
A Model for Polymer Membranes

Richard Broadbent

Department of Physics

Imperial College London

A thesis submitted for the degree of

Doctor of Philosophy

24-12-2014



Abstract

Separation processes are widely used throughout the chemical and

pharmaceutical industries. Polymer membranes have the potential to

significantly improve both energy usage and the costs of separation

processes by reducing reliance on fractional distillation. For this to

occur methods to control the porosity of the polymer membranes must

be identified. The P84 molecule is a relatively complex co-polymer

with numerous strongly interacting rigid groups, with a persistence

length of over 1.1 nm, and the region in which filtration pores form in

the membrane is typically 50–80nm thick, whilst the pores of inter-

est within the membrane are typically less than 0.5 nm in size. P84

membranes are used commercially to separate molecules from organic

solvents, in a process called organic solvent nanofiltration. Recent ex-

periments with membranes produced from the P84 polyimide molecule

found that altering the solvent used in the initial stage of manufacture

radically altered the size of the sub-nanometre pores in the filtration

region of the membrane. This effect was not expected, and could not

be explained by the available models for polymer membrane forma-

tion.

I present here a model as well as key results developed during my in-

vestigation of the formation of P84 polymer membranes. The model

uses a mixture of fully atomistic molecular dynamics simulations of a

single P84 molecule in solvent and coarse grained Monte Carlo simula-

tions containing hundreds of complete polymer molecules. It demon-

strates that the experimentally observed changes in pore sizes in P84

membranes can be explained by the differing interaction energies be-

tween the solvents and the polymers. I further present a new method



for coarse graining aromatic polymers in molecular dynamics simula-

tions which has been shown to permit the time step to be increased

from 1 fs to 5 fs whilst maintaining all-atom accuracy.
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Chapter 1

Introduction

Why are we interested in polymer membranes, and why would a model be use-

ful? To answer these questions and understand the scope of this work we will

briefly consider separation at an industrial scale, the role of membranes, and the

potential impact of modelling on this field moving forwards.

1.1 Industrial Separation

“Separation processes account for 40–70% of capital and operating costs in industry”[1].

This gives us some idea of the importance of separation processes to our daily

lives, from the refining of oil, plastics and fuels to the creation of medicines,

industrial separation is everywhere.

One of the main processes used in industrial separation is fractional distil-

lation where a liquid is heated and the various gasses are then extracted based

on their molecular weight and re-condensed. Fractional distillation is highly en-

ergy intensive and requires huge facilities such as oil refineries to produce large

quantities of liquid. In contrast membrane based facilities have a demonstrated

ability to separate vast quantities of fresh water from sea water using only a frac-

tion of the energy of fractional distillation or even the membrane filtration plants

of a decade ago[2]. Therefore considerable effort has been spent on membrane

filtration.
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1.2 Membranes

Originally developed in the 1960s, polymer membranes have been in widespread

use for many decades[3, 4, 5]. The need to reduce energy consumption both

to reduce costs and greenhouse gas emissions has resulted in increased interest

in membranes in the last two decades[1]. In particular there has been a large

volume of work on organic solvent nanofiltration (OSN) membranes[6, 7, 8, 9, 10,

11, 12, 13, 14, 15]. These permit the separation of organic molecules from organic

solvents based on their size and molecular weight.

Developing a new product, particularly one tailored on a nano-scale like an

OSN membrane, is expensive. Therefore, the ability to understand the influence

of manufacturing techniques, or to predict the behaviour of a membrane before

it has been manufactured, has the potential to substantially reduce the costs

associated with designing membranes. Recent work has shown that the models

currently used to understand the formation of phase inversion OSN membranes do

not match the trends seen experimentally. In particular models typically expect

that the evaporation time in manufacturing dominates the final porosity, whilst

recent experiments have shown that certain membranes are insensitive to this

whilst being exceptionally sensitive to the composition of the solvents used in

their production[6, 7, 8, 9, 10]. A new approach to modelling the formation of

these membranes is therefore required.

1.3 Modelling

The creation of a new model is a complex undertaking. Polymer membranes have

numerous features which can be modelled including porosity, diffusivity of differ-

ent species, and degree of cross-linking. This work focusses on building a model

for the formation of phase inversion membranes. This model is designed to predict

the molecular structure of phase inversion membranes from the inter- and intra-

molecular interactions of the chemicals involved. The phase inversion process

takes place over seconds and is governed by interactions between polymers and

solvents. Accurately modelling a system containing many large strongly interact-

ing molecules over a period of seconds requires both the precision of atomistic and
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quantum modelling techniques and the ability of coarse grained representations

to rapidly sample configurations. Therefore, a model using Monte Carlo (MC),

classical molecular dynamics (MD), and density-functional theory (DFT), was de-

signed. MC1 allows the study of large collections of complete polymer molecules,

thereby providing access to the pore sizes and distributions. Whilst MD provides

detailed information about the behaviour of small collections of molecules. DFT

provides more accurate energetics and can permit the parameterisation of custom

forcefields for molecules where accurate forcefields do not exist.

Coupling three computational techniques together is clearly a challenging task.

However, despite this, significant progress has been made here towards a complete

model taking atomistic information and using it to understand the trends seen

in the production of commercial OSN membranes. In the course of developing

this model a new way to coarse grain polymers with aromatic backbones was

developed[16]. Furthermore, it can be seen from this work that the trends in pore

size and distributions seen in the dense surface layer of P84 membranes match

those seen in the initial polymer dope. This research represents the beginning of

a larger body of work which will aid in our understanding of the behaviour of

membranes during both manufacture and operation.

1Example configurations from the MC model, described in Sec. 8.2, are provided in the
lower right hand corners of the pages of this work. These are best viewed as a flip book to show
the evolution of the polymers through the simulation.
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Chapter 2

Techniques

Since their invention computers have been used to simulate models of physical

systems[17]. The techniques used cover a wide range of topics from understanding

wind damage during a hurricane[18], to the loads on a jet engine due to the loss of

a fan blade[19]. Techniques are similar to theories in that they are only applicable

for certain systems; quantum mechanical approaches yield the correct structure

when modelling simple molecules[20], however, they would not be practicable or

useful to model a complete suspension bridge as the physics of interest occurs

on a much larger length scale. Systems moving on different length and time

scales require different approaches to modelling. When choosing which simulation

techniques to use it is, therefore, important to consider both the length and time

scales involved in the system of interest. During the course of my research I have

used the MC method, MD, and DFT. This chapter will present an overview of

these three techniques and some of their strengths and weaknesses when applied

to polymeric systems.

2.1 Monte Carlo

The MC method is an approach to studying systems by using random numbers

to sample the possible configurations1. From the earliest days of computer mod-

1 A configuration is a set of variables which uniquely identify the state of a system, e.g.,
for a system comprising a single point mass connected to a perfect harmonic spring, the point
mass’ position and velocity describe its configuration.
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elling MC has be used to solve problems which are too complicated to solve

algebraically[17]. Applications of the MC technique are highly varied with it be-

ing used for the study of systems as disparate as the relative risks posed by a

virus to farmed Scottish rainbow trout[21], the fretting fatigue life of components

made from Ti-6Al-4V[22], as well as some of the most exact numerical solutions

to the non-relativistic Schrödinger equation[23]. The discussion in this section

will be limited to the general principle of MC modelling, and how it is applied to

polymers. For reference a basic introduction to the advantages of MC sampling

and the Metropolis-Hastings Monte Carlo (MH) method[17, 24] is provided in

App. A, a more complete description is available in e.g., Refs [25, 26]

2.1.1 The Monte Carlo Method

A MC simulation consists of two parts, a sampling scheme and a system. There

are many sampling schemes, see for instance Refs [27, 28] however, the MH algo-

rithm is the most widely used and is the principal technique used in my MC sim-

ulations. Sampling using the MH algorithm involves adding states to a Markov

chain based on their relative probabilities. Markov chains are sets of confor-

mations where the probability of making a transition to a trial configuration is

dependent only on the current configuration of the system and the trial config-

uration1. In physical systems the Markov chain generally samples a Boltzmann

distribution of energies in the system. The relative probability between two states

is given by the Boltzmann weight exp (−β∆Eij), where ∆Eij is the change in en-

ergy between state i and state j and β = (kBT )−1, where kB is Boltzmann’s

constant and T is the temperature. The Markov chain is then generated by a

random walk with the acceptance probability

PA(j|i) = min [1, exp (−β∆Eij)] , (2.1)

which is the probability to accept the move to state j given that the system is

in state i. Following this step the state of the system is added to the Markov

1This is defined mathematically as P (Xn+1 = x|Xn) = P (Xn+1 = x|{Xi}), where {Xi} is
the set of all previous configurations of the Markov chain, x is the trial configuration, and Xn

is the current configuration in the chain.
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chain. This processes ensures that the sampling frequency obeys a Boltzmann

distribution. Averaging a micro-state observable over the Markov chain produces

an ensemble average of that observable. For further details see, e.g., Refs [25, 26]

In all MC simulations it is by definition necessary to stochastically sample the

phase space, doing so requires the use of random numbers. Unfortunately com-

puters are by their nature deterministic, given identical input they will produce

identical output. Typically large quantities of random numbers (≫ 109) are re-

quired for a MC simulation, therefore, generating these before the simulation and

reading them in is impractical. The solution to this problem is to use a special

piece of computer code known as a pseudorandom number generator (PRNG).

These PRNGs generate streams of numbers which are not random[29, 30, 31] but

obey certain statistical properties which are expected of random numbers. No

generator is perfect and using a poor generator such as the linear congruential

generators commonly included in standard programming libraries can result in

incorrect sampling[32]. Using an appropriate generator which generates a sta-

tistically reasonable stream of pseudorandom numbers is essential for MC sim-

ulations. Therefore, in my research I have primarily used the double-precision

SIMD optimised Mersenne twister (dSFMT)[29, 31] generator which is optimized

and improved form of the Mersenne twister algorithm. A more recent algorithm

known as well equidistributed long-period linear (WELL)[30] has shown improved

uniformity in higher dimensional spaces as well as better recovery from a poor

seed. However, it is substantially slower and less widely cited, it was therefore

not used in my MC program.

The MH algorithm requires some means of generating a new configuration of

the system (state j in Eq. (2.1)): this is known as a move. A move in a MH

algorithm is system specific and will be discussed in the context of polymers in

the following subsection (Sec. 2.1.2). In general it is desirable to use a valid

move1 which causes a large change in the parameters defining phase space, whilst

maintaining a high acceptance probability. This allows efficient sampling of a

large region of the phase space at a reasonable computational cost.

1In my research I have always used moves which obey detailed balance; for discussion of
validity of MH moves and the detailed balance condition see, e.g., Ref. [25].
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2.1.2 Monte Carlo Modelling of Polymers

Polymers were one of the first systems to be modelled using MC computer

simulations[33]. There are two primary challenges when designing MC simu-

lations of polymers: finding or creating a representation of a polymer, which

includes the necessary information for the property of interest; and choosing

a suitable move for that representation. These two challenges are inherently

linked as a move suitable for one representation of a polymer will not necessarily

translate to another representation. The representation and MC move will be

addressed in turn.

2.1.2.1 The Representation

Polymer models come in many forms or representations. These vary from the

highest resolution models where the electrons in a polymer are treated quantum

mechanically through all-atom (AA) models, to soft core blob models, where a

polymer is treated as chain of soft spheres, or even a single soft sphere. The

resolution used to represent a polymer system depends on which properties of

the polymer are of interest. Higher resolution models usually incur a large com-

putational cost relative to lower resolution models as they have a larger space

of possible conformations. Therefore, it is advisable to use the lowest resolution

model that will include the necessary interactions. The discussion that follows

applies, unless otherwise stated, to models of polymers that range in resolution

from AA to a series of non-interacting connected segments.

When modelling polymers it is necessary to generate an initial configuration.

This process is usually referred to as ‘building’ or ‘growing’ a molecule. If the rep-

resentation is completely non-interacting this can be accomplished by randomly

placing one polymer segment at a certain orientation then placing another seg-

ment on its end with a random orientation, and another segment after that, and

so on until the desired length is reached. However, chains built in this manner are

likely to include overlapping segments which for interacting representations are

often excluded from the space of allowed configurations or included with a very

large energy. Configurations with a large energy relative to the thermal energy
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(β−1) have minimal impact on the partition function,

Z =

∫

R6N

exp (−βH ({q}, {p})) dq3Ndp3N . (2.2)

Here H is the hamiltonian for the system, and {q} and {p} are respectively the

positions and the momenta of the N objects in the system. Therefore, configu-

rations with high energies should ideally be generated infrequently as they will

generally have a very small acceptance probability (see Eq. (2.1)). As every failed

attempt to grow a polymer chain expends computational effort, and the number

of chains which must be sampled increases with chain length, it will become im-

possible to sample long chains if the acceptance rate is too low. Therefore, a

significant amount of effort has been directed towards finding algorithms to grow

polymer chains efficiently.

One of the earliest computer models for a polymer chain worked by generating

polymer chains on a lattice, with a self-avoiding random walk (SAW)[33]. This

was subsequently extended to allow its use for systems containing multiple poly-

mer molecules[34]. The SAW model of a chain represents a polymer as a series of

connected segments on a lattice, each of these segments may be oriented to join

any nearest neighbour site on the lattice. The self avoidance is enforced by forbid-

ding placing a segment onto an occupied lattice site. This model is generally used

to sample the scaling behaviour of polymers[35] or systems where the polymers

are weakly interacting with one another[36]. The SAW model, is widely used in

polymer simulation and is a topic of great interest in many areas, for instance in

polymer adsorption at surfaces[36], and has been extended to allow the segments,

or sites, to interact via a potential and then be sampled using MH[37].

Models of polymers can be far more sophisticated than the SAW model.

OPLS-AA1 is a forcefield designed for atomistic MC simulations of organic molecules[38].

These AA models can also be used in MD simulations of polymers using force-

fields, as discussed in Sec. 2.2.2.

1 Optimised potential for liquid simulation all atom (OPLS-AA).
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2.1.2.2 The Move

The probability of randomly growing a SAW polymer chain decreases rapidly

with increasing chain length and increasing density. Therefore Rosenbluth and

Rosenbluth (RR)[33] developed a procedure for growing a polymer chain that

only allows segments to be placed on unoccupied sites, which introduces a bias

into the sampling. RR corrected for this by introducing a weight onto each

conformation based on the available positions when each segment is placed[33].

This technique was also generalised to multiple chains[34] and more complex

models using potentials[37]

Increasing computer power in the 1980s resulted in large, > 100 segments,

polymer systems being simulated for the first time. This led to the discovery that

certain rare conformations with large RR weights dominate the sample space[39].

This issue was solved by modifying the bias used in the original sampling process

of RR to sample according to the Boltzmann distribution, thereby, removing

the intrinsic bias and the need for weighting the configurations[37]. The bias is

removed by adding an acceptance criteria,

P (j|i) = min

[
1,
Wj

Wi

]
, (2.3)

where Wi is the RR weight of configuration i, into the RR procedure. The

approach was later generalised to allow the construction and sampling of contin-

uously deformable (non-lattice) polymers[40]. This technique is often used within

programs, such as Amorphous Cell R©1, to generate initial polymer conformations

for MD simulations. Although it should be noted that in Materials Studio V6.1

Amorphous Cell R© does not make any correction for the inherent bias in a RR

process.

The space of configurations for a polymer system with atomistic resolution is

vast (R3N where N is the number of atoms in the polymer). Therefore, as the

majority of these configurations will represent highly unphysical conformations,

it is sensible to bias the sampling towards the more likely areas of phase space.

Techniques which bias the system prior to a RR or MH step exist; see, e.g.,

1A part of the Materials Studio R© version 6.1 software suite by Accelrys R©

(http://accelrys.com/products/materials-studio/).
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Ref. [25] for a discussion of how these can be implemented. However, even in

non-atomistic models the conformational phase space is very large as polymers

of interest can consist of over a hundred monomers[6]. Polymers of this length

in dense systems are computationally expensive to grow; therefore, it would be

useful to attempt to explore the region of phase space near a polymer before, or

instead of, growing a new polymer.

Many different schemes for making conformational changes to (or moving)

polymers exist[41, 42, 43, 44, 45, 46, 47]. A brief overview of a selection of moves

is presented, however, this is only a small selection of many possible MH moves

for polymers. Furthermore, a discussion of moves at atomistic resolution will

not be included as these have not been required for the applications presented

in subsequent chapters. However, the process is broadly similar except that in

general parts of the model are made rigid with only selected atoms permitted to

be chosen as the move sites; a discussion of the use of AA moves is included in

Ref. [48].

The choice of polymer move is highly system-dependent and must be chosen

with care. The following is a brief overview of some of the more popular moves.

Refs. [42, 43] describe a collection of three types of moves, known as: end-bond,

kink-jump, and crankshaft for a square lattice; these were later generalised to

a cubic lattice in [44]. The moves were some of the earliest to be used in con-

junction with the MH algorithm to allow sampling of the phase space around an

existing polymer structure and allow any configuration of polymer to be sampled.

However, they only apply on a square or cubic lattice and different moves are nec-

essary on other lattice types[42, 43, 44]. The popular pull moves [49, 50, 51] must

be used with caution as one of their primary assumptions, reversibility, has been

shown not to hold on certain lattice types[41]. The pivot move[45] takes a site

in the polymer and pivots one part of the polymer around this pivot point. The

move is very effective in dilute systems, however, the moves become increasingly

unlikely in highly dense systems. The reptation move[46, 47] is easily transferable

between lattices, simple to code and highly effective in sampling dense configu-

rations. It has been used extensively in my research.

The reptation move has sometimes been called slithering snake[47]. It in-

volves removing one or more monomers from one end of a polymer molecule,
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then adding the same number of monomers to the other end, see Fig. 2.1 for an

example of this process. This process allows a polymer to move through high

density conformations and, for a polymer composed of identical monomers, it

allows movements analogous to the reptation model of polymer motion, see, e.g.,

Ref. [52] for a discussion of the reptation model of polymer dynamics. Further

details will be discussed in Chap. 8. Some limitations of this algorithm are that it

is slow to make large conformational changes to the system, and some configura-

tions, such as when two ends of the polymer are caged by the polymer as shown

in Fig. 2.2, cannot be effectively sampled. However, relative to the vast number

of available configurations, these are a small subset and are extremely unlikely to

occur on a lattice with a high coordination number, such as a cubic lattice[47].

The exact choice of model, representation and moves, for the MC simulation

will determine the limitations of the simulation. One general limitation of MC is

that only the degrees of freedom which are altered by the move can change the

state of the system. Therefore, if a move is chosen which does not include a key

degree of freedom the simulation will fail to accurately represent the underlying

physics. This becomes problematic in more fine-grained models, such as atomistic

simulations, as incorporating every possible alteration would require vast numbers

of possible moves[53]. As the resolution of a simulation is decreased, the number

of necessary moves decreases. However, it may become necessary to build an

interaction scheme for coarse grained (CG) representations as general models

such as SAW might not be directly applicable.

2.2 Molecular Dynamics

MD is a method for evolving objects interacting via a potential energy function

known as a forcefield1. MD can be used to simulate a wide range of materials in

a variety of environments and, as a result, it has been used to simulate count-

less systems and provide insight into numerous physical phenomena, including

systems which cannot be directly observed in experiments such as the melting of

magnesium oxide (MgO) at core-mantle boundary pressures[54] and the dynamics

of protein folding[55]. This discussion of MD will be limited to forcefields used in

1the topic of ab initio molecular dynamics (aMD) will be discussed in Sec. 2.3.2.
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Figure 2.1: A schematic demonstration of reptation of a 3 monomer polymer
on a square lattice. A segment end is chosen at random and the last element
is removed, shown as dashed in (a), the available sites at the other end of the
polymer are then tested (b), one of the available sites is selected (c), the move
is accepted based on Boltzmann weighting (d). This conformation can then be
added to the ensemble average.
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Figure 2.2: A demonstration of a cage configuration at both ends of a poly-
mer on a square lattice. The reptation move can neither escape nor generate a
configuration with a cage at both ends.
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soft matter systems and the modelling of polymeric systems. For a more complete

introduction to MD the interested reader is advised to consult e.g., Refs. [25, 26].

2.2.1 The Molecular Dynamics Method

The study of classical systems generally involves solving the ordinary differential

equation (ODE) defined by Newton’s second law:

Fi

(
{R}, {Ṙ}

)
= miR̈i, (2.4)

where Fi is the force on a particle i of mass mi and {R}, {Ṙ}, and {R̈} are

respectively the positions, velocities, and accelerations of all the particles in the

system. For a simple system, such as two masses connected via a spring, this

can be solved analytically; as the problem becomes more complex, an analytic

solution becomes intractable. MD is an alternative approach where Eq. (2.4)

is numerically integrated with respect to time. This yields a trajectory for the

system which can then be analysed. There are two parts to a MD simulation, the

integration algorithm and the representation of the physical system of interest.

There are many different algorithms for integrating Eq. (2.4). The two most

common are leapfrog and velocity verlet. These algorithms are very similar and

are discussed in detail in Refs. [25, 26]. The procedure used is to move forwards in

time in a series of small steps. The error in the position following an integration

step in either leapfrog or velocity verlet is O (∆t4) where ∆t is the size of the

time step. Therefore, a decrease in ∆t results in a large increase in the accuracy

of the integration; however, decreasing ∆t will also increase the computational

cost of the simulation as more steps will be needed to simulate a given amount of

time. A balance between the two conflicting desires of accurate integration and

long simulations is therefore found by monitoring properties such as energy and

temperature drift over a simulation.

Standard integration algorithms for Eq. (2.4) generate a micro-canonical (con-

stant energy, volume, and number of particles) ensemble. In general it is desirable

to be able to simulate a canonical (constant temperature, volume, and number of

particles) or even a constant pressure and temperature ensemble. While there is
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no perfect means to accomplish this, the general approach is to use algorithms to

approximate the extended ensemble. These algorithms are known as thermostats

(constant temperature) or barostats (constant pressure). In general they work by

altering the positions and or velocities of the particles during the integration step

of a MD simulation. Thermostats are often named after the lead author of the

paper proposing them. Some available thermostats are: Andersen[56], Berend-

sen[57], Bussi (also called velocity rescaling or stochastic velocity rescaling)[58],

Nosé-Hoover [59, 60], and Langevin[61]. All these thermostats have advantages

and disadvantages. In my research I have primarily used the last three (Bussi,

Nosé-Hoover, and Langevin) to initialise a system. I then produced results using

a micro-canonical ensemble whilst monitoring the temperature drift. This ap-

proach reduces the influence of the thermostat on the dynamics whilst allowing a

specific temperature to be modelled. There is a similar variety of barostats. How-

ever, as all simulations presented in this thesis were conducted in constant volume

ensembles, these shall not be discussed further here. A more thorough discussion

of barostats and thermostats may be found in, for example Refs. [25, 26]

The system for a MD simulation is in two parts: the physical system and its

representation in MD. There are times when these two parts are indistinguishable;

as for instance if the physical system is a collection of point masses connected

by linear springs, then it can be represented perfectly. However, if the system

comprises atoms the two parts are quite distinct and care should be taken in

interpreting a physical system based on MD simulations of a representation of

it, e.g., the average length of a diatomic molecule in OPLS-AA will not increase

with temperature whilst this is known to happen in the physical system. The

need for a representation in MD simulation arises because the underlying nature

of the interactions in physical systems is not generally classical but quantum

mechanical, even if the dynamics are almost invariably treated classically.

2.2.2 Molecular Dynamics Modelling of Polymers

For an atomistic system the first step is usually to approximate an atom as a

point mass. A forcefield is then used to determine the interactions between the

point masses. Many forcefields exist for molecular systems, and some of the more

34



Molecular Dynamics

common can be found in Refs. [38, 62, 63, 64, 65, 66]. These forcefields use a

functional form that associates an energy with the lengths of each covalent bond,

the angle between two covalent bonds, the dihedral angle formed by three sequen-

tial bonds twisting about the axis provided by a central bond, and the improper

dihedral formed by three covalent bonds leaving a central atom. These are shown

schematically in Fig. 2.3. Further terms known as non-bonded interactions are

associated with: the electrostatic interaction between two charged atoms, Pauli

repulsion, and van der Waals (vdW) interactions. The Pauli repulsion is a quan-

tum mechanical effect which states that two electrons cannot occupy the same

spin state, it results in an exponential repulsion between atoms at short distances,

for reasons of computational efficiency this is generally approximated with an r−n

term in the forcefield. vdW is an effect where one atom has a dipole induced be-

tween its nucleus and its electron cloud, this induces a dipole in another atom

and the two atoms begin to interact. Adding together all these components as

well as the kinetic energies of every atom gives us the total energy of the system.

My work has primarily used the OPLS-AA forcefield[38], the which has po-

tential energy (V ) given by:

V =
∑

bonds

kr (rij − r0)
2

+
∑

angles

kθ (θ − θ0)
2

+
1

2

∑

dihedrals

4∑

i=1

ki

(
1 − (−1)i cos (i (φ− φ0))

)

+
1

2

∑

impropers

4∑

i=1

ki

(
1 − (−1)i cos (i (φ− φ0))

)

+
N−1∑

i=1

N∑

j=i+1

fij

(
qiqj

4πǫ0rij
+

(
Aij

rij

)12

−
(
Bij

rij

)6
)
, (2.5)

where rij is the separation between two atoms, θ is the angle between two covalent

bonds, φ is the dihedral (or improper dihedral) angle formed by three covalent

bonds, kr, kθ, and ki are the spring constants associated with covalent bonds,
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angles, and dihedral angles (or improper dihedral angles), respectively, and r0, θ0,

and φ0 are the respective equilibrium values. Aij =
√
AiiAjj, Bij =

√
BiiBjj, Aii

is an empirically determined constant for an atom of type i and is parametrised

to replicate the Pauli repulsion associated with that atom, Bii is a similarly

determined constant representing the vdW interaction, these two constants are

generally fitted simultaneously to ensure reasonable equilibrium spacing between

a wide variety of molecules[38]. qi and qj are the charges on the atoms, ǫ0 is

the permittivity of free space, and N is the number of atoms in the system. fij

is a topologically determined constant which ensures that interactions between

bonded atoms are represented through the bonded rather than non-bonded terms:

it is 0 if the minimum number of bonds which separate the atoms i and j is < 3,

0.5 if there are precisely three bonds separating the atoms, and 1 otherwise,

including if the atoms are on different molecules. These parameters determine

how the representation of a molecular system in OPLS-AA interact within a MD

simulation.

