments, the profile of the plate bottom should mimic that of a microscope 

slide cover slip. Light transmission properties, well volume, number of wells per plate and cell substrate 

coatings must also be considered when choosing multiwell plates for a given experiment. A small 

selection of plate types is presented in Figure 2-19. Plate choice is discussed in the context of UV-

excitation wavelength FLIM assays in Chapter 6:.  
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Figure 2-19 Multiwell plates for use in HTS/HCA experiments. 

(a) Round, polystyrene bottom 96-well plates for solution-based colorimetric measurements (image from 
sigmaaldrich.com). (b) Plastic (Greiner µClear®), flat bottom 96-well plates for fluorescence imaging. (c) Glass, 
flat bottom 384-well plates for fluorescence imaging, suitable for use with short wavelength excitation.  

The remainder of this section is intended to introduce high throughput screening (HTS) and high content 

analysis (HCA) and provide a brief overview of different fluorescence-based methods applied in HTS and 

HCA, highlighting instrumentation used and assay quality parameters (where available).  

2.5.1 Assay quality parameter Z’ 
The NIH Centre for Clinical Excellence Guidance for Assay Development and HTS document provides 

a comprehensive overview of considerations for design, development and optimisation of HTS assays 

that may also be applied to HCA fluorescence imaging assays114.  Amongst these considerations, the 

importance of establishing an assay quality metric is highlighted. Multiple such metrics exist, including the 

“signal window”, the assay quality factor 𝑍′115, and “strictly standardised mean difference” (SSMD)116. 

Though the latter method is developed to give a metric that has a solid basis in probability and is robust 

against outliers, use of the 𝑍′ factor is more widespread and was therefore adopted in our laboratory as a 

means of assessing assay quality in HTS and HCA for ease of comparison. 𝑍′ is defined as 

 
𝑍′ = 1 −

3(𝜎+ + 𝜎−)

|𝑥̅+ − 𝑥̅−|
, 

2.21 

where 𝜎+ and 𝜎− are the standard deviations associated with the positive and negative controls 

respectively, and 𝑥̅+ and 𝑥̅− are the mean results associated with the positive and negative controls 

(a) (b)

(c)
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respectively. Crude interpretations of 𝑍′ value are shown in Table 2-2 below; examples of dose response 

curves for different qualities of assay are illustrated in Figure 2-20.  

𝑍′ value Interpretation 

1 An ideal assay 

1 > 𝑍′ > 0.5 An excellent assay 

0.5 > 𝑍′ ≥ 0 A binary assay 

<0 Screening is essentially impossible 

Table 2-2 A simple categorisation for interpretation of Z'-factor values applied to HTS/HCA assays115.  

 

Figure 2-20 Illustration of dose response curves for assays of different quality. 

(a) Dose response curve for assay with 𝑍′ =  −0.25. (b) Dose response curve for assay with 𝑍′ =  0.25. (c) 

Dose response curve for assay with 𝑍′ =  0.75. In each case, blue and red lines show values obtained by 
measurement of negative and positive control samples respectively. Shaded areas show the degree of overlap 

between controls, where the height of the shaded region above/below the control value is given by 3𝜎− (blue 

region) and 3𝜎+ (red region).  

Many factors can act to degrade 𝑍’ in HCA experiments. These might be linked to the instrumentation 

used in the experiment, for example irregular pipetting of reagents or unstable fluorescence excitation 

might cause increased variation in measured results. Biological factors may also play a role in decreasing 
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the 𝑍′ score: variations in expression of protein constructs, or the presence of non-responsive cell 

populations in a drug efficacy assay, might both contribute to poor assay performance.  

2.5.2 Homogeneous fluorescence assays for HTS: flow cytometry 
High throughput screening may be either cell-free or cell-based, but in either case describes the automated 

acquisition of data across a large  number of conditions (>105, as defined by the Guidance for Assay 

Development & HTS docment114) without user intervention. HTS is commonly implemented in multiwell 

plate or flow cytometry formats. Flow cytometry is a means of splitting a population of cells into 

subpopulations based on fluorescence characteristics. Suspensions of cells are passed through a flow cell 

engineered such that a single cell passes through an interrogation beam at a time; the fluorescence 

properties (typically spectrally-resolved intensity) and scattering properties of each cell in the population 

may then be recorded. When combined with appropriate labelling and liquid handling methods, flow 

cytometry can be used in HTS assays. For example, a flow cytometry method was used by Surviladze et 

al. to identify small GTPase inhibitors from a library of 200 000 compounds based on the intensity of 

fluorescence from GTPase-conjugated fluorescent beads117; the authors reported the quality parameter of 

this assay to be 𝑍′ = 0.87. A detailed review of flow cytometry in HTS has been presented by Black et 

al.118  

2.5.3 Homogeneous fluorescence assays for HTS: assays of protein-protein 

interactions 
Homogenous time-resolved FRET measurements exploiting the long fluorescence lifetimes of certain 

lanthanide-based fluorophores can be used to separate signal from relatively short-lived autofluorescence 

by temporal gating. Low repetition nitrogen lasers are typically used to excite samples with the required 

short wavelength radiation, and the large (~300 nm) Stokes’ shift associated with lanthanide fluorophores 

means that fluorescence is detected in the red region of the spectrum. HTRF measurements have been 

conducted in a range of biological systems, including an investigation of phosphorylation of the elF4E 

kinase in tumour spheroids119; this assay, described in an Application Note from BioTek Instruments Inc., 

yielded an assay quality parameter of 𝑍′ >  0.7.  

Bimolecular complementation (BiFC) assays have also been used to this end. In BiFC experiments, two 

non-fluorescent complimentary fragments of a fluorescent protein are linked to two separate proteins of 

interest: should these proteins interact, then there is a chance that the fragments will associate and mature 

to form a fluorescent protein. If a library of proteins fused to GFP fragment F[1] is generated, then these 

can be screened against a protein of interest fused to  GFP fragment F[2]. This approach was adopted in 

a 2004 study by Remy and Michnik that led to the identification of Ft1 as a regulator of the protein kinase 

Akt120. A crucial drawback of this method is the possibility of false negatives being caused by transient 

interactions that occur on a timescale too fast to allow the association and maturation of a fully 

fluorescent FP, or false positives by the affinity of the two GFP fragments to each other.   
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2.5.4 Fluorescence intensity-based imaging methods for HCA 
High content analysis (HCA) assays might be considered a specialised subset of high throughput 

methods, using imaging in parallel with instrument automation to detect more complex phenotypes than 

is typically possible in HTS in models that more closely match physiological conditions whilst maintaining 

subcellular spatio-temporal information. When combined with advanced image analysis and 

bioinformatics, the information yielded by HCA methods is therefore potentially significantly greater than 

HTS assays. Typically fewer conditions per experiment are probed due to the slower and more complex 

nature of the acquisition and analysis process, though an study of candidate compounds for disrupting 

protein interactions involving p53 (“the guardian of the genome”) conducted in 2010 investigated a 

library of >105 inhibitor species121.  

HCA methods have been applied using a range of different automated microscopy platforms making use 

of multiple fluorescence intensity-based readout parameters to assay diverse biological systems. For 

example, work published by Nadler-Holly et al. in 2012 sought to use HCA methods to investigate the 

effect of mutations in the eukaryotic chaperonin containing t-complex polypeptide 1 (CCT/TRiC) on the 

expression levels of a library of ~5100 GFP-tagged endogenous yeast proteins122. HCA was performed in 

384-well plate format using an Olympus ScanR modular imaging system equipped with a 60x air objective 

and a robotic arm (Hamilton) to minimise user intervention. The authors performed image analysis in 

native ScanR software to assess changes in expression level and localisation of the endogenous yeast 

proteins in response to CCT mutations based on GFP fluorescence intensity images; HCA results 

highlighted the role of the CCT3 subunit in the proper folding of glutamine-/asparagine-rich proteins.  

A plate reading imager equipped for both Nipkow disk and wide field fluorescence imaging (BD Pathway 

855 Bioimager) was used to acquire images in three spectral channels for an HCA investigation of 

inhibition of Akt pathways in work published by Link et al. in 2009123. Analysis of the degree of nuclear 

localisation shown by FOXO3a-GFP was used as an assay endpoint to reflect the activity of upstream 

elements of the Akt pathway. A Beckman Biomek 1000 automated workstation was employed to administer 

inhibitor candidates124 – a total of 33,992 small molecules – to samples in 96 well plate format. Based on 

the results of the HCA localisation screen, the authors reported the development of a potent and selective 

inhibitor of phosphoinositide 3-kinases. The assay quality factor is reported (separately) to be 𝑍′ =

0.54125.  

In the 2010 study of p53 protein interaction inhibitors, a Thermo-Scientific ArrayScan VTI instrument was 

used to acquire images from up to 50 384-well plates of cells a day, employing multiple automated liquid-

handling and sample preparation devices (Titertek Zoom, Velocity11 VPrep, BioTek ELx405, Titertek MapC) 

to decrease user intervention across the 697 plate experiment campaign. By imaging fluorescence intensity 

in three spectral windows and employing simple image processing algorithms, Dudgeon et al. were able to 

use reduced colocalisation of p53-GFP and its binding partner hDM2-RFP as a metric to determine the 
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efficacy of inhibitor compounds. The assay quality factor for the assay developed in this work was 

reported to be 𝑍′ = 0.64.  

As noted in section 2.3.1 above, colocalisation of fluorescent protein constructs is not a sufficient 

condition to determine that two proteins of interest are interacting. Mammalian-2-hybrid (M2H) 

screening is one means by which interaction partners may be determined. Similarly to yeast-2-hybrid 

assays, two proteins of interest may be ectopically expressed as fusions with the transcriptional activating 

domain (AD) and DNA-binding domain (DBD) respectively of GAL4: should the proteins interact, the 

resulting association between AD and DBD results in the transcription of a fluorescent reporter gene 

with a GAL4-upstream activation sequence. This methodology was adopted by Fiebitz et al. in a screen to 

assess hormone-dependent interactions with p53 using a Gal4-pZsGreen reporter126. In this application, 

the authors generated arrays of cells expressing 160 different combinations of prey and bait proteins by 

reverse transfection on a single microscope slide, spotted using a sciFlexArrayer piezodispensing 

instrument (Scienion AG). A PE Applied Biosystems BIOCCD Image Reader was used to acquire fluorescence 

images at low magnification, using Zeiss AxioVision LE software. Cell seeding and treatments were 

performed manually. Though not given explicitly, the assay quality parameter for this work may be 

estimated from supplementary information to be 𝑍′ = 0.04.  

Despite the success reported by Fiebitz et al. in application of M2H screening to studying the modulation 

of protein-protein interactions, the low 𝑍′ score combined with reported problems of false positives 

highlight the limits of such an approach. As an alternative, FRET represents a good candidate as a 

technique to allow robust, high content analysis assays of protein-protein interactions to be conducted.  

HCA FRET assays have also been employed in applications in which the central aim is not to elucidate 

protein-protein interactions.  In a 2008 paper, Takanaga et al. conducted a high content FRET assay using 

an eCFP-YFP FRET biosensor which displayed a change in FRET state upon binding glucose127: this 

sensor was used as an assay end point for a siRNA knockdown screen of glucose uniporters (GLUT). A 

Molecular Devices ImageXpress 5000A platform controlled by MetaXpress software was used to acquire images 

in two spectral channels for measurement of FRET by sensitised emission, and a third (Cy3) channel in 

order to assess the transfection efficiency of siRNA. From FRET data the authors were able to conclude 

that GLUT1 and GLUT9 are critical in controlling glucose flux. 

Separately, a 2007 study by Tian et al. sought to use HCA FRET to study anticancer activity of 

compounds from herbal medicine128. A Perkin-Elmer Victor3 imaging plate reader was used to generate 

sensitised emission FRET images which were used to infer caspase 3 activity by cleavage of a FRET 

probe containing a DEVD caspase target sequence, similar to that depicted in Figure 2-10 (d). The 

authors report the success of the technique in measuring apoptotic response to a range of standard drug 

therapies with a high quality factor (𝑍′ = 0.87); they also identified two novel compounds derived from 

plants used in traditional Chinese medicine.  
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2.5.5 FLIM plate readers for HCA 
As discussed in section 2.3.3 above, FLIM offers a robust and quantitative readout of FRET. Despite 

this, and possibly because of the relative complexity of FLIM instrumentation, there is a limited number 

of applications of FLIM-FRET in an HCA context. The first implementation of fluorescence lifetime 

imaging on an automated plate reader for high content analysis was presented in 2007 by Esposito et al129. 

This instrument was developed in-house and based upon a fully automated Zeiss Axiovert 200M 

microscope, further equipped with an acousto-optically modulated laser source and a sinusoidally-

modulated HRI (LaVision) to permit wide field frequency domain FLIM images to be acquired130.  

A similar wide field frequency domain plate reader was used by Grecco et al. to investigate FRET 

between Cy5-conjugated anti-phosphotyrosine antibodies and an array of YFP-labelled proteins in order 

to identify tyrosine kinase substrates. This study was performed in fixed cell arrays seeded on slides and 

reverse transfected using a gelatine-based transfection mixture spotted using a Genetix Qarray2 spotter 

system65 using a custom built FD-FLIM microscope platform equipped with a laser distance sensor to 

permit hardware autofocussing. The system was reported to be capable of measuring 384 different 

transfection conditions (“spots”) every hour with an average of 50 transfected cells being present on each 

spot; the large number of individual cells assayed permitted the authors to draw inferences about variation 

within cell populations.  

Time correlated single photon counting is generally considered too slow to be of practical value in HCA-

FRET applications63; however, an instrument presented by Matthews et al. in 2012 illustrated the role that 

can be played by TCSPC-FLIM when deployed in parallel with other methods of measuring FRET76, 

applied to interaction inhibitor screening. In this implementation, fluorescence anisotropy measurements 

of FRET were used as a means of pre-screening 96 well plates for potential interactions before FLIM 

measurements were taken to generate more quantitative data. Matthews et al. suggest that a 96 well plate 

might be read in five hours (108 images in total), though tyrosine kinase inhibitor screen data took >13 

hours to acquire (~3 minutes per image). The instrument used in this study is modular in nature, and 

instructions on constructing such an instrument have been made available by the authors under an open 

licence along with the acquisition software131.  

In the Photonics group at Imperial College London, considerable work has been undertaken in 

developing a FLIM plate reader capable of reading out live cell fluorescence for FRET and other 

purposes in practical experiment times. The wide field time gated FLIM technology suitable for 

application to a plate reader for HCA was first published by Grant et al. in 2007: a home-built FLIM 

microscope based around an Olympus IX-81 frame with sectioned imaging capabilities afforded by a 

Nipkow spinning disk unit (CSU-X10, Yokogawa) and time-resolved detection provided by a high rate 

imager (HRI, Kentech) was used to demonstrate the capabilities of such a system132. Talbot et al. 

demonstrated the first application of wide field time gated FLIM in HCA on the same system adapted to 

read multiwell plates; plates of cells expressing a bimolecular FRET system were imaged to investigate 
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interactions between K-Ras and the Ras-binding domain (RBD) of Raf in response to EGF133. Typical 

FLIM acquisition times were 10 seconds per field of view, such that 96 images might in principle have 

been imaged in ~15 minutes.  

A second FLIM plate reader was developed at Imperial College London based around a GE Healthcare 

INCell Analyser 1000 plate reading system adapted by addition of a Nipkow spinning disk unit (CSU-X1, 

Yokogawa) and high rate imager (HRI, Kentech). This system benefitted over its predecessor by the 

improved performance of a newer generation of sectioning unit, a piezo-driven z-drive for fast 

refocusing, and updated control software. This system was applied by Kumar et al. to the measurement of 

EGFP-mCherry FRET constructs to illustrate its capabilities in increasing the precision of FLIM-FRET 

measurements over manual techniques, as well as to preliminary work studying the formation of HIV 

virions by FRET134.  

The study of virion formation in HIV was pursued on the home built plate FLIM plate reader described 

in Chapter 3: below, with a Nipkow spinning disk unit (CSU-X1, Yokogawa) used to afford optical 

sectioning. In 2013, Alibhai et al. reported the application of a CFP-YFP FRET-based aggregation assay 

to a study of the effects of N-myristoyltransferase inhibitors on Gag protein clustering in the HIV life 

cycle, resulting in successful elucidation of dose response curves and IC50 values63. The published work 

also illustrated the potential for homo-FRET – FRET occurring between identical fluorescent proteins – 

to be utilised in HCA studies, by successfully demonstrating that the change in CFP lifetime allows FRET 

aggregation studies to be carried out with a single fluorescent protein construct. Finally, this work showed 

the benefits of conducting such studies using HCA imaging rather than point measurements: 

segmentation of the cell membrane, where the interaction is expected to occur, increased the dynamic 

range of the assay and improved the assay quality parameters to 𝑍′ = 0.67 for the homo-FRET assay and 

𝑍′ = 0.82 for the hetero-FRET readout.  

2.6 Summary 

This chapter has sought to provide an introduction to basic concepts in fluorescence and the parameters 

relating to fluorescence which may practically be measured. A discussion of the application of 

fluorescence measurements to problems in the life sciences has been presented, with specific reference to 

the means of achieving labelling of specific intracellular proteins by genetic methods. The phenomenon 

of Förster Resonance Energy transfer and a range of historical applications in the life sciences have been 

discussed. Further, means of measuring FRET, including by fluorescence lifetime, have been outlined. 

Instrumentation for fluorescence microscopy, and for fluorescence lifetime imaging (FLIM) in particular, 

has been introduced, and an overview of the state-of-the-art in high throughput screening and high 

content analysis has been included in order to provide the context for subsequent chapters in which work 

performed to develop FLIM as a practical HCA method is discussed.  
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Chapter 3: Development of an automated FLIM plate 

reader for high content FLIM imaging 

Driven by the goal of applying wide field time gated fluorescence lifetime imaging microscopy to high 

content imaging assays, I have worked on the development of a FLIM plate reader throughout my PhD 

project. This work built upon and extended that previously undertaken in the Photonics group at Imperial 

College London133,134. Prior to the start of this project, development of FLIM plate reader technology had 

centred on extending a commercial INCell Analyzer 1000 (GE Life Sciences) for use as a plate reading 

FLIM microscope, following initial proofs of concept carried out on a home-built system. For my project 

it was decided that focus should be shifted to development of a FLIM plate reader around a motorised 

Olympus IX81 microscope frame in order to take advantage of the greater degree of flexibility afforded 

by this system. In particular, such an approach allows a choice between wide field and sectioned imaging, 

and permits the use of short wavelength laser excitation that is incompatible with the spinning disk unit 

used in previous plate reading FLIM systems in the group. In this chapter,  

 An overview of hardware components in a home-built plate reading FLIM microscope with a 

combination of capabilities including time resolved and multispectral fluorescence and phase 

contrast imaging is presented.  

 Key aspects of acquisition software development are described.  

 Characterisation experiments for two different HRIs and implications for HRI specification are 

discussed.  

 Assays of live and fixed cell samples transfected with fluorescent constructs, used to increase 

understanding of the scope of applicability of the system to FLIM-FRET biological assays, are 

considered.   
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3.1 FLIM plate reader hardware 

The FLIM plate reader is built around an Olympus IX81 microscope frame and takes advantage of 

several motorised Olympus modules including a ZDC autofocus unit, a motorised nosepiece for objective 

selection and an automated filter cube cassette. The frame is supplemented with a motorised stage 

(Corvus, Marzhauser) that allows the sample position to be controlled by software. The microscope 

chassis is enclosed in a blacked-out incubator chamber with optional temperature and CO2 control 

(Solent Scientific), facilitating the medium-to-long term imaging of live cell samples. An overview of the 

FLIM plate reader is presented in the schematic and photographs in Figure 3-1, electronic connections 

between different components are presented in Figure 3-2 and a more detailed schematic of the laser 

illumination and spectral selection unit is presented in Figure 3-3. Different aspects of the system are 

discussed in the following sections.  
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Figure 3-1 Photographs of the FLIM plate reader system.  

(a) Schematic showing the optical path for wide field time gated FLIM acquisitions on the FLIM plate reader. 
RD: rotating diffuser, DLH: dual lamp house unit mirror, IX81: Olympus IX81 microscope frame, ILL: 
microscope fluorescence illuminator, FC: filter cube, OBJ: objective, AS: automated stage, TL: microscope tube 
lens, HRI: high rate imager. (b) Photograph showing detail of the spectral selection unit. (c) Photograph of the 
diffuser wheel assembly for coupling pulsed laser light into the microscope frame for wide field illumination. (d) 
Photograph showing a front view of plate reader system. Time gated FLIM acquisition arm is at bottom left, 
highlighted by the red dashed square; non-FLIM imaging arm is in the centre, connected to the trinocular. (e) 
Photograph showing the time gated FLIM acquisition arm (Camera, relay and HRI, from left to right).  
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Figure 3-2 Schematic showing electronic connectivity between the components that make up the FLIM 

plate reader.  

Connections are colour coded according to cable type.  

3.1.1 Pulsed illumination for time resolved fluorescence measurements 
For FLIM measurements, ultrafast laser sources are used to illuminate samples. To maximise flexibility 

within a set space on an optical bench, excitation lasers were coupled into optical fibres to permit 

convenient coupling of any laser on the optical table to any nearby instrument. Such an arrangement has 

the added benefit of minimising disruption when switching between wide field and optically sectioned 

imaging modalities. Visible wavelength studies were performed using a supercontinuum fibre laser as an 

illumination source. For all of the work presented in this thesis, a Fianium SC400-6 was used, providing 6 

ps pulses at 60 MHz repetition rate with 1.5-5 mW/nm output over visible wavelengths (400-700 nm). 

Excitation wavelength selection and power adjustment was afforded by motorised six-position filter 

wheels (FW102B, Thorlabs). Laser power is monitored using a photodiode (DET10A, Thorlabs) from a 

4% reflection from a glass flat in the beam path; the voltage output from the photodiode is read to the 

controlling PC using a DAQ card (USB6008, National Instruments). Broadband dielectric mirrors (BB1-

E02, Thorlabs) were chosen to steer the beam into a fibre launch system consisting of a 3 axis microblock 

stage (MBT612/M, Thorlabs) and an achromatic Olympus objective (UPlanFL 20x/0.5, Olympus). The 

objective was chosen such that its focal length was appropriate for the numerical aperture of the fibres 

employed135, and for its suitability for the anticipated range of (visible) excitation wavelengths. The whole 

“spectral selector” unit is mounted on a breadboard to allow easy repositioning should elements on the 
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optical bench need to be rearranged, and pinholes are positioned to facilitate quick and easy alignment. A 

schematic showing the layout of elements of the unit is presented in Figure 3-3.  

 

Figure 3-3 Schematic showing the layout of the "spectral selection unit" for coupling pulsed laser light 

into a single mode fibre.  

SC: supercontinuum laser, IRB: infra-red mirror block, FW1: spectral filter wheel, FW2: neutral density filter 
wheel, PD: photodiode, M1: steering mirror 1, GW: glass window, KG5: Schott KG5 IR filter, M2: steering 
mirror 2, PH: pinhole, 3AS: 3-axis microblock stage.  

In the duration of my PhD project, multiple different fibres have been used to couple light from the 

spectral selection unit to the microscope frame. These have included single mode fibres designed for use 

with visible light and connectorised for compatibility with Yokogawa CSU spinning disk units (QPMJ-

3AFSP,3S-405/640-3/125-5AS-3-1-SP, OZ Optics), fibres designed to be single mode at ultra-violet 

wavelengths (QSMJ-3U,3U-320-2/125-3A-2, OZ Optics), and multimode fibres (M67L02, Thorlabs). 

The latter fibres have the benefit that it is simple to achieve high coupling efficiency. However, the ability 

of these fibres to carry many transmission modes leads to pulse broadening by mode dispersion (ΔT ~ 6 

ps136), and it was found that the multimode fibre was more susceptible to drift as illustrated in Figure 3-4 

below. Here, time course measurements of fluorescein dye acquired at five minute intervals over four 

hours with finely (50 ps) spaced gates around the rising edge of the decay profile were used taken, and 

analysed in MATLAB to show shifts in the position of the measured decay with respect to the electronic 

synchronisation signal from the laser. Figure 3-4 (a) and (c) show overlaid traces of the leading edge 

across time course acquisitions for multimode and single mode fibres respectively; Figure 3-4 (b) and (d) 

show the shift in the position of the steepest part of the rising edge with respect to the zero time point 

position across the time course for each fibre. This data highlights the importance of using single mode 

fibres for acquiring data in which it is necessary to resolve changes in lifetime on the order of tens of 

picoseconds.  
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Figure 3-4 Comparison of temporal drift for multimode and single mode fibres 

(a) Overlaid decay profiles showing the leading edge of measured fluorescence from a fluorescein sample 
acquired using a multimode fibre. (b) Temporal shift of the leading edge, defined by changes in the position of 
the maximum of the gradient of the decay profile, across a time course when using a multimode fibre. (c) 
Overlaid decay profiles showing the leading edge of measured fluorescence from a fluorescein sample acquired 
using a single mode fibre. (d) Temporal shift of the leading edge across a time course when using a multimode 
fibre.  

For wide field imaging, pulsed illumination light is delivered to the sample plane via the fluorescence 

illuminator in the back port of the IX81 microscope frame. To reduce the spatial coherence of the 

excitation light that might otherwise lead to interference fringes at the sample plane, a spinning diffuser is 

included in the light path between the end of the fibre and the fluorescence illuminator (IX2-RFA, 

Olympus) in the back port of the microscope frame (Figure 3-1 (a) and (c)). For compatibility with UV 

illumination for autofluorescence measurements, a sheet of light shaping diffuser material on UV-

transmitting acrylic (Luminit) was chosen rather than the ground glass diffuser wheels previously available 

in the lab (Table 3-1).  The motor that drives rotation of the diffuser is connected to a power supply and 

to the DAQ box in order that the acquisition software can ensure that the diffuser wheel is running. To 

enable safe inspection of sample fluorescence by eye, a dual lamp house adapter (U-DULHA, Olympus) 

(a) (b)

(c) (d)
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is included in the illumination path to allow the illumination source to be switched between a mercury 

lamp and the pulsed laser source.  

Diffuser Transmission % Notes 

Plastic diffuser wheel 52 Previously used in lab, sample from Physical 

Optics Corporation.  

1” ground glass diffuser 70  

Luminit UVT LSD, first order 77 Performed under specification, returned to 

manufacturer 

Luminit UVT LSD, second order 90  

Table 3-1 Summary of UV transmission properties of diffuser wheels, measured at 365 nm. 

For experiments in which optical sectioning is important for biological outcomes, light may be introduced 

to the sample via a Nipkow spinning disk unit (CSU-X1, Yokogawa) that is inserted prior to the detection 

arm (HRI and camera) on the left hand port of the IX81, as described elsewhere63.  

3.1.2 Time resolved fluorescence detection 
Adjustment of the gated optical intensifier opening time with respect to a synchronisation pulse 

originating from the laser allows time resolved measurements to be completed. This is generally achieved 

using a delay generator that takes a filtered sinusoid as input, and outputs a trigger signal with 

approximately 50% duty cycle with a fast negative edge that can be used to trigger switching of a gated 

optical intensifier. For this project, the photodiode trigger output from the laser source is high pass 

filtered to remove any DC offset (BHP-25+, Mini-Circuits), and low pass filtered to remove high 

frequency components and noise from the signal (BLP-90+, Mini-Circuits) before amplification with a 40 

dB RF amplifier (HSA-X-2-40, FEMTO). The signal is input to a slow switching delay generator 

(Precision Programmable Delay Generator, Kentech) and thence to fast switching delay generator (HDG, 

Kentech) that is interfaced with the controlling PC to allow sampling of the decay fluorescence at 

different delays relative to the excitation pulse.  

The HDG “delay box” units used to sample fluorescence decays are typically programmed with 

calibration tables in firmware that allow delays to be accurately set when the electronic input originates 

from lasers with repetition rates of 40 MHz or 80 MHz. When a 60 MHz repetition rate laser is used, it is 

necessary to use a software-based calibration table incorporated in acquisition software to ensure that the 

actual delay used reflects the nominal delay set. Using a MATLAB script originally written by Sean 

Warren and an oscilloscope equipped with Ethernet connectivity (TDS 3014, Tektronix), calibration 

tables may be automatically generated for different delay boxes by measuring the phase shift between a 

synchronisation signal from a photodiode exposed to the pulsed laser source and the output signal from 

the HDG unit. Exemplar plots illustrating the need for calibration tables to be used are shown in Figure 

3-5 below.  
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Figure 3-5 Plots showing differences between nominal and measured delays set by HDG delay boxes 

before applying software calibration table corrections. 

(a) Differences between measured and nominal delays across the full range of nominal delays for an HDG delay 
box with a 60 MHz input signal. (b) Differences between measured and nominal delays across the full range of 
nominal delays for a next generation HDG800 delay box with a 60 MHz input signal. Note differences in vertical 
scale.  

Two different gated optical intensifiers (HRI, Kentech) are used to acquire the data presented in this 

thesis. These are described as the “blue-sensitive” model, and the “single edge” model. They are 

distinguished from each other by spectral sensitivity, spatial resolution, and gate width range. Further 

details on HRI performance and operation may be found in section 3.3. The phosphor of the GOI is read 

out using a cooled CCD camera (ORCA-II-ER, Hamamatsu), coupled via a pair of camera lenses, 

providing 0.7x demagnification between the HRI and the CCD. This demagnification allows a larger field 

of view to be imaged. Combined with typical 2x2 binning of the CCD camera pixels, oversampling of the 

back face of the HRI is reduced. The camera integration time is controlled by an external clock signal 

generated using a microcontroller. For the majority of this project, a PICDEM board (PICDEM FS USB 

Demo board, Microchip) was used as the microcontroller. The PICDEM was later replaced with an 

Arduino Uno board to improve compatibility with recent versions of Windows and ease of programming. 

Crucially, controlling camera triggering and integration time from an external clock means that it is 

possible to synchronise laser power monitoring measurements with individual camera frame acquisitions, 

in principle enabling correction for any fluctuations in laser intensity between gates in a decay profile.  

3.1.3 Bright field imaging 
To enable information to be gleaned from datasets regarding cell health, morphology and confluence, 

phase contrast image capability was incorporated into the design of the plate reader. The option of a Ph2 

contrast ring was included when purchasing a long working distance UV compatible 40x objective 

(LUCPLFLN 40x, Olympus) in order that high magnification phase contrast images might be acquired in 

line with FLIM images without requiring movement of the nosepiece. To increase the speed of 

acquisitions in which phase contrast imaging was to be interleaved with fluorescence imaging, it was 

necessary to replace the halogen transmitted light source present on the microscope frame for a white 
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LED source (MCWHL2-C1, Thorlabs); this source could be switched on or off significantly more quickly 

than the previous set up. Automated control of the LED is achieved by connecting the LED driver 

(LEDD1B, Thorlabs) to a DAQ box using a pigtailed BNC cable.  

Typically, to avoid any risk of damaging the HRI photocathode, phase contrast images are acquired using 

the non-FLIM channel of the microscope. This may be automatically selected by switching between 

imaging path from the left hand port to the trinocular, upon which is mounted a small, lightweight 

firewire camera (FLEA2, Point Grey Research). A pair of 1” achromatic doublets are used in the lens 

tube that couples the camera to the trinocular to afford a 0.4x demagnification in order that the non-

FLIM field of view size matches the FLIM field of view (along the long dimension of the chip).  

3.1.4 Liquid handling for time lapse assays 
In certain experiments it is desirable to interrogate the response of a FLIM signal to chemical stimulus. If 

it is necessary that a fast transient response should be measured in live cells, or if the baseline signal level 

varies significantly from cell to cell, it may be impractical or impossible to treat different wells for specific, 

well-defined time periods before imaging to extract the dynamic response profile. The only way to 

perform such experiments in the context of the automated plate reader is to integrate a liquid handling 

system capable of delivering stimulant or treatments to individual wells according to when the relevant 

command is encountered in the software.  

In the absence of a commercial liquid handling solution to fulfil this role, a system was put together 

consisting of a syringe pump (Syringe Pump 200, KD Scientific) and a dispenser head constructed from a 

gel loading pipette tip and a rigid plastic tube for structural support. Polypropylene tubing was used to 

connect a disposable syringe in the pump to the dispenser head, which was suspended above the stage 

using posts attached to the microscope chassis. To permit communication with software, a standard 

telephone cable was modified so that the ground, transmit and receive pins on the RJ14 plug were 

matched with the appropriate pins on a 9-pin RS232 connector. Modular software was then written in 

LabVIEW to allow appropriate commands to be sent to the syringe pump to start or stop dispensing. 

These tools were then incorporated into the sequenced acquisition software and changes made to the user 

interface to allow a time course to be set up to include a “stimulation step” in user-defined wells. Due to 

the specific model of the syringe pump available, no more complicated commands than “start” and 

“stop” can be sent; it is therefore necessary for the user to set up the pump manually with the correct 

dispensing volume and syringe settings before starting the time course.  

To test the reliability of this method of delivering liquid to the sample, and to allow the most suitable size 

of syringe to be chosen, different syringes were filled with water that was then dispensed onto a high 

precision weighing balance (A1204, Oxford Balances). The accuracy of successive dispensing steps could 

then be calculated based on the mass of water accumulating on the balance. The results of this 

experiment are presented as percentage errors in measured dispensed volume compared to nominal 
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volume, in Figure 3-6 (a). For clarity, only three situations are shown: dispensing using a manual pipette, 

dispensing from the automated system using a 5 ml syringe and a standard pipette tip-based dispensing 

head, and dispensing from the automated system using a 5 ml syringe and a gel-loading pipette tip-based 

dispensing head. The deviations from nominal dispensing volume that is evident when a standard pipette 

tip is used with the automated system can be linked empirically to retention of liquid on the pipette tip 

resulting in less than the nominal volume of liquid being delivered; on the next step, the excess retained 

on the tip contributes to a greater volume being dispensed. Since this retention depends on the tip, rather 

than on the volume dispensed, the percentage error in dispensed volume decreases with increasing 

nominal volume.  

An initial test of the integrated liquid handling system and its related control software was carried out. A 

plate was set up with 100 μl 20 μM Rhodamine 6G (monoexponential fitted lifetime 4050 ps) in five 

wells, and the syringe was filled with 41 μM Rhodamine B (monoexponential fitted lifetime 1569 ps). 100 

μl of Rhodamine B was dispensed immediately prior to the fourth time point in an 80 second time course 

for each well. The resulting fitted data is presented in Figure 3-6 (b). The results match well with the 

predicted values; the exception at the time point immediately following stimulation might be associated 

with finite mixing time.  

 

Figure 3-6 Characterisation of a simple automated liquid handling system for integration into the FLIM 

plate reader.  

(a) Plot showing deviations of measured dispensed volume from nominal dispensed volumes across 10 
dispensing steps. (b) Plot showing the measured and theoretically predicted lifetime values following automated 
dispensing of a short lifetime dye into a well containing an equal volume of long lifetime dye.  
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3.2 FLIM plate reader software 

In order to maintain continuity with previous software and to ensure compatibility with tools written for 

other instruments in the lab, the software used to run the FLIM plate reader was developed in LabVIEW. 

This built on prior work by Dr Sunil Kumar, Dr James McGinty and Dr Clifford Talbot. LabVIEW 

provides a modular, graphical programming approach that, in principle, allows non-experts to combine 

modules (LabVIEW virtual instruments, or VIs) to automate particular experiments not supported by the 

default acquisition software.  

The basic function of the acquisition software is to collect FLIM data from multiple positions across a 

sample, typically a 96 well plate. Prior to the beginning of this project, functionality extended to simple 

automatic assessment of the suitability of fields of view prior to FLIM imaging (“prefind”), autofocussing 

on the sample, automatic scaling of camera integration time to maximise dynamic range, and limited 

control over in-line imaging across different spectral channels, z-planes and time points in time-lapse 

experiments. In order to take full advantage of the functionality afforded by the hardware, and to meet 

the needs presented by samples throughout the project, I have continuously developed and updated the 

plate reader acquisition software. These developments are broken down here into those relating to 

changes in the automated acquisition process, changes in the prefind process for identification of samples 

of interest, and changes to the user interface made with the goal of increasing ease-of-use for the 

software.  

3.2.1 Extension of automated acquisition sequence capabilities 
The functionality associated with the automated acquisition of FLIM images was extended in line with 

demands posed by biological applications throughout my PhD project. The acquisition of images across 

multiple spectral windows was modified in order to present a more flexible approach to such acquisitions: 

HRI, delay and camera settings may now all be linked to a particular named filter configuration. This 

modification allows intensity information to be generated in different spectral windows without the 

necessity to acquire a FLIM sequence, and enables camera and HRI settings be optimised in cases where 

the relative intensity changes significantly across channels.  

A greater degree of flexibility was also afforded in setting up time lapse imaging sequences, allowing the 

user to set custom time points, and to control whether the software adheres strictly to the time course laid 

out or completes all requested measurements before proceeding to the next time point. Changes were 

made to the sequenced acquisition tools to permit imaging of samples at low magnifications for fast 

surveying whilst retaining autofocus functionality: since the Olympus ZDC autofocus system does not 

function with low magnification objectives, this required a separation in the acquisition set up variables 

between the imaging and autofocus objectives.  

Effort was devoted to the possibility of deploying a preview tool to afford near-instant feedback on 

measured lifetime values in the course of a sequenced acquisition. Whilst lifetimes presented by such a 



73 
 

tool would need to be treated with caution, this output might provide reassurance on the success of an 

assay or flag up potential issues prior to more in-depth analysis. Preview lifetime data may be generated 

using the linearised least squares determination method78,137. Briefly, after each field of view has been 

acquired, user defined intensity thresholds are applied to images summed across delays. Thresholded data 

is then analysed pixelwise, applying the expression 

 
〈𝜏〉 = −

𝑁 ∑ 𝑡𝑖
2

𝑖 − (∑ 𝑡𝑖𝑖 )2

𝑁 ∑ 𝑡𝑖 ln 𝐼𝑖𝑖 − (∑ 𝑡𝑖𝑖 )(∑ ln 𝐼𝑖𝑖 )
 

3.1 

to generate a “mean photon arrival time” image from 𝑁 gated images, where 𝑡𝑖 and  𝐼𝑖 represent the delay 

and (pixelwise) intensity at the 𝑖𝑡ℎ gate. Resulting mean lifetime images are presented during the 

acquisition (Figure 3-7 (a)). The average lifetime value of thresholded mean lifetime images is saved 

according to well position within the plate, in order that the user might be presented with an overview of 

lifetime trends across the plate immediately upon completion of the acquisition sequence (Figure 3-7 (b)).  

 

Figure 3-7 Screenshots illustrating the linearised least squares method of determining lifetime previews.  

(a) A screenshot of the LabVIEW VI that calculates linearised least squares determination method lifetimes 
pixelwise for each field of view in line with acquisition. (b) A screenshot of the resulting plate map of linearised 
least squares determination method lifetimes combined wellwise as presented in LabVIEW following acquisition. 
Exemplar data acquired from a FRET construct sample (see section 3.4).  

The means by which data acquired in automated sequences might be stored and shared was also 

considered. The Open Microscopy Environment (OME) is a joint venture between academic and 

industrial research groups in conjunction with software engineers to develop open source software and 

data standards for storage and manipulation of microscopy data138. OMERO represents a data 

management tool for the storage, visualisation, analysis and sharing of microscopy data within and 

between research groups139. I worked towards establishing a standardised pipeline for importing time 

gated FLIM data into OMERO; in the course of developing the FLIM plate reader software, preliminary 

work has been undertaken to this end. Integration of modified MATLAB code, originally written by Dr 

Yuriy Alexsandrov, into LabVIEW now allows FLIM data, along with additional fluorescence intensity or 

brightfield images and metadata, to be uploaded to OMERO servers in line with acquisition. For the time 

being, this represents a duplication of data, and the format of uploaded data is such that each gated image 

in a FLIM sequence is represented by a different TIFF file. In future it is likely that the FLIM data 

(a) (b)
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standards adopted will instead save wide field time gated fields of view in a single, multipage TIFF. A 

DLL was written and integrated into the LabVIEW acquisition program to facilitate saving FLIM data in 

a multipage TIFF format with acquisition metadata bundled in the file header, using an arbitrary standard. 

Saving in this format yields an improvement in disk writing time compared to using LabVIEW IMAQ 

VIs to save multiple TIFFs (factor of 4).  

3.2.2 “Prefind” tools 
The default behaviour for an automated acquisition in which multiple fields of view per well are to be 

imaged is simply to image the first field of view at the well centre, then spiral outwards acquiring non-

overlapping fields until the required number of images have been recorded. For plates in which cells are 

sparsely seeded, or in which there are relatively few transfected cells per well, simply acquiring FLIM 

images of fields of view spiralling outwards from the centre of the well is inefficient since many of these 

fields of view are likely not to contain fluorescent cells. In these cases, it is useful to perform a “prefind” 

step before taking FLIM images, whereby a single image is acquired across an array of search positions 

and is assessed for suitability for inclusion in the FLIM measurement sequence. The generalised process 

behind all the prefind methods discussed here is shown in Figure 3-8. A simple version of such a tool 

existed previously in software developed for running the FLIM-adapted INCell Analyser 1000. With this 

method, the test images are acquired using the same objective as is eventually used for FLIM imaging and 

the criteria for suitability of a field of view is based on intensity (to separate fluorescent cells or objects of 

interest from background) and percentage coverage of the field of view. This approach has the benefit of 

simplicity: the controls for thresholding, percentage coverage, the number of FOVs to find, and the 

number of attempts per FOV could be integrated into the front panel of the main acquisition program 

without overcrowding the user interface. However, this method can still be time consuming dependent 

on the sample sparseness and how stringent the brightness and coverage thresholds have been chosen to 

be. Especially in the absence of piezo-controlled fine focus adjustment, it was not uncommon that the 

prefind step should take even longer to complete than the FLIM acquisition itself using this procedure.  
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Figure 3-8 Flow chart describing the generalised process followed by the prefind tools implemented in 

the plate reader acquisition software. 

To improve the speed and increase the breadth of functionality of the cell prefind tool, a series of sub-

VIs were designed from scratch. The controls for setting prefind parameters were moved from the front 

panel to a separate set up window (Figure 3-9) to avoid cluttering the main UI window. The changes in 

functionality are laid out in brief in the following subsections.  

 

Figure 3-9 Screenshot of the control window for setting up the cell prefind tool in the FLIM plate reader 

acquisition control software, illustrating the range of prefind options available.  
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Prefind search pattern 

This control allows the user to specify the arrangement of search FOVs within a well. “One shot” leads 

to a single position being assessed per well; “Spiral from centre” is the default search pattern whereby the 

search starts at the centre of the well and searches through an array of positions resulting in tiled FOVs 

following a spiral pattern. The “Ring” search option was introduced in response to samples in which the 

density of fluorescent cells in the centre of the well is lower than at larger radii due to seeding technique 

or cells being washed away from the centre of the well by pipetting. This option is implemented such that 

the user may choose the search radius.  

Prefind imaging modality 

It is typical for FLIM experiments that only a subpopulation of the cells in any given well may express the 

fluorescent construct under consideration at sufficient levels to be of use: therefore, a fluorescence 

intensity thresholded search is usually the preferred method for identifying cells of interest. However, for 

autofluorescence lifetime experiments, or in the case where cells have been stably transfected, all cells 

present may be assumed to be bright enough to perform FLIM experiments and so intensity-based 

criteria are not useful. Furthermore, it is generally not desirable to subject the sample to more 

fluorescence excitation light than is necessary in order to prevent possible photobleaching. For these 

reasons, if the cells are sufficiently sparsely seeded that a prefind is necessary, then it is desirable to use 

phase contrast imaging to allow the software to identify cells and hence suitable fields of view.  

