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Abstract

For the three dimensional hypersonic viscous compressible flat plate flow, when there is

only small roughness on the wall, its effect can be considered as perturbation to two di-

mensional roughness-free plate flow. To study such a flow problem, we will assume there

is only a single roughness element on the plate, of which the equation is in the self-similar

form η = εY0(ξ), where ξ = zx−
3
4 and ε � 1, and thus the perturbed flow boundary layer

equations will also have self-similar solutions. When solving the boundary layer equations,

we use the Dorodnitsyn Transformation and write the solutions in coordinate asymptotic

expansions. In these expansions, the leading order terms are the solutions to the two di-

mensional flat plate flow boundary layer equations, and the expression of these terms will

be treated as already known since they can be obtained from the Blasius Equation.

The solutions for the perturbation terms show that the perturbations produced by the

roughness are capable of propagating against the flow in the boundary layer. This is de-

spite the fact that in the flow regime analysed in this thesis the longitudinal boundary-layer

equation does not involve the pressure gradient, and this equation can be thought of as

parabolic.
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Introduction

From V2/WAS Corporal, the first artificial object to reach hypersonic speed, to X-51 Wa-

veRider, the latest scramjet demonstration aircraft for hypersonic flight within the atmo-

sphere, considerable research has been carried out on hypersonic flow. Conventionally, the

hypersonic flows refer to those with Mach Number M > 5, but some other flows with

3 < M < 5 may also be considered as hypersonic[7]. Therefore, instead of Mach Num-

ber, a better way to distinguish hypersonic from supersonic is by looking at certain physics

pheonomena which become progressively more important as the Mach number is increased

to higher values [2]. In addition, for some problems, as the Mach number rises, its actual

value is less important, provided only that it is sufficient large[4], so we are more inter-

ested in the limit situation M → ∞, and take Mach number as another asymptotic large

non-dimensional parameter besides the Reynolds number in the hypersonic problem.

A three dimensional viscous compressible flow is governed by the Navier-Stokes equa-

tions:

ρ̂

(
û
∂û

∂x̂
+ v̂

∂û

∂ŷ
+ ŵ

∂û

∂ẑ

)
= −∂p̂

∂x̂
+

∂

∂x̂

{
µ̂

[
4

3

∂û

∂x̂
− 2

3

(
∂v̂

∂ŷ
+
∂ŵ

∂ẑ

)]}
+

∂

∂ŷ

[
µ̂

(
∂û

∂ŷ
+
∂v̂

∂x̂

)]
+

∂

∂ẑ

[
µ̂

(
∂û

∂ẑ
+
∂ŵ

∂x̂

)]
,

(1)

ρ̂

(
û
∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ
+ ŵ

∂v̂

∂ẑ

)
= −∂p̂

∂ŷ
+

∂

∂ŷ

{
µ̂

[
4

3

∂v̂

∂ŷ
− 2

3

(
∂û

∂x̂
+
∂ŵ

∂ẑ

)]}
+

∂

∂x̂

[
µ̂

(
∂û

∂ŷ
+
∂v̂

∂x̂

)]
+

∂

∂ẑ

[
µ̂

(
∂v̂

∂ẑ
+
∂ŵ

∂ŷ

)]
,

(2)
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ρ̂

(
û
∂ŵ

∂x̂
+ v̂

∂ŵ

∂ŷ
+ ŵ

∂ŵ

∂ẑ

)
= −∂p̂

∂ẑ
+

∂

∂ẑ

{
µ̂

[
4

3

∂ŵ

∂ẑ
− 2

3

(
∂û

∂x̂
+
∂v̂

∂ŷ

)]}
+

∂

∂x̂

[
µ̂

(
∂û

∂ẑ
+
∂ŵ

∂x̂

)]
+

∂

∂ŷ

[
µ̂

(
∂v̂

∂ẑ
+
∂ŵ

∂ŷ

)]
,

(3)

ρ̂

(
û
∂ĥ

∂x̂
+v̂

∂ĥ

∂ŷ
+ ŵ

∂ĥ

∂ẑ

)
= û

∂p̂

∂x̂
+ v̂

∂p̂

∂ŷ
+ ŵ

∂p̂

∂ẑ

+
1

Pr

[
∂

∂x̂

(
µ̂
∂ĥ

∂x̂

)
+

∂

∂ŷ

(
µ̂
∂ĥ

∂ŷ

)
+

∂

∂ẑ

(
µ̂
∂ĥ

∂ẑ

)]

+ µ̂

(
∂û

∂ŷ
+
∂v̂

∂x̂

)2

+ µ̂

(
∂û

∂ẑ
+
∂ŵ

∂x̂

)2

+ µ̂

(
∂v̂

∂ẑ
+
∂ŵ

∂ŷ

)2

+
4

3
µ̂

[(
∂û

∂x̂
− ∂v̂

∂ŷ

)
∂û

∂x̂
+

(
∂v̂

∂ŷ
− ∂ŵ

∂ẑ

)
∂v̂

∂ŷ
+

(
∂ŵ

∂ẑ
− ∂û

∂x̂

)
∂ŵ

∂ẑ

]
,

(4)

∂(ρ̂û)

∂x̂
+
∂(ρ̂v̂)

∂ŷ
+
∂(ρ̂ŵ)

∂ẑ
= 0, (5)

ĥ =
γ

γ − 1

p̂

ρ̂
, (6)

in the Cartesian coordinate system (Ox̂ŷẑ). Usually, the x̂-axis is chosen to be parallel to

the free-stream velocity vector (V∞, 0, 0), and the pressure, density and viscosity coefficient

in the free-stream flow are denoted by p∞, ρ∞ and µ∞, respectively.

Since the physics properties near the surface of the aircrafts are of most interest, the

main subject of the hypersonic flow study is its boundary layer, which is quite different

from the boundary layer in the supersonic or subsonic flow. In the boundary layer in a

hypersonic flow, due to the viscosity effect, a large amount of kinetic energy of the fluid

particles transforms into the heat near the wall, resulting in significant temperature increase

in the boundary layer, so the magnitude of characteristic temperature in the boundary layer

is much larger than that of the free-stream temperature T∞ and is of the same order with

that of the stagnation temperature T0[8]. As a result, the viscosity coefficient, which is a

function of the temperature, is much larger in the main part of the boundary layer than in

the free-stream flow. We will denote it as µ0, the viscosity coefficient at T0. In addition,

from the ideal gas equation

p̂ = ρ̂RT,
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the density ρ̂ in the boundary layer is expected to be much smaller than ρ∞ since p̂ ≈ p∞.

Figure 1: Three Dimensional Compressible Viscous Hypersonic Flow over Semi-infinite Flat Plate with Small Roughness

In this thesis, our goal is to investigate the process of the propagation of the perturbation

in the boundary layer against the flow. Here the flow is considered in the three dimensional

space as compressible and viscous, with only a weak interaction between the boundary

layer and external inviscid flow, i.e. when the Mach wedge is assumed much thicker than

the boundary layer. The plate, as shown in Figure 1, is infinite in the spanwise direction

with infinitesimal thickness and longitudinal characteristic length L, and is parallel to the

free-stream flow with the leading edge on the ẑ-axis. Accordingly, the Reynolds number is

defined as Re = V∞Lρ∞
µ0

, and the free-stream Mach Number is M∞ = V∞
a∞

, where a∞ is the

speed of sound in the free-stream flow. Besides, the heat capacity at constant pressure Cp
and heat capacity ratio γ are taken to be constants as real gas effects, such that ionization

and chemical reactions, will not be considered here. We shall also assume that the viscosity

coefficient is linearly dependent on the temperature.

If the plate is ideally smooth without any roughness, all the fluid-dynamic variables will

be independent of the spanwise coordinate ẑ, and also the spanwise velocity component ŵ

will be zero. Hence, it degenerates to, and will be referred to later as, a two dimensional

flow problem. However, on the plate if there is some roughness, the two dimensional

flow will be perturbed, and the spanwise velocity component and the derivatives of fluid-
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dynamic functions with respect to ẑ will be no longer zero, and the flow must be considered

as three dimensional. In fact, if the roughness is much thinner than the two dimensional

flow boundary layer, such change caused by the roughness on the flow can be treated as

small perturbation to the roughness-free case. In addition, we shall assume that the width

of the roughness element is of O(LRe−
1
4M∞). Ruban and Kravtsova have studied a sim-

ilar perturbation problem, in which the roughness height is of O(LhM∞Re
− 5

8 ) and h is

a asymptotically small parameter[11], while in this thesis the thickness of the roughness

considered is much larger and is of O(LεM∞Re
− 1

2 ) with ε� 1. In [9], it is presented that

if the planform of a wing is has governing equation z = cx
3
4 , the flow past the wing will be

self-similar. As for our case, to make sure the perturbed flow admit self-similar solution,

the governing equations of the roughness element should be in the form y =
√
xf(zx−

3
4 ) ,

where f(t) is an arbitrary function of t (details and reasons for these will be demonstrated

in Chapter 1 and Chapter 2, respectively).