The force in Eq. (2.4) is then defined as Fi ≡ −∇iV . Other forcefields,

such as condensed-phase optimized molecular potentials for atomistic simulation

studies (COMPASS)[66], extend this form by adding higher order corrections

to couple the bond, angle, dihedral angle, and improper dihedral angle energies

together. Forcefields are typically fitted to a mixture of experimental and quan-

tum mechanical simulation data and optimized to reproduce certain properties of

interest[38, 63, 64, 65, 66]. As there can be no perfect analogue between quantum

and classical mechanics due to non-local correlation[67], the parameters will be a

reasonable approximation only for certain properties in regimes similar to those

used for the parametrisation; therefore, transferability of parameters is an issue.

Furthermore, if terms that are necessary to describe the physics of the system

are not included in the functional form of the forcefield, then the results obtained

will not be representative of the physical system. Despite these issues MD can

provide very-useful insight into a system’s behaviour[68].

A key advantage of MD is that given a good forcefield it provides accurate

data for large systems on reasonable simulation time scales[55]. As a result,

MD simulations of polymeric systems have become widespread[69, 70, 71]. The

main limitation however is that polymeric systems can evolve over very long time
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Figure 2.3: A schematic diagram of the various bonded terms in a polymer force-
field of the OPLS-AA form. A bond energy term is associated the distance be-
tween i and j in (a). The angle î-j-k, shown in grey, in (b) gives rise to an energy
term in a MD forcefield. The dihedral angle energy for the system in (c) is given
by the angle, shown in grey, between the two triangles defined by i-j-k and j-k-l.
The improper dihedral angle in (d) is the angle between the two triangles defined
by i-j-k and j-k-l. This is algebraically the same as a dihedral angle, however, the
topological distinction between the two is clear from the arrangements in (c) and
(d).
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scales[72] that are not currently accessible to large systems in atomistic MD.

Therefore, it can be necessary to use techniques such as Monte Carlo to extend the

time scales available to modelling. Furthermore, if a forcefield is incomplete, or

highly accurate energetics of a small part of a system are required, it is necessary

to use a more detailed model for the interactions to obtain either the parameters

or the data of interest.

2.3 Density-Functional Theory

Quantum mechanics is a highly-established theory which has provided insight into

fields as disparate as encryption[73] and understanding the interaction between

organic and inorganic materials in cuttle fish bone[74]. Accurately modelling

quantum-mechanical systems1 such as materials is an ongoing challenge in sci-

ence. Quantum mechanical methods, in particular DFT, have been widely used in

materials modelling to predict and understand the behaviour of materials[75, 76].

This introduction to DFT will provide some context to the complexity of elec-

tronic structure, as well as an overview of DFT with particular focus on its

assumptions and limitations. A more detailed and in-depth discussion can be

found in Refs [77, 78].

2.3.1 The Schrödinger Equation

The Schrödinger equation defines the behaviour of quantum objects. It defines

the wave function of a quantum system and is incredibly successful at predicting

the behaviour of atomic systems. It can be written as:

i
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 , (2.6)

where |Ψ〉 is the state-vector of the system and Ĥ is the Hamiltonian operator

which defines the energy of the system2. The outward simplicity of this equation

belies its true subtlety and complexity, |Ψ〉 includes the details of every component

1Systems where the underlying interactions are not quantum mechanical generally involve
gravity, such as the motion of planets

2Here and throughout this section the unit system is taken to be one in which ~ = 1.

38



Density-Functional Theory

in the system and couples them all together. This fully coupled system is generally

intractable, therefore, a series of approximations based on the nature of materials

are made before attempting to solve the simplified equation.

The first stage in making an approximation is to consider the system. Ma-

terials are composed of atoms, atoms are themselves composed of a nucleus and

electrons. The dominant interaction between nuclei and electrons is the Coulomb

interaction1. This makes Ĥ a time independent operator, therefore, we can use

separation of variables and solve the time independent Schrödinger equation

E |ψ〉 = Ĥ |ψ〉 , (2.7)

where E is the total energy of the system and |ψ〉 is the time independent state-

vector of the system. The next step is to analyse the motion of the electrons

and nuclei, as a proton is ∼ 1800 times heavier than an electron. Born and

Oppenheimer made the approximation that the motion of the electrons and the

motion of the nuclei could be decoupled[77, 79]2. The quantum behaviour of

the electrons is often referred to as electronic structure. This approximation is

generally valid and significantly simplifies the process of generating a solution to

the time independent Schrödinger equation. The next approximation which is

often made is to change the treatment of the nuclei from quantum mechanical to

classical. This is referred to as the classical nuclei approximation and is widely

used3.

Following these approximations the Schrödinger equation has been reduced to

a time invariant equation, the solution to which is a wave-function for the elec-

trons which depends parametrically on the positions and charges of the nuclei.

Whilst this is a significant reduction in complexity the problem is still exponen-

tially scaling with the number of electrons and as such immensely complicated

1Electrons and nuclei are relatively light and energetic, therefore, gravitational interactions
are neglected, and the strong and weak forces only apply at very short ranges (. 10−14 m).

2 Whilst the original derivation[79] is interesting, readers are advised that it is a little
inaccessible as it is written German, and the approximation is only given incidentally whilst
attempting to solve a different problem. Therefore, the interested reader is advised to consult
e.g., Appendix C of Ref. [77], for a more direct derivation of the approximation.

3Treating the nuclei quantum mechanically is sometimes necessary[80] but is beyond the
scope of this work.
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to solve[23]. Godby[81] gives the following example to understand the problem

of exponential scaling:

storing the occupancy probability on a 10 × 10 × 10 lattice of all 14

electrons of a single silicon atom. A 10 × 10 × 10 lattice contains

103 points, therefore, assuming that the occupancy probability cor-

responding to a single electron can be stored as a double precision

number (16 bytes), the data storage for the first electron would be

16 × 103 bytes. As a silicon atom has 14 electrons and the config-

uration of every electron is coupled to that of every other electron,

the second electron requires the same amount of storage as for the

first electron for every site the first could be in making the storage

requirement 16×103×103 bytes. Once all 14 electrons are considered

the total storage requirement becomes 16× (103)14 ≈ ×1043 bytes, or

∼ 1033 DVD’s[81], or a single DVD scaled up to have a diameter of

∼ 1016 m ≈ 1 light year.

As a result a direct attempt to solve this approximate Schrödinger equation with-

out using additional approximations and mathematical manipulations is unlikely

to succeed for a real material system which in principle might involve hundreds

or even thousands of electrons. Many techniques exist that address the problem

of solving the Schrödinger equation, and none are perfect[82]. DFT, which I have

used, maintains an excellent balance between accuracy and computational cost.

2.3.2 Applied Density-Functional Theory

The electronic structure of a material is determined by the electronic wave-

function. As discussed in the previous section, the electronic wave-function is

very difficult to obtain directly, even using approximations. DFT addresses this

by working with the charge density and a system of non-interacting electrons.

The story of DFT begins with Hohenberg and Kohn (HK) who proved math-

ematically that[83]:

1. The ground state charge density of a system of electrons is isomorphic1 to

1This is a mathematical term describing two sets where there is an invertible mapping from
one to the other.
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the external potential acting on it1.

2. There exists a functional of the electronic charge density, valid for any

external potential, for which the global minima is the ground state of the

system.

These two results are fundamental to DFT, therefore, the proofs are widely re-

produced, see e.g., Ref. [77]. The second HK theorem relies on a variational

principle proof, however, the principle that there exists an external potential for

which the charge density is the ground state (v -representability) does not always

hold for every possible trial charge density. Therefore, a solution found by an al-

gorithm which used such densities violating v -representability need not converge

to a physical solution. This issue was solved by Levy[84] who showed that it was

sufficient for the electronic density to be positive definite and obtainable from an

antisymmetric N -body wave-function (N -representability). This weaker condi-

tion makes it practical and theoretically sound to use the variational principle to

find the ground state charge density.

The HK theorems are existence proofs which give no indication of how this

energy functional might be found. Therefore, the work in Ref. [83] might have

remained a mere mathematical curiosity rather than becoming amongst the most

highly cited research of all time2. The reason for this massive interest is the work

of Kohn and Sham (KS)[85]. KS proposed solving a system of non-interacting

electrons in an external potential formed by the nuclei and the electrons them-

selves. This approach gives rise to a form for the energy functional of the second

HK theorem. Moving into the Schrödinger formalism where the wavefunction

is described as a mathematical function and negelecting spin for simplicity, we

define a set of N single particle wavefunctions (φi), which are defined to have the

same electron density (n(r)) as the time independent state vector (|ψ〉). These

are the antisymmetric N -body wave-functions in Levy’s formalism. The time

1Here and throughout this thesis potential energy functions which differ only by an additive
constant are considered degenerate.

2On 2013-08-14, the journal Physical Review listed over 15000 articles citing Ref. [83]
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independent schrödinger equation can, therefore, be re-expressed as

ǫiφi(r) =

(
1

2m
∇2 + V (r) +

∫
dr′

e2n(r′)

|r− r′| + VXC [n(r)]

)
φi(r), (2.8)

where m is the mass of an electron, e is the charge on an electron, ∇ is the

3 dimensional gradient operator, ǫi is the energy associated with φi, the total

energy is calculated as E =
∑N

i=1 ǫi, and VXC is the exchange-correlation (XC)

functional. The KS approach calculates most of the interactions in a mean-field

manner, then groups the corrections to the mean-field interactions into the XC

functional which is system independent. Furthermore, only the electron-electron

interaction and the XC fuctional are non-local.

The exact XC functional should in principle be independent of the system

depending only on the number of electrons and the density. Unfortunately, the

exact XC functional is unknown. This might at first appear to be an insurmount-

able barrier to using this approach. However, in many cases the contribution

of the XC functional to the system is small. Therefore, it is possible to make

approximations to the exact XC functional. These approximations, whilst by no

means perfect, are often surprisingly accurate[86]. Approximations to the exact

XC functional fall broadly into four classes: local-density approximation (LDA),

generalised gradient approximation (GGA), hybrid, and non-local. LDA[87] is

the simplest approximation which models the energy as that of a uniform elec-

tron gas of the same density. There are many forms of GGA including: Perdew,

Burke, and Enzerhof (PBE)[88], Becke 1988 (B88)[89], and Perdew and Wang

1991 (PW91)[90]. These differ from LDA as they include corrections based on the

gradient of the density. The hybrid functionals mix portions of LDA, GGA, and

potentially results from other quantum simulation techniques to match various

known results[91]. The final class of functional move away from the local (LDA) or

semi-local (GGA) approximations and incorporate non-local contributions from

the density, so as to include non-local interactions such as vdW[92, 93]. These

non-local functionals are comparatively recent developments and much work re-

mains to be done before they will produce accurate forces compared to higher

level theories[20].

The work of HK and KS, combined with the use of approximate XC func-
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tionals provides a solid theoretical footing for DFT. The next stage is to express

the KS wave-functions in terms of a basis of functions. The two most common

basis functions are plane waves and gaussians. Plane waves have the advan-

tage that increasing the number of basis functions will improve the precision

uniformally; whilst gaussian basis sets sacrifice this systematic improvability in

return for their integrals having an analytic form and increased precision near

the atoms. As the basis set cannot be infinite, this process introduces the fi-

nite basis set approximation[94, 95]. This approximation manifests as a limit to

the maximum kinetic energy of the electrons and a finite resolution for the KS

wave-functions. This approximation is also present in other forms of quantum

mechanical simulation[23, 96]. If a chosen basis set is not able to express the KS

wave-function the results of the simulation may be unphysical. Therefore, it is

essential to choose the basis set with care.

The main reason for using DFT to study the structure of materials is that

the bonding between atoms is due to the electrons and electrons are inherently

quantum objects. However, not all electrons take part in bonding: generally

the outer valence electrons are most important[77]. Therefore, to reduce the

number of electrons in the system and hence the necessary basis set size and

computational cost, it is beneficial to approximate the interactions of the valence

electrons with the core (non-valence) electrons in an approximate manner. The

standard approach to this is to replace the Coulomb potential used for the nuclei

with a pseudopotential which models the interaction due to both the nuclei and

the core electrons[77]. This approximation is one that is not strictly necessary to

conduct a DFT simulation, however, it was used in all simulations I conducted

and is widely used[94].

Thanks to these approximations simulations using O(104) electrons[97] are

now possible. However, macro-scale systems involving billions of atoms are still

well beyond our present abilities. Therefore, periodic boundary conditions are

used to approximate an infinite system. This approximation, which is also often

used in MD simulations, is widely used and accepted[72, 76, 97].

Whilst this plethora of approximations used in DFT may seem vast the phys-

ical motivation behind each of them is clear and the results are astounding. Since

the 1990s DFT has become probably the most widely used quantum mechani-
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cal simulation technique with thousands of new papers published every year[98].

DFT is able to predict bond lengths and structural parameters with accuracies

of typically < 2%[86]. Furthermore, dramatic progress has been made in topics

such as excited states[77, 98] and vdW interactions[20, 92, 93] which are not part

of the original theory.
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Chapter 3

Polymer Membranes

The use of polymer membranes has been widespread for many decades[3, 4, 5].

The primary use of membranes is in separation processes[13, 14, 15]. Mem-

brane separation can be used in areas such as dialysis[99] and reverse osmosis

(RO)[100]1. Industrial membranes are used on a large scale, and to be com-

mercially viable they must be comparatively cheap to manufacture, long lasting,

whilst maintaining a high flux of the permeate.

One of the largest issues in membrane systems when deployed in commercial

systems is fouling[2]. This topic will no doubt be a significant feature of many

further papers and theses concerning membranes as it is considered key to the

widespread deployment of membranes[1]. However, it has not been a feature of

my research. Therefore, it will not form a significant part of further discussions

on membranes in this thesis.

My research has focussed on integrally skinned, asymmetric, phase inversion

membranes for OSN applications. Therefore, this chapter will discuss OSN mem-

branes including a discussion of two significant membrane classes, thin film and

integrally skinned. It then focuses on the method of phase inversion, before cov-

ering the modelling of polymers and polymer membranes.

1RO is a process for removing salt from water using membranes
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3.1 Organic Solvent Nanofiltration Membranes

OSN is a process for separating molecules or nanoparticles from organic solvents[101].

A significant difficulty in making OSN membranes is that by definition organic

solvents weaken the intermolecular interactions in organic molecular systems of-

ten causing them to break apart entirely and form a molecular dope. Therefore,

to be effective the membrane must be: resistant to the organic solvents in use,

mechanically strong so as to survive the pressure gradients used, and able to

select the molecules of interest from the other parts of the system.

3.1.1 Thin Film Composite Membranes

Thin film composite membranes are formed in three parts: a structural layer pro-

viding mechanical strength, a highly porous support layer, and a thin selective

surface layer. This class of membrane is typically used in RO[102], however, it

can also be used in OSN[11, 12]. The advantage of this class of membrane is that

the structural and support layers can be highly porous as they do not necessarily

participate in the filtration[102]. Furthermore, the thinness of the active layer

brings with it the advantages of high uniformity and selectivity. However, prob-

lems such as delamination where the component layers separate are difficult to

avoid[103].

The structural layer is generally a woven mesh which provides only structural

support[102]. The manufacturing process for the support membrane is generally

phase inversion, which will be discussed in Sec. 3.2. The surface layer is often

manufactured by interfacial polymerisation[102], dip coating[104] or, recently,

polymers of intrinsic microporosity (PIMs)[11]. For both interfacial polymeri-

sation and dip coating the final porosity is dependent both on the molecules

used and the conditions of their growth. In contrast the porosity of PIMs arises

from the choice of molecules, which are naturally contorted in such a manner

that, as the polymer is deposited on the support layer, it must leave nano-scale

pores. They are, therefore, less susceptible to environmental conditions during

their manufacture[11]. The multi-stage manufacturing process, making both a

support and surface membrane, generally increases the time and cost of their

manufacture[104].
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3.1.2 Integrally Skinned Membranes

Unlike thin film membranes integrally skinned membranes consist of a single

membrane which acts as both support and filter. These membranes fall broadly

into two classes: symmetric and asymmetric. Symmetric membranes have a

uniform pore structure throughout the membrane, whilst asymmetric have re-

gions with different pore size and structure[105]. For scanning electron micro-

scope (SEM) images of cross-sections through examples of the types of integrally

skinned membranes see Fig. 3.1. OSN requires small pores, therefore, integrally

skinned OSN membranes typically have an asymmetric structure[6, 7, 8, 9]. The

smallest pores in an asymmetric membrane are often smaller than those in an

equivalent symmetric or thin film membrane, reducing the flux; however, the

larger pores in the remainder of the structure compensate for this generally re-

sulting in a flux somewhere between equivalent symmetric and thin film mem-

branes.

The advantage of integrally skinned membranes is that they are cheap to

manufacture and are not subject to problems such as delamination. However,

membranes with graded pore structures can suffer from reduced flux of the

permeate[12], i. e. it is more difficult for the permeate to pass through the

membrane than if it had a more open support structure.

Asymmetric membranes can be further classified according to their substruc-

ture: uniform-pore1, graded-pore, and finger-pore; see Fig. 3.1. The membranes

of interest in my research have a finger-pore structure[6]. However, much of the

discussion of asymmetric integrally skinned membranes applies to all three classes

of asymmetric membranes.

3.2 Phase Inversion

The phase inversion process of membrane manufacture is one of the oldest meth-

ods of manufacturing membranes[3]. It is still widely used[6, 102] as it is simple

to use in large scale manufacturing processes. The process can be described in

terms of three component system: P, SA, and SB, where the polymer P is soluble

1The uniformity refers to the structure of the pores behind the surface layer
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Figure 3.1: Scanning electron micrographs of membrane cross sections with typ-
ical structures: a) Asymmetric membrane with uniform-pore substructure; b)
Asymmetric membrane with a graded-pore substructure; c) Asymmetric mem-
brane with a finger-pore substructure; d) Symmetric microporous membrane
without a skin. Reprinted from Desalination, 21, H. Strathmann and K. Kock,
The formation mechanism of phase inversion membranes, 241–255, 1977, with
permission from Elsevier, license number 3393141117308.
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in solvent SA but not soluble in solvent SB, and solvent SA is highly miscible with

solvent SB. A dope of polymer P in solvent SA is spread onto a backing layer1.

The dope on the backing layer is then immersed in a large amount of solvent SB.

The entropy of mixing causes a chemical potential gradient which drives solvent

SA out of the polymer P into the bath of solvent SB, whilst simultaneously driving

solvent SB into the polymer matrix left behind by solvent SA. Since the poly-

mer P is not soluble in solvent SB it forms a solid membrane and the remaining

solvent SB can be rinsed or evaporated from the membrane [6, 105]. Solvent SB,

therefore, acts as a precipitant for the the polymer P. The process can be written

as

PSA + SB → SASB + PSB. (3.1)

The swapping of the solvent surrounding the polymer P is termed phase inversion.

For a phase inversion membrane to be useful in OSN the polymer used must

be chemically resistant to the solvents used in the separation process. Recently,

therefore, polyimide macro molecules such as P84[6, 7, 8, 9] and Matrimid[7, 8, 9,

106, 107, 108] have become popular. To make these polymer membranes practical

it is necessary to be able to tailor their porosity to the target system.

3.2.1 Controlling the Porosity

There are many ways to control the porosity of a membrane. One of the most

popular techniques is to alter the time allowed for evaporation between spreading

the polymer dope on the backing material and immersing it in the precipitant

bath[107, 109]. However, recently it has been shown that the final porosity of

P84 phase inversion membranes does not vary with evaporation time or with the

volatility of the solvents used[7, 8, 9]. Conversely, it has been shown that for

these membranes the final porosity is strongly dependent on the solvent used to

produce the initial polymer dope[6, 7, 8, 9].

For P84 membranes the initial solvent is usually a mixture of two solvents

dimethylformamide (DMF), which is polar, and 1,4-dioxane (dioxane), which is

non-polar. DMF has been shown to be a good solvent for P84, whilst dioxane is a

poor solvent[7, 8, 9]; in this context good implies that the polymer will spread out

1The backing layer provides support until the membrane is formed when it can be removed.
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so as to maximise its surface area in contact with the solvent whilst poor implies

that the polymer will do the converse and minimise its surface area in contact

with the solvent1[7, 8, 9, 110]. By varying the ratio of DMF to dioxane in the

initial dope it is possible to change the porosity of the membrane; increasing the

proportion of DMF results in a membrane that is more porous and allows larger

molecules to pass through, whilst increased amounts of dioxane results in a more

dense membrane that is only porous to smaller molecules[6, 7, 8, 9].

The porosity of a membrane is generally defined by its rejection curve. Re-

jection is defined by

R(%) = 100

(
1 − Cr

Cp

)
, (3.2)

where Cr and Cp are the concentrations of the target molecule in the retentate

and permeate respectively[111]. Rejection is generally plotted for molecules of

different weights under the conditions of either constant pressure or constant

flux. Example rejection curves for polystyrene (PS) of various molecular weights2

are shown in Fig. 3.2, from which the effect of the initial solvent ratio can be

clearly seen[6]. In actuality the rejection curve characterises the porosity and

pore connectivity as these quantities are inherently linked. Often models for the

pore size make assumptions such as the pores being uniform cylinders through

the membrane[112, 113]. However, the nano-scale structure of a membrane is

difficult to establish, and is one of the topics of this thesis.

3.2.2 Imaging Membrane Structures

In the early days of phase inversion membranes, the membranes were thought to

have a > 50% failure rate3. This anomalously high failure rate was eventually

discovered to be due to the asymmetry in phase inversion membranes[114]. Had

the original manufacturers been able to image the nano-scale structure of the

1 Due to the polar nature of DMF the solubility parameter often used to describe solvent
quality is the Hansen solubility parameter. This is actually a set of three parameters covering
dispersion δd, dipolar δp, and hydrogen bonding δh interactions[110].

2PS in this context refers to styrene oligomers of a specific molecular weight not polymeric
styrene of unknown molecular weight.

3The membranes were experimentally determined to be permeable to both salt and water
and pure water.
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Figure 3.2: Rejection curves for PS oligomers of different molecular weights at
concentrations of 1 gL−1 in toluene for three P84 membranes. The membranes
M1, M2, and M3 were manufactured from 24 wt% P84 in DMF:dioxane ratio of
1:2, 2:1, 4:1 respectively. The experiments were carried out under constant flux.
For complete experimental details see the original paper, Ref. [6]. Reprinted
from Journal of Membrane Science, 413–414, Joanna Stawikowska and Andrew
G. Livingston, Nanoprobe imaging molecular scale pores in polymeric membrane,
1–6, 2012, with permission from Elsevier, license number 3393131159500.
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membranes this might have been understood almost immediately.

Experimental imaging on the nano-scale is challenging as visible light has

a wavelength of 380–750 nm. Therefore, visible light cannot currently resolve

objects smaller than hundreds of nanometres in size[10, 115]. Atomic force mi-

croscopy observes surfaces with nanometre resolution by moving a cantilevered

tip over it and monitoring deflections of the cantilever. However, this approach

yields details only about the surface and has a number of limitations including

the inability to resolve features smaller than the tip and the potential to damage

the sample during the characterisation[116]. An alternative technique is elec-

tron microscopy, which can resolve objects on a sub-nanometre scale. It requires

atoms with a large electron scattering cross section1, which makes imaging carbon

based polymer nano-structures difficult[117]. To circumvent this, nanoparticles

of heavy metals, such as gold can be used to coat the surface of cross section

slices through membranes which can then be imaged by SEM to provide insight

into the micrometre scale structure of membranes[6, 105], see Fig. 3.1. However,

these images whilst useful in understanding membranes do not show the pores

used in nanofiltration as these are on a far smaller scale[6]. Furthermore, the

high energy of the incident electrons in transmission electron microscope (TEM)

can damage polymer samples which has the potential to significantly influence

the observation[117].

Recently sub-nanometre resolution scanning transmission electron microscope

(STEM) images of phase inversion membranes have been produced[6]. These im-

ages were generated by infusing samples of the membrane with osmium dioxide

(OsO2) nanoparticles then imaging the nanoparticles, which have high atomic

numbers and perform a similar function to the gold particles used in SEM above.

This process allows the characterisation of the size of OsO2 clusters in the mem-

brane, and thereby gives an indication of the pore size and distribution. However,

there is no guarantee that the OsO2 has reached all the available pores, and it

gives no indication of the form of the pathways through the membrane. Further-

more, the OsO2 may be invasive meaning that the structure is significantly altered

by its presence. Another issue is that the filtration is inherently dynamic, the

permeate may induce swelling during operation, and the pressure gradient used in

1i.e. high atomic numbers.
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filtration are not included, therefore, the structures might not be representative

of the membrane in operation[6]. Any of these effects have the potential to affect

the pore size and distribution relative to these experimental results. Despite this,

these STEM images show different distributions of pore sizes for different initial

solvents and will be discussed in the context of my model in Chap. 8.

3.3 Modelling Polymers

Due to the difficulties in directly imaging and characterising polymers, mod-

elling has the potential to provide insight into polymers which cannot be readily

achieved through experiments. The modelling of polymers and other macro-

molecular systems has been a significant challenge in science over the last cen-

tury. A significant difficulty is the large conformational space of macro-molecular

systems. This combines with the wide range of length and time scales to make

these systems difficult to model theoretically or computationally.

In general polymers exist either in solution, amorphous, or crystalline states

with no solvent present. Polymers in solution are subdivided into dilute or con-

centrated regimes, and the solvents are characterised as good , or poor . The

phase inversion membranes which are of the topic of my research are formed

from a concentrated polymer dope where the solvent is a mixture of good and

poor solvents[6]. However, as models for polymers in dilute and concentrated

solutions are related both will be discussed. The next subsections cover analytic

and computational models for polymers in dilute and concentrated solutions. The

topics of crystalline and amorphous phases of polymers as well as polymer melts

are covered in Sec. 3.4.

3.3.1 Dilute Polymer Solutions

When considering dilute polymers it is important to recognise that these regimes

represent configurations with very low densities of polymers1.

1 When modelled as a self-avoiding random walk, the crossover from concentrated to semi-
dilute occurs when the volume concentration of monomer units approachesN1−3ν , where ν is the
scaling exponent of a radius of gyration of a polymer, andN is the number of monomer units[52].
For a system composed of 100 segment oligomers in solution, and using the approximation
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At the simplest level, models of dilute polymer solutions do not include

solvent-polymer, inter- or intra-polymer interactions. One such model is known

as the bead spring model[52]. This assumes the polymer segments do not interact

and have an energy given by a harmonic potential associated with their length.

