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ABSTRACT

We give an analytical form for the weighted correlation function of peaks in a Gaussian
random field. In a cosmological context, this approach strictly describes the formation
bias and is the main result here. Nevertheless, we show its validity and applicability
to the evolved cosmological density field and halo field, using Gaussian random field
realisations and dark matter N-body numerical simulations. Using this result from
peak theory we compute the bias of peaks (and dark matter halos) and show that it
reproduces results from the simulations at the O(10%) level. Our analytical formula for
the bias predicts a scale-dependent bias with two characteristics: a broad band shape
which, however, is most affected by the choice of weighting scheme and evolution
bias, and a more robust, narrow feature localised at the BAO scale, an effect that is
confirmed in simulations. This scale-dependent bias smooths the BAO feature but,
conveniently, does not move it. We provide a simple analytic formula to describe this
effect. We envision that our analytic solution will be of use for galaxy surveys that
exploit galaxy clustering.

Key words: large-scale structure of the universe.

1 INTRODUCTION

One of the biggest challenges of large-scale structure surveys is to infer the properties of the dark matter density field from

observables such as galaxies or clusters. Galaxies, and the dark matter halos they inhabit, are not perfect tracers of the

underlying dark matter distribution, but it is the statistical properties of the dark matter distribution that are most robustly

predicted by theory. Modelling of the clustering properties of the dark matter halos, or more precisely, modelling of the halo

bias, has received recently renewed attention (e.g., Baldauf et al. (2013); Paranjape et al. (2013); Desjacques (2013); Castorina

& Sheth (2013); Musso, Paranjape & Sheth (2012); Elia et al. (2011); Elia, Ludlow & Porciani (2012)) but pioneering work

dates back to the 1970s-1980s (e.g., Doroshkevich (1970b,a); Kaiser (1984); Jensen & Szalay (1986)) as we will review below.

Modelling the halo bias is particularly interesting for several reasons: the clustering of halos is driven only by gravity and thus

in principle is completely specified by the initial conditions; it is virtually unaffected –at least on scales significantly larger than

the size of the halos, O(Mpc)– by poorly known baryonic physics and physics of galaxy formation (which instead drive galaxy

bias). It is also a crucial intermediate step to a full modelling of galaxy bias, if, for example, a halo occupation distribution

model is used to describe how galaxies populate halos (e.g., Seljak (2000); Peacock & Smith (2000); Cooray & Sheth (2002)).

In principle a galaxy survey could be engineered so that the selected galaxies trace dark matter halos, for example by targeting

bright luminous red galaxies which are typically central halo galaxies (e.g., Mandelbaum et al. (2006)). In practice, successful
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2 Verde et al.

attempts have been made to reconstruct the halo density field from a real galaxy survey (Reid & Spergel 2009; Reid, Spergel &

Bode 2009; Reid et al. 2010). Clusters of galaxies also are believed to trace the spatial distribution of (high mass) dark matter

halos, and many forthcoming surveys promise to provide cluster correlation properties. It is well known that bias depends on

halo properties, and in general halo bias is expected to be complicated, non-linear, non-local and scale-dependent. However,

an accurate understanding of its behaviour is crucial to extract precise cosmological information from large scale structure

clustering. For example, the shape and amplitude of the matter power spectrum, or equivalently its correlation function, are

sensitive to cosmological parameters such as neutrino masses. Also, the primordial power spectrum slope and shape, and the

precise location of the Baryon Acoustic Oscillation (BAO) can provide a direct probe of the Universe’s expansion history.

Future galaxy surveys will probe an appreciable fraction of the observable universe, reducing the statistical errors on these

quantities and making the scale-dependence and non-linearity of halo bias a source of systematic error that cannot be ignored.

The halo bias could be studied and modelled, in principle, solely via N-body numerical simulations (e.g., Seljak & Warren

(2004); Paranjape et al. (2013); Elia, Ludlow & Porciani (2012)). However in practice the calculations needed to obtain

the desired accuracy and error estimation far exceed the amount of CPU time available (see e.g., Dodelson & Schneider

(2013); Morrison & Schneider (2013)). Having an analytic expression would be highly valuable: it could be used for example

to model the halo bias scale dependence and/or the cosmology dependence, thus having to rely on N-body simulations

only for calibrating and validating the analytic expressions. Further, it is always much more insightful to obtain a physical

understanding of phenomena, such as the clustering of dark matter halos with respect to the dark matter field. In fact while

N-body simulations have confirmed the non-linearity, non-locality, stochasticity and scale-dependence of halo bias, the origin

of these effects remain unclear (see e.g., Porciani (2013) and references therein).

In this paper we show how, using peak theory, we can derive an analytic expression for the correlation properties of the

dark matter peaks which, we argue, can largely be identified with dark matter halos; our expression depends on the power

spectrum of the dark matter field. This approach does not model the bias itself, however it provides a description of the

observable quantity (the correlation properties of peaks/halos) from which a “bias” can be obtained from e.g., the ratio of

the relevant power spectra. The rest of the paper is organised as follows: In §2 we review the current knowledge on halo bias

and present the aim and goals of our approach. In §3 we present our derivation and the analytic expression for the halo bias.

We also discuss the unavoidable approximations involved and their possible limitations. Sec. 4 validates the approximations

made and evaluates the performance of the formula comparing with simulations and in §5 we present the consequences and

possible applications of our findings especially for Baryon Acoustic Oscillations studies. Finally we conclude in §6.

2 REVIEW OF CURRENT STATE OF AFFAIRS AND OUR APPROACH

Several different approaches have been used in the literature to model or understand halo bias. The common denominator

is to define the bias as a function relating the dark matter overdensity field δm(x) to the halo overdensity field δh(x),

δh(x) = f(δm(x)). This relation is then often expanded around small δm(x) where the expansion coefficients are the bias

parameters (see e.g., Heavens, Matarrese & Verde (1998); McDonald (2006); McDonald & Roy (2009) and refs therein). In

this framework, the approaches describing the abundance of collapsed objects can be extended to describe the halo bias

(via a peak-background split argument e.g., Sheth & Tormen (1999); Schmidt, Jeong & Desjacques (2013) and refs therein).

