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Abstract

In this thesis a number of related topics in random dynamical systems theory are stud-

ied: local attractors and attractor-repeller pairs, the exponential dichotomy spectrum and

bifurcation theory.

We review two existing theories in the literature on local attractors for random dynam-

ical systems on compact metric spaces and associated attractor-repeller pairs and Morse

decompositions, namely, local weak attractors and local pullback attractors. We extend the

theory of past and future attractor-repeller pairs for nonautonomous systems to the setting

of random dynamical systems, and define local strong attractors, which both pullback and

forward attract a random neighbourhood. Some examples are given to illustrate the nature

of these different attractor concepts. For linear systems considered on the projective space,

it is shown that a local strong attractor that attracts a uniform neighbourhood is an object

with sufficient properties to prove an analogue of Selgrade’s Theorem on the existence of

a unique finest Morse decomposition.

We develop the dichotomy spectrum for random dynamical systems and investigate its

relationship to the Lyapunov spectrum. We demonstrate the utility of the dichotomy spec-

trum for random bifurcation theory in the following example. Crauel and Flandoli [CF98]

studied the stochastic differential equation formed from the deterministic pitchfork normal

form with additive noise. It was shown that for all parameter values this system possesses

a unique invariant measure given by a globally attracting random fixed point with negative

Lyapunov exponent, and hence the deterministic bifurcation scenario is destroyed by addi-

tive noise. Here, however, we show that one may still observe qualitative changes in the

dynamics at the underlying deterministic bifurcation point, in terms of: a loss of hyperbol-

icity of the dichotomy spectrum; a loss of uniform attractivity; a qualitative change in the
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distribution of finite-time Lyapunov exponents; and that whilst for small parameter values

the systems are topologically equivalent, there is a loss of uniform topological equivalence.
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Chapter 1

Introduction

The theory of random dynamical systems seeks to model physical systems which are under

the influence of random perturbations. The mathematical framework incorporates ideas

from the well developed fields of dynamical systems, probability and stochastic analysis.

The qualitative theory of random dynamical systems is still in its relatively early stages,

and much of current research is involved in translating concepts from classical dynami-

cal systems theory into the context of random dynamical systems. There are fundamental

questions as to what the ‘correct’ corresponding concepts and definitions are in the setting

of random dynamical systems, which requires exploration of definitions and direct explo-

ration of case studies. In this thesis we explore three important and related concepts in

dynamical systems theory: local attractors and attractor-repeller pairs, dynamical spectral

theory and bifurcation theory. Our focus throughout this thesis is on linear theory. One of

the inherent properties of random and nonautonomous systems is the nonuniformity of the

dynamics, and many of the results in the thesis are a qualification of this aspect. We shall

now give an overview of the thesis topics.

The fundamental theory of local attractors, attractor-repeller pairs and Morse decom-

positions for autonomous dynamical systems was established by Conley in his monograph

[Con78]. There are many nonequivalent definitions of local attractors for autonomous dy-

namical systems, and for random dynamical systems there are additional degrees of free-

dom on the choice of the type of convergence to the attractor, given by the facts that they

are nonautonomous systems and are equipped with a probability measure. A comparison
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of a number of different attraction concepts for random dynamical systems has been car-

ried out by Ashwin and Ochs [AO03]. To date, two theories of attractor-repeller pairs for

random dynamical systems can be found in the literature: Ochs [Och99] demonstrated the

existence of attractor-repeller pairs corresponding to so-called local weak attractors, which

use the notion of convergence in probability; Liu [Liu06, Liu07a, Liu07b] demonstrated

the existence of attractor-repeller pairs corresponding to so-called local pullback attractors,

which use the notion of almost sure pullback convergence. For general nonautonomous

systems, in particular not necessarily possessing a compact base, Rasmussen [Ras06] has

demonstrated that by restricting one’s attention to only the past or the future time domain

of the system and using suitable attraction and repulsion concepts, one can obtain so-called

past and future attractor-repeller pairs. In this thesis we shall review the results on weak and

pullback attractor-repeller pairs, and extend the concept of past and future attractor-repeller

pairs to the setting of random dynamical systems (Theorem 2.7.5). We shall also define

strong attraction, in which both forward and pullback convergence are required. Our main

aim with this survey of different types of local attractors is to find a type of attractor-repeller

pair with sufficient properties to be able to prove an analogue of Selgrade’s Theorem (see

below).

Linear theory is important in the study of nonlinear dynamical systems, since the sta-

bility of solutions of nonlinear systems can often be derived from the stability of their

linearization. There are a number of dynamical spectral concepts available to study linear

dynamical systems. For random dynamical systems, the Multiplicative Ergodic Theorem

of Oseledets [Ose68] guarantees the existence of Lyapunov exponents for almost all initial

conditions, and if the system is ergodic there are finitely many — the Lyapunov spectrum.

This strong result has formed the basis of much important research in random dynamical

systems thus far [Arn98]. An important concept in linear nonautonomous dynamical sys-

tems is that of an exponential dichotomy (see [Cop78]), and the associated dichotomy, or

Sacker-Sell, spectrum [SS78]. We shall define the concept of an exponential dichotomy for

linear random dynamical systems and demonstrate the associated spectral theorem, namely

that the dichotomy spectrum consists of a finite union of closed intervals (Theorem 3.2.4),

and that each of these spectral intervals is associated with an invariant linear subspace (The-

orem 3.2.5). We note that the concept of the dichotomy spectrum for random dynamical
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systems has also recently been investigated by Wang and Cao [WC14] with a different

set-up to ours (which we discuss in Section 3.4).

An alternative approach to studying linear systems is to consider the induced system on

the projective space. For a linear flow on a vector bundle with compact base for which the

base flow is chain transitive, Selgrade’s Theorem [Sel75] demonstrates the existence of a

unique so-called finest Morse decomposition of the projective bundle. Analogous results

have been shown for nonautonomous systems with a noncompact base using the theory of

past and future attractor-repeller pairs [Ras07, Ras08], and we shall use similar techniques

to demonstrate an analogue of Selgrade’s Theorem for linear random dynamical systems

using local strong attractors (Theorem 3.3.6).