This model can be solved analytically for many properties. However, the absence

of excluded volume effects due to the lack of inter- and intra-polymer interactions

results in the bead spring model underestimating the scaling exponent (ν) of the

size of polymeric systems with increasing numbers of segments[52]. Excluded vol-

ume can be added to the model in a mean field manner, resulting in reasonable

agreement with numerical simulations of self-avoiding polymers[52].

A common dilute solution polymer model is the Rouse model[118]. This

uses the bead spring model as its representation of a polymer and incorporates

Langevin dynamics to model the effect of the solvent. In its original form does not

accurately reproduce properties such as the scaling of the diffusivity with polymer

length. However, a correction to the dynamics such that interactions between

neighbouring beads are included results in the correct scaling[119]. Simulations of

self-avoiding bead spring polymers, using this model have been shown to produce

accurate predictions for dilute solutions[120].

Isolated polymers can be simulated with on and off lattice MC techniques[35,

121, 122] using advanced derivatives of the RR procedure, e.g., the pruned-

enriched Rosenbluth method (PERM)[123]. Other groups have used MD simula-

tions of both AA[124] and CG[125] representations to study polymers. Probably

the largest amount of work on the simulation of dilute macro-molecular systems

is in biology where MD has been extensively used to analyse the behaviour of

proteins and other biological macro-molecules[38, 55, 64, 126]. Another interest-

ing recent area of research is modelling which allows the resolution to be altered

during the simulation, thereby allowing both AA and CG molecules in a single

simulation[127]. This hybrid approach is likely to have a big impact in the study

of polymers in dilute solution in the future as it offers significant computational

cost reductions for the solvent-solvent interactions which dominate this type of

system[127]. However, when studying concentrated polymer systems the solvent-

solvent interaction ceases to be dominant and, therefore, the advantage of these

ν = 0.6 for the scaling exponent, the volume concentration for the crossover is 2.5%.
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adaptive resolution techniques is reduced.

3.3.2 Concentrated Polymer Solutions

Many industrial processes, including phase inversion, use concentrated polymer

solutions[6]. Therefore, a large effort, both theoretical and computational, has

been exerted to study these systems[125, 128, 129, 130].

Anyone who has ever tried to separate out a tangled mass of strings1 has

discovered the motion of a single string is coupled to that of the others. Fur-

thermore, the longer the strings the more difficult it is to separate them, and

the more the motion of one string is blocked by other strings. This is a com-

mon problem when handling extended objects such as strings and polymers. The

reptation model provides a mechanism for the motion of such extended objects

and correctly predicts how the diffusivity alters with length[131]. This model

predicts the experimentally observed scaling of the diffusion rate for polymers

in concentrated solutions[120] and provides insight into the motion of polymers

in concentrated solutions[132, 133]. However, it does not explain the mixing of

polymer solutions.

Thermodynamics is a highly established tool for studying mixtures of dif-

ferent types of fluids, and it was used to create the Flory-Huggins (FH) model

for polymer solvent solutions[128, 129]. This model is essentially an analogue

to the ideal solution model for fluids[134] with a correction for the polymer sol-

vent interaction which is characterised in the FH parameter (χFH). This correc-

tion transforms the model from an ideal solution model into a regular solution

model[134]. All the polymer solvent interactions in the model are encoded in

χ
FH. Calculating χFH can be accomplished using MD simulations to find the en-

thalpy of solvation[135, 136, 137]; it can also be determined experimentally using

calorimetry[135]. The use of the FH parameter in lattice models of polymers is

discussed further in Chap. 8.

A principal difficulty in studying polymers in solution is that even for con-

centrated solutions treating the solvent explicitly incurs a large computational

cost. Implicit solvation models have been developed for systems such as proteins

1This often forms if multiple lengths of string are left uncoiled in a pot in the kitchen drawer.
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in water, but these do not always reproduce the same dynamics or free energy

landscapes as explicit solvent models[138]. Furthermore, implicit solvation mod-

els generally only simulate the effect of good solvents and are specific to a given

solvent molecule[139]. Membranes and polymer melts, in contrast, do not gener-

ally include solvents, therefore, their dynamics can often be studied without this

complexity.

3.4 Modelling Membranes

There are two primary topics in the modelling of a membrane: modelling its struc-

ture and its performance. The focus of my research has been developing a model

for the structure of a membrane. To understand the importance of generating

membrane structures it is sensible to consider not only the current goal of under-

standing the generation of membrane structures, but also future applications of

these structures. There follows a brief overview of membrane performance prior

to a discussion of existing procedures for generating and characterising membrane

structures.

3.4.1 Membrane Performance

In the context of filtration membranes performance is characterised by two quan-

tities: the flux and the rejection. These factors depend on the molecules being

separated as well as the membrane being used[6, 7, 8, 9]. There are numerous

models for the passage of molecules through membranes[112, 113, 140, 141]. As

this is not the focus of my research only two models will be discussed here, the

non-equilibrium molecular dynamics (NEMD) method[141], and small molecule

gas diffusion[140].

The NEMD approach of Frentrup et. al. [141] simulates fluid flow through

a membrane by placing a sample of membrane in an elongated periodic box.

The sample is kept at constant temperature and its position restrained. The

box is packed with the fluid at the desired temperature, but with no thermostat

applied. On one side of the membrane an acceleration towards the membrane is

applied to fluid molecules in a region of the simulation box. The result is a flow
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of molecules towards the membrane, the passage of which can be observed[141].

Clearly an accurate representation for the membrane structure would help this

model provide reliable information about the flow of fluids through it.

Diffusion-based schemes do not attempt to model the flow of molecules through

a membrane, but rather the diffusion of molecules between pores. To do this they

use a sample of the membrane which fills a periodic box. A small molecule is

inserted in a pore in the membrane, and the system is integrated forward in

time using MD. During the simulation the membrane is sometimes treated as

being rigid, which will clearly affect the results but offers considerable compu-

tational savings. When the inserted molecule moves between two pores a large

change in its mean squared displacement (MSD) is expected. Analysing these

inter pore movements provides insight into the diffusion of the particle through

the membrane[140, 142].

The diffusion rate (D) over an energy barrier, of height E, is governed by the

Arrhenius equation[140, 142],

D = D0e
−βE, (3.3)

where D0 is the pre-exponential factor which includes a contribution from the

activation entropy. As the energy in MD simulations is dependent on the positions

of the atoms in the system, the resulting diffusion rate will be strongly reliant

on the membrane structure used and whether it is permitted to move during a

simulation.

3.4.2 Membrane Structure

There are many techniques for building conformations of polymers, which are

expected to be representative of membranes[48, 140, 142]. A common approach

used in membrane simulations is to build a model for the polymer in bulk and then

assume that this is representative of the membrane[48]. This approach is often

undertaken by generating initial conformation based on RR sampling without

using the RR weighting factors, see Sec. 2.1.2.1. Thermostats and barostats are

applied to equilibrate the polymer to the target temperature and density[140,

142]. However, since the RR sampling procedure produces incorrect sampling
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unless care is taken and the correct weightings used[37, 39, 40], the resulting

conformations may be highly biased.

An approach which produces a more realistic conformation for the equilib-

rium structure of a polymer uses pivot moves in MC simulations of the polymer

molecule to generate an initial structure for the system[48, 143, 144, 145, 146,

147, 148, 149]. This approach also permits the introduction of free surfaces which

allow the polymer to either stand up, or lie down at the surface. The result is

a structure which can reflect the physical structure of a membrane. For further

details consult the review included in the tutorial by Neyertz[48]. One issue with

membrane structures created by this approach is that even when, as in Ref. [149],

more than 105 atoms are used the resulting membrane is only around 10 nm thick.

Such a simulation would treat only 10–20% of the total depth of the nano-porous

region of a P84 membrane, and the molecular weights used to generate P84

membranes are three times larger than those in Neyertz’s simulation[6, 149]. To

build a more realistic model for P84 using this technique would be extremely

computationally demanding. Another issue with using this technique is that it

incorporates no solvent effects into the structure. However, as discussed earlier,

solvent effects have been shown to be dominant in determining the structure and

properties of P84 membranes[6, 7, 8, 9].

The relationship between solvent interactions and porosity seen in P84 phase

inversion membranes, is explained by considering the process as a three phase

system[105]. This view suggests that the structure will be determined in part by

the reaction kinetics, so that it will not necessarily be an equilibrium structure for

the polymer[105]. This is consistent with the observation that P84 membranes

become non-porous when they are annealed[6, 7, 8, 9]. Any realistic model for

the structure of these P84 membranes will need to include a consideration of

both the solvent and the kinetics of the phase inversion process. It is clear that

the latest experimental results for P84 OSN membranes are not explained by

the current models of membrane formation used in manufacturing[6, 7, 8, 9, 10].

Furthermore, the latest models typically neglect the solvent-polymer interaction

which appears dominant in the formation process.
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Coarse Graining

The following research is an expansion of the work presented in Ref. [16], includ-

ing a discussion of some interesting physics resulting from our coarse graining

approach.

The dynamics of polymers span a wide range of time scales. Carbon-hydrogen

covalent bonds have a vibration period of ∼10 fs[150], while macromolecules such

as proteins undergo conformational changes over microseconds[72]. In practice,

the maximum time scale accessible to molecular dynamics (MD) is limited by the

time step required to capture the fastest degree of freedom in the system. It is

desirable, therefore, to include only the degrees of freedom that are physically

relevant to the problem under consideration.

In polymers the fastest oscillations are usually associated with covalent bonds

between heavy atoms (e.g., carbon, nitrogen, oxygen) and hydrogen. How-

ever, conformational changes are always associated with considerably longer time

scales. Consequently these fastest oscillations are often suppressed by applying

constraints to fix bond lengths at their equilibrium values. This is usually ac-

complished by the SHAKE[151, 152] or LINCS[153, 154] constraints algorithms.

Often, it is desirable to go further and to constrain other bond lengths and an-

gles, enabling time steps of up to 2 fs[155]. While this approach can result in an

increase in the duration of time that may be simulated, parallel scalability and

algorithm stability can be affected when the constraints are highly coupled[154].

An alternative approach to applying constraints is the use of generalised-

coordinates representing rigid multi-body elements[156], whereby atoms are grouped
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into rigid dynamical units. The removal of fast degrees of freedom may also

be achieved through the introduction of “virtual sites” for the hydrogen atoms,

whereby the position of each hydrogen atom is defined by the positions of nearby

heavy atoms, which can allow time steps of up to 7 fs[150]. A drawback of this ap-

proach is that the moment of inertia tensor of the molecule is not conserved[150]

(e.g., the principal values for benzene can have errors greater than 10%) which

may affect the large scale dynamics of the system.

In this chapter, I present a coarse graining approach that addresses this limita-

tion for the case of aromatic groups in polymers. Each aromatic group is mapped

onto a rigid triangle, defined by three vertices, in a manner that conserves key

dynamical quantities : namely the total mass, the centre of mass, and the moment

of inertia tensor. As a result, this triangle has the same dynamical response as a

rigid, planar aromatic group. The fast degrees of freedom associated with bond

vibrations and out-of-plane buckling modes within each group are removed. At

the same time the slower degrees of freedom, which are responsible for conforma-

tional changes and associated with variations in bond and torsion angles between

adjacent groups are retained. The fixed relationship between the coordinates of

the vertices of the triangle and the true atomic positions associated with the

aromatic group uniquely determines the force and torque on the triangle for a

given set of positions and a given AA force-field. My approach is a means of

implementing coupled rigid body dynamics[157], but critically does not require

altering the core integration routine of an existing MD code. This CG method is

equally applicable to aromatic groups that form the polymer backbone as well as

those present in side chains.

I have tested the approach across a wide range of temperatures and system

sizes for polyether ether ketone (PEEK), a widely used industrial polymer[158,

159, 160]. Structural and dynamical properties are found to be in excellent agree-

ment with both AA and all-atom rigid bonds (AA-RB) simulations, and the in-

creased MD time step (∼5 fs) enabled by the method results in a five-fold increase

in the time-scale of a given simulation as compared to AA approaches.

The reduction in degrees of freedom has the advantage that various intra-

molecular bonded interactions are constant. Constant interactions in MD result

in a shift in the potential energy but do not alter the dynamics, therefore, when
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parametrising a force-field these terms can be neglected. As additional parameters

require more data when fitting a force-field, reducing the necessary parameters is

clearly advantageous.

The remainder of this chapter is organised as follows. An introduction into

the principles of rigid dynamics and their application to coarse graining aromatic

polymers is presented in Sec. 4.1 to obtain a CG representation of planar units.

The application to PEEK is used to illustrate this approach. An overview of

constraint algorithms and the advantages of reduced degrees of freedom when

fitting force-fields is provided in Sec. 4.1.3 and Sec. 4.1.5. A comparison of the

results obtained from AA, AA-RB, and CG simulations of PEEK for a variety of

polymer lengths and temperatures, is given in Sec. 4.2. The chapter concludes,

with an analysis of the coarse graining technique and its applicability to other

aromatic polymers, in Sec. 4.3.

4.1 Method

Considerable computational savings may be realised by removing the fast degrees

of freedom normally associated with planar units in molecules, such as aromatic

groups. Any rigid two-dimensional object has six independent quantities that

govern its dynamics. For a planar object in the x-y plane, where x and y denote

Cartesian axes, these are the position coordinates associated with the centre of

mass, R0 = (X0, Y 0), the total mass MT, and the three independent components

of the moment of inertia tensor I, denoted Ixx, Iyy and Ixy
1. As a set of rotations

and translations can always be found such that a planar object lies in the x-y plane

this applies to all planar objects. Any two rigid bodies having these properties in

common will exhibit the same dynamical response when subjected to the same

set of forces. The coarse graining approach, described below, explicitly conserves

these properties.

1In accordance with the perpendicular axis theorem Izz = Ixx + Iyy and Ixz = Iyz = 0.
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4.1.1 Two Dimensional Rigid Bodies

Consider a two-dimensional rigid object composed of N atoms1. Let the x and y

axes be aligned with the principal axes of I and let the origin be at R0, without

loss of generality. Therefore,

R0 =

(
0

0

)
, (4.1)

MT =
N∑

i=1

mi, (4.2)

I =

(∑N

i=1miy
2
i 0

0
∑N

i=1mix
2
i

)
, (4.3)

where the ith atom has position coordinates (xi, yi) and mass mi. In order to

evolve the positions of this rigid body using MD a naive approach might be to

apply a set of constraints among the atoms such that only the rigid body degrees

of freedom remain. However, this introduces 3(N−2) constraints, the enforcement

of which becomes unstable as N increases owing to the coupled nature of the

constraints. Furthermore, constraints on light atoms such as hydrogen become

unstable as the time step increases[150]. It is desirable, therefore, to develop a

coarse graining scheme that exhibits stability at large time steps while preserving

dynamical properties.

4.1.2 Coarse Grained Representation of Aromatic Poly-

mers

Consider the case of a para-substituted aromatic group in a polymer backbone,

shown schematically in Fig. 4.1. An example of a polymer that exhibits this

structural feature is the macromolecule PEEK, shown in Fig. 4.2(a). Assuming

planarity, rigidity and symmetry, and using the notation of Eqs. (4.1)-(4.3), the

1In principle these ‘atoms’ could be any point masses, but to avoid confusion they will be
referred to as atoms henceforth.
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Figure 4.1: A schematic demonstration of the coarse graining procedure of a
para-substituted aromatic group in an organic molecule. (a) shows the coordinate
system and chemical formula for the aromatic group with the remainder of the
aromatic molecule indicated by R1 and R2. (b) shows the relevant bond angles
and lengths where lCC and lCH are the equilibrium lengths of the carbon-carbon
and carbon-hydrogen bonds. The atoms in this AA representation are labelled
for reference. (c) shows the resulting triangle of the CG representation with
the vertices labelled 1, 2, and 3 to match the text. The underlying molecule in
grey is the AA group being replaced. All three figures are to scale using the
parameters from the OPLS-AA force-field[38]. The positions and masses of the
triangle vertices in (c) are given in Tab. 4.1. The orientations of the triangles in
the PEEK monomer are arbitrary as it would have been equally possible to place
vertex 1 at the position of C4 at the beginning of the coarse graining procedure.
Fig. 4.2 shows the orientation used in all CG simulations.
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AA representation of the aromatic unit (Fig. 4.1(b)) is characterised by

R0 =

(
0

0

)
, (4.4)

MT = 6mC + 4mH, (4.5)

Ixx = 3mCl
2
CC + 3mH (lCC + lCH)2 , (4.6)

Iyy = 3mCl
2
CC +mH (lCC + lCH)2 , (4.7)

Ixy = 0, (4.8)

where mC and mH are the masses of a carbon and hydrogen atom, respectively,

and lCC and lCH are the lengths of a carbon-carbon and carbon-hydrogen bond

in the unit, respectively. The choice of coordinates in Fig. 4.1(a) is convenient as

these axes are the eigenbasis for I, as can be seen from Eq. (4.8).

The six independent quantities expressed in Eqs. (4.4)-(4.8) can be conserved

exactly by a CG representation composed of three point masses at the vertices of

a triangle (Fig. 4.1(c)). These vertices, which I label α ∈ {1, 2, 3}, are associated

with nine parameters: position coordinates (Xα, Yα) and masses Mα. However,

since there are only six independent constraints embodied in Eqs. (4.4)-(4.8),

there is not a unique solution.

Further constraints are added by the requirement that the group be connected

via distance constraints to the rest of the organic molecule, which leads to the

convenient choice that one of the vertices of the triangle should coincide with the

position of an atom connecting the aromatic group to the rest of the polymer.

Placing vertex 1, therefore, directly at the position of the carbon atom labelled

C1 in Fig. 4.1(b), thus specifying X1 = −lCC and Y1 = 0, reducing the number

of free parameters associated with the vertices of the triangle to seven.

Furthermore, by symmetry, X3 = X2, Y3 = −Y2, and M3 = M2, thus simul-

taneously satisfying Eq. (4.8) and the requirement that Y 0 = 0 (Eq. (4.4)), while

also reducing the number of free variables associated with the CG representation
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to four:

X0 =
−M1lCC + 2M2X2

MT

, (4.9)

MT = M1 + 2M2, (4.10)

Ixx = 2Y 2
2 M2, (4.11)

Iyy = l2CCM1 + 2X2
2M2. (4.12)

Solving these equations for M1, M2, X2 and Y2 in terms of the known AA quan-

tities (Eqs. (4.4)-(4.8)), yields

M1 =
MTIyy

Iyy + l2CCMT

, (4.13)

M2 = 1
2
(MT −M1), (4.14)

X2 = lCC

(
MT

2M2

− 1

)
, (4.15)

Y2 =

√
Ixx

2M2

. (4.16)

Taking equilibrium parameters for the AA representation from the OPLS-AA

force-field[38] results in the positions and masses associated with the CG repre-

sentation given in Tab. 4.1.

The CG representation shown in Fig. 4.1(c) and defined by the parameters

given in Tab. 4.1 has identical dynamical properties to the original rigid AA

aromatic group of Fig. 4.1(b). However, in order to use the CG representation in

an MD simulation of a polymer such as PEEK, it is also necessary to constrain the

‘bond lengths’ associated with the CG representation. For the central aromatic

group in the PEEK monomer, shown in Fig. 4.2(b), these constraints are denoted

1–2, 1–3, 2–3, 1–O1, and 1–O2 and are enforced using the SHAKE[151, 152]

algorithm.

4.1.3 Constraint Algorithms

Constraints are used for a variety of purposes in simulations, however, the most

widely used is to fix bond lengths in MD. The discussion of constraints presented
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Vertex α Xα (nm) Yα (nm) Mα (g mol−1)
1 −0.140 0.000 25.871
2 0.072 0.133 25.114
3 0.072 −0.133 25.114

Table 4.1: The positions (Xα, Yα) and masses Mα of the vertices α of a triangle
with the same dynamics as a rigid aromatic group along the backbone of PEEK.

Figure 4.2: The chemical structure of PEEK, and the corresponding CG repre-
sentation. The suffixes on the oxygen atoms are for identification purposes only
— they do not indicate molecular or atomic oxygen. The constraints used for the
middle triangle connect the pairs: O2-1, 1-2, 1-3, 2-3, and 1-O1. The constraints
for the other triangles are analogous to this, and the oxygen in the ketone group
is connected with a single constraint to the carbon atom.
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here will be restricted to the case of linear constraints; however, some of the

techniques described herein are applicable to other forms of constraints. Linear

constraints are very widely used in molecular simulations and are an interesting

mathematical and computational challenge in MD.

A linear constraint in a simulation is any constraint which can be written as:

|rα − wαβrβ|2 − l2αβ = 0. (4.17)

Where rα, rβ ∈ R
3 are the positions of two objects within the system1, lij is the

constraint length, and wαβ is a weighting between the two positions. Please note

the Einstein summation convention is not used in this section. In MD simulations

wαβ = 1 and will be taken as such from this point forward therefore the linear

constraint equation becomes

σαβ(rα, rβ) = |rα − rβ|2 − l2αβ = 0. (4.18)

There are many algorithms used to implement constraints in MD. The major-

ity use either generalised-coordinates[156] or Lagrange multipliers[151, 152, 153,

154, 161, 162, 163] to permit numerical integration of Eq. (2.4).

The generalised-coordinate approach works in one of two ways which are math-

ematically equivalent. The first is to take the position vectors of all the objects in

the system ({rα}) and express them as a single global position vector
(
R ∈ R

3N
)
.

The basis of R ∈ R
3N is simply the combination of the individual basis vectors

of the original coordinates. There is now a vector in this space which defines the

separation between objects α and β. Therefore, that vector can be made one of

the basis vectors of the system and the positions of everything in the system can

be re-expressed in this new basis. The constraint along this vector can then be

enforced by either removing the components of the force and velocity along this

vector or removing the vector from the system. Updating the positions and veloc-

ities with a standard MD integration scheme results in the constrained positions

and velocities. The disadvantage of this scheme is that the basis vectors must be

recalculated at every step of the MD simulation and a naive implementation of

1If this is a CG the positions could in principle be for either atoms or vertices.
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the algorithm scales cubically with the number of objects in the system.

The alternative generalised-coordinate approach is that adopted in the par-

allelizable open source efficient multibody software (POEMS)[156], where the

rigid constraints are evolved explicitly as multi-body elements. This works by

explicitly defining the position of one part of the system relative to another, e.g.,

to constrain a diatomic molecule the position of one atom could be specified in

normal Cartesian coordinates, the second atom could then be expressed in polar

coordinates with a fixed radius centred on the first atom. The result of this is that

the basis automatically evolves with the MD integration. However, calculations

of the forces becomes more complex as this often requires calculating separations

which requires reference to the global position scheme which can require a com-

plicated remapping for systems involving many coupled constraints[156]. Both

these generalised-coordinate approaches allow more complicated constraints than

the simple linear constraints of Eq. (4.17), however, that is beyond the scope of

this work.

The Lagrange multiplier approach generates a constraint force which cor-

rects an unconstrained integration step such that after the force has been applied

to the unconstrained step the integration has exactly followed the constrained

path. To understand where the various Lagrange multiplier based constraint al-

gorithms1 break down it is necessary to understand their derivation. The deriva-

tion presented here follows the structure given in Ref. [162] which provides an

overview of both the SHAKE, and RATTLE algorithms as well as the MILC-

SHAKE algorithm. Throughout this section the equations will be for simula-

tions in a micro-canonical ensemble, however, it has been widely shown that

thermostats and barostats can be applied during the unconstrained part of the

simulation, provided the degrees of freedom of the system are correctly accounted

for[165, 166, 167].

In an unconstrained MD simulation the acceleration of an object is given by:

d2rα(t)

dt2
= − 1

mα

∇αU ({rγ(t)}) , (4.19)

1SHAKE[151], RATTLE[152], WIGGLE[164], matrix inverted linearized constraints
SHAKE (MILC-SHAKE)[162], MILC hybridized with SHAKE (MILCH-SHAKE)[163],
SETTLE[161], linear constraint solver (LINCS)[153], and Parallel-LINCS (P-LINCS)[154]
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where t is time, mα is the mass of object α, ∇α is the gradient operator with

respect to the position rα, and U is the force-field of the system. For a constrained

system Eq. (4.18) is included yielding:

d2rα(t)

dt2
= − 1

mα

∇α

(
U ({rγ(t)}) +

∑

β→α

λαβσαβ(rα, rβ)

)
, (4.20)

where λαβ is the Lagrange multiplier and β → α denotes the summation over all

objects β constrained to object α. After stepping ∆ forward in time, the positions

are (to order ∆2):

rα(t+ ∆) = r̃α(t+ ∆) +
∆2

2mα

FC
α (t), (4.21)

where r̃α(t+ ∆) is the new position for object α generated using a standard MD

integration scheme without the constraints applied and FC
α (t) is the constraint

force defined by:

FC
α (t) =

1

∆2

∑

β→α

λαβ∇ασαβ (rα, rβ) =
2

∆2

∑

β→α

λαβ (rα − rβ) . (4.22)

Substituting Eq. (4.22) into Eq. (4.21) results in

rα(t+ ∆) = r̃α(t+ ∆) +
1

mα

∑

β→α

λαβ (rα − rβ) . (4.23)

Using the fact that the new positions {rα(t + ∆)} must also satisfy all the con-

straints in the system defined by Eq. (4.18) we obtain,

l2αβ =

[
(r̃α − r̃β) +

1

mα

∑

γ→α

λαγ (rα − rγ) +
1

mβ

∑

η→β

λβη (rβ − rη)

]2
. (4.24)

The SHAKE, MILC-SHAKE, and MILCH-SHAKE then eliminate terms of or-

der λ2 and then iterate the solution to the linearised problem until all the con-

straints are satisfied to the desired tolerance. The SHAKE algorithm finds the

Lagrange multipliers for each constraint sequentially, which can result in insta-
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bilities and convergence failures for systems with very large constraint violations

in {r̃α(t + ∆)}. The MILC-SHAKE is explicitly designed to simulate systems

where the heavy atoms are connected to at most two other heavy atoms, and

uses a direct matrix inversion of the resulting tridiagonal or cyclic-tridiagonal

matrix equation for the linearised λαβ, which is then iterated until convergence.

The direct inversion results in faster convergence and increased stability, however,

the technique is limited to linear chains[162]. MILCH-SHAKE applies a MILC-

SHAKE step to the heavy atoms then a SHAKE step to the hydrogen/side groups

and iterates to convergence. This hybrid scheme is both faster and more stable

than SHAKE, however, it is not suitable for use when the side groups have simi-

lar or greater mass than the objects in the linear chain[163]. The RATTLE and

WIGGLE routines are SHAKE like algorithms which can be applied to the ve-

locities and accelerations during the MD integration step. In general RATTLE

is also used in most MD codes when using SHAKE for constraints, to reduce

constraint violations in {r̃α(t + ∆)} and ensure correct velocities are computed

and thereby improve energy conservation[152, 162]. For an unconnected trian-

gle the SETTLE algorithm has been developed this is an analytic solution for

the Lagrange multipliers and is often used to accelerate simulations involving

water[154, 155, 161, 168, 169, 170].