Analytical descriptions of the halo mass function aim to characterize the location of collapse in the initial conditions. Two

parallel approaches have been traditionally investigated: the peaks formalism (e.g., Peacock & Heavens (1985); Bardeen et al.

(1986); Cole (1991); Lumsden, Heavens & Peacock (1989, 1990)) and the excursion set (e.g., Press & Schechter (1974); Bond

et al. (1991); Sheth & Tormen (1999); Sheth, Mo & Tormen (2001); Maggiore & Riotto (2010); Musso, Paranjape & Sheth

(2012); Paranjape & Sheth (2012a) and references therein). While the peak formalism treats density peaks as special sites

for halo formation the excursion set treats all locations in the initial conditions on the same footing. The “peak-patch”

approach (Bond & Myers 1996) tried to unify the two, a unification that was recently achieved analytically (Paranjape &

Sheth (2012b); Paranjape, Sheth & Desjacques (2013), denoted excursion set of peaks) by making simple approximations that

are supported by N-Body experiments. All approaches rely on the statistical properties of the initial conditions to predict

final halo properties. In particular the study of Lagrangian bias is considered an important step in understanding bias, with

the hope that the mapping between Lagrangian and Eulerian space is simple (Mo & White 1996; Jing 1999; Catelan et al.

1998). In other words halo bias could be split into two parts: a formation bias, which we identify with the Lagrangian bias and

which represents halos being born more strongly clustered than the matter, and an evolution bias. The latter is a mixture of

complex effects from effects such as nonlinear clustering, movement of matter, and merging. The formation bias is expected

to dominate with evolution bias adding a small correction.

While the bias predicted by the peak background split does not seem to match N-body simulations results (Manera,

Sheth & Scoccimarro 2010), it has recently been confirmed that a large fraction of haloes originate from initial density peaks

(Ludlow & Porciani 2011). In particular the excursion set of peaks approach gives a description of halo bias accurate at the

10% level, which could be improved by a remapping of the assignment of masses (Hahn & Paranjape 2014). This finding then
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Bias of weighted DM halos 3

offers supports to the approach that Lagrangian bias can be well described by studying the peaks of the initial density field. As

initial conditions are believed to be Gaussian (and supported by microwave background measurements, Planck Collaboration:

XXIV (2013)) it is therefore interesting to investigate the properties of peaks of Gaussian random fields. The relation between

overdensity of peaks and overdensity of matter δpk = f(δm) might be still complicated. In fact, despite this simplification,

halo bias is still complicated: non-local, non-linear, stochastic, and the expansion of the δh(x) = f(δm(x)) relation needs many

coefficients (bias parameters) e.g., Yoshikawa et al. (2001); Seljak & Warren (2004); Baldauf et al. (2013); Ludlow & Porciani

(2011); Pollack, Smith & Porciani (2013); Castorina & Sheth (2013); Sheth, Chan & Scoccimarro (2013). On the other hand,

the clustering properties of peaks and especially their two-point function can have a direct relation to the matter one. In one

dimension the correlation function of maxima of a Gaussian field has been shown to be directly related to the correlation

function of the field itself (Adler 1981; Peacock & Heavens 1985; Bardeen et al. 1986). In more than two dimensions, however,

the (N-point) correlation function of maxima of a Gaussian field does not have, so far, relatively simple, closed expressions.

The usual approach is to find closed-form solutions which are evaluated numerically (see e.g. Heavens & Sheth (1999) for

two dimensions on the sky, for small angles, and Heavens & Gupta (2001) for all-sky). This is a long standing open problem

starting from the first attempt by Otto, Politzer & Wise (1986b,a).

Directly computing the peak correlation function has the advantage that it does not rely on expanding the bias relation.

Desjacques (2008) and Desjacques et al. (2010) took a similar approach. Desjacques (2008) computes the large scale expression

for the correlation function of peaks and finds that spatial derivatives of the linear density correlation functions have important

effects on the clustering of peaks. We will return to this finding in this work. Desjacques et al. (2010) derive an expression

of the two-point correlation function of initial density peaks but in a perturbative way to second order in the density. Their

findings include a scale-dependent bias even on relatively large scales corresponding to the BAO feature and enhancement of

the feature. They further explore the effects and scale-dependence of evolution bias. Contrary to Desjacques et al. (2010) we

find that the peaks scale-dependent bias introduces a reduction of the BAO feature rather than an enhancement. Here we

take the approach that rather than describing the bias function, a quantity of interest is the correlation function or power

spectrum of halos. By bias we refer to the square root of the ratio of the correlations (or power spectra) of the tracers and

the field. Further, we concentrate on formation bias by using the clustering of peaks of the initial Gaussian field as a proxy

for the clustering of halos, and this is the main result that is presented here. The effects of evolution bias are investigated and

quantified as a second step.

In summary in this paper we present an analytic solution to the (N-point) correlation function of extrema for any

dimensions and then focus on the two point function in three dimensions, which is of most practical relevance. Since most

extrema above practically interesting thresholds (> 2σ) are peaks we find that can identify the clustering of extrema with the

clustering of peaks. We investigate the effects of our unavoidable approximations on a suite of Gaussian realizations and then

show how this formula performs for peaks and halos of an evolved density field by comparing to N-body simulations.

3 METHOD

Let us start from Eq. (3) of Otto, Politzer & Wise (1986b) expressing the joint probability of finding N peaks of a field φ(r)

at positions ri, i = 1, .., N , and above a threshold, which we report here:

P (r1, . . . , rN ) =

∫
[dφ(r)]P [φ(r)]

N∏
j=1

[∫
dw(j)| detw(j)|δ3(∇φ(rj))δ

6(∇∇φ(rj)− w(j))θ(φ(rj)− t)
]
. (1)

Otto, Politzer & Wise (1986b) use the extremely powerful path integral approach to describe cosmological Gaussian

random fields; this technique has been used with remarkable success in cosmology. On the assumption that galaxies and

clusters of galaxies, or dark matter halos, occur at local maxima of the field φ(r) that are above the threshold t, this

expression gives the probability of finding N objects at locations r1, ..., rN . In this equation P [φ] is the Gaussian probability

distribution function, θ denotes the Heaviside step function and w(j) in our adopted notation and in three spatial dimensions

is the symmetric 3 × 3 matrix of the second derivatives of φ at position rj . In Eq. (1) the integration on dw(j) has to be

extended only over negative definite eigenvalues, in order to identify local maxima.

