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Highly mobile crystal defects such as crowdions and prismatic dislocation loops exhibit an anomalous
temperature independent mobility unexplained by phonon scattering analysis. Using a projection operator,
without recourse to elasticity, we derive analytic expressions for the mobility of highly mobile defects and
dislocations which may be efficiently evaluated in molecular dynamics simulation. The theory explains
how a temperature-independent mobility arises because defect motion is not an eigenmode of the Hessian,
an implicit assumption in all previous treatments.

DOI: 10.1103/PhysRevLett.113.215501 PACS numbers: 61.72.Bb, 05.10.Gg, 63.20.kp, 66.30.Lw

Plastic deformation of crystals is effected by the motion
of dislocations and point defects [1]. Away from shock
loading and the melting temperature this motion is usually
modeled with the viscous damping law _x ¼ γ−1 · f,
employing a matrix of friction or drag coefficients γ, which
set the time scales of defect dynamics [2]. To reproduce the
stochastic trajectories of highly mobile defects seen in
experiment [3,4] this mobility law has been supplemented
with a stochastic force to give the Langevin equation [5]
_x ¼ γ−1 · ½fþ ηðtÞ�, where hηðtÞ⊗ ηðt0Þi ¼ 2kBTγδðt− t0Þ
[6,7]. The stochastic force is usually more significant for
small dislocation loops and point defects because the
configurational force fλ is determined only by gradients
in the stress field. For larger extended defects the configu-
rational force usually dominates over the stochastic force.
In both cases γ controls the rate of important micro-
structural processes such as swelling and post-irradiation
annealing [8], but no universal theory for γ exists.
Phonon scattering calculations [9–11] and soliton mod-

els [12] predict γ should increase linearly with temperature
in the classical regime (γ ¼ kBTγw, where γw is a constant).
While this “phonon wind” relationship is seen to hold with
varying degrees of quantitative agreement in molecular
dynamics (MD) simulations of extended highly mobile
dislocation lines [13,14], no theory has explained the
widely observed [6,7,15–17] temperature independent
mobility (γ ¼ γ0) of highly mobile defects such as crow-
dions [17], kinks on screw dislocations [7], and small
prismatic dislocation loops [16], which all exhibit highly
stochastic trajectories particularly sensitive to γ.
In this Letter we use the Zwanzig projection technique

[18] to show that γ ¼ γ0 þ kBTγw, in quantitative agree-
ment with MD simulations of defects and dislocations. γ0

arises because the defect displacement vector is not an
eigenvector of the Hessian, so that thermal vibrations can
induce a force on defects to linear order. This is missed in
previous treatments [11,19] as by perturbing a quadratic
integrable Hamiltonian one implicitly assumes that defect
motion is an eigenmode, an assumption that we explicitly
show to be false. Violation of this assumption is the origin
of the anomalous mobility.
Defect coordinates.—We describe a crystal using a 3N-

dimensional vector of atomic positions X ∈ R3N and
velocities _X ∈ R3N . In this treatment crystal defects are
not elastic singularities but localized deformations, which
may be assigned a set ofM ≪ N “position” labels xλ ∈ R3M

and “velocity” labels _xλ ∈ R3M to characterize the state of a
defective crystal. Common methods for determining xλ, _xλ

include analysis of the atomic disregistry [20] or an energy
filter [7], though in the following the only requirement is a
repeatable protocol. By definition, the zero temperature
configurations X ¼ UðxλÞ of the crystal potential energy
VðXÞ may be entirely characterized by the parameters xλ,
while variation of UðxλÞ with xλ can be determined through
nudged elastic band calculations [21] or simply a finite
difference derivative in the case of a defect with a wide core.
To complete the discrete representation of a crystal at finite
temperature, we must include displacements due to thermal
vibrations Φ ∈ R3N . The crystal configuration X at any
given instant can now be expressed as