To deal with this flow problem, the thesis is structured as follows. Firstly, the boundary

layer equations will be given in Chapter 1, as well as the pressure equation and the boundary

conditions; then the boundary layer equations will be transformed into another form in the

self-similar variables after Dorodnitsyn transformation (Chapter 2), and finally, by finding

the solutions for the perturbation terms in the coordinate asymptotic expansions of the flow

variables, we will figure out how the perturbation propagates to the far field, i.e. upstream

to the leading edge of the plate (x̂ → 0) or in the spanwise direction to the area where

ẑ →∞.
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Chapter 1

Boundary Layer Equations and

Boundary Conditions

Since our three dimensional flow with surface roughness can be considered as a perturbed

two dimensional flow, we will start with a brief analysis on the two dimensional flow gov-

erning equations in Section 1.1. We shall assume that the roughness is symmetric with

respect to the x̂-axis, and then without losing generality, the roughness element is set to sit

on the x̂-axis and we will only study the perturbation in the ẑ > 0 hemi-space.

1.1 Boundary Layer Equations

If the flat plate is infinite in the spanwise direction and is without roughness, the three

dimensional flow problem reduces to two dimensional, and the governing Navier-Stokes

Equations are

ρ̂

(
û
∂û

∂x̂
+ v̂

∂û

∂ŷ

)
= −∂p̂

∂x̂
+

∂

∂x̂

[
µ̂

(
4

3

∂û

∂x̂
− 2

3

∂v̂

∂ŷ

)]
+

∂

∂ŷ

[
µ̂

(
∂û

∂ŷ
+
∂v̂

∂x̂

)]
,

(1.1a)
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ρ̂

(
û
∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ

)
= −∂p̂

∂ŷ
+

∂

∂ŷ

[
µ̂

(
4

3

∂v̂

∂ŷ
− 2

3

∂û

∂x̂

)]
+

∂

∂x̂

[
µ̂

(
∂û

∂ŷ
+
∂v̂

∂x̂

)]
,

(1.1b)

ρ̂

(
û
∂ĥ

∂x̂
+ v̂

∂ĥ

∂ŷ

)
= û

∂p̂

∂x̂
+ v̂

∂p̂

∂ŷ
+

1

Pr

[
∂

∂x̂

(
µ̂
∂ĥ

∂x̂

)
+

∂

∂ŷ

(
µ̂
∂ĥ

∂ŷ

)]

+ µ̂

(
∂û

∂ŷ
+
∂v̂

∂x̂

)2

+
4

3
µ̂

[(
∂û

∂x̂
− ∂v̂

∂ŷ

)
∂û

∂x̂
+

(
∂v̂

∂ŷ

)2
]
,

(1.1c)

∂(ρ̂û)

∂x̂
+
∂(ρ̂v̂)

∂ŷ
= 0, (1.1d)

ĥ =
γ

γ − 1

p̂

ρ̂
. (1.1e)

Referred to L, µ0, V∞, ρ∞ and p∞, the flow variables can be made dimensionless and scaled

by

x̂ = Lx, ŷ = Lσ1y, µ̂ = µ0µ,

û = V∞u, v̂ = V∞σ2v, ρ̂ = ρ∞χρ

p̂ = p∞ + ρ∞V
2
∞σ3p,

where the variables without ‘hat’ are of O(1).

From the continuity equation (1.1d), we know σ1 = σ2. Then by balancing the largest

viscosity term ∂
∂ŷ

(
µ̂∂û
∂ŷ

)
in momentum equation (1.1a) with the convective term ρ̂û∂û

∂x̂
, it

can be found that
µ0V∞
σ2

1L
2

=
ρ∞χV

2
∞

L
,

so σ1 = Re−
1
2χ−

1
2 , where the Reynolds number is Re = V∞Lρ∞

µ0
.

To describe the energy transformation process from fluid particle kinetic energy to the heat,

in the energy equation (1.1c) the term ρ̂û∂ĥ
∂x̂

should be balanced by the largest viscous term

containing velocity variables, which is µ̂
(
∂û
∂ŷ

)2

, giving us ĥ ∼ V 2
∞. Considering the state
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equation (1.1e) along with this estimate of the magnitude of ĥ , we can write

V 2
∞ ∼

γ

γ − 1

p∞
ρ∞χ

=
a2
∞

(γ − 1)χ
,

i.e. χ = M−2
∞ .

Since the dimensional displacement thickness δ̂ is of the same order of magnitude with ŷ,

the pressure distribution at the outer edge of the boundary layer, according to the Ackeret

Formula, is

p̂− p∞ = ρ∞V
2
∞
dδ̂(x̂)/dx̂√
M2
∞ − 1

∼ ρ∞V
2
∞

ŷ/x̂√
M2
∞ − 1

= ρ∞V
2
∞
Re−

1
2M∞√

M2
∞ − 1

= ρ∞V
2
∞Re

− 1
2 ,

(1.2)

and it follows that σ3 = Re−
1
2 . If the dimensionless form of the displacement thickness δ

is given by δ̂ = LRe−
1
2M∞δ, then in the two dimensional flow it should be calculated as

δ(x) =

∫ δT

yw

(1− uχρ) dy, (1.3)

where δT denotes the dimensionless boundary layer thickness, or in the three dimensional

flow[6],

δ(x, z) =

∫ δT

yw

(1− uχρ) dy − ∂

∂z

∫ x

0

∫ δT

yw

(wχρ) dydx. (1.4)

Remember that in hypersonic flows the boundary-layer thickness is a well defined quantity.

Taking into consideration that χ = 1
M2

∞
, in both two dimensional and three dimensional

cases, we can write the relation between δ and δT as

δ(x, z) = δT (x, z)

(
1−O

(
1

M2
∞

))
+ · · · , (1.5)

which means, to the leading order, the displacement thickness δ can be taken as equal to

the boundary layer thickness δT .

Therefore, the scalings of the variables in the boundary layer of the two-dimensional flow
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are given as

x̂ = Lx, (1.6a)

ŷ = LRe−
1
2M∞y, (1.6b)

û = V∞u(x, y), (1.6c)

v̂ = V∞Re
− 1

2M∞v(x, y), (1.6d)

ρ̂ =
ρ∞
M2
∞
ρ(x, y), (1.6e)

p̂ = p∞ + ρ∞V
2
∞Re

− 1
2p(x, y), (1.6f)

ĥ = V 2
∞h(x, y), (1.6g)

µ̂ = µ0µ(x, y). (1.6h)

Then in the flat plate flow problem with small surface roughness, the aforementioned two

dimensional flow is perturbed so that there is a pressure difference along the span-wise

direction. This leads to the fact that the velocity component in the z-direction is no longer

zero, and perturbations of other variables will also arise. Nevertheless, since the roughness

is much smaller compared with the thickness of the boundary layer, the order of magnitude

of the flow variables will not be changed, so we can still use the scalings (1.6) for most of

the the three dimensional flow variables, with the only extra work needed concerning the

scalings of ŵ and ẑ.

Since the non-zero spanwise velocity component ŵ arises from the pressure difference in

the ẑ-direction, the convective term should be balanced by the pressure term in Equation

(3), which is

ρ̂û
∂ŵ

∂x̂
∼ ∂p̂

∂ẑ
. (1.7)

Then if there is balance
∂(ρ̂û)

∂x̂
∼ ∂(ρ̂ŵ)

∂ẑ
(1.8)
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in the three-dimensional continuity equation (5), we can combine it with Equation (1.7) to

conclude that

ẑ ∼ LM∞Re
− 1

4 , (1.9)

ŵ ∼ V∞M∞Re
− 1

4 , (1.10)

and that the corresponding scalings are

ẑ = LRe−
1
4M∞z, (1.11)

ŵ = V∞M∞Re
− 1

4w(x, y, z), (1.12)

where z = O(1) and w = O(1). In fact, if the span-wise width of the roughness element

is much larger than O(LM∞Re
− 1

4 ), then the range of the area affected by it will definitely

also be much larger than O(LM∞Re
− 1

4 ), so, according to (1.7), the span-wise velocity

component ŵ will be much smaller than O(V∞M∞Re
− 1

4 ); as a result, the third term will

be much smaller than the first and second term in the continuity equation (5), which means

that only the next order term in the asymptotic solution, with respect to Re and M∞, of û

and v̂ will ‘feel’ the perturbation caused by such a roughness element and which therefore

is not what we mean to study. Hence, we will restrict the width of the single roughness

element to O(LM∞Re
− 1

4 ) to make sure the width of the region perturbed by it is also of

O(LM∞Re
− 1

4 ).