The theory of bifurcations in random dynamical systems is still in its developmental

stages (see [Arn98, Chapter 9] for a detailed description and historical account). A bi-

furcation in a parameterized family of random dynamical systems is considered to be a

qualitative change in the set of invariant measures of the system. There are two notions of

‘invariant measure’ available for random dynamical systems: if the system admits a Markov

semi-group, one may consider the so-called stationary measures of the semi-group; the no-

tion of an invariant measure, on the other hand, is a random measure that is invariant (in

a nonautonomous sense) under the random flow. There are then two associated notions of

bifurcation: the concept of a phenomenological bifurcation relates to a qualitative change

in the density of a stationary measure, whilst the concept of a dynamical bifurcation relates

to a qualitative change in the set of invariant measures of the system and is associated to

a loss of hyperbolicity of the Lyapunov spectrum [Arn98, Theorem 9.2.3]. The two con-

cepts are independent, with one type of bifurcation able to occur without the other [Arn98,

p. 473, 476]. The phenomenological bifurcation concept has a number of significant disad-

vantages: it is restricted to the Markovian case; stationary measures provide only the time

averaged position of each trajectory, and qualitative changes are not related, in general, to a

change in stability (i.e. a change in the Lyapunov spectrum); the concept is not coordinate

independent; and stationary measures are in a one-to-one correspondence with invariant

measures that only depend on the past of the system, but additional invariant measures are

often present. For these reasons, the more recent dynamical bifurcation concept is now

favoured in the literature.
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Initial studies have sought to find analogues of elementary deterministic bifurcation

scenarios — the saddle-node, transcritical, pitchfork and Hopf bifurcations [AB92, CF98,

ASNSH96, SH96, ABSH99]. In particular, in [AB92] the authors consider stochastic dif-

ferential equations formed from the transcritical, pitchfork and saddle-node normal forms,

with noise added to the parameter. For the transcritical and pitchfork cases one obtains

dynamical bifurcation patterns similar to the deterministic cases: the trivial equilibria of

the corresponding deterministic systems persist, and the other equilibria are replaced by

invariant random Dirac measures (also known as random fixed points), with the stability

of these invariant measures being the same as the corresponding deterministic equilibria.

In [CIS99] the authors find necessary and sufficient conditions for a certain class of pa-

rameterized one-dimensional stochastic differential equations, with zero as a fixed point, to

undergo similar transcritical and pitchfork dynamical bifurcations of random fixed points.

Crauel and Flandoli in [CF98] consider the normal form of the deterministic pitchfork bi-

furcation with additive noise, that is, the one-dimensional stochastic differential equation

driven by a Wiener process {Wt}t∈R given by

dxt =
(
αxt − x3

t

)
dt+ σdWt , (1.0.1)

with real parameters α (the bifurcation parameter) and σ (the noise intensity). The associ-

ated random dynamical system undergoes a phenomenological bifurcation at the parameter

value α = 0, where the stationary distribution transitions from a one-peak to a two-peak

form. However, the authors demonstrate that for arbitrary nonzero noise intensity there is

no dynamical bifurcation: for all values of the parameter α there exists a unique ergodic

invariant measure given by a random fixed point, for which the associated Lyapunov ex-

ponent is negative, and the random fixed point is globally attractive. Hence one may say

that the deterministic pitchfork bifurcation at α = 0 is destroyed by additive noise. Here

we take a different approach to the bifurcation theory of random dynamical systems and

we make further investigations to the random dynamical system generated by (1.0.1). We

argue that in some sense the bifurcation at α = 0 is not destroyed, as one can still observe

qualitative changes in the dynamics:

(i) The random fixed point is uniformly attractive only if α < 0 (Theorem 4.2.3).
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(ii) There is a change in the practical observability of the Lyapunov exponent (by finite-

time Lyapunov exponents, Theorem 4.2.5).

(iii) There is a qualitative change in the dichotomy spectrum associated to the random

fixed point (Theorem 4.3.1).

(iv) Whilst for |α| sufficiently small, the resulting dynamics are topologically equiva-

lent (Theorem 4.4.1), there does not exist a uniformly continuous topological conju-

gacy between the dynamics of cases with positive and negative parameter α (Theo-

rem 4.4.4).

It is our opinion that additive noise is a natural scenario to consider, and the bifurcation

theory of such systems is of interest for applications.

We now give an overview of the thesis contents and state its main contributions. In the

remainder of Chapter 1 (Section 1.1) we give formal definitions and introduce some basic

concepts for random dynamical systems, and establish notation and basic assumptions held

throughout the thesis.

In Chapter 2 we make a survey of different types of attractor-repeller pairs for random

dynamical systems defined with respect to three different concepts of attraction. First we

review some ideas on attractors and attractor-repeller pairs for deterministic systems in

Section 2.1, and discuss the three different attraction concepts for random dynamical sys-

tems that we will consider in Section 2.2. Then in Section 2.3 we recall results on local

weak set attractors from [Och99, CDS04]. We prepare for the theories of local pullback,

past and future attractors with some results on pullback limit sets, which are well studied

in the literature in terms of global attractors. The theory of pullback attractor-repeller pairs

was first demonstrated in the papers [Liu06, Liu07a, Liu07b, LSZ08]; here we aim to give

a clear and concise exposition of the construction of the pullback attractor-repeller pair in

Section 2.5, the defining result being Theorem 2.5.11. In Section 2.6 we give some (lin-

ear) examples to demonstrate that the three local attraction concepts are not equivalent, and

demonstrate that pullback attractor-repeller pairs may have some undesirable properties

(see Remark 2.5.13). We then proceed to extend the theory of past and future attractor-

repeller pairs to the setting of random dynamical systems in Section 2.7, the main result
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being Theorem 2.7.5. We define the notion of a local strong attractor in Section 2.8, and

finish the chapter with a discussion in Section 2.9, principally on the nature of pullback

attractor-repeller pairs.

Chapter 3 is on linear theory. In Section 3.1 the notion of an exponential dichotomy

for a linear random dynamical system is defined and some basic properties are given.

Then in Section 3.2 the dichotomy spectrum is defined and the spectral theorem (Theo-

rem 3.2.4) and existence of the spectral manifolds (Theorem 3.2.5) are demonstrated. We

also demonstrate a necessary and sufficient condition to obtain a bounded spectrum (Propo-

sition 3.2.7), and investigate the relationship of the dichotomy spectrum to the Lyapunov

spectrum (Remark 3.2.9). In Section 3.3 we study past attractor-repeller pairs and strong

attractor-repeller pairs in the projective space of linear systems, and prove an analogue

of Selgrade’s Theorem (Theorem 3.3.6) using strong attractor-repeller pairs. Our reasons

for using local strong attractors are discussed in the introduction to Section 3.3 and Re-

mark 3.3.4. In Section 3.4 we discuss our results on the dichotomy spectrum in relation

to those obtained in [WC14], the possibility of obtaining a version of Selgrade’s Theorem

for weak attractor-repeller pairs, and also introduce the concept of the Morse spectrum for

random dynamical systems.