After a review of relevant literature and some exploration of image processing tools available in 

LabVIEW, I decided that the fastest, most effective and most easily integrated means of analysing phase 

contrast images was to perform thresholding on a variance image derived from the phase contrast 

image140. Briefly, the value of each pixel of the variance image is obtained by calculating the variance over 

a disk of user-defined radius centred upon that pixel in the raw phase contrast image. The user can then 

choose a minimum variance threshold, to highlight regions enclosed by sharp edges in the phase contrast 

images, as well as a maximum threshold to avoid anomalous highlighting of pieces of debris. Area 

thresholding controls also help to prevent such anomalies by allowing the user to set the minimum size of 

highlighted area that is considered to be “cell” rather than debris. The resulting binary, thresholded 

images can then be used by the prefinding software to identify suitable fields of view in a similar manner 

to when intensity-based thresholding is used.  
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Figure 3-10 An illustration of the deployment of low magnification phase contrast cell prefind on the 

FLIM plate reader using MCF7 cells. 

(a) A screenshot taken as the prefind operation is in progress, illustrating that the combination of controls 
available allow successful identification of cells in the presence of large scale variations in illumination and cell 
debris in this day-old live cell plate. (b) Exemplar resultant high magnification fluorescence (FLIM) field of view.  

It is important that the user is aware of the contrast in the sample under investigation when considering 

using the phase contrast prefind modality. For example, for Cos7 cells the boundary delineated by the cell 

membrane is difficult to see even by eye under phase contrast illumination, and it is unlikely that the 

software will succeed in properly segmenting the prefind images. As well as considering whether this 

method is suitable for the particular sample, it is important for the user to be aware of the differences in 

phase contrast image quality between the centre of the well and the edges. The meniscus of the media, 

and the sharp edges of the chimney wells, interfere with the correct illumination of the sample from the 

bright field condenser above the plate. Therefore the phase contrast prefind is best employed for samples 

in which there are cells present in the centre of the wells, or indeed for samples prepared on microscope 

slides or coverslips.  

Low magnification prefind 

Along with the option to increase the number of stage positioning steps per autofocus step, the ability to 

search for cells using lower magnification objectives proved crucial in increasing the speed and the 

effectiveness of the prefind tool. A lower magnification objective enabled prefind images of 

correspondingly larger regions of the plate to be acquired, decreasing the time taken per unit area 

searched. One significant drawback of the current implementation of this method is that the ZDC 

autofocus unit is not capable of focussing when the magnification of the objective in place is less than 

20x, because of the relatively poor light collection of such lenses. This means that the objective turret 

must be rotated to a higher magnification objective every time an autofocus step is required, adding 

significantly to the time taken for the low magnification search.  

(a) (b)
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A brief outline of the process of the low magnification prefind is as follows: prior to starting the prefind 

process, the user chooses the low magnification objective, as well as the high magnification objective 

intended for use in the eventual FLIM acquisition. Initially, the stage is moved to the centre of the first 

well. If necessary, an autofocus step is carried out, followed by rotation of the nosepiece to engage the 

low magnification objective. A prefind image is then taken at the low magnification, and is processed 

according to the modality selected (intensity- or phase contrast-based). The resulting binary image is then 

passed to a VI that counts “particles” in the image, in this case the highlighted areas corresponding to 

cells. The output of this VI includes an area parameter: the regions are then sorted so that the largest fall 

at the top of the results array. Another output parameter, the “centre of mass” of each particle, is passed 

to a VI which removes particles that, on account of falling within a high magnification FOV centred on a 

particle higher in the list, would otherwise be measured twice. The remaining particle centres of mass are 

then passed through two small VIs that map low magnification image coordinates to high magnification 

image coordinates, and then image coordinates to stage coordinates: the resulting stage positions are such 

that each highlighted region will fall in the centre of the high magnification field of view when the FLIM 

data is eventually acquired. If the number of resulting FOVs is greater than the number requested by the 

user in the control “# FOVs”, then only the first “# FOVs” fields are stored, and the stage is moved to 

the next well. If an insufficient number of fields have been found, then the stage is moved to the next 

FOV in the same well according to the search pattern chosen. A typical low magnification prefind run 

over a whole 96 well plate might take on the order of 30 minutes, dependent on transfection efficiency 

and seeding density.  

In addition to the problem of switching objectives to engage the autofocus in the ZDC unit, the lateral 

offset between low and high magnification fields of view is a problem in this implementation. After 

consultation with Olympus representatives, no obvious optical solution could be found, and so it remains 

the case that a calibration tool is required to place regions found in the low magnification successfully in 

the centre of the high magnification field of view. This is simply a case of running a VI, which takes an 

image with each objective and requires the user to click on the same feature in each image. The offset 

values returned by the calibration only change if the objectives are moved to different positions on the 

nosepiece – for day-to-day running of the instrument, this calibration step is not required. Another minor 

inconvenience of running the low magnification prefind based on fluorescence intensity with M≤10 is 

that it is necessary that the condenser be flipped up out of the path. This is because of the background 

caused by reflections from the condenser, which reduce the contrast in the image and increase the 

likelihood of false positives in the FOVs output.  

Prefind in two spectral channels 

It is often assumed that presence in a cell of one of the plasmids transfected implies that the other 

plasmid has also been transfected into the cell, for example in intermolecular FRET experiments where 

the donor and acceptor plasmids are typically distinct but cotransfected. Empirically, this is not always the 
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case, and it certainly does not follow that high expression of the donor plasmid means that expression of 

the acceptor plasmid is also high. If cells containing satisfactory levels of both donor and acceptor 

fluorescence are reasonably ubiquitous then running a prefind search interrogating donor-wavelength 

fluorescence only is sufficient, though it is then useful to acquire acceptor-channel images in the final 

automated acquisition to allow thresholding based on acceptor levels to be performed during processing. 

However, if cells with sufficiently high levels of acceptor are relatively rare, then this is an inefficient use 

of imaging time as a large proportion of the fields of view imaged will be discarded during processing.  

An alternative is to set thresholding levels in both donor and acceptor spectral channels and to apply 

these to prefind images in both channels. The resulting binary images are then combined ANDwise, and 

the resulting image is processed as normal based on the other prefind options chosen. This ensures that 

any region found in the search has appropriate levels of both fluorescent species, minimising the 

likelihood of imaging unsuitable FOVs. A drawback of this approach is that switching the position of the 

filter cube cassette twice per FOV interrogated significantly slows down the prefind process, even when 

the cubes are adjacent in the cassette.  

Advanced prefind  image analysis 

CellProfiler is an open source software tool designed for use for biologists who wish to quantitatively 

measure phenotypes from thousands of images automatically141. Three separate motivations led to 

incorporation of CellProfiler as an option in the prefind routines. Firstly, as a pre-existing tool, many 

biologists concerned with microscopy will be familiar with the interface. Secondly, CellProfiler is 

equipped with a large number of image processing algorithms; it would be inefficient to rewrite these in 

LabVIEW. Thirdly, as an open source tool, CellProfiler is constantly being updated and additional 

functionality being added – by incorporating it into our software, we make use of a large community of 

developers working together to create a more flexible and powerful set of tools.  

Modules for CellProfiler 2.0 are written in Python, based on code written by Dr. Volker Hilsenstein 

(EMBL, Germany) using socket communication. To improve the user interface, I rewrote the code in 

order that the CellProfiler module runs in a server mode. Since Labview can launch executables from the 

command line, and CellProfiler supports command line switches to run automatically with a pre-defined 

pipeline, designing the software in this manner allows the user to run CellProfiler from the prefind setup, 

and add modules to the pipeline in order to segment the current FOV as desired. Running the 

CellProfiler pipeline starts the socket server. When the user has set the prefind running from Labview, the 

prefind software connects to CellProfiler as a client in order that images can be sent from Labview to the 

CellProfiler pipeline, and object positions can be sent back to Labview for storage and conversion as 

appropriate.  
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In-line prefind/FLIM acquisition 

Previously, it was intended that the prefind should be run prior to the FLIM acquisition, with user 

intervention in between. This mode, which is still the default, allows the user to set up acquisition 

parameters after the prefind has been performed and check that the fields of view found are acceptable. 

In cases for which imaging parameters are known beforehand, acquiring FLIM data in-line with the 

prefind, that is to say as soon as an acceptable FOV has been found, may save time, both by cutting down 

the total time required for autofocussing and by eliminating the need for user interface between finding 

cells and starting the acquisition.  

3.2.3 Development of user interface 
Further additions to the functionality of the instrument were made with the goal of increasing the user-

friendliness of the software, and to facilitate collaborative research. In some cases, specific software 

release versions were generated on a case-by-case basis to provide a cleaned-up GUI on the final tab of 

main program front end: typically, it is possible to use the event-based nature of the main program to 

bundle common functions for a particular application in order that a less experienced user is faced with a 

less daunting array of controls. Further changes to the function of the program were made with expert 

users equally in mind, to improve the overall workflow and enable rapid, error-free configuration. The 

initialisation process, in particular the relatively time consuming step of stage calibration, was redesigned 

in order that this could be bypassed, or performed in the background while the user selects other 

hardware configuration options. Hardware and software was modified to provide feedback on whether 

the diffuser wheel was rotating at the beginning of a sequenced acquisition, as a stationary diffuser causes 

a fixed pattern to be overlaid on the illumination. In addition, important settings that cannot be checked 

automatically, including the possible presence of ND filters in the microscope illuminator and the fact 

that the HRI should be wrapped in blackout material to reduce the impact of ambient light on 

measurements, were highlighted in a message box prior to starting sequenced acquisitions; users can 

choose not to be reminded again of these settings in the current session. The scope of the “ABORT” 

control was widened to cover all time-consuming setup and acquisition steps, allowing the user to 

gracefully stop any experiment if settings had been misjudged. Gmail-based VIs were incorporated to 

provide notification emails upon completion of prefind and sequenced acquisition steps, and an address 

book VI provides functionality to change the recipient of notifications and add new users to the list of 

saved addresses. With significant input from Sunil Kumar, modifications were made such that the 

software should feed back more visually to the user the position of the current field with respect to the 

current well by drawing an outline of that field within a circle representing the well in a preview window. 

In addition, the option to automatically accumulate downsampled (4x) images in a montage of the entire 

plate was added: the user may then save the montage image, for example to give an overview of 

transfection quality across a whole plate. Finally, the simple addition of an “Are you sure?” dialog that 

appears after clicking the quit button prevents users from mistakenly closing the imaging session 

prematurely.  
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3.3 Preliminary HRI characterisation 

The high rate imager (HRI, Kentech) is the enabling technology that allows FLIM experiments to be 

carried out on the automated plate reader. Under time gated operation, wafer-based fabrication allows 

standard model HRIs to provide (quoted) 10 lpmm-1 resolution across the 18 mm photocathode, 

permitting the acquisition of fluorescence lifetime data over all pixels in a field of view in parallel and thus 

enabling FLIM experiments to be conducted in multiwell plate formats on a practical time scale.  The 

principles of operation of HRI instruments have been outlined in Chapter 2: section 2.4.3; here various 

parameters associated with the two different HRI units used in the course of this project are discussed. 

The characterisation experiments presented here act as preliminary work for an ongoing project within 

the Photonics group at Imperial College London that seeks to compare different HRI models with 

different design parameters.  

Two different Kentech high rate imagers were used for the data presented in the remainder of this thesis: 

a blue-sensitive model that may be considered to be a “standard” HRI, and a prototype “single edge” 

model, the electronics behind which were designed to give a fast rising gate edge and a slower falling 

edge. These models are distinguished by differences in spectral sensitivity, spatial resolution, range of gate 

width and gate shape. The nominal differences in specification are presented in Table 3-2 for reference. 

Spectral sensitivity curves for the intensifier tubes, determined by the wavelength-dependent QE of the 

photocathode, are shown in Figure 3-11. Methods and results relating to the measurement of a number of 

these parameters are presented below, followed by a brief discussion on the relative strengths of the two 

devices.  

Parameter Single Edge HRI Blue Sensitive HRI 

HRI serial number J0601161/2 J0404621 

Intensifier tube serial number 0920264 0404906 

Photocathode S25 S20 

Spectral sensitivity, peak wavelength (nm) 700 480 

Spectral sensitivity, width (nm)* 500-800 400-560 

Phosphor P43 P43 

Phosphor emission, peak wavelength (nm) 545 545 

Phosphor lifetime (ms)** 1 1 

Default gate width range (ps) 1800-6800 200-1000 

Gating voltage (V) 32 24, 54 

Table 3-2 A summary of manufacturer specifications for two HRIs used to collect data in this thesis. 

Information has been collated from private correspondence with Kentech Instruments Ltd, intensifier tube 
specification sheets142,143 and product manuals144. *Width defined as the range of wavelengths for which 
sensitivity is greater than 40 mA/W. **Phosphor lifetime defined as the time taken for intensity to fall from 90% 
to 10% of original intensity145.  
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Figure 3-11 Spectral sensitivity curves for two HRIs used to collect data in this thesis. 

(a) Spectral sensitivity for the single edge HRI143. (b) Spectral sensitivity for the blue-sensitive HRI142.  

3.3.1 Photon-digital number conversion factor 
To allow judgments of acquisition strategies to be made with confidence based on typical rule-of-thumb 

indications for number of photons necessary to fit different models to lifetime data146, it is useful to be 

able to convert between digital numbers (DN) recorded by a CCD camera, and photons incident on the 

photocathode of the HRI. In a simplified model of the HRI-camera detection system, the mean recorded 

signal in digital numbers (𝑁̅𝐷𝑁) is related to the photons incident on the photocathode (𝑁𝑝ℎ𝑜𝑡) by the 

expression 

 𝑁̅𝐷𝑁 = 𝑘𝑁𝑝ℎ𝑜𝑡 
3.2 

where 𝑘 comprises several factors relating to different stages of detection, including the microchannel 

plate gain, phosphor conversion efficiency, coupling optics transmission and CCD quantum efficiency.  

The means of determining the value of 𝑘 has been described elsewhere104,147 and the equipment used is 

shown in Figure 3-12. Briefly, an LED source at 623 nm (Phlatlight CBT-40, Luminus) was used to 

uniformly illuminate the photocathode of each HRI, with a fixed 3.2 OD neutral density (ND) filter 

placed in front of the photocathode to reduce the incident flux to avoid damaging the photocathode, and 

ND filters of different densities used to vary the level of incident light on the photocathode. A 

combination of lens tubes and optical cage system components was used to ensure a common axis, and a 

combination of a rotating diffuser wheel, a diverging lens, and a long distance between this lens and the 

front face of the HRI ensured uniform illumination. Measurements were taken on different days. The 

driving current of the LED was set at the start of each day to a level that avoided saturation of the camera 

for the case of highest gain and lowest ND filter, and the LED left running for two hours before 

measurements were taken in order to allow the output illumination to stabilise. In addition to 

measurements with varying ND filter combinations, measurements were also taken with the HRI capped 

to generate background images that were subsequently used to account for fixed pattern CCD noise and 
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to calculate the standard deviation associated with CCD noise. Each HRI was characterised at three 

different gain voltages (650 V, 750 V and 850 V). A tool was written in LabVIEW and integrated into the 

acquisition software to take 100 repeat images at a range of integration times in the range 1-500 ms using 

shutter timing on-board the Hamamatsu ORCA ER-II.  

 

Figure 3-12 A schematic showing the experimental set up used to determine the relationship between 

photons detected by an HRI and the mean recorded signal in digital numbers.  

HS: heatsink, FL: focusing lens, RD: rotating diffuser, DL: diverging lens, ND: neutral density filter.  

An analysis software tool written in MATLAB was used to determine photon fluxes incident on the 

photocathode (photons pixel-1 s-1) based on images taken at high gain with maximal ND filters: for this 

“photon counting” data, individual photon events can be distinguished in the acquired images, and fluxes 

calculated from the gradient of plots of the number of photon events against acquisition time generated 

by the software. In determining the digital number threshold above which pixels are determined to be 

associated with photon events a deviation was made from previously published methods104, with an 

approach identified by Sean Warren being adopted instead. Using a CCD noise term 𝜎𝐶𝐶𝐷 inferred from 

measurements made with the HRI capped, an analytical expression for the intensity threshold 𝑡 was 

derived such that the probability of false positives being counted as photon events in an image convolved 

with a kernel of radius 𝑟 should fall below a given value 𝑝 (derivation performed by Sean Warren and 

outlined in Appendix 1): 

 
𝑡 = √2 ⋅ √𝜋𝑟2 ⋅ 𝜎CCD ⋅ erf −1 (1 −

2𝑝

𝑛𝑝𝑖𝑥
) 

3.3 

The kernel size 𝑟 = 4 was chosen empirically in order that separation between photon events should be 

maintained whilst ensuring that all DN counts in a cluster associated with a single photon event are 

included in the calculation. Based on 256 × 256-pixel central regions of the CCD147, with  𝜎𝐶𝐶𝐷 = 2.07 

DN by calculation and choosing 𝑝 = 0.001, the appropriate threshold was determined to be 𝑡 = 81.3 

DN. A second MATLAB script was written to generate values of 𝑘 from plots of mean detected signal 

against incident flux for each HRI at each gain voltage.  

Figure 3-13 (a) shows an exemplar 256 × 256 region of a camera frame captured with high gain voltage 

and ND filter settings, illustrating the appearance of individual photon events, whilst the intermediate 
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image in the photon counting analysis script is presented in Figure 3-13 (b) . Using calculated photon 

fluxes for each ND filter used, values of 𝑘 from plots of mean detected signal against incident flux for 

each HRI at each gain voltage were generated from the fitted gradients of mean recorded signal against 

detected photon plots as depicted in Figure 3-14 (a) and (b) for the single edge and blue sensitive HRI 

models, respectively. These values of 𝑘 are presented in Table 3-3. In addition, it is possible to extract the 

counts per photons for the high gains by taking the maximal value of the convolved photon-counting 

data for each thresholded photon event. These values are plotted in histograms in Figure 3-14 (c) and (d), 

and mean values are shown in the final line of Table 3-3. There is fairly good agreement between the 𝑘-

factors for 850 V measurements calculated from the two approaches: it is possible that discrepancies are 

linked to the method of extracting means from the histograms, rather than fitting appropriate probability 

distributions. Further improvements might be afforded by a different choice of ND filters to provide a 

more complete range of possible photon fluxes.  

 

Figure 3-13 Exemplar regions from photon counting experiments to establish photon flux on the 

photocathode of an HRI. 

(a) An exemplar background subtracted 256 × 256 region of an acquired image at high HRI gain and high ND 
filter settings, used for photon counting experiments. (b) An intermediate image generated by the MATLAB 
script used for analyzing photon counting data; coloured by photon event number. 

(a) (b)
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Figure 3-14 Results of experiments to determine conversion factor k between recorded signal in digital 

numbers, and detected photons.  

(a) Mean recorded signal in digital numbers plotted against photon flux for three different gain settings for the 
single edge HRI. (b) Mean recorded signal in digital numbers plotted against photon flux for three different gain 
settings for the blue-sensitive HRI. (c) Histogram of measured digital numbers per photon event for 850 V gain 
for the single edge HRI. (d) Histogram of measured digital numbers per photon event for 850 V gain for the 
blue-sensitive HRI. 

 

Gain setting (V) k, Single Edge HRI k, Blue Sensitive HRI 

650  5.3 (4.9, 5.7) 12.3 (12.0, 12.5) 

750 28.1 (23.3, 28.8) 53.7 (52.9, 54.42) 

850 121.2 (118.7, 123.7) 195.2 (192, 198.3) 

850* 116 228 

Table 3-3 Calculated k-factors (and 95% confidence intervals on fitted parameters), showing the 

relationship between detected photons and recorded signal in digital numbers for incident radiation at 

623 nm.  

*850 V k-factor identified from photon-counting data.  
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3.3.2 Gate profiles and generation of library IRFs 
A key difference between the single edge HRI and the blue-sensitive model is the ability to select wider 

gate widths by default, up to a maximum width of 6800 ps. However, the rise time of the gate profile, 

which contributes to the temporal resolution and precision of lifetime determination is typically <200 ps. 

To provide insight into the performance of these HRIs, gate profiles have been measured for both HRIs at a 

variety of wavelengths, gain settings and gate widths. Here, a profile generated from a “scatter” 

instrument response function at a single gain setting (750 V) and wavelength (supercontinuum source 

filtered to 525/50 nm) for 6000 ps or 1000 ps gates for the single edge and blue-sensitive HRIs, 

respectively, is presented. The equipment used to generate the data is shown in Figure 3-15: the 

combination of rotating diffuser, diverging lens and the distance to the HRI ensures a uniform 

illumination of the photocathode and a flat wavefront at the front of the HRI (calculated to be 0.47 ps 

deviation across the 18 mm photocathode). Automation of the experiment to generate gate profiles 

across conditions was afforded by a tool written in LabVIEW and integrated into the main acquisition 

program. 10 profiles were measured for each combination of settings; central 128 × 128 pixel regions 

were extracted and averaged over repeat measurements to generate the curves presented here. In addition, 

by means of a MATLAB script, the time at which each pixel reached 50% of its maximum brightness was 

determined; the resulting plots show the variation in gate opening and closing time across the face of the 

photocathode.  

 

Figure 3-15 A schematic showing the experimental set up used to generate gate profiles for HRIs.  

FL: focussing lens, RD: rotating diffuser, DL: diverging lens.  
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Figure 3-16 Exemplar gate profiles from the single edge and blue-sensitive model HRIs. 

(a) Gate profile and derivative curve for single edge HRI, 750 V gain, 6000 ps nominal gate width. (b) Gate 
profile and derivative curve for blue-sensitive HRI, 750 V gain, 1000 ps nominal gate width.(c) Gate opening and 
closing xy-profiles for the single edge HRI; warmer colours representing later on/off times. (d) Gate opening 
and closing xy-profiles for the blue-sensitive HRI; warmer colours representing later on/off times. Note that 
there is a 10-fold change in colour scale between (c) and (d).  

From the data presented in Figure 3-16 (a) and (b) above, and in particular looking at maxima and minima 

on derivative curves, it is established that the nominal gate widths set electronically with reference to a 

calibration reference table match the measured gate widths for the blue-sensitive HRI, whilst the gate on 

the single edge model is slightly wider (6250 ps) than the nominal value: this offset in gate duration is 

reflected across a range of nominal gate widths, and could potentially be calibrated for if desired. Figure 

3-16 (c) and (d) show the presence of irising – a phenomenon whereby the propagation of the electrical 

gating signal across the photocathode causes different xy-positions across the field of view to exhibit 
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different opening and closing times. Noting the ten-fold difference in colour scale, it is clear that this 

phenomenon is more pronounced in the case of the single edge HRI. Following discussion with Kentech 

Instrument Ltd. and with reference to literature148, it is concluded that the physical origin for this 

difference is linked to changes in the design between the two models, leading to different capacitive 

coupling between electronic components and the photocathode.  

In addition to showing the measured gate width compared to nominal values, Figure 3-16 (a) and (b) 

illustrate differences in gate profile between the two HRIs under investigation, and particularly the 

similarity in the sharpness at the gate edges between the two models as evidenced by the derivative 

curves. This is despite the fact that the single edge model was designed to provide a faster on-time than 

standard models. The impact of gate sharpness on lifetime fitting will in future be investigated by 

simulation.  

In addition to providing characterisation information, the traces generated by the process described above 

can be used to build a “library” of scatter IRF traces for use in subsequent experiments in which it is not 

always possible to satisfactorily measure the instrument response. Under the assumption that the shape of 

the IRF is not significantly changed by the microscope optics, but instead only the delay of the gate 

relative to the excitation pulse is altered by changing the optical path length, IRFs measured by the 

method described above can be used to fit FLIM data as long as the “t0 shift” is correctly accounted for. 

This is achieved by measuring a monoexponential reference dye with fine delay sampling at the time of 

the experiment, and obtaining the best fit to this decay profile using a library IRF with matching HRI 

settings by altering the delay of the IRF only. Once the IRF has been correctly positioned with respect to 

the reference decay, it may be used to fit other experimental data.  

3.3.3 Concluding remarks: current standards for HRI choice 
The work presented in this section goes some way to providing a basis upon which a choice can be made 

regarding the most suitable HRI for any given experiment. Clearly spectral sensitivity must be considered 

based on the fluorescence emission of the sample being studied. Building on published studies of 

analogous systems149 and using the determinant of the Fisher information matrix as a metric, Sean Warren 

has shown that in general, wider gates result in a more efficient use of photons in lifetime fitting. The 

single edge model offers the widest gates and hence the most favourable lifetime fitting performance. 

This factor, combined with its improved spatial resolution (illustrated in experiments being undertaken by 

Hugh Sparks), indicates that the single edge HRI is generally speaking the preferred option.  

One relative drawback of the single edge HRI is seen in the manifestation of irising causing a shift in gate 

profile across the collected field of view, which can cause artefacts in fitting whereby lifetimes returned at 

the edge of the field are shorter than those in the centre. It is clear that the standard blue-sensitive HRI is 

less susceptible to this phenomenon than the single edge system, and therefore might be considered 

preferable based on this metric. However, with appropriate monoexponential reference dye controls, our 
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lifetime fitting software FLIMfit is now capable of accounting for a shift in instrument response across a 

field of view, rendering this factor largely irrelevant.  

In future, it is intended that a wider survey of properties of all the HRI devices that exist in our laboratory 

should be carried out in order that the correct device might be chosen for any given application. This 

study is already in progress and is being conducted by Hugh Sparks. In addition to providing a more 

complete overview of HRI technology, the approach taken in this latest study to the elucidation of spatial 

resolution is preferable: by projecting wagon wheel resolution charts onto the front face of a range of 

HRIs, resolution might be explored at different gain settings. In addition, changes in gain at various stages 

of gate opening and closing are accessible by this alternative method as a pulsed laser source is being 

deployed in place of a continuous wave LED.  

Further investigation of the effects of gate shape on lifetime fitting might be carried out in collaboration 

with Kentech Instruments Ltd. Currently, the form of distortions to the IRF generated in software are 

chosen largely to show similar behaviour to empirically observed optical response functions with minimal 

considerations of the actual optical response to changes in voltage across the photocathode. A physical 

model based on the exponential behaviour of electronic (approx. RC circuit) gating, combined with the 

optical behaviour of photocathodes in response to electrical gating148, might feedback more meaningfully 

into the design process for future HRI models. In addition, spatial resolution might be improved for 

HRIs with short gates by application of a magnetic field along the axis of image propagation: with an 

appropriately chosen magnetic flux density, the Larmor radius of propagating electrons can be chosen to 

reduce the spread of electrons occurring between the MCP and the phosphor screen150.  

3.4 FLIM fitting software 

The software used for analysis of FLIM data throughout this thesis is FLIMfit – a package developed in 

the Photonics group at Imperial College London, primarily by Sean Warren. FLIMfit implements a 

computationally efficient algorithm for global analysis of fluorescence lifetime data acquired on both time 

correlated single photon counting and time gated FLIM systems. Global analysis permits robust 

extraction of fluorescence lifetimes and fractional contributions in complex decay profiles by making 

assumptions regarding the invariance of lifetimes over a data (sub)set. Details of the computational 

methods used have been described elsewhere78.  Employing FLIMfit allows fitting of large FLIM plate 

reader datasets to be conducted on relatively modest PCs on reasonable (sub-minute) timescales. The 

software enables the experimenter to account for time-varying fluorescent background, the instrument 

response function (as described in Chapter 2: section 2.4.3) and the effects of repeated excitation by a 

train of pulses, as well as offering significant flexibility in the choice of model to fit data to: some such 

models are illustrated in section 3.5 below. The segmentation algorithm that is used extensively in this 

thesis, and the complex-donor-profile FRET model that is used to determine FRETting donor fractions 

in FLIMfit for experiments in section 3.5 are discussed in more depth in the following two sections.  
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3.4.1 Segmentation 
It is often important when analysing FLIM microscopy data to be able to distinguish between regions of 

fields of view corresponding to fluorescent cells, and those corresponding to background – regions of 

either growth substrate, or untransfected cells. FLIMfit is bundled with a built-in “segmentation 

manager”, developed by Yuriy Alexsandrov and Sean Warren, which makes a number of segmentation 

algorithms and field of view filtering techniques available. In this thesis, the preferred segmentation 

algorithm is an implementation of a size-tuned nonlinear top-hat transform, referred to throughout as 

NTH segmentation78,151. In this implementation, a test image is generated by application of the transform  

 
𝑁𝑇𝐻(𝐽|𝜀, 𝑘) =

𝐽 ∙ 〈𝐽〉𝜀

(〈𝐽〉𝑘𝜀)2
 

3.4 

on a pixelwise basis, where 𝐽 is donor intensity integrated over FLIM gates, 𝜀 is the scale parameter 

relating to the objects of interest, 𝑘 is a background scale parameter greater than one, and 〈⋯ 〉𝑥 

represents averaging over a square mask of width 𝑥. In the resulting transformed image, pixels are 

enhanced if they themselves are bright, the close vicinity (defined by 𝜀) is bright, and the far vicinity 

(defined by 𝑘𝜀) is dim. This test image is then thresholded at a user defined fraction of maximal intensity 

to define a binary mask of foreground objects, which is smoothed by application of imdilate and imerode 

functions with structure element size given by a user defined smoothing factor. Finally, thresholded 

objects are filtered such that those smaller than a user defined size are discarded.  

3.4.2 “FRET model” fitting 
Though the continuing development of fluorescent proteins leads to increasing options of FPs that 

exhibit monoexponential decay profiles, there remains a significant subset of fluorescent constructs that 

make use of fluorophores with complex decay profiles, including many cyan fluorescent proteins. When 

FPs with monoexponential decay profiles are used as donors in FRET experiments, it is possible to infer 

information regarding the relative populations of free and FRETting donor constructs subject to the 

caveats outlined in Chapter 2: section 2.3.4. If, however, fluorescent molecules used as donors in a FRET 

system cannot be assumed to be monoexponential, it becomes challenging to interpret the results of a 

biexponential fitted model decay in a quantitative manner.  

An attempt to account for biexponential donor decays in FRET experiments has been proposed78 and 

implemented in FLIMfit by Sean Warren. The decay profile of a non-FRETting biexponential donor is 

described by 

 𝐹̃0(𝑡) ∝ (𝛽1exp(−𝑡
𝜏1

⁄ ) + 𝛽2exp(−𝑡
𝜏2

⁄ )). 
3.5 

Under assumptions that the complex decay behaviour of the donor is linked to the existence of two 

different chromophore conformation, that physical parameters 𝜅2, 𝑅 and 𝐽 as defined in equations 2.11 – 

2.13 (Chapter 2: section 2.3.1) are equal for both conformations, and that conformations exist in a slow 
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equilibrium, the FRET efficiency of the second donor lifetime component may be related to that of the 

first, and an expression for the decay profile in the FRETting state found: 

 
𝐸2 =

𝜏2

𝜏1
∙

𝐸1

1 − 𝐸1 (1 −
𝜏2
𝜏1

)
 

3.6 

 
𝐹̃1(𝑡) ∝ (𝛽1exp (−𝑡

(1 − 𝐸1)𝜏1
⁄ ) + 𝛽2exp (−𝑡

(1 − 𝐸2)𝜏2
⁄ )). 

3.7 

The model fitted to FRET data then depends on 5 parameters (𝜏1, 𝜏2, 𝛽1, 𝐸1, 𝛾1): 

 𝐼(𝑡) = 𝐼0 (𝛾0𝐹̃0(𝑡) + 𝛾1𝐹̃1(𝑡)), 
3.8 

where 𝛾0 is non-FRETting fraction, 𝛾1 is FRETting fraction and 𝛾0 + 𝛾1 = 1. Typically, data measured 

from donor-only samples are globally fitted to the model described in equation 3.5 and values for 𝜏1, 𝜏2 

and 𝛽1 are fixed; FRET efficiency 𝐸1 is then fitted globally across the data and FRETting fraction 𝛾1 is 

fitted locally.  

3.5 FRET construct test samples 

In order to demonstrate the functionality and performance of the FLIM plate reader for FLIM-FRET cell 

biology experiments, it is desirable to generate standard, repeatable samples to be run. Whilst fluorescent 

dye mixtures can be employed to give an indication of the speed of acquisition in the case of spatially 

homogeneous samples, a more realistic test of the capabilities of the plate reader is accessed by generating 

and imaging plates of cells transfected with fluorescent constructs with different linker lengths. The work 

presented below highlights the strengths and limitations of analysis of FLIM-FRET data, and illustrates 

the speed of the plate reader when acquiring FLIM-FRET data from cells.  
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Figure 3-17 Flow chart summarizing the methods used for generation and analysis of FRET construct 

test samples.  

Further details are found in sections 3.5.1-3.5.3 

mCerulean-Venus constructs developed by the Vogel lab152 were purchased from Addgene. These 

constructs, designed as “FRET standards”, each comprise mCerulean and Venus fluorescent proteins 

separated by 5, 17, or 32 amino acids and are subsequently denoted C5V, C17V and C32V. Given the 

increasing average separation of fluorophores, it is expected that C5V will exhibit high FRET efficiency, 

C17V moderate FRET efficiency, and C32V relatively low FRET efficiency: as such, the constructs may 

be used as surrogates for single chain FRET sensors in different active/inactive conformations, or 

alternatively, to simulate donor construct-acceptor construct complexes in bimolecular FRET 

experiments, where different lengths of linker represent differences in binding geometry or construct 

design.  

The lifetime reported for mCerulean in literature varies between publications and according to analysis 

methods; furthermore, the most appropriate model (mono- or biexponential) for fitting mCerulean decay 

profiles is a matter of contention. When characterising the FRET standard constructs, Koushik et al. 

report a monoexponential lifetime of 3.0 ns152, whilst Rizzo et al. report a biexponential decay with 

lifetime values of 2.3 ns and 4.5 ns (relative contributions 0.38 and 0.62 respectively) in their original 

paper on the development of mCerulean41. Following initial experiments that resulted in fitted lifetimes 

measured on separate microscopes using different FLIM methods being found to be shorter than those 

reported in literature41,152–154, a number of experiments were conducted using these FRET standards to 

investigate possible biological causes for discrepancies in absolute lifetime. Experiments were also 

undertaken to test the effect of different experimental conditions on the separability of lifetimes 

measured in cells transfected with mCerulean donor-only constructs from those from cells transfected 

with C32V, C17V and C5V FRET standards. These experiments can be used to inform on the limits of 

Plate MCF7 cells, 6x103/well

Transfect cells with construct plasmid mixtures (total 0.05 µg/well)

Perform low magnification pre-find with 10x objective to identify transfected 
cells

Acquire FLIM images in CFP channel, acceptor images in YFP channel and phase 
contrast images under bright field illumination

Segment images using NTH algorithm 

Fit data to 
monoexponential model

Fit data to biexponential
model

Fit data to “FRET” model
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dynamic range of FRET experiments, where mCerulean represents a negative control, and the FRET 

standards represent three different notional donor-acceptor complexes with progressively decreasing 

fluorophore separation 𝑅.  

In experiments devised to investigate instrument speed and performance and the capability of fitting 

software to extract physical parameters relating to FRET experiments, C5V was transfected in different 

ratios with the donor fluorophore mCerulean across a plate to simulate notional mCerulean donor 

constructs binding in different ratios to notional mVenus acceptor constructs: this might be considered as 

a model for an idealised dose response read out by FLIM-FRET.  

3.5.1 Methods: generating FRET constructs plates 

For all FRET constructs plates, cells were seeded at 6 × 103 cells per well and incubated in growth media 

for 24 hours. Greiner µClear plates were used unless otherwise stated. Transfections were performed 

using XtremeGene HP (Roche) transfection reagent, following the manufacturer’s instructions. In all 

cases, the total plasmid weight per well was chosen to be 0.05 µg; in cases where multiple constructs were 

transfected per well, plasmids were mixed in the relevant ratios before transfection. Cells were incubated 

with transfection mixtures for 24 hours prior to washing and submersion in imaging media (formulation 

in Table 3-4). In every plate, at least one well of cells was left untransfected for the purposes of making 

background fluorescence decay measurements. Fixed plates were generated by incubating samples at 

room temperature for fifteen minutes in 4% paraformaldehyde.  

Component Concentration 

Hank’s buffered salt solution  

L-glutamine 2 mM 

Glucose 4.5 g/L 

HEPES 10 mM 

Table 3-4 Formulation of imaging media. 

3.5.2 Methods: Imaging parameters 
Images were acquired using a 40x long working distance phase contrast objective (LUCPLFLN 40x, 

Olympus). These FRET construct plates were imaged using a gating strategy with 5 gates after the peak 

and one preceding the peak. At each delay, images were acquired by accumulating 3 camera frames, each 

of which was integrated for 0.1 s. FLIM images were acquired using a CFP filterset (excitation: 438/24 

nm, dichroic: 458 nm, emission: 483/32 nm). Acceptor intensity images were acquired using the FLIM 

detection arm and a YFP filter set (excitation: 500/24 nm, dichroic: 520 nm, emission: 542/27 nm); 

acceptor images were integrated for 0.5 s. Non-FLIM images were acquired under phase contrast 

illumination with integration time of 0.01 s. These parameters were used for all plates presented in the 

remainder of this chapter unless otherwise stated.  Whilst early plates were set up to perform autofocus 

between every field of view, this was reduced to autofocus every three fields for later plates with no 
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apparent reduction in image quality, providing that autofocus was always performed when moving 

between wells.  

3.5.3 Methods: Analysis of FRET constructs plates 
Analysis of plates was performed in FLIMfit. Fluorescent cells were separated from well background 

within fields of view by application of NTH segmentation (described in section 3.4 above) with 

parameters outlined in Table 3-5: these were found to yield generally acceptable segmentation, even 

across different cell lines (section 3.5.4). Instrument response functions were generated by shifting the 

peak of “library” IRF functions, derived from past data generated in the study of HRI gate profiles 

(section 3.3.2) with respect to the peak of a decay acquired on the day of the experiment using a 

monoexponential lifetime dye, for example Coumarin 6. A time-varying background decay, associated to 

different degrees with growth substrate, cellular autofluorescence and media components, was included in 

the model.  

Parameter  Value  

Scale  300  

Relative background scale  2  

Thresholding  0.40  

Smoothing  1  

Minimum size  1000  

Table 3-5 NTH segmentation parameters used for FRET construct plate analysis. 

 

Biexponential fitting was performed globally leaving all parameters free to fit. For fitting a “FRET 

model”, biexponential decays were fitted globally across columns with donor alone; these lifetimes, and 

the mean relative contributions, were fixed. The software was then deployed to fit data to yield a global 

FRET efficiency, and relative contributions of FRETting and non-FRETting species across all pixels in 

the dataset. For plates that aim to provide comparisons between conditions, in addition to absolute 

monoexponential lifetime values, Z’ parameters (as defined in Chapter 2: section 2.5.1 above) were 

calculated to highlight the separability of fitted parameters for FRETting constructs from non-FRETting 

constructs using a familiar (conservative) assay quality parameter. Standard deviations calculated across 

repeat wells were used to calculate Z’ values.  

3.5.4 Comparison of cell lines 
In order to confirm whether the cell line into which constructs are transfected might have an impact on 

the absolute lifetimes recorded, explaining the discrepancy observed between our measured lifetimes and 

those presented in literature, and to assess the effect of different cell lines with different morphologies on 

the strength of assays when simple analysis methods are applied to all cell lines equally, three lines were 

transfected with constructs. MCF7 cells are a breast cancer cell line with “cobblestone”-like morphology; 

COS7 cells are derived from African green monkey kidney cells and exhibit a fibroblast-like morphology, 
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thin cytoplasm regions and thick nuclear regions. HEK293T are derived from human embryonic kidney 

cells, and fall somewhere between COS7 and MCF7 in morphology. Phase contrast and CFP-channel 

intensity images for the three cell lines are shown in Figure 3-18. Cells were plated and transfected 

according to the method in section 3.5.1 above and following the pattern shown in Figure 3-19 (a).  

 

Figure 3-18 Exemplar phase contrast and mCerulean fluorescence intensity images for each of the three 

cell lines under investigation. 

(a) MCF7 breast cancer cell line. (b) HEK293T human embryonic kidney-derived cell line. (c) COS7 African 
green monkey kidney-derived cell line. Scale bar 50 µm.  

(a) (b) (c)
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Figure 3-19 Results of experiment investigating FRET construct lifetime across three different cell 

lines. 

(a) Plate layout. (b) Plate map showing fitted single lifetimes across all wells. (c) Fitted mCerulean lifetime by 
construct and cell line showing predicted decrease in lifetime with decreasing linker length and absence of 
difference in lifetime between cell lines. Error bars show standard errors calculated across repeat wells. (d) Z’ 
assay parameter by construct and cell line.  

The exemplar mCerulean fluorescence intensity images presented in Figure 3-18 serve to illustrate 

differences in patterns of expression between the cell lines: in particular, COS7 cells exhibit significantly 

more fluorescent signal in the nucleus than the cytoplasm under wide field imaging. These exemplar 

images also highlight two problems with the plate reader: firstly, phase contrast images presented here 

provide evidence that it is not always possible to infer any useful morphological data from bright field 

images, particularly for confluent cells or lines such as COS7, the cytoplasmic regions of which are thin. 

Furthermore, the importance of correct calibration of the low magnification prefind tool is underlined by 

the offset evident in the resulting high magnification FLIM images presented here, where the bright cells 

identified by the prefind algorithm are placed towards the bottom-right of the FLIM fields of view, rather 

than in the centre.  

The lifetime data presented in Figure 3-19 (b) and (c) illustrate that there is no significant difference in 

absolute lifetimes measured for the mCerulean-mVenus FRET constructs when they are expressed in 

different cell lines. Figure 3-19 (d) illustrates that separability as defined by the Z’ parameter generally 
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improves with increasing FRET efficiency as expected. The exception to this trend appears for COS7 

cells when comparing Z’ for C17V and C5V constructs, where the former condition appears to present 

an abnormally high Z’ value. In an attempt to explain this discrepancy, the number of segmented pixels, 

the intensity, and the goodness-of-fit for the anomalous result was compared to mean values for these 

parameters for the rest of the plate. These parameters were identified as possible indications of 

anomalous expression of fluorescent constructs for this condition. None of the parameters deviated from 

the plate mean by more than 5%; closer investigation of intensity images across the dataset also failed to 

provide a possible explanation for this result.  

3.5.5 Comparison of live cell and fixed cell imaging 
To illustrate one source of potential differences in absolute lifetimes and assay strength parameter Z’ 

between experiments and labs, two identical plates of MCF7 cells were generated. One plate was imaged 

when the cells were alive under supplemented HBSS at 37oC, and the other was imaged at room 

temperature following fixation in 4% PFA.  

 

Figure 3-20 Results of experiment investigating FRET construct lifetime measured in live MCF7 cells 

at 37oC in comparison to fixed MCF7 cells measured at room temperature.  

(a) Fitted lifetime by construct and cell condition showing predicted decrease in lifetime with decreasing linker 
length and absence of difference in lifetime between cell lines. Error bars show standard errors calculated across 
repeat wells. *** indicated differences significant at p<0.001, Student’s t-test. (b) Z’ assay parameter, calculated 
by construct and cell condition.  

The data presented in Figure 3-20 indicates the combined effects of temperature and fixation on lifetime 

measurements with FRET constructs, even in the absence of changes to cell biology which might cause 

differences for FRET probes designed to read out cellular processes. In all cases there is a very significant 

difference in measured lifetime, indicated by Student’s t-test (p < 0.001 for all comparisons). In addition, 

Figure 3-20 (b) shows that different imaging conditions might also have a marked effect on assay quality 

as measured by the Z’ parameter. It is notable that changes in measured lifetime with temperature for 

fluorescent proteins exhibiting complex decay profiles have been widely reported: for some cyan 

fluorescent proteins, changes in lifetime on the order of -50 ps per degree temperature change have been 

measured67,155. Based on the data summarised in Figure 3-20 alone, it is difficult to draw any conclusions 
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regarding the exact origin of the differences observed between live and fixed cells, given the possible 

combination of factors at play including sample temperature and potential differences in sample refractive 

index: further study is required to separate possible causes of the observed changes in lifetime.  