The correlation function is then given by

1 + ξ1,2 = P (r1, . . . , rN )/PN (r1) . (2)

The expression for P (r1) was presented in Bardeen et al. (1986).

We then make the approximation that halos correspond to local maxima of the linearly extrapolated initial Gaussian

field. As such, we only have to work out the properties of peaks in Gaussian fields, which have been extensively studied in the

literature (Rice 1944, 1945; Adler 1981; Bardeen et al. 1986; Peacock & Heavens 1985; Kaiser 1984; Jensen & Szalay 1986).

This is therefore equivalent to computing the Lagrangian or formation bias (see §2) except that here we will define bias

as the square-root of the ratio of the correlation function. By making this approximation our description will not include
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4 Verde et al.

non-linear clustering of halos, the fact that halos might move from initial positions, merge or that halos at low redshift might

not correspond to initial peaks. We expect these corrections to be small at least for relatively massive halos (e.g., Ludlow &

Porciani (2011)) and we will further quantify them in §4. Our result will only include effects induced by the highly non-linear

transformation of a Gaussian field which is applied when selecting only the location of peaks above a threshold. Thus in

Eq. (1) the first integral is a (Gaussian) path integral, with φ being a Gaussian random field and thus

P [φ(r)] ∝ exp[−1

2
(φ,K, φ)] (3)

where we have used the short-hand notation for bivariate forms and operators. The ∝ sign suppresses the normalization factor

(detK/(2π)M )1/2 = {
∫

[dφ] exp[−1/2(φ,K, φ)]}−1 which will cancel out later. K is defined by (see e.g.,Politzer & Wise (1984);

Verde et al. (2013) ∫
d3yK(|x− y|)ξ(|y − z|) = δ(|x− z|) . (4)

In order to perform the integrals in Eq. (1) we note that while mathematically correct, the second-derivative condition

to determine the maxima significantly complicates the calculations and might be unnecessarily strong. Let us notice that if

one integrates over all possible values of w one would obtain extrema. However it is not a bad approximation to assume that

for thresholds t not too low, almost all extrema will be (local) maxima (we demonstrate this point in § 4). More in general

the approximation of neglecting the second derivative condition and its integrals will be very good for t > few rms (Adler

1981; Bardeen et al. 1986), especially since we are interested in correlation functions, which are statistical quantities averaged

over all pairs as a function of their distance. This consideration allows us to neglect the Dirac delta function of the second

derivatives.

The term |detw(j)| however remains. In fact if we want the correlation function of peaks (or extrema, or critical points) it

means that each peak (or critical point) will count 1 regardless of the spatial volume it occupies. If we wanted the correlation

of regions above the threshold then |detw(j)| would not be there (e.g., Kaiser (1984); Jensen & Szalay (1986) ). In fact

| detw(j)| is the Jacobian of the transformation from ∇φ to r. It is easier to see this in one dimension: d∇φ = (d∇φ/dr)dr
but if we want a number density the integral must be divided by the volume. So the dr at the end cancels out but d∇φ (or

| detw|) remains.

Unfortunately |detw| makes the expressions not analytic. However it is clear that it acts as a weight and thus in principle

it could be compensated by suitably weighting the data. We start addressing this in the appendix where we propose a relatively

straightforward way to compute a proxy for this weight from the data, i.e. in real galaxy surveys, thus making it possible to

reintroduce this factor from the data themselves. Therefore let us drop it from the equation for the moment and keep in mind

that it will have to be reintroduced later on as a weighting scheme on the observations. This manipulation will allow us to

obtain analytic expressions for the correlation function.

Let us therefore work with the simplified expression

P (r1, . . . , rN ) =

∫
[dφ(r)]P [φ(r)]

N∏
j=1

∫ ∞
mj=t

δ(φ(rj)−mj)δ
3(∇φ(rj))dmj . (5)

We will leave the
∫
dm to be performed at the end as it is similar to an error function and work with its integrand which

we now denote P ′ so that

P (r1, . . . , rN ) =

∫ ∞
t

dm1...dmNP
′(r1, . . . , rN ,m1, ..,mN ) . (6)

Using the Fourier representation of the Dirac delta

δ(s) =

∫
dα

2π
exp[isα] (7)

we obtain

P ′(r1, . . . , rN ,m1, ..,mN ) =

∫
[dφ(r)]P [φ(r)]

N∏
j=1

δ(φ(rj)−mj)δ
3(∇φ(rj))

=

∫
dα1...dαNdβ1,1, dβ1,2....dβN,d exp

[
−i

N∑
j=1

αjmj

]
exp[i(J, φ)] exp[−1

2
(φ,K, φ)]

where d denotes the number of spatial dimensions (1, 2 or 3) and we have defined the “source” functional

J(r) =
∑
jp

(αj + βjp∇p)δ(r− rj) . (8)

The index p (and q later) runs over the number of dimensions and indicates a component. Other labels (i, j etc) label the

points.
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The path integral in φ can be readily performed, leading to

P ′(r1, . . . , rN , ~m) =

∫
d{αj}d{βjp} exp

[
−i

N∑
j=1

αjmj

]
exp

[
−1

2
(J,K−1, J)

]
(9)

where we have used the shorthand notation of d{αj} = dα1....dαN and the normalization factors nicely cancel out.

In the Gaussian case K−1 can be interpreted as the correlation function ξ of the field φ, which depends only on the

distance between any two points not their location or orientation ξ(xj ,xl) ≡ ξ(|xj − xl|) = ξjl = ξ(rjl).