In Chapter 4 we contribute to the bifurcation theory of random dynamical systems by a

case study of the random dynamical system generated by (1.0.1). In Section 4.1 we review

the key results obtained by Crauel and Flandoli [CF98]. Then in Section 4.2 we show the

transition to nonuniform attractivity of the random fixed point (Theorem 4.2.3), and the

existence of a positive measure set of positive finite-time Lyapunov exponents for α > 0

(Theorem 4.2.5). The loss of hyperbolicity of the dichotomy spectrum associated to the

random fixed point for α > 0 (Theorem 4.3.1) is demonstrated in Section 4.3, and we also

show that limits of the set of finite-time Lyapunov exponents are contained in the dichotomy

spectrum (Theorem 4.3.2). The results on topological equivalence (Theorem 4.4.1) and

uniform topological equivalence (Theorem 4.4.4) are given in Section 4.4, and we finish

with a discussion on future work in Section 4.5.
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1.1 Mathematical set-up, notation and assumptions

Here we give formal definitions and basic facts regarding the theory of random dynamical

systems, and establish the notation used in the thesis. Also note that we will hold Assump-

tion 1.1.4 throughout the thesis. For a comprehensive introduction to the theory of random

dynamical systems, we refer the reader to the monograph of Ludwig Arnold [Arn98].

Time

The time set T is equal to one of the following: R or Z, in which case we speak of con-

tinuous or discrete, respectively, two-sided time; R+
0 := {t ∈ R : t ≥ 0} or N0 := N∪ {0},

in which case we speak of continuous or discrete, respectively, one-sided time. We also

take the time set to be equipped with its Borel σ-algebra, B(T). Given a one-sided time

set T, we denote the corresponding two-sided time set by T̄, i.e. if T = R+
0 then T̄ = R,

and if T = N0 then T̄ = Z. We also define T+
0 := T ∩ R+

0 and T−0 := T̄ ∩ R−0 where

R−0 := {t ∈ R : t ≤ 0}.

Dynamical system, metric dynamical system, random dynamical system

Definition 1.1.1. A dynamical system (DS) on a state spaceX with time set T is a mapping

φ : T×X → X, (t, x) 7→ φ(t, x),

where the mappings φt := φ(t, ·) : X → X satisfy

(i) φ0 = idX

(ii) φt+s = φt ◦ φs for all t, s ∈ T

The noise in a random dynamical system is modelled by a metric dynamical system (see

e.g. [Arn98, Appendix A]).

Definition 1.1.2. A metric dynamical system (metric DS) consists of a probability space

(Ω,F , µ), and a dynamical system θ : T × Ω → Ω which is a (B(T) ⊗ F ,F)-measurable

mapping and is measure preserving, i.e. µ is a θ-invariant measure: θtµ(·) := µ(θ−1
t ·) =

µ(·) for all t ∈ T.
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A metric DS shall often be written as the quadruple (Ω,F , µ, θ), where the time set

T for θ should be clear from the context. The measure preserving property essentially

means that the metric DS is modelling a stationary stochastic process. Given a metric DS

(Ω,F , µ, θ) a measurable set F ∈ F is called θ-invariant if θ−1
t F = F for all t ∈ T, and a

measurable function f : Ω → R is called θ-invariant if f(θtω) = f(ω) for all t ∈ T and µ

almost all ω ∈ Ω; the metric DS is called ergodic if every θ-invariant set has either measure

one or measure zero.

The formal definition of a random dynamical system is as follows.

Definition 1.1.3. A random dynamical system (RDS) on the measurable state space (X,B)

over a metric DS (Ω,F , µ, θ) with time set T is a mapping

ϕ : T× Ω×X → X, (t, ω, x) 7→ ϕ(t, ω, x),

which is (B(T) ⊗ F ⊗ B,B)-measurable, and which forms a cocycle over θ, that is, the

mappings ϕ(t, ω) := ϕ(t, ω, ·) : X → X satisfy

(i) ϕ(0, ω) = idX for all ω ∈ Ω, and

(ii) ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) for all ω ∈ Ω and t, s ∈ T.

For simplicity we will normally just speak of an RDS ϕ without mentioning the under-

lying metric DS. An RDS ϕ may equivalently be described as a skew product of the metric

DS θ and cocycle ϕ, that is, the mapping

Θ: T× Ω×X → Ω×X, (t, ω, x) 7→ Θt(ω, x) := (θtω, ϕ(t, ω)x).

The skew product Θ is (B(T)⊗F ⊗B,F ⊗B)-measurable and is a dynamical system with

state space Ω×X .

Assumption 1.1.4. We shall always hold the following assumptions on an RDS ϕ through-

out the thesis.

(i) The metric DS θ associated to ϕ is invertible, i.e. even if ϕ is only defined with a

one-sided time set T, the underlying metric DS is defined for the corresponding two-
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sided time set T̄ (this is justified by the procedure of ‘natural extension’, see [Arn98,

Appendix A.1]).

(ii) The metric DS θ associated to ϕ is ergodic.

(iii) The probability space (Ω,F , µ) is complete.

(iv) The state space X is a complete separable metric space (hence a Polish space)

equipped with its Borel σ-algebra B(X).

(v) The RDS ϕ is continuous, i.e. for each fixed ω ∈ Ω the mapping

ϕ : T×X → X, (t, x) 7→ ϕ(t, ω)x

is continuous.

If ϕ is an RDS defined for two-sided time then we have that (see [Arn98, Theorem

1.1.6]) for all (t, ω) ∈ T× Ω

ϕ(t, ω)−1 = ϕ(−t, θtω)

and with Assumption 1.1.4 (v), ϕ(t, ω) : X → X is a homeomorphism.

Products of random mappings

In discrete time an RDS is generated by a so-called product of random mappings. Let

(Ω,F , µ, θ) be a metric dynamical system with discrete time T, and f : Ω × X → X be

measurable. Then the mappings ϕ(n, ω) : X → X given by

ϕ(n, ω) :=

f(θn−1ω) ◦ · · · ◦ f(ω), n ≥ 1,

idX , n = 0

define a one-sided time random dynamical system. The RDS is two-sided iff the mappings

f(ω) : X → X are measurably invertible for all ω ∈ Ω, and then one additionally has

ϕ(n, ω) := f(θnω)−1 ◦ · · · ◦ f(θ−1ω)−1, n ≤ −1.
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Stochastic differential equations

When dealing with RDS generated by (one-dimensional) stochastic differential equa-

tions (SDE) driven by the Wiener process, the following metric dynamical system is used.

Let Ω := C0(R,R) := {ω ∈ C(R,R) : ω(0) = 0}, and let Ω be equipped with the

compact-open topology and the Borel σ-algebra F := B(C0(R,R)). Let µ denote the

Wiener probability measure on (Ω,F). The metric dynamical system is then given by the

Wiener shift θ : R×Ω→ Ω, defined by θ(t, ω(·)) := ω(·+ t)−ω(t), and it is well-known

that θ is ergodic [Arn98, Appendix A.3]. On (Ω,F), we have the natural filtration

F ts := σ{ω(u)− ω(v) : s ≤ u, v ≤ t} for all s ≤ t ,

with θ−1
u F ts = F t+us+u. The independent increments property of the Wiener process means

that the filtrations F ts and Fvu for s < t ≤ u < v are independent.