3.5.6 Comparison of growth substrate 
Following discussion with high content imaging experts in the Advanced Light Microscopy Facility 

(ALMF) at the European Molecular Biology Laboratory (EMBL) in Heidelberg, the substrate on which 

cells are grown was identified as another possible source of error in the determination of FRET standard 

lifetime which might explain differences between observed lifetimes and literature lifetimes. Such changes 

may be attributed either to slightly different cell behaviour on different substrates, or to background 

fluorescence which might be expected to be more prevalent for plastic-bottomed plates. Cells were 

seeded according to methods above in either Greiner µClear® plastic bottomed plates, or ZellKontact 96 

well glass bottomed plates. Imaging was performed at 37oC in live cells.  

 

 

Figure 3-21  Results of experiment investigating FRET construct lifetime measured in live MCF7 cells 

plated on plastic in comparison to live MCF7 cells plated on glass measured at 37oC. 

(a) Fitted lifetime by construct and growth substrate showing predicted decrease in lifetime with decreasing linker 
length and absence of difference in lifetime between cell lines. Error bars show standard errors calculated across 
repeat wells. * indicates differences significant at p<0.05, Student’s t-test. (b) Z’ assay parameter, calculated by 
construct and growth substrate.  

Results presented in Figure 3-21 comparing the effect of growth substrate on lifetime illustrate that there 

is, for the most part, negligible differences in lifetime dependent on growth substrate. Crucially, measured 

lifetimes remain significantly different from reported literature values (>3.0 ns), but are consistent with all 

other measurements made in our lab.  

3.5.7 Pseudo dose response: comparison of data models 
In order to illustrate the performance of the plate reader, a FRET constructs plate was prepared on a 

Greiner µClear plastic-bottomed 96 well plate, and fixed before imaging at room temperature. Donor-
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only mCerulean (mCer) constructs were transfected in different ratios with donor-acceptor fusion C5V. 

Throughout the following sections, the fraction of the plasmid mixture in transfection made up by mCer 

is designated 𝐹, referring to the fractional mCer plasmid weight, defined 

 𝐹 =
mCer plasmid weight 

(mCer plasmid weight)+ (C5V plasmid weight)
. 

3.9 

The plating strategy, showing decreasing ratio of mCer:C5V plasmid weight from left to right across the 

plate, is illustrated in Figure 3-22 (a). This layout was chosen to mimic an ideal bimolecular FRET system, 

whereby there is no interaction between donor and acceptor in column 1, and 100% donor-acceptor 

binding in column 12. In this regard, the plate of standards resembles an idealised FRET readout of a 

dose response: plates generated in this manner are therefore referred to as “pseudo-dose response” plates, 

although the relatively high FRET efficiency of the short linker FRET standard C5Vis not typical of 

biological experiments. Figure 3-22 (b) shows that there is an approximately linear relationship between 

the weight of C5V plasmid transfected and the expression of C5V protein as reported by intensity in the 

acceptor spectral channel. It should be noted that C5V plasmid has 1.6x as many base pairs as the donor 

only plasmid, and that there is no easy way to modulate expression levels beyond changing the weight of 

plasmid used in transfection. Biochemical methods such as Western blotting might give a clearer 

impression of the extent to which the ratio of expressed proteins follows the ratio of plasmids in the 

transfection mixture.  

 

Figure 3-22 Illustration of plating strategy for a "pseudo-dose response" FRET constructs plate.  

(a) Plate map showing the proportion of total plasmid weight in transfection mixes made up by mCerulean, from 
mCerulean-only in column 1 to C5V-only in column 12. (b) Resulting intensities in donor and acceptor spectral 
channels, acquired in-line with FLIM data, showing predicted trend in fluorescent signal originating from 
mVenus across columns associated with increasing FRETting construct expression.  

Following imaging, analysis was performed as outlined in section 3.5.3 above. In the first instance, a 

monoexponential decay model was fitted pixelwise across the plate. The results of this fit are presented in 

Figure 3-23. As expected, there is a decrease in lifetime from the donor-only wells across the plate to the 

donor-acceptor fusion wells. An average value of goodness-of-fit parameter 𝜒2, scaled by the number of 

photons per digital number for the HRI settings used in the acquisition, was calculated in order to yield a 
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means of comparing different fitting methods applied to a single data set. For the monoexponential fit, 

𝜒average
2 = 1.81.  

 

Figure 3-23 Results of a monoexponential fit to data acquired from a "pseudo-dose response" FRET 

constructs plate.  

(a) False colour plate map showing variation in donor lifetimes returned from a monoexponential fit across all 
wells. (b) Fitted donor lifetime plotted against mCerulean:C5V plasmid weight, showing expected decrease in 
lifetime with increasing FRETting construct expression. Error bars show standard errors across repeat wells. (c) 
Fitted donor lifetime plotted against recorded acceptor intensity to illustrate linearity of fitted donor lifetime with 
FRETting construct expression using a monoexponential model.  

 Global biexponential fitting was then performed on the same data set, leaving all parameters free to fit. 

In this case, globally fit parameters were returned as shown in Table 3-6, and the contribution of the short 

lifetime component were found to change as outlined in Figure 3-24. Given that the fitted contribution of 

the short lifetime component runs between 0.42 and 0.71, this data serves to illustrate the difficulty of 

interpreting the results of a biexponential model imposed on a more complex system: it is impossible to 

simply assign FRETting fractions based solely upon the returned lifetime contributions.  
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Fitted parameter  Value  

𝜏1 (ps) 3726 

𝜏2 (ps) 954.7 

Average scaled 𝜒2 1.27  

Table 3-6 Global fit parameters and average χ2 resulting from a global fit of a biexponential model to 

data acquired from a “pseudo-dose response” FRET constructs plate.  

 

Figure 3-24 Results of a global biexponential fit to data acquired from a "pseudo-dose response" FRET 

constructs plate. 

(a) False colour plate map showing variation in short donor lifetime components returned from a global 
biexponential fit, across all wells. (b) Fitted short donor lifetime component plotted against mCerulean:C5V 
plasmid weight. Error bars show standard errors across repeat wells.   

Our data suggests that mCerulean exhibits a significantly complex decay profile, a finding in agreement 

with some studies and contrary to others. For this data, fitting a monoexponential decay pixelwise across 

donor-only images yields 𝜒2 = 1.87 (𝜏1 = 2489 ps) on average, compared to 𝜒2 = 1.17 (𝜏1 = 4186 

ps, 𝜏2 = 1029 ps, 〈𝛽1〉 = 0.50) when a biexpoential model is fitted. Given these results, a FRET model 

accounting for biexponential donor decay profiles was used to fit the “pseudo-dose response” plate data 

following the method outlined in section 3.4.2 above. Resulting fit parameters are recorded in Table 3-7 – 

although absolute lifetime values do not reflect those reported in literature, the FRET efficiency 

calculated corresponds well with that reported elsewhere152. Figure 3-25 illustrates the trend in fitted 

FRETting fraction, 𝛾1 with plasmid ratio and acceptor intensity.  
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Fitted parameter  Value  

𝜏1 (ps) 4186 

𝜏2 (ps) 1029 

𝛽1  0.50 

𝐸1  0.43 

Average scaled 𝜒2 1.11  

Table 3-7 Global fit parameters and average χ2 resulting from a global fit of an “ECFP-FRET” model 

to data acquired from a “pseudo-dose response” FRET constructs plate. 

 

Figure 3-25 Results of fitting an “ECFP-FRET” model to data acquired from a "pseudo-dose 

response" FRET constructs plate. 

(a) False colour plate map showing variation in donor FRETting fraction returned following fitting an  “ECFP-
FRET” model, across all wells. (b) Fitted donor FRETting fraction plotted against mCerulean:C5V plasmid 
weight, showing an approximately monotonic increase in “FRETting fraction” with increasing FRETting 

construct expression. Error bars show standard errors across repeat wells, dashed lines indicate 𝛾1 = 0 and 𝛾1 =
1. (c) Fitted donor FRETting fraction plotted against recorded acceptor intensity to illustrate linearity of fitted 
donor FRETting fraction with FRETting construct expression.  

The three approaches to fitting FLIM-FRET data presented in the preceding section illustrate the 

importance of being aware of the limitations of models to which data is being fit, in even the simplest of 
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cases. Increasing the complexity of the model applied to reflect more closely the physical system under 

investigation can provide a greater level of understanding of that system in addition to a quantitatively 

better fit to data. With the caveat that behaviour of any FRET system will depend on the particular 

fluorophores employed, it is instructive to note that a simple monoexponential fit yields lifetimes that 

change linearly with expression of FRET constructs (Figure 3-23 (c)) – this suggests that should the 

experimenter have access to both negative (donor only) and positive (constituently active) controls in a 

bimolecular FRET experiment, it may be possible to infer binding fractions as well as FRET efficiencies 

from monoexponential fit results. The same is true of spectral FRET experiments. In the common case in 

which a positive control is either unavailable or time consuming to generate, a biexponential decay 

analysis of lifetime data is required to extract FRET efficiencies and fractions. Finally, if the donor 

fluorophore exhibits a biexponential decay profile, it is possible to extract FRET efficiencies and 

FRETting donor fractions by fitting data to the “ECFP-FRET” model described above, which yields 

FRET efficiencies that agree with literature values and FRETting fractions that correspond well to 

expected values based on transfection ratios and acceptor intensities. Further refinement of the model – 

perhaps accounting for the quasi-static regime affecting the effective distribution of 𝜅2 as described by 

researchers in the Vogel lab81,82 – may yield further improvements in the simultaneous determination of 

the fraction of FRETting donor and FRET efficiency.  

3.5.8 FRET construct plates for characterisation of instrument speed 
Several of the changes to hardware and software that were made in the course of this project in order to 

increase the functionality of the plate reader had an impact on the maximum speed at which data can be 

acquired. These timing issues, along with potential improvements, are outlined in this section. Profiling of 

a sequenced acquisition was performed when running the plate outlined in section 3.5.7 above, chosen in 

part due to it being as a sample for which the acquisition was relatively complex, involving imaging in 

different spectral windows and in both FLIM and non-FLIM channels. A breakdown of the time spent 

imaging each field of view is presented in Figure 3-26 (a), whilst Figure 3-26 (b) illustrates how time is 

spent at each delay step in greater detail. From these diagrams it is clear that autofocus is a relatively time 

consuming step, taking on average ~3.5 seconds. For a total of 1.8 seconds camera integration time 

(number of delays × number of accumulated frames × integration time per frame), a FLIM sequence 

takes 8.4 seconds in total due mainly to lag associated with the microcontroller used to trigger the camera. 

Whilst filter wheel changes are relatively fast to execute, changing filter cube position using the Olympus 

automated filter cube cassette takes more than 900 ms for each change; similarly, the mechanical 

operation of switching between the FLIM and non-FLIM imaging pathways by the motorised 

repositioning of a mirror within the IX81 microscope frame takes one second per imaging path change. 

The average total time spent per field of view for this plate was 23.3 s, resulting in a total acquisition time 

of 3.8 hours during which 596 fields of view were imaged.  
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Figure 3-26 Charts showing breakdown of acquisition timing for acquisition of FRET construct plates.  

(a) Chart breaking acquisition of a single field of view down into component steps, which are then further 
subdivided. Time consuming steps are labeled. (b) Chart further subdividing each FLIM delay step from (a), 
highlighting the relatively short time spent integrating signal on the CCD when accumulating frames.  

This acquisition, being a particularly complex case and involving imaging many fields of view per well, is 

an example of one of the slowest acquisitions that is likely to be undertaken using the FLIM plate reader. 

Acquisition time can be reduced in many ways depending on user preference; some potential means of 

increasing acquisition speed are summarised in Table 3-8 and discussed below.  
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Modification 
Approx. time 
saving* 

Notes 

Image samples with an objective with M≠40 1-2 s/FOV ZDC issue; see text 

Autofocus every 𝑥 FOV 3.5 × (
𝑥−1

𝑥
) 

s/FOV 

Most easily implemented when 
objective in use has large depth 
of focus.  

Trigger frame accumulation by sending 𝑁 
pulses from microcontroller for every 
command from PC 

180 × (𝑁 − 1) 
ms/delay step 

 

Update serial communications protocol to 
avoid dead time 

50-500 
ms/FOV 

Time saving as yet untested.  

Reduce number of repeat FOV per well (by 𝑍 
FOV/well)  

23.3 × 𝑍 
s/well 

 

Save in multipage TIFF format 100 ms/FOV Including metadata bundled 
with FLIM images.  

Use wider gates, up to 6800 ps for single edge 
HRI 

~0.1 ×

(1 −
1

6.8
) 

s/delay step 

 

Sample decay with 𝑌fewer gates 1.4 × 𝑌 
s/FOV 

Depends on complexity of 
decay 

Table 3-8 Summary of means by which acquisition time may be decreased for FLIM plate reader 

experiments. 

* Time saving based on data from Figure 3-26.  

The time consuming autofocus step imposed by the Olympus ZDC autofocus unit may be approximately 

halved if higher or lower magnification objectives are used: for a 20x objective, autofocus typically takes 

1950 ms; for a 100x objective, autofocus took on average 1147 ms. The exceptionally long autofocus time 

in the case summarised in Figure 3-26 is due to the ambiguity in assignment of the focal plane for 40x 

magnification air objectives, which necessitates an additional downwards movement of the objective 

turret before autofocussing in order that the lower, air-glass boundary of the plate is consistently found156; 

naturally, an additional upwards offset must be added to the turret position following autofocus to ensure 

that cells growing on the upper surface of the substrate are imaged, further adding to the autofocus time.  

Modifications to the acquisition software, currently in the process of being fully implemented, can reduce 

the acquisition time per field of view. Elements of the acquisition software that make use of serial port 

communications, including setting delays and camera parameters, can be the source of dead time if the 

LabVIEW function “WaitForBytesAtPort” is used to determine whether a command has been 

successfully executed. It is preferable to instead make use of termination characters in communications 

protocols to avoid this dead time. In addition, newly written code for controlling camera parameters via 

an Arduino Uno reduces lag by streamlining the process of changing integration time, for example 

between FLIM and acceptor fluorescence imaging steps. Further reductions in time spent communicating 

with the microcontroller in cases in which frames are accumulated at each delay step might be achieved 
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by sending a predefined stream of pulses every time the PC sends a “grab frame(s)” signal to the 

microcontroller, rather than requiring communication between PC and microcontroller for every 

individual frame.  

Finally, improvements in speed can be achieved by changing the experiment design. Whilst not generally 

desirable, removing in-line phase contrast or acceptor imaging steps significantly reduce acquisition time. 

Similarly, reducing the number of frames accumulated at each delay step reduces acquisition time at the 

expense of fewer photons being available for analysis. Alternatively, reducing the number of fields of view 

acquired per well will naturally reduce the total time spent acquiring data. To illustrate the effect of 

reducing the number of fields of view imaged on assay quality parameter Z’ and standard error on the 

mean determined lifetime, MCF7 cells were plated on plastic plates and transfected with mCerulean and 

three FRET standards as described above. Acquisitions were carried out on live cells at 37oC, imaging 10 

fields of view per well. In the analysis software, fields of view were incrementally deselected such that the 

number of fields of view analysed per well ran from 10 to 1: by deselecting fields of view in the reverse 

order that they were acquired, such an approach may be considered equivalent to acquiring only 𝑁 fields.  

 

Figure 3-27 Plots of assay quality parameter Z' and standard error calculated cellwise against number of 

fields of view acquired.  

(a) Z’ calculated by comparison of results from N fields of view of live MCF7 cells plated on plastic, transfected 
with C32V and N fields of view of mCerulean only cells. (b) Z’ calculated by comparison of results from N fields 
of view of live MCF7 cells plated on plastic, transfected with C17V and N fields of view of mCerulean only cells. 
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(c) Z’ calculated by comparison of results from N fields of view of live MCF7 cells plated on plastic, transfected 
with C5V and N fields of view of mCerulean only cells.  

In a broadly homogenous sample without significant subpopulations, for which pre-find tools have been 

run to guarantee the presence of fluorescent cells in every field of view and which does not suffer from 

fluorescent debris or artefacts, Figure 3-27 illustrates that the number of fields of view required per 

well/condition is much less than the conservative 8 FOV/well acquired in the experiment that was 

profiled for speed. Based on Figure 3-27 (a) and (c), four fields of view per well might seem a reasonable 

number, though the anomalous behaviour apparent for C17V in Figure 3-27 (b) indicates that caution 

must be exercised when making a judgement on the number of fields to acquire.  

At the opposite extreme from the complex example profiled above, FLIM data for a plate of Coumarin 6 

dye was imaged combining a number the factors identified in Table 3-8 to increase acquisition speed. For 

this acquisition it is possible to acquire a 96 well plate of dye samples in 9 minutes 23 seconds. The 

resulting lifetime plate maps from these plates are shown in Figure 3-28.   

 

Figure 3-28 False colour lifetime plate map for a monoexponential fit to Coumarin 6 dye. 

3.6 Summary 

This chapter has outlined the development of an automated plate reading FLIM microscope, equipped 

for wide field time gated lifetime imaging. Both hardware and software aspects have been discussed, with 

particular focus placed upon the development of a prefind tool that improved the applicability of the 

microscope to a wide range of challenging samples. Preliminary experiments concerning the 

characterisation of the enabling technology for high speed time gated FLIM acquisitions – the high rate 

imager – have been presented. Finally, a series of experiments using FRET standards have been used to 

illustrate the application of the plate reader to measurements of FRET and the performance of the system 

in such applications.  

3.7 Future development 

In the continued development of the FLIM plate reader, there are a number of potentially fruitful 

directions for future work, from both hardware and software perspectives. A strength of the wide field 

imaging modality over sectioned imaging in the current implementation is increased flexibility with 

respect to acquiring data in multiple spectral windows. It is intended in the short term that the additions 
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might be made to the detection arm of the plate reader such that sectioned acquisitions may be 

performed automatically across a number of wavelengths. In the absence of a spinning disk unit equipped 

with automated emission and dichroic filter changers, this may be achieved by using a multipass dichroic 

mirror and an external automated filter wheel placed in an infinity-space region to be generated after the 

CSUX output. This will improve flexibility in optically sectioned imaging experiments, with particular 

application in interaction screening experiments (see Chapter 4: section 4.2).  

Interest from collaborators in a range of experiments using automated stimulation has already been 

expressed. Without purchasing a commercial liquid handling system, it may still be possible to improve 

the current setup as outlined in section 3.1.4 above. Adding a small vibrating motor, typically used in 

mobile phones and powered by a button cell, and using low retention pipette tips, might improve the 

accuracy of delivery of the dispenser head. For increased speed of delivery in dose- and time-response 

experiments, it may be advisable to stimulate with a single volume of drug into wells containing different 

volumes of imaging media. Compared to the current situation, in which dose responses would typically be 

achieved by changing the dispensing volume between wells, such an approach would abrogate the need 

for multiple start-stop commands to be sent to the syringe pump.  

In addition to improvements to hardware to increase the functionality of the instrument, it is intended 

that software control should be migrated to the µManager platform157. Such a move would have several 

benefits, not the least of which would be the availability of software as open-source code, which would 

represent a significant step towards the realisation of “OpenHCA-FLIM”. In addition, adaptation of the 

existing µManager means that users will be presented with a familiar GUI when using the system, whilst 

integration into other data infrastructure including CellProfiler and OMERO will be more straightforward 

than in the current LabVIEW implementation. Finally, designing the software from scratch rather than 

on-the-fly should result in a cleaner source that will be more readily modifiable for future developers.  

It is intended that further work should be carried out to fully characterise a range of HRI devices available 

in the Photonics group. This work, which is in progress and being carried out by Hugh Sparks, will 

include characterisation of spatial resolution and noise behaviour, and will seek to assess which HRI 

design is preferable for use in both high content and endoscopy-based applications of time gated FLIM. 

In parallel, it is expected that mathematical modelling and simulations will further direct future HRI 

choice and, through collaboration with Kentech Instruments, design parameters. 



109 
 

Chapter 4: Intermolecular FRET 

The benefits of intermolecular FRET have been outlined in Chapter 2: section 2.3.2. Using intermolecular 

FRET constructs can provide increased dynamic range in FLIM-FRET experiments compared to 

intramolecular FRET sensors, and permit protein-protein interaction screens to be carried out in live 

cells.  Making use of the automated FLIM plate reader, it is possible to correlate FRET changes 

associated with binding events to variations in treatment conditions in fixed or live cells, including in the 

presence of “biological noise” or in samples that exhibit sparse labelling. Both of these challenges were 

encountered in the course of experiments that I carried out to investigate changes in SUMO1 binding to 

FOXM1 in response to anthracycline treatment, outlined in the first part of this chapter.  

A further advantage of intermolecular FLIM-FRET experiments is the capacity to investigate both FRET 

efficiency of a bound donor-acceptor construct complex, and the ratio of free-to-bound donors, by fitting 

a biexponential decay model to data. The results of biexponential fitting, in conjunction with intensity 

data linked to donor and acceptor concentrations, can inform on relative binding strengths of pairs of 

proteins in live cells. This method is discussed in the context of a protein-protein interaction screening 

experiment designed to determine which members of the RASSF-family of proteins interact with MST1; 

this series of experiments is reported in the second part of the chapter. Together, these experiments offer 

an insight into the capabilities of the FLIM plate reader in intermolecular FRET applications.  

In this chapter,  

 The biological context of a FOXM1-SUMOylation project is outlined together with the 

motivation for investigating this phenomenon using FLIM-FRET.  

 Characterisation and optimisation experiments which address practical concerns surrounding 

measurement are presented.  

 The use of the FLIM plate reader to investigate SUMO1 modification of FOXM1 in response to 

anthracycline time course treatments is demonstrated.  

 A protein-protein interaction screen set up in to investigate RASSF-family interaction partners 

with MST1 in live cells is discussed.  

 The results of the screen are presented. The benefits of the automated FLIM plate reader in this 

experiment and the possibility of extracting quantitative information on relative binding strength 

in different interactions are considered.   
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4.1 SUMOylation of FOXM1 

The modification of the transcription factor FOXM1 by the small ubiquitin-like modifier protein SUMO1 

is associated with changes in activity. Given the role that FOXM1 plays in breast cancer, particularly in 

the loss of sensitivity to anthracycline treatments, the spatiotemporal profile of FOXM1 SUMOylation is 

of interest in the context of elucidating the mechanisms by which drugs promote cell death in cancer 

cells, and how cells in drug-resistant tumours escape this fate.  

In parallel with biochemical methods used in the Department of Surgery and Cancer at Imperial College 

London, we sought to investigate the dynamics of FOXM1 SUMOylation in response to anthracycline 

treatment. SUMOylation in general is known to be a highly dynamic process158,159. Furthermore, 

experiments performed in parallel suggest that SUMOylation is associated with a change in FOXM1 

localisation. FRET microscopy gives spatiotemporal information on protein-protein interactions, 

potentially combining the localisation capabilities of fluorescence intensity imaging with the ability to 

probe protein-protein interactions normally provided by biochemical techniques following cell 

fractionation such as His tag purification, co-immunoprecipitation (CoIP) and Western blotting. Thus a 

robust FRET microscopy well plate experiment could confirm conclusions drawn from many separate 

biochemical experiments.  

4.1.1 Biological context 

Anthracyclines in cancer therapy 

Breast cancer is the most common form of cancer in the UK: in 2011, breast-sited tumours made up 

30.7% of all malignancies in females in England160 and there were 41 826 new diagnoses of breast cancer 

(males and females). Furthermore, the age-standardised mortality rate for breast cancer in the UK over 

the period 2008-2010 was 25.3%161, placing it second to lung cancer as the malignancy with the worst 

survival rate.  Of all anticancer drugs, anthracyclines remain amongst the most commonly used162, despite 

the fact that their mode of action is not fully understood. Two examples of anthracyclines used in 

chemotherapy are doxorubicin (trade name Adriamycin) and epirubicin (trade name Pharmorubicin), 

often employed as a part of adjuvant treatment. Though the efficacy of these two treatments is similar, 

epirubicin is considered to have a better safety profile since it has been shown to exhibit cardiotoxicity at 

higher doses than doxorubicin in clinical studies163,164.  

When performing experimental studies of the effects of anthracyclines, it is crucial to bear in mind the 

clinically relevant range of concentrations, and in particular the upper bound of concentration to which 

cells are exposed when a patient is undergoing treatment. This upper bound is 1-2 μM, reflecting the dose 

achieved immediately following a bolus administration to a patient of 15-90 mg/m2 doxorubicin165.  
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Figure 4-1 Chemical structures of (a) doxorubicin and (b) epirubicin. (c) X-ray diffraction structure of 

DNA-doxorubicin complex illustrating intercalation.   

(a), (b) rendered in JChemPaint; (c) rendered in Jmol from PDB entry 1D12166.  

Doxorubicin and epirubicin are structurally similar, differing only in the orientation of a hydroxyl group 

in the hexapyranosyl sugar group – epirubicin is described as the 4’-epimer of doxorubicin (Figure 4-1 (a) 

and (b)). Structural data from X-ray crystallography166 and spectroscopy167 indicate that in common with 

all anthracyclines, both intercalate with DNA as shown in Figure 4-1 (c). There are several proposed 

mechanisms of cytotoxicity promoted by the anthracyclines. Following intercalation with DNA, 

anthracyclines can prevent DNA and RNA synthesis to induce cell death, though there is a lack of 

consensus in literature as to whether this effect is important at sufficiently low drug concentrations to be 

clinically relevant165. Another related mode of action is topoisomerase poisoning: anthracyclines can 

stabilise the DNA-topoisomerase IIA complex. Since topoisomerase IIA is implicated in changing DNA 

topology by cleaving and rejoining dsDNA, cleaved DNA cannot subsequently be rejoined, so double-

strand breaks (DSBs) accumulate in a time-dependent manner168. The DNA damage induced by 

topoisomerase poisoning is followed by cell cycle arrest in G1 and G2169 and eventually cell death. Such 

effects are apparent at clinically relevant concentrations.  

 
Figure 4-2 Schematic showing mechanism of ROS generation by anthracyclines.  

One-electron cycling generates NAD and a semiquinone form of the third ring of the anthracycline (the 
remainder of the molecule has been omitted for clarity). This electron is subsequently donated to molecular 
oxygen to form free radicals including superoxide and hydrogen peroxide. Figure adapted from170,171, rendered in 
JChemPaint.  

Free radical reactive oxygen species (ROS) are generated by one-electron cycling of a quinone moiety 

present in doxorubicin. This process involves oxidation of NAD(P)H to NAD(P)+ as shown in Figure 

4-2 and results in intracellular hydrogen peroxide and superoxide anion170,172. Such ROS can directly 

oxidise cell constituents and can cause DNA damage by modifying bases or by inducing single-strand 

(a) (b) (c)

NAD(P)H + H+

NAD(P)+ O2

O2
- H2O2
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breaks. It has been argued that such direct modifications are unlikely to be found at clinically relevant 

concentrations of anthracyclines, but that the ROS generated by one-electron cycling instead induce cell 

death via alternative pathways165,170.   

Forkhead box protein M1and drug resistance 

Forkhead box protein M1 (FOXM1, 89 kDa) is a transcription factor, the dysregulation of which is linked 

to aberrant cell behaviour relating to cell cycle progression and proliferation. If FOXM1 is depleted the 

progress of cells through the cell cycle is disrupted, and consequent mitotic abnormalities can result in 

aneuploidy or polyploidy173. Conversely, overexpression of FOXM1 is linked to tumorigenesis, 

angiogenesis and metastasis174,175. Elevated levels of FOXM1 are considered a marker for early cancer 

detection in a range of malignancies including (but not limited to) high-incidence, high mortality rate 

cancers of the lung, prostate, colon and breast.  A variety of proteins have been implicated in the 

regulation of FOXM1 expression, including forkhead box class O (FOXO) transcription factors176,177, 

estrogen receptor alpha (ERα)178, p53 and Ataxia-telangiectasia mutated protein (ATM)179. In turn, as a 

transcription factor, FOXM1 regulates expression of a great number of proteins such as Stathmin180, 

ERα181, E-cadherin182 and BRCA1-interacting protein (BRIP1)168. FOXM1 also plays a regulatory role in 

tissue repair and maintenance of pluripotency in stem cells183,184.  

In addition to tumorigenesis, progression and metastasis, FOXM1 plays a role in drug resistance in cancer 

cells. The mechanisms behind drug resistance in the context of refractory cancer - inoperable 

malignancies that are either inherently unresponsive to chemotherapy or become so in the course of 

treatment – is an active area of research. Correlations between FOXM1 expression and resistance to the 

taxane paclitaxel (trade name Taxol) have been demonstrated, and linked to the role played by FOXM1 in 

mediating stathmin expression180. Sensitivity to anti-EGFR/HER2 drugs such as trastuzumab (trade 

name Herceptin) or gefitinib (trade name Iressa) is associated with overexpression of FOXM1, as 

FOXO3a acts as a link between the EGFR/HER2-PI3K-PKB signalling pathway and expression of 

FOXM1176. The positive feedback relationship that has been shown to exist between estrogen receptor 

alpha (ERα) and FOXM1 expression178,181, together with evidence showing that ERα and FOXM1 share 

binding sites across the genome185, suggests that FOXM1 may contribute to resistance to endocrine 

treatments such as tamoxifen and fulvestrant (trade name Faslodex).  

Anthracycline resistance has been shown to be closely linked to expression of the forkhead transcription 

factor FOXM1 in cell lines. Doxorubicin-resistant cell lines (MCF7-DoxR), generated from wild type 

MCF7 by selection pressure under long term treatment with Doxorubicin to a final concentration of 17 

µM, exhibit enhanced expression of FOXM1179. Sensitivity can be restored to resistant cell lines by 

depleting FOXM1 using siRNA, and modulation of FOXM1 expression in response to anthracycline 

treatment varies between resistant and sensitive cells175. A further link between FOXM1 activity and 

anthracycline resistance is indicated by previous and parallel research in the Lam laboratory, in which 

activity-related post-translational modifications to FOXM1, including phosphorylation186,187 and 
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SUMOylation188, were shown to occur in response to anthracycline treatment. The mechanisms by which 

this regulation occurs are currently not well understood.  

Post-translational modifications and small ubiquitin-like modifier 

In cellular signalling, post-translational modifications to proteins play myriad crucial roles. Of such 

modifications, a proportion involves the addition of small chemical groups – phosphorylation mediated 

by kinases and phosphatases modulate activity of many proteins, and acetylation (addition of an acetyl 

group) is implicated in transcriptional control189,190. Addition of hydrophobic moieties can regulate 

localisation to membranes or organelles, for example the modulation of membrane association of R-Ras 

by post-translational palmitoylation191. Alternatively, whole peptides or proteins can be added to other 

proteins post-translationally. Ubiquitination is one example of such a process, in which ubiquitin (Ub, 

8.5kDa) is covalently attached to a substrate protein by E3 ubiquitin ligases following activation by E1 

Ub-activating enzymes and conjugation by E2 Ub-conjugating enzymes. In proteasome degradation 

signalling, chains of Ub many monomers long (lysine 48-linked chain) are appended to proteins marking 

them for degradation192. Polyubiquitin chains have also been implicated in the cellular DNA damage 

response (DDR)193.  

The addition of small ubiquitin-like modifier (SUMO, 11 kDa) is another peptide post-translational 

modification, closely related to ubiquitination. There are four paralogues of SUMO proteins in humans. 

Herein we are mostly concerned with SUMO1, since parallel biochemical experiments did not show that 

SUMO2/3 interact with FOXM1, though it is noted that recent research has contradicted this finding194. 

The isopeptide bonding of SUMO1 to a target protein occurs at the SUMO-acceptor consensus site 

ΨKxE, where Ψ represents an aliphatic branched amino acid and x represents any amino acid195. 

SUMOylation is mediated by a relatively small set of enzymes. Similarly to ubiquitination, there is typically 

a three-step process of activation, conjugation and ligation by SUMOylation-specific E1, E2 and E3 

proteins (Figure 4-3); conversely, deSUMOylation is performed by sentrin-specific proteases (SENP1-3, 

5-7)158.  Many proteins also contain a SUMO-interacting motif (SIM) which interacts non-covalently with 

SUMOylated proteins via a hydrophobic core, typically followed by phosphorylatable residues – one 

consensus sequence for this motif is V/I-x-V/I-V/I196. In such cases, SUMO might be considered to 

facilitate an increase in affinity between a SUMOylatable protein and its binding partner. Additionally, it 

has been proposed that the existence of SIMs on a protein gives rise to an alternative, SUMO-E3 ligase-

independent mechanism by which SUMOylation might occur, particularly on non-consensus sites159,197 

(Figure 4-3). The sequence of FOXM1 indicates the presence of SIM motifs198.  
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Figure 4-3 A schematic of the SUMOylation pathway 

SUMO (S) is first activated by the E1 dimer (Aos1-Uba2) before being passed to the active site of enzyme E2 
(Ubc9). In the case of E3-dependent SUMOylation, an E3 SUMO ligase (PIAS family protein, RanBP2 or 
others159) binds both the E2-S complex and the target T1, facilitating SUMOylation at the consensus site (●, 
ΨKxE). In SIM-mediated SUMOylation, the SUMO in the E2-S conjugate associates with the SUMO 
interaction motif on target T2. This is thought to increase the local concentration of E2-S, facilitating the 
conjugation of SUMO to the target at the consensus site. Figure adapted from159.  

Like ubiquitination, SUMOylation has been implicated in signalling processes relating to proteolytic 

degradation199, as well as mitosis and cell cycle progression200. Crucially in the context of drug resistance, 

SUMOylation has been identified as having a role to play in DDR-related pathways. These include the 

base excision repair (BER) pathway in which individual base lesions are repaired. Studies have suggested 

that SUMOylation of the Thymine-DNA glycosylase (TDG) protein modulates binding to DNA201 in 

BER, facilitating recycling of the enzyme. The role of SUMOylation of BRCA1 in response to DNA 

damage has been investigated by FLIM-FRET202 in a study which showed that the activity of the 

BRCA1/BARD1 heterodimer increased upon SUMOylation. Other ubiquitin ligases RNF168 and 

HERC2 have also been shown to become SUMOylated in response to DNA DSBs203.  

Post translational modifications of FOXM1 

Multiple studies have highlighted the role of post translational modifications in modulating the 

transcriptional activity of the transcription factor FOXM1. Nine sites have so far been identified at which 

phosphorylation can occur (Figure 4-4 (a)), mediated by different kinases in a multitude of pathways. 

Cyclin dependent kinases, implicated in cell cycle control, stabilise and activate FOXM1 as well as 

increasing interaction with co-activators, resulting in expression of genes expressed in the G1/S phase of 

the cell cycle204. Downstream of the known oncogene KRAS, Erk can phosphorylate FOXM1 and 

enhance activity by increasing localisation in the nucleus205. Alternatively, phosphorylation by CHK2 

following DNA damage increases transcriptional activity of FOXM1 by stabilisation186. Increased 

FOXM1 transcriptional activity is reflected in the increased production of FOXM1 target gene products, 
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including DNA damage response proteins BRCA2, RAD51 and BRIP205. These processes are 

summarised in Figure 4-4 (b).  

 

Figure 4-4 Summary of phosphorylation and SUMOylation post-translational modifications of FOXM1.  

(a) Phosphorylation and SUMOylation occurs at multiple sites on FOXM1. In this schematic, lysine residues in 
SUMOylation sites are marked, along with serine and theronine residues in phosphorylation sites188,205. (b) 
Summary of the effects on FOXM1 transcriptional activity caused by phosphorylation by kinases including Erk, 
CDK and CHK2. A single phosphorylation site is shown in the schematic for clarity. (c) Summary of the effects 
of SUMOylation, mediated by ligases including Ubc9, on FOXM1 transcriptional activity. NRD: N-terminal 
repressor domain, FHD: Forkhead DNA-binding domain, TAD: transactivation domain, CDK: cyclin-
dependent kinase, Chk2: checkpoint kinase 2, APC/C Cdh1: Anaphase-promoting complex, complexed with 
activator protein Cdh1, P: phosphorylation site, S: SUMOylation site.  

Five SUMO modification sites have been identified on the transcription factor FOXM1188,194 (Figure 4-4 

(a)). In light of the role played by SUMOylation in other DDR systems, the modification of FOXM1 

activity in response to anthracycline treatment described above and a proposed link between the ability of 

cells to repair DNA damage and anthracycline resistance, it was speculated that SUMOylation might play 

a role in modulating FOXM1 activity. In order to examine this hypothesis, a series of biochemical 

experiments have been performed in the Department of Surgery and Cancer at Imperial College London, 

in parallel with the FLIM-FRET work presented in this chapter188. This work served to illustrate the 

inhibitory effect on FOXM1 activity conferred by SUMOylation, including promotion of translocation to 

the cytoplasm, and enhancement ubiquitination and degradation of FOXM1.  In addition, treatment with 

epirubicin was shown to increase FOXM1 SUMOylation in MCF7 cells, highlighting the role of this 

modification in DNA damage response. Negative controls were carried out using a “non-SUMOylatable” 
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FOXM1 mutant, generated in the Lam lab by performing five lysine-to-arginine mutations at five SUMO-

acceptor ΨKxE motifs present on FOXM1. The resulting mutant (FOXM15X(K>R) 

(K201R/K218R/K460R/K478R/K495R), hereafter denoted simply FOXM1mut) was shown to be 

unmodified by SUMO in Western blot analysis. Expression of FOXM1mut enhanced proliferation 

compared to the wild type FOXM1, was more efficient in conferring resistance to anthracycline 

treatment, and exhibited different subcellular localisation compared to the wild type188. These effects are 

summarised in Figure 4-4 (c).  

Assay of FOXM1-SUMOylation in response to epirubicin treatment using FLIM-FRET 

The small protein modification studied in this project is intrinsically intermolecular in nature, suggesting 

that intensity-based FRET techniques may provide a less robust measure of interaction than FLIM-

FRET. Critically, as discussed in section 2.3.3, intensity-based methods typically yield “effective FRET 

efficiency” as an output parameter, whereas it is possible to extract information relating to both FRET 

efficiency and binding stoichiometry using FLIM. We therefore performed a series of experiments which 

sought to establish the dynamics of FOXM1 SUMOylation throughout a time course of drug treatment, 

using an automated multiwell plate reading FLIM microscope. The fluorescent constructs used in FLIM-

FRET experiments are illustrated in Figure 4-5; both wild type and non-SUMOylatable FOXM1mut are 

labelled with eGFP at the N-terminal end to act as FRET donors, and SUMO1 is labelled with TagRFP-T 

(subsequently denoted TRT) to act as FRET acceptors. SUMO1-TRT is adapted from a fluorescent 

protein tagged SUMO1 construct gifted from the Ng lab (Richard Dimbleby Department of Cancer 

Research, King’s College London, UK) using a TagRFP-T fluorescent protein gifted by Alex Sardini 

(Cellular Stress group, MRC Clinical Sciences Centre, Imperial College London). FOXM1-mCherry and 

SUMO-eGFP constructs were also available; however, the relative ubiquity of SUMO1 expression 

suggests that using SUMO-eGFP as a FRET donor would yield extremely small mean lifetime shifts due 

to the large excess free donor population.   

 

Figure 4-5 FOXM1-SUMOylation experiment fluorescent constructs 

(a) Wild-type FOXM1-eGFP. (b) SUMO1-TagRFP-T, binding at a FOXM1 SUMOylation consensus site. (c) 
Non-SUMOylatable FOXM15x(K>R)-eGFP.  
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In the context of investigating the effects of anthracyclines in live cells using fluorescence techniques, it is 

necessary to realise that anthracyclines are themselves typically fluorescent. This property has been 

exploited in the direct observation of doxorubicin distribution within cells as well as in lifetime studies 

investigating changes in lifetime corresponding to release from poly(L-lysine adipamide) micelles and 

DNA binding events206. For the purposes of the FLIM-FRET experiments presented below, changes in 

fluorescence intensity or lifetime of directly-excited doxorubicin might confound interpretation of FRET 

signal or acceptor expression: this possibility is investigated in section 4.1.3 below. 

Initially, an experiment was performed without extensive optimisation of conditions and without using 

automated HCA FLIM techniques. Following optimisation of transfection and drug treatment conditions, 

experiments were carried out in order to address concerns surrounding doxorubicin background 

fluorescence and non-specific association of donor and acceptor constructs. Finally, both live and fixed 

plates were used in experiments to investigate FOXM1-SUMOylation in response to a time course of 

anthracycline treatment.  

4.1.2 Preliminary experiment: time course of doxorubicin treatment, TCSPC FLIM 
Prior to implementing FOXM1-SUMOylation FLIM-FRET assays in an HCA format or optimising 

experimental conditions, an initial FLIM experiment was carried out on a Leica SP5 microscope equipped 

for TCPSC lifetime imaging207. Samples for this experiment were prepared at Hammersmith Hospital in 

conjunction with Mesayamas Kongsema.  

Sample preparation 

Glass coverslips were washed in ethanol and rinsed in PBS before being laid in wells of a six well plate. 

MCF7-WT cells were seeded at a density of 2 × 105per well in standard growth media. 24 hours after 

seeding, cells were transfected with FOXM1-eGFP (donor only) or FOXM1-eGFP and SUMO1-TRT 

(donor + acceptor) using Fugene 6 in a 2:1 plasmid:transfection reagent ratio. 24 hours after transfection, 

a treatment time course using 1 µM doxorubicin was started. 24 hours after treatment was started, cells 

were rinsed in PBS and fixed by submerging in 4% paraformaldehyde (PFA) for 10 minutes at room 

temperature. Transfection and fixation was performed in the Hammersmith lab before the samples were 

transported to South Kensington for imaging.  

Image acquisition and analysis 

Low transfection efficiency meant that transfected cells were identified manually under Hg lamp 

illumination on the Leica SP5 microscope, then lifetime images were acquired using time correlated single 

photon counting. Photobleaching was judged not to be an issue as average counts per second did not 

decrease over the imaging period, which was set at 300s to allow for the dimness of the fluorescence 

whilst keeping incident power low.  
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Data was fitted in FLIMfit to a monoexponential decay model using DASPI as a reference IRF, including 

a fixed time varying background in the fit. The background fluorescence was measured from a region 

without cells.  

Results 

The results from this preliminary experiment are presented in Figure 4-6. These samples showed a 

decrease in lifetime between untreated and six hour time points that persisted to the 24 hour time point, 

evident in the false colour lifetime images of untreated, 6 h- and 24 h doxorubicin treated cells in Figure 

4-6 (a-c) and in the cell-averaged lifetime plot in Figure 4-6 (d). Despite the relatively low number of cells, 

the measured lifetime changes associated with increase doxorubicin treatment time were found to be 

significant when averaged over segmented cells (p < 0.005, Dunnett’s test).  

 

Figure 4-6 Results from preliminary experiment into FOXM1 SUMOylation measured by FLIM on a 

TCSPC system.  

Intensity merged lifetime images generated from (a) untreated cells, (b) cells treated with 1 µM doxorubicin for 6 
hours, (c) cells treated with 1 µM doxorubicin for 24 hours. Scale bars 50 µm. (d) Plot of lifetimes averaged over 
imaged cells. Error bars represent standard errors calculated over cells.  
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Discussion 

Several points were noted from this preliminary experiment. Firstly, both the level of expression and the 

proportion of cells expressing labelled proteins were low, resulting in long acquisition times being 

required. It was therefore concluded that optimisation of the transfection technique should be carried out 

prior to running plate reader experiments. Furthermore, the translocation of FOXM1 upon SUMOylation 

evident from imaging experiments carried out elsewhere188 was not observed in the small population of 

cells imaged here. Nevertheless, the magnitude of lifetime change measured encouraged us to pursue 

applying our automated FLIM plate reader to robustly establishing the spatiotemporal profile of FOXM1 

SUMOylation following doxorubicin treatment.  