After the substitution of the scalings of all the variables into the three dimensional Navier-

Stokes equations and working with the leading order terms, the boundary layer equations

are obtained as

ρ

(
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
=

∂

∂y

(
µ
∂u

∂y

)
, (1.13a)

0 =
∂p

∂y
, (1.13b)

ρ

(
u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −∂p

∂z
+

∂

∂y

(
µ
∂w

∂y

)
, (1.13c)

ρ

(
u
∂h

∂x
+ v

∂h

∂y
+ w

∂h

∂z

)
=

1

Pr

∂

∂y

(
µ
∂h

∂y

)
+ µ

(
∂u

∂y

)2

, (1.13d)
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∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0, (1.13e)

h =
1

(γ − 1)ρ
. (1.13f)

Since the momentum equation (1.13b) tells us the pressure does not change across the

boundary layer, we can also write p(x, y, z) as p(x, z) in the boundary layer. However,

apart from providing this information, Equation (1.13b) does not seem to be helpful in

finding the pressure distribution in the boundary layer, so we need to find another equation

for p. Although the Ackeret Formula (1.2) is usually only for two dimensional flows, it

is also applicable for our three dimensional flat plate flow, which will be proved in the

Appendix A, so

p(x, z) =
∂δ(x, z)

∂x
(1.14)

is the pressure equation required and at the moment the displacement thickness δ is just

taken as a known function. Now, we will need to formulate the boundary conditions for the

equations (1.13).

1.2 Boundary Conditions

Since the boundary layer equations, except the state equation and continuity equation, are

parabolic, we will need to find the boundary conditions for u,w, h at the leading edge of

the plate (x = 0), the roughness surface (y = yw(x, z) = εy0(x, z)) and the outer edge of

the boundary layer (y = δ), respectively, where ε � 1 and y0 = O(1). As for v, we only

need to know its boundary condition at y = yw.

Before looking at the boundary condition, we can adopt the Prandtl Transformation

x∗ = x, (1.15a)

y∗ = y − εy0, (1.15b)

z∗ = z, (1.15c)

v = v∗ + ε
∂y0

∂x
u∗ + ε

∂y0

∂z
w∗, (1.15d)
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δ = δ∗ + εy0, (1.15e)

to shift the boundary conditions from y = yw(x, z) to y∗ = 0. In addition, after applying

it to the boundary layer equation system and discarding the ‘star’ afterwards, all the equa-

tions, as well as the boundary conditions at y = 0 and y = δ, are left unchanged, while the

equation for p becomes

p =
∂δ

∂x
+ ε

∂y0

∂x
. (1.16)

Now we will start to analyse the boundary conditions.

As the flow is undisturbed at the leading edge of the plate, the first boundary condition is

u = 1, w = 0 at x = 0. (1.17)

At the roughness surface, because of the impermeability condition and the no-slip condi-

tion, we should have

u = v = w = 0 at y = 0. (1.18)

Then at the outer edge of the boundary layer, the longitudinal velocity component û is

almost V∞ and the span-wise velocity, as shown in Appendix A, is of O(V∞Re
− 1

4M−1
∞ ).

Thus, to their respective leading orders,

u = 1, w = 0 at y = δ(x). (1.19)

As for the enthalpy term h, since ĥ = h∞ = γ
γ−1

p∞
ρ∞

at both the leading edge of the plate

and the outer edge of the boundary layer, we can get h = 1
(γ−1)M∞2

. Therefore, if we only

keep the leading order terms, these boundary conditions become

h = 0 at x = 0, (1.20)

h = 0 at y = δ(x). (1.21)
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In addition, the wall temperature is assumed to be constant, so the enthalpy h on the wall

is also a constant, which is denoted by hw,

i.e. h = hw at y = 0. (1.22)

We have now acquired all the equations and boundary conditions needed. However, in the

pressure equation, the exact expression of δ is not known yet. Although (1.4) can give

us the relation of the displacement thickness with the density and velocity, we can make

use of the equivalence between the displacement thickness and boundary layer thickness in

hypersonic flows to get a simpler formula for δ. To achieve this goal, we will introduce the

Dorodnitsyn Transformation in the next chapter.
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Chapter 2

Dorodnitsyn Self-Similar Solution

In this chapter, we will use Dorodnitsyn Transformation to get the relation between the

pressure and density (or enthalpy) in the boundary layer. Meanwhile, adopting this trans-

formation will also allow us to exclude the viscosity coefficient from the equations, which

makes our future analysis process much simpler. After that, the self-similar form of the

solution can be expected, and we will see how the boundary layer equations with respect

to them look like.

2.1 Dorodnitsyn Transformation

The Dorodnitsyn variables are introduced as

x̃ = x, ỹ =

∫ y

0

ρ(x, y, z)dy, z̃ = z, (2.1)

with the density and pressure being

ρ̃(x̃, ỹ, z̃) = ρ(x, y, z), (2.2)

p̃(x̃, z̃) = p(x, z). (2.3)
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Then, using the chain rule, we will have

∂

∂x
=

∂

∂x̃
+
∂ỹ

∂x

∂

∂ỹ
, (2.4a)

∂

∂y
= ρ

∂

∂ỹ
, (2.4b)

∂

∂z
=

∂

∂z̃
+
∂ỹ

∂z

∂

∂ỹ
. (2.4c)

From the equation (2.4b), it is obviously that

∂

∂ỹ
=

1

ρ̃

∂

∂y
,

and therefore
∂y

∂ỹ
=

1

ρ̃
.

In addition, from (2.1) it follows that ỹ = 0 at y = 0. The inverse transformation from ỹ to

y hence is

y =

∫ ỹ

0

1

ρ̃
dỹ. (2.5)

Since at the outer edge of the boundary layer ρ = O(M2
∞), we can expect

ỹ|y=δ =

∫ δ

0

ρ(x, y, z)dy =∞ (2.6)

in a hypersonic flow. As a result, the dimensionless displacement thickness is given by

δ =

∫ ∞
0

1

ρ̃
dỹ (2.7)

and the pressure distribution can be calculated as

p̃(x̃, z̃) = p(x, z) =
∂δ

∂x
+ ε

∂y0(x, z)

∂x
=

∂

∂x̃

∫ ∞
0

1

ρ̃
dỹ + ε

∂y0(x̃, z̃)

∂x̃
. (2.8)
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By using the chain rule differentiation (2.4a)- (2.4c), the boundary layer equations (1.13)

are transformed into

ũ
∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ
+ w̃

∂ũ

∂z̃
=

∂

∂ỹ

(
µ̃ρ̃
∂ũ

∂ỹ

)
, (2.9a)

ũ
∂w̃

∂x̃
+ ṽ

∂w̃

∂ỹ
+ w̃

∂w̃

∂z̃
= −1

ρ̃

∂p̃

∂z̃
+

∂

∂ỹ

(
µ̃ρ̃
∂w̃

∂ỹ

)
, (2.9b)

ũ
∂h̃

∂x̃
+ ṽ

∂h̃

∂ỹ
+ w

∂h̃

∂z̃
=

1

Pr

∂

∂ỹ

(
µ̃ρ̃
∂h̃

∂ỹ

)
+ µ̃ρ̃

(
∂ũ

∂ỹ

)2

, (2.9c)

∂ũ

∂x̃
+
∂ṽ

∂ỹ
+
∂w̃

∂z̃
= 0, (2.9d)

h̃ =
1

(γ − 1)ρ̃
. (2.9e)

Here

ũ(x̃, ỹ, z̃) = u(x, y, z), (2.10a)

ṽ(x̃, ỹ, z̃) = u
∂ỹ

∂x
+ vρ+ w

∂ỹ

∂z
, (2.10b)

w̃(x̃, ỹ, z̃) = w(x, y, z), (2.10c)

h̃(x̃, ỹ, z̃) = h(x, y, z), (2.10d)

µ̃(x̃, ỹ, z̃) = µ(x, y, z). (2.10e)

From the state equation, it follows that

µ̃ρ̃ =
µ̃

(γ − 1)h̃
=

µ̂V 2
∞

µ0(γ − 1)ĥ
. (2.11)

Because of ĥ = CpT and µ̂ ∝ T , the ratio of viscosity coefficient and the enthalpy should

remain constant, say,
µ̂

ĥ
=
µ∞
h∞

=
µ0

h0

. (2.12)

Here h0 denotes the enthalpy at the stagnation temperature T0 and, from the Crocco’s Inte-

gral,

h0 = h∞ +
V 2
∞
2
. (2.13)
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Remembering

h∞ =
γ

γ − 1

p∞
ρ∞

=
a2
∞

γ − 1
, (2.14)

we can combine it with Equation (2.11), (2.12) and (2.13), and then we will have

µ̃ρ̃ =
2

γ − 1
. (2.15)

Therefore, the combination µ̃ρ̃ in the boundary layer equations (2.9a)-(2.9e) only works as

a constant. Furthermore, this constant can be eliminated by adopting the transformation

x̄ =
γ − 1

2
x̃, ȳ =

γ − 1

2
ỹ, z̄ =

γ − 1

2
z̃,

and the boundary layer equations and the pressure equation turn into

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
+ w̄

∂ū

∂z̄
=
∂2ū

∂ȳ2
, (2.16a)

ū
∂w̄

∂x̄
+ v̄

∂w̄

∂ȳ
+ w̄

∂w̄

∂z̄
= −1

ρ̄

∂p̄

∂z̄
+
∂2w̄

∂ȳ2
, (2.16b)

ū
∂h̄

∂x̄
+ v̄

∂h̄

∂ȳ
+ w̄

∂h̄

∂z̄
=

1

Pr

∂2h̄

∂ȳ2
+

(
∂ū

∂ȳ

)2

, (2.16c)

∂ū

∂x̄
+
∂v̄

∂ȳ
+
∂w̄

∂z̄
= 0, (2.16d)

h̄ =
1

(γ − 1)ρ̄
, (2.16e)

p̄ =
∂

∂x̄

∫ ∞
0

1

ρ̄
dȳ + ε

∂ȳ0(x̄, z̄)

∂x̄
. (2.16f)

Here m̄(x̄, ȳ, z̄) = m̃(x̃, ỹ, z̃) with m being u, v, w, h, µ or p, and ȳ0(x̄, z̄) = γ−1
2
y0(x̃, z̃) =

γ−1
2
y0( 2

γ−1
x̄, 2

γ−1
z̄).