Set-valued functions, invariant sets

Since RDS are nonautonomous systems one would not, in general, expect there to exist

a set D ⊂ X which is invariant under the cocyle ϕ for all t ∈ T and all ω ∈ Ω, i.e.

such that ϕ(t, ω)−1D = D. Instead one considers set valued functions D : Ω → 2X ,

ω 7→ D(ω), that transform in a ‘stationary’ way under the cocycle, which means that

ϕ(t, ω)−1D(θtω) = D(ω), and call this property invariance. One may identify a set valued

mapping with its graph,

graph(D) := {(ω, x) ∈ Ω×X : x ∈ D(ω)}.

In the other direction, for a subset D ⊂ Ω × X we call the set valued mapping D(ω) :=

{x ∈ X : (ω, x) ∈ D} the ω-sections or ω-fibers of D. In general we shall say that D has

some topological property if D(ω) has that property for all ω ∈ Ω. The formal definitions

of invariant sets for an RDS are as follows.

Definition 1.1.5. Let ϕ be an RDS and consider a set D ⊂ Ω×X .
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(i) D is called forward invariant if for all ω ∈ Ω and t ≥ 0

ϕ(t, ω)D(ω) ⊂ D(θtω).

(ii) D is called backward invariant if for all ω ∈ Ω and t ≥ 0

ϕ(t, ω)−1D(θtω) ⊂ D(ω),

or equivalently for two sided time, if for all ω ∈ Ω and t ≤ 0

ϕ(t, ω)D(ω) ⊂ D(θtω).

(iii) D is called invariant if for all ω ∈ Ω and t ∈ T

D(ω) = ϕ(t, ω)−1D(θtω),

or equivalently for two-sided time,

ϕ(t, ω)D(ω) = D(θtω).

The above notions of invariance of D ⊂ Ω × X for an RDS ϕ equate to the usual

notions of invariance of the set D under the skew product Θ, for example D is invariant

under ϕ iff Θ−1
t D = D for all t ∈ T. The following lemma gives an elementary property

of forward invariant sets.

Lemma 1.1.6 ([CDS04] Lemma 4.1). Let D ∈ Ω × X be a forward invariant set for an

RDS ϕ, then for every s ≤ t we have

ϕ(t, θ−tω)D(θ−tω) ⊂ ϕ(s, θ−sω)D(θ−sω).
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Proof. Using the cocycle property and forward invariance we have

ϕ(s+ t− s, θ−tω)D(θ−tω) = ϕ(s, θ−sω)ϕ(t− s, θ−tω)D(θ−tω)

⊂ ϕ(s, θ−sω)D(θt−sθ−tω)

= ϕ(s, θ−sω)D(θ−sω).

Random sets

Let (Y, d) be an arbitrary metric space. The Hausdorff semi-distance between two

subsets of Y , dist : 2Y ×2Y → R+
0 ∪{∞}, is defined as follows: for two nonempty subsets

A,B ⊂ Y ,

dist(A,B) := sup
a∈A

inf
b∈B

d(a, b),

dist(∅, ∅) := 0, dist(∅, A) := 0 and dist(A, ∅) := ∞. For a singleton set A = {a} we

write dist(a,B) := dist(A,B) etc. We also define the function d̃ : 2Y × 2Y → R+
0 by

d̃(A,B) := inf
a∈A,b∈B

d(a, b),

with d̃(A, ∅) = d̃(∅, A) := 0 and d̃(∅, ∅) := 0.

In order to talk about convergence to invariant sets under the flow of a random dynami-

cal system in a well defined probabilistic way, we require the notion of a random set. Such

a notion is also known as a measurable multifunction, and the classic reference for the an-

alytical theory of such set-valued functions is Castaing and Valadier [CV77]; here and in

Appendix A we mainly follow the exposition by Crauel [Cra02b, Chapters 1 & 2].

Definition 1.1.7. Let (Ω,F , µ) be a probability space. A set valued map D : Ω → 2X

taking values in the subsets of a Polish space X is said to be a random set if the mapping

ω 7→ dist(x,D(ω)) is measurable for each x ∈ X , where dist is defined with respect to

some complete metric on X . If C is a random set such that C(ω) is a closed set for each

ω ∈ Ω, then C is called a closed random set. A random set U is called an open random

set if its complement, i.e. the mapping ω 7→ U c(ω) := (U(ω))c, is a closed random set. A
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random set K for which K(ω) is compact for each ω ∈ Ω will be called a compact random

set.

Remark 1.1.8. An open random set U is indeed also a random set, i.e. the distance mapping

ω 7→ dist(x, U(ω)) is measurable for each x ∈ X (Proposition A.0.7 (xi)). However, a set

valued map V for which V (ω) is open for all ω ∈ Ω and the mapping ω 7→ dist(x, V (ω))

is measurable for each x ∈ X is not necessarily an open random set; see [Cra02b, Remark

2.11 (i)] for an example.

The notion of measurability in the definition of a closed random set is slightly stronger

than that of a setD being a product measurable set, i.e. D ∈ F⊗B, such that the ω-sections

are closed for all ω ∈ Ω; in that case ω 7→ dist(x,D(ω)) is generally notF-measurable, but

is measurable with respect to a larger σ-algebra, the universal completion of F , which we

label Fu (Definition A.0.1). In the case that (Ω,F , µ) is a complete probability space then

Fu coincides with F (see Remark A.0.2). We list some basic theorems and facts relating to

random sets in Appendix A, which are largely from [Cra02b, Chapters 1 & 2] and [Chu02,

Section 1.3]. A useful theorem to note is the Projection Theorem A.0.6 which will be used

in proving measurability of certain objects; this theorem only guaranteesFu-measurability.

Here we will assume that the probability space (Ω,F , µ) is complete (Assumption 1.1.4),

but will make the distinction of Fu-measurability clear in proofs. In the non-complete case

Lemmas A.0.8 and A.0.9 may be used to replace Fu-measurable objects with almost equal

F-measurable ones. Another useful theorem to note is the Representation Theorem A.0.4,

which gives a convenient way of representing a closed random set.

We will use the following definitions of closed and open balls with a random radius,

which are closed and open, respectively, random sets that are measurable with respect to

Fu (see Remark A.0.3):

Definition 1.1.9. Given a nonnegative random variable η : Ω → R+
0 we define the closed

random ball around a random set D of radius η, using the Hausdorff semi-distance, by

B̄η(ω)(D(ω)) := {x ∈ X : dist(x,D(ω)) ≤ η(ω)},
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and the open random ball by

Bη(ω)(D(ω)) := {x ∈ X : dist(x,D(ω)) < η(ω)}.