4.1.3 Preliminary experiment: doxorubicin background fluorescence 
Based on the work presented by Dai et al.206, we were concerned that the presence of any background 

fluorescence from doxorubicin in fluorescence decays data might adversely affect our ability to measure 

and interpret changes in lifetime caused by FRET, given the reported change in doxorubicin fluorescence 

lifetime upon DNA binding. Measured spectra of 1 mM free doxorubicin in solution illustrate the 

potential for directly excited doxorubicin to be detected in the GFP channel (Figure 4-7). To establish 

whether background linked to doxorubicin might be prohibitive to GFP-based FRET experiments, a 

series of FLIM images were taken on the plate reader across a number of plates in which wells were 

seeded and treated according to the same time course as the experimental wells, but not transfected with 

either donor or acceptor fusion proteins.  

 

Figure 4-7 Absorption and emission spectra of doxorubicin, overlaid with transmission spectra of filters 

in the FLIM plate reader. 

The absorption spectrum of 1 mM doxorubicin was measured using a UV3101-PC spectrophotometer 
(Shimadzu, Kyoto, Japan). The emission spectrum of 1 mM doxorubicin, excited at 488 nm, was measured using 
a RF5301-PC spectrofluorimeter (Shimadzu, Kyoto, Japan). Filter spectra were downloaded from the Semrock 
and Chroma websites208,209.  
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Sample preparation 

Following mycoplasma infection being found in cell cultures grown in both the Photonics and the Lam 

lab in the Department of Surgery and Cancer, a new cryovial of low passage MCF7 wild type cells were 

purchased from European Collection of Cell Cultures (ECACC) and assayed for mycoplasma infection 

using a MycoFluor mycoplasma detection kit (Molecular Probes, Oregon USA).  

For background fluorescence measurements, cells were seeded at a density of 104per well on Greiner 

μClear plates in standard growth media and incubated for 48 hours at 37oC. 0.1 µM Doxorubicin was 

applied to wells 24 and 6 hours prior to removal of media. Growth media was replaced with glucose-

supplemented HBSS (25 mM glucose to match growth media formulation) at 37oC before transferring the 

sample to the plate reader.  

Image acquisition and analysis 

8 fields of view per well were automatically selected spiralling out from the centre of the well. FLIM 

images were acquired across 7 gates per decay, in the GFP channel defined by the 472/30 - 495 - 520/35 

filter cube, with each gate imaged using a single frame with 3 s integration time. Acceptor-channel 

fluorescence images were acquired at a single time delay with an integration time of 1 s through the 

545/30 - 570 – 610/75 filter cube. Phase contrast images were acquired in line with FLIM and acceptor 

images to verify that fields of view contained cells.  

For analysis, images were subjected to a 1000 DN integrated intensity threshold, and fitted to a 

monoexponential decay using a reference decay profile acquired from a 20 µM solution of Erythrosine B. 

All phase contrast images were checked manually to ensure that each field of view contained cells.  

Results 

Figure 4-8 shows a donor FLIM image and time-integrated donor intensity and acceptor intensity images 

from an exemplar field of view from the study of doxorubicin fluorescence in untransfected MCF7 cells, 

as well as plots showing the doxorubicin treatment time dependence of these three parameters. There is 

no significant change in integrated donor intensity over the 0.1 µM doxorubicin treatment time course as 

shown in Figure 4-8 (d). More pertinently, there is no significant change in lifetime across a typical 24 

hour treatment time course when cells are treated with 0.1 µM doxorubicin, as illustrated in Figure 4-8 

(b). There is also no contribution to intensity in the acceptor channel that varies with doxorubicin 

treatment, as shown in Figure 4-8 (f).  
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Figure 4-8 Results of experiment showing background effect of treating with doxorubicin in 

untransfected cells.  

(a) Exemplar field of view showing pixelwise-fitted monoexponential lifetime data acquired from untreated cells. 
(b) Plot showing fitted donor-channel lifetime against doxorubicin treatment time, where error bars represent 
standard errors over repeat wells. (c) Exemplar field of view showing donor-channel integrated intensity image. 
(d) Plot showing integrated donor intensities against doxorubicin treatment time. (e) False colour map of 
acceptor-channel intensity image from an exemplar field of view. (f) Plot showing acceptor intensities against 
doxorubicin treatment time. All scale bars are 50 µm. No statistically significant differences were found using 
Dunnett’s test.  
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Discussion 

The data presented in Figure 4-8 suggest that there is no measurable doxorubicin fluorescence above 

background in the FLIM plate reader. This background might be composed of contributions from 

cellular autofluorescence, residual growth media components or the plastic growth substrate, in 

untransfected cells. It is particularly reassuring in the context of subsequent experiments that there is no 

significant change in fitted monoexponential lifetime over the treatment time course, even in this case 

where integration time has been increased by a factor of ~4 beyond those values used elsewhere, to 

permit the low levels of signal to be effectively fit on a pixelwise basis.  

4.1.4 Preliminary experiment: optimisation of transfection conditions 
In order to generate data capable of showing significant results despite the small lifetime shift observed, it 

was vital to increase the number of cells imaged per experiment. In parallel with the development of the 

low magnification prefind, time was spent to attempt to optimise the transfection protocol such that as 

many cells as possible expressed the fluorescent proteins at sufficiently high levels to be imaged. This was 

particularly an issue for the FOXM1-eGFP plasmid. Optimisation using XtremeGene HP to transfect 

cells on coverslips was carried out by Kongsema Mesayamas in the Department of Surgery and Cancer; it 

was found that appropriately scaled transfection parameters were suitable for 96 well plate experiments.  

One potential additional issue that came to light through running optimised plates, as well as through 

other work in the Photonics group, was the effect of varying levels of acceptor expression on lifetime. 

This is of particular concern given the availability of SIM sites on FOXM1, since it may be that such non-

covalent interactions of the SUMO-acceptor that occur independently of SUMOylation will cause lifetime 

to be modified in an acceptor concentration-dependent manner. Furthermore, through automated FLIM 

plate reader studies undertaken by Dr Anca Margineanu, the potential for association or hetero-

dimerisation of donor and acceptor fluorescent proteins independently of biological association of the 

proteins of interest to which the FPs are fused was highlighted. Both of these effects were investigated.  

Sample preparation 

Cells were seeded at 104per well in a single Greiner μClear plate in standard growth media and incubated 

for 24 hours. Transfection was carried out using XtremeGene HP (Roche, Basel, Switzerland) according 

to the manufacturer’s protocols for MCF7 cells. The plate was laid out as illustrated in Figure 4-9, with 

different combinations of wild type and mutated FOXM1-eGFP constructs, SUMO1-TRT constructs, 

and “free” TRT protein. The ratio of transfection reagent volume to plasmid weight (2:1) is maintained 

across all conditions. Cells were incubated for a further 24 hours at 37oC before replacing growth media-

transfection mixtures with glucose-supplemented HBSS at 37oC before transferring the sample to the 

plate reader.  
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Figure 4-9 Illustration of plate layout and combinations of plasmids transfected to investigate effects of 

acceptor construct and free FP overexpression on FOXM1-eGFP lifetime.  

(a) Donor construct layout. (b) Acceptor construct layout. (c) Acceptor construct plasmid weight per well layout.  

Image acquisition and analysis 

Cells expressing the FOXM1-eGFP construct were automatically identified using the low magnification 

prefind routine with a 10x objective and illumination provided by a Hg lamp in the spectral channel 

defined by the GFP filter cube (excitation: 472/30 nm, dichroic: 495 nm, emission: 520/35 nm). 

Subsequently, the illumination path was altered to allow excitation by the pulsed source, and FLIM 

images were acquired in the same spectral channel across 7 gates, with 3 0.5 s integrated frames summed 

at each time delay. Acceptor images were acquired using the “red” filter cube (excitation: 545/30 nm, 

dichroic: 570 nm, emission: 610/75 nm), with a single time delay being summed over 5 0.1 s exposures.  

The NTH segmentation algorithm described in Chapter 3: section 3.4.1 was performed on integrated 

donor intensity images using the parameters outlined in Table 4-1, and a manual pass was made to 

eliminate fluorescent debris from analysis. A monoexponential model was fitted using a time-varying 

background measured from an HBSS-only well and a reference decay profile acquired from a 20 µM 

solution of Erythrosine B.  
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Parameter Value 

Scale 40 

Relative background 
scale 

2 

Threshold 0.5 

Smoothing 5 

Minimum area 1000 

Table 4-1 NTH segmentation parameters for automated segmentation of MCF7 expressing FOXM1-

eGFP or FOXM1mut-eGFP.  

Results 

Figure 4-10 shows the results of increasing the plasmid weight of SUMO1-TRT or free TRT in 

transfection of MCF7 cells. The false colour lifetime plate map presented in Figure 4-10 (b) illustrates a 

dramatic decrease in fitted lifetime in rows in which 0.3 µg or 1.0 µg SUMO1-TRT is transfected. 

Inspection of images shows that in these wells, a large proportion of the “cells” identified by the prefind 

and segmentation algorithms are cell debris rather than whole cells. These rows are therefore omitted 

from further analysis, and other rows were checked manually for the presence of similar debris. The plots 

in Figure 4-10 (c-d) illustrate that there is a significant decrease (p<0.005, Tukey’s test) in fitted lifetime 

when SUMO1-TRT is transfected at 0.1 µg/well for both FOXM1-eGFP and FOXM1mut-eGFP. In 

contrast, there is no significant decrease in fitted lifetime when free TRT is transfected alongside 

FOXM1-eGFP or FOXM1mut-eGFP, as shown in Figure 4-10 (e-f).  
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Figure 4-10 Results of experiment showing effects of increasing SUMO1-TRT expression in the 

absence of doxorubicin treatment.  

(a) Plate layout, condensed from those outlined in Figure 4-9. (b) Plate map showing lifetime results of a 
monoexponential fit to data, averaged over fields of view per well. (c) Plot showing monoexponential fitted 
lifetime values based on FOXM1-eGFP signal against transfected SUMO1-TRT plasmid weight. (d) Plot 
showing monoexponential fitted lifetime values based on FOXM1mut-eGFP signal against transfected SUMO1-
TRT plasmid weight. (e) Plot showing monoexponential fitted lifetime values based on FOXM1-eGFP signal 
against transfected free TRT plasmid weight. (f) Plot showing monoexponential fitted lifetime values based on 
FOXM1mut-eGFP signal against transfected free TRT plasmid weight. Error bars are shown as standard errors 
over repeat wells. Differences between conditions were assessed using Tukey’s test, and are not significant unless 
otherwise marked.  

Discussion 

In parallel with work by Mesayamas Kongsema in the Department of Cancer and Surgery, we sought to 

identify the optimal transfection conditions that would result in sufficiently high expression of the 
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fluorescent FOXM1 constructs that robust FLIM data might be acquired on a reasonable time scale for 

high content analysis without overexpression of the transcription factor causing cells to die. In the course 

of the project it was concluded that transfecting 0.1 µg of donor construct plasmid per well with a 

transfection reagent:plasmid ratio of 2:1 (volume:weight) would reliably result in useful expression of the 

donor construct. Phase contrast imaging was typically used to ensure that cells did not appear to be 

damaged by overexpressing the transcription factor prior to carrying out experiments. It should also be 

noted that different transfection reagents (Lipofectamine, Fugene 6) and methods (electroporation) were 

tried in the course of the project, but in no case was there sufficient improvement in expression level or 

cell health to justify changing the established protocol using XtremeGene HP.  

To address potential artefacts arising from non-specific interactions between donor fluorescent constructs 

(FOXM1-eGFP and FOXM1mut-eGFP) and acceptor fluorescent constructs, an experiment was 

undertaken in which the acceptor plasmid weight was varied, the results of which are presented in Figure 

4-10. The presence of a large amount of fluorescent debris when SUMO1-TRT is transfected at 

concentrations greater than 0.1 µg/well indicates that high levels of expression of this construct is 

deleterious to cell health. The absence of this effect when free TRT is cotransfected at the same 

concentrations indicates that cytotoxity is associated with increased SUMO1-TRT plasmid weight, rather 

than with increased transfection reagent concentration. Lifetime was found to decrease significantly 

(Tukey’s test) for wells transfected with 0.1 µg SUMO1-TRT for both wild type and mutated forms of 

FOXM1-eGFP. The absence of such a trend when free TRT was expressed provides evidence that there 

is no significant non-specific interaction between the two fluorescent proteins in this system. The fact 

that increasing SUMO1-TRT plasmid weight results in decreased lifetime when the construct is 

cotransfected with both the wild type and mutated FOXM1 constructs suggests that a non-specific or 

alternative association is occurring independently of the presence of the ΨKxE SUMOylation consensus 

site, perhaps indicating that SIM interactions are playing a role.  
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4.1.5 FOXM1-SUMOylation in response to anthracycline treatment time course 
In parallel with biochemical and colocalisation assays relating to FOXM1 SUMOylation conducted in the 

Department of Surgery and Cancer, Imperial College London, HCA FLIM-FRET experiments were 

planned to investigate FOXM1-SUMOylation in the MCF7 breast cancer cell line in response to a time 

course of anthracycline treatment. Two plates of data acquired at different points during the course of the 

project are presented here; both datasets were acquired from live cells, and both experiments were 

performed using low passage number cells. Differences between the two plates relate to development of 

the instrument and software in the intervening period, and to the change in acceptor transfection 

protocol to reflect the findings of the optimisation studies explained above.  

 

Figure 4-11 Flow chart summarizing the methods used for generation and analysis of FOXM1-

SUMOylation assay samples.  

Further details are found in the remainder of section 4.1.5.  

Sample preparation 

Plate 1: Cells were seeded at a density of 104per well on Greiner μClear plates in standard growth media. 

Particular care was taken to ensure a single cell suspension, and the plate was tilted vigorously to ensure 

that cells were distributed evenly within wells. The sample was incubated for 24 h at 37oC. Based on 

results from experiments in the preceding section, transfections were carried out using XtremeGene HP 

according to the manufacturer’s instructions with a transfection reagent:plasmid ratio of 2:1 

(volume:weight). Donor constructs (FOXM1-eGFP, negative control FOXM1mut-eGFP or free eGFP) 

were transfected at 0.1 µg per well; SUMO1-TRT was transfected at 0.025 µg per well. The layout of 

donor-only and cotransfected wells within the plate is illustrated in Figure 4-12 (a-b). Cells were incubated 

with transfection mixtures for 24 h, after which media was replaced. Wells designated for 24 h treatment 

were treated at this point with 0.1 µM doxorubicin, freshly diluted in growth media from stock (3400 

mM). 3 hours later (21 hours prior to end point), media in all wells was again replaced; this time, media 

Plate MCF7 cells, 104/well

Transfect cells with donor and/or acceptor plasmid mixtures

Treat plate with  doxorubicin, replacing growth media with dosed growth media 
at each time point

Prefind transfected cells, either with 10x or imaging objective, using Hg lamp 
excitation

Acquire FLIM images in GFP channel, acceptor images in RFP channel and 
phase contrast images under bright field illumination

Segment images using NTH algorithm with additional constraint on 
acceptor intensity per segmented region 

Fit data to monoexponential model Fit data to biexponential model
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supplemented with doxorubicin was used for both 24 h and 21 h treatment wells. This process was 

repeated for 8 h, 6 h, 4 h and 2 h treatment wells (16 h, 18 h, 20 h and 22 h after starting treatment, 

respectively). The layout of doxorubicin-treated wells is illustrated in Figure 4-12 (c). Two hours after the 

final treatment was administered, all media was removed and replaced with glucose-supplemented HBSS 

at 37oC. The sample was then transferred to the microscope incubator.  

 

Figure 4-12 Plating strategy (plate 1) for experiment investigating FOXM1-SUMOylation in response to 

doxorubicin treatment. 

(a) Donor construct layout. (b) Acceptor construct layout. (c) Doxorubicin treatment time layout. 

Plate 2: Cells were seeded at a density of 104per well on Greiner μClear plates in standard growth media. 

Particular care was taken to ensure a single cell suspension, and the plate was tilted vigorously  to ensure 

that cells were distributed evenly within wells. The sample was incubated for 24 h at 37oC. Based on 

results from experiments in the preceding section, transfections were carried out using XtremeGene HP 

according to the manufacturer’s instructions with a transfection reagent:plasmid ratio of 2:1 

(volume:weight). Donor constructs (FOXM1-eGFP and negative control FOXM1mut-eGFP) were 

transfected at 0.1 µg per well; SUMO1-TRT was transfected at 0.01 µg per well. The layout of donor-only 

and cotransfected wells within the plate is illustrated in Figure 4-13 (a-b). Cells were incubated with 

transfection mixtures for 24 h, after which media was replaced. Wells designated for 24 h treatment were 

treated at this point with 0.1 µM or 1.0 µM doxorubicin, freshly diluted in growth media from stock (3400 

mM). 16 hours later (8 hours prior to end point), media in all wells was again replaced; this time, media 
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supplemented with doxorubicin was used for both 24 h and 8 h treatment wells. This process was 

repeated for 6 h and 3 h treatment wells, 18 h and 21 h respectively after starting treatment. The layout of 

doxorubicin-treated wells is illustrated in Figure 4-13 (c-d). After another 6 h, all media was removed and 

replaced with glucose-supplemented HBSS at 37oC. The sample was then transferred to the microscope 

incubator.  

 

Figure 4-13 Plating strategy (plate 2) for experiment investigating FOXM1-SUMOylation in response to 

doxorubicin treatment. 

(a) Donor construct layout. (b) Acceptor construct layout. (c) Doxorubicin treatment time layout. (d) 
Doxorubicin treatment dose layout.  

Image acquisition and analysis 

Plate 1: Fields of view that were sufficiently populated with cells expressing donor constructs were 

identified using a coverage-based prefind method with a 40x long working distance objective 

(LUCPlanFLN 40x/0.6) and Hg lamp illumination through the GFP filter cube (excitation: 472/30 nm, 

dichroic: 495 nm, emission: 520/35 nm). Four fields of view per well were identified by this method. 

Automated FLIM data was acquired with the same long working distance 40x objective in the same 

spectral channel across 7 gates, at each of which the camera was exposed for 0.8 s. Unlike all other work 

in this section, this experiment was performed using an HRI that supported wide gates; here, 3000 ps 

gates were used. SUMO1-TRT was imaged in the spectral channel defined by the “red” filter cube 

(excitation: 545/30 nm, dichroic: 570 nm, emission: 610/75 nm); a single exposure of 0.02 s was acquired 
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at a single time delay chosen to lie at the peak of the decay profile. In total, the automated acquisition 

took 72 minutes. A time-varying background decay was measured from a well of untransfected cells using 

the same acquisition parameters as the automated experiment, and a reference decay profile was obtained 

from a well containing 25 µM Erythrosine B.  

Plate 2: Cells expressing donor constructs were identified using the low magnification prefind algorithm 

with a 10x objective under Hg lamp illumination using the GFP filter cube (excitation: 472/30 nm, 

dichroic: 495 nm, emission: 520/35 nm). 10 fields of view per well were sought in 77 wells; the prefind 

operation took 24.8 minutes to complete, finding a total of 747 fields of view. Automated FLIM data was 

acquired using a 40x long working distance objective (LUCPlanFLN 40x/0.6) in the same spectral 

channel across 7 gates, at each of which 3 frames integrated for 0.25 s each were summed. SUMO1-TRT 

was imaged in the spectral channel defined by the “red” filter cube (excitation: 545/30 nm, dichroic: 570 

nm, emission: 610/75 nm); 3 frames integrated for 0.05 s each were summed at a single time delay chosen 

to lie at the peak of the decay profile. Phase contrast images were also acquired as part of the automated 

acquisition sequence. In total, the automated acquisition took 259 minutes. A time-varying background 

decay was measured from a well of untransfected cells using the same acquisition parameters as the 

automated experiment, and a reference decay profile was obtained from a well containing 20 µM 

Erythrosine B.  

NTH segmentation was applied to integrated donor intensity images from both plates, using parameters 

outlined in Table 4-2. In addition, for wells in which acceptor constructs were cotransfected, an additional 

constraint was imposed such that the minimum level of acceptor upper quartile per segmented region 

should be 500 DN in order to exclude cells with low expression of SUMO1-TRT from analysis. Wells 

treated with 1 µM doxorubicin were omitted from analysis due to the impact of fluorescent cell debris 

present after 24 hours of treatment at this dose.  

Parameter Value 

Scale 40 

Relative background 
scale 

2 

Threshold 0.5 

Smoothing 5 

Minimum area 1000 

Table 4-2 NTH segmentation parameters for automated segmentation of MCF7 expressing FOXM1-

eGFP or FOXM1mut-eGFP.  

In the first instance, a monoexponential model was fit to data, using the measured time-varying 

background and reference decay profiles. Subsequently, the global fitting capabilities of FLIMfit were 

used to fit a biexponential model to data, fitting globally by donor construct.  

Results 

Plate 1: Lifetimes resulting from a monoexponential fit to data acquired from the first experimental plate 

are given in Figure 4-14. Figure 4-14 (a) illustrates the distribution of monoexponential lifetimes averaged 
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per well across fitted wells, whilst Figure 4-14 (b) is included to provide an insight into the heterogeneity 

of measured cell lifetimes within time points for FOXM1-eGFP + SUMO-TRT wells. Plots of donor 

lifetime against doxorubicin treatment time for each transfection condition are presented in Figure 4-14 

(c-f). Significance of deviations from zero treatment time point are assessed using Dunnett’s test: only in 

the case when wild type FOXM1-eGFP is cotransfected with SUMO1-TRT (Figure 4-14 (d)) is there a 

significant deviation from the zero time point with treatment. In this case, the fitted lifetime is found to 

decrease significantly for treatments between 6 and 8 h, followed by a return towards the zero time point 

value by 21 h post-treatment.  
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Figure 4-14 Results of monoexponential fit to data from the first plate experiment designed to 

investigate FOXM1-SUMOylation in response to doxorubicin treatment.  
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(Figure on previous page) (a) Gallery image from FLIMfit illustrating heterogeneity of lifetimes within doses for 
cells expressing both FOXM1-eGFP and SUMO1-TRT constructs. Scale bar 200 µm. (b) Plate map showing 
layout of conditions, summarising Figure 4-12. (c) Plate map showing lifetime results of a monoexponential fit to 
data, averaged over fields of view per well. (d) Fitted lifetime plotted against doxorubicin treatment time in cells 
expressing FOXM1-eGFP only. (e) Fitted lifetime plotted against doxorubicin treatment time in cells expressing 
FOXM1mut-eGFP only. (f) Fitted lifetime plotted against doxorubicin treatment time in cells expressing 
FOXM1-eGFP and SUMO1-TRT. (g) Fitted lifetime plotted against doxorubicin treatment time in cells 
expressing FOXM1mut-eGFP and SUMO1-TRT. All error bars show standard errors across repeat wells. Stars 
show significance of difference from zero time point condition, established using Dunnett’s test.  

Globally fitting all FOXM1-eGFP wells and all FOXM1mut-eGFP wells separately was found to yield 

lifetime parameters outlined in Table 4-3. Figure 4-15 shows the corresponding short (“FRETting”) 

lifetime component contributions for wells containing both donor and acceptor constructs. Once again, 

significant deviation from the untreated case is only seen in the wild type FOXM1-eGFP case at 6 h and 8 

h doxorubicin treatment (Dunnett’s test).  

Donor construct FOXM1-eGFP FOXM1mut-eGFP 

τ1 2770  2800 

τ2 2034  2134  

Implied FRET efficiency, E 0.27  0.24  

Table 4-3 Globally fit lifetime parameters from bioexponential model fit to data from the first plate 

experiment designed to investigate FOXM1-SUMOylation in response to doxorubicin treatment.  

 

Figure 4-15 Results of a global fit of a biexponential model to data from the first plate experiment 

designed to investigate FOXM1-SUMOylation in response to doxorubicin treatment.  

(a) Fitted short lifetime contribution plotted against doxorubicin treatment time in cells expressing FOXM1-
eGFP and SUMO1-TRT. (b) Fitted short lifetime contribution plotted against doxorubicin treatment time in 
cells expressing FOXM1mut-eGFP and SUMO1-TRT. Error bars represent standard errors over repeat wells; 
significance assessed using Dunnett’s test.  

Plate 2: For comparison, lifetimes resulting from a monoexponential fit to data acquired from the second 

experimental plate are given in Figure 4-16. Figure 4-16 (a) illustrates the distribution of monoexponential 

lifetimes averaged per well across fitted wells, whilst Figure 4-16 (b) is included to provide an insight into 

the heterogeneity of measured cell lifetimes within time points for FOXM1-eGFP + SUMO-TRT wells. 

Plots of donor lifetime against doxorubicin treatment time for each transfection condition are presented 

in Figure 4-16 (c-f). The significance of deviations from zero treatment time point is assessed using 

Dunnett’s test: only in the case when wild type FOXM1-eGFP is cotransfected with SUMO1-TRT 

(Figure 4-16 (d)) is there a significant deviation from the zero time point with treatment. In this case, 
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fitted lifetime is found to decrease significantly for treatments between 3 and 8 h, followed by a return 

towards the zero time point value by 24 h post-treatment.  
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Figure 4-16 Results of monoexponential fit to data from the second plate experiment designed to 

investigate FOXM1-SUMOylation in response to doxorubicin treatment. 
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(Figure on previous page) (a) Gallery image from FLIMfit illustrating heterogeneity of lifetimes within doses for 
cells expressing both FOXM1-eGFP and SUMO1-TRT constructs. Scale bar 200 µm. (b) Plate map showing 
layout of conditions, summarising Figure 4-13. (c) Plate map showing lifetime results of a monoexponential fit to 
data, averaged over fields of view per well. (c) Fitted lifetime plotted against doxorubicin treatment time in cells 
expressing FOXM1-eGFP only. (d) Fitted lifetime plotted against doxorubicin treatment time in cells expressing 
FOXM1mut-eGFP only. (e) Fitted lifetime plotted against doxorubicin treatment time in cells expressing 
FOXM1-eGFP and SUMO1-TRT. (f) Fitted lifetime plotted against doxorubicin treatment time in cells 
expressing FOXM1mut-eGFP and SUMO1-TRT. All error bars show standard errors across repeat wells. Stars 
show significance of difference from zero time point condition, established using Dunnett’s test.  

Discussion 

As a result of these high content experiments, some doubt is cast on the magnitude of the changes 

observed in the preliminary experiment carried out on the Leica SP5 TCSPC system (section 4.1.2). In 

particular, given that the lifetimes associated with weak cell autofluorescence in Figure 4-8 are not 

dissimilar to those measured for cells analysed in Figure 4-6 (b) and (c), it is possible that cells that were 

for some reason more autofluorescent than neighbours were misidentified as expressing the donor 

construct due to the non-optimal Hg lamp filter set present in the SP5 system for manual identification of 

imaging targets.  

It is well established that GFP and eGFP exhibit altered lifetime dependent on environmental factors 

including pH210, refractive index211 and binding to other cellular proteins212, and that this can lead to 

different measured values for intracellular eGFP lifetimes when the FP is included in protein constructs. 

Nevertheless, it is notable in all experiments undertaken using the FOXM1-eGFP constructs that donor-

only lifetime tends to fall towards the upper end of the range of values that might be considered 

reasonable. To ensure that this long measured lifetime was not an artefact of the instrument or of the 

biological protocol, wells in the first measured doxorubicin time course plate were transfected with free 

eGFP in place of either of the FOXM1 constructs, along with SUMO1-TRT where appropriate. The 

lifetimes evident in the final four columns of the monoexponential FLIM plate map shown in Figure 4-14 

(c) provide evidence that the instrument is returning the correct lifetime values: the mean lifetime across 

these wells is 2367 ps, which is in a more familiar range for eGFP lifetime.  

It must be noted that changes made to the instrument and acquisition software in the intervening time 

between the acquisitions presented in this section preclude a direct comparison between absolute lifetime 

values returned from the two plates. Nevertheless, trends in lifetime are reflected between the plates, with 

the recorded FLIM data from wells in which wild type FOXM1-eGFP is cotransfected with SUMO-TRT 

serving to back up expectations based on biochemical experiments; that is, there is significant decrease in 

measured lifetime when cells have been exposed to doxorubicin treatment for between 3 and 8 hours, 

which is lost at longer treatment times. CoIP assays conducted in parallel have confirmed that FOXM1-

SUMOylation occurs by 6 hours, resulting in the formation of higher-order complexes188. SUMOylation 

of FOXM1 has been shown to accelerate degradation of the transcription factor188; this process of 

degradation may explain the decrease in FOXM1-SUMO1 interaction evident at 21 and 24 hour time 

points in the FLIM-FRET assays. Furthermore, caspase-mediated cleavage of the N-terminus of 

FOXM1213 may act to reduce FRET signal between the donor and acceptor fluorescent proteins if 
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apoptosis is induced by anthracycline treatment over these timescales168. The results of a biexponential fit 

to the lifetime data from plate 1 presented in Table 4-3 and Figure 4-15 must be interpreted with caution: 

given that wild-type FOXM1 might be SUMOylated on multiple sites and that both wild-type and 

mutated FOXM1 may interact with the acceptor construct via multiple SUMO1 interaction motifs, 

leading to more complex decay profiles originating from a range of possible FRET efficiencies for 

interacting constructs.  

The changes in intracellular localisation of FOXM1-eGFP upon SUMOylation in response to 

anthracycline treatment that were observed in the colocalisation studies carried out in the Department of 

Surgery and Cancer were not evident in this study. It is possible that the prefind algorithm may skew 

results by preferentially selecting brighter cells associated with higher concentrations of FOXM1-eGFP 

found in the nucleus rather than the more diffuse signal exhibited by lower concentrations of FOX1-

eGFP in the cytoplasm.  

In Figure 4-14 (b) and Figure 4-16 (b), which present FLIM fields of view at different treatment time 

points from wells in which FOXM1-eGFP and SUMO1-TRT have been cotransfected for each of the 

two plates,  it is evident that in both cases there was significant heterogeneity in fitted lifetimes across 

cells within fields of view as well as within treatment conditions. That the data may be resolved to the 

corresponding plots in Figure 4-14 (e) and Figure 4-16 (e) respectively illustrates the benefits of increasing 

sample numbers to generate statistically significant results in the presence of biological noise, noting that 

this required less than five hours of imaging time (747 fields of view).  

The analysis of the interactions occurring between FOXM1 and SUMO1 using FLIM-FRET becomes 

even more challenging when the possible role played by non-covalent SUMO-interacting motifs is 

considered. In both plates the non-SUMOylatable mutant FOXM1 construct does not show a change in 

lifetime when DNA damage is incurred by anthracycline treatment across a time course, as expected. 

However, a higher base line level of interaction between mutated FOXM1 and SUMO1 compared to 

wild-type FOXM1 and SUMO1 is suggested by the observed difference between conditions in which 

FOXM1mut-eGFP is transfected with and without SUMO1-TRT.  This is particularly evident comparing 

columns 7 and 8 to columns 9-11 in Figure 4-16 (c). It is seems likely, based on these results and those 

shown in Figure 4-10 above, that there is some DNA damage response-independent mechanism by which 

SUMO-associated proteins – in this case, SUMO1-TRT – might be recruited to SIM sites on FOXM1. It 

is, however, not obvious why the FOXM1mut construct should be more susceptible than the wild-type 

protein to such a process. One hypothesis is that SIM-mediated interactions occur more often when cells 

have been exposed to stresses; if impurities in the FOXM1mut-eGFP plasmid cause the transfection of 

this construct to be more deleterious to cell health than transfection of the wild type construct, this might 

go some way to explaining the results seen across the analyses outlined in the previous section.   
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4.1.6 Summary 
The investigation of FOXM1 SUMOylation by FLIM-FRET proved to be a challenging project, due 

mainly to difficulties in establishing a reliable protocol that provided sufficient signal from the donor 

constructs without causing the living cells undue harm. The complicated nature of the interaction of 

FOXM1 with SUMO, and specifically the presence of interaction sites other than those removed in the 

“non-SUMOylatable” FOXM15X(K>R) construct, contribute to making the interpretation of FLIM-

FRET results relating to this biological system more challenging than in many other FRET experiments. 

The capability of the automated FLIM plate reader to provide statistically significant results was key to 

the eventual success of the project, as was the parallel development of cell prefind algorithms that enables 

even samples that fail to express constructs well to yield useful data. The ability to acquire images in 

multiple spectral channels in the course of an automated acquisition allows potential pitfalls linked to 

unfavourable acceptor stoichiometry to be avoided and the number of cells assayed in the duration of a 

practical experiment overcomes the noise inherent in the biological signal, permitting statistically robust 

conclusions to be drawn.  

4.1.7 Future work 
To further complement biochemical assays carried out in the Department of Surgery and Cancer, it might 

be instructive to replicate the assays presented here in cell lines such as MCF7-DoxR that exhibit 

resistance to anthracycline treatments. Such experiments were in fact attempted towards the end of the 

project. Unfortunately, the resistant cell line is more challenging to manipulate, and it is significantly more 

difficult to attain useful levels of exogenous fluorescent construct expression in these cells. Therefore, 

further work would be needed to optimise the transfection of FOXM1-eGFP constructs in 96 well plates 

for these cells before this avenue could be explored.  

A further alternative that would require only minimal alteration to existing protocols would be to extend 

the study of FOXM1 SUMOylation to DNA damage-causing drugs beyond the anthracyclines: 

SUMOylation in response to treatment with cisplatin and taxanes could be investigated, and 

investigations of the dynamics of FOXM1 SUMOylation following DNA damage induced by exposure to 

ultraviolet or radioactive sources would also be achievable. Since FOXM1 has also been shown to be 

SUMOylated in response to mitotic checkpoint drugs such as nocodazole, this would be another class of 

compounds for which elucidation of FOXM1 SUMOylation dynamics might prove useful.  

Finally, the role played by FOXM1 SUMOylation in the wider context of DNA damage response 

signalling pathways might be investigated. Fluorescent ubiquitin and RNF168 constructs are easily 

accessible within the lab; preliminary experiments show that RNF168-eGFP is significantly easier to 

transfect into MCF7 cells than FOXM1-eGFP, forming bright, punctuate loci in the nucleus. Since many 

constructs, including those in our lab, can be prepared as FRET pairs with different fluorescent proteins 

acting as FRET donors/acceptors, it should be possible to prepare constructs that could be measured in 

different spectral regions and in so doing introduce the option to multiplex more than one signalling 
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event in the DNA damage response pathway. Thus the dynamic interplay between interaction events 

associated with DDR could be read out on the automated FLIM plate reader.  

In parallel with work to further elucidate the dynamics of FOXM1 SUMOylation, it is intended that 

FLIM-FRET be employed to investigate autoinhibition of FOXM1 activity by the N-terminal repressor 

domain in response to SUMOylation, and in particular the hypothesis that the activity of the 

transactivation domain is reduced by the N-terminal domain looping. By cloning an acceptor fluorophore 

to the C-terminus of FOXM1, the dynamics of conformational changes in the transcription factor that 

may be associated with inhibition of the C-terminal transactivation domain will be accessible, with and 

without overexpression of SUMO1 or Ubc9, in transcription factors with and without mutations of 

SUMO consensus binding sites.  
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4.2 RASSF family-MST1 interaction screen 

One of the original goals for the automated FLIM plate reader was to screen libraries of proteins for 

interaction pairs using FLIM-FRET. In conjunction with Jia Chan and Dr. Matilda Katan at the 

Department of Structural and Molecular Biology, University College London, and Dr. Anca Margineanu 

at Imperial College London, a project was undertaken to show the potential of the instrument in this area. 

A family of interaction candidates, the RASSF family proteins, were screened against MST1. This work 

acts to confirm biochemical experiments performed by Jia Chan in the Department of Structural and 

Molecular Biology at UCL. In addition to identifying the proteins that interact with MST1, some degree 

of quantitative data on binding affinities can also be gleaned from the FLIM measurements.  

4.2.1 MST1 and the RASSF-family proteins: biological context 
Ras-Association Domain (RASSF) family proteins are implicated in a range of cellular processes including 

regulation of apoptosis, microtubule stabilisation, DNA damage response and tumour suppression214. The 

majority of RASSF family proteins are silenced in tumours, with the exception of RASSF7, which has 

been shown to be upregulated in certain malignancies215. The regulatory activity of RASSF proteins is 

achieved through their role as scaffold proteins – though they lack any enzymatic activity, such proteins 

act by bringing other proteins together in order that they might fulfil their functions. All RASSF proteins 

share the Ras association (RA) domain through which they can interact with K-Ras or Ran216. Beyond 

this, however, the RASSF family has significant diversity in both structure and function. RASSF1A and 5 

contain the protein kinase C conserved region, or C1 domain, which has been shown to mediate Ras-

RASSF interaction by occlusion of the RA domain. The classical RASSF proteins 1-6 exhibit the 

Salvador-RASSF-Hippo (SARAH) domain. This domain is shared with the mammalian sterile 20-like 

proteins (MST1/2), and mediates the heterodimerisation of RASSFs with MST1 or other classical family 

members217. The N-terminal RASSF proteins lack the SARAH domain and instead have coiled-coil or 

unstructured domains at the C terminal end. RASSF1 proteins have a site that can be phosphorylated by 

ATM, which serves to activate them216. The different structures of RASSF family proteins are 

summarised in Figure 4-17.  
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Figure 4-17 An overview of RASSF family protein structures. 

Adapted from Sherwood et al.215 

Mammalian sterile 20-like kinase (MST) proteins promote apoptosis and act as proliferation and tumour 

suppressors in conjunction with RASSF proteins. MST1 has been shown to regulate activity of the 

FOXO transcription factors, interact with histones H2B and H2AX, and effect the activity of the 

“guardian of the genome”, p53218.  

Based purely on the structures of the RASSF proteins summarised in Figure 4-17 above, it is expected 

that the classical RASSF proteins should interact with MST1 via dimerization of the SARAH domains, 

whilst the N-terminal RASSF proteins will not bind to MST1. We sought to test this hypothesis using the 

FLIM plate reader to image cells transfected with genetically encoded fluorescent fusion RASSF and 

MST1 proteins, and in so doing illustrate the strengths of high content FLIM-FRET imaging in the 

context of protein-protein interaction screening. The potential effect of overexpression of exogenous 

KRas in modulating MST1 binding to RASSF-family proteins was also investigated.  

4.2.2 Sample preparation 
Samples were prepared by Dr Anca Margineanu and Jia Chan. Following previous optimisation 

experiments, two plates were planned, with 30 different transfection conditions in each plate. In the first 

plate, each RASSF family member-eGFP plasmid was transfected alone (rows A and H), with full length-

MST1-mCherry (rows B-D) and with both full length-MST1-mCherry and unlabelled KRas (rows E-G). 
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In the second plate, each RASSF-eGFP was again transfected alone (rows A and H), with a truncated 

SARAH-mCherry acceptor construct (rows B-D) and a SARAH-deficient MST1 mutant, denoted 

MST1Δ-mCherry (rows E-G). Schematic representation of the constructs used is found in Figure 4-18; 

full plate layouts are illustrated in Figure 4-19.  

 

Figure 4-18 Schematic representation of the fluorescent constructs used in the RASSF-MST1 interaction 

screen.  

(a) Classical RASSF-eGFP (RASSF1-6); (b) N-terminal RASSF-eGFP (RASSF7-10); (c) Full length MST1-
mCherry; (d) Truncated SARAH-mCherry; (e) MST1Δ-mCherry. R represents subunits of RASSF family 
proteins other than the SARAH domain.  

 

Figure 4-19 Plate layouts for RASSF-family MST1 interaction screen experiments 

Numbers in each well indicate RASSF family member.  

A 1 2 3 4 5 6 7 8 9 10

B 1 2 3 4 5 6 7 8 9 10

C 1 2 3 4 5 6 7 8 9 10

D 1 2 3 4 5 6 7 8 9 10

E 1 2 3 4 5 6 7 8 9 10

F 1 2 3 4 5 6 7 8 9 10

G 1 2 3 4 5 6 7 8 9 10

H 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11 12

A 1 2 3 4 5 6 7 8 9 10

B 1 2 3 4 5 6 7 8 9 10

C 1 2 3 4 5 6 7 8 9 10

D 1 2 3 4 5 6 7 8 9 10

E 1 2 3 4 5 6 7 8 9 10

F 1 2 3 4 5 6 7 8 9 10

G 1 2 3 4 5 6 7 8 9 10

H 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11 12

RASSF-eGFP RASSF-eGFP+MST1-mCherry RASSF-eGFP+MST1-mCherry+KRas

RASSF-eGFP+SARAH-mCherry RASSF-eGFP+MST1∆-mCherry
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Figure 4-20 Flow chart summarizing the methods used for generation and analysis of RASSF family 

interaction screen assay samples. 

Further details are found in sections 4.2.2 and 4.2.3.  

For both plates, transfections were carried out over the course of an afternoon by electroporation 

(Nucleofector 2b, Lonza), Cos7 cells having previously been expanded to sufficient numbers over a 

matter of weeks in T175 flasks. Cells were suspended in 100 µl of electroporation buffer (see Table 4-4 

for formulation) in batches of 1 × 106 cells, after which 4 µg of each plasmid was added to each cell 

suspension. Transfection mixtures were transferred to electroporation cuvettes (Mirus Bio) and 

electroporated using standard settings for the Cos7 cell line. Following transfection, cells were plated at 

5 × 104 cells per well of a 96 well plate and incubated in standard growth media for 24 hours. Cells were 

washed and fixed in 4% paraformaldehyde, then washed again and submerged in PBS. Plates were 

transferred to the FLIM plate reader, where imaging was performed at room temperature.  

Component Concentration 

MilliQ    

KCl  8 mM  

NaCl  8 mM  

MgSO
4
  0.88 mM  

Na2HPO4  2.97 mM  

NaH2PO4  1.06 mM  

Table 4-4 Table showing constituents of buffer for electroporation of Cos7 cells. 

Transfect Cos7 cell suspensions by electroporation

Plate cells, 5x104/well

After 24 h, wash  in PBS and fix with 4% PFA

Prefind with Hg lamp and imaging (20x) objective

Acquire FLIM images in GFP channel and acceptor images in RFP channel

Segment images using NTH algorithm

Fit data to monoexponential
model

Fix donor-only lifetimes and fit 
donor+ acceptor wells to a 

biexponential model
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4.2.3 Image acquisition and analysis 
To maximise the number of cells acquired per field of view, a 20x objective (Olympus UPlanFl 20x/0.5) 

was chosen to image ten fields of view per well; a prefind was performed using the imaging objective and 

mercury lamp illumination to ensure that every field of view in the FLIM acquisition sequence had a high 

degree of coverage. For data presented here, images were acquired in the wide field modality. FLIM 

images were acquired across 6 gates per decay in the channel defined by the GFP filter cube (excitation: 

472/30 nm, dichroic: 495 nm, emission: 520/35 nm). To maximise dynamic range while minimising 

saturation, integration time was set to 0.2 seconds and five frames were accumulated per delay. Acceptor 

images were acquired at a single delay time chosen to fall at the peak of the signal decay, using the “red” 

filter cube (excitation: 545/30 nm, dichroic: 570 nm, emission: 610/75 nm). Four acceptor images were 

accumulated per FOV with integration time of 0.4 seconds in the case of the first plate, and 0.5 seconds 

in the case of the second. In total, acquisition times for the plates were 317 and 319 minutes, respectively. 

A time varying background decay was measured from a well containing PBS only, and a reference decay 

profile was acquired from a well of 20 µM erythrosine.  

Multiple approaches were taken to fitting the datasets acquired in this experiment. A monoexponential fit 

was performed, taking account of time varying background and using the erythrosine reference with a tail 

fitted value of 180 ps reference lifetime. For this, and all subsequent analyses, images are segmented 

according to a two-scale NTH algorithm with parameters outlined in Table 4-5. Using FLIMfit, lifetime 

values were fitted on a cellwise basis; results are presented as averages over cells per condition.  