Let us now study the (J,K−1, J) expression,

(J,K−1, J) =
∑
jl

αjξjlαl
∑
jlpq

βjpβlq∇jp∇lqξj,l +
∑
jlp

αjβlp∇lpξjl +
∑
jlp

αlβjp∇jpξjl . (10)

Let us define a vector λ = α1..αN , β1x, β1y, β1z, ..., βNx, βNy, βNz for three dimensions. Then the above quadratic form can be

seen as a matrix operation λTXλ where X is a block matrix

X =

(
ξ ∇ξ
∇ξT ∇∇ξ

)
(11)

and ξ is the symmetric matrix given by the correlation function; ∇ξ has N rows and N × d columns. The ordering we have

chosen is so that we have N N × d blocks. The evaluation of the block elements requires some caution as we will see below.

Finally ∇∇ξ is a matrix made by N × N sub blocks of size d × d whose elements are ∂2ξ(xj ,xl)/∂rjp∂rlq. Let us define

rij =
√∑

p(rip − rjp)2 but rij = ri − rj . Given the properties of ξ we can write down expressions for these terms:

∂ξ(rj , rl)

∂rlp
=
dξ(rjl)

dr

∂rjl
∂rlp

= −ξ′(rjl)
(rj − rl)p

rjl
(12)

∂ξjl
∂rjp

=
dξ(rjl)

dr

∂rjl
∂rjp

= ξ′(rjl)
(rj − rl)p

rjl
. (13)

Despite ξ depending only on the distance, Eq.12 and 13 are different, as a small change in rj affects the selected shape of the

N-point function differently from that of a small change in rl. In addition,

∂2ξjl
∂rjp∂rlq

=

[
ξ′(rjl)

rjl
− ξ′′(rjl)

]
(rj − rl)p(rj − rl)q

r2jl
− δpq

ξ′(rjl)

rjl
= H(rjl)(rjp − rlp)(rjq − rlq)− δKpq

ξ′(rjl)

rjl
. (14)

It is useful now to express the above elements in terms of moments of the field.

ξij =
1

4π2r

∫
kP (k) sin(kr)dk =

1

4π2r

∞∑
n=0

(−1)n

(2n+ 1)!
r2n+1

∫
dkk2n+2P (k) =

∑
n

(−1)n

(2n+ 1)!
r2nσ2n+2 (15)

where

σn ≡
1

4π2

∫
dkknP (k). (16)

This requires an intrinsic smoothing scale to be discussed later. Nevertheless we can expand the correlation function for small

separations as:

ξ(r) = σ2 −
σ4

3!
r2 +

σ6

5!
r4... (17)

giving the behaviour for ∇∇ξ when j = l, r → 0:

ξ(0) = σ2, ξ
′(0) = 0, ξ′′(0) = −σ4

3
(18)

ξ′(r)

r
= −σ4

3
+ ... ,

ξ′(r)

r
− ξ′′(r) = −σ6

15
r2 + ... (19)

so ∇ξ = 0 when j = l. Also as r → 0, H → r2, so when j = l in ∇∇ξ the first term in the second line of Eq.14 goes to zero

and only terms with p = q survive. Keeping this in mind, we can integrate first in β. We have a quadratic form of the type∫
d{β} exp[−1/2~βTW~β +BT ~β] with a term quadratic in β and one linear in β that is however mixed with α (the expression

of B which depends on α needs some care). This means that there is no fundamental limitation in performing analytically

the integral in β, being a standard Gaussian integral, for any N .

Clearly ∑
p

βlp∇lpξjl = ~βl · (rj − rl)
ξ′(rjl)

rjl
(20)

∑
p

βjp∇jpξjl = − ~βj · (rj − rl)
ξ′(rjl)

rjl
(21)
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being zero if j = l. Then∑
pq

βjpβlq∇jp∇lqξ(rij) = H(rjl)( ~βj · ~rjl)(~βl · ~rjl)− ~βj · ~βl
ξ′(rjl)

rjl
= −H(rjl)( ~βj · ~rjl)(~βl · ~rlj)− ~βj · ~βl

ξ′(rjl)

rjl
(22)

where ~rjl = (xj − xl) and ~rjl = −~rlj . The expression for the linear term becomes:

− 2
∑
j,l

αj ~βl · ~rjl
ξ′(rjl)

rjl
(23)

where ~rjl = (xj − xl).

In summary:

(J,K−1, J) =
∑
jl

αjξjlαl +
∑
jl

H(rjl)( ~βj · ~rjl)(~βl · ~rjl)(1− δKjl )− ~βj · ~βl
ξ′(rjl)

rjl
− 2

∑
j,l

(1− δKjl )αj ~βl · ~rjl
ξ′(rjl)

rjl
. (24)

Note that ~β · ~β = βTβ.

For simplicity let us look at the two point function. In that case we can always choose the axis so that ~r is aligned with

the x axis , so rij = |rij,x|, then ~βj · ~rij = βjxrij,x = ±βjxrij depending on the sign of rij,x . For the two point function we

get:

(J,K−1, J) = αT ξα+ βTxH
′βx − βTy X ′βy − βTz X ′βz − 2αTQβx (25)

where H ′ elements jl are H(rjl)r
2
jl(1 − δKjl ) − ξ′(rjl)/rjl; X ′ elements jl are ξ′(rjl)/rjl and Q elements jl are −(1 −

δkjl)rjlxξ
′/rjl. So

P ′(r1, . . . , rN , ~m) =

∫
d{αj}d{βjp} exp

[
−i

N∑
j=1

αjmj −
1

2
αT ξα− 1

2
βTxH

′βx + αTQβx − βTy X ′βy − βTz X ′βz

]
. (26)

The integral in βz and βy gives (2π/detX ′). The integral in βx gives (2π/detH ′)1/2 exp[1/2αTQH ′−1QTα]. So for the

two point function we obtain:

P ′(r1, r2,m1,m2) =
2π

detX ′
(2π)1/2

(detH ′)1/2

∫
d{αj} exp[−i~mTα] exp

[
−1

2
αT (ξ −QTH ′−1Q)α

]
(27)

which can again be integrated giving:

P ′(r1, r2,m1,m2) =
2π

detX ′
(2π)1/2

(detH ′)1/2
2π

det(ξ −QTH ′−1Q)
exp

[
−1

2
mT (ξ −QTH ′−1Q)−1m

]
. (28)