Stationary measures, invariant measures, disintegration, random fixed point

For an RDS ϕ one would not, in general, expect there to exist a probability measure

ρ on the state space (X,B) which is invariant under ϕ in the sense that ϕ(t, ω)ρ(B) :=

ρ(ϕ(t, ω)−1B) = ρ(B) for all (t, ω, B) ∈ T × Ω × B. There are two notions of an ‘in-

variant’ measure for RDS. If the RDS induces a Markov semigroup (as is the case for RDS

generated by products of independent and identically distributed random maps or time-

homogeneous stochastic differential equations driven by a Wiener process, see [Arn98,

Chapter 2]) with transition probabilities P : X × B → [0, 1], then a probability measure ρ

on the state space (X,B) is called stationary if

ρ(B) =

∫
X

P(x,B)dρ(x) for all B ∈ B.

On the other hand, the following definition is a natural extension of the notion of an invari-

ant measure to random dynamical systems.

Definition 1.1.10. Given an RDS ϕ with state space (X,B), time set T, over a metric DS

(Ω,F , µ, θ), and with associated skew product Θ, a probability measure ν on (Ω×X,F ⊗
B) is called invariant if

(i) Θtν = ν for all t ∈ T

(ii) ΠΩν = µ

where ΠΩ denotes the projection onto Ω.

Condition (ii) in the above definition is imposed because the marginal measure ΠΩν on

(Ω,F) is necessarily a θ-invariant measure, and the noise system is considered to be an

external influence on the dynamics, which is already equipped with the invariant measure

µ.
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Given a probability measure ν on (Ω×X,F ⊗B) there exists (by [Arn98, Proposition

1.4.3], and in consideration of Assumption 1.1.4) a µ-almost surely unique disintegration

of ν with respect to µ, that is, a function ν·(·) : Ω× B → [0, 1] such that

(i) ω 7→ νω(B) is F-measurable,

(ii) νω is µ-almost surely a probability measure on (X,B),

(iii) for all A ∈ F ⊗ B one has

ν(A) =

∫
Ω

νω(A(ω))dµ(ω).

Then Definition 1.1.10 (i) may be equivalently characterised by the relation (see [Arn98,

Theorem 1.4.5])

ϕ(t, ω)νω = νθtω for all t ∈ T, µ-a.s. (1.1.1)

If an invariant measure ν is supported by a random variable a : Ω→ X then ν is called a

random Dirac measure and we write νω = δa(ω). By (1.1.1), one has ϕ(t, ω)a(ω) = a(θtω),

and hence the graph of a is invariant under ϕ, and one also refers to {a(ω)}ω∈Ω as a random

fixed point.

Topological equivalence

The following notion of topological equivalence for RDS extends that for classical dy-

namical systems; here one considers a conjugacy that depends on the noise.

Definition 1.1.11. Let (Ω,F , µ) be a probability space, θ : T×Ω→ Ω a metric dynamical

system and (X1, d1), (X2, d2) be metric spaces. Then two random dynamical systems

ϕ1 : T× Ω×X1 → X1 and ϕ2 : T× Ω×X2 → X2, both over θ, are called topologically

equivalent if there exists a random conjugacy (or random coordinate transformation) h :

Ω×X1 → X2 fulfilling the following properties:

(i) For almost all ω ∈ Ω, the mapping x 7→ h(ω, x) is a homeomorphism from X1 to

X2.

(ii) The mappings (ω, x1) 7→ h(ω, x1) and (ω, x2) 7→ h−1(ω, x2) are measurable.
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(iii) The random dynamical systems ϕ1 and ϕ2 are cohomologous, i.e.

ϕ2(t, ω, h(ω, x)) = h(θtω, ϕ1(t, ω, x)) for all x ∈ X1 and almost all ω ∈ Ω .

Linear RDS, projected linear RDS

Definition 1.1.12. An RDS ϕ : T×Ω×Rd → Rd is called linear if for all vectors x, y ∈ Rd

and all scalars α, β ∈ R, one has ϕ(t, ω)(αx + βy) = αϕ(t, ω)x + βϕ(t, ω)y for all

(t, ω) ∈ T × Ω. For such a linear RDS ϕ there exists a corresponding matrix valued

function Φ: T× Ω→ Rd×d such that Φ(t, ω)x = ϕ(t, ω)x for all (t, ω, x) ∈ T× Ω× Rd,

and we identify the RDS ϕ with Φ.

We always take Rd to be equipped with the Euclidean norm ‖·‖, and the associated

metric d(·, ·) and Borel σ-algebra B(Rd). The real projective space of Rd is the quotient

space Pd−1 := (Rd\{0})/ ∼, where x ∼ y if x = αy for some α ∈ R\{0}. We denote

by P(x) the equivalence class of x ∈ Rd\{0}, and for A ⊂ Pd−1, denote P−1A := {x ∈
Rd : P(x) ∈ A}. We equip Pd−1 with the metric dP : Pd−1 × Pd−1 → [0,

√
2], defined by

dP(x̂, ŷ) := min

{∣∣∣∣ x‖x‖ − y

‖y‖

∣∣∣∣ , ∣∣∣∣ x‖x‖ +
y

‖y‖

∣∣∣∣}
for x̂, ŷ ∈ Pd−1, and where x ∈ P−1{x̂} and y ∈ P−1{ŷ} are arbitrary nonzero vectors.

Then (Pd−1, dP) is a compact metric space. The notation distP denotes the Hausdorff semi-

distance on Pd−1 with respect to the metric dP.

A linear RDS Φ: T × Ω × Rd → Rd induces an RDS PΦ: T × Ω × Pd−1 → Pd−1 on

the real projective space called the projected linear RDS, given by

PΦ(t, ω)P(x) := P(Φ(t, ω)x) (1.1.2)

for every (t, ω, x) ∈ T× Ω× Rd\{0} (for further details see [Arn98, Section 6.2]).
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Chapter 2

Random attractor-repeller pairs

This chapter is concerned with attractor-repeller pairs of random dynamical systems on

compact metric spaces. We survey different types of attractor-repeller pairs from the liter-

ature that arise from three different concepts of attraction for random dynamical systems.

The main goal of this chapter is to find an attractor-repeller pair with suitable properties

in order to prove an analogue of Selgrade’s Theorem, which will be achieved in the next

chapter.

We begin in Section 2.1 with a brief overview of attractors and attractor-repeller pairs

in autonomous and nonautonomous systems. Then in Section 2.2 we define the three

concepts of attraction for RDS that we will consider here: forward, pullback and weak.

In Section 2.3 we recall definitions and results on so-called weak attractor-repeller pairs

from Ochs [Och99] and Crauel et al. [CDS04]; this is the most basic type of attractor-

repeller pair in the sense that the other types considered here are also weak attractor-

repeller pairs. The other types of attractor-repeller pairs involve local pullback attrac-

tors, and we prepare for them in Section 2.4 with some results on pullback Ω-limit sets,

which are the nonautonomous analogues of ω-limit sets and may be used to characterize

local pullback attractors. In Section 2.5 we present the construction of so-called pullback

attractor-repeller pairs, which was first demonstrated by Liu in the collection of papers

[Liu06, Liu07a, Liu07b]. We then give a series of examples in Section 2.6 to illustrate

the nature of the different types of attractor-repeller pairs. The first of these examples is a

counter-example to [LJS08, Lemma 4.3] on the pullback dynamics of a local pullback at-
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tractor; but a weaker statement still holds [LSZ08, Remark 3.3 (ii)] (see Remark 2.5.13 (i)).