Parameter Value 

Scale 1  100  

Relative background scale 1  2  

Scale 2  200  

Relative background scale 2  2  

Thresholding  0.99  

Smoothing  1  

Minimum size  1000  
Table 4-5 Segmentation parameters for two-scale NTH segmentation algorithm used in RASSF-famliy 

protein screen. 

Variations in relative donor and acceptor expression levels between cells might lead to differences in 

measured lifetime values that do not reflect differences in relative interaction strength, nor changes in 

FRET efficiency caused by different arrangements of fluorescent proteins in the bound complex.  The 

capability of the FLIM plate reader to acquire images in multiple spectral channels is used to construct 

correlation plots of lifetime against acceptor:donor intensity ratio for each condition, in order to allow 

qualitative assessment of this effect.  

Biexponential fluorescence decay models were then fitted to data, using methods informed by the results 

of monoexponential fitting. Here, donor-only lifetimes (𝜏1) were fitted globally for each RASSF family 
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member in the absence of acceptor constructs, and then fixed for analyses of donor+acceptor conditions. 

A shift parameter 𝑡0 was obtained for each RASSF-family construct by running a minimisation routine in 

FLIMfit to account for a drift that was apparent across this plate (see Chapter 3: section 3.1.1). Such an 

approach results in a pair of lifetimes for each condition, the shorter of which is considered to be the 

“FRETting” donor lifetime (𝜏2). From these lifetimes, FRET efficiencies corresponding to each 

interaction were determined according to equation 4.1:  

 𝐸 = 1 −
𝜏2

𝜏1
 

4.1 

The other fitted parameter in the model is the short lifetime (“FRETting”) contribution per cell: these 

contributions were averaged over cells per condition. 
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4.2.4 Results 

 

Figure 4-21 Results of monoexponential fits for first RASSF plate containing donor only, donor + 

acceptor, and donor + acceptor + KRas constructs.  

(a) Plate layout for RASSF-MST1 screen consisting of RASSF-eGFP (blue), RASSF-eGFP+MST1-mCherry 
(orange) and RASSF-eGFP+MST1-mCherry+KRas (purple) for each of the ten RASSF family members. (b) 
Plate map showing monoexponential fit results for this plate. (c) Monoexponential fit results presented as 
average fitted lifetimes by condition; error bars representing standard errors across segmented cells. Significance 
of difference between RASSF-eGFP and RASSF-eGFP+MST1-mCherry for each family member protein is 
indicated for each RASSF protein and are calculated using Tukey’s honestly significant difference test. 
Differences that are not significant are left unmarked.  

 

Figure 4-21 shows results of a monoexponential fit to data acquired from a plate screening for 

interactions between RASSF-family proteins and full length MST1, laid out as shown in Figure 4-21 (a) 

and acquired under wide field illumination. Figure 4-21 (b) illustrates the variation in fitted 

monoexponential lifetime across the plate with differing conditions when results are combined wellwise 

and displayed as a false-colour lifetime plate map; Figure 4-21 (c) shows monoexponential lifetimes 

averaged over segmented cells and combined per condition. All classical RASSF proteins show a 

statistically significant decrease in lifetime when cotransfected with MST1 acceptor constructs compared 

to conditions in which RASSF-eGFP is transfected alone, indicative of an increase in FRET linked to the 
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occurrence of interactions (Tukey’s honestly significant difference test, p<0.01). No classical RASSF 

family members exhibit a significant decrease in lifetime upon cotransfection with acceptor constructs, 

though RASSF8 shows a difference in the opposite sense to that expected. When KRas is transfected 

along with both donor and acceptor proteins, there is a statistically significant decrease in lifetime for 

RASSF3 and RASSF6 only.  

 

Figure 4-22 Plots illustrating correlation between ratio of measured acceptor:donor intensities, and 

fitted donor lifetime for cells from wells in which RASSF-family protein-eGFP fusions are cotransfected 

with MST1-mCherry.  
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Supplementary to Figure 4-21, lifetimes for cells from wells in which RASSF-eGFP constructs were 

coexpressed with MST1-mCherry are presented cellwise in correlation plots against the ratio of acceptor 

to donor intensities in Figure 4-22. Qualitatively, there appears to be no correlation between fitted 

lifetime and the acceptor:donor expression ratio for N-terminal RASSF family members. By inspection, 

there does appear to be a slight negative correlation between relative acceptor expression and fitted 

lifetime for classical RASSF family members.  

 

Figure 4-23 Results of monoexponential fits for second RASSF plate containing donor only, donor + 

truncated acceptor, and donor + negative control mutated acceptor constructs.  

(a) Plate layout for RASSF-MST1 screen consisting of RASSF-eGFP (blue), RASSF-eGFP+SARAH-mCherry 
(red) and RASSF-eGFP+MST1Δ-mCherry (green) for each of the ten RASSF family members. (b) Plate map 
showing monoexponential fit results for this plate. (c) Monoexponential fit results presented as average fitted 
lifetimes by condition; error bars representing standard errors across segmented cells. Significance of difference 
between RASSF-eGFP and RASSF-eGFP+SARAH-mCherry for each family member protein is indicated for 
each RASSF protein and are calculated using Tukey’s honestly significant difference test. Differences that are not 
significant are left unmarked.  

Results of monoexponential fits to the second plate are shown in Figure 4-23. This plate is intended to 

screen for interactions with a truncated acceptor protein consisting only of the putative RASSF binding 

domain SARAH, as well as to investigate the effects on interactions of deleting the SARAH domain from 
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in fitted monoexponential lifetime across the plate with differing conditions when results are combined 

wellwise and displayed as a false-colour lifetime plate map for which the same colour scale has been 

employed as in Figure 4-21 (b) to facilitate comparison between these plates. Figure 4-23 (c) shows 

monoexponential lifetimes averaged over segmented cells and combined per condition. Compared to full 

length MST1 binding, there is a relatively large decrease in lifetime when classical RASSF donor 

constructs are co-transfected with truncated acceptors compared to the donor-only case, indicated in 

Figure 4-23 (b) by the presence of warm colours in wells corresponding to these conditions. It is noted 

that there is a smaller but still statistically significant decrease in lifetime when non-classical RASSF 

constructs are co-transfected with the truncated acceptor (p < 0.005). For most classical RASSF 

constructs, no significant difference was observed in lifetime between conditions with donor only, and 

those in which donor was co-transfected with the SARAH-deficient mutant MST1Δ; the exception was 

RASSF5 which showed a difference (p = 0.05). Unexpectedly, there was in general a much more 

significant difference in lifetime between donor only and donor/MST1Δ cases for non-classical N 

terminal RASSF proteins (p < 0.005).  
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Figure 4-24 Plots illustrating correlation between ratio of measured acceptor:donor intensities, and 

fitted donor lifetime for cells from wells in which RASSF-family protein-eGFP fusions are cotransfected 

with truncated acceptor construct SARAH-mCherry.  

Supplementary to Figure 4-23, Figure 4-24 shows correlation plots relating the ratio of acceptor to donor 

intensity to lifetimes yielded by fitting to a monoexponential model for cells  from wells in which RASSF-

eGFP constructs were coexpressed with the truncated acceptor SARAH-mCherry, presented cellwise. 

Qualitatively, there appears to be no correlation between fitted lifetime and the acceptor:donor expression 

ratio for N-terminal RASSF family members. By contrast, the presence of an apparent correlation 
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between relative acceptor expression and fitted lifetime for classical RASSF family members provides 

further evidence for interactions between this set of proteins and MST1.  

A biexponential model was fitted to the subset of data corresponding to conditions in which the 

particular RASSF family member and MST1 are expected to interact, based on biochemical and in silico 

experiments. Here, long lifetimes are fixed per condition to mean monoexponential lifetime derived from 

corresponding donor-only wells, short lifetimes are fitted globally over all cells in a condition, and lifetime 

contributions are fitted cellwise following segmentation, as outlined as outlined in section 4.2.3 above. 

The results of this analysis on cells coexpressing classical RASSF family members and MST1 acquired 

from the first plate are summarised in Table 4-6 and Figure 4-25, where <β
FRET

> represents the short 

lifetime contribution averaged over cells per condition, and FRET efficiency E is calculated using 

equation 4.1. The same analysis is applied to cells coexpressing classical RASSF family members and the 

truncated SARAH-mCherry acceptor construct, acquired from the second plate; these results are 

summarised in Table 4-7 and Figure 4-26.   
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RASSF 
Interaction 

partner t0 (ps) τ1 (ps) τ2 (ps) E <βFRET> 

1  MST1  41.31 2393 1515 0.37 0.06 

2  MST1  51.7 2484 2008 0.19 0.21 

3  MST1  65.3 2465 1516 0.39 0.08 

4  MST1  68.21 2496 1393 0.44 0.12 

5  MST1  70.1 2497 1579 0.37 0.10 

6  MST1  70.8 2517 1244 0.51 0.08 

Table 4-6 Summary of biexponential fit results for different classical RASSF family proteins in cells 

cotransfected with MST1-mCherry. 

 

 

Figure 4-25 Results from biexponential fit to data acquired from cells cotransfected with classical 

RASSF-eGFP proteins and full length MST1-mCherry constructs.  

(a) t0 shift calculated by minimisation routine in FLIMfit, run using a monoexponential decay fit to donor-only 
wells. (b) FRET efficiency calculated from globally fitted lifetimes. (c) Short lifetime contributions; error bars 
represent standard errors calculated across segmented cells.  
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RASSF 
Interaction 

partner t0 (ps) τ1 (ps) τ2 (ps) E <βFRET> 

1  SARAH  45.3 2406 1477 0.39 0.1788 

2  SARAH  39.5 2492 1615 0.35 0.2101 

3  SARAH  41.5 2487 1519 0.39 0.2212 

4  SARAH  35.52 2503 1526 0.39 0.2141 

5  SARAH  41.75 2506 1372 0.45 0.2404 

6  SARAH  30.77 2521 1081 0.57 0.1379 

Table 4-7 Summary of biexponential fit results for different classical RASSF family proteins in cells 

cotransfected with SARAH-mCherry. 

 

Figure 4-26 Results from biexponential fit to data acquired from cells cotransfected with classical 

RASSF-eGFP proteins and truncated SARAH-mCherry constructs. 

(a) t0 shift calculated by minimisation routine in FLIMfit, run using a monoexponential decay fit to donor-only 
wells.  (b) FRET efficiency calculated from globally fitted lifetimes. (c) Short lifetime contributions; error bars 
represent standard errors calculated across segmented cells.  

4.2.5 Discussion 
The results in Figure 4-21 highlight the possibility of using simple monoexponential analyses to screen for 

protein-protein interactions. These results illustrate that even with small changes in measured lifetime, the 

number of cells interrogated leads to statistically significant differences between donor only and donor-

acceptor for all the classical RASSF proteins. The anomalous result for RASSF8, for which donor only 

cells exhibit a shorter lifetime than those expressing both donor and acceptor proteins, is difficult to 

explain. By inspection, fluorescent protein expression in cells expressing RASSF8 only is more localised in 
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the nucleus than is the case for other members of the RASSF family. Furthermore, this effect is less 

evident when cells are cotransfected with RASSF8-eGFP and MST1-mCherry (Figure 4-27). It is not clear 

why the distribution of the protein should change in this way; however, this change in local environment 

of the donor construct upon cotransfection of MST1-mCherry may provide some explanation for the 

increase in lifetime observed.  

 

Figure 4-27 Exemplar donor channel integrated intensity images for RASSF-family proteins to illustrate 

anomalous fluorescence distribution for cells expressing RASSF8 alone. 

(a) RASSF8-eGFP only. (b) RASSF8-eGFP+MST1-mCherry. (c) RASSF1-eGFP only. Scale bars 50 µm.  

These data also indicate that the presence of K-Ras may play role in MST1 binding: significant differences 

in lifetime between RASSF+MST1 and RASSF+MST1+KRas cells are exhibited in the cases of RASSF3 

and RASSF6. It has been proposed that conformational changes induced by binding at the RA domain 

might promote SARAH-mediated interactions in RASSF-family proteins. In the specific case of RASSF5 

(also known as Nore1), it has been shown that Ras association does not affect RASSF5-MST1 

heterodimerisation219, in agreement with our findings.  

Figure 4-23 illustrates the enhanced change of lifetime upon binding the truncated acceptor protein 

SARAH-mCherry compared to binding to the full length MST1 protein, as well as confirming the 

importance of the SARAH domain by illustrating a failure to interact when this domain is removed. It is 

noted, however, that the differences in the case of N-terminal RASSF members between donor only cells 

and cotransfected donor/SARAH-mCherry cells are, in fact, statistically significant (p<0.05). One 

possible explanation for this might be non-specific interactions between fluorescent proteins in the 

constructs, though preliminary experiments conducted by Dr Anca Margineanu showed no evidence of 

interactions when RASSF-eGFP constructs were cotransfected with plasmids for the expression of 

mCherry alone. The differences seen may be evidence of a high false positive rate that is typical of 

interaction screening methods in which proteins of interest are overexpressed220. Obtaining endogenous 

expression levels whilst maintaining signal levels required for robust FLIM is a significant challenge, but 

one which the FLIM plate reader, combined with global fitting techniques implemented in FLIMfit, is 

relatively well placed to address. In this case, conclusions regarding the presence or absence of 

interactions are made possible by considering intensity ratios in addition to lifetime results, as well as by 

parallel biochemical and in silico experiments221.  

(a) (b) (c)
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The plots in Figure 4-22 and Figure 4-24 allow an assessment to be made as to the correlation between 

the ratio of acceptor:donor intensities and fitted lifetime values on a cellwise basis. The lack of apparent 

correlation in the case of N-terminal RASSF family members confounds the interpretation outlined above 

by indicating that there is no concentration-dependent, SARAH-independent, non-specific association 

between RASSF-family-eGFP donor constructs and SARAH/MST1-mCherry acceptor constructs. The 

negative correlation that is evident for classical RASSF family member constructs, particularly when 

cotransfected with the truncated SARAH-mCherry acceptor, indicate that lifetime parameters alone are 

not sufficient to assess relative binding attributes; rather, it is necessary to consider the effects of the 

relative expression of donor and acceptor constructs.  

4.2.6 Summary 
The study of RASSF-family interactions with MST1 presented here illustrated the potential value of the 

automated FLIM plate reader in screening for protein-protein interactions. Simple monoexponential 

analysis of FLIM-FRET plate data showed interaction partners for full length MST1 protein and the 

truncated SARAH domain that broadly followed expectations based on in silico predictions and 

biochemical experiments. The potential for FLIM-FRET data acquired using the automated FLIM plate 

reader to be used to generate quantitative data relating to interaction binding strength was recognised 

relatively late in the course of the project and so is yet to be thoroughly investigated beyond the initial 

work outlined here. Nevertheless, relative expression of donor and acceptor constructs – and the 

potential capability of the automated FLIM plate reader to measure these parameters as part of an 

automated data acquisition sequence – could be useful in assessing qualitatively the relative strength of 

protein-protein interactions. As such, this work will direct future development of the instrument for fully 

automated optically sectioned imaging as well as future applications to protein-protein interaction 

screening by intermolecular FRET.  

4.2.7 Future work 
In the course of analysing the data acquired for the study of RASSF-family interactions presented here, 

issues came to light concerning temporal drift of the excitation pulse with respect to the acquisition gates 

(see Chapter 3: section 3.1.1) and errors linked to the calibration of the delay generator (see Chapter 3: 

section 3.1.2). Having addressed these problems by switching to a single mode optical fibre and applying 

a newly measured calibration table to allow accurate delay generation, it is intended that the experiment 

should be repeated in order that data can be analysed without the necessity of fitting t0 for each RASSF 

member. Optimisation of the transfection protocol using transfection reagents in place of 

electroporation, which has been demonstrated since the nominal end of the project, would mitigate the 

need for expanding cell cultures to high volumes to meet the requirements on cell numbers per 

electroporation cuvette. This approach will result in the repeat experiment taking significantly less time to 

conduct than the original series of experiments, as well as reducing the cost of the assay significantly.  
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When conducting a repeat experiment, it is intended that imaging should be conducted at higher 

resolution. At the expense of the number of cells assayed, using a higher magnification objective would 

lend the dual benefits of greater light collection efficiency and increased ability to make inferences 

regarding intracellular distribution of different RASSF family members: for example, clear differences are 

apparent by eye between microtubule-associating RASSF1222and other family members. In order to make 

the most of an improvement in resolution afforded by changing the imaging objective, a higher resolution 

HRI would be desirable. In addition to increasing the spatial information contained in images, using an 

HRI with an automatically selectable DC (non-gated) mode would allow acceptor images to be acquired 

more quickly, reducing the overall time taken to acquire plate data.  

In the course of analysing lifetime data in the RASSF family interaction screen experiments, the potential 

for using plate reader data to calculate quantitative values relating to binding affinities was considered. 

Taking the dissociation constant 𝐾𝑑 =
[𝐷𝑓𝑟𝑒𝑒][𝐴𝑓𝑟𝑒𝑒]

[𝐷𝐴]
, using measured values for donor- and acceptor-

channel fluorescence intensity along with fitted values for fractional short lifetime component (𝛽2) and 

FRET efficiency (𝐸), it is possible to relate dissociation constant to experimental parameters that can be 

acquired using the FLIM plate reader. The ability of such an approach to return absolute quantitative 

values for binding strengths between interacting protein pairs is subject to approximations of the linearity 

of 𝛽2 with bound fraction, is potentially compromised by fluorescent constructs being much more highly 

expressed than the endogenous proteins they model, and requires calibration measurements to be taken 

to allow intensity measurements to be related to concentrations of fluorescent constructs. In the case of 

the data presented in this thesis, only relative values of protein interaction strength might be obtained 

using this approach due to the widefield imaging modality employed: in such a configuration, variations in 

measured intensity may be equally due to changes in sample thickness as to changes in fluorophore 

concentration. Given these reservations, this approach to ascertaining binding strengths in live cells has 

not been presented here. However, by adapting the instrument to use a Nipkow disk unit for optical 

sectioning and considering the relationship between short lifetime fraction and bound fraction using 

mCherry-EGFP fluorescent fusion constructs, it is envisioned that such an experiment will be conducted 

as part of ongoing work using the FLIM plate reader. In future, it would be instructive to apply the 

instrument to the study of binding in live cells of a protein pair that has been more completely 

characterised in vitro to confirm the validity of results whilst exploring the sensitivity and specificity of this 

approach.  

Whether or not the FLIM plate reader can practically be used to obtain absolute quantitative dissociation 

constant data for protein-protein interactions, it is clear that it can be effective in screening for interaction 

partners. Potential future applications could involve screening for proteins that interact with Aurora 

kinases during mitosis: the abilities of FLIM-FRET to resolve spatiotemporal aspects of binding events in 

addition to simply screening for their existence means that the automated FLIM plate reader is well suited 

to such studies. Furthermore, since cell lines have been developed expressing fluorescent fusions of these 
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proteins at endogenous levels, it may be possible to screen for interactions without the high false-positive 

rate typically associated with screens in which proteins of interest are necessarily overexpressed.   
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Chapter 5: Automated FLIM–FRET of Raichu biosensors 

As outlined in Chapter 2: section 2.3.2, FRET biosensors are single molecule probes comprising donor 

and acceptor fluorophores along with linker domains and biologically active regions. Such biosensors may 

report on changes in environment via induced changes in the spatial arrangement of donor and acceptor 

fluorophores, which is measured as a change in FRET efficiency. The family of Ras and interacting 

protein chimeric unit (Raichu) biosensors developed in the Matsuda lab (Institute for Integrated Cell-

Material Sciences, Kyoto University, Japan) instead report on the activation of small GTPases, an 

important family of proteins in cellular signalling cascades. These FRET biosensors exhibit the 

advantages common to all well-designed unimolecular probes –  they are relatively simple to load into 

cells, show no significant adverse effects linked to overexpression causing interference with endogenous 

cellular signalling cascades and do not suffer from low signal-to-noise that might be linked to 

unfavourable stoichiometry between donor and acceptor constructs. Furthermore, by careful design the 

developers of the probes have minimised the impact of the drawbacks inherent in intramolecular FRET 

constructs discussed previously: most critically, the Raichu FRET probes are capable of reading out small 

GTPase activity with acceptable dynamic range223,224.  

In collaborative projects set up as part of EuroBioimaging and Imperial College London Kickstart 

programmes, we were particularly interested in the spatio-temporal activation profiles of two members of 

the Rho-family GTPases at cell-cell junctions in keratinocytes, RhoA and Rac1, which are not easily 

accessible by standard biochemical methods. Making use of the relevant Raichu probes, FLIM-FRET can 

be applied to addressing this challenge, and the FLIM plate reader enables a range of different conditions 

to be explored. Such experiments benefit from the automation of the plate reader in terms of switching 

between spectral detection windows as well as the cell finding algorithm. Following proof-of-principle 

experiments and establishment of protocols reported here, it is hoped that the plate reading FLIM 

microscope may be used in screening experiments to investigate the effects of different experimental 

conditions – for example, ectopic expression of different proteins – on small GTPase activation profiles.  

In this chapter,  

 The role of the small GTPase RhoA in the formation and maintenance of adherens junctions is 

introduced.  

 Experiments measuring RhoA activation read out by FRET on the FLIM plate reader are 

presented.  

 The activation of the small GTPase Rac1 mediated by the GTPase activating protein CdGAP at 

the adherens junction is explored using FLIM-FRET.  
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 The development of a manual segmentation utility for use with touch screen tablets and smart 

phones is discussed.  
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5.1 Spatio-temporal profiles of RhoA small GTPase activation in response 

to calcium stimulation for the formation of adherens junction 

5.1.1 Biological context 
Small GTPases (Ras superfamily GTPases) play roles in a myriad of cellular signalling pathways, including 

those linked to control of cell morphology, motility and mitosis. Small GTPases function by hydrolysing 

guanosine triphosphate (GTP) to guanosine diphosphate (GDP); the terminal phosphate of GTP induces 

a conformational change of the small GTPase, rendering it active by allowing it to interact with its 

effectors. Conversely, when GTP is hydrolysed to GDP, interactions between the GTPase and its 

effectors are not possible, and the GTPase is considered inactive. Small GTPase activity is modulated by 

guanine-nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). GEFs bind small 

GTPases and cause a conformational change that allows GDP to dissociate; free GTP may then bind the 

GTPase to activate it. GAPs inactivate GTPase signalling by enhancing the hydrolysis of GTP to GDP. 

The interplay of GEFs and GAPs, which themselves are regulated by other proteins, allow fine tuning of 

GTPase signalling in the cell environment.  

Ras homologous (Rho)-family GTPases represent a branch of the Ras superfamily GTPases. 20 members 

of the family have been identified to date, with diverse cellular functions225–227. In particular, aberrant 

expression and activity of Rho-family GTPases has been implicated in tumorigenesis and metastasis225,227. 

RhoA is one of the most extensively characterised proteins in the family, with multiple known effectors 

and regulators. It has been shown to play a role in generation of contractile force in conjunction with its 

effector Rho-associated protein kinase (ROCK), and in endocytosis via its effector protein kinase N1 

(PKN). It has also been established that RhoA plays a role in the assembly and stabilisation of cell-cell 

junctions228,229 in epithelial cells. It is this function that is of interest to our collaborators in the cell-cell 

adhesion signalling group in the National Heart and Lung Institute at Imperial College London, with 

whom a set of FLIM-FRET experiments was conceived to be undertaken as a proof-of-concept study for 

the EuroBioimaging research infrastructure project.  

Keratinocytes are epithelial cells that make up the vast majority of cells in the epidermis, providing 

structure and acting as a barrier between organisms and their environment. In physiological conditions, 

keratinocytes in layers are polarised cells; that is, they exhibit different domains associated with basal, 

lateral and apical domains (Figure 5-1 (a)). Junctions at lateral membranes between keratinocytes are 

required to maintain epithelial integrity under mechanical stresses; junctions must also be dynamic in 

order that cells can respond properly during development, renewal and wound repair. Adherens junctions 

between keratinocytes fulfil crucial roles both mechanically, by providing a means for cells to form 

connections, and as foci for signalling events linked to cytoskeletal reorganisation. Dysregulation of 

adherens junctions is linked to epithelial tumour progression and metastasis230, as well as to 

dermatological conditions such as pemphigus231 and juvenile macular dystrophy232,233.  
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The structure of the adherens junction at lateral membranes is presented in Figure 5-1 (b) and (c). 

Cadherins (“calcium-dependent adhesion” proteins) are membrane-spanning proteins, the extracellular 

domains of which are made up of a number of subunits with three calcium-binding pockets between 

each. Calcium binding has been shown to cause conformational changes in extracellular subunits of N-

cadherin and calcium depletion is linked to a decrease in transjunctional interactions between cadherin 

dimers234 – this behaviour is known as the “calcium switch” for modulation of junction formation. 

Keratinocytes grown in low calcium conditions do not form cell-cell contacts; increasing calcium to 

physiological concentrations results in junction formation and epithelial polarisation, typically within 30 

minutes of stimulation235. The catenins β-catenin and p120 bind to the intracellular cadherin domain, 

whilst α-catenin links F-actin cytoskeletal filaments to the junction complex236.  

 
Figure 5-1 Schematic overview of polarised epithelial cells and adherens junction structures 

(a) Crude identification of apical, lateral and basal membrane regions in polarised epithelial cells. (b) Schematic 
representation of adherens junction formation at lateral membranes in a keratinocyte monolayer. Adapted from 
Kalaji et al.235 (c) Schematic representation of a structural model of the components in an adherens junction.  

In addition to these structural roles, all of the catenins have been shown to perform functions in distinct 

signalling networks: for example, β-catenin accumulation in the cytosol and nucleus is modulated in the 

canonical Wnt signalling pathway, dysregulation of which is linked to pathological outcomes including 

bone disease and cancer237. Cadherins may also act as signalling receptors that respond to adhesion, 

modulating the activity of Rho-family GTPases238. Since the Rho-family GTPases, and particularly RhoA, 

are themselves implicated in regulation of assembly, remodelling and maturation of junctions228, this 

functional interaction can be described as reciprocal.  

In the RhoA-based FLIM-FRET experiments devised by our collaborators, we sought to establish the 

spatio-temporal activation profile of RhoA following “calcium switch” activation of junction formation 

using the Raichu-RhoA biosensor developed in the Matsuda lab223,224. The probe shares the same basic 

design common to all of the Raichu probes, whereby activation of the small GTPase promotes binding to 

the corresponding binding domain. In the case of the Raichu-RhoA, the sensor region is human RhoA 

and the ligand region is the RhoA-binding domain of protein kinase N1 (PKN-RBD). When GTP binds 

to the RhoA region, the small GTPase is activated allowing binding between the sensor and ligand 

domains. These binding events bring the donor and acceptor fluorophores into closer proximity, causing 
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FRET to occur. As intimated previously, RhoA-GEF proteins act to promote RhoA activity by liberating 

hydrolysed GDP from the probe, whilst RhoA-GAP proteins enhance the hydrolysis of the bound GTP, 

inactivating the probe: this behaviour is summarised in Figure 5-2. The native RhoA C-terminal CAAX 

(cysteine-aliphatic AA-aliphatic AA-any AA) region is replaced in the probe used here for a Ki-Ras4B 

CAAX motif, in order to promote delivery of the probe to plasma membrane rather than to intracellular 

membranes where endogenous RhoA is more often found: since our experiments are concerned with 

RhoA activation at cell-cell junctions, this modification reduces background signal. The version of the 

probe gifted to our collaborators from the Ng lab (Richard Dimbleby Department of Cancer Research, 

King’s College London, UK) has been modified from the original Raichu-RhoA sensor by replacing CFP 

and YFP with GFP and mRFP as the donor and acceptor fluorescent proteins, respectively239. In 

addition, a dominant negative form of the probe with a reduced affinity to guanine nucleotides, achieved 

by substitution of Asn for Thr at position 1237 (Raichu-RhoA T19N)224, was used as a negative control.  

 

Figure 5-2 Schematic of Raichu-RhoA FRET biosensor for RhoA activation mediated by RhoA-GEFs 

and RhoA-GAPs.  

PKN: protein kinase N1, CAAX: Ki-Ras4B CAAX motif allowing modification for membrane association, Pi: 
inorganic phosphate.  
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5.1.2 Sample preparation 

 

Figure 5-3 Flow chart summarizing the methods used for generation and analysis of RhoA small 

GTPase activation samples.  

Further details are found in sections 5.1.2-5.1.3. 

Samples were prepared by Natalie Welsh in the cell-cell adhesion signalling group at the National Heart 

and Lung Institute, Imperial College London. Human keratinocytes isolated from neonatal foreskin 

(strain SF, passages 3-6) were maintained on mitomycin-C (Sigma, Dorset, UK) treated J2 mouse 

fibroblasts in standard medium (Dulbecco’s Modified Eagle Medium (DMEM) DMEM:F12 BioWittaker, 

Lonza, Germany) supplemented with 1.8mM CaCl2, 10% foetal calf serum (FCS), 5mM glutamine, 100 

units/ml penicillin, 100µg/ml streptomycin, 5µg/ml insulin, 10ng/ml epidermal growth factor (EGF), 

0.5µg/ml hydrocortisone (all Sigma) and 0.1nM cholera toxin (Quadratech Diagnostics Ltd, Surrey, UK) 

as described elsewhere240–243. Low calcium medium (approximately 0.1mM CaCl2) had the same 

formulation as standard medium but contained FCS pre-treated with Chelex-100 resin (BioRad, Hemel 

Hempstead, UK) to deplete divalent calcium ions242. Cells to be grown in low calcium were seeded in 

standard medium and switched to low calcium when approximately 20 cells per colony were seen. Cells 

were seeded on 96 well plates (Corning Incorporated, Corning, NY) at a density of 2.2 × 103 cells per 

well. Cells were maintained at 37°C, 5% CO2. J2 mouse fibroblasts were maintained in medium consisting 

of Dulbecco’s modified medium (DMEM, Sigma-Aldrich), 10% DCS (Sera Laboratories International 

Ltd, West Sussex, UK) and 5mM L-glutamine (Sigma-Aldrich). 

Transfections were performed using plasmid DNA diluted in Effectene buffer (Qiagen) and Enhancer 

added at a ratio of 1:8 Enhancer. 1 µg/well DNA plasmid encoding the EGFP-mRFP-modified version 

of the Raichu 1240224 construct illustrated in Figure 5-2 was used per well. Control wells were transfected 

using a plasmid encoding a dominant negative form of the probe subject to a single point mutation 

(T19N) that cannot be activated and therefore remains always in the low FRET conformation. Samples 

Samples prepared by Natalie Welsh at NHLI

Perform low magnification pre-find with 10x objective under Hg lamp 
illumination to identify transfected cells

Acquire FLIM images in GFP channel and E-cadherin images in Cy5 channel

Segment individual cells manually using Android cell segmenter app

Fit data to monoexponential model
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were vortexed and incubated for 5 minutes at room temperature. Effectene transfection reagent was 

added at a ratio of 1:25 Effectene and tubes vortexed prior to 5 minutes' incubation at room temperature. 

Low calcium medium was used to dilute the final plasmid DNA mixture which was subsequently added 

to cells. Media was changed after 4 hours.  

Immunofluorescence techniques were employed to probe for E-cadherin translocation upon cell-cell 

junction formation induced by adding calcium ions to a final concentration of 1.8 mM229. At different 

times following induction of junction formation by the calcium switch, cells were fixed with 3% 

paraformaldehyde (PFA) in phosphate-buffered saline (PBS) for 10 minutes at RT then washed 3 times in 

PBS. Cells were then simultaneously permeablised and blocked with 0.1% Triton X-100 (Sigma-Aldrich) 

diluted in 10% FCS-PBS solution, for 10 minutes at RT. Cells were then washed 3 times in PBS before 

staining. Samples were incubated with primary antibody against E-cadherin (mouse, gifted by M. Takeichi 

(NCCRI, Tokyo, Japan)) diluted in 10% FCS (final concentration) in PBS for 30 minutes in the dark at 

RT. Samples were washed nine times in PBS before incubation for 30 minutes in the dark at RT with 

secondary antibody (Cy5-conjugated anti-mouse (Jackson Immuno labs)). Cells were washed a further 

nine times in PBS then 3 times in water before addition of Mowiol mounting media. Samples were 

imaged at room temperature.  

5.1.3 Image acquisition and analysis 
Cells expressing Raichu-RhoA were found using the low magnification prefind algorithm (10x 

magnification) under mercury lamp illumination via the GFP filterset. In early plates with low expression 

of Raichu-RhoA, it was necessary to develop and apply a rolling background subtraction to aid cell 

identification. This method was replaced by the incorporation of CellProfiler into the acquisition software 

for advanced cell prefinding but, after optimisation of transfection, the simplest intensity thresholding 

method was sufficient to identify cells expressing the probe.  

Imaging was carried out at 40x magnification (LUCPFLN 40x, Olympus). FLIM data was acquired in the 

GFP spectral channel across six time gates integrated for 1.2 seconds each. A 1.2 second exposure at a 

single time gate was acquired with Cy5 filters to assess E-cadherin localisation and phase contrast images 

were acquired in order that cells could be verified to have grown in a monolayer. 360 fields of view were 

acquired across 60 wells, leading to a total acquisition time of 84 minutes. A well seeded with 

untransfected keratinocytes was imaged using the same acquisition parameters as the FLIM experiment to 

measure the time-varying fluorescent background and a well of 20 µM Erythrosine was imaged to provide 

a reference decay profile.  

Manual cell segmentation was employed, simultaneously providing lateral membrane segmentation and 

allowing our collaborators to reject unhealthy cells. A custom segmentation program was written in Java 

for Android to allow segmentation to be performed by drawing around cells with a finger or stylus on a 

tablet or mobile phone, with standard swipe and pinch gestures being used to pan and zoom the image. It 
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was intended that such a tool should be less tedious to use and more accurate in generating cell outlines 

than using a mouse to draw freehand in the segmentation manager incorporated into FLIMfit. For 

samples such as those investigated here, where “acceptable” cells vary significantly in size and shape and 

the presence of bright fibroblasts can confound automated segmentation (Figure 5-4), such an approach 

is simpler to implement and more robust than automated segmentation methods, though is only practical 

over relatively small data sets.  

 

Figure 5-4 The effects of bright fibroblasts on automated segmentation of keratinocyte samples 

(a) An exemplar integrated fluorescence intensity image showing large fibroblasts, cocultured with keratinocytes, 
expressing FRET biosensors at high levels. (b) Resulting erroneous segmentation using NTH algorithms with 
parameters outlined in Table 5-1 below.  

Currently, mobile tablet devices or smartphones are interfaced with a host PC over a wireless internet 

connection using simple TCP socket-based communication implemented in Java. For speed in 

development, a front end was written in MATLAB to interface with the Java back end. The MATLAB 

GUI allows control of which images to send to the device, whether to segment a given gated image or an 

integrated intensity image, and whether to save cell outlines or full cell masks as TIFF mask files. 

Example screenshots from the segmentation app run on a mobile device (Figure 5-5 (a)) and from the 

MATLAB GUI run on a host PC (Figure 5-5 (b)) are presented below. Figure 5-6 illustrates the resulting 

segmentation employed for the Raichu-RhoA experiment: integrated intensity images (Figure 5-6 (a)) are 

used as a basis for manual cell segmentation (Figure 5-6 (b)). Then a lateral membrane, defined by our 

collaborators to be 6 pixels wide, is formed using an erode operation followed by a subtraction in 

MATLAB, resulting in masks as shown in Figure 5-6 (c).  Finally, “cytosol” masks are generated in 

MATLAB by combining whole cell and lateral membrane masks in a NAND operation (Figure 5-6 (d)).  

(b)(a)
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Figure 5-5 Illustration of implementation of manual cell segmentation tools.  

(a) A screenshot showing implementation of manual cell segmentation presented overlaid on a HTC Wildfire S 
device, the device used as a test at the lower end of performance of compatible Android systems. Images can be 
panned and zoomed using standard swipe and pinch gestures. This screenshot was obtained with the options 
menu activated. (b) A screenshot showing corresponding field of view displayed on host machine in a 
MATLAB-based front end, with resulting whole cell mask overlaid on integrated intensity image.  

 

Figure 5-6 Overview of segmentation of cells and subcellular regions used for analysis of RhoA calcium 

switch data. 

(a) Integrated intensity image of a keratinocyte expressing Raichu-RhoA, GFP channel. (b) Manually segmented 
cell mask. (c) “Lateral membrane” cell mask generated by eroding whole cell mask with a 3 pixel disk structure 
element followed by subtraction. (d) “Cytosol” cell mask generated by NAND operation on whole cell and 
“lateral membrane” masks.  

(b)(a)

(b)(a)

(d)(c)
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Segmented data was fitted pixelwise to a monoexponential lifetime model in FLIMfit using the measured 

reference decay profile and time varying background. Mean lifetimes and standard errors were calculated 

cellwise and presented by condition.  

5.1.4 Results 
Results of monoexponential fits to “lateral membrane" segmented data are shown in Figure 5-7, where 

plots on the left of the figure refer to data acquired from cells expressing the dominant negative form of 

the Raichu-RhoA probe and represent a negative control, and plots on the right of the figure refer to cells 

transfected with wild type Raichu-RhoA. Figure 5-7 (a) and (b) show false colour lifetime maps of 

exemplar fields of view across calcium treatment time points, as well as from wells treated with serum as a 

positive control, for dominant negative and wild type Raichu-RhoA, respectively. Figure 5-7 (c) and (d) 

show comparisons between monoexponential lifetimes averaged over untreated and serum treated cells. 

For the wild type RhoA probe, serum treated cells exhibit a decrease in lifetime that is significant at p < 

0.05 (Student’s t-test). Taking the serum treatment of wild type probe data as a positive control 

measurement and untreated cells expressing the dominant negative probe as a negative control, the Z’ 

parameter (defined in Chapter 2: section 2.5.1) associated with this assay is 𝑍′ = −5.84: by conventional 

criteria, this assay is not considered to be useful. Figure 5-7 (e) and (f) show lifetime changes in response 

to the calcium switch time course experiment for dominant negative and wild type Raichu-RhoA 

respectively. There is no significant change in lifetime across the time course for the dominant negative 

construct; the wild type probe shows a significant decrease in measured lifetime 60 minutes post-

treatment (p < 0.05 compared to zero time point, Dunnett’s test).  
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Figure 5-7 Results of experiment investigating RhoA activation in response to a calcium switch, lateral 

membrane segmentation applied.  

(a) False colour map showing monoexponential lifetime fit results for typical fields of view in cells expressing the 
dominant negative form of Raichu-RhoA at different calcium treatment times, and 5 minute serum stimulation. 
(b) False colour map showing monoexponential lifetime fit results for typical fields of view in cells expressing the 
wild type form of Raichu-RhoA at different calcium treatment times, and 5 minute serum stimulation. Scale bar 
= 100 µm. (c) Monoexponential lifetimes averaged over cells to compare untreated and positive control (FBS) 
lifetimes for dominant negative Raichu-RhoA. (d) Monoexponential lifetimes averaged over cells to compare 
untreated and positive control (FBS) lifetimes for wild type Raichu-RhoA (p < 0.05, Student’s t-test). (e) 
Monoexponential lifetimes averaged over cells to show response to calcium switch treatment time course for 
dominant negative Raichu-RhoA. (f) Monoexponential lifetimes averaged over cells to show response to calcium 
switch treatment time course for wild type Raichu-RhoA. Significance of difference from zero time point 
calculated using Dunnett’s test.  
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Further analysis was carried out on the same dataset, segmented to include the cytosol of each cell but 

exclude the lateral membrane region: these results are summarised in Figure 5-8. It is evident that the 

positive control condition (5 minutes serum stimulation) results in a significant decrease in lifetime across 

the cytosol, indicative of RhoA being activated before recruitment to junctions. Furthermore, analysis of 

similarly segmented regions in the calcium switch experiment show a transient decrease in lifetime, albeit 

non-significant (p = 0.21, Dunnett’s test) five minutes post-stimulation. This is followed by a statistically 

significant decrease in lifetime by 60 minutes (p < 0.05, Dunnett’s test). The calculated 𝑍′ parameter for 

this analysis is 𝑍′ =  −4.46; again, this assay would not be considered useful by conventional criteria set 

out in Chapter 2: section 2.5.1.  

 

Figure 5-8 Results of experiment investigating RhoA activation in response to a calcium switch, cytosol 

segmentation applied. 

(a) Monoexponential lifetimes averaged over cells to compare untreated and positive control (FBS) lifetimes for 
wild type Raichu-RhoA (p < 0.005, Student’s t-test). (b) Monoexponential lifetimes averaged over cells to show 
response to calcium switch treatment time course for wild type Raichu-RhoA. Significance of difference from 
zero time point calculated using Dunnett’s test. 

5.1.5 Discussion 
The data presented in Figure 5-7 shows that there is a statistically significant decrease in lifetime at the 

lateral membrane in cells transfected with the wild type Raichu-RhoA probe upon treatment with FBS, 

when averages are taken over all cells per condition. The dynamic range of the probe under this 

comparison is nevertheless very small – the change in lifetime is on the order or 30 ps. Previously 

published work and private correspondence has indicated that FRETting lifetime of the probe is as low as 

1.6-1.7 ns in migrating CCRF-CEM (T lymphoblast) cells239, though this discrepancy may be due simply 

to differences in mechanism of RhoA activation between the cases studied. Furthermore, the spatial 

distribution of RhoA activation in cells following serum activation was unknown at the start of the 

experiment. Since Figure 5-8(a) serves to confirm that RhoA is activated more generally in the cytoplasm 

as well as at the lateral membrane under this positive control condition, it is likely that the dynamic range 

established by this method in conjunction with automated membrane segmentation is greater than that 
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which might be expected to be evident when stimulation is achieved by calcium switch, where activation 

is expected primarily at cell-cell junctions.  

It was intended that E-cadherin immunofluorescence staining should be used to highlight cell-cell 

junction formation, providing both spatial and temporal context to the RhoA activation experiments in 

relation to junction formation. Ideally, images from the Cy5 channel of the microscope could be used to 

generate segmentation masks for Raichu-RhoA FLIM images, potentially increasing the dynamic range of 

the experiment. Unfortunately this aspect of the experiment did not produce the useful junction staining 

seen when applied in other cases by our collaborators; therefore it was not possible to confirm that 

junctions were formed in response to calcium treatment. This may be attributed to the relatively late 

passage number of keratinocytes used in these experiments. In addition, human primary keratinocytes are 

notoriously difficult to culture and manipulate, especially after being subjected to low calcium conditions 

necessary for this experiment. An alternative method of confirming junction formation may be to study 

RhoA translocation to the membrane by intensity imaging. Unfortunately, this effect is typically 

evidenced by a relatively small increase in intensity over a small number of pixels at locations that are 

typically only identified by comparison with E-cadherin immunofluorescence images229. Such changes are 

difficult to quantify in automated well plate datasets. Here, comparing intensity in membrane-masked 

regions normalised to intensity in the cytoplasm region enclosed across conditions showed no significant 

change (data not shown).  

Despite these difficulties, a significant change in RhoA activity is observable by FLIM-FRET 60 minutes 

after the calcium switch experiment is started. This increase in activity is in agreement with findings in 

murine keratinocytes, which have been reported to show no clear increase in activity until 60 minutes 

post-stimulation244. It is notable that in biochemical pulldown assays for activated RhoA (probing for 

GTP●RhoA) performed in the human keratinocytes used here by Natalie Welsh, a sharp transient 

increase in activity is seen 5 minutes post-stimulation229 (Figure 5-9 (b)). The small (non-significant) 

decrease in lifetime at 5 minutes observed when the cytoplasmic regions are segmented (Figure 5-8 (b)) 

may be related to this phenomenon as the pull down assay affords no spatial resolution of RhoA 

activation.  
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Figure 5-9 Results of biochemical experiments carried out in parallel with FLIM experiments by 

Natalie Welsh in the National Heart and Lung Institute, Imperial College London.  