If the state equation (2.16e) is substituted into (2.16b) and the pressure equation (2.16f),

we can also get rid of ρ̄, and this yields

ū
∂w̄

∂x̄
+ v̄

∂w̄

∂ȳ
+ w̄

∂w̄

∂z̄
= −(γ − 1)h̄

∂p̄

∂z̄
+
∂2w̄

∂ȳ2
, (2.17a)

p̄ = (γ − 1)
∂

∂x̄

∫ ∞
0

h̄dȳ + ε
∂ȳ0(x̄, z̄)

∂x̄
. (2.17b)
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So far, we have reduced the number of dependent variables necessary for obtaining the

pressure distribution and velocity profile of our flow. Then we can find out the self-similar

form of the solution to our problem, in which there will be only two independent variables.

2.2 Self-similar Solution

The self-similar form of the solution can be found via adopting invariant affine transforma-

tions that leave all the boundary layer equations and boundary conditions unchanged, and

these transformations are assumed to be

x̄ = ax2, ȳ = by2, z̄ = cz2,

ū(x, y, z) = du2(x2, y2, z2), v̄(x, y, z) = ev2(x2, y2, z2),

w̄(x, y, z) = fw2(x2, y2, z2), h̄(x, y, z) = gh2(x2, y2, z2).

p̄(x, z) = qp2(x2, z2),

(2.18)

where a, b, c, d, e, f, g and q are constants.

Substitution of (2.18) into the boundary layer equations (2.16a),(2.17a),(2.16c),(2.16d) and

the pressure equation (2.17b) results in

d2

a
u2
∂u2

∂x2

+
de

b
v2
∂u2

∂y2

+
df

c
w2
∂u2

∂z2

=
d

b2

∂2u2

∂y2
2
, (2.19a)

df

a
u2
∂w2

∂x2

+
ef

b
v2
∂w2

∂y2

+
f 2

c
w2
∂w2

∂z2

= −gq
c

(γ − 1)h2
∂p2

∂z2

+
f

b2

∂2w2

∂y2
2
, (2.19b)

dg

a
u2
∂h2

∂x2

+
eg

b
v2
∂h2

∂y2

+
fg

c
w2
∂h2

∂z2

=
g

b2

1

Pr

∂2h2

∂y2
2

+
d2

b2

(
∂u2

∂y2

)2

, (2.19c)

d

a

∂u2

∂x2

+
e

b

∂v2

∂y2

+
f

c

∂w2

∂z2

= 0, (2.19d)

qp2 =
bg

a
(γ − 1)

∂

∂x2

∫ ∞
0

h2dy2 + ε
∂ȳ0(ax2, cz2)

a∂x2

.

(2.19e)
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As for the boundary conditions, we have

ū = v̄ = w̄ = 0, h̄ = hw at ȳ = 0,

i.e. du2 = ev2 = fw2 = 0, gh2 = hw at by2 = 0,
(2.20a)

ū = 1, w̄ = 0, h̄ = 0 at ȳ =∞,

i.e. du2 = 1, fw2 = 0, gh2 = 0 at by2 =∞,
(2.20b)

ū = 1, w̄ = 0, h̄ = 0 at x̄ = 0,

i.e. du2 = 1, fw2 = 0, gh2 = 0 at ax2 = 0.
(2.20c)

We shall assume that the affine transformations (2.18) leave the boundary layer equations,

the pressure equation and boundary conditions unchanged, i.e.

u2
∂u2

∂x2

+ v2
∂u2

∂y2

+ w2
∂u2

∂z2

=
∂2u2

∂y2
2
, (2.21a)

u2
∂w2

∂x2

+ v2
∂w2

∂y2

+ w2
∂w2

∂z2

= −(γ − 1)h2
∂p2

∂z2

+
∂2w2

∂y2
2
, (2.21b)

u2
∂h2

∂x2

+ v2
∂h2

∂y2

+ w2
∂h2

∂z2

=
1

Pr

∂2h2

∂y2
2

+

(
∂u2

∂y2

)2

, (2.21c)

∂u2

∂x2

+
∂v2

∂y2

+
∂w2

∂z2

= 0, (2.21d)

p2 = (γ − 1)
∂

∂x2

∫ ∞
0

h2dy2 + ε
∂ȳ0(x2, z2)

∂x2

, (2.21e)

and boundary conditions

u2 = v2 = w2 = 0, h2 = hw at y2 = 0, (2.22a)

u2 = 1, w2 = 0, h2 = 0 at y2 =∞, (2.22b)

u2 = 1, w2 = 0, h2 = 0 at x2 = 0. (2.22c)
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By comparing the above two sets of equations and boundary conditions, we can find the

relationship between the affine transformation coefficients,

d

a
=
e

b
=
f

c
, (2.23a)

d2

a
=

d

b2
, (2.23b)

df

a
=
gq

c
=
f

b2
, (2.23c)

dg

a
=

g

b2
=
d2

b2
, (2.23d)

q =
bg

a
, (2.23e)

d = g = 1, (2.23f)

and to make sure we can acquire a self-similar solution, a restriction should be put on the

surface roughness governing equation such that

1

aq
ȳ0(ax2, cz2) = ȳ0(x2, z2). (2.24)

We see that a can be treated as a free parameter, while the other coefficients which satisfy

(2.23) can be found as

b = a
1
2 , c = a

3
4 , d = 1,

e = a−
1
2 , f = a−

1
4 , g = 1,

q = a−
1
2 .

It should also be noticed that the equations and boundary conditions for the variables with

subscript 2 have the same form with those for the variables with ‘bar’. This means that the

solution to the boundary layer problem (2.21) and (2.22) should be

u2 = ū(x2, y2, z2), (2.25a)

v2 = v̄(x2, y2, z2), (2.25b)
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w2 = w̄(x2, y2, z2), (2.25c)

p2 = p̄(x2, z2), (2.25d)

h2 = h̄(x2, y2, z2). (2.25e)

(2.25f)

Therefore, we can write

ū(x̄, ȳ, z̄) = u2(x2, y2, z2) = ū(a−1x̄, a−
1
2 ȳ, a−

3
4 z̄), (2.26a)

v̄(x̄, ȳ, z̄) = a−
1
2v2(x2, y2, z2) = a−

1
2 v̄(a−1x̄, a−

1
2 ȳ, a−

3
4 z̄), (2.26b)

w̄(x̄, ȳ, z̄) = a−
1
4w2(x2, y2, z2) = a−

1
4 w̄(a−1x̄, a−

1
2 ȳ, a−

3
4 z̄), (2.26c)

h̄(x̄, ȳ, z̄) = h2(x2, y2, z2) = h̄(a−1x̄, a−
1
2 ȳ, a−

3
4 z̄), (2.26d)

p̄(x̄, z̄) = a−
1
2p2(x2, z2) = a−

1
2 p̄(a−1x̄, a−

3
4 z̄). (2.26e)

Since a is an arbitrary constant and these functions does not really depend on it, to hide a

the solution should have the form

ū(x̄, ȳ, z̄) = ū(1, x̄−
1
2 ȳ, x̄−

3
4 z̄) =: U(η, ξ), (2.27a)

v̄(x̄, ȳ, z̄) = x̄−
1
2 v̄(1, x̄−

1
2 ȳ, x̄−

3
4 z̄) =: x̄−

1
2V (η, ξ), (2.27b)

w̄(x̄, ȳ, z̄) = x̄−
1
4 w̄(1, x̄−

1
2 ȳ, x̄−

3
4 z̄) =: x̄−

1
4W (η, ξ), (2.27c)

h̄(x̄, ȳ, z̄) = h̄(1, x̄−
1
2 ȳ, x̄−

3
4 z̄) =: H(η, ξ), (2.27d)

p̄(x̄, z̄) = x̄−
1
2 p̄(1, x̄−

3
4 z̄) =: x̄−

1
2P (ξ), (2.27e)

with η and ξ denoting x̄−
1
2 ȳ and x̄−

3
4 z̄, respectively. Similarly, we see that the condition

(2.24) will be satisfied only if the roughness function is such that

ȳ = εȳ0(x̄, z̄) = ε
√
x̄Y0(

z̄

x̄
3
4

), i.e. η = εY0(ξ), (2.28)

where Y0(ξ) is an arbitrary function of ξ.