The other examples demonstrate the nonequivalence of the three local attractor concepts,

and show that pullback attractor-repeller pairs may have some undesirable properties (see

Remark 2.5.13 (ii)). In Section 2.7 we extend the idea of so-called past and future attractor-

repeller pairs for nonautonomous systems [Ras06] to the setting of random dynamical sys-

tems. We then define strong attraction which combines pullback and forward attraction; in

Subsection 3.3.2 it will be shown that the properties of a local strong attractor are sufficient

to obtain an analogue of Selgrade’s Theorem using similar techniques used for so-called

all-time attractor repeller pairs in nonautonomous systems [Ras08]. Finally, in Section 2.9

we discuss the results of this chapter and future work.

2.1 Attractors for autonomous and nonautonomous dynamical sys-

tems

Here we give an informal overview of the concept of an attractor. We begin with the case

of autonomous dynamical systems and discuss fundamental results on attractor-repeller

pairs. Broadly speaking, an attractor is an invariant compact subset of the state space of a

dynamical system, which is in some sense stable, so that it ‘attracts’ other points in the state

space. An attractor may be thought of as a generalization of a stable fixed point or limit

cycle. There have been many different definitions of attractors proposed in the literature,

and a brief historical account may be found in [Mil85]. One of the main differences noted

there is the notion of stability associated to the attractor, for example asymptotic stability

versus Lyapunov stability. Another distinction is whether there is attraction of individual

points from some subset of the state space, which gives the notion of a point attractor, or

attraction of a family of bounded (or compact) sets, which gives the notion of a set attractor

(of course, a set attractor is also a point attractor). In [Mil85], the author considers a point

attractor for which the set of points that converge to the attractor are required to have

positive Lebesgue measure, and this object is known as a Milnor or measure attractor. If

the attractor attracts all points or all compact sets in the entire state space then one speaks of

a global point attractor or global set attractor, respectively, whereas if attraction only holds

within some open neighbourhood of the attractor, one speaks of a local point attractor or
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local set attractor, respectively.

Charles Conley, in the monograph [Con78], proved a number of fundamental results

relating to local attractors of dynamical systems on compact metric spaces. In what fol-

lows let φ : R×X → X denote a continuous dynamical system on a compact metric space

(X, d), and let ω(D) and α(D) denote the ω-limit set and α-limit set of D ⊂ X , respec-

tively. Conley’s definition of a local attractor of φ is a compact invariant set A such that

there is an open neighbourhood U ⊃ Awith ω(U) = A (such an attractor is both Lyapunov

and asymptotically stable). The dual of φ is the DS φ−(t, x) := φ(−t, x), for all t ∈ R and

x ∈ X , called the reverse time system. A local repeller is the dual concept of a local attrac-

tor, that is, it is a local attractor of the DS φ−. The existence of a local attractor A implies

the existence of a corresponding local repeller, given by R := {x ∈ X : ω(x) ∩ A = ∅};
also A = {x ∈ X : α(x) ∩R = ∅}, and hence A and R are dual.

The pair (A,R), called an attractor-repeller pair, gives a coarse but simple description

of the dynamics: the ω-limit set of any point in X\R is contained in A, and the α-limit set

of any point in X\A is contained in R. Conley also showed that there exists a Lyapunov

function on X that takes the value 1 on R, 0 on A, and is decreasing along trajectories of

points in X\(A ∪ R). In particular, if a dynamical system on a noncompact space has a

global attractor, then the asymptotic dynamics can be further analysed by attractor-repeller

pair decomposition on the global attractor. Furthermore, Conley demonstrated that by tak-

ing the intersection ∩i(Ai ∪Ri) over all the attractor-repeller pairs (Ai, Ri) for φ gives the

chain recurrent set of φ, and there exists a so-called complete Lyapunov function, which

is constant on each of the connected components of the chain recurrent set, and decreases

along trajectories of all other points. Hence, the state space is decomposed into points

which are chain recurrent and points for which trajectories are gradient-like; this decom-

position result has been called the fundamental theorem of dynamical systems [Nor95].

Another important concept is that of a Morse decomposition: for a finite nested sequence

of attractors, ∅ =: A0 ( A1 ( · · · ( An := X (which implies that the corresponding local

repellers satisfy X = R0 ) R1 ) · · · ) Rn = ∅), the (nonempty) sets Mi := Ai ∩ Ri−1,

i ∈ {1, . . . , n} are called Morse sets and the collection {M1, . . . ,Mn} a Morse decomposi-

tion. Precisely when the chain recurrent set has a finite number of connected components,

these components are given by the Morse sets of a so-called finest Morse decomposition.
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An important result in the theory of Morse decompositions is Selgrade’s Theorem ([Sel75],

see also [CK00] Chapter 5), which establishes the existence of a unique finest Morse de-

composition for the projected flow of a linear flow on a vector bundle for which the base

flow is chain transitive.

There is also the important notion of the Conley index, for which we refer the reader

to the introductory article [Mis99]. This article also discusses the notion of continuation

of attractor-repeller pairs, which is a result on the stability of attractor-repeller pairs under

perturbations of the dynamical system. Conley’s results were adapted to discrete time

dynamical systems by Franks ([Fra88]) and extended to the case of noncompact metric

spaces and semi-dynamical systems by Rybakowski [Ryb87] and Hurley [Hur91, Hur92,

Hur95, Hur98]. For articles giving a more detailed introduction to the topics mentioned

here, we refer the reader to [ACMC+06] and [Mis99].

Conley’s definition of a local attractor given above is equivalent to the one below, which

serves as the basis for the definitions of local attractors for RDS that we will consider here.

Definition 2.1.1. Let φ : R × X → X be a dynamical system on a compact metric space

(X, d). A closed invariant set A is called a local attractor of φ if there exists an open

neighbourhood U ⊃ A such that

lim
t→∞

dist(φtU,A) = 0.

The concept of an attractor-repeller pair has also been extended to nonautonomous

dynamical systems. In the case of a skew product flow with a compact base space and

compact state space, the methods for the autonomous case may be applied on the prod-

uct space. In the general nonautonomous case the base space is the time axis and hence

noncompact, and so one cannot directly apply the methods used for autonomous systems.

Rasmussen [Ras06] has demonstrated that by restricting to only the past or the future time

domain of a nonautonomous system with suitable notions of local attraction and repul-

sion, one can obtain so-called past attractor-repeller pairs or future attractor-repeller pairs.