We can write down the matrices explicitly:

ξ =

(
σ2 ξ(r12)

ξ(r12) σ2

)
(29)

H ′ =

(
σ4
3

H12

H12
σ4
3

)
(30)

where

H12 = −ξ′′(r12) (31)

Q =

(
0 −ξ′(r12)

ξ′(r12) 0

)
(32)

QH ′−1Q =
1

(σ4
3

)2 −H2
12

(
−σ4

3
ξ′2(r12) −H12ξ

′2(r12)

−H12ξ
′2(r12) −σ4

3
ξ′2(r12)

)
. (33)

If we define G as ξ −QH ′−1Q we have that:

G−1 = (ξ −QH ′−1Q)−1 =

[
ξ−1 det[ξ] +

ξ′2(r12)(
σ4
3

)2 −H2
12

(
σ4
3

−H12

−H12
σ4
3

)]
N (34)

where

N =

(
σ2 +

H12ξ
′2(r12)(

σ4
3

)2 −H2
12

)2

−

(
ξ12 +

σ4
3
ξ′2(r12)(

σ4
3

)2 −H2
12

)2

. (35)

Then

detG =
1(

σ4
3

)2 −H2
12

[(σ4

3

)2 (
σ2
2 − ξ212

)
+H2

12(ξ212 − σ2
2) + 2

σ4

3
σ2ξ
′2
12 − 2H12ξ12ξ

′
12 + ξ′412

]
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Bias of weighted DM halos 7

Figure 1. The bias br defined as the square root of the ratio of the extrema correlation function to the dark matter one according to

Eq. 28. Here we show (from top to bottom panel) 2,3, and 4 σ extrema. Note the increased boost as function of threshold, the broad-band

scale-dependent bias and the localised “bump” in the bias at around r = 90 Mpc/h.

where we have used the shortcut ξ12 = ξ(r12). This leaves only the m integral to be performed which gives something akin

to an error function. However, note that for large thresholds above ∼ 3σ it will not be needed to integrate as the integral is

dominated by the value of the threshold (m).

Eq. 28 is our main result and provides an exact result for the correlation function of extrema of a random gaussian field,

weighted by 1/| detw|. As anticipated above, to compare this expression to observations, the data must be suitably weighted.

Moreover for this expression to be a good description of the peaks clustering properties the threshold must be sufficiently

high. For Gaussian fields this applies for thresholds above 2σ, which is most relevant for cosmological applications.

Figure 1 shows the bias br defined as the square root of the ratio of the extrema correlation function to the dark matter

one (where we have used the millennium simulation dark matter correlation function as input, see next section) according to

Eq. 28:

br ≡

√
ξex(r)

ξDM
. (36)

This figure shows several effects: a) an overall correlation boost that increases with increasing threshold as expected, b) a

broad-band scale-dependent bias which becomes more marked with increasing threshold, also as expected e.g. in the peak

background split , c) a new feature of a relatively narrow, scale-dependent feature in the bias (a “bump”) which is located

very near the Baryon Acoustic Oscillation feature. The broadband effect is likely to be affected by the evolution bias (see

§4.3) or by the choice of weighting scheme, but the localized feature is very robust to these effects. This feature is particularly

interesting and has been mostly overlooked in the literature, but see Desjacques (2008). Mathematically, the BBKS derivation

of the correlation function of maxima assumes that derivatives of the two point correlation function of the density field can be

ignored. On the other hand the presence of the BAO signal introduces a changing first and second derivative of the correlation

function which are responsible for non-negligible effects. In other words, selecting peaks of a Gaussian field is a highly non-

linear operation which creates a highly non-Gaussian peaks field. The essence of non-Gaussianity is mode coupling which, by
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8 Verde et al.

moving power across scales, tends to move around, distort or even erase localized features. Below we will test the performance

of Eq. 28 both on Gaussian random fields and on simulations and examine the broadband and the localised effects separately.

4 VALIDATION AND TESTS ON NUMERICAL SIMULATIONS

We use two sets of simulations:

• 20 random realisations of a Gaussian field cast in a 1h−1Gpc box, divided into 5123 cells, with power spectra matching

that of linear theory for the same cosmological parameters as used in the Millennium-I simulation. These are used to test the

accuracy and validity of our analytic expression and weighting choices.

• The dark matter outputs from the Millennium-I simulation (Springel et al. 2005; Springel 2005; Springel, Frenk & White

2006). The simulated box size is 500h−1Mpc comoving and the adopted cosmology is not too dissimilar from the concordance

ΛCDM: a spatially flat universe with matter density parameter Ωm = 0.25, baryon density parameter Ωb = 0.045, scale

invariant primordial power spectrum, Hubble constant H0 = 73km/s/Mpc and rms of fluctuations of 8 h−1 Mpc scale

σ8 = 0.9. Individual particles have a mass of 8.6 × 108 h−1 M�. We employ three snapshots at redshifts of z = 0, 0.687, 127

the snapshot at z = 127 being the initial one. The density fields, in real space, are constructed by assigning the 21603 particles

to a 2563 grid.

The z = 127 snapshot from the Millennium-I simulation is well described as a Gaussian Random Field. Having several

realizations of Gaussian fields reduces the variance and therefore errors especially on large scales. On the other hand, when

studying the evolution bias, taking ratios between different snapshots of the same simulation reduces cosmic variance errors.

In both cases a grid point is identified as extreme if along each of the three spatial axes the two adjacent grid points

both lie at higher or lower densities than the value of the grid point. Local maxima are the special case of extrema where

the grid point is greater than all six adjacent points. Only extrema with densities above particular thresholds are considered,

and for higher thresholds the extrema are predominantly maxima. This procedure effectively defines the n− σ threshold for

smoothing scale corresponding to the cell size of 1.9 Mpc/h. The power spectra and correlation functions measured from the

simulation and the realisations for a 4σ threshold is very noisy and sometimes not informative, therefore it will not always be

displayed.