(a) A Western blot illustrating the increase in GTP-RhoA (i.e. activated RhoA) following stimulation with 1.8 
mM Ca2+. (b) Data from (a) presented as a fold-change in activated RhoA against time since stimulation. Figure 
adapted from Natalie Welsh’s PhD thesis229.   

5.2 Localisation of Rac1 small GTPase activation modulated by CdGAP 

5.2.1 Biological context 
Rac1 is another Rho-family small GTPase, and like RhoA it is one of the better characterised proteins in 

the family. Rac1 is ubiquitously and constitutively expressed throughout mammalian tissue types. RAC1 is 

described as a pleiotropic gene, reflecting the diverse roles played by Rac1 in cells: it has been shown to 

be crucial in neurite growth245, mitosis and cell cycle progression246, whilst a splice variant Rac1b that 

exhibits prolonged signalling activity has been implicated in lung, colorectal and breast cancer 

development247. In addition, Rac1 has been established to play a role in the regulation of cell-cell adherens 

junctions: activated Rac has been shown to be critical in recruitment of actin at adhesive sites in the early 

stages of junction formation248 and has further impact on junctions by regulating the endocytosis of E-

cadherin248–250.  

More than 30 Rac1 effectors have been identified, associated with different cellular functions. Amongst 

these is IQGAP, notable for its role in regulation of E-cadherin endocytosis249 and its function as a 

RhoGAP251. P21 protein (Cdc42/Rac)-activated kinase 1 (PAK) is another effector, which is crucial in 

contact inhibition of proliferation252 and epithelial cell polarisation253. There are also a great number of 

GEFs and GAPs that regulate the activity of Rac1, many of which have been found to play roles in 

adherens junction formation and maintenance228. Recently the role of CdGAP, known to be critical in the 

signalling pathway that results in tight junction disassembly following treatment with hepatocyte growth 

factor254, has been identified by biochemical means as a GAP for Rac1 that acts as a regulator of cell-cell 

contact maintenance255. In a collaboration with the cell-cell adhesion signalling group at the National 

Heart and Lung Institute, Imperial College London, we explored the potential of FLIM-FRET 

measurements to elucidate information on the local regulation of Rac1 activity by CdGAP in the context 

of adherens junction formation in keratinocytes.  

(b)(a)
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This was addressed using a Raichu probe similar to that used in section 5.1 above. In the Raichu-Rac 

originally developed in the Matsuda lab224, the sensor region is Rac1 and the ligand region is the 

Cdc42/Rac interacting binding domain of the Rac1 effector PAK described above. As with Raichu-

RhoA, a C-terminal K-Ras CAAX motif is included in the probe to promote plasma membrane binding 

in order to improve signal-to-noise, and the plasmid gifted from the Ng lab (Richard Dimbleby 

Department of Cancer Research, King’s College London, UK) used GFP and mRFP as donor and 

acceptor fluorophores256, as illustrated in Figure 5-10. Experiments were planned to investigate the spatial 

distribution of Rac1 activity, measured using the Raichu-Rac FRET biosensor, in response to 

overexpression of CdGAP. CdGAP is expresses using the pRK5-myc vector; as a control, an empty 

pRK5-myc vector was used255.  

 

Figure 5-10 Schematic of Raichu-Rac1 FRET biosensor for Rac1 activation mediated by Rac1-GEFs 

and Rac1-GAPs.  

PAK-CRIB: Cdc42/Rac interacting binding domain of P21 protein (Cdc42/Rac)-activated kinase 1, CAAX: Ki-
Ras4B CAAX motif allowing modification for membrane association, Pi: inorganic phosphate 

5.2.2 Sample preparation 

 

Figure 5-11 Flow chart summarizing the methods used for generation and analysis of Rac1 small 

GTPase activation samples.  

Further details are found in sections 5.2.2-5.2.3.  

Samples prepared by Jessica McCormack at NHLI

Perform low magnification pre-find with 10x objective under Hg lamp 
illumination in Cy5 channel to identify transfected cells

Acquire FLIM images in GFP channel and CdGAP images in Cy5 channel

Segment individual cells manually 
using Android cell segmenter app

Segment individual cells automatically 
using NTH algorithm

Fit data to monoexponential model
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Cells were cultured as outlined in section 5.1.2. Samples were prepared by Jessica McCormack in the cell-

cell adhesion signalling group at the National Heart and Lung Institute, Imperial College London. In the 

Rac1 experiment described here, a variety of transfection conditions were tried on a single plate to 

optimise expression level and cell viability at the expense of number of wells per condition (Figure 5-12). 

Transfections were performed using plasmid DNA diluted in Effectene buffer (Qiagen) and Enhancer 

added at a ratio of 1:8 Enhancer. Samples were vortexed and incubated for 5 minutes at room 

temperature. Effectene transfection reagent was added at a ratio of 1:25 Effectene and tubes vortexed 

prior to 5 minutes' incubation at room temperature. Standard medium was used to dilute the final plasmid 

DNA mixture which was subsequently added to cells. Media was changed after 4 hours.  

 

Figure 5-12 Plate map showing transfection conditions across 36 wells for Rac1 experiment 

Wells are transfected with Raichu-Rac1 probe and either CdGAP or an empty pRK5-myc vector.  

In order that CdGAP levels could be assayed, cells were permeablised using 0.1% Triton X-100 in 10% 

FCS for 10 minutes at room temperature following fixation with 3% PFA (10 minutes, room 

temperature). Samples were incubated with primary and secondary antibodies (myc A14 (rabbit, Santa 

Cruz) and anti-rabbit Cy5 (Jackson Immuno labs)) in 10% FCS-PBS sequentially for 30-60 minutes, 

followed by nine washes in PBS and three washes in water after each incubation. Each well of the 96-well 

plates was covered with 150 µl Mowiol before imaging at room temperature. 

5.2.3 Image acquisition and analysis 
Prior to acquisition of FLIM data, the sample was observed under fluorescent illumination from the 

mercury lamp through the eyepieces of the microscope. It was found that the majority of cells that 

fluoresced under Cy5 excitation also exhibited GFP (Raichu) signal. On this basis, the low magnification 
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cell prefind step was performed only in the Cy5 channel to increase speed, reduce photodamage to cells 

and to reduce photobleaching of the FLIM donor.  

Imaging was carried out at 40x magnification (LUCPFLN 40x, Olympus). FLIM data was acquired in the 

GFP spectral channel (excitation: 472/30 nm, dichroic: 495 nm, emission: 520/35 nm), with six gates 

spaced throughout the decay being integrated for 0.5 seconds. A single 0.5 second integration time 

snapshot per field of view was acquired using Cy5 filters (excitation: 620/60 nm, dichroic: 660 nm, 

emission: 700/75 nm) in order that expression of CdGAP could be assessed during data analysis. Phase 

contrast images were also taken at each field of view. 325 fields of view were acquired across 36 wells, 

leading to a final acquisition time of 70 minutes. A well seeded with untransfected keratinocytes was 

imaged using the same acquisition parameters as the FLIM experiment to measure the time-varying 

fluorescent background and a well of 20 µM erythrosine was imaged to provide a reference decay profile.  

Prior to fitting FLIM data, fields of view were browsed by our collaborators in a “quality control” 

process. In the first instance, this served to assess the expression level and cell health across different 

transfection conditions, leading to one condition (0.05 µg/well Raichu plasmid, 0.2 µg/well 

CdGAP/empty vector plasmid) being chosen for further investigation. Within this dataset, two 

approaches were taken to segment cells for fitting. For manual segmentation, the CellSegmenter app (see 

section 5.1.3) was used to trace the outlines of cells in integrated FLIM images, before it was confirmed 

by inspection that the chosen cells also exhibited fluorescence in the myc-Cy5 channel. “Lateral 

membrane” masks were generated from manually assigned masks by erosion and subtraction; our 

collaborators chose the membrane width parameter to be 3 pixels by inspection. When automated cell 

segmentation was used instead, cells were first segmented using integrated FLIM intensity images using 

the NTH algorithms implemented in FLIMfit with the parameters outlined in Table 4-2; then 

resegmented using Cy5-channel images. A MATLAB script was used to reject any cells falling in the 

acquired fields of view that did not exhibit both GFP and myc-Cy5 signal by a pixelwise AND operation 

followed by size thresholding.  

Parameter Value 

Scale 500 

Relative background scale 3 

Threshold 0.9 

Smoothing 5 

Minimum area 1000 

Table 5-1 NTH segmentation parameters for automated segmentation of keratinocytes expressing 

Racihu-Rac1 

Data was fitted pixelwise to a monoexponential lifetime model in FLIMfit using the measured reference 

decay profile and time varying background. Mean lifetimes and standard errors were calculated cellwise 

and presented by condition.  
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5.2.4 Results 
Results of a monoexponential fit to manually segmented lifetime data is shown in Figure 5-13. Exemplar 

false colour maps showing fitted lifetime images of entire cells, with (lower 8 panels) and without (upper 

8 panels) CdGAP overexpression, are presented in Figure 5-13 (a). The fitted lifetime data is presented by 

condition in Figure 5-13 (b), illustrating the significant increase (p < 0.0001, Student’s t-test) in lifetime 

observed across the whole cell when CdGAP is overexpressed. False colour maps showing lifetime in a 3-

pixel wide region around the edge of segmented areas are shown in Figure 5-13 (c); lifetime data from 

images processed in this way is summarised in Figure 5-13 (d). Again, there is a significant increase (p < 

0.0001, Student’s t-test) in fitted lifetime when CdGAP is overexpressed.  

For comparison, lifetime data resulting when an automated cell segmentation approach was adopted are 

also presented. As expected, automated segmentation results in a greater number of “cell” regions being 

identified (for CdGAP overexpressing cells, N=61 compared to N=16 in manual segmentation case), 

highlighting the fact that our collaborators were much more discerning in choosing appropriate cells than 

the automated segmentation algorithm. False colour lifetime maps for the same fields of view as those 

shown for manual segmentation are presented in Figure 5-14 (a) and lifetime data is summarised in Figure 

5-14 (b). As for manually segmented data, there is a significant increase in fitted lifetime in cells 

overexpressing CdGAP (p < 0.0001, Student’s t-test).  
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Figure 5-13 Results of experiment investigating Rac1 activation mediated by cdGAP overexpression 

with manual cell segmentation.  

(a) False colour plots showing monoexponential lifetime fit results for typical fields of view in cells with and 
without overexpression of CdGAP, whole cell analysis. Scale bar = 100 µm. (b) Bar chart summarising 
monoexponential lifetimes averaged over N manually segmented cells per condition. Error bars show standard 
errors calculated over N cells per condition. Significance of difference p < 0.0001, Student’s T-test. (c) False 
colour plots showing monoexponential lifetime fit results for typical fields of view in cells with and without 
overexpression of CdGAP, “membrane-only” analysis. Scale bar = 100 µm. (d) Bar chart summarising 
monoexponential lifetimes averaged over N manually segmented cell membranes per condition. Significance of 
difference p < 0.0001, Student’s T-test.  
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Figure 5-14 Results of experiment investigating Rac1 activation mediated by CdGAP overexpression 

with automated cell segmentation.  

(a) False colour plots showing monoexponential lifetime fit results for typical fields of view in cells with and 
without overexpression of CdGAP. Scale bar = 100 µm. (b) Bar chart summarising monoexponential lifetimes 
averaged over N manually segmented cells per condition. Error bars show standard errors calculated over N cells 
per condition. Significance of difference p < 0.0001, Student’s T-test.  

5.2.5 Discussion 
From Figure 5-13 (b) and (d) and Figure 5-14 (b), a very significant increase in monoexponential fitted 

lifetime reflecting a decrease in Rac1 activity upon CdGAP overexpression is evident across all 

segmentation methods. This is in accordance with expected results based on biochemical methods255 as 

well as the simple model presented above whereby GAP reduces Rac1 activity. Comparing empty vector 

conditions in Figure 5-13 (b) and (d), it is apparent that lifetimes averaged across membranes are shorter 

than those averaged over whole cells, indicating that Rac1 is more likely to be active at the membrane 
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CdGAP both globally and locally at lateral membranes in keratinocytes255.  

It is instructive to reflect on the differences in lifetime results generated by the different segmentation 
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the set of cells deemed “acceptable” by manual quality control, leading to difficulties in successfully 

automating the segmentation process. This is compounded by the presence of fibroblasts that were 
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comparing Figure 5-13 (b) and Figure 5-14 (b). The average change in lifetime associated with manually 
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automated segmentation, indicative of the inclusion of non-responding, unhealthy cells or subregions of 

bright fibroblasts by the automated segmentation algorithm. Accurate segmentation is especially critical 

when lateral membrane masks are generated, since missegmented pixels make up a greater proportion of 

the masked area compared to the case in which the whole cell is segmented. In the case observed here, 
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than desired, and may impact results by decreasing the dynamic range in observations of a probe that is 

activated primarily at the lateral membrane. On these grounds, following inspection of segmentation 

masks generated for whole regions, no attempt was made to adapt these masks to generate lateral 

membrane masks.  

5.3 Summary 

The results included in this section further illustrate the ability of the FLIM plate reader to generate 

statistically significant results utilising FLIM of FRET biosensors in the face of small lifetime changes and 

biological noise. While Z’ analysis of the RhoA experiment indicates that this technique may not have 

sufficient separation between positive and negative controls to be useful in a screening context, it has 

nevertheless proved possible to gain insight into the spatio-temporal activation profile of RhoA in 

calcium switch modulation of adherens junction formation. In a parallel project, the FLIM plate reader 

has been successfully deployed in a study of Rac1 activation in response to overexpression of CdGAP, 

adding to the understanding of the spatial profile of Rac1 modulation by this GTPase activating protein. 

For both studies, the FLIM plate reader has been demonstrated to be a potentially useful tool to be used 

by our collaborators alongside biochemical methods255. Finally, a manual cell segmentation app has been 

developed in order to increase segmentation accuracy and decrease time expended when it is decided that 

automated segmentation does not perform sufficiently robustly to be used for region-of-interest analysis 

of small- to medium-sized data sets. 

5.4 Future work 

Due in part to the relatively short running time of the Kickstart and EuroBioimaging projects, progress in 

both studies presented here was stopped before all the goals of the initial proposals were achieved. In 

both cases, knowledge gained during the study – particularly in terms of optimisation of sample 

conditions and generation of manual segmentation masks – could be applied to confirm the findings 

presented here and further investigate GTPase signalling during cell-cell junction formation. In particular, 

it may be productive to revisit RhoA experiments with a newly optimised E-cadherin staining protocol in 

order that segmentation might be performed to investigate RhoA activation specifically at sites of 

junction formation. Without immunofluorescence staining of E-cadherin, which requires fixation and 

permeablisation of samples, it may also be possible to take advantage of the incubator and automated 

liquid handling attached to the FLIM plate reader to attempt live cell time lapse imaging of RhoA 

activation in response to stimulation with CaCl2.  

As outlined in the original project proposal for the EuroBioimaging study, having established a protocol 

for probing activation of small GTPases in the context of cell-cell junction formation in keratinocytes, it 

may prove productive to investigate the effect of overexpression of different GAP and GEF proteins in a 

single plate screen experiment, probing activity of either RhoA or Rac1. This work could be extended 

multiplexing more than one biosensor to gain a fuller understanding of the interplay of signalling 
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molecules at adherens junctions. Whilst the work included here is undertaken with the target of 

investigating the basic biology of junction formation, future studies might be used to characterise 

potential treatments for dermatological conditions.  

From an instrumentation perspective, it should be relatively simple to port the manual cell segmentation 

host-side software to Python for inclusion in a CellProfiler plugin, at which point the whole software 

project could be made available as an open-source tool: an intermediate step would be to rewrite the front 

end in Java, removing the need for a MATLAB licence for development of this aspect. Interfacing 

between the host PC and the touch screen device using WiFi Direct would improve security at the 

expense of compatibility with versions of Android older than Ice Cream Sandwich. Another alternative 

that offers increased security at the expense of data transfer rate would be to use Bluetooth protocols. 

Improvement in segmentation performance and speed might be afforded by approaching a semi-manual 

technique: it might be possible to assess the intensity gradient perpendicular to a manually drawn outline 

and use this information to draw an accurate mask more quickly. Alternatively, the manual cell 

segmentation tool outlined here might be used to generate a training set over a small subset of data for a 

machine learning algorithm, which might then be applied to generate automated masks over a much 

larger dataset.   
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Chapter 6: Autofluorescence 

In previous chapters, the potential of high content FLIM assays has been explored through the 

development of a fully automated plate reading microscope, and by its application to experiments reading 

out biologically relevant parameters through fluorescence lifetime imaging. In the studies presented thus 

far, all experiments have used visible wavelengths to excite exogenous fluorophores, and have read out 

biological parameters by measuring fluorescence of fluorescent protein constructs. By contrast, the aim of 

this element of my PhD project was to investigate the feasibility of deploying an automated plate reading 

FLIM microscope to measure lifetimes of endogenous fluorescence signals from biological samples by 

adapting it for use with UV-wavelength excitation.  

Cellular autofluorescence is a familiar phenomenon to many biologists making fluorescence 

measurements. Background originating from endogenous fluorophores can be difficult to distinguish 

from signal if fluorescent protein expression or staining is weak. On the other hand, cellular 

autofluorescence can itself be used to report on biologically relevant phenomena. In particular, imaging of 

the endogenous fluorescence associated with metabolites can yield information on the metabolic state of 

the cell whilst removing the necessity to introduce exogenous fluorophores to the sample. Alternatively, 

as structural proteins are a source of tissue autofluorescence, lifetime imaging of tissue samples can 

inform on degradation of such proteins in the progression of disease. Both of these aspects of 

autofluorescence lifetime imaging have been explored using the FLIM plate reader in the course of my 

PhD project.  

In this chapter,  

 The roles played by endogenous fluorescent species in metabolism and disease are summarised.  

 Specifics of instrument design, experimental methods and data analysis relating to UV-

wavelength excitation experiments are discussed.  

 Cell-based assays using known metabolic modulators and anti-cancer drugs are presented to 

illustrate the potential for using autofluorescence lifetime to read out metabolic state in the 

context of high content analysis assays.  

 Experiments investigating the possibility of using autofluorescence lifetime to discriminate 

between cell lines exhibiting different drug sensitivities are presented.  

 The applicability of the FLIM plate reader as a tool to validate results from a study using 

autofluorescence lifetime to monitor the progression of osteoarthritis is considered.  
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6.1 Biological background to cell autofluorescence imaging 

In studies of cellular autofluorescence, the source of signal is generally considered to be one or more 

fluorescent species associated with metabolism. These include reduced nicotinamide adenine dinucleotide, 

flavins and reduced nicotinamide adenine dinucleotide phosphate. This section aims to provide context 

for the experiments carried out using the plate reader by offering a summary of the roles played by these 

species in cellular metabolism. The importance of cellular metabolism in the context of studies of disease 

is highlighted. Finally in this section, means by which cells can be driven to different metabolic states for 

the purposes of investigating their effects on fluorescence parameters are outlined.  

6.1.1 Reduced nicotinamide adenine dinucleotide 
The particular metabolite that is most commonly imaged in fluorescence studies is the coenzyme reduced 

nicotinamide adenine dinucleotide (NADH). The oxidised form of the molecule (NAD+) plays roles in 

cell signalling, notably as a substrate for the poly(ADP-ribose) polymerase (PARP) protein family, and is 

implicated in regulation of structure and function around the genome as well as involvement in apoptotic 

and necrotic cell death pathways258,259. The classical role of NADH/NAD+ in cells is, however, in redox 

reactions, specifically those associated with metabolism. Since aberrant metabolism is a hallmark of cancer 

(section 6.1.4) and other disease states, there is significant interest across the life sciences in understanding 

mechanisms by which dysregulation of elements of cellular respiration pathways might occur.  

The process of cellular respiration that converts nutrients such as glucose to adenosine triphosphate 

(ATP), sometimes known as “the energy currency of the cell”, involves multiple pathways. Oxidation and 

reduction reactions involving NADH are crucial steps in these pathways; thus the redox state, localisation 

and binding state of this coenzyme are linked to the metabolic behaviour of the cell. Figure 6-1 presents 

an overview of glucose metabolism to ATP in animal cells, with particular focus being placed on the role 

of NADH in each process260. For completeness, the equations relating to chemical reactions involved in 

different pathways involved in glucose metabolism are presented in Table 6-1. Elements of Figure 6-1 are 

discussed briefly below, stressing in particular the steps at which NAD/NADH binding occurs, in order 

to present a background to the experiments performed during this project.  
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 Figure 6-1 Schematic of major metabolic pathways involving NADH.  

ADP – adenosine diphosphate; Pi – inorganic phosphate; NAD – nicotinamide adenine dinucleotide; FAD – 
flavin adenine dinucleotide; ETC – electron transport chain. Note that FADH2 oxidation by Complex II of the 
electron transport chain is omitted for the sake of clarity. Note also that stoichiometry has been ignored here for 
clarity; see Table 6-1 for details.  

Table 6-1 Chemical equations showing substrates and products at key stages in cellular respiration. 

 

Glycolysis forms the first step of ATP generation from molecular glucose, and occurs in the cytosol of 

cells. Since it requires no oxygen, it is referred to as an anaerobic process. For each molecule of glucose 

that undergoes glycolysis, there is a yield of 2 ATP and 2 NADH molecules, meaning that glycolysis alone 

therefore provides relatively little useful energy. Glycolysis is a 10 step process utilising ten different 

enzymes: in the context of NADH studies, step six is the most relevant, as it is at this stage that NADH is 

produced from NAD+ in a reaction mediated by glyceraldehyde 3-phosphate dehydrogenase.  
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In the absence of oxygen, anaerobic respiration continues and pyruvate is broken down in the cytosol 

into lactate. The enzyme lactate dehydrogenase (LDH) catalyses this fermentation, during which NAD+ is 

regenerated by oxidation of NADH, allowing glycolysis to continue. This reaction is reversible, meaning 

that pyruvate and NADH can be generated from lactate and NAD+ when oxygen is readily available, for 

example in cells in the heart. The fact that LDH is highly active means that an equilibrium is established 

between the substrates (pyruvate and lactate) and free nucleotides (NAD+ and NADH); the existence of 

such an equilibrium has been used previously to investigate the ratio of free NAD+ to NADH using 

lactate and pyruvate concentrations as a surrogate measurement261, though recently published work has 

illustrated the care that must be taken with this approach262. LDH-NADH binding has been studied using 

fluorescence spectral, lifetime and polarisation measurements263–265.  

If oxygen is present, pyruvate generated from glycolysis may be used to generate further ATP in the 

mitochondria. Ionic pyruvate is transported across the inner mitochondrial membrane by mitochondrial 

pyruvate carrier protein (MPC)266 where it is decarboxylated by the pyruvate dehydrogenase complex. 

This complex comprises 96 subunits in total, with three distinct enzymes represented in different ratios. 

NADH is generated from NAD+ by the third enzyme in the process, dihydrolipoyl dehydrogenase.  

Acetyl coenzyme A (acteyl CoA) is the other product of the pyruvate dehydrogenase complex, and is the 

substrate for entry into the citric acid cycle, also known as the Krebs cycle. This 8-step process generates 

three NADH molecules per acetyl CoA. NAD+ reduction is mediated at three steps by isocitrate 

dehydrogenase, the α-ketoglutarate dehydrogenase complex and mitochondrial malate dehydrogenase 

(mMDH). Like LDH, fluorescence techniques have been used to investigate properties of NADH 

binding to mMDH264,267, and we have used this protein to make in vitro measurements in the plate reader 

(section 6.5.3).  

Malate dehydrogenase is also present in the complex of proteins that makes up the malate-aspartate 

shuttle268. Since the inner mitochondrial membrane is impermeable to NADH, this system of proteins 

acts first to form malate from NADH and oxaloacetate. Malate is passed across the membrane by an 

antiporter; a second malate dehydrogenase in the mitochondrial matrix then generates NADH and 

oxaloacetate from malate and NAD+. In this way, NADH generated from glycolysis may effectively be 

passed into the matrix of the mitochondria in order to maximise the ATP output from respiration.  

Oxidative phosphorylation is the final step in aerobic respiration in animal cells. In the electron transport 

chain (ETC), electrons are first donated by NADH, produced in earlier in the respiration process, to 

NADH dehydrogenase (also known as complex I). Electrons are passed down the ETC, facilitated by 

reduction of ubiquinone and cytochrome c, to the final protein in the chain, cytochrome c oxidase 

(complex IV). Here, oxygen acts as the sink for the electrons as it is reduced to water. The free energy 

released by successive electron transfer steps is effectively converted to a chemical potential, as proton 

pumping occurring at each stage of the ETC builds up an electrochemical gradient across the inner 
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mitochondrial membrane between the mitochondrial matrix and the intermembrane space. The oxidation 

of NADH is then coupled to phosphorylation of ADP to ATP by complex V, or ATP synthase: the 

proton motive force is used to provide the free energy for the unfavourable reaction 𝐴𝐷𝑃 + 𝑃𝑖 → 𝐴𝑇𝑃. 

Enhancement of NADH fluorescence intensity and lifetime upon binding to complex I has been 

investigated previously269,270. Proteins involved in oxidative phosphorylation are targets for treatments 

that are typically employed to modulated the metabolic signature of cells, and that have therefore been 

employed in the validation of lifetime as a readout for metabolic state. The metabolic modulators used in 

this thesis are described in section 6.1.5.  

6.1.2 Flavins 
Though not examined in these studies, flavin adenine dinucleotide (FAD) is another important metabolite 

in an imaging context, since different forms of flavoproteins exhibit different fluorescent properties.  

Lipoamide dehydrogenase (LipDH)-bound FAD is crucial as an intermediary in the generation of 

NADH, both in the pyruvate dehydrogenase complex and in the α-ketoglutarate dehydrogenase complex 

that reduces NAD+ to NADH in the Krebs cycle. FADH2 generated in the Krebs cycle as succinate is 

oxidated to fumarate and remains associated to the succinate dehydrogenase protein, which is found at 

the inner mitochondrial membrane271; this protein is also known as electron transport chain Complex II, 

as the subsequent reduction of the associated FADH2 back to FAD donates electrons to carriers in the 

ETC. In addition to pathways relating to glucose metabolism, flavoproteins are involved in β-oxidation, 

in which fatty acids are metabolised to acetyl-CoA and the donation of electrons to the ETC is mediated 

by FAD and electron transfer flavoprotein. It is notable that in investigations as to the origin of FAD 

fluorescence, 50% of fluorescent signal was attributed LipDH-associated FAD, 25% was tentatively 

linked to electron transfer flavoprotein-associated FAD, and another 25% was found to be discrete from 

the respiratory chain: Complex II-bound FAD was found to contribute negligibly to overall fluorescent 

signal272. Despite the complexity relating to the origin of FAD fluorescence in metabolic pathways, it has 

nevertheless been a useful tool in examining cell metabolism as outlined in section 6.2 below.  

6.1.3 Nicotinamide adenine dinucleotide phosphate 
NADPH is a closely related compound to NADH, differing only in chemical structure by the addition of 

a phosphate group on the ribose ring. As such, the fluorescent properties of NADPH are similar to those 

of NADH as discussed in section 6.2 below, and so the role played by NADPH in the cell is relevant to 

studies of cellular autofluorescence. NADPH is generated though the pentose phosphate pathway in 

which ribose 5-phosphate, which is required for nucleic acid synthesis, is also a product. NADPH is also 

formed following the series of reactions governing transfer of oxaloacetate from the cytosol to the 

mitochondria in the process of fatty acid synthesis. NADPH plays a further role in the generation of fatty 

acids, as 14 molecules are oxidised to form palmitate, which is a precursor for all other fatty acid 

formation. NADPH is recognised as an important factor in cellular response to oxidative stress: it is key 

to the generation of reduced glutathione, which is, in turn, a mediator of reactive oxidative species by the 
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action of glutathione peroxidase. NADPH also reactivates catalase after it binds H2O2, recovering its 

activity for further disposal of hydrogen peroxide273. The roles of reactive oxygen species as modulated by 

NADPH in pathways linked to disease are discussed briefly in the following section.  

6.1.4 Cellular metabolism, redox state and disease 
Since the work of Otto Heinrich Warburg in the 1920s, the role of cellular metabolism in cancer has been 

recognised274. The Warburg effect describes the shift in energy generation pathways from oxidative 

phosphorylation preferred in normal cells to glycolysis prevalent in tumour cells. There are many reviews, 

including those of Vander Heiden et al.275 and Cairns et al.276, that discuss this effect and seek to put it in 

context within the wider scope of cancer cell signalling. In contrast, shifts towards greater dependence 

than normal on oxidative phosphorylation (the “inverse-Warburg effect”) have been observed in the 

development of Alzheimer’s disease277. As discussed in section 6.1.1, NADH binds to different enzymes 

according to energy generation mechanism; therefore NADH binding is closely linked to the Warburg 

effect. It follows that the ability to read out NADH binding state may inform on the progression of 

cancer via the Warburg effect.  

The redox state (or redox environment) of a cell typically refers to the ratio of oxidised-to-reduced species in 

one or more redox couples, for example NAD+:NADH, FAD:FADH, or glutathione 

disulphide:glutathione278. The presence of reactive oxygen species in cells is linked to redox state and in 

particular the ratio of NADH to NAD+279. High levels of NADH correspond to an oxygen-reducing 

environment in which reactive oxygen species population increases280: such changes have been linked to 

apoptotic cell death281.  Dysregulation of pathways linked to the generation or scavenging of reactive 

oxygen species associated with aberrant redox state has been associated with type II diabetes282, fibrosis283 

and cancer. In the latter case, the mechanisms for the pathological outcome have been attributed to DNA 

damage and disruption of gene regulation284.  

6.1.5 Means of modulating metabolic state in vitro 
In order that attempts can be made to associate measured changes induced in cells by treatments with 

drugs of interest with cellular mechanisms, cells may be driven towards different metabolic states by 

chemical stimulation. Compounds are identified that enhance or inhibit oxidative phosphorylation, inhibit 

glycolysis, and induce apoptosis or necrosis and are described here.  

Rotenone 

Rotenone is a compound that is a known poison of NADH dehydrogenase, also known as Complex I in 

the electron transport chain (ETC), upon which it acts by preventing the transfer of electrons to 

ubiquinone285. By interrupting the progression of the ETC, rotenone effectively inhibits oxidative 

phosphorylation. Inhibition of the progression of the ETC prevents the oxidation of NADH to NAD+; 

since the citric acid cycle may still be producing NADH, this has the effect of increasing the 

concentration of (free) NADH in mitochondria. This provides an alternative to cyanide compounds used 
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in many other studies as a means of disrupting the ETC by competing at the oxygen binding site of 

Complex IV.  

FCCP 

Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) is widely used in metabolic studies to 

uncouple ATP synthesis from the electron transport chain. FCCP is an ionophore – a molecule capable 

of transferring ions across lipid membranes – that acts to disrupt the H+ gradient across the 

mitochondrial membrane established by the electron transport chain. This is said to “uncouple oxidation 

from phosphorylation”286 and increase the rate of NADH oxidation in the ETC in order to re-establish 

the gradient. This in turn causes a shift away from the reduced form in the NADH:NAD equilibrium, 

which is linked to an increase in the bound fraction of NADH.  

2-deoxyglucose 

2-deoxyglucose (2DG) is a glucose analogue in which a hydroxyl group is replaced by a hydrogen. This 

modification prevents 2DG from undergoing glycolysis. Since 2DG acts as a competitive inhibitor that 

replaces glucose in the glycolysis pathway, treating cells with 2DG effectively inhibits glycolysis. In 

addition, treatment with 2DG partially inhibits oxidative phosphorylation since this pathway is partially 

glycolytic-dependent287, though the ability of the Kreb’s cycle to run on the products of amino acid and 

fatty acid metabolism means that oxidative phosphorylation can continue. Reflecting this, studies 

measuring the concentrations of lactate and pyruvate in cells have shown that treatment with 2DG results 

in a decrease in the free NADH to NAD+ ratio in primary fibroblasts288. Since tumour cells are typically 

more dependent on glycolysis than non-cancerous cells, 2DG has been investigated as a potential anti-

cancer therapy289.  

Staurosporine 

Apoptosis is of interest in the study of cancer and cancer therapies: dysregulation of programmed cell 

death can result in carcinogenesis and in resistance to treatments that act by inducing apoptosis. 

Therefore, the ability to detect apoptosis non-invasively in its early stages is relevant in the context of 

drug screening and basic oncology. Mitochondria are known to play a crucial role in apoptosis. In 

particular, mitochondrial permeability transition results in the breakdown of the mitochondrial membrane 

potential that is crucial for the progression of oxidative phosphorylation. Staurosporine (STS) is 

commonly used in cell biology studies as a means of inducing caspase-3-mediated apoptosis, achieved by 

its action as an ATP-competitive protein kinase inhibitor290.  

Hydrogen peroxide 

Hydrogen peroxide (H2O2) is a reactive oxygen species that is a product of oxidative phosphorylation: if 

electrons are “leaked” from the electron transport chain, aberrant transfer to molecular oxygen results in 

the formation of superoxide which can then be converted to H2O2 by superoxide dismutases. Elevated 

levels of intracellular H2O2 are linked to necrosis (crudely, premature cell death); treating cells with H2O2 
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can be used to induce necrosis by oxidative stress. It has also been reported that exposure to H2O2 at 

lower doses can result in apoptotic cell death291. As in apoptosis, the mitochondrial membrane has been 

reported to undergo a permeability transition as necrosis progresses292; this is linked to the characteristic 

mitochondrial swelling in necrosis as water influx into mitochondria increases. The permeability transition 

is also linked to depletion of ATP and NADH.  

6.2 Fluorescence as a means of studying metabolism 

As outlined in section 6.1.4, examining the redox state – reported by the balance between NADH and 

NAD+ – of the cell can inform on pathologies and abnormal cell function293. Biochemical methods, 

including measurements of pyruvate and lactate mentioned previously, have the drawback of using cell 

extracts and therefore are not suitable for reading out dynamic changes in live cells. Various fluorescence 

techniques have be used to report on redox state, including those using exogenous fluorescent 

biosensors294. We concentrate, however, on imaging of endogenous fluorescence associated with 

metabolism.  

NADH is fluorescent under ultra-violet excitation, with excitation and emission peaks around 340 nm 

and 450 nm respectively (Figure 6-2). Despite low brightness and concentration of NADH in many cell 

types, it is nevertheless possible to use the coenzyme as an endogenous fluorophore both in single photon 

and 2-photon excitation microscopy. In contrast, the oxidised form of the coenzyme, NAD+, is non-

fluorescent at these wavelengths. NAD+ does, however, share an absorption peak with NADH at shorter 

wavelengths (~250 nm): it is therefore possible to calculate the ratio between reduced and oxidised 

coenzyme by measuring absorption spectra and calculating the ratio of absorbance values at 250 nm and 

340 nm295,296. However, this is impractical in cell specimens, due to the presence of other molecular 

species which absorb at similar wavelengths in the ultraviolet297. Another means of gauging the redox 

ratio by optical methods was proposed by Chance in 1979298, and is based on the fact that unlike NADH, 

it is the reduced form of FADH2 that is non-fluorescent whilst FAD has a fluorescence signal with 

excitation and emission peaks around 450 nm and 550 nm respectively: therefore, flavoprotein and 

NADH fluorescence signals react oppositely to changes in redox state. Defining optical redox ratio299 as 

𝐼𝐹𝐴𝐷
𝐼𝐹𝐴𝐷 + 𝐼𝑁𝐴𝐷𝐻

⁄ , ratiometric measurements of redox-related fluorescence emission can be made with 

a single wavelength of excitation light (two photon), which helps to minimise the complicating effects of 

excitation fluctuation, sample scattering, fluorophore concentration and absorption of either excitation or 

emission light by other endogenous fluorophores300. Subsequent published work has shown correlation 

between changes in redox ratio and cell metabolism, and linked such changes to various pathologies149,301–

303. Despite the many potential applications of optical redox ratio in studies of cell metabolism, it should 

be noted that differences in NADH quantum yield and emission spectrum are induced upon binding and 

can potentially complicate interpretation of such measurements304.  
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Figure 6-2 Measured NADH absorption and emission spectra 

Spectra measured from 50 µM solutions of NADH in MilliQ pure water. Absorption spectrum measured using a 
spectrophotometer (UV3101-PC, Shimadzu); emission spectrum measured using a spectrofluorimeter (RF-5301 
PC, Shimadzu).  

Another relevant reporter on cell metabolism is the pattern of NADH binding – the ratio of free to 

protein-bound NADH, and which proteins NADH is bound to305,306. It has previously been established 

that protein binding causes a shift in the emission peak of NADH297,307; thus spectrally-resolved 

measurements can provide insight into the ratio of free to bound NADH. Similarly, it is possible to use 

fluorescence lifetime imaging to infer the binding state of cellular NADH, since it is well known that 

protein binding generally increases the fluorescence lifetime5. This change is generally attributed to the 

presence of an adeneine moiety in close proximity to the fluorescent reduced nicotinamide group that 

acts as a quencher when NADH is in a folded conformation308, as is the case for a large proportion of 

molecules free in solution. When NADH binds to a protein, however, it is typically in an extended 

conformation, leading to decreased quenching and longer measured lifetime. In general, two or more 

NADH-associated decay components are observed within pixels in a cell image: crudely, these might be 

separated into free (short lifetime) NADH and protein bound (long lifetime) NADH components. In 

practice, there are found to be at least two components in free NADH lifetime decays that are associated 

with folded and extended NADH264 and so the “bound” NADH decays depend on the population of 

binding partners and can therefore be complex. Despite the possible complexity of fitting and 

interpreting NADH lifetime data, the use of a biexponential decay model is often found to be useful; 

furthermore, FLIM renders measurements inherently ratiometric and thus less susceptible to laser 

fluctuations, scattering and spectrally-varying attenuation in the instrument or sample.   

As stated in the previous section, NADPH is closely related to NADH in structure and hence 

fluorescence spectra, and is also involved in many disease pathways for which the study of NADH might 

be of interest. It is therefore a concern that the presence of this closely related coenzyme in cells might 

confound interpretation of readings in both FLIM and intensity-based readouts of metabolism in which 

only the effects of NADH on autofluorescence are considered. Previous investigations have, however, 

shown that in certain cell types NADPH is at least five times less abundant than NADH309. Combined 
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with the lower quantum yield of NADPH compared to NADH, this signal has therefore previously not 

been considered significant in many studies in literature304. A paper published recently by the Duchen 

group adopts a contrary standpoint310; the consequences of this work are discussed in section 0 below0 

below.  

Experiments in which metabolism is modulated in a predictable fashion have shown correlation between 

redox state and NADH binding without necessarily offering mechanistic explanations for the association. 

In some cases it may be sufficient to suggest that increasing the total concentration of NADH while 

keeping the number of available binding proteins constant will simultaneously increase the proportion of 

unbound NADH and the ratio NADH/NAD+, for example if an NADH-generating step such as 

glycolysis runs unusually quickly, or an NADH sink step such as oxidative phosphorylation is inhibited. 

Alternatively, protein-bound NADH can be considered an intermediate in the generation of free NAD+ 

from free NADH; thus the more significant the bound component of NADH, the lower the redox ratio 

of the cell. It has also been suggested that the most significant modification of NADH lifetime occurs as 

a consequence of binding complex I in the electron transport chain270, such that increased NADH 

binding is associated with enhanced oxidative phosphorylation305 or a shift away from glycolysis. There is 

some conflict in literature on the matter of the degree to which NADH lifetime and redox ratio imaging 

correlate: this had previously been illustrated311, but Walsh et al. recently performed experiments in which 

no correlation between redox ratio and NADH lifetime was found to exist312. It is not unreasonable to 

suggest that though the two measurements probe related processes, they cannot be considered to read out 

exactly the same cellular parameters.  

6.3 Application of FLIM to NADH imaging 

It is evident from work cited in the preceding sections that there is significant complexity inherent in 

NADH binding in cells that makes a mechanistic interpretation of NADH lifetime data challenging. 

Nevertheless, there has been a significant body of work illustrating correlation between various metabolic 

events and NADH lifetime since Lakowicz first demonstrated FLIM of NADH in 1992267. Fluorescence 

lifetime of NADH in cells has been shown to decrease in the presence of high levels of extracellular 

glucose313, upon serum starvation, and upon reaching confluence for certain cell types314. Direct inhibition 

of oxidative phosphorylation by poisoning of ETC elements305 or by inducing hypoxia shows a 

shortening of mean NADH lifetime associated with an increase in the free fraction of NADH. 

Conversely, treatment with mitochondrial uncouplers that increase the activity of the ETC by decoupling 

oxidation from phosphorylation have been shown to result in an increase in NADH lifetime265, as does 

treatment with an inhibitor of the glycolytic pathway, deoxygluocose315,316. In the context of reading out 

cytotoxicity by lifetime measurements, it has been shown that inducing apoptosis in cells using 

staurosporine results in an increase in lifetime317,318.  

Of particular interest in the context of translating NADH lifetime imaging from the lab to the clinic are 

studies showing differences in measured lifetimes between cancerous and non-cancerous cells and tissues, 
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in which shortening of fluorescence lifetime is linked to a shift towards glycolytic metabolism – the 

“Warburg effect”299. It should be noted, however, that changes in lifetime have subsequently been shown 

to depend on the classification of the cancer cells examined, potentially complicating the use of NADH 

lifetime as a diagnostic tool312. NADH lifetime has also been shown to be affected as cells enter apoptosis 

triggered by treatment with staurosporine305,318,319. Once again, however, caution must be exercised due to 

the potentially complex nature of changes in NADH binding profiles. Recently, the metabolic changes 

associated with stem cell differentiation have been investigated by measuring NADH lifetime in an 

attempt to monitor stem cell differentiation by non-destructive means320–322.  

To date, cellular NADH lifetime imaging experiments have almost exclusively been carried out using two-

photon excitation of NADH fluorescence. Such experiments benefit from optical sectioning inherent to 

the technique, providing less out-of-focus blur compared to wide field imaging and meaning that areas of 

the sample outside the focal plane are not subjected to phototoxic effects320. Moreover, using time 

correlated photon counting to measure lifetimes means that such experiments are highly photon efficient. 

However, the need to scan the excitation spot sequentially across pixels in an image and the nonlinear 

relationship between excitation power and photobleaching/photodamage lead to such techniques having 

limited applications in studies where higher throughput is desirable. In the development of the automated 

FLIM plate reader discussed below for use in NADH imaging studies, we have demonstrated that high 

content NADH imaging is feasible: thus assays that are typically performed in high content formats, 

including drug screens and dose response studies in the context of cytotoxity, may be deployed using 

NADH lifetime as a potential output parameter.  

6.4 UV-specific instrument development 

For certain aspects of the design of the FLIM plate reader, design decisions were made with 

autofluorescence applications in mind. The imaging objective (Olympus LUCPLFLN 40x, NA 0.6) was 

chosen in part for its advertised suitability for use with UV excitation. Of the GOI units available in the 

lab, an HRI with an S20 cathode was chosen for sensitivity in the blue spectral region corresponding to 

the NADH emission peak for autofluorescence studies. For wide field imaging, a multimode fibre with 

UV transmitting properties was chosen (M67L02, Thorlabs), and the diffuser wheel UVT substrate was 

also picked for compatibility with autofluorescence studies. A light path for coupling UV wavelengths 

into the optical fibre was constructed making use of an asphere suitable for transmission at short 

wavelengths (A397TM-A, Thorlabs), in contrast to the case for the visible light path in which a 20x 0.5 

NA microscope objective is employed.  

Early experiments were conducted using a Mira 900F (Coherent) Ti:Sapphire laser source pumped by a 

Verdi (Coherent) diode-pumped solid state laser, with the infra-red output being frequency doubled using 

a 5-050 Ultrafast SHG/THG unit (Inrad). Later in the project, a MaiTai HP (SpectraPhysics) Ti:Sapphire 

system became available – this was preferred as an excitation source for subsequent experiments as 

alignment procedures are comparatively simple when changing from visible wavelengths employed by 
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other users of the lab bench to UV excitation. Essentially, the MaiTai is capable of automatically 

maximising power output and ensuring mode locking for a given selected output wavelength. The only 

realignment that must be done when making significant changes to excitation wavelength is in the 

frequency doubler (3980 Frequency doubler/pulse picker) to ensure that the crystal remains at the 

optimal angle for SHG and that collimation of the output is maintained. A generalised schematic showing 

the light path in the FLIM plate reader for UV-wavelength studies is shown in Figure 6-3.  