Furthermore, in the case of linear nonautonomous dynamical systems, if there exists a so-

called uniform attractor then there exists also a corresponding uniform repeller, and the

pair is called an all-time attractor-repeller pair. It is then possible to prove analogues of



30 Chapter 2. Random attractor-repeller pairs

Selgrade’s theorem using past, future and all-time attractor-repeller pairs [Ras07, Ras08].

(For a comprehensive exposition on past, future and all-time attractor-repeller pairs and

Morse decompositions see [KR11, Chapters 3,4].)

2.2 Attraction concepts for random dynamical systems

An RDS is a nonautonomous system, which gives an additional degree of freedom and

leads to separate attraction concepts for different time domains of the system. Moreover,

the RDS comes equipped with a probability measure and so we may consider convergence

with respect to the different notions of probabilistic convergence (here we only consider

almost sure convergence and convergence in probability).

The most natural definition of set attraction for an RDS ϕ is the following:

Definition 2.2.1. A random set A is said to forward attract a random set D if

lim
t→∞

dist(ϕ(t, ω)D(ω), A(θtω)) = 0 µ-a.s. (2.2.1)

The notion of pullback attraction is a more abstract concept.

Definition 2.2.2. For given (t, ω) ∈ T×Ω, the pullback mapping corresponding to an RDS

ϕ is the mapping

ϕ(t, θ−tω) : X → X.

The pullback mapping describes the dynamics starting from a past value of the noise,

θ−tω, up to the present time (recall that if T is one-sided, we still assume that θ is defined

on the corresponding two-sided time set T̄).

Definition 2.2.3. A random set A is said to pullback attract a random set D if

lim
t→∞

dist(ϕ(t, θ−tω)D(θ−tω), A(ω)) = 0 µ-a.s. (2.2.2)

The mathematical advantage of starting from earlier times and evolving up to the present

time is that one is converging to a fixed set. The disadvantage is that pullback attraction
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does not generally imply forward attraction (and vice versa), and hence may not truly de-

scribe the asymptotic dynamics of the RDS, although it does imply forward attraction in

the weaker sense described below.

Weak attraction uses the weaker notion of convergence in probability as opposed to

almost sure convergence.

Definition 2.2.4. A random set A is said to weakly attract a random set D if

lim
t→∞

µ{ω : dist(ϕ(t, ω)D(ω), A(θtω)) > ε} = 0 for every ε > 0. (2.2.3)

Remark 2.2.5. (i) Let A and D be random sets. Since θ preserves µ, one has

µ{dist(ϕ(t, ω)D(ω), A(θtω)) > ε} = µ{dist(ϕ(t, θ−tω)D(θ−tω), A(ω)) > ε},
(2.2.4)

and so if A weakly attracts D, then

lim
t→∞

µ{ω : dist(ϕ(t, θ−tω)D(θ−tω), A(ω)) > ε} = 0 for every ε > 0, (2.2.5)

hence, one may say that A both ‘forward attracts D in probability’ and ‘pullback

attracts D in probability’.

(ii) Note that since almost sure convergence implies convergence in probability, forward

and pullback attraction both imply weak attraction, and in particular pullback at-

traction implies weak forward attraction (recall also that convergence in probability

implies almost sure convergence of a subsequence).

(iii) Forward, pullback, and weak repulsion are all defined similarly with limt→−∞; for-

ward repulsion requires T to be two-sided, whilst in the case of weak repulsion for

one-sided time, one may consider weak repulsion in the pullback sense as described

in (i).

We make the following distinctions relating to the time set T of an RDS ϕ:

(i) The past of ϕ corresponds to the time domain T−0 ,
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(ii) the future of ϕ corresponds to the time domain T+
0 ,

(iii) the entire time of ϕ corresponds to the time domain T.

Pullback attraction and forward repulsion are then considered to be attraction concepts for

the past of the RDS, as they only involve the dynamics of ϕ on T−0 . Similarly, forward

attraction and pullback repulsion are considered to be attraction concepts for the future of

the RDS. Weak attraction and repulsion are considered attraction concepts for the entire

time, since by Remark 2.2.5 (i) we may take a forward or a pullback limit.

Examples using these three attraction concepts are compared in the papers [Sch02] (for

SDEs) and [AO03] (for discrete time RDS), where it is shown that only the relationships

of forward attraction and pullback attraction implying weak attraction hold in general (see

also [Cra02a]). In Section 2.6 we also demonstrate this fact with some examples of pro-

jected linear discrete time random dynamical systems. We also note that a wider range

of attraction concepts for RDS are studied and compared in the paper [AO03], including

Milnor-type random attractors.

Global attractors for RDS have mainly been studied in the sense of pullback attraction,

and were first considered in the works [Sch92] and [CF94]. Global attractors in the sense of

weak attraction were first studied in [Och99]. In [AS01a] the authors show that there exists

a certain weakly attracting global attractor if and only if there exists a random Lyapunov

function whose zero set is equal to the attractor. The notions of chain recurrence, Lyapunov

functions and the Conley index have been studied in the context of pullback attraction in

[Liu06, Liu07a, Liu07b, LJS08, Liu08]. Here we study constructions and properties of

attractor-repeller pairs on compact metric spaces corresponding to local random attractors

defined with respect to the three attraction concepts given above.

2.3 Weak attractor-repeller pairs

Weak attractors were first considered in [Och99], with many fundamental results proved

for global, local, and so-called relative weak attractors in terms of both set and point attrac-

tion, and in particular Morse decompositions by local weak set attractors are demonstrated.

Further analysis of Morse decomposition by local weak set attractors is carried out in the
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paper [CDS04]. In this section we recall basic definitions and results on local weak set

attractors from these two papers, which here shall be referred to as just local weak attrac-

tors. All of the types of attractor-repeller pairs we shall consider in this thesis are also

weak attractor-repeller pairs, and hence all of the results in this section are applicable to

these other attractor-repeller pair types as well. We hold the following assumptions in this

section.

Assumption 2.3.1. Let (X, d) be a compact metric space (hence a Polish space), and ϕ a

continuous RDS with two-sided time (T = Z or R).

Definition 2.3.2. An invariant compact random set A is called a local weak attractor if

there exists a forward invariant open random set U with U(ω) ⊃ A(ω) µ-a.s. such that

each closed random set C ⊂ U is weakly attracted to A, i.e.

lim
t→∞

µ{dist(ϕ(t, ω)C(ω), A(θtω)) > ε} = 0 for every ε > 0. (2.3.1)

The neighbourhood U is said to be a weak attracting neighbourhood of A. The set

B(A)(ω) := {x ∈ X : ϕ(t, ω)x ∈ U(θtω) for some t ≥ 0}

is called the basin of attraction of A.