4.1 Validation on Gaussian fields

We begin by analyzing the z = 127 snapshot. In Fig. 2 (top left panel) the power spectra of the extrema and maxima are

shown as solid and dashed lines respectively. Each line has been corrected for the window function associated with the grid,

and for Poissonian shot noise. The same power spectra are recast in the form of the bias parameter in the top right panel of

Fig. 2. Here and in what follows the bias bk is defined as

bk ≡

√
Pex,pk(k, z)

D2(z)PDM(k, z = 127)
(37)

where D(z) denotes the linear growth function and the subscripts exp, pk denote extrema and peaks respectively.

For completeness in Table 1 we report the number of peaks and extrema located in the three snapshots of the Millennium

I simulation as a function of the threshold. For thresholds above 2σ, extrema are to a good approximation maxima and the

error that the extrema/maxima approximation introduces on the bias is below 5% on large scales (k < 0.4hMpc−1). This

demonstrates that the extrema approximation for maxima works extremely well.

In the analytical formulation, by omitting the term given by |detw(j)| in (1) we arrive at the correlation function

associated with peaks which have been assigned weights given by 1/| detw(j)|. Before we can compare simulation outputs

with the analytic results we need to find a numerically stable way to compute the quantity | detw| which involves the numerical

evaluation via finite differences of six second derivatives around each peak. As the weighting we will employ will be 1/| detw|,
when | detw| is small, any numerical error gets amplified. We have tried several different approximations to tame this effect,

in particular: considering only diagonal elements in w (i.e., off-diagonal elements are taken to be zero which corresponds to

the assumption of spherically symmetric peaks); computing the full w matrix but excluding from the analysis the 1% of peaks

with the smallest |detw| and an hybrid approach where the full w matrix is computed on the 99% of the peaks with the largest

|detw| and a diagonal approximation implemented in the remaining 1%. The bias bk obtained for these three approaches1 is

shown in the left panel of Fig. 3. The diagonal approximation works very well and is what we will use in what follows.

1 The weighting scheme boosts broad peaks (small | detw|) so neglecting even only 1% of the broad peaks can have a non-negligible

effect, that is why the approximation that discards completely these peaks does not work too well.
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Figure 2. Left: power spectra of extrema and maxima in the z = 127 snapshot from the Millennium I simulation in real space. Poissonian

shot noise has been subtracted and its magnitude is illustrated in each case by horizontal dotted lines. Top-Right: the bias bk obtained
from the ratio of the “peaks” (extrema and maxima) to matter power spectra.
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k
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Figure 3. Left: bias bk obtained from the average of the 20 Gaussian realizations for different approximations to the | detw| weighing,

see text for more details. Right: bk for 2 and 3σ thresholds, from the theoretical prediction obtained by Fourier-transforming Eq. 28 and

from the Gaussian realisations.

In the right panel of Fig. 3 we show the average for bk for peaks above 2 and 3 σ, of the 20 Gaussian realizations and the

theoretical prediction which has been obtained by Fourier-transforming Eq. 28.

From the right panel of Fig. 3 we can identify the same effects mentioned above: a) a broad band scale-dependent bias

which implies a broadband change of shape of the peaks/extrema power spectrum compared to the underlying/dark matter

one and b) the localized effect in real space (the “bump” in br at r ∼ 90 Mpc/h); this is a periodic feature in bk which will

be examined in Sec. 5.

4.2 Tests on low z snapshots of N-body simulations

The lower redshift snapshots correspond to significantly non-Gaussian fields. In order to identify equivalent threshold levels

to those found in the z = 127 snapshot we apply the condition that the volume fraction of the field lying above the threshold

matches that of the Gaussian case. In practice this is achieved by applying a Gaussianisation transformation to the field

(Weinberg 1992). This involves applying a weighting such that the one-point distribution of the resulting field is Gaussian,

while the rank order of the field is preserved. This allows the sigma thresholds to retain their original meaning, and ensures

the threshold encompasses the same volume fraction, but may produce different results compared to defining a threshold by
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Table 1. Number of peaks and extrema as function of the threshold

snapshot’s z threshold mass extrema maxima % bias difference

127 1− σ 985734 919000

2− σ 260454 256463 < 5% for k < 0.4
3− σ 27068 27011 < 1.5%

4− σ 952 951 < 1%

0.68 1− σ 884895 777869

2− σ 209216 202339 < 10% for k < 0.4

3− σ 17265 17205 < 2%
4− σ 487 486 < 5%

0 1− σ 854610 748939
2− σ 198457 191877 < 10% for k < 0.4

3− σ 16350 16279 < 5%

4− σ 472 472 < 1%

10−110−1

100

101

b

k (h/Mpc)

z  = 0.687

10−110−1

100

101

b

k (h/Mpc)

z  = 0

Figure 4. The bias bk obtained from the ratio of the “peaks” to matter power spectra. Left: extrema and maxima from the z = 0.687

snapshot. Right: same but using the z = 0 snapshot.

selecting a fixed number of peaks. In what follows we will always refer to this procedure when we consider extrema above a

threshold. The numbers of extrema above several thresholds are reported in table 1.

Fig. 4 shows the bias bk for the z = 0.68 and z = 0 snapshots. As before we see that for thresholds above 2σ the

identification of extrema with maxima is a very good approximation.

Figure 5 shows the comparison between the theory prediction of Eq. 28 for br and for the peaks of the Millennium

simulation. Top (bottom) panels are for 2σ (3σ) threshold; left (right) panels are for z = 127 (z = 0). The weighting used

is 1/|detw|. The theoretical prediction reproduces well the low redshift snapshots for scales < 100 Mpc/h, with a maximum

deviation of < 20% for 3σ peaks at z = 0. It reproduces qualitatively the bias behaviour at larger scales. Note however that

given the size of the simulation, cosmic variance is large on those scales.

From this comparison (left vs right panels) we can also appreciate that the evolution bias is small.