X ¼ Φþ UðxλÞ; _X ¼ _Φþ _xλ · ∂λUðxλÞ; ð1Þ

where ∂λU ¼ ∂=∂xλ ⊗ UðxλÞ ∈ R3M×3N . By introducing
a defect position and velocity the coordinate set Φ ⊕ _Φ ⊕
xλ ⊕ _xλ has 6M more dimensions than X ⊕ _X. To rectify
this we require the vibrational displacements Φ to be
independent to the displacements caused by defect motion
∂λU, giving the 6M constraints [12]

∂λU · Φ ¼ 0; ∂λU · _Φ ¼ 0: ð2Þ
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To obtain a dynamical equation for xλ, it now suffices [22] to
project the exact equation of motion mẌ ¼ −∇VðXÞ onto
the direction ∂λU orthogonal to the crystal vibrations.
Defining an effective mass tensor ~m ¼ m∂λU · ð∂λUÞT,
we exploit the time invariance of (2) to obtain
~m · ẍλ − _xλ · ∂2

λU · _Φ ¼ −∂λðV þ _xλ · ~m · _xλ=2Þ. Similar
equations of motion are standard in dynamical quasiparticle
theories [12,22] and, in common with other authors, we will
neglect the “hydrodynamic” term − _xλ · ∂2

λU · _Φ and the
effective kinetic energy gradient − _xλ · ∂λ ~m · _xλ=2. This is
justified as we consider the motion of only subsonic defects,
and it can be shown that these terms are of order j _xλj=c ≪ 1,
where c is the speed of sound. As a result, the defect
coordinates evolve according to

m · ẍλ ¼ fλ ≡ −∂λU · ∇VðXÞjX¼UðxλÞþΦ; ð3Þ
where we have defined the instantaneous defect force fλ as
the projection of the total force −∇V in the direction
of defect motion ∂λU. The vibrational coordinates evolve
in the subspace orthogonal to ∂λU, implying that
mΦ̈ ¼ −½I −mð∂λUÞT · ~m−1 · ∂λU� · ∇V ≡ −∇ΦV.
Removing the vibrational coordinates.—From the form

of the potential energy V½UðxλÞ þ Φ�, it is clear that the
evolution of the defect and vibrational coordinates are
coupled, as they must be for a frictional force to exist.
However, for highly mobile subsonic defects, which
necessarily possess a wide defect core [23], the defect
coordinates may be considered as slowly varying compared
to the vibrational coordinates, a conclusion which will be
explicitly demonstrated in molecular dynamics simulation
below. Over a Debye period τD ∼ a=c ∼ 0.1 ps, where a is
the lattice parameter, the displacements of any atom due to
thermal vibrations will approximately average to zero, with
an oscillation amplitude of ∼τD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
. Since the defect

speed will be approximately _xλ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT= ~m

p
≪ c, the dis-

placement of any one atom due to defect motion in a time
interval τD will be at most τDjj∂λUjj∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT= ~m

p
, where

jj∂λUjj∞ is the largest component of ∂λU. These calcu-
lations imply that if jj∂λUjj∞ ≪ j∂λUj, then the displace-
ment due to defect motion will be much less than the
magnitude of displacements due to thermal motions, which
implies that the Φ are effectively ergodic [24] over a time
scale ∼τD, where the defect coordinates are essentially
stationary. But the condition ∥∂λU∥∞ ≪ j∂λUj amounts to
a requirement that the deformation associated with the
defect is spread over many atomic sites, which is always
satisfied by highly mobile defects with a wide core. We
therefore assume that vibrational displacements average to
zero over periods of ∼0.1 ps while the defect remains
effectively stationary, an assumption that we will test
explicitly when calculating the defect force autocorrelation.
We can exploit this separation of time scales to remove

thermal vibrations from the defect equation of motion using
the formalism of dimensional reduction by Zwanzig

[18,25]. In this formalism the solution of the “fast”
equation of motion for Φ is substituted into the “slow”
equation of motion for xλ. It may be shown, to order τ3D, that
Φ, _Φ are adiabatic with respect to xλ, _xλ and ergodic over
the partial Gibbs distribution

h…i≡ Z−1ðxλÞ
Z

Φ; _Φ
…e−β½V(UðxλÞþΦ)þm _Φ· _Φ=2�; ð4Þ

where ZðxλÞ ¼ exp½−βFðxλÞ� is the partial partition func-
tion and we integrate on the hypersurface defined by (2).
The defect coordinates now evolve on a coarse time scale
τD and follow the stochastic equation of motion