Now we need to substitute (2.27) into the boundary layer equations (2.21) and the boundary
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conditions (2.22). From the chain rule

∂

∂x̄
=

∂

∂η

∂η

∂x̄
+

∂

∂ξ

∂ξ

∂x̄
= −1

2

η

x̄

∂

∂η
− 3

4

ξ

x̄

∂

∂ξ
, (2.29a)

∂

∂ȳ
=

∂

∂η

∂η

∂ȳ
= x̄−

1
2
∂

∂η
, (2.29b)

∂

∂z̄
=

∂

∂ξ

∂ξ

∂z̄
= x̄−

3
4
∂

∂ξ
, (2.29c)

the boundary layer equations (2.21) become(
−1

2
ηU

∂

∂η
− 3

4
ξU

∂

∂ξ

)
U + V

∂U

∂η
+W

∂U

∂ξ
=
∂2U

∂η2
, (2.30a)(

−U
4
− 1

2
ηU

∂

∂η
− 3

4
ξU

∂

∂ξ

)
W + V

∂W

∂η
+W

∂W

∂ξ

= −(γ − 1)H
∂P

∂ξ
+
∂2W

∂η2
,

(2.30b)

(
−1

2
ηU

∂

∂η
− 3

4
ξU

∂

∂ξ

)
H + V

∂H

∂η
+W

∂H

∂ξ
=

1

Pr

∂2H

∂η2
+

(
∂U

∂η

)2

, (2.30c)(
−1

2
η
∂

∂η
− 3

4
ξ
∂

∂ξ

)
U +

∂V

∂η
+
∂W

∂ξ
= 0, (2.30d)

P =

(
1

2
− 3

4
ξ
∂

∂ξ

)(
(γ − 1)

∫ ∞
0

Hdη + εY0(ξ)

)
,

(2.30e)

and the corresponding boundary conditions are

U = 0,

V = 0,

W = 0,

H = Hw

at η = 0, (2.31)

and

U = 1,

W = 0,

H = 0

at η =∞. (2.32)
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Since both x̂ → 0 and ẑ → ∞ correspond to ξ → ∞, to understand the behaviour of

the perturbation induced by the surface roughness near the leading edge of the flat plate

or considerably far from the x̂-axis in the span-wise direction, we only need to know the

solution for the perturbation terms as ξ →∞, which will be the task in the next chapter.
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Chapter 3

Propagation of the Perturbations

towards the Far Field

Since our flow considered is a perturbed two dimensional flow, we need to solve the two

dimensional flow problem first. In this case, the boundary layer equations (2.30) can be

written as (
V − 1

2
ηU

)
∂U

∂η
=
∂2U

∂η2
, (3.1a)(

V − 1

2
ηU

)
∂H

∂η
=

1

Pr

∂2H

∂η2
+

(
∂U

∂η

)2

, (3.1b)

− 1

2
η
∂U

∂η
+
∂V

∂η
= 0, (3.1c)

P =
γ − 1

2

∫ ∞
0

Hdη. (3.1d)

They have to be solved with the boundary conditions

U = 0,

V = 0,

H = hw

at η = 0, (3.2)
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and

U → 1,

H → 0
as η →∞. (3.3)

The solution to this two dimensional flow problem will be denoted by u0, v0 and h0. To

solve this equation system, we will introduce a new function φ′ = U with φ(0) = 0, and

hence, V = 1
2
ηφ′− 1

2
φ. From the longitudinal momentum equation (3.1a) and the continuity

equation (3.1c), the function φ should satisfy the Blasius Equation

φ′′′ +
1

2
φφ′′ = 0. (3.4)

Figure 3.1: The solution to the Blasius Equaion. The solid line represents φ(η) and the dashed line represents φ′(η)[10]

Apart form the boundary conditions in the definition of φ, another boundary condition for

φ is φ′(∞) = 0, coming from the condition that U → 1 as η →∞. Since the numerically

solution to this equation, as shown in Figure 3.1, is well known, the solutions for u0, v0 and

h0 will be treated as known functions. Particularly, as η → 0, the solution to the Blasius

Equation is

φ =
1

2
λη2 +O(η5), (3.5)
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where λ = φ′′(0) and its numerical value of λ is 0.3321 approximately[1]. It further follows

from (3.5) that

U = λη +O(η4), (3.6a)

V =
1

4
λη2 +O(η5). (3.6b)

Substituting (3.6) into the energy equation (3.1b) and using the fact that dH
dη

= 0 at η = 0

gives us

H = hw −
Pr

2
λ2η2 +O(η5). (3.7)

Besides, the pressure equation (3.1d) tells us that P is independent of η in the boundary

layer for the two dimensional flow.

Now turn back to the three dimensional problem. Approaching the leading edge of the

plate or the region far from the roughness, we will have x → 0 or z → ∞, and both of

these two situations are equivalent to ξ → ∞. In the z > 0 half space, this process can be

visulized as going from the dark orange line ξ = ξ1 to the light blue line ξ = ξ3 in Figure

3.2. Therefore, to study the far field perturbation arising from the roughness, we need to

Figure 3.2: The contour lines of ξ

solve the perturbation term as ξ → ∞. Since the span-wise width of the area perturbed

by the roughness is expected to be larger than the width of the roughness itself, there must

exist ξ0 > 0 such that when ξ > ξ0 the roughness height is zero but the flow variables
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can still ‘feel’ the perturbation. Therefore, as ξ →∞, the three dimensional flow pressure

equation will become

P =

(
1

2
− 3

4
ξ
∂

∂ξ

)∫ ∞
0

(γ − 1)Hdη. (3.8)

As in the triple deck theory, we shall assume that the boundary layer splits into viscous

sublayer and inviscid main part of the boundary layer, which is shown in Figure 3.3, and

Figure 3.3: The Triple Deck in the ’Far Field’

that the thickness of the viscous sublayer is defined by s = ηξβ = O(1) where ξ → ∞.

Since the perturbation to P tends to zero as ξ →∞, in this sublayer the pressure is assumed

to be

P = P0 + · · ·+ εξγpe−Aξ
α

p10 + · · · . (3.9)

Here α andA are positive constants and their value will be found later, and γp is an arbitrary

constant parameter (Due to the fact that |γplnξ| is much smaller than Aξα when ξ → ∞,

the choice of this parameter γp is of no importance for further analysis). Accordingly, to

keep the usual balance between the terms in the boundary layer equations, we shall seek

the solution in the form

U = ξ−βλs+ · · · +εξγ1e−Aξ
α

U1(s) + · · · , (3.10a)

V = ξ−2β λ

4
s2 + · · · +εξγ2e−Aξ

α

V1(s) + · · · , (3.10b)

W = εξγ3e−Aξ
α

W1(s) + · · · , (3.10c)

H = hw − ξ−2βPr

2
λ2s2 + · · · +εξγhe−Aξ

α

H1(s) + · · · , (3.10d)
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where U1, V1,W1 and H1 are all of O(1). Similar to the situation in the triple deck theory,

we shall assume that U1 tends to a constant, say, a0 as s → ∞. Then the solution for U in

the main part of the boundary layer should be sought in the form

U = u0(η) + · · ·+ εξγ1e−Aξ
α

U2(η). (3.11)

According to the lateral momentum equation, there should be balance between the convec-

tive term, the viscous term and the pressure term, say,

(−1

2
ηU

∂

∂η
− 3

4
ξU

∂

∂ξ
− U

4
)W ∼ H

∂P

∂ξ
∼ ∂2W

∂η2
. (3.12)

By only looking at the exponential perturbation terms in this balance, it can be concluded

that

ξγ3+α−βεe−Aξ
α ∼ ξγp+α−1εe−Aξ

α ∼ ξγ3+2βεe−Aξ
α

i.e. γ3 + α− β = γp + α− 1 = γ3 + 2β. (3.13)

If Pr = 1, it is known from the Crocco’s Integral that

H =
1− U2

2
, (3.14)

so even when Pr 6= 1, we can still use the estimation H ∼ 1−U2

2
and this gives us

γh = γ1 − β (3.15)

and, from the pressure equation (3.8),

P =

(
1

2
− 3

4
ξ
∂

∂ξ

)∫ ∞
0

(γ − 1)Hdη

∼ ξ
∂

∂ξ

∫ ∞
0

Hdη

= ξ
∂

∂ξ

∫ ∞
0

1− U2

2
dη.