From Tab. 1 it is apparent that the choice of threshold based in the Gaussianisation procedure adopted does not conserve

the number of peaks. If it is true that to a good approximation, peaks can be identified with halos and halos do not merge,

the number should be conserved. On might therefore worry that the selection adopted introduces an error in the threshold;

this is then interpreted like evolution bias. We have quantified this by also selecting thresholds at lower redshifts so that the

number of peaks is conserved (i.e. is the same as at z = 127) and computed the same quantities. The difference in bk between

the constant peak numbers and the constant number of σ of the Gaussianised field is at the 6% level and is constant on large

scales (k < 0.6 h/Mpc).
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Figure 5. The bias of peaks as a function of scale, top panels for the 2σ threshold and bottom panels for 3σ threshold. Left column is

at z = 127, right column at z = 0. Black line is the theory prediction from Eq.28, red line corresponds to the peaks of the Millennium
simulation. The weighting used is 1/| detw|.

4.3 Quantifying Evolution bias

In Fig 6 we compare the power spectra of peaks for the two evolved snapshots, at z = 0.687 and z = 0, with the power

spectrum associated with the peaks of the Gaussian snapshot at z = 127. We define evolution bias as bz:

bz ≡

√
Ppk(k, z)

Ppk(k, z = 127)
. (38)

This evolution bias remains relatively close to unity, illustrating how little the spectral power of the peak field has changed,

despite the underlying density field growing by approximately two orders of magnitude. The maximum excursion from unity

is ∼ 15% and is at non-linear scales (k ∼ 0.6h/Mpc). Modelling in detail the evolution bias goes beyond the scope of this

paper, other works in the literature address this specifically e.g., Fry (1996); Tegmark & Peebles (1998); Hui & Parfrey (2008);

Percival & Schäfer (2008).

The issue of the correspondence of peaks to halos, although one of the main pillars of peak theory and other modelling

approaches and one of the main assumptions used here, is not simple and straightforward. As already mentioned, Ludlow &

Porciani (2011) find that a high percentage of halos correspond to peaks of the initial density field. More recently Rubin &

Loeb (2013) argue that there is a close peak-halo relation but the definition of the threshold might affect the correspondence

(in our language this could be taken care of with a mapping of the threshold in terms of σ vs mass of the halo). Many halo

finder algorithms which are applied to N-body simulations to identify halos (e.g., SO, AHF), work under the assumption that

halos are density peaks, but these are not guaranteed to correspond to the peaks of the initial density field. We find that,

in agreement with the works mentioned above, there is a peak-halo correspondence, which opens up the possibility that the

conclusions we have drawn for peaks can be applied to halos.

The 1/|detw| weighting that we applied to peaks cannot however easily be applied to halos. Moreover at z ∼ 0 it is likely

that non-linear evolution has changed the shape of the peaks so much that detw(z = 0) and detw(z � 0) computed at the

same position might be very different. Therefore a proxy must be found. We start addressing this in the appendix although

this is still somewhat an open issue. More critically we find that the broad band shape of the correlation function (and power

spectrum) of halos change drastically with different choice of weighting. For example the power spectrum of halos weighted by

halo mass at large scales (k < 0.1h/Mpc) coincides with the prediction of Eq. 28. Its broad band shape however is much closer

to that of the linear matter power spectrum at 0.1 < k[h/Mpc] < 0.4. On the other hand a weighting of halos by the inverse
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Figure 6. The evolution bias, as defined in Eq. (38), as a function of wavenumber. The peak power spectra Ppk(k, z) at z = 0 (black)

and z = 0.68 (red) show little sign of evolution with respect to the reference z = 127 field. The thresholds considered here to define the

minimum peak height are 2σ (solid lines) and 3σ (dashed), left using the Gaussianization procedure, right keeping the number of peaks
fixed at the value of z = 127.

Figure 7. The bias of halos at z = 0 (weighted by the inverse of their mass, our proxy for the 1/| detw|) with respect to peaks at the

same redshift weighted by 1/| detw|. The threshold is 3 σ (see text for more details).

of their mass –which is one of our initial ansatzes for a 1/| detw| proxy applicable to halos– yields a much closer description

to the shape of the peaks power spectrum at the same redshift although the amplitude is ∼ 20% lower.

In Fig. 7 we show the bias of halos at z = 0 (weighted by the inverse of their mass; which is our initial ansatze) with respect

to peaks at the same redshift weighted by 1/|detw|. The halos are selected in a similar way to the peaks, by considering

them only if the coincide with the region above the threshold. The selected threshold here is 3 σ which here corresponds

to a minimum mass of 2.4 × 1011M�/h. The relative bias shows maximum deviations of order 20% but is clearly a smooth

linear dependence on k; much of this mis-match could be corrected for by adjusting the weighting and/or the threshold (as

motivated e.g., by Rubin & Loeb (2013)). For example, for the case of 3σ halos at z = 0 it is sufficient to use 2.8σ instead in

our formula to obtain agreement of ∼ 10% as in the case of peaks. The issue of how to best weight halos (or halo tracers) has

recently started to be explored in the literature. So far most efforts has been devoted to reduce stochasticity and therefore

improve the signal-to-noise ratio in power spectrum measurements (Seljak, Hamaus & Desjacques 2009; Hamaus et al. 2010;

Hamaus, Seljak & Desjacques 2012). For example Cai, Bernstein & Sheth (2011) argue that an optimal weighting scheme

which is a mix of bias weighting and mass weighting is best for reducing stochasticity. Different weighting schemes might

be needed depending on the goal: reducing stochasticity, obtaining a shape closer to the linear power spectrum or closer to

available theoretical predictions. We leave improvements and further developments in this direction to future work.
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Figure 8. The BAO feature as P (k)/PNW. The left panel shows the theory prediction obtained by Fourier transforming eq.28, the right

panel shows the mean of the 20 Gaussian realisations. Solid/Black for matter, green/dashed for 2σ peaks, red/dot-dashed for 3σ peaks;

purple/dashed-dot-dot-dot for 4σ peaks.