Unfortunately the iteration stage of these schemes inhibits domain and intra-

molecular parallelisation as it leads to an unknown amount of communication

between the different processes. Furthermore, the affect of the constraints can be

highly non-local, which also increases the communication overhead. The LINCS

and particularly the P-LINCS algorithms avoid this by using a subtly different

scheme for solving Eq. (4.20). The scheme projects out the forces which act in

the direction of the bond at time t, then further projects out the effects length-

ening of the bond caused by forces not acting in the direction of the bond. This

scheme in principle must also be iterated to ensure the correct set of projections

is used as a Lagrange multiplier. However, the scheme makes a much better

initial guess than the SHAKE based schemes which results in far fewer itera-

tions being necessary1. The procedure requires inverting a K ×K matrix where

1In the simulations discussed in Chap. 6 and Chap. 5 three LINCS iterations were found to
provide excellent constraint conservation, whilst in the simulations of Sec. 4.2 more than 100
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K is the number of constraints in the system, for large K this would become

extraordinarily expensive1. Therefore, the matrix is altered into a form where

an expansion can be used as an approximation to the inversion, for details see

Ref. [154]. Knowing the number of iterations and the order of the series expan-

sion for the matrix inversion makes the communication pattern both predictable

and local, which enables the P-LINCS algorithm to be used in massively parallel

MD programs[154, 155, 168, 169, 170]. The series expansion only works for sys-

tems with low connectivity such as systems where only bonds are constrained,

an altered, higher order, expansion scheme can be used to permit isolated angles

to be constrained[154, 155]. However, when the series expansion is used for sys-

tems with high connectivity, such as the CG strategy presented in this chapter,

the expansion is divergent and the approach moves the constrained objects in

a highly un-physical manner[153, 154]. This is explicitly demonstrated for the

PEEK molecule in Sec. 4.2.

An effect of using a Lagrange multiplier approach for constraints in the CG

procedure is that these constraints must constrain sites with non-zero mass. This

is due to the factors of m−1 in Eq. (4.24). For the PEEK molecule this gives rise

to the constraint set-up of Fig. 4.2(b). However, for other molecules it can give

rise to more complicated positions for the vertices or even the need for additional

vertices which can result in decreased stability of the constraint algorithms.

As a result of these considerations the SHAKE algorithm was chosen for use

with the CG approach. This allows stable integration of the constraints, however,

a single molecule cannot be simulated in parallel and the constraints limit the

time step for the simulations (details in Sec. 4.2). An alternative strategy would

be to build a hybrid scheme similar to MILCH-SHAKE, where the constraints

on the backbone of the polymer, e.g., constraints O2–1 and 1–O1 of vertex 1 in

Fig. 4.2(b), are constrained using 1 step of MILC-SHAKE and then the rigid

triangles, such as {1, 2, 3} in Fig. 4.2(b), are constrained with SETTLE. Iter-

ating this should result in a very stable approach permitting fast and accurate

constraining of these highly coupled systems. It is unclear whether a SHAKE

step would also be required to constrain the carbonyl oxygen in PEEK. If no

SHAKE iterations were necessary.
1Direct inversion of this matrix is an O(K3) operation.
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alternative could be found this would reduce the stability of the algorithm and

increase the computational overhead of the algorithm. This approach would be

an interesting follow up to the technique, but no development of this has yet

been undertaken. Another alternative which was considered was the replacement

of the series expansion in LINCS with an alternative matrix inversion but this

would inhibit the parallelisation and require new code being written. Therefore,

little effort in that direction was undertaken.

The leapfrog and velocity verlet algorithms for MD simulations are designed

to be reversible. This helps ensure that they maintain reasonable energy con-

servation during an MD simulation1. In theory constraints can be used in MD

simulations without affecting this as they are simply another force acting on the

objects. However, in practice the force is only calculated approximately, there-

fore, at every integration step there is a random extra force in the integration,

and the integration algorithm is no longer reversible. This effect can result in sub-

stantial energy drifts. In Sec. 4.2 we observe an increase in absolute energy drift

of three orders of magnitude when the fractional SHAKE tolerance is increased

from 10−10 to 10−7. Therefore, care must be taken to ensure that the constraint

forces are calculated with sufficient accuracy to ensure reasonable dynamics.

4.1.4 Forces on Rigid Groups

The procedure set out in Sec. 4.1.2 gives a CG representation composed of point

masses that define a set of rigid, planar triangles with the same centre of mass,

total mass and moment of inertia as a rigid, planar AA representation. The

algorithms necessary to evolve the resulting coupled triangles in MD simulation

are discussed in Sec. 4.1.3. However, it is also necessary to ensure that the CG

triangles experience the same force and torque of interaction with other objects

as the groups they replace. This is achieved via the concept of ‘virtual sites’[171],

in a manner similar to the generalised-coordinates approach of POEMS[156].

The virtual sites are the positions of the atoms in the AA representation of

the aromatic group, and their position coordinates are defined in terms of their

1Exactly what reasonable energy conservation means is somewhat subjective and will be
discussed in Chap. 5.
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fixed relationship with the vertices of the triangle in the CG representation. In

the case of rigid planar groups, the transformation between AA and CG represen-

tations is a simple linear mapping (more complex mappings are possible[150, 171]

but are not required for this CG approach). Given the vertices of a triangle at

r1, r2 and r3, the position of an arbitrary point (Q) in the plane defined by the

triangle is given by

Q = (1 − a− b)r1 + ar2 + br3, (4.25)

for some values of a and b that can be calculated for each virtual site once and

for all using simple vector geometry. Performing this mapping on a set of (a, b)

pairs derived from the equilibrium atomic coordinates, the positions of the atoms

in the AA representation may be calculated quickly and easily from the positions

of the CG masses at each time step.

Given an AA force-field the forces (f1, f2, f3) on the triangle vertices due to a

force (G) acting on an atomic site are found by taking the derivative of Eq. (4.25):

f1 = (1 − a− b)G, (4.26)

f2 = aG, (4.27)

f3 = bG. (4.28)

Thus, the task of generating a separate force-field for the CG representation of the

molecule is avoided, and standard AA force-fields which have been developed and

tested for the same macromolecule can be used without alteration. Furthermore,

the automatically generated atomic coordinates can be used in conjunction with

a variety of existing tools for analysing MD trajectories. In the event that a

complete force-field for the desired molecule is unavailable the reduction in the

number of degrees of freedom enabled by this method correspondingly reduces

the number of terms that need to be parametrised.

4.1.5 Force Fitting

The use of parameters in force-fields fitted to DFT simulations of organic molecules

has been shown to improve the accuracy with which nuclear magnetic resonance

(NMR) structural data is reproduced by MD simulations[172]. However, a direct
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application of this technique to polymeric systems with large monomers in many

other industrial polymeric molecules, results in hundred of parameters which

would need to be found. Unlike in biological systems where the complexity of

the molecule often originates from the ordering and distribution of a set of small

building blocks1, industrial macromolecules can be constructed from any chem-

ically feasible monomer unit. Therefore, many industrial polymers do not have

a chemically representative force-field available. Non-chemically representative

force-fields typically bias the molecule into areas of phase space which are not

representative of the physical system. This CG procedure was originally con-

ceived as a means to reduce the number of parameters needed when fitting a

custom force-field for industrially relevant molecules.

There are many schemes which can be used to generate parameters for force-

fields. Many force-fields are fitted at least in part to experimental data[173].

However, as quantum mechanical simulation techniques and computers have im-

proved these have become widely used in the parametrisation of force-fields[38].

These techniques often use computationally expensive techniques such as second

order Møller Plesset perturbation theory (MP2)[174], which limits the system

size to comparatively small molecules, and does not currently allow the matching

of forces[38]. Using DFT, which is less computationally expensive, allows the

simulation of larger systems and through its ability to calculate forces, more data

can be obtained from a single simulation. Unfortunately, as discussed in Sec. 2.3,

DFT does not currently provide the correct vdW interactions between molecules,

unless extra terms are introduced[92, 93]. However, it has been shown that by re-

taining the original Lennard-Jones (LJ) parameters from the generalised AMBER

forcefield (GAFF) and fitting the remaining terms, excellent agreement with ex-

perimental structures can be obtained[172]. Therefore, an investigation into force

fitting for polymeric molecules was undertaken.

The procedure considered is sometimes known as iterative force matching.

It has been widely used, particularly in the construction of highly accurate

solid state force-fields[54, 175, 176], but also in the construction of molecular

1This is inherently an incredibly complex problem in itself as the configuration space of or-
dering the different building blocks is factorially scaling, and the blocks are strongly interacting
making sampling even a single point in this configuration space immensely difficult!
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forcefields[172]. The method starts by conducting a MD simulation with an ini-

tial, often poor, force-field, from which a series of decorrelated configurations are

selected.

These configurations are used as the input coordinates for a set of single point

DFT simulations. The difference between the values of observables (typically

atomic forces and energy differences) calculated in DFT and MD simulations

is then minimised with respect to the force-field parameters. This is usually

accomplished by minimising

Q =

configurations∑

i

observables∑

j

wij

(
AMD

ij −ADFT
ij

)2
(
ADFT

ij

)2 , (4.29)

where Q is a measure of the quality of the fit, AMD
ij and ADFT

ij are the vectors of

the observables of type j in configuration i in MD and DFT respectively, and wij

is a weighting arising form the different numbers of components in the various

observables, e.g., if there are more forces than energy difference associated with a

given frame, the fractional difference between the forces should be weighted more

strongly than the energy differences. Alternative forms of Eq. (4.29) can be used,

such as using the sum of the fractional deviations in each component of the vec-

tor Aij[54, 175, 176]. However, Eq. (4.29) is generally sufficient. Since both the

gradient and Hessian matrix of Q with respect to the force-field parameters can

be calculated, a minimum of Eq. (4.29) can be calculated using standard minimi-

sation algorithms such as steepest descents[177]1, conjugate gradients[178], or L-

BFGS[179]. These do not guarantee finding the global minimum. Techniques such

as simulated annealing using a MH approach can be more appropriate for systems

where no reasonable guess of the initial parameters can be made [175, 176]. Once

the optimal parameter set has been found these are used to conduct another MD

simulation, and the procedure is iterated until convergence[172, 175, 176]. There

have been some criticisms of this approach but, these usually focus on highly

un-physical systems[180]. Techniques such as iterative Boltzmann inversion, and

inverse MC, have also been used in deriving CG force-fields, which require that

1For non-fluent German speakers the discussion in Ref. [178] or Ref. [179] might be more
accessible.
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dynamical simulations be conducted in the higher accuracy regime[181]. This is

generally not practicable when comparing to quantum mechanical data.

The complete force-field for large molecular systems, even ones with simple

monomers such as PEEK, generally have vast numbers of parameters. The AM-

BER force-field for PEEK has 116 parameters. This can be reduced to 90 by

considering that charges in chemically similar environments should be the same.

However, by eliminating the degrees of freedom using the CG procedure, main-

taining the original LJ parameters and periodicity of the dihedral and improper

dihedral angles, and defining the rigid geometries from their equilibrium DFT

positions, the number of terms can be reduced to just 38 parameters. Therefore,

this technique has the potential to offer substantial computational savings when

undertaking force fitting. However, in the process of developing the technique

it became apparent that the inhibited parallelisation combined with the com-

plex construction of vertices required for molecules such as P84 and Matrimid,

would reduce the force-field’s practical value. This combined with the computa-

tional effort as well as human time involved in executing the many thousands of

DFT simulations required per molecule resulted in the decision not to proceed

with force fitting of large molecular systems and focus the research on devel-

oping strategies for using the results of MD simulations produced by existing

force-fields.

4.2 Results

The CG representation of PEEK was compared with AA and AA-RB simulations

for four different lengths of polymer comprising 4, 8, 12, and 16 monomers (the

monomer unit is shown in Fig. 4.2). The molecules were terminated with a

hydrogen atom on the left and a phenyl ring group after the ketone on the right.

The chains therefore consisted of 13, 25, 37, and 49 aromatic groups, respectively.

All simulations were conducted using the GROMACS[154, 155, 168, 169, 170]

MD suite (v4.5.5 with double precision). The polymers were modelled using the

OPLS-AA force-field[38], with 1.1 nm cut-off radius, smoothly tapered in the final

0.05 nm. The leapfrog integration algorithm and, for simulations carried out in a

canonical ensemble, a stochastic velocity rescaling thermostat[58] was used. For
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the CG and AA-RB simulations constraints were enforced to a fractional tolerance

of 10−10 with the SHAKE[151, 152] algorithm. To ensure adequate statistical

sampling, for each system 16 evenly-spaced, uncorrelated configurations were

taken from a 2 ns simulation in a canonical ensemble at 1400 K and used as the

initial starting points for further simulations. These initial configurations were

then simulated at 300 K, 500 K, 700 K, 1000 K, and 1400 K. First, the polymers

were equilibrated in a canonical ensemble for 1 ns, followed by a further 1 ns in

a micro-canonical ensemble. Production runs were then carried out in a micro-

canonical ensemble with samples taken every 16.8 ps over a total duration of 5 ns

for the 4- and 8-monomer conformations, and over a duration of 10 ns for the

12- and 16-monomer conformations. The sampling interval was chosen because

it was the smallest interval for which derived properties for each polymer were

unaffected by doubling the interval. All properties presented below were averaged

over the 16 independent simulations of each polymer molecule and the resulting

trajectories were analysed using the MDAnalysis toolkit[182].

First consider the 8-monomer polymer. Fig. 4.3 shows the energy drift at

300 K for AA, AA-RB and CG simulations as a function of MD integration time

step. For the CG simulations, the SHAKE algorithm was unable to converge for

time steps larger than 7 fs, while for the AA simulations, time steps larger than

1.25 fs resulted in unstable dynamics (the vibration period of carbon-hydrogen

bonds in the system is approximately 11 fs).

The fractional tolerance of 10−10 used with the SHAKE algorithm for all con-

straints renders the integration algorithm almost perfectly reversible. With the

small time steps where the AA and AA-RB simulations remain stable the energy

drift of the CG simulations is significantly smaller. At larger time steps, where

the AA and AA-RB simulations become unstable, the energy drift of the CG sim-

ulations becomes comparable to that of the stable AA simulations. The energy

drift of the CG simulations increases as the constraint tolerance is increased, as

expected (see Fig. 4.4). Nevertheless, even when the fractional constraint toler-

ance was increased by 3 orders of magnitude to 10−7 in the CG simulations the

energy drift with a 5 fs time step was −30 ± 1 meVns−11. Therefore, a SHAKE

1For comparison this energy drift is less than 25% of the drift per degree of freedom obtained
for a box of 820 simple point charge (SPC) water molecules using analytic constraints, with a
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Figure 4.3: The absolute drift in total energy averaged over 16 independent 5 ns
micro-canonical simulations of an 8-monomer polymer at 300 K for AA, AA-
RB, and CG representations. As can be seen, with the exception of the 3 fs
time-step AA-RB simulations (circled), all simulations showed excellent energy
conservation.
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Figure 4.4: The absolute drift in total energy for micro-canonical simulations
of an CG 8-monomer polymer at 300 K. The absolute drifts of 16 independent
simulations at each of the six different constraint tolerances are shown as blue
circles. The average of these data points is given by the grey diamonds, and
is calculated by χ2 analysis. The χ2

red values for these averages (purple stars)
are shown and are plotted against the right hand scale. The large drop in χ2

red

value at a SHAKE tolerance of 10−5 is caused by the non-linear energy drift
experienced by these molecules, see Fig. 4.5. This results in very large errors on
the initial linear fit to the energy, which reduces the χ2

red value.

tolerance in the range [10−10, 10−7] is suitable for most users. Simulations were

also conducted using a SHAKE tolerance of 10−5. However, as can be seen in

Fig. 4.5, not only is the change in energy over the simulation very large, but the

change is highly non-linear this demonstrates the breakdown of the integration

routine for CG systems with large constraint tolerances.

The LINCS algorithm was tested for a wide range of parameters (expansion

order {4, 6, 8, 10, 12, 14, 16, 18, 20}, iterations {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) with time

steps of {1, 2, 3, 4, 5} fs. For each combination of parameters 16 starting config-

4 fs time step and increased hydrogen masses to reduce the energy drift[150].
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Figure 4.5: The total energy of a single 8-monomer polymer during a 5 ns micro-
canonical simulation with SHAKE tolerance 10−5 (dashed purple line). The
polymer was started from a structure equilibrated in a micro-canonical ensemble
with SHAKE tolerance 10−10 for 1 ns, the starting temperature was 300 K. A
least squares linear fit to this data is also provided (solid blue line) to emphasise
the non-linearity of this energy drift. This shows the break down of the leapfrog
integration algorithm for large values of the SHAKE tolerance.
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urations were taken from CG simulations successfully completed using SHAKE

with the same time step. However, none of the 7200 simulations attempted re-

mained stable for more than 4 MD steps. This was caused by the highly coupled

nature of the constraints which produce eigenvalues too large for the expansion

used in LINCS. Therefore, the SHAKE algorithm was used for all constraints

throughout this chapter and no further simulations using the LINCS algorithm

were conducted.

The AA-RB simulations using a 3 fs time step (circled in Fig. 4.3) results in

an energy drift of 140 ± 20 meVns−1. This is 10 times the equipartition thermal

energy of the system (kBT/2 ≈ 13 meV). It is caused by the rapid movement

of the hydrogen atoms which cannot be accurately reproduced with this time

step. At 300 K a time step of 2 fs provides good energy conservation and stable

dynamics. However, at 1000 K and above the rapid movement of the hydrogen

atoms led to failures by SHAKE to converge, or it produced erroneous constraint

forces and concomitant spurious large changes in the total energy of the system.

Both the SHAKE convergence failures and spurious energy changes are absent

with a time step 1 fs in the AA-RB simulations.

Fig. 4.6 shows the computational performance of simulations of the 8-monomer

polymer at 300 K, as a function of the integration time step. It can be seen that

for the same time step, CG simulations have performance comparable to AA

simulations, and greater than AA-RB simulations. But the real advantage of the

CG representation is that a larger time step can be used than with both the AA

and AA-RB representations without sacrificing stability or energy drift. This

performance enhancement is limited only by the maximum time step that can be

used before the SHAKE algorithm fails to converge in a reasonable number (250)

of iterations. At higher temperatures the largest time step that can be used is

reduced. For example, at 1400 K a time step of less than 6 fs must be used. For

all the simulations that follow, I used a 5 fs time step for CG, and a 1 fs time

step for AA and AA-RB. With these parameters it can be seen in Fig. 4.6 that

the performance increase of the CG approach over the AA approach is a factor

of five.

In Fig. 4.7 I report the radius of gyration, a key property of the molecular

structure, as a function of temperature for polymers ranging in size from 4 to 16
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Figure 4.6: The performance averaged over 16 independent 5 ns micro-canonical
simulations of an 8-monomer molecule at 300 K for AA, AA-RB, and CG repre-
sentations. The AA simulation becomes unstable with a time step of 1.5 fs, and
the energy drift of the AA-RB simulation with a 3 fs time step is too large. The
arrows indicate the time steps used in the rest of the paper. The simulations
were performed on one core of an Intel Xeon E5-2650.
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monomers. As can be seen, the CG simulations are in very good agreement with

both the AA and AA-RB results.

In Fig. 4.8 I show the excellent agreement between AA, AA-RB, and CG

representations for the “hinge” angles, labelled O1, O2 and C in Fig. 4.2. In

the ground state these angles are 120◦. The data shown in Fig. 4.8 is for the

16-monomer system at 500 K, which has been chosen because it displays the

worst agreement between the AA and CG simulations of all the molecules and

temperatures simulated; in the case of the best agreement all data points are

indistinguishable. The agreement was characterised by the reduced χ2 value,

χ2
red =

1

Na − 1

Na∑

i=1

(
θCG
i − θAA

i

)2

(αCG
i )

2
+ (αAA

i )
2
, (4.30)

where θCG
i and αCG

i are the mean value and standard error, respectively, of the

ith angle, and Na = 3 is the number of angles. Smaller values of χ2
red indicate

better agreement between data sets.

The relative orientation of the aromatic groups in PEEK is largely defined

by the eight dihedral angles identified in Fig. 4.9. There is a choice between two

symmetrically equivalent atoms on each aromatic group for each dihedral angle.

According to the definition of a dihedral angle, angles are measured in each of

the four quadrants of a circle. The symmetry of the aromatic group results in

the distribution in each quadrant being related by symmetry to the distribution

in all the other quadrants. Therefore, to aid comparison between the simulations

the measured dihedral angle θ ∈ (−180, 180] is mapped, into the first quadrant,

using the relation:

Φ =

{
|θ| |θ| < 90◦

180◦ − |θ| |θ| ≥ 90◦
, (4.31)

where Φ ∈ [0, 90] is the resulting dihedral angle defining and characterising the

orientation. In the case of the AA and AA-RB simulations the aromatic group

can buckle resulting in a discrepancy between the two possible dihedral angles.

This discrepancy is resolved by recording the average of the two possible dihedral

angles after they have been transformed by Eq. (4.31). This reduces the effect of

the buckling inherent to AA and AA-RB simulations of aromatic groups.
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Figure 4.7: The radius of gyration for PEEK molecules, comprising 4, 8, 12 and
16 monomers, as a function of temperature. The CG simulations were performed
with a time step of 5 fs, the AA and AA-RB simulations with a time step of 1 fs.
Each data point is the average over 16 independent simulations. Straight lines
have been drawn through the data to guide the eye, the AA-RB and CG data is
shown as discrete symbols. Some data points lie on top of each other. Error bars
are comparable to the size of the symbols.
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Figure 4.8: Normalised distributions of the hinge angles labelled C (a), O1 (b)
and O2 (c) in Fig. 4.2, for the 16-monomer system at 500 K, simulated in the AA
(hollow squares), AA-RB (solid triangles), and CG (solid circles) representations.
Some data points lie on top of each other. Lines have been added to the data as
a guide to the eye. The error bars are comparable to the line width. This set of
simulations has the largest discrepancy, determined by χ2 analysis, between AA
and CG representations. For many of the other systems and temperatures the
AA, AA-RB, and CG representations are indistinguishable on the scale of the
plots.
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Figure 4.9: The dihedral angles monitored during the MD simulations of PEEK.
The dihedral angles are identified by a line connecting each of the four atoms
involved and are identified by a number 1-8. In (a) we see the dihedral angles
which are contained within the monomer these are 1-5 and 7. Whilst (b) shows
the dihedral angles 6 and 8, which involve the first aromatic group of the next
monomer (coloured grey) as it connects to the ketone. The choice of atom when
two atoms from the same aromatic group are used is made by mapping both
possible angles into the interval [0, 90) then taking the average.
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Figure 4.10: The mean values of the dihedral angles Φi labelled in Fig. 4.9, in AA
(hollow squares), AA-RB (solid triangles), and CG (solid circles) representations.
The 16-Monomer 500 K and 4-Monomer 1000 K simulations have respectively the
largest and smallest χ2

red values of all the configurations simulated.
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In Fig. 4.10 I present the observed values for these eight dihedral angles for the

16-monomer system at 500 K and the 4-monomer system at 1000 K. These two

systems were chosen because they represent respectively the highest and lowest

χ2
red values for the dihedral angles. All angles are averaged over all dihedral

angles of that type in the simulation, and over 16 independent simulations at

that temperature. It can be seen that the CG dihedral angles are in excellent

agreement with the AA and AA-RB simulations and that the maximum deviation

is less than 6◦, demonstrating that the orientation of the aromatic groups is

preserved in the CG representation.

4.3 Conclusions

I have formulated and tested a coarse graining approach to constrain planar

groups of atoms along polymer backbones to move as rigid objects during molec-

ular dynamics simulations. A key feature of my method is that it preserves

essential dynamical properties of each group that is coarse grained, namely the

centre of mass, the total mass and the moment of inertia. Furthermore, the con-

cept of ‘virtual sites’ is used to map forces from an all-atom force-field on to the

coarse grained representation.

I have tested the approach by coarse-graining the aromatic groups along the

backbone of the industrially important polymer PEEK over a wide range of tem-

peratures and system sizes. The agreement with all atom and all atom rigid bond

simulations is excellent for a number of important parameters that characterise

the polymer structure. The principal limitations of this technique are those of

the SHAKE algorithm: stability at large time steps and poor parallelisation.

The systematic removal of fast degrees of freedom that are irrelevant to molec-

ular conformational changes enables the simulation to focus on the most inter-

esting and pertinent degrees of freedom. By removing the fast out of plane

vibrations associated with aromatic groups, it is possible to use an integration

time step of 5 fs in the coarse grained simulations, as compared to 1 fs in the all

atom simulations, for the same computational cost.
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Chapter 5

Analysis of Molecular Dynamics

Simulations

The use of MD simulations in materials modelling is commonplace, see Sec. 2.2.

This has led to the development of numerous MD packages including amongst

many others AMBER[183], CHARMM[184], DL POLY[185], GROMACS[154,

155, 168, 169, 170], LAMMPS[186], and NAMD[187]1. These large MD pack-

ages often contain many hundreds of thousands of lines of computer code. Fur-

thermore, the complex systems which these codes allow us to model frequently

require extremely large and complicated input files2 and generate vast quantities

of output data. It is therefore essential that both the input and output of MD

simulations are carefully checked to ensure that not only is the right system being

modelled but also that the simulation performed the desired calculation to the

desired precision.

Nothing made by humankind is perfect[134]. This is especially true of large

and complicated projects. Large computer programs such as MD codes will al-

ways have parts where they do not perform as expected, these are often known

as bugs. In general, bugs can be classified into two types. First there are the

1This list covers only the MD programs I have used as well as CHARMM and NAMD which
have been added as the CHARMM forcefield is widely used in bio-molecular simulations, and
NAMD is widely used for massively parallel MD simulations.

2If the coordinates of the sites cannot be generated automatically for instance by duplicating
a smaller box, the coordinates of each site must be specified. For large systems (> 50000 atoms)
this can result in megabytes of data in addition to all the other input variables.
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kind that cause the simulation to fail or produce nonsensical results; these are

generally easier to identify. Then there are those that give incorrect results that

are nonetheless superficially plausible; these are, therefore, generally much more

difficult to identify. The presence of bugs does not necessarily mean that a com-

puter program should not be used only that care should be taken in how and

when it is used.