 

Figure 6-3 Schematic showing the optical path for wide filed time gated FLIM acquisitions using UV-

wavelength excitation on the FLIM plate reader.  

RD: rotating diffuser, DLH: dual lamp house unit mirror, FC: filter cube, OBJ: objective, AS: automated stage, 
TL: microscope tube lens, HRI: high rate imager. 

6.5 Characterisation and solution-based experiments 

6.5.1 Fitting UV-excited FLIM data 
In order to accurately fit complex decay models, it is necessary to measure either an instrument response 

function directly using a scattering object, or a reference dye with known lifetime which may be combined 

with the model function via reference reconvolution107. The former course is impractical using the plate 

reader: the filterset, chosen to minimise excitation light leakage in normal operation, does not transmit 

sufficient signal for a scatter IRF to be recorded, and it is not practical to remove the barrier filter from 

the filter cube in the course of an experiment without seriously disrupting the imaging arm. One solution 

might be to use one position of the filter cube cassette for a beam splitter that would enable a scatter IRF 

to be taken more easily (allowing for possible shifts due to different filters between experiment data and 

IRF); however, the use of the plate reader with a wide variety of fluorophores and the need to retain one 

empty cassette position for sectioned imaging precludes this option. It is therefore desirable to account 

for the instrument response using a reference dye.  

Lakowicz et al. have suggested a range of short lifetime reference dyes excitable at UV wavelengths5. Of 

these, few are commercially available. DCS (4-[(E)-2-[4-(dimethylamino)phenyl]ethenyl]benzonitrile, 

MolPort) was acquired and tested but was found to be difficult to dissolve in solvents that were 
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compatible with plastic walled plates. Other researchers have used 2-[4-(dimethylamino)styryl]-1-

methylpyridinium iodide (DASPI) excited at 360 nm to record an IRF, using the fact that the lifetime of 

this dye is shorter than the response of the detection system to justify treating the resulting decay as a 

scatter IRF265. It was found that DASPI was an impractical dye for recording instrument responses on the 

plate reader: at concentrations low enough to avoid inner filter effects, the required acquisition time was 

extremely long per delay step, leading to IRF acquisition times of more than ten minutes. Furthermore, 

the lifetime of DASPI is sensitive to environment and the decay was found to not be reliably 

monoexponential.  

DAPI (4',6-diamidino-2-phenylindole) is a compound commonly used in biology labs as a DNA stain. Its 

ubiquity, low cost, brightness and favourable excitation/emission spectra led us to examine the possibility 

of using solutions of DAPI to acquire reference fluorescence lifetime measurements. However, 

investigation showed that DAPI did not exhibit a monoexponential decay and that this significantly 

undermines its use as a reference for lifetime fitting. Furthermore, spectrally resolved lifetime 

measurements acquired using the spectrofluorimeter showed significant variation in both long and short 

lifetimes as well as the fractional contribution of long lifetime across the emission spectral window 

employed in plate reader studies.  

As an alternative to DAPI, Stilbene 3 was investigated as a possible reference dye. Stilbene 3 is commonly 

used as a laser dye, producing light around 430 nm when pumped at 355 nm. Its spectral properties mean 

that the reference measurement can be undertaken without changing filter sets. Unlike DASPI, it is very 

bright, meaning that less time is spent collecting the reference decay during experiments, and unlike 

DAPI it is found to be monoexponential across a range of wavelengths as illustrated by lifetime and 

goodness-of-fit plots in Figure 6-4. It is noted, however, that the reference lifetime (𝜏 = 1240 ps) is 

longer than the short component of cellular autofluorescence decays; the suitability of using reference 

reconvolution in such circumstances was briefly investigated by simulation, as previous work within the 

Photonics group has suggested that a reference dye with lifetime shorter than the short component of the 

data is necessary for robust fitting.  

A MATLAB script is used to generate biexponential “data” by convolving a top hat “gate” with decays 

parameterised by the lifetimes outlined in Table 6-2 and lifetime contributions varying across images as 

presented in Figure 6-5 (a). A “reference” decay is then generated by convolving the same top hat with an 

exponential described by 𝜏 ≈ 1200 ps. All simulations include Poisson noise. The output parameters 

resulting from using this “reference” to fit the “data” imagewise are shown in Figure 6-5; the variation in 

fitted contributions across the image are presented in Figure 6-5 (b) along with the absolute difference 

between output and input parameters (Figure 6-5 (c)) and the fractional error, defined as 
|𝛽𝑖𝑛− 𝛽𝑜𝑢𝑡|

𝛽𝑖𝑛
 

(Figure 6-5 (d)). The consistency between input and fitted lifetimes shown in Figure 6-5 and the broad 

agreement between input and output fitted contributions shown in Figure 6-5 is taken as sufficient 
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evidence to suggest that this approach is valid. The availability of measured “library” scatter IRF data 

enables an alternative approach similar to that adopted in section 4.2, whereby a scatter IRF is temporally 

aligned with a measured monoexponential decay profile – in this case, measured using Stilbene 3 – and 

the shifted scatter IRF is then used to fit decays measured from biological samples. This method has not 

been used in the analysis presented below.  

 

Figure 6-4 Stilbene fluorescence lifetime data acquired under 370 nm excitation across a range of 

emission wavelengths using the spectrofluorimeter.  

(a) Fitted monoexponential lifetime. (b) χ2 showing quality of monoexponential fit. 

 Input (simulation) parameters  Output (fit) parameters  

Case  τ
long

 (ps)  τ
short

 (ps) τ
ref

  

(ps)  

τ
long

  

(ps)  

τ
short

 (ps) Mean(β
long

)  Mean(𝝌𝟐)  

A  4000 400  1200  3997 402.1  0.50  0.948 

B 850  350 1200  849.0 352.0  0.50  0.953  

Table 6-2 Simulation and resulting fit parameters for long lifetime reference dye.  

Input values are chosen to be similar to those measured in cellular autofluorescence (A) and solution-based 
mMDH (B) lifetime studies, illustrating the validity of fitting with a long monoexponential reference decay. 

Lifetime outputs are fitted globally across images; contribution and 𝜒2 parameters are returned pixelwise and are 
therefore presented as mean values.  
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Figure 6-5 Simulated data illustrating lifetime fitting performance using a long lifetime reference dye.  

Data in cases A and B are simulated according to corresponding parameters in Table 6-2, where parameters 
approximate those in cellular autofluorescence and solution-based NADH measurements respectively. (a) Input 

𝛽1 for simulated data to be fit with long lifetime reference. (b) Output 𝛽1 returned from fitting to data with 

cellular autofluorescence parameters. (c) Absolute difference between input and output𝛽1 for data with cellular 

autofluorescence parameters. (d) Fractional error on fitted 𝛽1 for data with cellular autofluorescence parameters. 

(e) Input 𝛽1 for simulated data to be fit with long lifetime reference. (f) Output 𝛽1 returned from fitting to data 

with NADH solution parameters. (g) Absolute difference between input and output𝛽1 for data with NADH 

solution parameters. (h) Fractional error on fitted 𝛽1 for data with NADH solution parameters.  

6.5.2 Background fluorescence characterisation 
In contrast to multiphoton microscopy of NADH, which is inherently optically sectioned, wide field 

single photon excitation measurements of NADH autofluorescence lifetime are prone to background 

fluorescence. This might arise from UV excitation of fluorescence in the microscope optics, sample 

holders (e.g. multiwell plates, cover slips etc.) and various components of cell culture media. Though 

FLIMfit can account for a time varying background in fitted models in order to account for such 

background signal, it is nevertheless generally preferable to minimise fluorescent background. To this end, 

characterisation of sources of background was carried out under typical imaging conditions.  

Under pulsed UV wide field illumination at power levels typical of cell imaging experiments (~100 µW 

after imaging objective), time-gated FLIM image sequences were acquired from three different wells in 

different types of multiwell plates. These were chosen with different base thicknesses and materials, as 

outlined in Table 6-3. In addition, three coverslips were selected from a pack of 100 for investigation. 

Subsequently, different media formulations were made up. These include standard MCF7 growth media 

with and without FBS; HBSS and HBSS-based imaging media containing 10mM HEPES, 2 mM 

glutamine and 4.5 g/L glucose; and a selection of relevant compounds at typical dosage concentrations, 

made up in HBSS-based imaging media. 50 µl of each formulation was pipetted into three wells of a 

Matriplate 384 multiwell plate, and FLIM sequences are again acquired under typical conditions. Data was 

loaded into FLIMfit and integrated intensities in digital numbers were exported and plotted by condition.  
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Product name  Supplier Base material  Base thickness (µM)  

Cover glass  VWR  Borosilicate glass  160  

Imaging plate CG  ZellKontakt  Borosilicate glass  145  

Matriplate microplate  GE Healthcare  Borosilicate glass  720  

µClear 96 well  Greiner BioOne  µClear® film 190  

Nunc 384 optical bottom  Thermo Fisher  Polystyrene/polymer  250 

Table 6-3 Sample holder parameters 

The resulting integrated fluorescence intensities from the background characterisation experiments are 

presented in Figure 6-6. In Figure 6-6 (a), an overview of the measured integrated intensity of selected 

sample holders described in Table 6-3 is presented: plastic-bottomed well plates exhibit approximately 

eight times as much fluorescence under UV excitation as glass bottomed plates. This background signal is 

around 40% of the signal expected from a typical MCF7 cell sample. Figure 6-6 (b) illustrates the 

integrated fluorescence intensity originating from different components of cell culture media, and drug 

treatments. Standard deviations across repeat wells are shown as error bars.  

 

Figure 6-6 Background fluorescence contributions under UV excitation.  

(a) Comparison of relative contributions from different potential sources of background fluorescence. (a) 
Integrated fluorescence intensity in units of camera digital numbers (DN) originating from a range of sample 
holders. (b) Comparison of background signal from media components and treatment compounds. Blue bars 
show integrated intensity originating from media components, including signal from Matriplate 384 well; red bar 
shows integrated intensity from MCF7 cells for comparison. Error bars show standard deviation across repeat 
wells323.  
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Well plates with plastic bottoms are preferred in visible wavelength plate reader studies, as cells grown on 

plastic substrates tend to exhibit improved morphology and adhesion and, in our hands, show superior 

expression of transfected protein constructs. However, these results illustrate clearly the necessity to use 

glass as a growth substrate in UV-wavelength studies. In addition, the impact of phenol red and FBS in 

standard growth media on fluorescent background is shown. As a result, all subsequent UV-wavelength 

plate reader experiments were carried out using imaging media as described above, in glass-bottomed 

plates. Nipkow spinning disk systems may be used with the FLIM plate reader in visible-wavelength 

experiments for which optical sectioning is required. However, the manufacturer of the confocal spinning 

disk unit (Yokogawa) does not recommend the use of such systems with pulsed UV excitation light, 

precluding the adoption of this technique for reducing fluorescent background originating from outside 

the focal plane.  

6.5.3 NADH binding in solution 
As described in section 6.3, changes in autofluorescence lifetime observed in live cells are ascribed 

primarily to binding between NADH and partner proteins. Solution-based NADH binding experiments 

were set up in order that lifetime might be varied across samples in a predictable manner, allowing 

repeatability of measurements across a plate to be investigated in a means analogous to dye-based 

experiments presented in literature76.  

Mitochondrial malate dehydrogenase (mMDH) was purchased as a lyophilised powder (Merck Millipore) 

and made up in PBS (without calcium and magnesium) on the day of experiments. NADH was similarly 

made up in PBS, and the absorption of each stock solution was measured in a spectrophotometer 

(UV3101-PC, Shimadzu). Concentration was calculated from absorption spectra using Beer’s law and 

literature extinction coefficient values (mMDH: 7.2 × 104 M-1 cm-1 at 280 nm264, NADH: 6220 M-1 cm-1 

at 360 nm324). The ratios of mMDH to NADH in the repeatability experiment were constrained by the 

volume of solutions required (> 50 µl per well in a 96 well plate), the weight of mMDH available and the 

concentration of NADH desirable for adequate signal levels as determined by spectrofluorimeter 

experiments carried out by colleagues. The final concentrations of mMDH used in each well are 

presented in Figure 6-7 (a). Final concentrations were achieved by diluting stock solutions in PBS in 

different ratios. Data was acquired in 646 seconds, imaging a single field of view per well.  

Fitted results are presented as mean lifetimes in Figure 6-7 (b-d); standard deviations over repeat wells are 

shown to be less than 2.5 ps across the plate, indicating a high degree of repeatability in the 

measurements. The relatively high values for standard deviations for conditions 0 µM and 12.1 µM 

mMDH are attributed to data from wells G8 and G9 respectively, and, although no evidence could be 

found to support discarding these wells prior to fitting, their spatial proximity suggests some minor fault 

or contamination in these wells.  
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Figure 6-7 Results of experiment investigating repeatability of lifetime measurements across wells.  

(a) Map showing plating strategy for NADH-mMDH measurements for lifetime repeatability; numbers 
associated with wells represent mMDH concentrations in µM. (b) Plate map showing fitted mean lifetime from 
this plate. (c) Plot showing fitted mean lifetime averaged over repeat wells, error bars showing standard 
deviations across repeat wells. (d) Standard deviations across repeat wells, rescaled for clarity.  

Despite challenges that precluded establishing quantitative binding data from solution measurements 

made on the FLIM plate reader – including the effects of a background signal of unknown origin that was 

present in measurements made using multiple instruments –this series of experiments nevertheless serves 

to validate the repeatability of measurements made using UV-wavelength excitation measurements with 

the system.  

6.6 Cell-based assays 

Initial cell-based assays, including control time courses and metabolic modulation experiments were 

undertaken using cardiomyocytes. These cells were chosen as a starting point for autofluorescence 

imaging because of their bright fluorescence under UV illumination, caused in part by the large number 

of mitochondria present in heart cells. Additionally, since anti-cancer therapies including anthracyclines 

and herceptin can be linked to cardiotoxicity, the ability to examine changes in the metabolic state of 

cardiomyocytes in response to drug treatment represents a potentially useful application in the drug 

discovery pipeline. However, limited access to cardiomyocytes and the potential for artefacts linked to 
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beating to complicate analysis resulted in the majority of experiments aimed at measuring metabolic 

response and cytotoxicity being carried out in the breast cancer cell line, MCF7.  

6.6.1 MCF7 cells: control plate 
Having established a formulation for imaging media that exhibited low autofluorescence (section 6.5.2), 

an experiment was devised in order to confirm that measured lifetimes of control cells across a 96 well 

plate did not vary over the duration of a typical measurement. This was necessary to establish that 

autofluorescence of live cells do not present a change in lifetime caused by prolonged exposure to 

buffered imaging media. Furthermore, the design of the experiment allows possible spatial correlation of 

measured lifetime (i.e. edge effects) to be investigated.  

A 96 well plate was seeded with MCF7 at 1 × 104 cells per well and incubated for 24 hours in growth 

media before aspirating, washing and replacing the growth media with imaging media. The plate was 

transferred to the incubated microscope stage and left to sit for ~30 minutes before FLIM data was 

acquired over 90 minutes. Lifetime data was fitted imagewise by standard methods, and mean lifetime was 

chosen as the parameter to analyse with respect to acquisition time and spatial position. In this 

experiment, the aim was to test for equivalence rather than difference, meaning that the standard 

statistical tests used elsewhere in this thesis were not appropriate. Rather, confidence intervals were 

calculated and compared to a tolerance parameter ∆. In the case of comparisons across acquisition time, a 

linear fit was performed on a plot mean lifetime versus acquisition time and 95% confidence intervals on 

the slope were constructed: 

 95% 𝐶. 𝐼. =  𝑚 ± 𝑠𝑚𝑡𝛼=0.05 6.1 

where 𝑚 is the fitted slope, 𝑠𝑚 is the standard error on the fitted slope, and 𝑡𝛼=0.05 is the 0.95 quantile of 

a t-distribution with the right number of degrees of freedom. These confidence intervals are compared to 

a tolerance parameter Δ = ±0.5 ps/minute, which represents the “explainable trend” in the equivalence 

test325. Similarly, for spatial comparisons, confidence intervals on pairwise differences of rowwise or 

columnwise means (𝜇𝑖 − 𝜇𝑗) are constructed based on a Tukey-Kramer corrected Z-statistic 𝑞𝑘,𝑁−𝑘,1−𝛼: 

 

95% 𝐶. 𝐼. =  (𝜇𝑖 − 𝜇𝑗) ± 𝑞𝑘,𝑁−𝑘,𝛼=0.05√(
𝑀𝑆𝐸

2
) (

1

𝑛𝑖
+

1

𝑛𝑗
) 6.2 

where 𝑘 is the number of samples, 𝑁 is the total sample size, 𝑀𝑆𝐸 is the mean square error returned 

from ANOVA analysis, and 𝑛 is the size of each individual sample with mean 𝜇. These confidence 

intervals are compared to a tolerance parameter Δ = ±50 ps, which represents the “explainable 

difference” between pairs of samples in the equivalence test326,327. The motivation for choosing the values 

of Δ as shown is discussed below.  Additionally, for data plotted by acquisition time, the homogeneity of 

variances across four equal “windows” of the acquisition period was investigated using the Brown-

Forsythe test for equal variances. All statistical tests were carried out in MATLAB328 and Microsoft Excel.  
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Figure 6-8 Plate maps showing spatial distribution of fitted lifetime for untreated MCF7 plate. 

(a) Map showing plating of MCF7-WT cell samples in the 96 well plate. (b) Fitted mean lifetime map.   

Results from fitting the lifetime data across the plate are presented as false colour plate map in: there is no 

obvious evidence of edge effects in the fitted lifetime map. The mean lifetimes of the fields of view 

collated in these maps are plotted as a function of time since the start of the experiment in Figure 6-9 (a). 

A linear fit performed in Excel to determine the slope, 𝑚, of any monotonic trend in lifetime with 

acquisition time returned 𝑚 =  −0.981 ps/minute. The residuals from this fit were plotted on a normal 

quantile plot, and visually determined to follow a normal distribution, which validates the use of 

confidence intervals based on the t distribution. 95% confidence intervals on the fitted slope were 

calculated to be (−0.445, 0.249) ps/minute; this interval falls entirely within the equivalence region 

defined by Δ = ±0.5 ps/minute. Futhermore, Brown-Forsythe’s test gives no indication of any change in 

variance across four partitions spaced equally across the data (p = 0.9). Plots of mean lifetime averaged 

over column and row are shown in Figure 6-9 (b) and (c) respectively. In both cases, error bars represent 

standard deviations in order to show variability within the data. When 95% confidence intervals for 

differences between pairs of columns were constructed, all paired difference confidence intervals fell 

within tolerance parameters. Similarly, When 95% confidence intervals for differences between pairs of 

rows were constructed, all fell within tolerance.  
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Figure 6-9 Untreated MCF7 plate mean lifetimes.  

(a)Fitted mean lifetime plotted by time after acquisition start. (b) Fitted mean lifetime plotted by column, error 
bars show standard deviations over wells. (c) Fitted mean lifetime plotted by row, error bars show standard 
deviations over wells.  

Results from this plate of untreated MCF7 cells are used to give a degree of confidence that cells 

investigated across a sequenced acquisition can be considered to have the same basal fluorescence 

lifetime. Employing equivalence testing requires judgement to be made regarding acceptable tolerance 

parameters for differences between measured values. In the case of assessing variations with acquisition 

time, the value for Δ was chosen based on the assumption that the most significant cause of a trend is 

likely to be drift associated with the instrument response (see Chapter 3: section 3.1.1). Making the 

approximation that such drift would result in a linear change in measured mean lifetime, a worst-case 
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value of Δ = ±0.5 ps/minute was chosen. When considering the explainable difference between 

measurements at different spatial positions across the plate, the effect of temperature is considered: 

private correspondence with colleagues investigating NADH lifetime in the context of myocardial 

ischaemia suggests that changes of 25-50 ps per degree difference in temperature may be a reasonable 

approximation. Calibration measurements made using a thermocouple suggest that there is likely to be a 

1-2oC gradient across the length of a 96 well plate when the microscope incubator is at an equilibrium 

temperature; further variations in temperature are likely to be induced by opening access doors to adjust 

the microscope. The choice of the value Δ = ±50 ps was made based on these considerations, and the 

fact that drift is likely also to impact on differences between measurements separated in space due to the 

acquisition method.  

Despite the degree of ambiguity inherent in choosing parameters for equivalence tests, the results 

presented here suggest that there is no evidence that measured mean lifetimes change across a 96 well 

plate independently of treatment, or are induced to change with increasing time spent in imaging buffer 

on the microscope: the equivalence of measurements made at different acquisition times and spatial 

positions has been confirmed at 95% confidence level. Particularly, the absence of a trend in measured 

mean lifetime associated with increased time spent in imaging media obviates the need to investigate 

carbonate-buffered imaging media solutions in tandem with a CO2-enriched imaging environment, which 

would add an extra layer of practical complexity. The possibility that NADH lifetime might vary 

significantly with temperature is worthy of investigation in cells as opposed to in tissue or in solution; 

such a study has not been completed in this project.  

6.6.2 MCF7 cells: Viability study 
A preliminary investigation was conducted in order to establish that the UV excited fluorescence imaging 

process did not lead to cell death caused by phototoxicity. Such an experiment is required to confirm that 

NADH lifetime imaging with UV excitation on the wide field plate reader is not a destructive, end-point 

method and can be deployed in moderate- to long-term time course experiments without the imaging 

process affecting the metabolism of the cells being studied.  

MCF7 cells were split 1:3 one day prior to seeding on a glass bottomed 96 well plate in standard growth 

media at a density of 104 cells per well. 24 hours post-seeding, growth media was aspirated and replaced 

with imaging media following washing with DPBS. The sample was imaged over a 135-minute period to 

approximate the duration of a typical multiwell plate experiment. Typical imaging parameters (0.1 mW 

excitation power at sample for 10 seconds) were used with each field of view being imaged twice. After 

imaging, cell death was quantified in four wells that had been imaged with UV excitation, four wells that 

had not been imaged and four wells that had not been imaged but had been “partially heat-shocked”. This 

quantification was performed using an erythrosine vital dye exclusion assay following the protocol for 

adherent cells outlined in Krause et al.16 Briefly, erythrosine B was prepared at 5 µg/ml in growth media, 

in which cells were then incubated at room temperature for 2 minutes before washing three times with 
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imaging media. The sample was then returned to the plate reader. Fluorescence excitation was switched 

from the pulsed UV laser source to a mercury lamp in order that staining could be assessed using 

standard epifluorescence intensity, acquired through the non-FLIM imaging path, using a 10x 

magnification objective (UPlan Apo 10x/0.40) and the “red” filter cube (excitation: 545/30 nm, dichroic: 

570 nm, emission: 610/75 nm). Bright field images were acquired of each field of view interrogated to 

find the proportion of stained cells. Analysis was performed in ImageJ. Fluorescence images were 

thresholded and overlaid on phase contrast images in order to determine the fraction of cells that had 

been stained. Counting of cells was performed manually. Results from imaged and heat shocked cells 

were compared to control results using Dunnett’s test, implemented in MATLAB329.   

To confirm the effectiveness of the staining method, cells were subjected to “partial heat-shock” as a 

positive control, following Krause et al.16: cells were submersed in 60oC PBS for 10 seconds, then 0oC 

PBS for 5 seconds before staining. PBS was heated to 60oC using a water bath. Low temperature PBS was 

thawed from frozen immediately prior to the experiment. Temperatures were checked (to within 2oC) 

using a thermocouple. PBS was introduced to wells by pipetting down the side of wells to minimise 

mechanical disruption of cell adhesion. All measurements were made at 37oC, in imaging media.  

Results of this experiment are shown in Figure 6-10, where thresholded fluorescence images have been 

overlaid on exemplar bright field images from wells in which the cells were not exposed to pulsed UV 

excitation (Figure 6-10 (a)), wells which were exposed to excitation light under the imaging conditions 

outlined above (Figure 6-10 (b)), and wells in which no imaging was performed but cells were subjected 

to partial heat shock (Figure 6-10 (c)). The proportion of stained cells was not significantly greater in the 

case in which cells had been exposed to UV excitation in the course of a FLIM imaging sequence than in 

the case of unimaged cells. Cells in wells exposed to the positive control “partial heat shock” condition 

exhibited a significant increase in staining fraction over both imaged and non-imaged conditions (Figure 

6-10 (d)).  
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Figure 6-10 Results of vital dye exclusion assay following UV-excited FLIM imaging sequence. 

(a) Exemplar bright field with overlaid thresholded fluorescence image from a well that was not used in FLIM 
sequence. (b) Exemplar bright field with overlaid thresholded fluorescence image from a well that was imaged. 
Thresholded pixels from the corresponding fluorescent image are overlaid in yellow, fields of view used in FLIM 
sequence shown with green rectangles. (c) Exemplar bright field with overlaid threholded fluorescence image 
from a well that was subjected to partial heat shock treatment. Thresholded pixels from the corresponding 
fluorescence image are overlaid in yellow. Scale bars 200 µm. (d) Plot showing proportion of imaged cells 
exhibiting erythrosine fluorescence following staining; error bars show standard errors calculated over repeat 
wells.  

It is noted that the positive control shows a much lower level of staining than that shown in kidney cells 

and fibroblasts by Krause et al., suggesting that the protocol is perhaps not optimal for MCF7 cells. The 

situation may be further complicated by the relative lack of adhesion of MCF7 to glass bottomed plates 

which leads to cells being washed away in the course of administering the heat shock and staining 

treatment. In addition, the vital dye exclusion assay probes for cells with compromised membrane 

integrity, showing cell death, rather than any more subtle effects linked to phototoxicity. Whilst a vital dye 

exclusion assay was employed for practical reasons, a more complete selection of cytotoxity assays – 

perhaps including the MTT colorimetric assay which has been applied in studies of phototoxicity330, or 

commercially available fluorescence-based assays such as the ApoTox-Glo (Promega) triplex assay for 

viability, cytotoxicity and apoptosis – may be useful for future work.  

ns

*

0

2

4

6

8

10

12

Control Imaged Heat shock

%
 c

e
ll

s
 s

ta
in

e
d

(a) (b)

(c) (d)



204 
 

 

Figure 6-11 Exemplar bright field images interleaved with a long-term course of FLIM measurements of 

BT474 cells for investigation of morphology.  

 

Separately, BT474 cells were imaged every 2 hours over a 16 hour time course, phase contrast imaging 

being interleaved with typical autofluorescence imaging in order to determine changes in morphology 

which might indicate cell damage. Figure 6-11 shows time lapse phase contrast imaging across this period; 

no adverse effects of imaging over this period caused either by prolonged exposure to imaging media or 

by repeated exposure to pulsed UV excitation are apparent from changes in cell morphology.  

6.6.3 MCF7 cells: Metabolic modulation experiments 
Initial studies into measuring changes in NADH lifetime in response to biochemical stimulus were carried 

out using metabolic modulators. Of these, rotenone and FCCP have clearly defined mechanistic roles that 

contribute to changes in the expected ratio of free:bound NADH while varying levels of glucose, addition 

of deoxyglucose or hydrogen peroxide are expected to change the metabolic state of the cells in a more 

biologically relevant manner.  

Rotenone 

Rotenone is used as modulator to inhibit the progression of the electron transport chain. As described 

previously, this is considered to increase the proportion of free NADH in cells. It has previously been 

shown that, as expected based on the model outlined above, the mean fluorescence lifetime of NADH 

decreases upon rotenone treatment: this behaviour is primarily attributed across literature sources to a 

shift in the ratio of free to bound NADH in the cell, even in cases in which the individual lifetime 

components are also shown to change.  

Rotenone (Sigma Aldrich) was prepared in ethanol (1mM) and further diluted in imaging media to a final 

concentration of 2 µM. Ethanol was also added in a ratio 1:500 to imaging media to make control 

stimulation media. Cells had been seeded 24 hours prior to starting measurements at 1 × 104 cells per 

well a glass bottomed plate. Cells were washed and immersed in 100 µl of imaging media before 

transferring to the plate reader stage, which was incubated at 37oC. Rotenone and control stimulation 

media were both maintained at 37oC in a water bath prior to the experiment, before filling 20 ml syringes 

0 h 2 h 4 h 6 h

8 h 10 h 12 h 14 h
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that were transferred to a syringe pump positioned inside the incubator prior to starting time course 

experiments.  

Two experiments, stimulating with imaging media only or with rotenone, were performed in separate 

wells. In each case, a time course was set up to image fields of view ten times at 10 second intervals, with 

a stimulation step set to add 100 µl of liquid to wells that was programmed to fall immediately prior to the 

fourth time point. The time resolution was chosen in an attempt to investigate the dynamics of the 

change in NADH lifetime following rotenone treatment. Six wells were selected so that six repeats of 

such time courses would be carried out per automated acquisition. The first automated run was 

performed adding imaging media only to prevent carrying rotenone over in the dispensing equipment into 

the control experiment. Data were analysed both globally and image wise.   

Component τ (ps) 

1 3586  

2 459.5  

Table 6-4 Globally fitted lifetime results from rotenone time course experiment. 

 

Figure 6-12 Global fit results from automated rotenone time course experiment in which stimulation 

with control media or 1 µM rotenone occurs immediately before the fourth time point.  

(a) Fitted mean lifetime. (b) Fitted long lifetime fraction.  
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Figure 6-13 Imagewise fit results from an automated rotenone time course experiment.  

Stimulation with control media or 1 µM rotenone occurs immediately before the fourth time point. (a) Fitted 
mean lifetime images for cells stimulated with media alone. (b) Fitted mean lifetime images for cells stimulated 
with 1 µM rotenone. Scale bar = 100 µm. (c) Fitted long lifetime plotted against time course time point. (d) 
Fitted short lifetime. (e) Fitted long lifetime contribution. (f) Fitted mean lifetime. Error bars represent standard 
errors calculated across repeat wells.  
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Globally fitting lifetimes across the dataset yields mean lifetimes and fractional contributions as shown in 

Figure 6-12 (a) and (b), respectively, with lifetimes given in Table 6-4. Fitted parameters show the 

expected behaviour based on the simple model outlined above: that is, an increase in the ratio of 

free:bound NADH in the cell upon rotenone treatment with no change in mean lifetime when cells are 

treated with control media. Imagewise fitting provides evidence of statistically significant changes in both 

bound (Figure 6-13 (c)) and free (Figure 6-13 (d)) NADH lifetime under rotenone treatment, contributing 

alongside a change in the ratio between long and short fractional contributions (Figure 6-13 (e)) to a 

decrease in mean lifetime (Figure 6-13 (f)) upon rotenone treatment.  

From the results in Figure 6-13 (a) and (c), there is a clear difference between rotenone-treated and 

control cells’ long lifetime component and long lifetime contribution before stimulation. This might be 

attributed to a failure to satisfactorily control temperature differences when switching from control media 

to rotenone stimulation: despite keeping all solutions at 37oC, opening the incubator to swap the syringes 

containing solutions may have caused temperature fluctuations. This might be overcome by using a two-

channel dispensing system, daisychaining two of the current KDS syringe pumps, or simply allowing 

temperature to stabilise after switching stimulation syringes.  

The fact that both fitted lifetime components exhibit changes upon rotenone stimulation suggests that a 

simple model, in which the only molecular change upon rotenone treatment is the ratio of free:bound 

NADH, is not sufficient to describe the system. As discussed in Zheng et al.265, treatment with rotenone 

induces mitochondrial swelling, possibly causing both viscosity and refractive index changes in the 

environment of free NADH. The measured long lifetime will depend on the particular population of 

proteins that NADH may be bound to; though rotenone binds to the ubiquinone binding site on 

Complex I and so will not directly influence NADH binding, it is nevertheless possible that the inhibition 

of the electron transport chain in oxidative phosphorylation may cause a shift in the pool of proteins 

binding NADH. Crucially, these findings agree broadly with those reported for ETC inhibitors 

previously265,312–314, validating the use of the plate reader as a means of reading out changes in cellular 

autofluorescence lifetime originating from changes in NADH binding.  

FCCP 

The ionophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) uncouples ATP synthesis 

from the ETC. In simple models, treating cells with FCCP results in an increase in bound fraction of 

NADH. Such a change would manifest itself as an increase in the long lifetime fractional component in 

FLIM data. Adding FCCP to cells is therefore another means of predictably changing NADH 

autofluorescence lifetime in order to confirm that the instrument is sensitive to such changes.  

FCCP experiments were performed on the same plate containing MCF7 cells as the rotenone 

experiments above. FCCP was prepared in ethanol (1mM) and further diluted in imaging media; the same 

control stimulation media as the rotenone experiments was used. Unlike the rotenone experiment, 
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stimulations here were made manually by micropipette. In this case, four wells were selected per 

condition, and imaging occurred every 60 seconds over a ten minute period. Once again, cells were 

stimulated immediately before the fourth time point.  

Component τ (ps) 

1 3505  

2 414.3  

Table 6-5 Globally fitted lifetime results from FCCP time course experiment. 

 

Figure 6-14 Global fit results from a manual FCCP time course experiment.  

(a) Fitted mean lifetime. (b) Fitted long lifetime fraction.  
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Figure 6-15 Imagewise fit results from a manual FCCP time course experiment in which stimulation 

with control media or 1 µM FCCP occurs immediately before the fourth time point.  

(a) Fitted mean lifetime images for cells stimulated with media alone. (b) Fitted mean lifetime images for cells 
stimulated with 1 µM FCCP. Scale bar = 100 µm. (c) Fitted long lifetime against time course time point. (d) 
Fitted short lifetime. (e) Fitted long lifetime contribution. (f) Fitted mean lifetime. Error bars represent standard 
errors calculated across repeat wells.  

0.26

0.28

0.3

0.32

0.34

0 200 400 600

L
o

n
g

 l
if

e
ti

m
e
 c

o
n

tr
ib

u
ti

o
n

 β
1

Time point (s)

Media 1 µM FCCP

3200

3400

3600

3800

4000

0 200 400 600

L
o

n
g

 l
if

e
ti

m
e
 τ

1
(p

s
)

Time point (s)

Media 1 µM FCCP

360

380

400

420

440

0 200 400 600

S
h

o
rt

 l
if

e
ti

m
e
 τ

2
(p

s
)

Time point (s)

Media 1 µM FCCP

1000

1100

1200

1300

1400

1500

0 200 400 600

M
e

a
n

 l
if

e
ti

m
e

 (
p

s
)

Time point (s)

Media 1 µM FCCP

(c) (d)

(e) (f)

M
e
a
n

 life
tim

e
 (p

s)
M

e
a
n

 life
tim

e
 (p

s)

2000

1000

2000

1000

(a)

(b)



210 
 

Once again, fitting globally across all data yields the expected behaviour based on an increase in NADH 

oxidation in the ETC (Figure 6-14): the mean fitted lifetime increases, reflecting an increase in the long 

lifetime component across the time series following stimulation, in agreement with trends highlighted 

elsewhere when mitochondrial uncouplers are used265. Imagewise fits exhibit an increase in the fitted long 

lifetime following stimulation in addition to an increase in the fitted long contribution (Figure 6-15). 

Again, this might be attributed to a change in the population of NADH protein binding partners, though 

we have no clear idea of the mechanism that might underlie such a change. Again, conformation of 

results to predicted changes in mean lifetime indicate that the plate reader may be used to measure 

NADH binding by autofluorescence lifetime. It was noted that there was a difference in pre-stimulation 

lifetimes parameters between the media- and drug-stimulated cases. Given that the four wells selected per 

condition were chosen by position in the plate to facilitate manual stimulation, it is possible that some 

contamination of either the media- or drug-stimulated wells might contribute to this difference.  

Staurosporine 

STS has also been used to trigger apoptosis in cellular autofluorescence lifetime studies318. The potential 

for STS to be used to further confirm the utility of the plate reader in reading out metabolic state by 

fluorescence lifetime was investigated; however, it was found that STS introduced a significant 

background signal (signal-to-noise approximately 1) that could not be easily removed from the cellular 

autofluorescence, either by washing post-treatment or in software processing. Furthermore, the measured 

lifetime of STS in solution was found to match the reported (and measured) “cell” lifetimes following 

STS treatment, casting further doubt on the suitability of STS as a modulator in this context. Spectral 

measurements suggest that STS signal might be suppressed by use of appropriate filters, for example the 

440/60 nm filter that was used in subsequent experiments as standard protocol. Unfortunately, practical 

constraints of time prevented pursuit of this avenue.  

2-deoxyglucose 

Previously published work has illustrated that treating BKEz-7 endothelial cells derived from calf aorta 

with 2-deoxyglucose (2DG) results in an increase in effective lifetime measured by rapid lifetime 

determination methods315. This corresponds to expected behaviour based on biochemical experiments 

that have shown a decrease in the NADH:NAD+ ratio in fibroblasts287. An experiment was set up to treat 

MCF7 cells with 2DG to measure the effects of inhibiting glycolysis in this breast cancer cell line.  

MCF7 cells were seeded at 1 × 104 in a glass bottomed plate in standard growth media and incubated for 

24 hours. Growth media was aspirated and replaced with 100 µl imaging media before transferring the 

plate to the microscope stage for imaging at 37oC. 2DG solution was made up in imaging media at 20 

mM. Six wells were selected with four fields of view per well, and a time course was set up to image each 

field every 300 seconds over a 40 minute period. 100 µl of 2DG solution was manually pipetted into wells 

immediately prior to the fourth time point in the series. Data were fitted image wise, statistical 

significance was assessed using Tukey’s test for multiple comparisons.  
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Figure 6-16 Imagewise fit results from a manual 2-deoxyglucose time course experiment in which 

stimulation with 10 mM 2DG is made immediately after the third time point. 

(a) Fitted mean lifetime images. Scale bar = 100 µm. (b) Fitted long lifetime plotted against time course time 
point. (c) Fitted short lifetime. (d) Fitted long lifetime fractional contribution. (e) Fitted mean lifetime. Error bars 
represent standard errors calculated across repeat wells.  

Results from this experiment are presented in Figure 6-16. Mean lifetime images from an exemplar field 

of view are presented in Figure 6-16 (a). It is evident from the images in Figure 6-16 (a) that the manual 
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stimulation of the plate has resulted in an x,y-offset being introduced. Plots of fitted lifetime parameters 

against time course time point show that treatment with 10 mM 2DG causes an increase in long lifetime 

(Figure 6-16 (b), p < 0.0005), and a decrease in the fractional contribution of this lifetime (Figure 6-16 (d), 

p < 0.0005), where significance of change is judged based on the difference between three pre-stimulation 

points and the final four post-stimulation points. The net result on mean lifetime is an increase following 

stimulation (Figure 6-16 (e), p < 0.0005). The observed decrease in the short lifetime component is not 

significant at p = 0.05.  

The mean lifetime results presented in Figure 6-16 exhibit expected behaviour based on lifetime studies 

using RLD analysis315. Imagewise double fitting, however, highlights the possibility that such changes are 

due to increases in the long lifetime component rather than a shift towards bound NADH as suggested 

by previously published biochemical data287. This discrepancy may reflect the difference between the 

relatively short 2DG treatment time used in this experiment (following Schneckenburger et al.315) 

compared to the three hour incubation used in the study in which NADH:NAD+ ratio was studied by 

biochemical means. Previously published biexponential analysis of NADH autofluorescence lifetime by 

Wang et al.317, in which normal skin fibroblast cells were treated with 2 mM 2DG for an undefined period 

of time, showed no significant change in any fitted parameters. Further experimentation, possibly 

increasing the length of the experimental time course or inhibiting glycolysis by 3-bromopyruvate, may 

shed more light on the effects of 2DG treatment both for use in the lab and as a potential cancer therapy. 

In addition, controlling for changes in osmotic pressure caused by the addition of 10 mM 2DG, for 

example using mannitol in a solution for a control stimulation time course, may further elucidate the 

processes behind the observed changes in lifetime.  

H2O2: dose response plate experiment 

It has previously been reported that differences in autofluorescence lifetime response may be used to 

distinguish between apoptotic and necrotic cell death318. Furthermore, different doses of hydrogen 

peroxide have been shown to result in different mechanisms of cell death (apoptotic or necrotic death)291. 

A plate was therefore run in order to test for dose-dependent lifetime response to hydrogen peroxide 

(H2O2).  

It was noted from literature that response might well be cell line-dependent; on the basis that the MCF7 

line has been used throughout our plate reader studies of cellular autofluorescence, these cells were 

seeded at 1 × 104 in a glass bottomed plate. Cells were incubated for 24 hours in standard growth media 

which was replaced one hour before imaging with growth media supplemented with H2O2 at a range of 

concentrations up to 3000 µM. Prior to imaging, growth media was aspirated, cells were washed and 

buffered imaging media was added to all wells. Ten fields per well were imaged under standard imaging 

conditions.   
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Component τ (ps) 

1 3968 

2 416.0 

Table 6-6 Globally fitted lifetime results from hydrogen peroxide response experiment.  

 

 

Figure 6-17 Global fit results for a hydrogen peroxide dose response experiment.  

(a) Fitted mean lifetime. (b) Fitted long lifetime fraction. (c) Globally fitted lifetimes. Error bars show standard 
errors across repeat wells. * denotes significant difference from all lower dose values at p = 0.05 (Tukey’s test); 
***** denotes significant difference at p < 0.005 (Tukey’s test).  
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Figure 6-18 Imagewise fit results for a hydrogen peroxide dose response experiment.  

(a) Fitted long lifetime 𝜏1. (b) Fitted short lifetime 𝜏2. (c) Fitted long lifetime fraction 𝛽1. (d) Fitted mean 
lifetime. Error bars show standard errors across repeat wells. * denotes significant difference from all lower dose 
values at p = 0.05 (Tukey’s test); ***** denotes significant difference at p < 0.005 (Tukey’s test). 

Once data had been pre-processed to remove image artefacts, lifetime fits were performed using standard 

methods. Global fitting showed significant increases in long lifetime fractional contribution at high doses 

(≥300 µM) of H2O2 (Figure 6-17 (b)); high doses showed significant differences from all other doses 

using Tukey’s test for multiple comparisons. As expected, there is a corresponding shift in mean lifetime 

(Figure 6-17 (a)) for high doses of H2O2. Imagewise fitting indicates that there is a significant change in 

both lifetime components and the fractional contribution of those components at very high dose (Figure 

6-18 (a-c)) and suggest that the increase in mean lifetime apparent at 300 µM may be assigned primarily to 

changes in the relative contributions of short and long lifetimes (Figure 6-18 (c) and (d)).   

The increase in mean lifetime with increasing dose of H2O2 is in broad agreement with previous studies in 

colon cancer cells322, although the doses at which the fitted lifetime contribution increased is greater here 

than previously reported: no significant change is seen at 100 µM treatment. These observations provide 

some validation for previously published work in which the authors used phasor analysis in a study of 

colon cancer cells subjected to H2O2
322: for a linear projection between two phasor positions to be valid, 
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changes must be attributable only to a change in the fractional contribution of states represented by those 

phasors, which is borne out at doses < 300 µM in our data.  

6.6.4 Breast cancer cell line screening 
Following discussions with investigators in the Skala group at Vanderbilt University, the potential for 

using autofluorescence lifetime to discriminate between breast cancer cell lines exhibiting different drug 

sensitivities was investigated. The Skala group have published work in which lifetime imaging as well as 

optical redox ratio is investigated as a method of distinguishing between cell lines. A list of cell lines 

investigated and notes on their relevant properties is outlined in Table 6-7. Crucially, this small panel of 

cells provides non-cancerous as well as cancerous lines exhibiting different estrogen receptor status and 

includes lines with and without overexpression of the epidermal growth factor receptor protein HER2. 