~m · ẍλðtÞ ¼ −γ · _xλðtÞ þ hfλi þ ηðtÞ: ð5Þ
It is usual in dislocation dynamics to neglect the inertial
term ~m · ẍλðtÞ, which is valid when the potential energy
landscape is slowly varying over the thermal lengthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT= ~mjγjp

[5]. In (5) we have introduced the expected
force hfλi ¼ −h∂λVi ¼ −∂λF, the stochastic force ηðtÞ,
where hηðtÞ ⊗ ηðt0Þi ¼ 2kBTγδðt − t0Þ, and our central
quantity, the friction matrix γ. In this timescale separated
regime it is a standard result that γ is proportional to the
time integral of the force autocorrelation CðτÞ, namely,

γ ≡ ðkBTÞ−1
Z

∞

0

CðτÞdτ; ð6Þ

where when xλ ∈ R, CðτÞ≡ hfλðτÞfλð0Þi − hfλð0Þi2 and
may be expressed by ergodicity as

CðτÞ ¼ lim
t→∞

�Z
t

0

fλðt0 þ τÞfλðt0Þ
t

dt0 −
�Z

t

0

fλðt0Þ
t

dt0
�

2
�
:

ð7Þ

We evaluate CðτÞ, and hence γ, in two ways: first by
deriving in closed form the thermal averages (4) and second
by numerical calculation of fλðtÞ in MD simulation.
Analytic derivation.—To derive an expression for γ we

expand the potential energy V and the defect force fλ in
powers of Φ. For the evaluation of the partition function the
constraints (2) and the requirement that theUðxλÞ describes
the zero temperature configurations results in an expansion

V ¼ VðxλÞ þ
1

2
Φ · ∇2

ΦV · Φþ 1

3!
Φ ·∇3

ΦV∶Φ ⊗ Φþ � � � ;
ð8Þ

where all inner products are with respect to Φ and all partial
derivatives are evaluated at X ¼ UðxλÞ. Although ∇ΦV ¼
0 [so thatmΦ̈ ¼ −∇2

ΦV · ΦþOðΦ2Þ] there is no restriction
on the existence of mixed derivatives ∂λ∇n

ΦV ≠ 0. This is
important as these mixed derivatives couple the defect and
vibrational coordinates, as can be seen in the defect force
expansion
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fλ ¼ ∂λVðxλÞ þ ∂λ∇ΦV · Φþ 1

2
∂λ∇2

ΦV∶Φ ⊗ Φþ � � � ⋅
ð9Þ

While we retain anharmonicity in the defect force, in order
to perform analytical evaluation of expectation values we
truncate V to quadratic order in Φ in the Gibbs distribution
(4), allowing us to explicitly evaluate the expectation values
in terms of the 3ðN −MÞ dimensional vibrational eigenset
fωl; vlg, where ∇2

Φ · vl ¼ mω2
l vl. This truncation neglects

any thermal expansion arising from the purely vibrational
anharmonicities ∇3

ΦV and ∇4
ΦV. In the Supplemental

Material [26] we systematically include these terms to
produce an expression for γ up to linear order in temper-
ature. It is shown that the anomalous temperature inde-
pendent mobility γ0 is unaffected by these additional terms.
Using a quadratic Gibbs distribution, the expected force is
found to be hfλi ¼ −∂λðV − TSÞ, where S is the harmonic
entropy kB

P
l logωl [27]; to evaluate CðτÞ we evolve the

vibrational coordinates Φ from a given xλ. This is justified
by the time scale separation and achieved by evaluating
propagator terms of the form

hΦðtÞ ⊗ Φð0Þi ¼
X

l

kBT
mω2

l

vl ⊗ vl cosðωltÞ: ð10Þ

As appropriate for nonconservative dynamics, the propa-
gator is evaluated using only the initial conditions hΦð0Þ ⊗
Φð0Þi ¼ P

lkBT=mω2
l vl ⊗ vl and, consequently, is closely

related to the retarded Green’s function GðtÞ ¼
ΘðtÞðkBTÞ−1hΦðtÞ ⊗ Φð0Þi [28]. All that now remains is
to perform elementary Gaussian integrations to obtain our
main result