This chapter gives an overview of some of the tests and checks which have

helped me to identify bugs both in programs I have written to generate input files

and within the GROMACS MD package. During the course of my research into

polymers more than 10 million core hours of computer time has been used on MD

simulations. The aim of this chapter is to share my experience about the tests

that can and should be run on results from a MD simulation. It is not meant

to provide an exhaustive list of tests that will guarantee a correct answer. My

sincere belief is that no finite set of tests will guarantee the validity of an answer,

and that as the number of tests increases the probability of there being an error

in the testing increases. Therefore, it is advisable to choose with care a set of

tests which will indicate whether a simulation is behaving sensibly and which can

also be conducted in a sensible amount of time. This chapter provides specific

examples of where these tests have identified issues with MD simulations during

my research. These issues have in total resulted in the loss of over 9 months of

research time from this project. The rest of the chapter is organised into three

sections. The first section covers the importance of testing against expected

results and describes certain key assumptions about results which will be used in

the subsequent sections. The second section of this chapter discusses qualitative

tests, focussing on where they have been used to identify issues in simulations of

P84 in solution and CG PEEK. Finally qualitative tests for MD simulations will

be discussed, the particular focus here are problems with large simulations of P84

in solution.

5.1 Expectations

Testing is a key part of the scientific method and in order to test a theory or

in this case a MD simulation it is necessary to have some expectations of the
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results. In this context an expectation does not necessarily mean knowing the

answer to the question being posed, but rather certain aspects of the solution.

By comparing the results of the simulation with these expectations we can gain

insight into whether the results obtained are valid.

MD simulations use finite precision arithmetic, typically double (8 bytes) or

single (4 bytes) precision numbers and, over time, a numerical integration scheme

will always result in disagreement with an analytic function. This occurs due to

the accumulation of rounding errors. Therefore, even for simple systems where

analytic solutions may be known, MD simulations will after some finite time be

different from the analytic result. Despite this inherent problem, by understand-

ing the properties of the integration algorithm as well as the system of interest it

is possible to generate sensible expectations.

MD algorithms perform an integration, therefore, expectations should con-

cern the average behaviour over the integration of an observable rather than the

value of any one individual observation during the integration. Furthermore, MD

simulations are made up of many small components and it is often advisable to

test these components both in isolation, as much as possible, and then combine

them. This allows you to narrow down where any issues are occurring, which

makes them easier to find, and sometimes to avoid issues by choosing a different

algorithm or different parameters. Therefore, I usually run test simulations using

small test systems prior to running tests on larger systems. An example of this

is given in Sec. 5.2, where an 8681 atom system was used to identify thermostat

issues prior to simulations of a complete ≈ 90000 atom system. Testing in this

manner enables certain parameters and simulation procedures to be designed and

tested at a reduced computational cost1. However, as will be discussed in Sec. 5.2

and Sec. 5.3, testing and analysing large systems is also essential as certain prob-

lems only occur during full scale simulations.

1MD simulations typically scale as O(N logN) with the number of particles in the system
(N).
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5.2 Qualitative Tests

Qualitative testing is a topic that can make people uncomfortable, owing to its

association with guessing, intuition, and other topics that seem to lack the rigour

of quantitative analysis. However, it must also be understood that these tests

can often be the first indication that something is going wrong in a simulation

and can provide insight that is not easily obtained from a quantitative analysis.

The line between qualitative and quantitative analysis is somewhat ill defined,

and whilst some of the issues discussed in this section could be placed in Sec. 5.3,

I have typically made the distinction based on whether the issue was discovered

as a result of numerical values falling out of an expected range when computing

an observable or as a result of looking at trends in a visual representation of the

data.

When testing a simulation I often visualise the output coordinates of the

system. Whilst it is often difficult to discern detailed information from a visuali-

sation, e.g., observing a single misplaced atom out of ten thousand is not easy, it

can reveal anomalies that should be further investigated.

For example, whilst preparing to conduct large scale simulations of solvated

P84, I simulated a test system consisting of 611 DMF molecules and a 137 atom

section of P84. The simulation was performed at 300 K in a canonical ensemble

with temperature conservation enforced by means of a Nosé-Hoover[59, 60] chain

thermostat in GROMACS v4.5.5. The density of this box was 861 kgm−3 which

is around 87 % of the experimental density of 18 wt% P84 in a 3:1 mixture of

DMF:dioxane, and the temperature was well conserved. However, on visualisation

it became apparent that large voids were forming in the solvent, see Fig. 5.1. This

behaviour was not expected at these conditions, therefore, I decided to investigate

further. Continuing the simulations, without a thermostat and using the Langevin

thermostat both showed the voids filling almost immediately. Therefore, the

thermostat was identified as the likely cause, and testing was conducted using

time coupling parameters, 0.1–5 ps for Nosé-Hoover chains of lengths from 1–30.

These simulations all showed similar void formation, and also identified that the

average pressure of a simulation cell varied with the number of cores on which

the simulation was run. I used this information to file two bug reports with
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Figure 5.1: A visualisation of a periodic box of 611 DMF molecules (orange,
ball and stick models) and a small (137 atom) section of P84 (red, space filling
spheres). Voids are clearly visible at the left and right edges of the periodic
simulation box.

the GROMACS team, reports #1003 and #1012, these were fixed when various

core routines were updated in preparation for a new release of the code. This

highlights the importance of these visual checks as they can be an early indication

of something going wrong in the simulation.

Another qualitative test is that the behaviour of equivalent components within

a system should be similar. Whilst conducting the initial testing on the CG PEEK

molecule described in Chap. 4, eight dihedral angles were monitored for each

monomer of the polymer (see Fig. 4.9 for definitions of the dihedral angles). It

was found that despite a symmetry which ensured that all four possible quadrants

of dihedral angles 6 and 8 were geometrically equivalent and should occur with

equal frequency, checks showed that for the terminal monomer dihedral angle 6

was always in the region −180 < Φ6 ≤ −90 and dihedral angle 8 was always in the

region 90 < Φ8 ≤ 180. This observation was incompatible with the expectations

92



Quantitative Tests

based on the symmetry of the system. Furthermore, the values obtained for

dihedral angles 6 and 8 not in the terminal monomer were evenly distributed

between the four quadrants. An analysis of the input file led to the discovery of a

single misplaced constraint which had been missed in previous checks of the file.

Once corrected all equivalent dihedral angles had a similar distribution of values

between the four symmetrically equivalent quadrants.

These tests should give an overview of some of the things which should be

considered at a qualitative level when analysing an MD simulation. One thing

which is important to remember is to have a physically motivated hypothesis

of what the results will show before starting the simulation. This is important

because it is far too easy to convince yourself that what is in front of you is the

correct physical result if you do not have a clear picture of what to expect before

you start.

5.3 Quantitative Tests

Quantitative tests are generally loved by scientists. In particular, when the solu-

tion to a problem is known one can simply check if the result from the simulation

is in agreement and know that one is reproducing at least some aspect of the sys-

tem accurately. However, in a dynamical simulation such as MD this is almost

never the case. Therefore, the most important test for a simulation is the check

that the observable(s) of interest are sampled by the simulation in a sensible

manner. There is no simple test for this which will work for every observable. It

is therefore necessary to consider the observable carefully and consider what dis-

tribution of observations might be expected. Checking the distribution of points

and not just the average and standard deviation is essential. To understand why

this is the case consider a set of data points uniformly distributed on a circle of

unit radius. Given a sufficient sampling of the circle, these will have an average

position at the centre of the circle and a standard deviation in both the Carte-

sian directions of 1/
√

2. This is the same average and distribution as would be

obtained from a set of x and y coordinates drawn from a normal distribution

with standard deviation 1/
√

2. However, it is clear from Fig. 5.2 that these two

distributions are sampling the Cartesian plane in a very different manner. For
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this reason the distribution and fluctuations of an observable must be considered.

If an observable has sampled according to an inappropriate distribution it may

indicate that something is wrong with either the code or the underlying procedure

used for the simulations. Another issue which can occur is that the simulation

is sampling in a sensible manner but has yet to obtain a sufficient quantity of

data. If this is the case, then either the simulation should be extended in duration

or alternative techniques that accelerate the exploration of phase-space such as

meta-dynamics[188], or MC should be considered.

5.3.1 The Micro-Canonical Ensemble

The micro-canonical ensemble is the simplest ensemble to simulate in MD, as

it maintains constant particle number, volume, and internal energy. Testing for

changes in particle number or volume is trivial as these should not vary at all in

the MD simulation. However, no perfect numerical scheme is known for moving

the particles forward in time whilst conserving energy. Therefore, it is necessary

to test the behaviour of the energy in view of the imperfect integration algorithm.

When using the leapfrog and velocity verlet algorithms, the positions at future

points in time are accurate to O(∆t2) where ∆t is the time step. Despite this

accuracy both algorithms do result in fluctuations in the total energy of the sys-

tem from one time step to the next and a drift in the total energy over longer

times. Higher order schemes such as fourth order Runge-Kutta[179] typically

have a smaller energy drift and usually do not have significant fluctuations; how-

ever, these require additional force evaluations, which can significantly increase

computational cost, and lack time reversibility, which can result in non-physical

behaviour at large time scales. Therefore, they are far less widely used than

leapfrog and velocity verlet, and will not be discussed further.

For both the leapfrog and velocity verlet algorithms: the total energy drift

and amplitude of the fluctuations increase and the computational cost decreases

with the size of the time step. Therefore, a balance must be sought between the

increased precision of a smaller time step and the reduced computational cost

of a large time step which can allow increased accuracy by sampling a larger

proportion of the available configurations. The fluctuations in the total energy
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Figure 5.2: Two sets of 1500 randomly generated points. The blue squares are
drawn from a two dimensional normal distribution with standard deviation 1/

√
2,

whilst the green circles have been drawn uniformly from the unit circle. The
resulting mean positions and standard deviations are in perfect agreement. How-
ever, the two sets of randomly generated points clearly do not sample the plane
in a similar manner.
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are easily reduced as they scale as O(∆t2)[26] and for these I tend to ensure that

they are small relative to any energy-based observation being made1. There is no

universal value for the acceptable energy drift in a simulation as this will depend

on the observable properties of interest and how they are affected by the drift.

When considering an AA simulation it is sensible to look at the energy drift per

atom, and a sensible value to compare this with is the thermal energy of the

simulation which, in the absence of constraints, is 3
2
kBT per atom. If the total

energy drift per atom over the duration of a simulation is a substantial fraction of

the thermal energy, then it is an indication that the properties from a simulation

may not have been calculated with sufficient precision.

The average rate of drift in total energy of a simulation should be a constant for

a given simulation, if this is not the case it can be an indication that something

is not behaving as expected. An example of this occurred whilst simulating a

392 atom section of P84 solvated in 7389 DMF molecules (a total of 89060 atoms)

in GROMACS v4.6.2. The system was initially equilibrated using a Langevin

thermostat, at 250 K, for 5 ns followed by a 5 ns micro-canonical equilibration

resulting in a simulation temperature of 279 K, (full details of the preparation and

cut-off settings used are discussed in Chap. 6). As can be seen in Fig. 5.3, for the

first almost 190 ns there is an acceptable drift of 2.21 × 10−4 meV ns−1 atom−1,

then there is an abrupt change for the final 7 ns to −6.4×10−3 meV ns−1 atom−1.

On further investigation, it was found that this discontinuity in the energy drift

coincided with the continuation of the simulation from a checkpoint file2. This

indicates that there is an error with the underlying MD simulation software. The

cause of this error has yet3 to be identified, however, it appears to be limited

to the GROMACS v4.6.x program. This data shown in Fig. 5.3 is part of a

series of 40 simulations, the energy drift graphs from the full range of simulations

are available in App. B. These simulations represented in excess of 5 million

core hours of computer time and were run over the course of 6 months on four

different computer platforms. The discovery of this bug in the simulation software

1As total energy is degenerate with regards to an additive constant this concept should only
be applied to observations of energy differences.

2These continuations were necessary at the time taken by the simulation exceeded the
maximum wall time on the computer.

3November 2013

96



Quantitative Tests

invalidates all the results from these simulations and significantly reduced the

amount of data I was able to gain from MD simulations of P84. I failed to

spot this problem with the simulations earlier as I relied too heavily on the

idea that if the first part of one simulation had behaved in a sensible manner

that the other similar simulations would perform equally sensibly and would,

therefore, not require detailed monitoring as they were run. This was a serious

mistake and I now actively encourage people to learn from this and monitor the

detailed behaviour of the data as results come in. The simulations which were

lost to this bug represented more than 6 months of time and were conducted on

three high performance computers1, repeating them with an alternative version

of GROMACS which does not suffer from this bug was not possible due to the

amount of time and computational resources it would have consumed at a late

stage in the project. The root cause of the bug has not been identified or to the

best of my knowledge rectified. One of the main causes of this is its intermittent

nature which leads me to believe that it is likely due to the load balancing routines.

However, this has not been confirmed, and new release of GROMACS v5.0, which

included substantial changes to all core routines, has now been developed and

this bug which is in a version of the code no longer under active development, is

unlikely to be resolved.

Given two MD simulations of similar systems generated using the same pro-

cedures one might presume that the simulations would demonstrate similar char-

acteristics and that it would, therefore, only be necessary to check fundamental

properties of a MD simulation such as energy conservation in one of the pair.

A second system comprised of a 392 atom section of P84 solvated in 7384 DMF

molecules (a total of 89000 atoms) was prepared and equilibrated in the same

manner as the system shown in Fig. 5.3. The two simulations differ only in the

distribution of monomer units within the P84 oligomer and the number of solvent

molecules present which was altered to maintain equal densities. After equilibra-

tion the second system had a temperature of 278 K. The simulations used the

same input parameters, and were run simultaneously using the same executable

on the same computer. However, as can be seen in Fig. 5.4, the behaviour of

1It represents almost the entire amount of computer time that had acquired for this project
through four successful resource applications.
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Figure 5.3: The energy drift per atom of a 89060 atom, 200 ns, micro-canonical,
MD simulation. The raw data is shown as light green points, times where the
simulation was continued from a checkpoint file are indicated with thin vertical
black lines, and a least squares linear fit to the energy in each region is indicated
with a dashed red line. The initial 5 ns of micro-canonical simulation was used
to equilibrate the polymer and is therefore not shown. The gradients of the
four regions are from left to right: 2.06 × 10−4, 2.5 × 10−4, 2.0 × 10−4, and
−6.4 × 10−3 meV ns−1 atom−1. Clearly there is a significant alteration in the
behaviour of the simulation after 197 ns.
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the energy during the simulations is not similar. The energy drift shown in the

graph has three clear regions with gradients −6.921 × 10−3 meV ns−1 atom−1,

2.0× 10−4 meV ns−1 atom−1, and −6.68× 10−3 meV ns−1 atom−1. The gradient

changes occur at the points where the simulation was continued from checkpoint

files. Had only the first 190 ns of Fig. 5.3 been analysed it might have been

concluded that the energy conservation for the polymer in solution at 280 K was

reasonable and the anomalous behaviour of the energetics of the second simula-

tion might not have been observed. For this reason it is essential to always check

that the basic properties of a MD simulation are behaving sensibly even if you

have tested similar systems using the same code on the same hardware before.

5.3.2 The Canonical Ensemble

The term temperature is one that is often used when talking about MD simula-

tions. In a MD simulation temperature is defined by the relation

〈
atoms∑

i

pi
2

2mi

〉
=
NDoF

2
kBT, (5.1)

where pi and mi are the momentum and mass of atom i, and NDoF is the number

of degrees of freedom in the simulation. The term temperature is also sometimes

used for values obtained from instantaneous rather than average kinetic ener-

gies, and any instances of this in this work will be clearly identified. Modelling

a canonical ensemble is more complex than the micro-canonical ensemble as it

involves coupling the system to a heat bath which can add or remove kinetic

energy from the system thereby approximating a constant temperature within

the simulation. The average in Eq. (5.1) gives an indication of the fact that the

instantaneous temperature of a canonical ensemble will experience fluctuations,

and the magnitude of these fluctuations is known to be[26]

〈
T
2
〉
NV T

− 〈T〉2NV T =
2T 2

NDoF

, (5.2)

where 〈〉NV T is an average in the canonical ensemble and T is the instantaneous

temperature. This information can be used to demonstrate that a simulation in
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Figure 5.4: The energy drift per atom of a 89000 atom, 200 ns micro-canonical,
MD simulation. The raw data is shown as light green points, times where the
simulation was continued from a checkpoint file are indicated with thin vertical
black lines, and a least squares linear fit to the energy in each region is indicated
with a dashed red line. The initial 5 ns of micro-canonical simulation was used
to equilibrate the polymer and is therefore not shown. The gradients of the three
regions are −6.921 × 10−3, 2.0 × 10−4, and −6.68 × 10−3 meV ns−1 atom−1.
Clearly the behaviour differs significantly between the three regions and is not
similar to that displayed in Fig. 5.3.
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the canonical ensemble is giving rise to velocity fluctuations that are physically

meaningful. Similarly, for a micro-canonical ensemble, the fluctuations are given

by[26]
〈
T
2
〉
NV E

− 〈T〉2NV E = T 2

(
2

NDoF

− kB
CV

)
, (5.3)

where 〈〉NV E is an average in the micro-canonical ensemble, and CV is the constant

volume heat capacity. Whilst CV is usually unknown for a system it can be

calculated for a small system then checked that the behaviour is consistent in a

larger system using the extensivity1 of CV . If the temperature fluctuations are

not consistent with the expected distribution it is often caused by insufficient

equilibration, or an inappropriate set of parameters for the thermostat. It should

be noted that NDoF has been used rather than the number of atoms (Natoms) as

constraints on the system will reduce the number of degrees of freedom relative

to the standard 3Natoms.

My experience has been that typically library thermostats perform a reason-

able job at maintaining sensible distributions of instantaneous kinetic energies

within a simulation. However, extreme care must be taken when selecting the

strength of coupling with the heat bath. If the coupling is too strong the system is

dominated by the velocities from the heat bath rather than the system. I observed

this when in the course of testing the Langevin thermostat in LAMMPS I used

the same value for the coupling parameter in the input file for a 500 K simulation

of a 145 monomer long PEEK molecule I had previously used in GROMACS. The

two pieces of software use the coupling parameter in the input file in a different

manner, and the resultant simulation caused the PEEK atoms to oscillate about

their positions with no significant movement of any clusters of atoms. I was able

to rapidly identify this as an issue with the thermostat, and when the parame-

ter was set to a more sensible value (3 orders of magnitude lower) the polymer

rapidly transitioned from an unstable elongated structure to a more stable balled

up structure.

In this chapter we have outline some of the possible checks which can indicate

potential problems with a MD simulations. There are numerous additional tests

and checks which can and often should be run on a simulation to ensure that it

1Extensive quantities are quantities which are directly proportional to system size.
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is accurately reproducing the physics of interest. The purpose of this chapter has

not been to give a list of tests that should be run on a simulation but rather an

idea of the mindset with which simulations should be approached. The principle

I have used throughout my analysis of simulations is this, if you are uncertain

or uncomfortable about something assume that it is broken until you have proved

otherwise.
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P84 Membranes

The study of P84 membranes is immensely complex. The properties of P84 orig-

inate from a broad range of length scales from the square meters of membranes

which are produced, to the angstrom scale pores which exist in the surface layer.

Furthermore, the membranes are produced in seconds by a process involving

atomistic interactions yet have an operational life of many years. To begin mod-

elling P84 membranes it is necessary to consider which parts of the life cycle of a

P84 membrane are most important. Experiments demonstrate that the porosity

and maximum molecular weight cut-off1 of P84 membranes are determined by

the solvents used in the initial manufacture[6, 7, 8, 9, 10]. The focus of this work

is the structure generated by the phase inversion process.

The phase inversion process is discussed in Sec. 3.2. For P84 the process

takes place over a period of around one second. Modelling the entire process ab

initio is clearly both impossible and not sensible. It is therefore important to

consider the P84 molecule itself, the solvents used during phase inversion, and

the assumptions the properties of these components allow us to make.

6.1 The P84 Molecule

P84 is a polyimide macro-molecule. It is composed of benzophenone tetracar-

boxylic acid dianhydride (BTDA) units bonded together with toluenediamine

1Molecular weight cut-off is the weight to which an oligomer can be polymerised before it
will no longer pass through the membrane
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(TDA) and 4,4’-diaminodiphenylmethane (MDA) units as shown in Fig. 6.1. As

a macro-molecule P84 does not define a single unique molecule but rather a class

of molecules with different molecular weights. The distribution of masses within a

collection of P84 molecules, or indeed other molecules formed by polymerisation,

is characterised by the polydispersity (DM). Polydispersity is defined by

DM ≡ Mw

Mn

, (6.1)

where the number averaged molecular weight is given by

Mn =

∑Np

i mi

Np

, (6.2)

the mass-average molecular weight is defined as

Mw =

∑Nm

j njm
2
j∑Nm

j njmj

, (6.3)

and mi is the mass of polymer i, Np is the number of molecules, nj is the number of

molecules with mass mj, and Nm is the number of distinct molecular masses[189].

For P84 DM = 1.46 with Mn = 62000 g mol−1[190], indicating very little scatter

in the distribution of molecular masses. The average molecular mass of a P84

repeat unit is 423.59 g mol−1. Therefore, a typical P84 molecule is composed of

approximately 146 repeat units.

The aromatic structure of P84 causes electrons to delocalise over large areas

of the BTDA, MDA, and TDA sub-units. The delocalised electrons inhibit bend-

ing and rotation of the groups, resulting in P84 having a highly rigid structure

compared to polymers such as PEEK, see Chap. 4, or polyethylene. This rigidity

will slow conformational changes in the molecule and help ensure the long term

stability of the membrane[7, 8, 9].

As with many polyimide molecules1 P84 is chemically stable. P84 is highly

miscible with polar solvents such as DMF; however, it is insoluble in non-polar

1Imide groups consist of a trigonal nitrogen connected to two carbonyl groups and third
organic group, and can be found at either end of the BTDA groups in Fig. 6.1.
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Figure 6.1: The chemical structure of P84 provided by the manufacturer
(Evonik GmBH). The subcomponents benzophenone tetracarboxylic acid di-
anhydride (BTDA), toluenediamine (TDA), and 4,4’-diaminodiphenylmethane
(MDA), have been labelled for reference. The exact proportions of the possible
bonding configurations between BTDA and TDA is confidential and is, therefore,
not shown. However, the proportions of MDA and TDA units in P84 have been
widely published[6, 7, 10] and are therefore included.
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solvents including water and dioxane[6, 7, 8, 9, 10]. Therefore, intermediate

solvents for P84 are constructed by mixing DMF and dioxane together.

6.2 Solvents

DMF is a widely used organic solvent[6, 7, 8, 9, 10]. The chemical structure,

shown in Fig. 6.2, results in a highly polar molecule. DMF has a molecular mass

of 73 g mol−1, and under standard atmospheric conditions forms a liquid with a

density of 944 kg m−3. P84 is highly soluble in DMF which is why the latter can

be used to break down P84 membranes. In contrast dioxane, shown in Fig. 6.3,

is non-polar and does not act as a solvent for P84. Dioxane has a molecular mass

of 88 g mol−1, and under standard atmospheric conditions forms a liquid with a

density of 1033 kg m−3. DMF and dioxane are miscible and are used as solvent

and co-solvent respectively when forming P84 membranes[190].

O

H N

Figure 6.2: The chemical structure of dimethylformamide (DMF).

O

O

Figure 6.3: The chemical structure of 1,4-dioxane (dioxane).

Both DMF and dioxane are hydrophilic, and water is used as the non-solvent

during phase inversion of P84. DMF is non-volatile, dioxane is more volatile
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and some dioxane may evaporate from the membrane during casting in ambient

conditions. However, it has been shown that this is a very small quantity during

typical casting times1 and has no discernible impact on P84 membrane porosity[7,

8, 9, 190].

6.3 Modelling P84 Membranes

The physical properties of P84 and the solvents used in the production of the

membrane allow us to make an assumption about the behaviour of the system

during phase inversion. The rate of diffusion of water into the surface of the

polymer dope occurs on a time scale much faster than required for conforma-

tional changes of a rigid molecule such as P84. This assumption results in the

surface layer of the final P84 membrane having a structure broadly similar to

that of the polymer in solvent. This dense layer would inhibit diffusion of water

molecules through it slowing the solvent exchange in the back of the membrane;

thereby allowing the polymer to diffuse in that region. The resulting structure

is a dense interface layer with a more open support layer which in agreement

with the experimental observations. It is clear from experimental observations

that the membrane structure is more open and has larger pores when formed

using a good solvent and more closed with smaller pores when formed using a

poor solvent, which agrees with what we expect for a polymer in solution. This

assumption is supported by the self diffusion coefficients of the solvents, DMF

1.49 nm2 ns−1[191], dioxane 1.09 nm2 ns−1[192], water 2.23 nm2 ps−1[193]. These

numbers indicate that in a single nano-second the slowest of molecules would

be expected to demonstrate a significant displacement from its starting position,

whilst it is clear from Sec. 7.5.3 that in 300 ns a complete P84 molecule was

unable to fully equilibrate. Therefore, the assertion that diffusion of water into

the polymer dope occurs faster than the speed of conformational changes in P84

appears reasonable.

1Casting is the process where the polymer dope is spread onto a backing material prior to
phase inversion. This is typically < 10 s during manufacture of P84 membranes. However,
some membranes are manufactured with long casting times to increase solvent evaporation[7,
8, 9, 190].
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The challenge is therefore to model the behaviour of large collections of P84

molecules in solution. Whilst this problem is no longer one of kinetics, finding

the equilibrium structure of a strongly interacting polymer in solution is not

trivial. The polymer dope is typically left to equilibrate for 24 hrs[6], which is

far beyond the range of current MD techniques. However, the importance of

the polymer solvent interactions shows that a high level of accuracy is required

for this problem. The multi-scale model coupling DFT, MD and MC, shown in

Fig. 6.4, is therefore the most appropriate approach.

Interaction Energies

 Configurations 

Pore Sizes and 

Distributions

Forces

Positions

Lengths and Structures

Configurations

DFTMDMC

Chemical 

Formulae

Chemical 

Structures of 

Pore Walls

Figure 6.4: A schematic diagram demonstrating the multi-scale model to be
used in coupling the different length scales in this work. The arrows indicate
the directions of information transfer in the coupling process, whilst the labels
indicate what is passed in that direction.