(3.16)
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Using (3.11) in (3.16) and taking into account that the perturbation term of P is ofO(εξγpe−λξ
α
),

we find

γp = γ1 + α. (3.17)

Finally, balancing the three terms in the continuity equation, say,(
−1

2
η
∂

∂η
− 3

4
ξ
∂

∂ξ

)
U ∼ ∂W

∂ξ
∼ ∂V

∂η
, (3.18)

we can see that

γ1 + α = γ3 + α− 1 = γ2 + β. (3.19)

Solving the equations (3.13),(3.15),(3.17) and (3.19), we have

α =
3

2
, β =

1

2
,

γ1 = γp −
3

2
, γ2 = γ3 = γp −

1

2
, γh = γp − 2.

Therefore, in the sublayer, the coordinate asymptotic expansions of the variables are

U = ξ−
1
2λs+ · · · +εξγp−

3
2 e−Aξ

3
2U1(s) + · · · , (3.20a)

V = ξ−1λ

4
s2 + · · · +εξγp−

1
2 e−Aξ

3
2 V1(s) + · · · , (3.20b)

W = εξγp−
1
2 e−Aξ

3
2W1(s) + · · · , (3.20c)

H = hw − ξ−1Pr

2
λ2s2 + · · · +εξγp−2e−Aξ

3
2H1(s) + · · · , (3.20d)

P = P0 + · · · +εξγpe−Aξ
3
2 p10 + · · · . (3.20e)

Substituting (3.20) into the boundary layer equations (2.30) and considering the perturba-

tion terms only, we can arrive at

λ

(
9

8
AsU1(s) + V1(s)

)
= U

′′

1 (s), (3.21a)

9

8
AλsW1(s) =

3(γ − 1)

2
hwAp10 +W

′′

1 (s), (3.21b)

9

8
AλsH1(s)− Prλ2sV1(s) =

1

Pr
H

′′

1 (s) + 2λU
′

1(s), (3.21c)
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9

8
AU1(s) + V

′

1 (s)− 3

2
AW1(s) = 0. (3.21d)

The no-slip and impermeability conditions for these equations are

U1(0) = 0, (3.22a)

V1(0) = 0, (3.22b)

W1(0) = 0, (3.22c)

H1(0) = 0. (3.22d)

To solve the set of equations (3.21), we introduce a new function f = U1− 4
3
W1 , and then

the equations for f and V1 can be deduced from Equations (3.21a) (3.21b) and (3.21d) as

9

8
Aλsf(s) + λV1(s) = −2(γ − 1)hwAp10 + f

′′
(s), (3.23a)

9

8
Af(s) + V

′

1 (s) = 0. (3.23b)

Here V1 can be eliminated by differentiating (3.23a) with respect to s and using (3.23b).

This leaves us with
9

8
Aλsf

′
(s) = f

′′′
(s). (3.24)

The general solution to this Airy equation is

f
′
(s) = C1Ai

((
9

8
Aλ

) 1
3

s

)
+ C2Bi

((
9

8
Aλ

) 1
3

s

)
, (3.25)

where Ai(s) is the Airy function and Bi(s) the Bairy function. Since Bairy function

Bi(
(

9
8
Aλ
) 1

3 s) is exponentially growing when s → ∞ while the derivative of neither U1

nor W1 is expected to be exponentially large as s → ∞, the coefficient C2 must be set to

zero, and we will have

f(s) = C1

∫ s

0

Ai (θs) ds, (3.26)
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where θ denotes
(

9
8
Aλ
) 1

3 . It is well known that
∫∞

0
A(z)dz = 1

3
. Hence, it follows from

(3.26) that

lim
s→∞

f(s) =
C1

3θ
. (3.27)

Then according to Equation(3.23b),

V1 = Bs+ · · · as s→∞ (3.28)

with B = −3AC1

8θ
.

To find U1, we need to know the behaviour of W1 when s → ∞ first. For this purpose,

we will consider Equation (3.21b) with the following possibilities at the outer edge of the

sublayer.

1. If 9
8
AλsW1(s) and 3(γ−1)

2
hwAp10 are the leading order terms here and balanced by

each other, we could have W1 → E
s

as s → ∞, with E = 4(γ−1)
3

hwp10
λ

being a

constant, and hence, W ′′
1 (s) = O(s−3), which is much smaller than the other terms

as s→∞;

2. If W ′′
1 and 3(γ−1)

2
hwAp10 are assumed to be the leading order terms and balanced,

then W1 = O(s2), which makes 9
8
AλsW1 be of O(s3) and become the leading order

term. Obviously it contradicts our assumption;

3. If 9
8
AλsW1 and W

′′
1 are the balanced leading order terms, the solution would be

either of the same order with Bairy function, which makes the solution exponentially

large near the outer edge of the sublayer, or Airy function, which results in the fact

that these two terms are too much smaller than the constant term to be leading order

terms, so conflict also arises here.

Therefore, only the 1st case will not lead to a conflict, and the solutions for W1 and U1 are

W1 = Es−1 + · · · ,

U1 =
C1

3θ
+ · · ·

as s→∞. (3.29)
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This result verifies our earlier assumption about U1 being a constant as s →∞ and shows

us that C1 = 3θa0. Similarly, we can deduce from energy equation (3.21c) that

H1 =
8PrλB

9A
s+ · · · as s→∞. (3.30)

Now, using the principle of matching of the asymptotic expansions, we can see that in the

main part of the boundary layer the solution has to be written as

U = u0(η) + · · · +εξγp−
3
2 e−Aξ

3
2U2(η) + · · · , (3.31a)

V = v0(η) + · · · +εξγpe−Aξ
3
2 V2(η) + · · · , (3.31b)

W = εξγp−1e−Aξ
3
2W2(η) + · · · , (3.31c)

H = h0(η) + · · · +εξγp−
3
2 e−Aξ

3
2H2(η) + · · · , (3.31d)

P = P0 + · · · +εξγpe−Aξ
3
2 p10 + · · · . (3.31e)

Substitution of (3.31) into the boundary layer equations (2.30) results in

9A

8
u0U2 + u

′

0V2 = 0, (3.32a)

3

4
W2u0 = (γ − 1)p10h0, (3.32b)

9A

8
u0H2 + V2h

′

0 = 0, (3.32c)

9A

8
U2 + V

′

2 = 0. (3.32d)

It directly follows from (3.32b) that the solution for W2 is

W2 =
4(γ − 1)p10h0

3u0

. (3.33)

If we combine (3.32a) and (3.32d), it will give us

u0V
′

2 − u
′

0V2 = 0, (3.34)
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which means that V2/u0 is a constant in the main part of the boundary layer. To find this

constant, we need to perform the matching of V2 and u0 with the solution in the viscous

sublayer. We know that near the wall (as η → 0)

u0|η→0 = λη, (3.35)

and, from the matching

ξγp−
1
2 e−Aξ

3
2 V1(s)|s→∞ = ξγpe−Aξ

3
2 V2(η)|η→0, (3.36)

we see that the asymptotic behaviour of V2 as η → 0 is

V2|η→0 = ξ−
1
2V1|s→∞ = ξ−

1
2

9

8
Aa0ηξ

1
2 = −9

8
Aa0η. (3.37)

This shows that the sought constant is −(9Aa0)/(8λ),

i.e. V2 = −9Aa0

8λ
u0. (3.38)

The solutions forU2 andH2 can be obtained through substituting (3.38) into the momentum

equation (3.32a) and the energy equation (3.32c). We have

U2 =
a0

λ
u

′

0, (3.39)

H2 =
a0

λ
h

′

0. (3.40)

Substituting the coordinate asymptotic expansions of H (3.31d) and P (3.31e) into the

pressure equation (3.8), the value of p10 is obtained as

p10 =
9A

8
(γ − 1)

∫ ∞
0

H2dη = −9Aa0

8λ
(γ − 1)hw, (3.41)

and thus

W2 = −3Aa0(γ − 1)2hw
2λ

h0

u0

. (3.42)
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Furthermore, the solution for f (3.26) tells us that

f
′′
(0) = C1θAi

′
(0) (3.43)

while it is shown from the first equation regarding f , namely (3.23a), that

f
′′
(0) = 2(γ − 1)hwAp10, (3.44)

so we can collect the above two equations and use the value of p10 given in (3.41) to know

A = 3
1
4λ

5
4

∣∣∣Ai′(0)
∣∣∣ 34 (γ − 1)−

3
2h
− 3

2
w . (3.45)

Therefore, by substitution of the solution (3.38), (3.39), (3.40) and (3.42) into the coor-

dinate asymptotic expansions (3.31), these expansions can describe the far field flow be-

haviour perturbed by the small roughness on the wall.
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Conclusion and Discussion

For the three dimensional hypersonic viscous flow over semi-infinite flat plate with small

roughness, near the leading edge of the plate or far from the roughness in the span-wise

direction, the perturbed flow is described by

U = u0(η) + · · · +
(
εξγpe−Aξ

3
2 a0

)
ξ−

3
2

1

λ
u

′

0(η) + · · · ,

V = v0(η) + · · · −
(
εξγpe−Aξ

3
2 a0

) 9A

8λ
u0 + · · · ,

W = −
(
εξγpe−Aξ

3
2 a0

)
ξ−1 3A(γ − 1)2hw

2

h0

u0

+ · · · ,

H = h0(η) + · · · +
(
εξγpe−Aξ

3
2 a0

)
ξ−

3
2

1

λ
h

′

0 + · · · ,

P = P0 + · · · −
(
εξγpe−Aξ

3
2 a0

) 9A

8λ
(γ − 1)hw + · · ·

in the main part of the boundary layer, or

U = ξ−
1
2λs+ · · · +

(
εξγp−

3
2 e−Aξ

3
2 a0

)
+ · · · ,

V = ξ−1λ

4
s2 + · · · −

(
εξγp−

1
2 e−Aξ

3
2 a0

) 9A

8
s+ · · · ,

W = −
(
εξγp−

1
2 e−Aξ

3
2 a0

) 3

2

(γ − 1)2h2
wA

λ2
s−1 + · · · ,

H = hw − ξ−1Pr

2
λ2s2 + · · · −

(
εξγp−2e−Aξ

3
2 a0

)
Prλs+ · · · ,

P = P0 + · · · −
(
εξγpe−Aξ

3
2 a0

) 9A(γ − 1)hw
8λ

+ · · ·

at the outer edge of the sublayer.