γ ¼
Z

∞

0

∂λ∇ΦV ·GðtÞ · ∂λ∇ΦVdt

þ kBT
2

Z
∞

0

Trð∂λ∇2
ΦV ·GðtÞ · ∂λ∇2

ΦV ·GðtÞÞdt

þ kBT
2

Z
∞

0

∂λ∇ΦV ·GðtÞ · ∂λ∇3
ΦV∶GðtÞdt: ð11Þ

We see that the friction coefficient takes the form
γ ¼ γ0 þ kBTγw, with the new temperature independent
γ0 a function of the mixed quadratic derivative ∂λ∇ΦV, and
the temperature dependent kBTγw a function of the mixed
cubic and quartic derivatives ∂λ∇2

ΦV and ∂λ∇3
ΦV. These

terms may, in principle, be evaluated after diagonalizing
∇2

ΦV to obtain fωl; vlg and computing the tensorial
derivatives ∂λ∇n

ΦV. However, in common with modern
methods to evaluate dispersion relations [29], we have
found dynamical measurement of the thermal averages to
be much more efficient than complete diagonalization of
the vibrational Hessian ∇2

ΦV.

Numerical evaluation.—We have developed a method to
calculate fλðtÞ by MD simulation, which yields CðτÞ and
hence γ, yielding a numerical evaluation of the analytic
expressions (11). In an ensemble of MD runs, with no stress
applied, we time average the output for each runXðtÞ using
a coarse-grained time step between τD=4 and τD to give
hXi. To eliminate any errors, we find the zero temperature
configuration Uλ which minimizes j∂λhXi − ∂λUj2. The
calculated ∂λU is then used to project out the defect force
fλðtÞ ¼ −∂λU ·∇V½XðtÞ� over the same averaging time
interval that produced hXi. We have found this method to
be robust to variation in the averaging period and especially
efficient for short line segments or nanoscale defects, where
the zero temperature structures are typically related by rigid
translation [30]. An example of such calculations is shown
in Fig. 1 for a 7 atom SIA cluster in tungsten, which
exhibits the anomalous temperature independent mobility
γ ¼ γ0 [17], and in Fig. 2 for a highly mobile edge
dislocation in iron, which exhibits a mixed temperature
dependence γ ¼ γ0 þ kBTγw [15]. In both cases we see that
CðτÞ loses all coherence after the first zero at ∼τD=2, over
which time the defect is observed to be essentially sta-
tionary. This validates our assumption of time scale
separation between thermal vibrations and defect motion.
We identify the subsequent force autocorrelation (FAC)
signal as noise because it flattens with the system and
ensemble size, limiting the integration CðτÞ only to the first
zero. As shown in the figures, this method gives values in
excellent agreement with conventional trajectory analysis.
We also calculated the FAC for the 7-atom SIA
[∂λ∇ΦV ·GðtÞ · ∂λ∇ΦV] via full diagonalization of

FIG. 1 (color online). Evaluation of the defect FAC in
unbiased molecular dynamics simulation at three temperatures
and the first analytic term in (11) for a 7 atom SIA cluster in
tungsten using LAMMPS [31] and an interatomic potential by
Marinica et al. [32]. We see a very similar peak in all methods
which loses coherence after a time period ∼τD=2, and we
approximate the time integral in (11) by the area under this
first peak. Inset: Comparison of the predicted diffusivity D ¼
kBT=γ and the direct measurement D ¼ hx2i=2t.
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∇2
ΦV. We find excellent agreement with the dynamical

method, as shown in Fig. 1.
Discussion.—Terms similar to (11) appear in phonon

scattering predictions of γ, where they may be interpreted
diagrammatically, with ∂λ∇n