When coupling different techniques it is important to consider what informa-

tion will be passed between them. The scheme shown in Fig. 6.4 indicates the

final goal. However, a complete implementation is not necessary to understand

the formation of the membrane structures, but will be useful in the generation

of atomistic structures for considering other topics such as the flux of molecules

through the membrane structure. Therefore, for this work, the energies and

forces, which would ideally come from DFT, will be in the first instance taken

from MD simulations using established forcefields, and the path from the MC

simulations to the MD and DFT representations has not been developed. In-

formation about the detailed structure of pores will remain a topic for future

research. In Chap. 7 we establish the length and energy scales associated with

108



Modelling P84 Membranes

P84 membranes from MD simulations. This can then be used in the MC simula-

tions in Chap. 8 to understand the pore structure of the system.
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Chapter 7

Molecular Dynamics of P84

The importance of the solvent-polymer interactions in the manufacture of P84

membranes makes it essential to study these systems at high precision. MD

simulations provide atomistic insight into the behaviour of polymeric systems

whilst allowing access to micro-second time scales. Over the course of this project

many avenues to study P84 in solution were explored, the first used the Dreiding

forcefield[62] in DL POLY to study isolated polymers in vacuum, the second

considered the use of an ab initio forcefield to accurately represent the chemical

environment surrounding the atoms, the third used the OPLS-AA forcefield in

GROMACS to study the polymers in both dilute and concentrated solutions, the

final simulations used the OPLS-AA forcefield in GROMACS to study polymers

in concentrated solutions at the experimental temperatures.

7.1 P84 in the Dreiding Force Field

The Dreiding forcefield was selected for the initial study of P84 primarily due to

its availability within the DL POLY (v4.0) graphical user interface. The force-

field has a similar functional form to the OPLS-AA forcefield given in Eq. (2.5),

differing only in that a single multiplicity of the dihedral angles (ki) is used rather

than a sum over several in OPLS-AA. Another key difference between the two

forcefields is that Dreiding uses a very small set of parameters defined only by

an atom’s hybridisation rather than a combination of its atomic number, hy-
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bridisation and the type and hybridisation of the atoms involved in the bond[62].

This radically reduces the number of forcefield parameters required for complex

molecules and allows almost any molecule to be constructed. However, as the

authors of the original parameter set acknowledge, it does not result in the same

accuracy as forcefields which consider the chemical environment of the system in

more detail[62] such as OPLS-AA.

The initial simulations in DL POLY began by analysing the relative orienta-

tion of aromatic groups in their minimum energy configurations. Fragments of

P84 consisting of pairs of aromatic groups were constructed by hand and their

energies were then minimised using the built in function in DL POLY. The struc-

tural relaxation procedure in DL POLY is one of the best minimising algorithms

in any MD code I have used. The user runs a canonical ensemble calculation,

then at periodic intervals the code performs a structural relaxation, and the low-

est energy configuration of these relaxed structures is stored. This allows the

configuration to escape shallow local minima. It was clear from these simulations

that the length and structures of P84 would be determined primarily by the rel-

ative orientation of the aromatic groups. The Dreiding forcefield’s use of very

generic parameters, which do not include the effects of the chemical environment,

would not reproduce the structure of P84 effectively.

7.2 Parametrising a Custom P84 Force Field

The behaviour of an atom in a molecule is inherently quantum[194]. Therefore, to

build a classical forcefield which reflects the chemistry of the environment the pa-

rameters should be fitted to quantum mechanical data for the molecule. Recent

developments in DFT and in linear-scaling methods[195, 196, 197], combined

with modern high performance computing permit the generation of large data

sets of quantum mechanical information for large organic molecules1. Further-

more, it has been shown that parametrising existing forcefields fitted to match

DFT data for organic molecules can improve the agreement with experimental

observations[172]. Based on this it was decided to investigate the development of

a custom forcefield to P84.

1For quantum simulations large currently implies hundreds of atoms.
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The approach investigated is outlined in Sec. 4.1.5. In summary, it involves

generating large numbers of, statistically independent, configurations from a MD

simulation, using them as input coordinates for a DFT simulation, then fitting

the forcefield parameters to minimise the difference between forces from MD and

DFT. New configurations are then generated by running MD simulations with the

new forcefield and the process is iterated until the forcefield parameters converge.

The P84 molecule has comparatively large monomer units (43 or 53 atoms).

Combining the possible BTDA-TDA-BTDA configurations, adding in an MDA

unit and terminating at both ends with methyl groups resulted in a 177 atom

oligomer1. This molecule includes all components of the P84 molecule in their

normal chemical environment, and terminating the molecule with methyl groups

as opposed to hydrogen prevented the end groups becoming highly polar which

introduces deep minima into the potential energy landscape making it difficult

to sample. This molecule was therefore chosen to represent the polymer for the

purposes of force fitting. The presence of multiple copies of the atoms in similar

configurations and the methyl termination were felt to be sufficient mitigation

against finite size effects. However, this assertion was to be verified by simulat-

ing a smaller number of configurations of a 359 atom molecule2 using the fitted

forcefield and comparing against DFT.

The authors of Ref. [172] kindly provided their modified version of the AMBER[183]

v9 source code to enable the parametrisation of a P84 forcefield. However, the

SANDER MD program from the AMBER v9 MD toolkit which had been modi-

fied to enable force fitting had several problems related to its data structure which

made it less than ideal for force matching. Firstly, the code checks for similar

parameters for the bonded interactions in the input file, and references all similar

interactions to the same place in memory. Therefore, if two distinct interactions

are started from the same initial guess the SANDER program will treat them

identically and the force matching algorithm will also treat them as the same in-

teraction. This procedure was originally used to save memory in the simulation.

A work around for it is adding a small random term to the fifth significant figure

of each term of every bonded interaction in the initial forcefield. The second

1methyl-BTDA-TDA-BTDA-MDA-BTDA-TDA-BTDA-methyl
2Two 177 atom oligomers connected by a TDA group.
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issue was more serious. Unlike for bonded interactions the code always stores

the charge and Lennard-Jones parameters for every atom. Therefore, whilst it is

clear that there are inherent symmetries in the molecule, which should result in

there being only 30-45 chemically unique atoms in P841, the code required the

non-bonded terms for each of the 177 atoms to be fitted individually. This feature

was coded into the most basic data structures of the SANDER component of the

AMBER v9 MD suite, and no practical workaround for it could be found.

Ref. [172] demonstrated that for their systems fitting the Lennard-Jones pa-

rameters was unnecessary. Therefore, only the bond, angle, dihedral angle, im-

proper dihedral angle, and atomic charge terms in the forcefield needed to be fit-

ted. For P84 using a GAFF style forcefield, and fitting in the modified SANDER

code there, are 13 bond types, 23 angle types, 42 dihedral angle types, 13 im-

proper dihedral angle types and 177 charges giving a total of 359 parameters.

Enforcing charge neutrality reduces the number of free parameters to 358. This

is a vast number of parameters which would require a very large amount of data

to fit, and furthermore it contains a large number of parameters which should

be either constrained to be identical or will have minimal impact on the final

conformation of the molecule.

The key properties of interest in these simulations of P84 are the intermolecu-

lar energies and the length scales (radius of gyration, polymer solvent separation,

and lp) of the molecule. Consider for instance increasing the bond lengths of the

system by 5%: this would have a far smaller impact on the radius of gyration

of the polymer than reducing the energy barrier associated with reorienting the

two aromatic groups in the BTDA unit relative to the central carbonyl group.

Two procedures were developed to aid in the force fitting. The first was de-

signed to restrict the degrees of freedom in a simulation, and hence the number

of forcefield parameters, whilst maintaining numerical stability and atomic level

resolution. This eventually became the CG procedure described in Chap. 4. Ap-

plied to P84 this had the potential to reduce the number of bonded parameters

to be fitted in the forcefield from 182 to 70. However, the lack of symmetry in

the aromatic groups of the BTDA unit made the procedure difficult to apply

and inhibited parallelisation, due to the use of the SHAKE algorithm, which was

1This depends on how far the charge is expected to de-localise over the system.
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required for backbone aromatic groups, and resulted in this avenue eventually

being stopped. The second part of the problem which was undertaken simultane-

ously, was to write a custom force fitting code which permitted assigning certain

atoms to have the same charge, and restricting certain degrees of freedom in the

system. The resulting python program is able to read GROMACS topology, and

trajectory files and match against forces from a ONETEP[195, 196, 197] DFT

simulation. However, without the reduced degrees of freedom it was clear that

potentially more than a thousand DFT simulations, and many millions of core

hours of computer time, would be required to fit a custom P84 forcefield. It was

therefore decided, after a year of working on this, to focus on using MD simula-

tions with existing forcefields, in particular OPLS-AA, to obtain results for the

behaviour of P84.

7.3 Molecular Dynamics of P84 in the OPLS-

AA forcefield

The OPLS-AA forcefield is specifically designed to capture the behaviour of liquid

systems[38, 173]. It is therefore extremely useful for studying polymers in solu-

tion. The dihedral angle and improper dihedral angle components of OPLS-AA

are four-body interactions. The number of dihedral parameters necessary scales

as O(N4), where N is the number of atom types in the forcefield1. Therefore, a

complete parametrisation of all chemically possible atom combinations is an im-

practical task, and the forcefield developers focus primarily on molecules which

are either widely used or which are of interest in their own research[38, 173]. It is

therefore not surprising that not all of the dihedral angles in P84 are parametrised

in OPLS-AA. The dihedral angles which do not have parameters are indicated

in Fig. 7.1. In all cases the parameters were replaced with zeros for the purposes

of conducting the simulations. For cases 1, 2, and 3 the effect of this is expected

1There are 809 atom types in the 2001 release of OPLS-AA. However these are reduced
to 109 types for covalent bonding as many types differ only in their non-bonded parameters.
Not all combinations of bonding are possible. Therefore, the final number of dihedral angles
necessary for a complete forcefield will be significantly less than the 108 one might initially
expect[38].
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to be minor as the planarity of this section of the system is primarily enforced

by improper dihedral angles which are parametrised, albeit with very generic

parameters. However, for case 4 the zeroing of the dihedral angle parameters

may result in an increase in the flexibility of the BTDA group about the central

ketone, as only the potential energy associated with the dihedral angle between

the aromatic and ketone oxygen is restricting the rotation. All components of

dioxane are parametrised in OPLS-AA and DMF is one of the molecules included

in the parametrisation of the forcefield[38, 173].

Figure 7.1: A schematic diagram indicating the un-parametrised dihedral angles
in the BTDA group of the P84 molecule. Only a single dihedral angle of each
type (1,2,3,4) is indicated. There are four of each type present in the BTDA.
Furthermore, type 1 dihedral angles could connect to either an aromatic carbon
or the carbon from a methyl group. During all simulations of P84 using the
OPLS-AA forcefield presented in this work all four types of dihedral which do
not have explicit parameters have their energy terms set to be zero.

Two sets of simulations were designed. The first studied the behaviour of

short P84 oligomers in dilute solution. The second considered the dynamics of

complete P84 molecules at experimental concentrations (24wt%). The simula-

tions were conducted in GROMACS v4.5.5 in double precision unless otherwise

stated. Covalent bonds involving hydrogen were fixed with constraints. The

LJ parameters used a cut-off radius of 1.1 nm smoothly tapered1 in the final

0.05 nm. The Coulomb interactions used a 1.1 nm cut-off shifted to 0 at the

cut-off with periodic interactions, if present, accounted for using particle mesh

Ewald summation (PME).

1Smooth in this context means continuous in the first derivative of the potential, which is
the force on the atom.
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7.4 P84 Oligomers in Dilute Solution

The final structure of P84 membranes is primarily determined by the solvent used

in the initial polymer dope[6, 7, 8, 9, 10]. Therefore, studying the behaviour of

P84 in various solvents is important in understanding the final structures of the

polymer membrane. However, at experimental concentrations of 18–24wt% the

dope is left to equilibrate for 24 hours to ensure complete mixing of the polymer

with the solvents. A 24 hour atomic scale simulation of a polymeric system is

beyond the reach of MD on current computers by 9 orders of magnitude. In

contrast solvents such as DMF and dioxane equilibrate on a pico-second time

scale, and short oligomers equilibrate far faster than long polymers. As a result of

this it was decided to simulate single short oligomers, composed of 253–392 atoms,

in a simulation cell large enough to permit the polymer to extend fully without

interacting with its periodic image1.

The purpose of these simulations was to understand the behaviour intrinsic

to the polymers. In particular the persistence length of the polymer at its Θ

temperature2 was sought as this offers a direct point of comparison with the MC

model described in Chap. 8. It was therefore, decided to simulate several P84

oligomers in a variety of solvents across a range of temperatures. Finding the Θ

temperature for each polymer solvent pair then permits simulations of the full

P84 molecule in that solvent to be conducted at the Θ temperature to determine

the enthalpy of mixing for each solvent. It was decided to conduct simulations at

250 K, 300 K, 350 K, 400 K, and 450 K, in DMF, dioxane, and water.

Ten P84 oligomers were constructed, consisting of 4 oligomers containing 5

TDA groups and 6 BTDA groups, 2 oligomers containing 4 TDA groups, 1 MDA

group and 6 BTDA groups, 2 oligomers containing 3 TDA groups, 2 MDA groups

and 6 BTDA groups and 2 oligomers containing 7 TDA groups, 1 MDA groups

and 9 BTDA groups. The polymers were generated as random co-polymers in

Materials Studio 6.1, and the ratio of TDA and MDA groups was controlled by

generating the groups with probabilities based on their abundance in industrial

1Due to the nature of PME for periodic simulations there will be some component of
the reciprocal Coulombic interaction. However, this is not expected to significantly affect the
results.

2This is the temperature where the ideal, non self-avoiding scaling of a polymer is obtained.
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P84. These initial coordinates were then exported for use in GROMACS using a

program I wrote to convert P84 molecules generated to be used with the COM-

PASS forcefield in the Discover MD suite1. The polymer conformations were then

simulated for 2 ns in vacuum at 2000 K with the canonical ensemble enforced us-

ing a Langevin thermostat and a 2 fs time step. This time step was used for

all simulations involving dilute solutions. This was followed by a further 2 ns

of simulation in the micro-canonical ensemble. The resulting polymer conforma-

tions were then considered to be free from any bias imposed by the generating

procedure and were placed in a rhombic dodecahedron cell with point to point

separation of 11 nm. The rhombic dodecahedron cell was chosen as it represents

the smallest volume for a given point to point separation of any space filling box.

The solvent was prepared by generating small (64 nm3) cubic boxes of DMF,

dioxane, and TIP3P water[198]2. These boxes were initially packed at a density

of 1 g ml−1 by placing structurally relaxed individual molecules on a cubic lattice

within the cubic cell. The resulting cell was then simulated for 500 ps with a

Langevin thermostat at 300 K, followed by 1.5 ns in the micro-canonical ensemble.

A 1:1 mass fraction mixture of DMF and dioxane was constructed by joining two

half cells of DMF and dioxane together and, equilibrating the systems using two

Langevin thermostats at 300 K, one for each subsystem, for 500 ps, after which

the two systems were permitted to mix in the micro-canonical ensemble for 3 ns.

The P84 oligomers were solvated using the genbox utility from the GROMACS

MD suite. This works by overlaying the solvent box with the oligomer box and

adding all the molecules which do not overlap the oligomer. If the oligomer’s box

is larger than the solvent box periodic copies of the solvent box are added until it

is larger. The genbox utility defines overlap based on a fixed radius for all atoms

in the system. The default radius, which this work uses, is 0.12 nm. There-

fore, the minimum separation between molecules is 0.24 nm , which is less than

the 0.3-0.4 nm typically expected for aromatic molecules, meaning the solvent

molecules are often slightly too close to the polymer. Furthermore, the resulting

system is often below the target density3. Both these issues can be addressed by

1Discover is the MD program within Materials Studio 6.
2Throughout this work any reference to water in an MD simulation implies TIP3P water

unless explicitly stated otherwise.
3genbox defines the atomic masses based on their names in the input file. This process does
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performing a structural relaxation of the system, and if necessary adding more

solvent molecules using genbox.

The simulation cells were constructed for the eight shorter P84 oligomers in

DMF, dioxane, and water. These cells were simulated at 300 K using a Langevin

thermostat for 5 ns, they were then allowed to equilibrate in a micro-canonical

ensemble for a further 5 ns. The specified PME mesh for these simulations was

128 × 128 × 128. It was decided that the significant increase in performance

afforded by using the v4.6.2 (double precision) release of GROMACS, which in-

creased the throughput from 16.3 ns day−1 to 23.5 ns day−1, justified switching

from the v4.5.5 version of the source code. However, this necessitated changing

the cut-off settings as the v4.6.x series of GROMACS does not support switched

non-bonded potentials. Therefore, a cut-off radius of 1.2 nm was used with a shift

applied to both the potential and the force such that both were exactly zero at

the cut-off radius for both the Coulomb and LJ interactions. The value of 1.2 nm

was selected as it accurately reproduced the diffusivity of DMF observed over the

central 1.6 ns of a 2 ns micro-canonical ensemble calculation using a periodic cu-

bic box containing 4259 DMF molecules in v4.5.5. The total non-bonded energy

for the simulation was also observed to differ only by a constant shift relative to

the v4.5.5 simulation. The 4.6.x series of GROMACS adapts the Coulomb cut-

off radius and PME mesh to balance the load during a simulation. It does this

by varying the Fourier grid spacing in the PME mesh and the Coulomb cut-off

radius whilst keeping their ratio constant. As a result of this the values specified

in this section do not necessarily indicate the values used by GROMACS v4.6.2,

as these will depend on computer architecture and load balance.

The oligomers were simulated in every solvent combination (DMF, dioxane

and water) for an initial period of 300 ns. This choice was motivated by the

convergence of the average radius of gyration for the oligomers containing 6 BTDA

units simulated in dioxane at 250 K, see Fig. 7.21. However, it was realised that

simulating at a rate of 23.5 ns day−1 on 144 cores2 would require almost 3 × 105

not always result in the correct mass. Therefore, users are strongly encouraged to calculate the
density independently to ensure the correct value is obtained.

1This configuration was chosen as it was the lowest temperature, in the poorest solvent and,
therefore, needed to overcome the worst energy barriers.

2This was tested on cx2 Imperial College High Performance Computing cluster, using the
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core hours. This amount of computer time was not readily available. Therefore

it was decided to reduce the number of oligomers being simulated from 10 to 5,

by choosing only a single oligomer for each number of MDA groups from all of

the short oligomers containing 6 BTDA groups. Furthermore, it was decided to

simulate the two longer oligomers containing 9 BTDA groups only in DMF. This

resulted in a total of 55 simulation boxes instead of 150.

0 50 100 150 200 250 300 350

Time (ns)

1.45

1.50

1.55

1.60

1.65

1.70

1.75

R
u
n
n
in
g
A
v
e
ra
g
e
R
a
d
iu
s
o
f
G
y
ra
ti
o
n
(n
m
)

Figure 7.2: The running average of the mean radius of gyration, averaged across
all oligomers containing 6 BTDA groups. The running average covers all times
up to and including the specified time and the statistical error on the average is
given by the size of the plotting symbol.

The simulation boxes were relaxed in the canonical ensemble for 5 ns, using a

Langevin thermostat. They were then equilibrated for a further 5 ns in the micro-

canonical ensemble. These equilibrated configurations were then used as the

Intel Xeon-E5 sub-system, machines such as HECToR and Shaheen achieved significantly lower
peak performances of 14.4 ns day−1 on 288 cores and 8.2 ns day−1 on 512 cores respectively. As
recent gcc or intel compilers are unavailable on Shaheen BlueGene the observed performance
specified is for P84 in water simulated in gromacs v4.5.7 as v4.6.2 obtained less than 2 ns day−1

in initial testing and was, therefore, not tested further.
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inputs for 300 ns micro-canonical simulations, this process took almost 6 months

to complete.

Unfortunately it was discovered after these simulations had completed that

the v4.6.x series of GROMACS has a bug, see Sec. 5.3 for details of how this was

discovered. The nature of the bug meant that not all increments1 of the simu-

lations were affected, therefore, as only some of the simulations were checked as

they were being run, the bug was not identified until the entire set of simulations

was analysed. As the bug affected the energy conservation of the micro-canonical

simulations, none of the data from these simulations can be considered reliable.

Due to time constraints, and the large amount of computer resources which would

be necessary, it was not possible to repeat these simulations using an MD code

free from this bug. Therefore, it was decided to obtain both the persistence length

data and the interaction parameter from simulations of complete P84 molecules

at experimental concentrations.

7.5 P84 at Experimental Concentrations

A complete P84 molecule has a mass of around 62000 g mol−1. As a random

co-polymer the exact number is variable. However, its dispersity is 1.46[190],

indicating that the mass of any given P84 molecule will not be far from this

value. This work uses the distribution of monomers given in Fig. 6.1, which

yields an average mass2 of a P84 monomer of 423.59 g mol−1, and an average

of 6587 atoms in a complete P84 molecule. P84 phase inversion membranes are

typically manufactured using a dope containing 24wt% of P84. The solvent used is

a mixture of DMF (12 atoms, 73.1 g mol−1) and dioxane (14 atoms, 88.1 g mol−1).

Since the solvents have similar masses a simulation cell at experimental density

will consist of around 38000 atoms for each P84 molecule. Therefore, it was

decided, based on the available computational resources, that two simulation

cells each containing a single P84 molecule would be simulated for 300 ns at

300 K in the micro-canonical ensemble.

1Increments refers to the period of the simulations between restarts.
2The atomic masses from the OPLS-AA forcefield have been used throughout this section

{ C=12.01100 g mol−1, H=1.00800 g mol−1, N=14.00670 g mol−1, O=15.99940 g mol−1 }.
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Following the problems encountered with GROMACS v4.6.2 (see Sec. 5.3 and

Sec. 7.4) it was decided to use GROMACS v4.5.5 (double precision) which had

been tested extensively during the early stages of this project, and particularly

whilst building the force fitting program (see Sec. 4.1.5 and Sec. 7.2). It was

also decided to obtain both the FH coefficient and the persistence length of the

polymer dope from these simulations, which introduces two issues. The first is

that, without the Θ temperature determined from the dilute simulations, there is

no direct point of comparison between the MC and MD, which will be discussed

in Chap. 8. The second is that it is not possible to enable a P84 molecule

to equilibrate fully in a MD simulation at this density and temperature, and

certainly not in 300 ns. Therefore, when calculating the persistence length the

assumption must be made that whilst the large scale structure of the full polymer

is not relaxed, small sections of the polymer will have reached equilibrium. This

assumption is discussed with the results of the persistence length calculations in

Sec. 7.5.3.

7.5.1 Theory

The behaviour of polymers occurs on many length and time scales. One length

scale which is of particular interest for our model is the persistence length (lp).

There are several definitions of this length and the relationships used to define

it have been shown to hold only under certain regimes[35]. However, the persis-

tence length does provide a useful characterisation of the polymer’s behaviour.

Throughout this section we will define the persistence length by

〈τ̂(l) · τ̂(l + s)〉t,l = e
−

s
lp , (7.1)

where l and s are arc-length positions along the polymer, τ̂(l) is the unit tangent

vector at position l, and t is time. This definition is designed for ideal polymers,

but an exponential decay is expected to be a reasonable approximation to the

observed behaviour of P84.

The interaction between separate molecules in the OPLS-AA forcefield is me-

diated by the non-bonded component of the potential. Non-bonded interactions

are interactions which depend only on the relative positions of the atoms, and

121



P84 at Experimental Concentrations

consist of electrostatic and LJ energies. Since these are known quantities it is

possible to evaluate them directly. However, this does not directly tell us the

amount of energy associated with mixing a polymer with the solvent. During a

mixing process the conformation of the polymer and the structure of the solvent

are altered, which changes all the terms in the forcefield. Calculating a value for

this interaction energy requires performing separate simulations for each of the

components of the mixture as well as a simulation of the mixture itself. These

simulations allow the enthalpy of mixing to be calculated as

∆Hmix = Hmixture − HPolymer − HSolvent, (7.2)

where HA is the enthalpy extracted from a simulation of A[134]. This is the total

amount of energy required to mix the solvent and polymer system.

The enthalpy of mixing is an important term when considering dopes. How-

ever, following the issues with thermostats discussed in Chap. 5 it was decided

not to use isobaric or isothermal simulations. It was decided that micro-canonical

simulations would be used as more testing of the GROMACS simulation package

had been conducted in this ensemble. The resulting configurations will be sub-

tly different from those of a canonical ensemble. However, the temperature drift

during the simulations was minimal and there are not expected to be any phase

transitions at 300 K at these densities. Despite this the pressure was found to

vary significantly throughout these simulations; therefore, the calculation of the

enthalpy of mixing remains a topic for future work. Therefore, the simulations

should provide a reasonable value for the enthalpy of mixing. The need to ex-

tract the results from only a small number of simulations resulted in a multi-stage

simulation procedure.

7.5.2 Simulation Details

All simulations were conducted using GROMACS v4.5.5, using the modified

OPLS-AA forcefield, described in Sec. 7.3. A time step of 1 fs was used in

all simulations. Unless otherwise stated covalent bonds involving hydrogen were

modelled with rigid constraints enforced by the P-LINCS algorithm with LINCS-

order 6, and 3 LINCS iterations. Both the electrostatic and vdW interactions

122



P84 at Experimental Concentrations

were treated with a 1.1 nm cut-off radius, with a switching function applied over

the last 0.05 nm to smoothly taper both the forces and the potential energy to

zero at the cut-off. The electrostatic interactions also used PME with a 0.07 nm

grid spacing for periodic simulations1.

Neighbour searching used a grid based algorithm with a 1.5 nm cut-off with

a neighbour list lifetime of 10 steps. This set up was chosen to ensure accurate

energy conservation and ensure exact cut-off radii were enforced by the group

based cut-off scheme in GROMACS v4.5.5. The resulting simulations maintain

excellent energy conservation albeit at a high computational cost.

When a canonical ensemble was used it was enforced by a Langevin thermo-

stat with a temperature coupling constant τT = 5 ps. The traditional Langevin

coupling constant (λ) is given by

λi =
mi

τT
, (7.3)

where mi is the mass of the ith particle. The use of a large value for τT (> 0.5 ps)

results in weak temperature coupling which enables large conformational changes

as the friction coefficient is reduced. However, this does increase the time nec-

essary to add or remove kinetic energy to the system which can necessitate long

equilibration simulations. To reduce the equilibration time an initial set of ve-

locities for each canonical ensemble simulation were generated from the Maxwell-

Boltzmann distribution.