Here u0, v0, h0 and P0 are the solutions to the unperturbed two dimensional flow problem
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and

A = 3
1
4λ

5
4

∣∣∣Ai′(0)
∣∣∣ 34 (γ − 1)−

3
2h
− 3

2
w .

We can recall that in our case the perturbation propagates in the ξ-increasing direction,

corresponding to travelling from the line ξ = ξ1 to the line ξ = ξ3 in Figure 3.2. From the

definition of ξ, which is ξ = z̄

x̄
3
4

, we know that ξ →∞ is equivalent to x̄→ 0 for a fixed z̄,

or z̄ → ∞ for a fixed x̄. Therefore, one conclusion we can draw from our analysis is that

in the boundary layer the perturbation can propagate not only in the spanwise direction, but

also upstream towards the leading edge.

Furthermore, it can be shown that for a given a0 and γp, the far field (ξ →∞) perturbation

only depends on the enthalpy near the wall (or the wall temperature), which mainly affects

the decay speed of the perturbation, and the undisturbed plate flow behaviour, provided that

the heat capacity remains constant everywhere. In addition, it can be seen from the power

of ξ that, as ξ →∞, the perturbation to U and H decays fastest, W has the second largest

perturbation decay speed, and the roughness effect on P and V reduces slowest.

However, in fact only the relative value of the perturbation with respect to ξγpa0 is explicit

instead of the absolute value, as the exact values of a0 and γp are not really known yet or

proved to be the same for different types of roughness. It should be also noticed that no

detail about the roughness is included in our solution, so it is probably that the value of these

two parameters, especially a0, which is the value of U2 as η → 0 and which indicates the

strength of the perturbation, might be dependent on the detailed structure of the roughness.

To find the values of a0 and γp, we may need to understand the perturbation behaviour in the

near field (ξ = O(1)), and this task can only be accomplished after obtaining the numerical

solution of the entire boundary layer problem through the finite difference method[12].
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Appendix A

Ackeret Formula for Three Dimensional

Hypersonic Flow

In the inviscid flow above the boundary layer, with the non-dimensionalization transforma-

tion

x̂ = Lx, ŷ = Ly, ẑ = Lz

û = V∞u, v̂ = V∞v, ŵ = V∞w,

ρ̂ = ρ∞ρ, p̂ = p∞ + ρ∞V
2
∞p, ĥ = V 2

∞h,

we have to solve the three dimensional Euler Equations∗

ρ

(
u
∂u

∂x
+ v

∂u

∂u
+ w

∂u

∂z

)
= −∂p

∂x
, (A.1a)

ρ

(
u
∂v

∂x
+ v

∂v

∂u
+ w

∂v

∂z

)
= −∂p

∂y
, (A.1b)

ρ

(
u
∂w

∂x
+ v

∂w

∂u
+ w

∂w

∂z

)
= −∂p

∂z
, (A.1c)

ρ

(
u
∂h

∂x
+ v

∂h

∂u
+ w

∂h

∂z

)
= u

∂p

∂x
+ v

∂p

∂y
+ w

∂p

∂z
, (A.1d)

∗Here the symbols without ‘hat’ only denote dimensionless variables and some of them may not be O(1),
which is different from how they are defined in Section1.1.
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∂ (ρu)

∂x
+
∂ (ρv)

∂y
+
∂ (ρw)

∂z
= 0, (A.1e)

h =
γ

γ − 1

1

ρ

(
1

γM2
∞

+ p

)
. (A.1f)

We know that in the perturbation region

x̂ ∼ L, ẑ ∼ LRe−
1
4M∞, p̂− p∞ ∼ ρ∞V

2
∞Re

− 1
2 , (A.2)

so after the non-dimensionlization transformation,

x ∼ 1, z ∼ Re−
1
4M∞, p ∼ Re−

1
2 . (A.3)

Since in the overlapping region of the boundary layer and the outer inviscid flow there is

balance

ρ̂û
∂ŵ

∂x̂
∼ ∂p̂

∂ẑ
,

considering û ∼ V∞ and ρ̂ ∼ ρ∞ to the leading order, the order of magnitude of ŵ can be

found as

ŵ = O(V∞Re
− 1

4M−1
∞ ). (A.4)

In the inviscid region of the two dimensional flow, the impermeability condition is satisfied

on the surface of the thin effective body, which is acquired by augmenting the real body

with the displacement thickness of the boundary layer, so the deflection angle is quite

small, or more precisely of O(Re−
1
2M∞) as the dimensionless thickness of the boundary

layer is of O(Re−
1
2M∞). This tells us that the shock wave is supposed to be so weak that it

degenerates to the Mach line y = 1
M∞

x in the two dimensional plate flow[10]. Therefore,

even in the three dimensional case, the dimensionless thickness of the shock layer is still

y = O(
1

M∞
), (A.5)

because the roughness is too smaller than the boundary layer to change the oder of magni-

tude of the shock layer thickness.

As for the other dimensionless variables, we will seek their asymptotic expansions in the
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form

u = 1 + ε1u1 + · · · , v = ε2v1 + · · · , (A.6)

ρ = 1 + ε3ρ1 + · · · , h =
1

(γ − 1)M2
∞

+ ε4h1 + · · · , (A.7)

where u1, v1, p1, ρ1.h1 ∼ O(1) and the coefficients εi � 1. To find out these coefficients,

we will do the following analysis.

1. At ŷ = δ̂(x̂, ẑ), the impermeability condition is

v̂ = ûδ̂x̂ + ŵδ̂ẑ. (A.8)

As the first term on the right-hand side is of O(V∞Re
− 1

2M∞) while the second term

is of O(V∞Re
− 1

2M−1
∞ ) being much smaller, the order of magnitude of v̂ is supposed

to be O(V∞Re
− 1

2M∞) and hence, ε2 = Re−
1
2M∞.

2. Considering the velocity perturbation across the front shock of the two-dimensional

flow, it should be perpendicular to the shock wave, so

ε1u1

ε2v1

=
1

M∞
i.e. ε1 = Re−

1
2 .

As the order of magnitude of the variables is unchanged from the two dimensional

flow to the three-dimensional, this result of ε1 is still valid for the three-dimensional

case.

3. In the boundary layer, the density is much smaller than that in the free-stream flow,

and the flow in front of the shock wave is undisturbed, so this density loss in the

boundary layer will be compensated for by the density increase in shock layer, which

means that

L

M∞
ε3ρ∞ ∼ LRe−

1
2M∞ρ∞ i.e. ε3 = Re−

1
2M2
∞. (A.9)

4. Substitution of the asymptotic expansions of p and ρ into the state equation (A.1f),
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we can obtain

ε4h1 = −Re
− 1

2

γ − 1
ρ1 +

γ

γ − 1
Re−

1
2p1, i.e. ε4 = Re−

1
2 . (A.10)

Collecting (A.3), (A.5), (A.4) and the above results, the dimensionless variables, or their

variation from the free-stream value, in the shock layer can be scaled to O(1) via

y = M−1
∞ Y, (A.11a)

z = Re−
1
4M∞Z, (A.11b)

u(x, y, z) = 1 +Re−
1
2u1(x, Y, Z) + · · · , (A.11c)

v(x, y, z) = Re−
1
2M∞v1(x, Y, Z) + · · · , (A.11d)

w(x, y, z) = Re−
1
4M−1
∞ w1(x, Y, Z) + · · · , (A.11e)

ρ(x, y, z) = 1 +Re−
1
2M2
∞ρ1(x, Y, Z) + · · · , (A.11f)

p(x, y, z) = Re−
1
2p1(x, Y, Z) + · · · , (A.11g)

h(x, y, z) =
1

(γ − 1)M2
∞

+Re−
1
2h1(x, Y, Z) + · · · , (A.11h)

where Y , Z are the O(1) independent variables. Then if we substitute them into the Euler

Equations and keep the leading order terms, the equations become

∂u1

∂x
= −∂p1

∂x
, (A.12a)

∂v1

∂x
= −∂p1

∂Y
, (A.12b)

∂w1

∂x
= −∂p1

∂Z
, (A.12c)

∂ρ1

∂x
+
∂v1

∂Y
= 0, (A.12d)

∂h1

∂x
=
∂p1

∂x
, (A.12e)

h1 =
γ

γ − 1
p1 −

ρ1

γ − 1
. (A.12f)
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Corresponding to the scalings in this appendix, we will use

δ̂(x̂, ẑ) = LRe−
1
2M∞δ(x, Z) (A.13)

for the displacement thickness and have δ(x, Z) = O(1).