ΦV approximately representing
a vertex of one defect with n phonons [11,34]. In this
continuum picture, defects and phonons are separable to
harmonic order, conserving energy and momentum in
collisions. As a result, each term in (11) becomes dependent
on the phase space available for the scattering process it
represents. The anomalous term γ0 is forbidden in such
models as it represents the pure absorption or emission of a
phonon, a process which has a vanishing phase space for
subsonic defect speeds due to the linear phonon dispersion
relation [34,35]. It turns out that the second term in (11)
dominates, describing a two-phonon elastic scattering proc-
ess known as the phonon wind. With a cubic anharmonicity
parameter A [36] this term has an approximate magnitude
∼kBTðA=μÞ2τD, where μ is the shear modulus, in agreement
withmore detailed continuum treatments [11]. However, the
prediction γ0 ¼ 0 from continuum analysis does not explain
the observed simulation results.
To see how the present treatment allows an anomalous

temperature independent mobility, we express γ0 in the
eigenbasis fvkg of the vibrational Hessian∇2

ΦV. Using (10)
and the expansion ∂λ∇ΦV ¼ P

kvk∂λ∇kV, where ∇k ¼
vk ·∇Φ, the temperature independent component γ0 readsR∞
0

P
kð∂λ∇kVÞ2=ðmωkÞ2 cosðωktÞdt. For this term to van-

ish, as in all continuum theories,we require∂λ∇kV ¼ 0. But
this implies that the defect displacement operator ∂λU is an
eigenvector of the total Hessian ∇2V as the “off-diagonal”
terms ∂λ∇kV that mix ∂λU and the vibrational modes must
vanish. We have explicitly demonstrated that this is not the

case; it is precisely this effect, which relies on the weaker
identificationof a defect as a localizeddeformation that is not
an eigenvector of the Hessian, in contrast to a canonical
quantity separable from vibrations, that gives rise to γ0. Of
course, anharmonic vibrations still affect the dynamics in a
manner which becomes analogous to typical scattering
theories in a continuum picture, giving the phonon wind
term kBTγw in (11). These terms are appreciable for only
extended line dislocations, which significantly deform the
host lattice, while the anomalous γ0 is the leading term for
nanoscale defects which are typically elastically neutral in
the far field. For some extended dislocations in close-packed
crystals the defect translational operator is very nearly an
eigenvector of the Hessian, implying that the anomalous
mobility vanishes and γ ∼ kBTγw [13]. But, in general, we
have found this not to be the case, with the mixed depend-
ence γ ¼ γ0 þ kBTγw occurring across a wide range of
crystal defects.
Concluding remarks.—Our main result is an explicit

form (11) for the friction tensor γ of highly mobile crystal
defects. We believe this is a new result. It may be used to
parametrize accurately deterministic (_x ¼ γ−1 · f) or sto-
chastic f_x ¼ γ−1 · ½fþ ηðtÞ�g defect mobility laws. The
result was obtained by identifying defects through a pro-
jection operatorwith no recourse to elasticity. An anomalous
temperature independent mobility γ ∼ γ0 arises because the
displacement vector corresponding to defectmotion is not an
eigenvector of theHessian, inviolation of elasticity theory or
solitonlike models, where vibrations are canonical. This
finding highlights the importance of intrinsically discrete
(i.e., atomistic) analysis to understand nanoscale crystal
plasticity. We note that the form of γ0 in (11) is closely
analogous to the famous Kac-Zwanzig heat bath formula
[18]. But rather than a random array of harmonic oscillators
with a constant coupling strength, we have here the vibra-
tional modes of the entire crystal coupling to a localized
deformation through ∂λ∇ΦV. It is hoped that our explicit
expression for γ and themethod of evaluationmay be used to
provide further connections between analytic heat bath
models and the thermal dynamics of real systems.
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FIG. 2 (color online). Evaluation of CðτÞ for a 1=2h111ið101̄Þ
edge dislocation in Fe, using an interatomic potential by Gordon
et al. [33], normalized to the unit length aj½12̄1�j ∼ 7 Å. The FAC
increases with temperature such that γ ¼ γ0 þ kBTγw, exhibiting
both anomalous and phonon wind drag. Inset: Comparison with
direct measurement of the diffusivity. The values are in quanti-
tative agreement with finite stress simulations [15].
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