The two solvated simulation boxes used the same P84 molecule. It was initially

constructed in Materials Studio R© v6.1 as a random co-polymer. The resulting

molecule contained 147 BTDA groups, 126 TDA groups, 21 MDA groups2 and

was terminated with methyl groups, for a total of 6539 atoms. The coordinates

were converted for use in GROMACS v4.5.5 and a molecular topology created.

The molecule was initially simulated in a canonical ensemble, at 2000 K for

500 ps with harmonic potentials used for bonds involving hydrogen. This was

used to remove the intrinsic biases applied during the construction of the initial

1Individual atoms were treated as charge groups during these simulations.
2This is 14±3wt%MDA which is within two standard errors of the ideal value and therefore,

acceptable.
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coordinates. Following this the P84 molecule was placed in a cubic cell with

lattice parameter 7.53 nm representing a density of 0.24 g cm−3. A structural

relaxation was performed, using harmonic covalent bonds for hydrogen, to remove

close approaches between atoms. The system was then simulated in a canonical

ensemble at 2000 K for 500 ps. The resulting molecular conformation of P84 was

used as the starting point for calculations in solvent.

The construction of the initial solvent boxes for DMF, dioxane and a mixture

of the two solvents is described in Sec. 7.4. These simulation boxes were used

with the genbox utility from GROMACS to generate the initial solvated polymer

boxes. The pure DMF (75.6wt%) box was packed to a density of 0.98 g cm−3, and

the mixture of DMF (38.0wt%) and dioxane (38.0wt%) was packed to a density

of 1.00 g cm−3. These densities were achieved by filling the boxes with solvent

and performing 500 ps canonical ensemble calculations at 2000 K followed by

structural minimisations. The resulting structures contained small voids which

were packed with additional solvent molecules. The process was repeated until

the target number of solvent molecules was reached.

Once the two boxes had been constructed a 500 ps, 2000 K canonical ensem-

ble calculation was conducted, using harmonic potentials for the covalent bonds

involving hydrogen. This was followed by a further 500 ps in the micro-canonical

ensemble, also using harmonic bonds. A structural relaxation was then performed

to remove any highly non-physical atomic positions. The two boxes were then

simulated at 300 K in the canonical ensemble for 1 ns, and equilibrated in the

micro-canonical ensemble for 5 ns. The resulting states were then used as the

inputs for 300 ns micro-canonical ensemble simulations.

The multi-stage process described above was designed to eliminate biases as

much as possible from the initial construction of the polymer dopes. This is

advantageous because it allows credible physical interactions between the polymer

and solvent molecules to determine the structure of the solvated system.

For the pure P84 system the final structure from the DMF production sim-

ulation was used as the starting configuration for the simulation. In the case of

the solvents the simulation cells were constructed by using genbox utility to build

cubic boxes of side 4.02 nm and 3.98 nm for the DMF and mixed solvent boxes

respectively. The resulting boxes had densities of 0.950 g mol−1 and 0.990 g mol−1
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respectively, which closely match the experimentally determined densities of the

solvents[190].

These boxes were then simulated in the canonical ensemble for 500 ps at

2000 K using harmonic potentials for the covalent bonds involving hydrogen.

They were then allowed to evolve in the micro-canonical ensemble for a further

500 ps, to remove any bias from the initial generation procedure. The systems

were then simulated for a further 1 ns in the canonical ensemble at 300 K, followed

by 1 ns in the micro-canonical ensemble. The resultant configurations were used

as the inputs for 10 ns production micro-canonical ensemble simulations.

7.5.3 Results

The drift in total energy was monitored in all simulations, and is shown in

Tab. 7.1. From these drifts it is clear that the energy was well conserved during

the simulations. However, the drifts are somewhat smaller than is necessary for

simulations of this length. Therefore, it might have been possible to increase

the time step from 1 fs to 2 fs which is often used in biological simulations with

constraints[150], although this was not verified directly. The temperatures of

the simulations are shown in Tab. 7.2, and again show negligible drift over the

course of the simulation. This indicates that the configuration was in a stable

region of phase space and suggests that the simulations should be reasonable

representations of the behaviour of the systems at 300 K.

Energy Drift Total energy
(meV ns−1 atom−1) (meV atom−1)

P84 in DMF (28 ± 1) × 10−7 98.9
P84 in 1:1 (27 ± 4) × 10−7 119.0

P84 (9 ± 9) × 10−5 436.7
DMF (3 ± 6) × 10−5 32.3
1:1 (7 ± 6) × 10−5 56.6

Table 7.1: The energy drifts and total starting energies per atom for each of the
simulations. 1:1 is an equal mass mixture of DMF and dioxane.

The tangent vectors to the polymer were calculated as the unit vectors con-

necting the centres of mass of sequential groups along the backbone of the poly-
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Temperature Drift (K ns−1) Average Temperature
P84 in DMF (22 ± 6) × 10−5 301.209 ± 0.004
P84 in 1:1 (1 ± 1) × 10−4 300.12 ± 0.01

P84 (14 ± 3) × 10−2 303.99 ± 0.07
DMF 0 ± 3 × 10−2 300.98 ± 0.07
1:1 0 ± 3 × 10−2 301.68 ± 0.08

Table 7.2: The temperature drifts for each of the simulations. 1:1 is an equal
mass mixture of DMF and dioxane.

Pressure (eV nm−3)
P84 in DMF −4.19 ± 0.01
P84 in 1:1 −7.25 ± 0.03

P84 −1.28 ± 0.05
DMF 9.4 ± 0.2
1:1 7.4 ± 0.2

Table 7.3: The Pressures for each of the simulations. 1:1 is an equal mass mixture
of DMF and dioxane.

mer. The groups are defined as the TDA, MDA sub-units of the monomer, the

terminal methyl groups and the two halves of the BTDA group with the central

carbonyl group taken to belong exclusively to one half of the sub group. The

vectors connecting these groups also define the arc-length parameter s. The cor-

relation defined in Eq. (7.1) was calculated using frames separated by 5 ns. The

results for the whole polymer are shown in Fig. 7.3. Neither solvated polymer

has effectively sampled the complete configuration space available to it. How-

ever, the more closely spaced monomers, shown in Fig. 7.4, have sampled the

configurational space available to them more effectively. The initial rise of the

correlation function is caused by the chemistry of the P84 molecule which pre-

vents the polymer from behaving as a freely jointed chain at this scale. Therefore,

the persistence length of the two polymers was fitted to the tangent vectors sep-

arated by less than 12 nm, yielding 1.105 nm for P84 in DMF and 1.158 nm for

P84 in the mixed solvent. By varying the distance cut-off used when calculating

the persistence lengths, see Fig. 7.5, we can see that the persistence length is

reasonably insensitive to the exact value of the cut-off used.

126



P84 at Experimental Concentrations

10−1 100 101 102

s (nm)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

〈τ
l
·
τ
l+

s
〉 t

,l

P84 in DMF

P84 in MIX

Figure 7.3: The correlation of tangent vectors separated by s along the back bone
of 24 wt% P84 in pure DMF and a equal mass mixture of DMF and dioxane. The
initial decay in correlation is inhibited because the P84 molecule is not a freely
jointed chain. As the tangent vectors become further apart the decay behaviour
asserts itself. However, at large separations the conformational changes necessary
to sample the region have not taken place with the result that the correlation
does not decay to zero. Each data point represents an average as there were in
excess of 5 million individual evaluations of several values of separation s.
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Figure 7.4: The correlation of tangent vectors separated by s along the back bone
of 24 wt% P84 in pure DMF and a equal mass mixture of DMF and dioxane.
This graph shows more detail of the behaviour of the correlation for separations
of less than 15 nm. Also shown are the exponential decay functions fitted to the
complete data sets.
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Figure 7.5: The persistence length against separation cutoff for 24 wt% P84
in pure DMF and a equal mass mixture of DMF and dioxane. Error bars are
comparable to the line width.
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The calculation of the enthalpy of mixing requires equal pressures between

the simulations. However, the pressures in the simulations, shown in Tab. 7.3,

were not similar, therefore, it is not possible to derive an enthalpy of mixing from

these simulations.

7.5.4 Conclusion

The simulation of industrial polymers under experimental conditions is a highly

complex process. The growth in computational capabilities in the late 20th and

early 21st centuries has made atomistic modelling of these highly complex systems

feasible. The simulations conducted in this chapter approach the limit of current

simulation capabilities. It is, therefore, unsurprising that issues were encountered.

These issues, particularly the loss of over 6 months worth of simulation time due

to a software bug have impacted on the final results. The inability to study the

variation in persistence length with respect to temperature makes it difficult to

directly compare the behaviour of P84 observed in these MD simulations with the

behaviour observed in the MC simulations in Chap. 8. Furthermore, whilst the

enthalpies of mixing calculated in these simulations do show the trends we expect

for P84, they do not cover all the solvent concentrations that would ideally be

used to for comparison with MC, and experiments. Despite these setbacks the

MD simulations described above have shown, that on intermediate length scales

the persistence length model does reflect the behaviour of P84, and that the

OPLS-AA forcefield succeeds in demonstrating the expected trends in enthalpy

of mixing for P84 in DMF and dioxane. Therefore, MD simulations similar to

those described in this chapter have the potential to be of use in the development

of industrial polymer systems.
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Chapter 8

Monte Carlo Simulations of P84

Membranes

The large length and time scales involved in equilibrating multiple P84 molecules

in solution makes dynamically simulating the process impractical, and quite prob-

ably impossible. However, MC is ideally suited to studying the properties of sys-

tems with large numbers of degrees of freedom, such as polymers. Furthermore,

it can provide huge amounts of information on the equilibrium properties of a

system without the need to understand the physical mechanism by which the

system moves between different possible micro-states. MC is, therefore, ideally

suited to studying the behaviour of large collections of P84 molecules in solution.

As is often the case with MC models, choosing a model to use for P84 mem-

branes is not simple. The process began with a consideration of polymers as

chains of LJ beads. However, this model fails to incorporate the polymer solvent

interaction. The simplest solution is to include explicit solvent particles in the

system. However, the number of dimensions in a problem scales exponentially

with the number of particles in the system. Therefore, this appealing approach

rapidly becomes untenable and a different approach is required.

Lattice models have an advantage over continuum models: their phase space

is vastly smaller. It was therefore decided to model the P84 solution on a lattice.

The first lattice model considered was a one dimensional model consisting of

layers of polymer and solvent, discussed in Sec. 8.1. However, the model which
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was eventually decided upon was a widely used lattice polymer model[199, 200,

201], based on FH solution theory[128, 129]. This was initially tested on a two

dimensional square lattice, see Sec. 8.2, before being upgraded to work in three

dimensions, as discussed in Sec. 8.3.

8.1 Layers Model

An initial attempt to gain qualitative insight into the molecular structures within

the P84 membranes tested the idea that the bunching up or spreading out of P84

molecules within a membrane could be captured by looking at the volume change

associated with phase inversion. The model consisted of polymer chains arranged

in flat uniform layers. This is amongst the most basic approximations which can

be made for a polymer and was not expected to be accurate but rather to be

the first stage in understanding the behaviour of the polymer solvent mixture.

The polymer layers have a thickness of 0.5 nm, determined by the maximum

width of the P84 monomer, and were separated from adjacent polymer layers by

the equilibrium spacing of a pair of benzene dimers, see Fig. 8.1. The solvent

layers were constructed by looking at the typical density of DMF and dioxane at

standard conditions;1, then using this to define a sphere with the same volume

as a single molecule, the diameter of 0.6 nm was found to apply to both solvents.

Layers adjacent to solvent had no separation associated with them, see Fig. 8.2

A polymer layer can be in one of three states:

1. Fully solvated, where a single mono-layer of solvent covered each side of the

polymer layer. In this case they have a thickness given by twice the solvent

thickness plus the thickness of a P84 molecule. This thickness (D), is shown

in Fig. 8.2 (a).

2. Partially solvated whereby only one mono-layer of solvent was added to one

side of the polymer layer and half the equilibrium separation of two benzene

dimers (0.2 nm) added to the other to approximate the vdW separation

between two P84 molecules Fig. 8.2 (b).

1300K and 105 Pa
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Figure 8.1: Schematic diagrams showing a solvated (a), partially solvated (b),
and un-solvated (c) layers of polymer. Red rectangles represent the layers of
polymer, and blue circles indicate layers of solvent. The thickness of a solvated
layer (D) and an unsolvated layer (L) are also shown.

3. Un-solvated where a mono layer of polymer was created by adding half the

equilibrium separation of two benzene dimers above a layer of P84 and the

same below as shown in Fig. 8.2 (c). The thickness labelled L is then the

width of a P84 layer plus the equilibrium separation of two benzene dimers.

From Fig. 8.1 it is clear that two partially solvated layers are equivalent in thick-

ness to a solvated layer and an un-solvated layer. The thickness of the solvated

system, (Ti), is therefore

Ti = N (cL + (1 − c) D) , (8.1)

where N is the total number of polymer layers and c is the number fraction of

unsolvated layers. Assuming that during phase inversion the solvent is completely

removed the final thickness of the membrane is simply

Tf = NL, (8.2)

which yields the fractional volume change

∆ = 1 − 1

c
(
1 − D

L

)
+ D

L

. (8.3)

This is shown in Fig. 8.3, as can be clearly seen the thickness change decreases

as c increases. c is expected to decrease as the quality of the solvent increases.

Experiments demonstrated that the thickness change of the membrane in-

creases as solvent quality decreases[190], the reverse of the trend shown by this

model. The reason for this is likely the fact that the model doesn’t take account
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Figure 8.2: Schematic diagrams showing, two solvated layers (a), a bundle of
two layers (b). Red rectangles represent the layers of polymer, and blue circles
indicate layers of solvent. The thickness of the solvent layers comes from the
density of DMF and dioxane. The polymer separation is taken to be the typical
separation of two benzene dimers. The polymer layer has the thickness expected
from adding together the bond lengths within a P84 molecule.
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Figure 8.3: Fractional thickness change against concentration of unsolvated poly-
mer layers within the polymer layers model.
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of the formation of finger like macro-voids which can be seen in the SEM im-

ages of P84 membranes[6, 7, 8, 9], and shown in Fig. 3.1 for cellulose acetate

membranes. Based on the experimental observations available at the time it

was decided that a more complex model was required which included both the

solvent-polymer interactions and the polymer’s geometry. It is worth noting that

2 years after this divergence between experimental observation and this model

was developed, high resolution TEM experiments showed that the trend shown

in this model does match that observed in the thickness of the surface layer of

P84 membranes[6]. Whilst this does not change the need for the more complex

MC approaches outlined in the remainder of this chapter it is interesting to see

that simple models can sometimes match experimental trends.

8.2 Two Dimensional Lattice Model

Moving to two dimensions allows some of the geometrical freedom of the poly-

mer to be included in the model. The model chosen derives from FH solution

theory[128, 129], as discussed in Sec. 3.3.2. The model consists of a lattice filled

with two types of sites: polymer (p) and solvent (s). The energy associated with

a site is based only on its neighbours with energies given by

Ei =
1

2

z∑

j=1

Etitj , (8.4)

where j indexes all the neighbouring sites to site i, z is the lattice coordination

number, and ti ∈ {p, s} is the type of site in position i, and Etitj ∈ {Epp, Ess, Eps},

is the energy associated with the pairing. However, unlike in FH theory, the

polymer is restricted to be a line of connected neighbouring sites. This restric-

tion means that the model cannot be solved analytically and must, therefore, be

modelled computationally. When considering a fixed number of polymers of a

fixed length in a fixed volume of solvent, the only condition considered in this

work, sites can only be converted from one type to another in pairs e.g., if you

change one site from s to p a different site must be changed from a p to an s

to maintain the fixed numbers of sites of each type. This results in the useful
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property that all energy changes in the system can be considered in terms of

∆ε =
1

2
(Epp + Ess) − Eps. (8.5)

This single parameter incorporates all the detail of the polymer solvent energetics

in the model, ∆ε < 0 indicates a poor solvent, whilst ∆ε > 0 indicates a good

solvent and ∆ε = 0 is an intermediate solvent or equivalently a SAW. A square

lattice with periodic boundary conditions was chosen for the model because this

permits simple handling of sites near the edge of the simulation box and per-

mits the simulation of bulk behaviour. A MH procedure was used to simulate

the model, which has the advantage that only the energy difference between two

states is required, meaning that only ∆ε from Eq. (8.5) need be defined. Further-

more, since ∆ε is only used in the MH procedure it can be defined in terms of

kBT reducing the number of simulation parameters. The model naturally accom-

modates multiple polymers and energy evaluations are computationally simple

which makes it ideal for simulating large groups of polymers.

A reptation algorithm[46, 47] was used to change the system’s configuration.

A reptation move involves removing a polymer site from one end of a polymer

and placing a new polymer site at the other end. This makes the assumption

that the solvent would always be able to enter the lattice site left by a polymer

moving. In a physical system this is not necessarily true. However, since this

simulation is not kinetic but rather a means to sample configurations, any valid1

arrangement of polymer and solvent sites is suitable for inclusion in the MH

integration. An attempt to place a polymer site onto another polymer site was

treated as a rejected move. This process is inherently more wasteful and samples

fewer allowable configurations for a given number of iterations than a biased

sampling scheme such as RR sampling. However, the computational cost of the

moves never proved to be limiting factor in the MC simulations. Therefore, whilst

algorithms were written for RR biased sampling in the model they were never

extensively tested and no data from those schemes is presented in this work.

An initial state for the system was generated by growing a polymer site by site

1In this context valid implies no overlapping molecules, no gaps in the polymer, and the
correct total number of sites of each type.
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considering only if the trial site was free and trying a different site if it was not

free. A polymer was considered to have failed to grow if there were no free sites

to place the next site or if there was not at least one free site neighbouring an end

of the polymer. This second case prevents the unmovable caged configurations

described in Sec. 2.1.2.2. In the event of a growth failure the polymer was deleted

and a new polymer grown. Once the polymer was generated the next was grown

until all the requested polymers had been grown. The resulting configuration

suffers from the issue of configurational bias, and does not factor the energy of the

configuration. The reptation algorithm was used for a sufficient number of steps

to permit each polymer to move half the space diagonal of the simulation box, in

order to remove any inherent bias in the initial configuration. The simulation then

progressed for a fixed number of steps and various properties of the configurations

were recorded. An example showing every tenth configuration from a simulation

of four polymers of length 14 on a 16×16 lattice, with ∆ε = 0, can be seen in the

lower right hand corner of the pages of this thesis. However, it was found that

it was extremely computationally expensive to generate dense two dimensional

configurations as polymers often became densely packed and failed the criterion

of having at least one free site to move onto. Therefore, it was decided to move to

a three dimensional lattice where the increased degrees of freedom would reduce

the likelihood of the polymer becoming caged and be more physically realistic by

allowing polymers to move past one another.

8.3 Three Dimensional Lattice Model

Moving the MC model onto a three dimensional lattice greatly improved its ability

to generate high density polymer configurations. The process was accomplished

by creating an alternative code path which included additional neighbouring sites.

This permits a cubic lattice to be used instead of a square lattice with no other

changes to the model described in Sec. 8.2. After some minor changes to the

implementation to improve the performance of the algorithm it was clear that

the algorithm could be used even on large systems1 in less than 72 hours on a

1Large here implies a 512 × 512 × 512 cubic lattice packed to 15% volume concentration
with polymers of length 470 sites.
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standard desktop. The model was initially tested using a single polymer, this was

then extended to testing of the behaviour of the polymer at different densities.

High density simulations were then used to generate representative density maps

to establish whether the behaviour seen in experimental images of P84 phase

inversion membranes could be predicted in this model.

8.3.1 Single Polymers

The first tests of the three dimensional lattice MC program modelled a single

polymer chain in the simulation cell. The radius of gyration,

R2
g =

1

N

N∑

i=1

(ri − 〈rj〉)2 , (8.6)

where ri is the position of the ith site, and N is the number of sites, is a good

measure of the size of a polymer as it includes all sites in the polymer, making

it slow to equilibrate. It was therefore selected as the measure to check the

behaviour of the polymer chains was consistent with the expected behaviour of

the model. A series of simulations of single polymer chains with lengths N ∈
{25, 50, . . . , 225, 250} were conducted for values of ∆ε ∈ [−1, 1]. Each simulation

contained 107 MC steps1 and 30 repeats of each set of simulation parameters were

made with different random number seeds to establish consistency. The results

for the radius of gyration in Fig. 8.4 clearly show that, as expected, when the

polymer solvent interaction energy (Eps) is high (∆ε < 0) the polymer contracts

to minimise its contact area with the solvent, and similarly when the Eps is low

(∆ε > 0) the polymer expands to maximise its contact area. The larger error

at ∆ε ≪ 0 is due to the increasing difficulty of making reptation moves as the

number of unfavourable polymer-solvent neighbour pairings increases. The Θ

point for this model was estimated, from the intersection of linear interpolations

1Here and throughout this chapter the number of MC steps refers to the number of produc-
tion steps after equilibration. The equilibration period varies based on the number of polymers,
and is equal to half the length of the space diagonal of the box times the number of polymers
rounded upwards. A test was conducted using 30 simulations with an equilibration period 50
times longer, on a chain of length 200 the resulting radii of gyration were in perfect agreement
with χ2

red = 0.07.
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between the data points, to be ∆ε = −0.15. The N = 25 polymer does not hit

the intercept value as the concept of the Θ point comes from a scaling argument

which does not hold for short polymers. As expected this is lower than the FH

value:

∆εFHΘ = −χ
FH
Θ

z
= − 1

12
, (8.7)

where the FH coefficient χFH
Θ = 1

2
at the theta point and the lattice coordination

number z = 6 for a square lattice, because the FH model does not take into ac-

count the restriction in the positioning of the sites due to the connected nature of

polymer segments[52]. The result is also inline with the results of Panagiotopou-

los et. al. Ref. [199]. The behaviour exhibited by these simulations provides an

excellent match against the expectations of the model and is highly consistent

between simulations. Therefore, it was decided to test simulations containing

multiple polymers.

8.3.2 Multiple Polymers

Simulations of multiple polymer chains are inherently more complicated than

simulations of a single polymer. The number of possible configurations scales

exponentially with the number of polymers. Care must, therefore, be taken to

ensure that the simulation is well equilibrated before statistics are collected. The

advantage of simulations involving multiple polymers is that it is possible to

extract properties from all the molecules and confirm that they are behaving

in a consistent manner. This provides a good check that the system is well

equilibrated.

The calculations in the previous section were repeated using a pair of identical

polymers with the number of MC steps increased to 108. Each set of simulation

parameters was repeated 30 times with different seeds to ensure consistent results.

The calculations were conducted on a 256 × 256 × 256 cubic lattice, making the

density1 for the pair of 250 site polymers 3.0× 10−3%. Therefore, minimal inter-

action between the polymers is expected as long range interaction is not included

in the model. The radii of gyration of each polymer showed perfect agreement,

(χred = 0.035) between the pairs, indicating that the simulation treated the two

1Density here refers to the fraction of the simulation cell occupied by the polymer.
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Figure 8.4: The behaviour of the radius of gyration with respect to solvent poly-
mer interaction parameter ∆ε for a range of polymer lengths. The data is split
over two graphs for clarity. Each data point is an average over 30 simulations.
We can estimate the Θ solvent interaction parameter for this mode from the cross
over point.
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polymers identically. Furthermore, the agreement between the simulations of

single polymers and the pairs, shown in Fig. 8.5, is excellent (χred = 0.17).

Following the successful tests on pairs of polymers, an investigation was con-

ducted into the effect of density on the behaviour of the polymer chains. For

this a polymer length of 100 was selected, a box of size 125 × 125 × 125 was

used and 2.5 × 108 MC iterations. Each simulation was repeated 25 times

to ensure a consistent result. Simulations were conducted at concentrations

ρ ∈ {10%, 15%, 20%, 25%, 30%} for ∆ε ∈ [−0.5, 0.5]. The radius of gyration

as a function of ∆ε is shown in Fig. 8.6. From this it is clear that the radius of

gyration is strongly influenced by the density of the system, and that in good sol-

vent conditions the presence of more polymers inhibits the ability of the polymers

to spread out, whilst in poor solvent the polymers are able to avoid bunching up

by grouping together, thus causing a larger radius of gyration. The absence of any

discernible change in the cross over point for the four densities is in line with the

predictions of Refs [199, 200], and its position to the left of the 0% density case

is also expected. However, it should be noted that the 10–30% density cases were

not directly sampled in their research due to the negligible variation in transition

behaviour in this region.

The persistence length (lp) of a polymer is defined in Eq. (7.1). For a polymer

in this model the unit tangent vector is defined by

τ̂(i) = ri − ri−1 (8.8)

where ri is the position of the ith site after the periodic boundary conditions have

been unwrapped. An investigation was undertaken into the effect of density on

the persistence length of the polymer. These simulations were identical to the

calculations above except that only a single simulation at each density and ∆ε

value was made1. This limitation does not significantly impact the results as the

scatter in radius of gyration, shown by the error bars in Fig. 8.6, is typically

small. Note that even the lowest density simulation contains 1953 polymers,

allowing phase space to be efficiently explored. As can be seen in Fig. 8.7, the

1The need to restrict the number of repeats occurs as the calculation takes 50 times longer
to run and requires more than 5000 times the data storage space with this calculation included.
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Figure 8.5: A comparison between single polymer chains (lines) and pairs of poly-
mers (circles). As can be seen the behaviour of the radius of gyration with respect
to solvent polymer interaction parameter ∆ε for a range of polymer lengths is
highly consistent between the two types of simulation. The data is split over two
graphs for clarity. Each data point is an average over 30 simulations.
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Figure 8.6: The behaviour of polymer chains of length 100 at different densities
is compared. The data from previous simulations of single chains (Fig. 8.4) is
used for the 0% density case. Each data point is an average over 25 simulations
except for the 0% density case which used 30 simulations.
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persistence length varies with the density of the polymer in a similar manner

to radius of gyration. However, it is also apparent the persistence length of

the polymer is seen to be somewhat under converged in the region of strongly

negative ∆ε (< −0.3). As running multiple repeats of each condition was not

practical1 two conditions were instead tested more thoroughly. A density of

30% with ∆ε = −0.45 and ∆ε = −0.30 were chosen as the highest density

corresponds to the smallest number of moves per site and these values of ∆ε

represent interactions where the simulation appears poorly and well converged

respectively. The scatter in values from 10 repeats at each of these conditions

was used to generate the error bars shown in Fig. 8.7, these indicate that the

behaviour above ∆ε = −0.30 is well captured by these simulations.
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Figure 8.7: The persistence lengths of polymers at different densities for a range
of solvent polymer interaction energies. The increase in the scatter for strongly
negative values of ∆ε is due to the difficulty of sampling this region of phase
space with a reptation algorithm. The points at ∆ε = −0.45 and ∆ε = −0.30 on
the 30% density curves have error bars created by averaging over 10 simulations
for each data point

1Even using file compression the raw data for Fig. 8.7 exceeds 50 GB
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These tests clearly show that the model is performing as expected. However,

they do not show whether the model demonstrates the behaviour seen in P84

membranes. Therefore, a series of simulations of long molecules were conducted

to compare against the experiments of Stawikowska et. al. [6].