To find the relation between the variables with subscript 1, we need the help of the non-

dimensional jump conditions on the shock wave, which are

ρ(unx + vny + wnz)
2 + p = n2

x, (A.14a)

uτx + vτy + wτz = τx, (A.14b)

h+
1

2
(u2 + v2 + w2) =

1

(γ − 1)M2
∞

+
1

2
, (A.14c)

ρ(unx + vny + wnz) = nx, (A.14d)

where ~n = (nx, ny, nz) and ~τ = (τx, τy, τz) are the unit vectors normal and tangential to the

shock wave in the coordinate system Oxyz, respectively. Compared with the shock layer

in supersonic, transonic and subsonic flows, an important difference about the hypersonic

flow shock layer is that some of the components in the normal and tangential unit vectors

may not be of O(1) for they might be asymptotically small.

For any given point M0 on the shock wave, we can always find θ0 and α0 such that

~n = (cosα0 sin θ0, sinα0 sin θ0, cos θ0) are the normal vector originating from M0, with

two unit vectors ~τ1 = (cosα0 cos θ0, sinα0 cos θ0,− sin θ0) and ~τ2 = (sinα0,− cosα0, 0)

perpendicular to it. Then for any unit tangential vector ~τ of the shock wave at M0, there

must exist two constants n1 and n2 such that

~τ =
n1~τ1 + n2~τ2

‖ n1~τ1 + n2~τ2 ‖
,

so the satisfaction of the conditions

cosα0 cos θ0u+ sinα0 cos θ0v − sin θ0w = cosα0 cos θ0,

sinα0u− cosα0v = sinα0,
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i.e. Re−
1
2 cosα0 cos θ0u1 +Re−

1
2M∞ sinα0 cos θ0v1 −Re−

1
4M−1
∞ sin θ0w1 = 0, (A.15)

Re−
1
2 sinα0u1 −Re−

1
2M∞ cosα0v1 = 0 (A.16)

will guarantee the second jump condition (A.14b) being satisfied for any ~τ originating from

M0. Then it can be known from the above two equations that

v1 = M−1
∞

sinα0

cosα0

u1, (A.17)

w1 = Re−
1
4M∞

cos θ0

sin θ0 cosα0

u1. (A.18)

Substitution of these results into the jump condition (A.14a) gives us

(
1 +Re−

1
2M2
∞ρ1

)(
nx +

Re−
1
2u1

nx

)2

+Re−
1
2p1 = n2

x.

If we neglect the terms which are apparently much smaller than the others in the expansion

of this equation, it becomes

Re−
1
2

(
2u1 +M2

∞ρ1n
2
x + p1

)
+Re−1 u

2
1

n2
x

= 0. (A.19)

To find another relationship between p1 and ρ1, we can multiply both hand-sides of the first

jump condition (A.14a) by ρ and substitute (A.14d) into it; with considering the asymptotic

expansions of p and ρ, this finally results in

p1 = M2
∞n

2
xρ1. (A.20)

Combining the above two equations leads to the conclusion that

u1 + p1 = 0 (A.21)
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on the shock wave.

In addition, from Equation (A.12a), in the whole shock layer we should have

u1 + p1 = l1(Y, Z). (A.22)

Taking into consideration the result (A.21) and the fact that the projection of the shock

wave upon the (Y, Z)-plane covers every pair of (Y, Z) with Y > 0, the function l1(Y, Z)

should be constantly equal to 0 in the entire shock layer,

i.e. u1 + p1 = 0. (A.23)

Similarly, we can find the relation between h1 and p1 in the shock layer: If we adopt the

scalings (A.11c)-(A.11e) and (A.11h) into the third jump condition (A.14c), it turns into

(h1 + u1)|shock = 0 i.e. h1|shock = p1|shock,

and from the energy equation (A.12e) we can get

h1 = p1 + l2(Y, Z);

It follows directly from the above results that in the whole shock layer

h1 = p1. (A.24)

Furthermore, substituting it into the state equation (A.12f) tells us that

p1 = ρ1, (A.25)

so everywhere between the shock wave and the outer edge of the boundary layer

p1 = ρ1 = h1 = −u1. (A.26)
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Besides, recalling p1 = M2
∞n

2
xρ1 on the shock wave, we can know

nx =
1

M∞
,

so the shock wave equation is supposed to be

y =
1

M∞
x+ ψ(z), or Y = x+ Ψ(Z).

Now turning to the lateral momentum equation (A.12b) and the continuity equation (A.12d),

they can be rewritten as

∂v1

∂x
=
∂u1

∂Y
i.e.

∂v1

∂x
=

1

M∞

∂u1

∂y
, (A.27a)

∂u1

∂x
− ∂v1

∂Y
= 0 i.e.

∂u1

∂x
− 1

M∞

∂v1

∂y
= 0. (A.27b)

From (A.27a), we know that a potential function φ(x, Y, Z) can always be found such that

u1 =
∂φ

∂x
,

v1 =
∂φ

∂Y
,

and hence, (A.27b) becomes
∂2φ

∂x2
− ∂2φ

∂Y 2
= 0, (A.28)

to which the solution is

φ(x, Y, Z) = f(x− Y, Z) + g(x+ Y, Z). (A.29)

For any given z0, the unit tangential vectors of the intersection line of the shock wave and

the plane z = z0 are also tangential to the shock wave, and the third components of these

vectors are zero, so if we denote such a vector by (τ0x, τ0y, 0) in the coordinate system

Oxyz, the corresponding jump conditions are

u1τ0x +M∞v1τ0y = 0, i.e.
∂φ

∂x
τ0x +

∂φ

∂y
τ0y = 0.
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This means that φ is a constant C along the intersection ling of the shock wave and plane

z = z0, namely the line {y = 1
M∞

x+ ψ(z), z = z0} or {Y = x+ Ψ(Z), Z = Z0}, i.e.

f(Ψ(Z0), Z0) + g(2x+ 2Ψ(Z0), Z0) = C,

where Z0 = z0Re
1
4M−1
∞ . Since f(Ψ(Z0), Z0) and C are constants for a given Z0, the

function g(2x + 2Ψ(Z0), Z0) should also be only dependent on the parameter Z0. Thus

g(x+ Y, Z) is a function of Z only. Therefore, we can say

φ(x, Y, Z) = f(x− Y, Z).

Now if we can obtain the expression of f(x − Y, Z), we will be able to know u1, thereby

p1.

According to the impermeability condition (A.8) and the scalings of u and v,

v(x,Re−
1
2M∞δ, z) = Re−

1
2M∞

∂δ(x, Z)

∂x
+ · · · , (A.30)

while if we start from v = Re−
1
2M∞v1 and the Taylor expansion of v1 at y = Re−

1
2M∞δ,

which is

v1(x,Re−
1
2M∞δ, Z) = v1(x, 0, Z) +Re−

1
2M∞δ

∂v1

∂y
(x, 0, Z) +O(Re−1M2

∞
∂2v1

∂y2
)

= v1(x, 0, Z) +Re−
1
2M2
∞δ

∂v1

∂Y
(x, 0, Z) +O(Re−1M4

∞),

(A.31)

the asymptotic expansion of v(x,Re−
1
2M∞δ, z) also can be written as

v(x,Re−
1
2M∞δ, z) = Re−

1
2M∞v1(x, 0, Z) +O(Re−1M3

∞). (A.32)

It can be known from the comparison of (A.30) and (A.32) that

v1(x, 0, Z) =
∂δ(x, Z)

∂x
,
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i.e.
∂δ(x, Z)

∂x
=
∂φ

∂Y
|Y=0 = −∂f(x, Z)

∂x
, (A.33)

so

f(x, Z) = −δ(x, Z) + l3(Z),

and hence,

φ(x, Y, Z) = f(x− Y, Z) = −δ(x− Y, Z) + l3(Z).

Since the choice of l3(Z) contributes nothing to ∂φ
∂x

or ∂φ
∂Y

, it can be set to zero to leave us

φ(x, 0, Z) = −δ(x, Z). (A.34)

Therefore, remembering p1 = −u1, we can conclude that

p1(x, 0, Z) = −u1(x, 0, Z) =
∂δ(x, Z)

∂x
.

This result shows us that in our case of flat plate with small roughness, the three dimen-

sional Ackeret Formula has the same form with the two dimensional one.
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