5 EFFECT ON THE BAO FEATURE

We now concentrate on the scale-dependent bias effect around the BAO feature, which should not be heavily affected by

evolution bias or by the weighting scheme chosen. The BAO feature is affected by non-linearities, and one could consider this

as a form of evolution bias. The effect of non-linearities on the BAO feature have been extensively studied and can be modelled

to high accuracy (see e.g., Eisenstein, Seo & White (2007) and references therein). Despite the BAO signal being small, it

has been measured exquisitely well (e.g., Anderson et al. (2013)). It is therefore important to investigate the implications of

the effects considered in this paper on the measurement of the location of the BAO feature both in terms of a possible bias

(shift) or increase in errors. (Most of) all BAO measurements reported in the literature are “protected” for variations in the

broadband shape of the power spectrum (or correlation function) via a marginalization procedure see. e.g., Seo & Eisenstein

(2007) and references therein.

In Fig.8 we show the BAO feature as the ratio between the measured power spectrum (be it dark matter or tracers)

and a smoothed version with no wiggles (PNW). The figure shows the underlying (dark matter) and peaks above different

thresholds (see caption for details). This shows that the localised scale-dependence of the bias does not move the BAO feature

but reduces its amplitude. The smoothing is more marked for higher thresholds. We find that the effects can be well described

by the following:

Ppk(k) = (PDM − PNW) exp

(
−
kΣ2

pk

2

)
+ PNW (39)

The parameter Σpk takes values of 2.5, 3 and 4.2 at 2,3, and 4 σ thresholds respectively. Note that the effect of non-linear

evolution on the BAO can be described by a very similar expression where the argument of the exponential damping is

k2Σ2
nl/2. The two effects have a different k dependence; still we can compare their magnitude at k = 0.1 h/Mpc: the bias

effect for 2σ peaks is equal to the non-linear effect at z = 0.3 (Σnl ∼ 8) but becomes more important for higher thresholds.

While it is reassuring that this effect does not change the location of the BAO feature it might have practical implications.

The signal-to-noise for measurements that depend on the BAO location is usually computed adopting a model with a fixed

BAO smoothing parameter Σnl: should the chosen Σnl be smaller than the effective one (which would be a combination of

Σnl and Σpk) then the signal-to-noise would be overestimated.

There are consequences also for survey selection considerations: highly biased tracers are used to beat shot noise –in

technical terms, to maximise nP where n denotes the tracer number density–. However highly biased tracers will have a

reduced BAO feature: it may be advantageous to select less rare and less biased tracers if they carry a more pronounced

signal. This will be presented elsewhere.

6 SUMMARY AND CONCLUSIONS

The bias of dark matter tracers (be it galaxies or, more simple objects like halos or density peaks) is a very complicated,

non-linear, non-local function that relates the density of tracers to the density of dark matter. A lot of effort is going into

understanding and modelling the bias. Here we approached a simpler problem: that of modelling the correlation properties of

tracers. In particular we present an analytic expression for the (N-point) correlation function of extrema in random gaussian
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Figure 9. The power spectra of the z=127 snapshot of the millennium simulation, for two different weighting schemes, for the solid line
we apply a weighting of 1/| detw| to all peaks above 1, 2 and 3σ, the dashed line corresponds to weighting the whole volume above the

threshold by 1/δ. The upturn in power on small scales appears to be a consequence of the peaks being distributed in a non Poissonian

manner.

fields, weighted by 1/| detw|. The results are valid in any number of dimensions, but we focus on the two-point function in

three dimensions, which is of most practical relevance. Our main result is thus Eq. 28. In order to be able to arrive at a fully

analytic result we had to assume that observations could be suitably weighted.

Since most extrema above practically all interesting thresholds (> 2σ) are peaks, we find that one can identify the

clustering of extrema with the clustering of peaks. Because, for a high enough threshold, dark matter halos correspond to

peaks of the initial field (and vice versa), we argue that this provides also an analytic description for the clustering of dark

matter halos.

On the other hand the clustering properties of peaks may be of interest by themselves, for observations that produce

directly density maps (e.g., weak lensing).

We find that the presence of non-zero derivatives in the underlying power spectrum introduce scale-dependent features in

the bias which would otherwise be constant in peak theory. We identify two scale-dependent features, one broad-band which

is most affected by the choice of weighting and evolution bias and a localised one, which is expected to be robust to these

effects. The localised, scale-dependent feature in the bias coincides with the location of the baryon acoustic feature (BAO).

Its effect is to smooth the BAO feature but, conveniently, it does not move it and we provide a simple analytic formula to

describe it.

We have tested that the analytic formula we present describes accurately the clustering properties of peaks in a suite of

Gaussian realisations.

We find that the evolution bias appears to be relatively small, in other words clustering properties of peaks in the low

redshift, highly non-linear field are very similar to those of the high-redshift Gaussian field. Given the fact that halos are

identified with density peaks, this opens up the possibility to use our findings to describe halo clustering. We have started

exploring this possibility although to get a detailed, quantitative description the choice of the weighting scheme used is crucial.

In addition for halos the correspondence between actual threshold and the theoretical one might not be straightforward. We

have explored the performance of out initial ansatz for an inverse halo mass halo weighting scheme, which we find encouraging.
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APPENDIX A: REALISTIC WEIGHTING SCHEME “ANSATZ”

The 1/| detw| weighting scheme explored in this work is not straightforward to implement with real data, therefore here we

attempt to seek a simpler and more practical weighting scheme which may act as a suitable proxy. The second derivative of
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the density field is a difficult quantity to extract directly from observations, however the curvature of a given peak is correlated

with its amplitude: this is our motivation for the following “ansatz”, an inverse weighting scheme, corresponding to a local

density transformation which penalises the higher density regions.

δinv(x) =
1

δ(x)
(δ(x) > δ0) (40)

δinv(x) = 0 (δ(x) ≤ δ0) (41)

The power spectra resulting from this weighting scheme, and that of 1/| detw|, can be seen in Figure 9, for thresholds of

1, 2, and 3σ. This “ansatz” is probably a good starting point, but clearly a better approximation is needed. When considering

halos, we look for a weight that depends on halo mass (which is a quantity easier to estimate than |detw| or even δ). The

1/| detw| weighting down-weights high narrow peaks, we therefore propose as a first ansatz an inverse halo mass weighting.

Further investigation along these lines is left for future work.
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