8.3.3 Dense Polymer Systems

In P84 membranes the ability of a membrane to separate organic molecules of

different masses is strongly correlated with the pore size[6]. This is easily under-

stood: if the molecule is larger than the pore it will be difficult for that molecule

to pass through the pore. Therefore, we would like this model to show the same

behaviour as the pores in a membrane, specifically a good solvent should have

larger pores than a poor solvent. A series of simulations were conducted using

simulation cells of dimension 512 × 512 × 512, with polymers of length 470, at

a density of 15% (42835 polymers), ∆ε ∈ {−0.5, 0.25, 0.0, 0.25, 0.5} for 1010 MC

steps1. These were then used to study the behaviour of pore size with respect to

∆ε.

8.3.3.1 Estimation of Pore Size

The definition of a pore might appear intuitively obvious, namely an enclosed

region without polymer. This definition is not suitable for use as a computer al-

gorithm. Consider a sponge, such as you might use for household cleaning, which

contains many thousands of small pores. Intuitively we can see the individual

pores and could estimate their size; however, the pores themselves are intercon-

nected, forming a complex network of connected pores that are not fully enclosed.

Therefore, a simple algorithm which looks for a completely enclosed shape would

consider all the connected pores as a single large pore.

A more sophisticated algorithm involves considering the largest sphere or el-

lipsoid which can fit into a region[202]. Another would consider narrow gaps2 to

be closed. However, at the molecular level these can have difficulty with situa-

1This represents almost 497 moves per polymer site, or almost 233454 moves per polymer
2A general definition of narrow is difficult but it could imply a fixed number of lattice points

wide.
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tions where an isolated chain protrudes into the pore or the gap. A solution to

this is to impose a larger grid on the lattice then identify whether the cells in

the larger grid are occupied and use this to identify the pore size[203]. However,

as the authors of Ref. [203] identify the method is sensitive to the chosen grid

size, and the authors identify two methods for resolving this issue. The first ap-

proach, their “V-method,” assumes a constant pressure ensemble rather than the

constant volume used in these simulations. The second approach described in

Ref. [203], known as the “M-method,” is potentially suitable as it would correctly

identify narrow passages as closed since since a grid cell over the passage would

most likely contain polymer. However, this method for determining pore sizes

was developed for identify nucleating bubbles of gas, whilst we are interested

in the volume of a pore which would be seen by a molecule moving through a

membrane. In a physical system, if the chain is free to move, then it could move

out of the way of an incoming particle or molecule. This would mean that the

pore size identified by a method such as that described by Ref. [203] might be

too small. A simple solution might be to prune isolated chains from the system,

however, if the surface has many of these or the chain has a large balled up struc-

ture at the end this would not be representative either. It is naturally possible

to build a sophisticated model which can account for these effects. Instead this

work considers how the STEM images of P84 membranes[6] were made and uses

an analogous algorithm to allow for a fair comparison.

STEM, at a basic level, maps the electron density of a sample of the polymer

membrane. The accessible pores are filled with OsO2 nano-particles, which have

a substantially higher electron density than P84. The resultant STEM images

essentially provide a density map of the polymer membrane. Similar density

maps can be obtained for the MC simulations using the following procedure.

Configurations from the simulation were stored at fixed intervals. Sections of

these configurations were created by considering all occupied lattice sites in a

given region. This is necessary as using a complete simulation cell averages out

too much detail. By picking a direction to act as the vertical and summing all

the occupied lattice sites in each vertical column, a two-dimensional density map

can be created. These density maps are then used to compare against the STEM

images of P84 membranes[6].
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8.3.3.2 Comparison with STEM Images

From the 5 MC simulations the initial (post equilibration), middle, and final state

was stored. Subsets of these configurations were made of size 160 × 160 × 160.

There are many possible subsets which can be chosen, therefore, it was decided

that for consistency to take the origin of the subset to be the origin of the lattice.

It was further decided to compare only the final frames from each simulation

as these frames have had the largest number of MC moves applied and should

therefore be least susceptible to any bias in the initial structures.

As can be seen in Fig. 8.8 increasing ∆ε causes the system to move towards

a uniform low density system. These images can then be analysed by standard

methods such as those used in ImageJ[204], to produce the pore size and distri-

bution. Fig. 8.8 is reminiscent of the more porous open structures seen in the

STEM images of P84 membranes[6], included for reference in Fig. 8.9. The sim-

ilarity with the STEM images is particularly apparent in the ∆ε = −0.50 and

∆ε = −0.25 simulations, which match well against the 2:1, and 4:1 DMF:dioxane

mass ratio membranes of Ref. [6]. However, the scale of these features, as indi-

cated by the scale in Fig. 8.8, is not representative of P84 membranes: Fig. 8.7

shows that a lattice spacing is over 4lp, and based on the results in Sec. 7.5.31

this is around 4.4 nm. As a result an analysis of the pore sizes using ImageJ[204]

was not conducted. Therefore, to capture the features of interest in this model

the persistence length of the polymers in the MC model needs to be increased,

relative to the lattice spacing.

8.3.4 Directional Biasing

There are two primary length scales involved in this MC model: the length scale

of the polymer, which we have characterised by lp, and the inter-molecular sep-

aration, which is governed by the lattice spacing. For a given density and ∆ε

the persistence length of the model as described above is a fixed number of lat-

tice spacings. Therefore, another parameter is required to increase the model

polymers stiffness and hence its lp relative to the lattice spacing.

1It should be stressed that the values reported in Sec. 7.5.3 do not include the effects of
multiple polymers which clearly influences lp.
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Figure 8.8: Projections through 160× 160× 160 subsets of MC simulations. The
value of ∆ε is specified above every image. There is a clear trend that as ∆ε
increases the system tends towards a uniform relatively low density structure

Figure 8.9: STEM images P84 membranes from Ref. [6]. The images are or-
dered with increasing solvent quality. The membranes were prepared using re-
spectively a 1:2, 2:1, and 4:1 DMF:dioxane mass ratio. For full details of the
experiments see Ref. [6]. Reprinted from Journal of Membrane Science, 413–414,
Joanna Stawikowska and Andrew G. Livingston, Nanoprobe imaging molecular
scale pores in polymeric membrane, 1–6, 2012, with permission from Elsevier,
license number 3393131159500.
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Increasing lp can be accomplished by increasing the number of segments which

are in line with one another. To accomplish this increase in linearity, a directional

biasing scheme was developed. The directional biasing scheme modifies the prob-

ability of selecting a move which is in line with the previous segment. In the

unbiased scheme each of the possible move sites has probability 1
z−1

of being se-

lected, for the three dimensional cubic lattice, the lattice coordination number

z = 6, and the −1 accounts for the fact that moves which fold back on them-

selves are forbidden. In contrast, the bias scheme assigns an in line direction the

probability w with the remaining, out of line, move sites having probability 1−w
z−2

.

By selecting w > 1
z−1

= 0.2 we can increase the number of segments which lie

in line with the previous segments, thereby increasing the polymer’s persistence

length. This scheme was tested for w ∈ {0.1, 0.2, . . . , 0.6}, with ∆ε ∈ [−0.5, 0.5],

all simulations used ρ = 15%, N = 100 and 2.5 × 108 MC steps. The result-

ing persistence lengths for these simulations are shown in Fig. 8.10, from this it

is clear that persistence length increases with w. However, it is also clear that

increasing w from 0.2 to 0.6 only causes an increase of < 20%1. Taking the

inter-molecular spacing of benzene (0.34 nm), as a rough approximation for the

intermolecular separation of P84 and hence the lattice parameter, lp ≈ 3 lattice

spacings is required to match the MD simulations. Obtaining lp ≈ 3 requires

increasing lp by a factor of 11–15, which is clearly not practical with this form of

directional biasing.

This directional biasing scheme fails to achieve the desired increase in persis-

tence length as a result of two factors: the underlying nature of the lattice itself,

which results in very few possible in line moves, and the logarithmic sensitivity of

the persistence length to changes in the correlation between segments. To explain

why these two effects make schemes such as this unfeasible consider a non-self

avoiding random walk on a cubic lattice where the only restriction is that the

next segment of the polymer cannot directly overlie the previous segment. If the

probability of placing a segment in line with the previous segment is given by w

as in the above model, then the correlation between one segment and the next

1 The largest observed increase was 17%, at ∆ε = −0.1.
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Figure 8.10: Persistence length against ∆ε for a range of directional bias parame-
ters w. The lattice coordination number for this system is 6 therefore the number
of possible move sites is 5 making w = 0.2 unbiased. It is clear from these simula-
tions that increasing the bias in favour of making the polymer straight increases
lp. However, it is also clear that an extremely large bias would be required to
obtain large values of the lp.
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segment will be given by w. Let us define

w0 = 1
z−1

z=6
= 0.2, (8.9)

lp0 = − 1

ln(w0)
, (8.10)

lp = alp0 , (8.11)

for some target value of a. Using

w = e
− 1

lp , (8.12)

it is clear that,

w = w
1

a

0 . (8.13)

Since lp0 ≈ 0.2 lattice spacings, then if we want lp = 4 lattice spacings, we require

a = 20. Therefore, w ≈ 0.9 which is not practical to sample. Whilst this analysis

does not include the effects of avoiding other polymer sites, the effect of more

distant polymer segments, or the effect of ∆ε, amongst many other effects, it

does demonstrate the difficulty in this sort of biasing scheme. It can be shown in

a similar manner that changing the lattice type yields:

α = α
1

a

0 . (8.14)

where α = bw and b is a lattice dependent constant which does not significantly

influence the final result. This type of simple biasing is, therefore, insufficient to

allow the lattice model to capture both the polymers intrinsic length scale and

the inter polymer separations for a rigid molecule such as P84.

Other groups have had more success by introducing the bias into the energy

landscape and using more advanced sampling techniques. Hsu et. al. Ref. [205]

imposed a substantial energy penalty on turning the polymer, 0.9–5.3 kbT , and

used a far longer polymer, N=50000. This resulted in significant changes in the

persistence length of the polymers up to an order of magnitude. Unfortunately

these levels of bias towards straight chains are beyond the capabilities of the

reptation based sampling scheme used in this work, and the tests conducted by
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Hsu et. al. used only a single chain rather than a dense collection of chains which

makes the system easier to sample[201].

Future work in this area should be focused on developing a direct link between

the P84 molecule and the MC simulation, some possible approaches which have

been considered are presented here. Using more advanced sampling techniques

such as PERM have the potential to allow the necessary levels of directional

biasing to be achieved[205]. Having a number of segments defined to lie in a

straight line can, depending on the exact implementation, result in polymers

moving on separate sub-lattices. Another scheme would involve assessing the

straightness of several polymer segments together and using them to define the

bias on the next segment’s placement, or even using the average direction of

several segments together to assess the polymers tangent direction thus smoothing

out the sharp corners of the lattice. However, the most likely scheme to succeed,

is to use the large scale structures obtained from this model as starting points for

more detailed studies of the polymers at an atomistic or near atomistic scale. This

would allow unfavourable configurations to be screened out efficiently in the MC

model and the most likely structures to be sampled in detail to understand the

role of chemical interactions as well as geometrical constraints in the filtration

process. Even without these improvements MC simulations have matched the

trends seen in experiments with remarkable accuracy. From these simulations,

particularly those of Sec. 8.3.3, it is clear that the trends in the structure of a

polymer in solution with respect to changing solvent quality matches the variation

in structure of the surface layers of P84 membranes. This shows that the structure

and porosity of a P84 membrane is determined by its behaviour in the initial

solution.
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Conclusions

This research has resulted in a molecular model for the formation of polymer

membranes by phase inversion. By considering the molecular interactions be-

tween P84 and its solvents it has been possible to replicate the trends seen in

experiments in particular that pore size increases with solvent quality. Further-

more, whilst developing tools to couple DFT and MD a new approach to the

coarse graining of aromatic polymers has been developed. However, this does not

represent an end to this research but rather a beginning.

The collaborations started with this project have already led to further re-

search into desalination membranes produced by interfacial polymerization, as

well as elastomer seals operating in extreme environments, that will doubtless

yield much valuable research. There are additional avenues available to directly

follow on from this research. I have selected a few directions which I believe will

result in interesting and useful contributions to the field. The remainder of this

chapter is structured as follows. In Sec. 9.1 I summarise the coarse graining work

in Chap. 4. The key aspects of the multi-scale modelling of polymer membranes

from Chap. 6, Chap. 7, and Chap. 8 are summarised in Sec. 9.2. Suggestions for

future research are discussed in Sec. 9.3.
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9.1 Coarse Graining

The new coarse graining scheme presented in Chap. 4, shows excellent consis-

tency with traditional all atom approaches. By coupling chemical insight with

knowledge of geometry and mechanics, it ensures that the dynamic and struc-

tural properties of aromatic polymers are preserved. The removal of fast degrees

of freedom allows accurate integration at large time steps, and the reduction in

the number of constraints improves the stability of the solution.

Coarse graining PEEK demonstrates that this procedure can be applied to

industrially relevant molecules. The combination of this technique with force fit-

ting has the potential to allow the generation of custom forcefields where high

accuracy is required. Furthermore, the fact that it can be used with an unmod-

ified version of GROMACS removes the need for code development by groups

wishing to use the technique making it more accessible. The primary limitations

of this coarse graining technique are that the SHAKE algorithm, which is used

to implement the constraints, is not currently parallelised within GROMACS.

Despite this the technique has great potential as it increases the time scales ac-

cessible with atomistic precision which will be of use to researchers both in the

field of membranes and in the study of polymers more generally.

9.2 Modeling P84 Membranes

The simulations developed to model P84 membranes demonstrate that the initial

structure of P84 in solution follows the trends seen in P84 OSN membranes.

By showing that processes such as evaporation are not necessary to produce a

phase inversion membrane, and that the interaction between the solvents and the

polymer, which can be modelled atomistically, are important in the development

of pores in the membrane, this model has improved our understanding of the

phase inversion mechanism. The MC simulations provide a means of rapidly

generating structures to allow further study, while the MD simulations provide

the length scales associated with P84 in solution. There remains work to do to

allow MD to be used to refine the structures developed in MC. However, it has

been demonstrated that the solvent polymer interaction in the initial dope obeys
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the same trends as the filtration layer of a P84 phase inversion membrane.

9.3 Further Work

The primary limitations of the coarse graining strategy developed in Chap. 4 are

those of the SHAKE algorithm; Sec. 4.1.3 describes the problem and proposes a

new hybrid methodology for addressing these issues. The approach is to combine

several existing methods to create a more stable and potentially faster constraint

algorithm. This approach could potentially be used in a variety of problems as

highly coupled constraints arise in many contexts both in polymers and in fields

such as robotics.

Coupling DFT to MD through the iterative matching of observables is not

common practice. Whilst codes do exist that will take the data from DFT and MD

simulations and combine them, these programs often use custom MD codes[175]

or use a modified version of the source code of a commercial program[172, 206].

However, programs such as VOTKA[207] have demonstrated the usefulness of

external programs which can interface with the latest versions of commercial

codes. Developing an external tool kit to enable force fitting using existing codes

would be a useful task. Accomplishing this would complete both directions of

the coupling between DFT and MD. The code I developed during my work on

coarse graining, see Sec. 4.1.5, could serve as a useful starting point for this

work. However, tools such as VOTKA provide interfaces to more MD programs,

are more fully developed and documented than my code, providing a sensible

approach to merge the ideas from my code into a more developed project. Whilst

some level of coding knowledge for this project is essential, the more important

aspect is a good understanding of DFT and MD as fitting a forcefield is a very

challenging undertaking [54, 172, 175, 176, 206].

There are many topics and ideas about membranes that have come out of

this three year project; selecting and outlining self-contained projects is difficult.

Perhaps the most useful area to follow directly from this research would be the

development of a process for coupling MD to MC and back. Removing informa-

tion by moving from atomistic simulation to CG MC representations is often far

easier than restoring the atomistic information from the CG MC. Once a means
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of doing this has been developed the initial structures can be generated efficiently

using MC then refined in MD. The resulting refined structures can then be used

to address many other problems.

Given a process for generating refined membrane structures such as the one

described above, the most useful area to target for research is probably adhesion

and fouling. Cleaning membrane systems often accounts for a high proportion

of energy use in filtration systems[2]. Therefore, understanding how and why

membranes become fouled may lead to better overall efficiency than focussing

primarily on topics such as flux, rejection, or longevity. Researching this will

require the use of atomistic and quantum techniques, and most probably fluid

mechanics as well as an understanding of chemical interactions at both inter- and

intra-molecular levels. Research into the flow through interfacially polymerised

desalination membranes at Imperial College London has already begun and this

will certainly lead to progress in this field.

Many other possible research topics have come out of this work, and those

outlined above I believe will produce useful contributions to this field and beyond.

The study of industrial problems can introduce issues that idealised models do

not present; however, by addressing these issues we can gain new insights which

would otherwise have gone unnoticed. An example of this is the coarse graining

strategy discussed in Chap. 4 which would not have come about were it not for

the need to reduce the degrees of freedom in the simulation of industrial polymers

such as PEEK and P84 to enable longer simulations and the efficient development

of custom forcefields.
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Appendix A

Monte Carlo

MC is often used to evaluate integrals, therefore, to understand the technique it

is necessary to consider the process of numerical integration or quadrature. To

begin with consider an integral which needs to be evaluated numerically such as

I =

∫ b

a

f(x)dx (A.1)

where a, and b are finite, x ∈ R, and f(x) is finite in the range [a, b]. It is possible

to approximate this integral by evaluating the function at N points xi in the

interval [a, b] then summing their values

I ≈
N∑

i=1

wif(xi). (A.2)

The weight (wi) of each interval is generally proportional to the width of the

sampled interval, for instance in the case of uniform sampling it is b−a
N

. If the

xi are chosen in systematic way (e.g., uniformly or a cosine distribution) the

error in the integration is generally classified by the value of M in the leading

term of the error O(N−M), where M is an integer that depends on the algorithm

used. For one dimensional integrals such as Eq. (A.1) a variety of techniques

are available which can easily achieve M ≥ 4 (e.g., extended Simpson’s rule).

However, when a higher dimensional integral is sampled using a regular grid the

error behaves as O(N−
M
D ) where D is the dimensionality of the system. Higher
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dimensional integrals often occur in molecular systems for instance the partition

function has six dimensions (three position, three momentum) for every particle

in the system1. Clearly for higher dimensional integrals an extremely large value

of N or M would be required to ensure reasonable sampling using systematic

grid.

An alternative approach to sampling an integral using a grid is to sample it

randomly. This approach is generally slow to converge, however, its error is always

O(N−
1
2 ) regardless of the number of dimensions being integrated over. As a result

MC integration is invaluable in numerical evaluation of integrals. However, the

true power of MC integration is that it can be used to bias the sampling such

that certain areas of phase space are sampled more often. This is useful when the

value of the integral is dominated by a subspace of the total integration region.

To understand the use of biased MC sampling consider calculating 〈A〉, for some

observable A, in statistical mechanics this is given by,

〈A〉 =
1

Z

∫
A({qi}, {pi}) exp (−βH({qi}, {pi})) dΩ. (A.3)

Here {qi}, {pi} are respectively the sets of all position and momenta vectors in the

system, together they span the phase space Ω , H is the Hamiltonian of the sys-

tem, β = 1/(kBT ) where kB is Boltzmann’s constant, T is temperature, and the

partition function Z =
∫

exp (−βH({qi}, {pi}))
∏

i dqidpi. For further details

consult e.g., [208]. If the integral is sampled randomly it will eventually converge

to the correct value, and all values H will occur with a frequency proportional

to the volume of phase space over which they occur. Examining Eq. (A.3), it is

clear that large values of H, relative to β will be exponentially suppressed in the

integral. Therefore, regions of phase space of interest represents a small subspace

of the total phase space, resulting in random sampling expending a large number

of evaluations calculating data points which will have minimal contribution to

the final answer. To see that the subspace is small, consider the kinetic energy

part of the Hamiltonian (
∑

i p
2
i /(2mi) where mi is the mass of the ith particle),

this will always have a larger proportion of its possible phase space above a given

1The partition function is also evaluated over all space, rather than a finite interval. This
adds a layer of complexity which will be addressed only in the context of MC sampling.
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energy than below it.

Metropolis et. al. demonstrated a Markov chain method for sampling an

integral in an efficient manner[17]. Their insight was that if ({qi}i, {pi}i) were

picked based on the distribution exp (−βH({qi}i, {pi}i)), the integral could be

approximated by:

〈A〉 ≈
N∑

i=1

A({qi}i, {pi}i)
N

. (A.4)

This ensures that the values of A with the largest contribution to the integral

are sampled most often. This process was generalised in 1970 by Hastings[24]

resulting in MH.

The MH method samples according to a Markov chain, a chain in this context

is a set of sequential values for the state variables, in this case ({qi}, {pi}), of

the system. Sequential values in the chain are obtained by modifying the values

of the state variables in some manner, then either accepting the new values or

rejecting them. The modification of the variables is called a move, the choice of

move is highly system dependent and is discussed in the context of polymers in

Sec. 2.1.2. Any move satisfying detailed balance, will given a sufficient number

of MH moves, produce the desired result. Detailed balance requires that the

probability of making a move is equal to the probability of making its reverse

move, this can be expressed mathematically as

P (i)PA(j|i) = P (j)PA(i|j), (A.5)

where P (i) is the probability of being in state i, and PA(j|i) is the probability

of accepting a move to j given that the system is in state i. Detailed balance

is not required for a MH move to be valid, the weaker balance condition can

be sufficient, however, all detailed balance moves are valid moves whilst some

balance moves are not therefore it is generally advisable to use a detailed balance

move[25].

The MH acceptance criteria is obtained by assigning a probability of oc-

cupancy to each state of the system given by its Boltzmann weight, P (i) =

exp (−βEi) where Ei = H({qi}i, {pi}i) is the energy of the state i. Rearranging
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detailed balance relationship,Eq. (A.5) yields:

PA(j|i)
PA(i|j) =

P (j)

P (i)
, (A.6)

which after substitution becomes,

PA(j|i)
PA(i|j) = exp (−β∆Eij) , (A.7)

where ∆Eij = Ej − Ei . In principle any acceptance probability satisfying this

equation is valid, the MH scheme uses,

PA(j|i) = min [1, exp (−β∆Eij)] , (A.8)

which clearly satisfies Eq. (A.7). Using this to generate a chain of configurations

allows the evaluation of Eq. (A.3), with a high degree of precision by simply

adding the value of the observable in every configuration in the chain and dividing

by the chain length.
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Appendix B

Supplemental Energy Drift

Graphs

This appendix provides the plots of energy drift against time for the 40 simula-

tions of short P84 oligomers in dilute solution. The captions specify the oligomer

and solvent used. The oligomers are labelled as Short 1, 2, 3 and Long 1, 2, which

are described in Tab. B.1. The figures on the subsequent pages are grouped by

solvent polymer with all temperatures for a given pair shown as a single figure.

Oligomer BTDA groups TDA groups MDA groups
Short 1 6 4 1
Short 2 6 5 0
Short 3 6 3 2
Long 1 9 7 1
Long 2 9 7 1

Table B.1: The labels and number of various groups for each of the five P84
oligomers simulated in dilute solution.
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Figure B.1: Short oligomer 1 in DMF, 93287 atoms. The simulations average
temperature is shown immediately above the plot, with the error on the last digit
indicated by the number enclosed in brackets. Vertical lines indicate simulation
restarts.
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Figure B.2: Short oligomer 2 in DMF, 93325 atoms. The simulations average
temperature is shown immediately above the plot, with the error on the last digit
indicated by the number enclosed in brackets. Vertical lines indicate simulation
restarts. The 463.29(9) K simulation was continued from a simulation which had
crashed due to a power outage on the cx2 machine at imperial. This power outage
had corrupted several files that were being written to at the time. Therefore it
was continued from a backup checkpoint file which was not affected, however,
all data from the first 38.8 ns was lost. The simulation was not continued after
134.5 ns as by that point the issues discussed in Sec. 5.3 had been identified.
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Figure B.3: Short oligomer 3 in DMF, 93189 atoms. The simulations average
temperature is shown immediately above the plot, with the error on the last digit
indicated by the number enclosed in brackets. Vertical lines indicate simulation
restarts.
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Figure B.4: Short oligomer 1 in dioxane, 91893 atoms. The simulations average
temperature is shown immediately above the plot, with the error on the last digit
indicated by the number enclosed in brackets. Vertical lines indicate simulation
restarts. The large number of restarts in the 300 K simulation was caused by a
series of issues relating to the Lustre file system on HECToR which caused the
simulation to stop. As the simulations were grouped together this affected all
300 K simulations in dioxane.
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Figure B.5: Short oligomer 2 in dioxane, 91953 atoms. The simulations average
temperature is shown immediately above the plot, with the error on the last digit
indicated by the number enclosed in brackets. Vertical lines indicate simulation
restarts. The large number of restarts in the 300 K simulation was caused by a
series of issues relating to the Lustre file system on HECToR which caused the
simulation to stop. As the simulations were grouped together this affected all
300 K simulations in dioxane.
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Figure B.6: Short oligomer 3 dioxane, 91875 atoms. The simulations average
temperature is shown immediately above the plot, with the error on the last digit
indicated by the number enclosed in brackets. Vertical lines indicate simulation
restarts. The large number of restarts in the 300 K simulation was caused by a
series of issues relating to the Lustre file system on HECToR which caused the
simulation to stop. As the simulations were grouped together this affected all
300 K simulations in dioxane.
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Figure B.7: Long oligomer 1 in DMF, 89060 atoms. The simulations average
temperature is shown immediately above the plot, with the error on the last digit
indicated by the number enclosed in brackets. Vertical lines indicate simulation
restarts.
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Figure B.8: Long oligomer 2 in DMF, 89000 atoms. The simulations average
temperature is shown immediately above the plot, with the error on the last digit
indicated by the number enclosed in brackets. Vertical lines indicate simulation
restarts.
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