Also included is a drug-resistant line MCF7-DoxR, which is generated from wild type MCF7 in the Lam 

lab by applying selection pressure with increasing doxorubicin doses, up to 17 µM.  

Cell line  ATCC 

catalogue 

number  

Classification  ER 

status 

HER2 

status  

Responsive to 

anthracycline 

treatment?  

Source 

MCF7-WT  HTB-22 Luminal A  +  -  Y  ATCC 

MCF7-

DoxR  

† Luminal A  + -  N  Lam lab 

MCF10A  CRL-10317 Basal  - -  Y  Skala lab 

SK-BR-3  HTB-30  HER2  - +  Y  Lam lab 

BT474  HTB-20  Luminal B  + +  Y  Lam lab 

Table 6-7 Summary of cell lines investigated.331–336  

†MCF7-DoxR cells were generated from MCF7-WT by selection under doxorubicin treatment in the Lam lab.  

In our experiments, three separate plates were seeded: the first with MCF7-WT and MCF7-DoxR, the 

second with SK-BR-3 and MCF10A, and the third with BT474. Bird et al.314 have shown previously that 

seeding density, linked to confluency, affects measured fluorescence lifetime in MCF10A cells. In order to 

test for similar effects, each cell type was plated at four densities, from 300 to 10000 cells per well. Six 

wells were seeded per density per cell line. To avoid potential background effects, MCF7-DoxR were 

seeded in standard growth media rather than doxorubicin supplemented media: though the investigation 

undertaken in section 6.5.2 showed low fluorescence signal from doxorubicin with the filter set used 

throughout, MCF7-DoxR media contains doxorubicin at 17 times the concentration characterised in 

Figure 6-6, and no adverse effects on the cell population are expected by removing selection pressure for 

the 24 hours between seeding and imaging. MCF10A were seeded in supplemented MBEM312 supplied by 

the Skala lab. Data acquisition was conducted under normal imaging conditions, with standard imaging 

media replacing growth media approximately one hour before the acquisitions were started.  
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Figure 6-19 Mean lifetimes across cell types and seeding densities. 

The results of these plates are summarised by plotting mean lifetimes, showing variations by cell line and 

cell seeding density, in Figure 6-19. From the data shown in Figure 6-19, there are no significant trends 

linking lifetime and seeding density (Tukey’s honestly significant difference test, p > 0.05) for any of the 

individual cell lines, including the “non-cancerous” model MCF10A.  There is a statistically significant 

(Tukey’s honestly significant difference test , p < 0.05) difference in mean lifetime for MCF10A and 

breast cancer cell lines (MCF7-WT, MCF7-DoxR, SK-BR-3 and BT474) across all seeding densities, but 

no clear difference between differently classified cancer cell lines.  

The result that MCF10A lifetime does not vary with seeding density is not consistent with the findings of 

Bird et al.314, who proposed that increased cell “crowding” would result in a decrease in oxygen 

availability and thus an increase in free NADH resulting from inhibition of the ETC. It is notable that the 

densities used in the experiment described above were necessarily lower than those used by Bird et al., as 

it was found that seeding at densities corresponding to the highest used in that paper (approximately 

3.7 × 105 cells per well in a 96 well plate) resulted in cells being extremely overgrown after 24 hours of 

incubation. It is possible that this increased rate of growth reflects some change in cellular metabolic state 

due to stress: of five cell lines sent to South Kensington from Vanderbilt in the same delivery, only 

MCF10A grew following thawing after the package containing the cyrovials was held in customs.  

The results in Figure 6-19 are also in contrast with the findings of Walsh et al., who observe that 

adenocarcinoma cell lines (including MCF7-WT and SK-BR-3) exhibit longer lifetimes in relation to non-

malignant MCF10A, despite having a higher glycolytic index337. The authors suggest that the complex 

downstream signalling of receptors such as ER and HER2, which drive both glycolytic metabolism and 

the expression of NADH-binding proteins, may be the reason for the complex behaviour of NADH 

lifetime. It is possible that unidentified differences in media composition between our study and the 

published work might explain these different results. However, as media for growing MCF10A was 

provided by the Skala lab, and growth media for cancerous cell lines was made up as outlined in published 

work, it seems unlikely that the different outcomes are due to different growth factor or estrogen content 

in media. It is conceivable that differences in cell proliferation may cause differences in lifetimes that may 
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mask other changes304,312. In future, it may be possible by phase contrast microscopy, well-chosen staining 

methods338 or ptychography339 to determine the number of mitotic cells.  

For future work, it may be beneficial to screen all cell types used here on a single plate with fewer repeat 

wells per plate, in order to avoid any potential differences in temperature stability between experiments. 

For a fuller understanding of the differences between our experiment and published works, it would be 

instructive to carry out standard measurements of glucose uptake and lactate secretion in order to attempt 

to correlate lifetime with glycolytic index. In addition, it is noted that the lifetime signal from 

doxorubicin-resistant MCF7 is not significantly different from that of wild type MCF7, apparently 

indicating that our autofluorescence lifetime measurements were not able to predict whether cells will 

respond to anthracycline treatment.  

6.6.5 Doxorubicin response 
An experiment was planned in order to establish whether dosing cells with doxorubicin induced a shift in 

autofluorescence lifetime due to cytotoxic effects of the treatment. Following on from section 6.6.5, both 

wild-type and drug resistant cell lines were tested. In principle, MCF7-DoxR should provide a negative 

control for treatment.  

Cells were seeded at 1 × 104 cells per well in normal growth media and incubated for twenty four hours 

prior to treatment with different doses of doxorubicin up to 3 µM. Doxorubicin was prepared at the 

desired final concentration in growth media that was subsequently used to replace media, rather than 

adding more concentrated doxorubicin to media in wells. After a twenty four hour treatment period, cells 

were washed and immersed in imaging media.  
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Figure 6-20 Doxorubicin treatment dose response, fitted mean lifetimes.  

(a) Fitted mean lifetimes presented as paired comparisons between sensitive and resistant cell lines. (b) Fitted 
mean lifetimes presented as a dose response plot for wild type cells. (c) Fitted mean lifetimes presented as a dose 
response plot for resistant cell line MCF7-DoxR. . Error bars represent standard errors over repeat wells, 
significance assessed by Student's T-test in (a) and Dunnett’s test in (b) and (c).  
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Figure 6-21 Fit parameters for drug resistant and sensitive cells plotted against drug concentration.  

(a) Fitted long lifetime. (b) Fitted short lifetime. (c) Fitted long lifetime component. Error bars represent 
standard errors across repeat wells. Statistically significant differences from untreated cells at p=0.05 are signified 
by * (Dunnett’s test).  

Fitted lifetime results are shown in Figure 6-20, both as a direct comparison between resistant and 

sensitive cell lines, and as dose response plots. Fitted mean lifetimes for sensitive cells deviate from those 

for resistant cells for treatment concentrations ≥ 0.1 µM, at significance levels indicated in Figure 6-20 (a). 

If comparisons are instead drawn between the untreated cases and successive points in each dose 

response, no doses are significantly different (p = 0.05) for MCF7-DoxR cells (Figure 6-20 (c)), whilst 

lifetimes associated with doses ≥ 0.3 µM are significantly different from untreated lifetime (Figure 6-20 

(b)), where Dunnett’s test has been applied to test for differences between a single control value and 

multiple experiment values. Other fit parameters are presented as plots against dose in Figure 6-21 in an 

attempt to extract more information on the underlying cause of the observed changes in mean lifetime 

data. Only at the highest dose is any one of the fit parameters significantly different from the untreated 

case. Changes in both long lifetime (Figure 6-21 (a)) and the fractional contribution of long lifetime 

(Figure 6-21 (c)) contribute to the shortening of mean lifetime.  

This dataset serves to highlight the complexity of interpreting autofluorescence lifetime data at a 

molecular level: changes cannot simply be attributed to changes in the free:bound ratio of NADH, but is 
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likely also linked to a change in the proteins to which NADH binds, or cross-talk from NADPH 

fluorescence310.  

6.6.6 Cisplatin response 

 

Figure 6-22 Plate maps for cisplatin experiment.  

(a) Plate map showing treatment time and dose (in µM) for MCF7-WT cells exposed to cisplatin. (b) Mean fitted 
lifetimes displayed wellwise in a plate map. 

A plate for investigating NADH lifetime readouts of time- and dose-dependent responses to cisplatin 

treatment was designed as shown in Figure 6-22 (a). Similarly to doxorubicin experiments, cells were 

seeded, treated and washed at 24 hour intervals; an additional step was added six hours prior to imaging 

for addition of the 6 hour dose treatments. As before, cells were imaged at 37oC in imaging media. Cells 

were sufficiently densely seeded such that no pre-find operation was required and the first 10 fields of 

view spiralling outwards from the centre of each well were imaged. Five time-gated images were collected 

for each time-delay of the GOI resulting in an average acquisition time of 25 s seconds for each field of 

view, including sample translation, cell finding and autofocus. For each field of view, a phase contrast 

image was also captured using the non-FLIM imaging path.  

Figure 6-23 presents exemplar fields of view in phase contrast alongside false colour images showing 

mean lifetime, illustrating changes in mean lifetime. Figure 6-24 summarises fit results for cells untreated 

or treated with cisplatin 6 hours or 12 hours before being imaged with mean lifetime values obtained 

from global fitting to a double exponential decay model across the images in each well. Figure 6-24 (d) 

shows the changes in mean autofluorescence lifetime obtained from global fitting to a double exponential 

decay model across all the images for each condition (i.e. across repeat wells) and indicates a significant 

decrease in mean autofluorescence lifetime following cisplatin treatment, reflecting the changes seen in 

exemplar fields. There is no significant difference between conditions with the same dose but different 

treatment times, but each of the three doses is significantly different from each other (Tukey’s test, p < 

0.01). Figure 6-24 (a) and (b) show the variation of the short and long lifetimes with cisplatin dose and 
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exposure time and Figure 6-24 (c) shows the corresponding changes in the fractional contribution from 

the long (“bound NADH”) component to the autofluorescence signal, which decreases with increased 

cisplatin dose and treatment time. According to Tukey’s test, the short lifetime components measured in 

this experiment and the long lifetime components of the cisplatin treated cells do not vary significantly 

for different cisplatin treatments, although all the cisplatin treated cells present a significantly shorter long 

component lifetime than the untreated cells.  

 

Figure 6-23 Exemplar fields of view across cisplatin dose and treatment time, showing phase contrast 

and false-coloured mean lifetime images. 

Scale bars = 50 µm.  
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Figure 6-24 Fitted parameters from cisplatin treated cells.  

(a) Long lifetime component. (b) Short lifetime component. (c) Long lifetime contribution. (d) Mean lifetime. In 
all cases, error bars show standard errors calculated across repeat wells.  

Previous work has shown that treatment of MCF7 cells with cisplatin results in an increase in glycolysis 

over the timescales probed in this experiment340. Separately, Skala et al.299 has reported that an increase in 

glycolysis results in a decrease in both lifetime components in a biexponential fit to NADH 

autofluorescence data, with a concomitant decrease in the contribution of the long lifetime component. 

The results presented here are consistent with these two published works. However, it is noted that 

treatment with cisplatin also leads ultimately to apoptosis: as mentioned in section 6.3 above, previous 

work has reported that apoptosis induced by staurosporine is linked to an increase in mean NADH 

fluorescence lifetime318,341. The cause of such changes has been argued to be that the cell shifts towards 

oxidative phosphorylation in order to more effectively generate ATP. The difference between this 

previous work and our results may be due to the specific modes of action of cisplatin and staurosporine 

and/or the rate at which apoptosis is occurs with these two compounds, but further work is needed to 

investigate this in more detail.  

6.7 Tissue autofluorescence 

Distinct from the project undertaken to investigate high content FLIM of cell metabolites, the FLIM 

plate reader was used to validate measurements of tissue autofluorescence taken with a point-probe 

arthroscope designed to aid in monitoring the progress of structural protein degradation in osteoarthritis. 
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This project was undertaken as a collaboration between the Photonics group at Imperial College London, 

and the Kennedy Institute of Rheumatology at the University of Oxford. The following sections detail the 

biological context in which the project was undertaken, the experimental considerations and 

modifications to the FLIM plate reader that were made as part of this project, and results from porcine 

models for osteoarthritis.  

6.7.1 Biological background and motivation 
Osteoarthritis (OA) is the most prevalent form of degenerative joint disease: 8.75 million people in the 

UK have sought treatment for this condition342.  There is currently an unmet clinical need for a means of 

detecting OA early in its progression in order to prevent irreversible loss of joint function.  The current 

“gold standard” of OA detection is radiography, but X-ray images of affected joints only exhibit evidence 

of OA after significant degradation of cartilage has occurred.  Improving resolution of imaging 

instruments employing magnetic resonance imaging (MRI) or ultrasound provides a means of detecting 

OA earlier in its progression.  This is achieved primarily by enabling documentation of joint effusion 

(excess fluid) and fibrillation, both of which have been suggested as possible early indicators of OA343.   

Other imaging techniques such as optical coherence tomography (OCT) have also been investigated as 

minimally invasive means of detecting early-stage OA344.   Alternatively, biochemical changes in the 

cartilage extracellular matrix (ECM) that precede development of irreversible OA symptoms might be 

employed: this might include testing synovial fluid, serum or urine for biomarkers related to inflammation 

or fibrillation343,345.  Another option is to test synovial fluid for collagen- or proteoglycan-related products 

of bone and ECM breakdown343,346, or for the presence of proteolytic enzymes associated with cartilage 

degradation347,348.   

The composition of articular cartilage is roughly 45% aggrecan proteoglycans and 45% type II collagen, 

the remainder consisting of minor components.  The presence of intermolecular cross links in collagen 

render cartilage fluorescent under UV excitation349, and it is proposed that the fluorescence lifetime of 

cartilage depends on the local environment of the cross links: it follows that degradation of cartilage 

associated with OA might result in changes in autofluorescence lifetime.  Researchers in our lab, in 

collaboration with the Kennedy Institute of Rheumatology at the University of Oxford, have developed a 

compact multidimensional fluorimeter coupled to a fibre optic probe to investigate the feasibility of 

utilising a FLIM-based arthroscope for minimally-invasive needle biopsy, with the aim of developing an 

instrument capable of reading out molecular-level changes in early OA350.   We use wide field imaging 

measurements conducted on the plate reader to validate single point measurements taken with the point 

probe system.  All samples presented in this section were prepared by Dr Mohammad Nickdel.   

6.7.2 Development of methods 
The wide field UV-excited FLIM microscope that forms the basis of the automated FLIM plate reader is 

a useful tool in early studies of cartilage degradation.  The facility to make use of pulsed, tuneable laser 

sources in the UV-range made this instrument the prime choice for validating point probe measurements, 
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and the ability to automate the acquisition process allows relatively large areas of cartilage to be 

investigated with minimal user intervention.  However, several specific issues were raised in the course of 

investigations that were unique to imaging tissue in this manner.   

Firstly, it was decided that imaging should be performed using a 4x objective (Olympus 4x, NA 0.16) in 

order to survey large joint areas quickly.  Such an objective suffers much more than the standard 40x 

objective from stray room light: it was deemed necessary always to cover the plexiglass window of the 

microscope incubator to minimise any chance of background giving rise to an anomalous long lifetime in 

the fit, and all acquisitions were performed with the transmitted light condenser tilted out of the image 

path to avoid reflections.  Furthermore, the lens is not designed for use with UV excitation.  However, 

using the imaging typical imaging parameters (integration time: 0.15 s, power density after objective: 357 

µW cm-2) it was found that integrated signal from a background measurement of TBS (Tris-buffered 

saline) on a sonicated coverslip was around 1% of typical signal from samples.  Background contribution 

from the objective is therefore considered to be negligible.   

Samples were mounted differently depending on type.  The excised porcine cartilage samples presented 

here were laid on 170 µm coverslips for imaging.  It was found that it was necessary to clean these 

coverslips before acquiring data to avoid contaminations (dust) being conflated with the sample signal.  

All coverslips were sonicated for five minutes in acetone before being rinsed in MilliQ water and dried on 

a hot plate.   

Previous studies of cartilage autofluorescence in the group involved fitting a monoexponential decay 

model along with an offset value.  In the absence of a physical reason for the presence of an offset, we 

instead supposed that a relatively long decay component was being misassigned.  This supposition was 

confirmed by work performed by Joao Lagarto and Clifford Talbot using an excitation source with a 

lower repetition rate (5 MHz).  Lifetime components that are on the same scale as repetition period are 

accounted for in the model fitted by FLIMfit78.   

6.7.3 Results 
These experiments were designed to illustrate changes in autofluorescence lifetime upon proteolytic 

degradation of cartilage by matrix metalloproteinases (MMPs), a group of enzymes implicated in the 

development of OA. Bacterial collagenase was used as a positive control, since this treatment is known to 

rapidly degrade cartilage in a way analogous to degradation by multiple proteinases in vivo. Articular 

cartilage samples used in these experiments had been excised from specimens obtained from a 

slaughterhouse, frozen and thawed three times to kill chondrocytes, and stored at -20oC before being 

thawed for treatment.  Excised sections of cartilage (~ 5 mm x 5 mm x 2.5 mm) were cut in two and one 

half of each sample was incubated at 37oC in treatment solution: either 50 µg/ml bacterial collagenase for 

24 hours, or 50 µg/ml MMP-1 for 48 hours. The second half of each sample was kept in buffer for the 
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same period. Five repeat samples were prepared and imaged per condition. Following treatment, samples 

were frozen for transport from the Kennedy Institute to Imperial College London.   

 

Figure 6-25 Results of wide field time gated FLIM imaging of enzyme-treated porcine cartilage 

explants. 

(a) Average lifetimes in regions of interest averaged across five samples per condition; error bars show standard 
error across repeat samples.  (b) Data presented in treated/untreated pairs by sample for MMP1-treated cases (50 
µg/ml, 48 hours), error bars show standard deviation across pixels in regions of interest.  (c) Data presented in 
treated/untreated pairs by sample for bacterial collagenase-treated cases (50 µg/ml, 24 hours), error bars show 
standard deviation across pixels in regions of interest.  (d) FLIM and (e) intensity images for exemplar fields 
from MMP1-treated sample A.  (f) FLIM and (g) intensity images for exemplar fields from bacterial collagenase-
treated sample F. 

6.7.4 Conclusions 
We have illustrated that the plate reader can be a useful tool for probing cartilage autofluorescence 

lifetimes in the laboratory.  We have confirmed, using a crude model based on excised porcine articular 

cartilage, that degradation of ECM using enzymes associated with OA progression can be read out by 

changes in autofluorescence lifetime.  This work provides validation to measurements taken using a fibre 

optic probe-based fluorometer which acts as a prototype for a FLIM arthroscope for applications to 
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osteoarthritis.  The imaging capability of the FLIM plate reader highlights potential issues with using such 

a point probe system in a clinical setting: in particular, heterogeneity displayed across cartilage samples 

and lifetime anomalies introduced by stray connective tissue may be linked to erroneous results in a non-

imaging instrument such as might be used for needle biopsies.   

6.8 Summary 

The results presented in this chapter have demonstrated the feasibility of undertaking 96 well plate-format 

experiments investigating NADH lifetime in cells, characterising potential issues inherent in using UV 

excitation in the FLIM plate reader. It has been shown to be possible to minimise the background 

fluorescence from cell culture media by omitting selected components without adversely affecting cells 

over medium- and long duration imaging experiments. Using this modified media was shown not to 

induce changes in autofluorescence lifetime linked to changes in metabolic state either immediately after 

switching from cell culture media or over a typical plate reading FLIM experiment. Judicious choice of 

well plate has also been shown to be important in terms of background fluorescence contribution with 

more expensive, glass-bottomed plates being a necessity when using pulsed UV excitation for FLIM 

studies of NADH autofluorescence. In addition, there has been shown to be no time-varying fluorescent 

background associated with any of the microscope or external optics that present problems with 

reproducibility of measurements across a 96 well plate, allaying concerns that varying instrument 

performance might alter lifetime measurements across a plate acquisition.  

Metabolic modulators with clearly defined biochemical action have been applied to a breast cancer cell 

line in order to test the ability of the instrument to measure changes in NADH lifetime parameters in cells 

when they are changed in a predictable fashion. Rotenone and FCCP both exhibit the predicted response 

in mean lifetime. Additionally, the experiments with rotenone illustrated the advantage of an automated 

means of delivering solutions to wells in a time course experiment. It was found that staurosporine, 

chosen to induce an apoptotic response in cells, exhibited strong fluorescence itself, precluding its use in 

cellular autofluorescence experiments under UV excitation.  

 Work was undertaken to explore the ability of the FLIM plate reader to read out cytotoxic effects of 

cancer therapies, and to investigate the possibility of discriminating between tumours with different 

classifications. It has been shown that MCF7 cells show an NADH lifetime response to treatment with 

cisplatin and, to a lesser extent, to doxorubicin. These observations are rendered statistically significant in 

part due to the number of automated repeats that are inherent in plate reader experiments. In 

experiments in which different cell lines were screened against each other, measured differences in fitted 

lifetime parameters did not always agree with previously reported findings. For future experiments, 

biochemical methods might usefully be employed to explain differences between findings reported here 

and those reported elsewhere.  
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Both empirically and from literature, it is evident that interpreting lifetime measurements derived from 

NADH autofluorescence is not always straightforward. In future work, it will perhaps be necessary to 

correlate results acquired from FLIM studies carried out on the plate reader with other methods of 

measuring cell metabolism, including biochemical methods, that have not formed part of the 

investigations presented here due to constraints on time and limited expertise. However, the advantages 

conferred by conducting such experiments on the plate reader, in terms of throughput and automation of 

time course studies, would add value to future studies of metabolism based on NADH lifetime imaging 

both by making a wider range of assays practical and by increasing the number of cells assayed.  

The biological relevance of a plate reader capable of reading out autofluorescence lifetime as a surrogate 

for metabolic state includes applications in stratified medicine and drug discovery, as well as basic 

research. In the latter case, extensions of previous studies into diseases associated with metabolic changes 

such as cancer312 or to stem cell differentiation for which autofluorescence can provide a label-free 

readout322,351,352 might benefit from the additional throughput afforded by the system described here. 

Furthermore, autofluorescence readouts could be combined with other readouts of cell signalling, for 

example by FLIM-FRET, to further probe the underlying mechanisms of disease.  

For stratified medicine, the application of cellular autofluorescence based readouts has been proposed to 

improve the clinical outcomes of cancer therapies through the ability to assay the metabolic response of 

cells derived from an individual patient’s tumours to a number of different therapeutic conditions. Here a 

single multiwell plate-based experiment could allow rapid analysis of the likely response of the patient to 

specific drugs, doses or adjuvant treatments, thereby minimising drug resistance to therapy and improving 

efficacy. Such an approach may realise higher physiological relevance when implemented with tumour 

spheroid and other 3D cell culture techniques351, which are becoming increasingly widely adopted.   

For drug discovery there is potential for using cellular autofluorescence lifetime readouts to inform on the 

off-target metabolic response of drug candidates, particularly when combined with advances in and 

increasing commercial availability of stem cell-derived hepatic and cardiac cells353. The ability to perform 

these experiments in a plate reader format would permit systematic studies of metabolic changes in the 

context of drug toxicology and the dose-dependence of such effects.  This could thus form the basis of 

new screening tools to help address the significant problem of late stage attrition in the pharmaceutical 

industry. To this end, cellular autofluorescence intensity has previously been explored as a tool to study 

toxicology in a plate reader format354; it is envisaged that the additional information on parameters such as 

NAD(P)H binding afforded by the FLIM plate reader might add value to such work.  

6.9 Future work 

The modifications to the FLIM plate reader described in this chapter allow the instrument to be deployed 

for UV-wavelength excitation FLIM studies. The flexibility of the instrument could be further enhanced 

by the addition of other imaging modalities: combining UV-excited NADH lifetime imaging with 
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intensity imaging at longer wavelengths would allow fluorescence intensity associated with FAD to be 

measured, and hence optical redox ratio to be calculated. Such a combination of methods has been 

implemented in a two-photon excitation system, and published works have shown the advantages that 

such a combination might afford in further discriminating between cell lines exhibiting different drug 

sensitivities and receptor statuses312. Implementing an additional spectral channel is in principle quite 

possible with the plate reader system: by combining excitation beam paths with a dichroic mirror and an 

excitation filter wheel, a broadband supercontinuum laser source might afford both intensity and time-

resolved measurements of FAD fluorescence. Alternatively, automating the means of selecting between 

pulsed laser and mercury lamp excitation source could also allow intensity measurements of FAD 

fluorescence. Alternatively, the ability to resolve fluorescence polarisation in FLIM would give further 

information on NADH binding in response to various treatments, noting that such an approach has been 

implemented on a multiphoton microscope355 but without the degree of automation or the speed 

associated with high content imaging. Implementing time-resolved anisotropy imaging on the plate reader 

would require a greater number of detected photons to resolve more complex anisotropy decays and 

would thus increase the image acquisition time.  

There is a trade-off in the implementation of the FLIM microscope between field of view and resolution: 

generally, increasing the number of cells interrogated by increasing the field of view decreases the spatial 

resolution, which is determined by the density of resolution elements on the HRI. Depending on the 

particular biology to which the instrument is applied, it may be necessary or informative to acquire FLIM 

images with greater spatial resolution. Such measurements would potentially inform on the subcellular 

localisation of different NADH lifetimes or allow segmentation of cells to separate cytoplasmic NADH 

signal from mitochondrial signal. Modifying the instrument by using a different objective lens or 

introducing a lens relay system between the intermediate image plane and the photocathode of the HRI 

on the left hand port of the microscope would allow such imaging to be performed.  

Recently, work has been published by the Duchen group in which the authors cast doubt on the 

canonical approaches to interpretation of metabolism-related autofluorescence lifetime data310. In this 

paper, the authors suggest that the origin of lifetime shifts in mammalian cell lines upon metabolic 

modulation to be less to do with different NADH binding partners than to do with a shift in the balance 

between signal originating from NADH and NADPH. This paper further emphasises both the interest in 

reading out NADH and NADPH autofluorescence lifetimes, as well as the difficulty in interpreting them 

in terms of specific biochemical changes within the cell, as discussed in section 6.2.  
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Chapter 7: Conclusions and outlook 

7.1 Summary of thesis 

This PhD thesis has described the development and application of an automated FLIM multiwell plate 

reader for high content analysis. During the course of this PhD project, I have undertaken research into 

three main areas. The first concerned the construction and development of hardware and software tools 

to create a functional, flexible automated FLIM plate reader to enable quantitative lifetime-based  imaging 

assays for high content analysis. The second addressed its application to FRET-based assays utilising 

genetically expressed fluorophores and the third concerned its application to label-free autofluorescence 

lifetime-based readouts applied to assays of cellular metabolism and tissue matrix properties.  

Having introduced the basic principles of fluorescence imaging, including the phenomenon of FRET and 

the foundations of FLIM, Chapter 2 of the thesis provided a brief review of the state-of-the-art in high 

content analysis imaging instruments, including alternative work towards FLIM-HCA published before 

and during my PhD project that provides some context for the development of the FLIM plate reader 

presented here. Chapter 3 concerned the hardware components required to implement the FLIM plate 

reader and the software development that continued throughout the project to enable the instrument to 

meet the demands placed upon it for assays developed either as part of the main biological application 

areas of the PhD thesis or in the course of smaller collaborative projects. Of the areas of instrument 

development, perhaps the most immediately useful across all biological applications was the enhancement 

of the basic cell prefind methods to encompass the use of low magnification lenses, multiple spectral 

channels and phase contrast imaging to increase flexibility and decrease the time spent searching for cells 

in sparely labelled or seeded cell samples. I further improved the functionality and flexibility of the 

instrumentation by increasing the degree of control over acquisition parameters in automated acquisition 

sequences to enable optimal parameters to be used to minimise acquisition times. Some aspects of 

instrument development, including the integration of automated liquid handling and the capability to 

acquire phase contrast or bright field images in line with FLIM acquisitions, were not used extensively for 

all the application experiments presented in this thesis but they will benefit a range of future experiments.  

In Chapters 4 and 5, the FLIM plate reader was deployed to investigate biological signalling processes in 

cells using fluorescence lifetime to read out FRET signals. Chapter 4 concerned experiments utilising 

intermolecular FRET probes. The first application was an investigation of the SUMO1 post-translational 

modification of the oncogene product transcription factor FOXM1 in response to anthracycline 

treatment in breast cancer cells, carried out under the auspices of the Lam laboratory at Imperial College 

London. This was a challenging series of experiments due in part to problems with establishing 

transfection protocols yielding sufficiently high expression of the donor FOXM1-eGFP construct to be 

useful for imaging. In addition, the presence of multiple means of interaction between FOXM1 and 

SUMO1 meant that interpretation of the results of FRET experiments was not entirely straightforward. 
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Nevertheless, it was possible to establish that FOXM1 SUMOylation measured by FRET in MCF7 cells 

occurs in a treatment time-dependent manner, with a peak in the extent of modification at 6-8 hours 

post-treatment followed by a decrease over 21-24 hours post-treatment. This result was corroborated by 

parallel biochemical methods conducted by collaborators in the Lam laboratory. The second series of 

experiments concerning intermolecular FRET, undertaken with Anca Margineanu and Sean Warren in the 

Photonics group at Imperial College London, utilised fluorescent protein-based FRET constructs 

generated and tested by Jia Chan at UCL and sought to demonstrate a prototype protein-protein 

interaction screen by assaying the FRET signal resulting from potential interactions between derivatives 

of the MST1 protein and RASSF family protein constructs. This proof of principle screen identified the 

RASSF binding partners of MST1 and illustrated the potential of the FLIM plate reader to be used to 

screen for protein-protein interactions. Chapter 5 reported on the application of intramolecular FRET 

biosensors of GTPase activity in two different collaborative projects with the cell-cell adhesion signalling 

group in the National Heart and Lung Institute at Imperial College London. Working with the Braga 

laboratory at NHLI, experiments were undertaken with the goal of establishing the spatio-temporal 

profile of RhoA activation in response to calcium switch stimulation in human keratinocytes. Separately, 

in a parallel collaboration with the Braga laboratory, Rac1 activation in response to overexpression of the 

GTPase activating protein CdGAP was investigated. In both cases, FLIM-FRET results following assay 

optimisation were promising and supported hypotheses based on biochemical results: RhoA activation 

was found to increase 60 minutes after stimulation with calcium and Rac1 activity was found to be 

reduced both at lateral membranes and globally within cells by overexpression of CdGAP. An additional 

outcome of these projects was the development of a manual image segmentation tool developed for use 

on touch screen tablet and smartphone devices.  

Chapter 6 concerned the use of autofluorescence lifetime imaging to investigate cell metabolism and 

structural protein degradation.  While this has previously been established in small-scale imaging 

experiments, to date, as far as I am aware, the FLIM plate reader described in this thesis is the first 

reported HCA instrument for automated assays of cellular and tissue autofluorescence using single 

photon excitation and the experiments presented here are the only such exemplars of label-free HCA-

FLIM assays using autofluorescence lifetime as a readout. This instrument development was subject to 

specific challenges, distinct from those encountered for visible wavelength HCA-FLIM and multiphoton 

autofluorescence lifetime imaging. In particular, optimisation of experimental parameters to minimise 

fluorescent background was required, and it was necessary to establish that cell metabolism was not 

adversely affected by either prolonged time on the microscope or by imaging with ultrafast UV-

wavelength excitation sources. Experiments with known metabolic modulators illustrated that the 

autofluorescence lifetime imaging plate reader measured the expected changes in NADH fluorescence 

lifetime: stimulation with rotenone was found to increase mean lifetime, whilst treatment with the 

mitochondrial uncoupler FCCP was found to decrease mean lifetime. Studies of drug response and cell 

line screening yielded encouraging results, with reductions in lifetime being observed with both cisplatin 
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treatment time and treatment dose, which suggest FLIM-HCA of autofluorescence might be applicable in 

the areas of personalised medicine and toxicology studies. It was apparent throughout the project, 

however, that the measured autofluorescence lifetime of cells depends on many factors, and that future 

experiments could benefit from a close interaction with biochemists and other experts in metabolomics 

to aid interpretation of complex autofluorescence lifetime readouts.  Chapter 6 also presented first results 

applying FLIM to autofluorescence of cartilage, for which lifetime changes could be correlated with 

collagen degradation, indicating the potential to use autofluorescence readouts as an indicator of 

osteoarthritis.  

7.2 Ongoing projects and future work 

Inevitably, the finite time available for each aspect of my PhD research has led to many avenues for 

investigation and development remaining for future work. Here I outline a few such developments that 

are being addressed in our laboratory. Instrument development is expected to progress according to the 

needs expressed by collaborators and colleagues. In particular, fully automated filter control for Nipkow 

disk optical sectioning has been implemented on the plate reader such that multiplexed FLIM and FRET 

imaging may be conducted in depth-resolved as well as wide-field modalities: it is foreseen that such 

capabilities might be useful when studying cells cultured in 3-D environments that are expected to give 

results with greater physiological relevance than, for example, monolayers of cells on coverslips. This 

could be extended for multiphoton imaging to the implementation of a multifoci tandem-scanning 

multiphoton FLIM microscope in the plate reader for automated imaging of cellular autofluorescence, 

including in tumour spheroids, tissue explants and other thick samples – although throughput is likely to 

be significantly lower than the current FLIM plate reader owing to the lower efficiency of multiphoton 

excitation. Further characterisation of the enabling technology for HCA-FLIM in the current 

implementation – the GOI – is currently being carried out within the Photonics group at Imperial College 

London in conjunction with Kentech Instruments Ltd. with the goal of optimising future design and 

fabrication of devices for FLIM acquisitions. Finally, development is ongoing to adapt the control 

acquisition software to an open-source platform (MicroManager), with the eventual goal of providing 

OpenFLIM-HCA to the wider fluorescence imaging community: a protocol for building and running a 

cheap, effective and flexible FLIM plate reader that does not require the purchase of software licences or 

highly specialised instrumentation.  

The wide range of biological groups engaging in FRET experiments represents a rich source of mutually 

beneficial collaborations that could be explored to apply the FLIM plate reader to address diverse 

biological questions. Such application areas might include investigating receptor phosphorylation in 

response to drug treatment and more extensive investigation of signalling pathways, e.g. relating to 

FOXM1 and anthracycline resistance. In the latter case, the deployment of multiplexed FRET 

experiments – using multiple FRET systems with fluorophores in different spectral windows – is an 

avenue that may be explored with the automated FLIM plate reader. Further collaborations have already 
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been established and preliminary experiments are underway.  A particular goal has been to establish the 

utility of the FLIM pate reader with cells expressing fluorescent proteins labelling proteins at endogenous 

levels, which is desirable to minimise the interference with biological processes that can result from over 

expression of target proteins. Working with the Ellenberg laboratory at EMBL, I have explored the 

prospect for FLIM to read out interactions of mitotic machinery without overexpressing fluorescent 

protein constructs by adopting genome-editing labelling techniques implemented by Robert Mahen. 

Preliminary data (Figure 7-1) suggests that such systems exhibit sufficient fluorescence in telophase and 

metaphase cells that FLIM on the plate reader is possible; future experiments will make use of the 

automated acquisition capabilities of the instrument to investigate the effects of homozygous versus 

heterozygous genome editing, as well as the nature of protein interactions at different stages of mitosis.  

 

Figure 7-1 Preliminary data acquired with FLIM plate reader during a project to investigate protein-

protein interactions during mitosis in genome-edited cell lines expressing fluorescent protein fusions at 

endogenous levels.  

(a) Integrated intensity image of a field of view showing cells in interphase and telophase. (b) Bright field image 
of the same field of view (with small offset). (c) FLIM image showing results of a monoexponential fit to data 
from the same field of view. (d) Integrated intensity image of a field of view showing cells in interphase and 
metaphase. (e) Bright field image of the same field of view (with small offset). (f) FLIM image showing results of 
a monoexponential fit to data from the same field of view. Scale bars 50 µm.  

Work is also continuing on the project concerning RASSF-family interactions with MST1 and its 

derivatives. As outlined at the end of Chapter 4, it may be possible to establish a model for FRET 

interactions that would allow the dissociation constant 𝐾𝑑 to be established from lifetime and intensity 

measurements taken using the FLIM plate reader. To date, however, it has only been possible to 

investigate relative dissociation constants (Figure 7-2), due to the lack of optical sectioning inherent in 

wide-field illumination; furthermore, without any data to corroborate lifetime measurements, such an 

approach must be treated with caution. Nevertheless, optically sectioned FLIM data has recently been 

implemented in the plate reader using a motorised Nipkow disk unit in the plate reader to provide 
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improved quantitation of intensity measurements with the goal of establishing a series of absolute values 

for dissociation constants. It is further intended that a protein interaction that is better characterised than 

the RASSF-MST1 interaction might be investigated in order that 𝐾𝑑 results obtained using the FLIM 

plate reader could be correlated to those measured using an alternative technique.  

 

Figure 7-2 Preliminary data showing relative dissociation constants as calculated from FLIM plate 

reader data as outlined in Chapter 4: section 4.2.7.  

(a) Relative 𝐾𝑑 calculated for interactions between classical RASSF family members fused to eGFP and full 

length MST1 protein fused to mCherry. (b) Relative 𝐾𝑑 calculated for interactions between classical RASSF 
family members fused to eGFP and truncated SARAH domain fused to mCherry. 

There have been many potential applications for metabolite imaging emerging in the literature including 

investigations of stem cell differentiation, cancer screening and toxicology. Many of these experiments 

could benefit from the automation and statistical robustness that can be established using FLIM plate 

reader instrumentation to excite metabolite autofluorescence. Collaborations with groups involved in 

metabolomics could be fruitful as biochemical experiments conducted in parallel with autofluorescence-

based assays should provide a clearer picture of the molecular changes taking place inside cells and 

contributing to autofluorescence lifetime changes. In particular, assaying the response to drugs in patient-

derived cell cultures, as proposed by the Skala laboratory at Vanderbilt University, could prove useful for 

stratifying patient cohorts for therapy.  In general, there seems to be significant potential for HCA-FLIM 

of cellular autofluorescence as a diagnostic and toxicological tool for drug discovery and personalised 

medicine.   
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Appendix 1: Derivation of expression for appropriate 

thresholding of HRI photon counting images 

To establish the magnitude of CCD noise, 100 images acquired with the CCD capped were analysed. The 

average standard deviation calculated across repeat images is denoted 𝜎𝐶𝐶𝐷. The distribution of 

background intensities was found to be well modelled by a Gaussian with mean zero and variance 𝜎𝐶𝐶𝐷
2 .  

When images are convolved with a circular kernel of radius 𝑟, effective CCD noise becomes: 

 
𝜎̃𝐶𝐶𝐷 = −

𝜋𝑟2 ∙ 𝜎𝐶𝐶𝐷

√𝜋𝑟2
= √𝜋𝑟2 ∙ 𝜎𝐶𝐶𝐷 

 

If the extent of the “cloud” of signal from a single photon event is smaller than the kernel, the total 

number of counts in the cluster is given by the maximum value of the smoothed cluster.  

Since CCD noise follows a Gaussian distribution with mean zero and variance , the probability of a false 

positive in a pixel is given by  

 
𝑝1 =

1

2
[1 + erf (

−𝑡

√2 ∙ 𝜎̃𝐶𝐶𝐷

)] 
 

where 𝑡 is the threshold value above which a photon event is counted in the smoothed image. Since 𝑝1 is 

small and the number of pixels per image 𝑛𝑝𝑖𝑥 is large, a Poisson approximation may be adopted to 

describe the distribution of false positives in the image with mean 𝜆 = 𝑛𝑝𝑖𝑥 ∙ 𝑝1. The probability of more 

than zero false positives in the image is given by 

 𝑝 = 1 − 𝑃(FP = 0) 

= 1 −
λ0 exp(−𝜆)

0!
 

≈ 𝑛𝑝𝑥 ⋅ 𝑝1 

≈
𝑛𝑝𝑥

2
[1 + erf (−

𝑡

√2 ⋅ 𝜎̃CCD

)] 

 

since 𝑝 and therefore 𝜆 is small. Therefore, for a desired false positive rate 𝑝 per image, the appropriate 

thresholding is given by  

 
𝑡 = √2 ⋅ √𝜋𝑟2 ⋅ 𝜎CCD ⋅ erf −1 (1 −

2𝑝

𝑛𝑝𝑥
) 
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Appendix 2: FRET constructs: further details 

Maps showing plasmids used in the work presented in this thesis are shown here, where available. In 

cases where collaborators were unable to provide plasmid maps or sequences, as complete a summary as 

possible of the process used to generate the plasmids is presented with references.  

Cerulean-Venus FRET constructs 

Descriptions of the process for generating C5V, C17V and C32V FRET constructs are found in 

literature356,357. Plasmid maps for constructs exist on Addgene, where the plasmids were sourced from. 

Based on the plasmid map and sequence for C5V, the linker between the two fluorescent proteins is 

identified as consisting of S-G-L-R-S amino acids. Work published previously by the group that originally 

generated the constructs identifies the five amino acid linker as flexible82. Plasmid maps downloaded from 

Addgene are presented in Figure A2 - 1 for reference.  

 

Figure A2 - 1 Plasmid maps for Cerulean-Venus FRET constructs downloaded from Addgene, for 

reference.  

(a) C5V358; (b) C17V359; (c) C32V360. Restriction site labels and resistance genes omitted for clarity.  

FOXM1-SUMOylation constructs 

FOXM1-EGFP constructs were generated by Steve Myatt, a former post-doc in the Lam group. No 

plasmid map, sequence or cloning strategy could be sourced for the FOXM1 constructs; it is known, 

(a) (b)

(c)
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however, that full length FOXM1/FOXM1mut were subcloned into peGFP-C1 vector (Clontech) to 

generate donor constructs188, whilst the SUMO1-TRT was generated by replacing the mRFP1 sequence 

present on the construct gifted from the Ng lab202.  

RASSF-family interaction screen constructs 

A complete description of the constructs and cloning methods is presented in Jia Chan’s Ph. D. thesis361. 

In summary, donor constructs were cloned using the Gateway® cloning method (Invitrogen), inserting 

the RASSF family gene of interest into pDONR207 entry vectors and then combining with compatible 

destination vectors generated by inserting an RfC.1 Gateway® reading frame cassette into commercially 

pEGFP-C1 vector (Clontech). The RASSF1-EGFP plasmid (Figure 4-18 (c)) is presented in Figure A2 - 2 

(a). Acceptor constructs are generated by restriction digest and ligation, using KOD polymerase to 

generate inserts with BglII and HindIII restriction sites which are then ligated into the multiple cloning 

site of a pmCherry-C1 vector. An exemplar plasmid map for the full length MST1-mCherry construct 

(Figure 4-18 (c)) is presented in Figure A2 - 2 (b).  

 

Figure A2 - 2 Exemplar plasmid maps from RASSF family interaction screen for reference.  

(a) EGFP-RASSF1; (b) mCherry-MST1. Rendered in SnapGene.  

Small GTPase activation constructs 

The methods used for generating GFP-mRFP variants of small GTPase biosensors have been described 

previously256; in summary, the sensor region was excised from between the original CFP and YFP 

fluorescent proteins and inserted between mRFP1 and EGFP in a modified pEGFP-N1 vector 

(Clontech). This was done in such a way as to preserve the linkers in the original Raichu construct, 

determined in the original publication to be L-D between the acceptor and the protein binding domain, 

T-G-G-G-G-T between the binding domain and the small GTPase, and G-G-R between the GTPase and 

the donor224 (schematic representations of constructs are found in Figure 5-2 and Figure 5-10). For 

reference, a map of the original Raichu probe rendered in SnapGene to highlight relevant regions is 

presented in Figure A2 - 3.  

(a) (b)
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Figure A2 - 3 Plasmid maps for original Raichu probe for reference.  

Sequence downloaded from Phogemon website362; rendered in SnapGene.  
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