Definition 2.3.3. An invariant compact random setR is called a local weak repeller if there

exists a backward invariant open random set U with U(ω) ⊃ R(ω) µ-a.s. such that each

closed random set C ⊂ U is weakly repelled to R, i.e.

lim
t→−∞

µ{dist(ϕ(t, ω)C(ω), R(θtω)) > ε} = 0 for every ε > 0.

The neighbourhood U is said to be a weak repelling neighbourhood of R. The set

B(R)(ω) := {x ∈ X : ϕ(t, ω)x ∈ U(θtω) for some t ≤ 0}

is called the basin of repulsion of R.
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We generally only state results pertaining to attractors, with analogous results holding

for repellers. The first results here describe important properties of the basin of attraction.

Lemma 2.3.4 ([CDS04, Lemma 4.2]). The basin of attraction of a local weak attractor A

is an invariant open random set and A weakly attracts all closed random sets C such that

C(ω) ⊂ B(A)(ω) µ-a.s., i.e. (2.3.1) holds.

Theorem 2.3.5 ([Och99, Theorem 1]). Let A be a local weak attractor, then any invariant

closed random set C ⊂ B(A) is contained in A µ-a.s. In particular, A is (up to a set of

measure zero) the maximal local weak attractor in B(A).

The following important result demonstrates that the existence of a weak attractor im-

plies the existence of a weak repeller.

Proposition 2.3.6 ([CDS04, Proposition 5.1]). Let A be a local weak attractor. Then

R := X\B(A)

is a local weak repeller with basin of repulsion B(R) = X\A.

Note that by applying the repeller version of Theorem 2.3.5 to R in the above proposi-

tion, R is the maximal local weak repeller in X\A. Since R = X\B(A), this implies the

following corollary.

Corollary 2.3.7 ([CDS04, Corollary 5.1]). Let A be a local weak attractor with weak

attracting neighbourhood U . Then the basin of attraction B(A) is independent of U up to

a set of zero measure.

To summarize the above results, given a local weak attractor A, R := X\B(A) is the

almost surely unique, maximal local weak repeller in X\A, and similarly, A = X\B(R)

and is the almost surely unique, maximal local weak attractor in X\R.

Definition 2.3.8. LetA be a local weak attractor, then the local weak repellerR = X\B(A)

is called the repeller corresponding to A, and A the attractor corresponding to R, and

(A,R) is called a weak attractor-repeller pair.
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The following theorem shows that local weak attractors (and repellers) are invariant

under random coordinate transformations.

Theorem 2.3.9 ([Och99, Theorem 4]). Let ϕ be an RDS on X , and let Y be another

compact metric space. Let h : Ω ×X → Y be a random conjugacy from X to Y . Then if

A is a local weak attractor for ϕ in X with basin of attraction B(A), h(A) is a local weak

attractor for ψ(t, ω) := hθtωϕ(t, ω)hω in Y with basin of attraction h(B(A)).

The following theorem is important in obtaining Morse decompositions for RDS, and

demonstrates that a nested sequence of local weak attractors leads to an oppositely nested

sequence of corresponding weak repellers.

Theorem 2.3.10 ([CDS04, Theorem 5.1]). Suppose that A1 and A2 are local weak attrac-

tors such that A1(ω) ( A2(ω) µ-a.s., and with corresponding repellers R1 and R2, then

R1(ω) ) R2(ω) µ-a.s.

The following definition of a Morse decomposition holds for all types of attractor-

repeller pairs we will consider in this thesis, that is, weak, pullback, past, future or strong

attractor-repeller pairs.

Definition 2.3.11. Suppose that (Ai, Ri), i ∈ {0, . . . , n}, are weak, pullback, past, future,

or strong attractor-repeller pairs almost surely satisfying

∅ = A0(ω) ( A1(ω) ( · · · ( An(ω) = X,

(equivalently, X = R0(ω) ) R1(ω) ) · · · ) Rn(ω) = ∅). Then the family of compact

random setsM := {M1, . . . ,Mn} defined by

Mi := Ai ∩Ri−1, i ∈ {1, . . . , n}

is called a weak, pullback, past, future, or strong, respectively, Morse decomposition of X ,

and the sets Mi are called Morse sets.

One can introduce a partial ordering on the equivalence class of Morse decompositions

for an RDS that differ only on a set of measure zero.
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Definition 2.3.12. The Morse decompositionM = {M1, . . . ,Mn} is said to be finer than

the Morse decomposition M̃ = {M̃1, . . . , M̃m}, if for each i ∈ {1, . . . ,m} there exists a

j ∈ {1, . . . , n} such thatMj(ω) ⊂ M̃i(ω) µ-a.s. A minimal element of this partial ordering

is called a finest Morse decomposition.

The next set of results give some basic properties of weak Morse decompositions and

show that the weak Morse sets describe the asymptotic dynamics of an RDS, in terms of

weak convergence, and in that they support all invariant measures.

Definition 2.3.13 ([CDS04, Definition 3.3]). An invariant random set M is called isolated

if there exists an open random set U with U(ω) ⊃ M(ω) µ-a.s. such that for each random

variable x satisfying

ϕ(t, ω)x(ω) ∈ U(θtω) for all t ∈ T, µ-a.s.,

then x(ω) ∈M(ω) µ-a.s.

Lemma 2.3.14 ([CDS04, Lemma 5.1]). Morse sets are invariant compact random sets,

which are almost surely nonempty and pairwise disjoint, and are isolated.

Theorem 2.3.15 ([CDS04, Theorem 5.2]). Suppose that {M1, . . . ,Mn} is a weak Morse

decomposition given by weak attractor-repeller pairs (Ai, Ri), i ∈ {1, . . . , n}, and let

M := ∪ni=1Mi. Then,

(i) Every X-valued random variable x is both weakly attracted and repelled to the set

M .

(ii) If a random variable x is weakly attracted by Mi and weakly repelled by Mj , then

i ≤ j, and i = j if and only if x(ω) ∈Mi(ω) µ-a.s.

(iii) If x1, . . . , xk areX-valued random variables such that for some j0, . . . jk ∈ {1, . . . , n},
xi is weakly repelled by Mji−1

and weakly attracted by Mji , then j0 ≤ jk. Further-

more j0 < jk if and only if µ(xi /∈M) > 0 for some i, otherwise j0 = · · · = jk.

Theorem 2.3.16 ([Och99, Theorem 2 & Remark 11]). Every ϕ-invariant measure is sup-

ported by the Morse sets of a weak Morse decomposition, i.e. let {M1, . . . ,Mn} be a weak
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Morse decomposition,M := ∪ni=1Mi, and ν be a ϕ-invariant measure, then νω(M(ω)) = 1

µ-a.s.

2.4 Pullback limit sets

In autonomous systems local attractors and repellers may be characterized in terms of ω-

limit sets and α-limit sets, respectively. For nonautonomous dynamical systems there exist

analogous notions of limit sets which are invariant sets in the sense of Definition 1.1.5,

and in the next section they will be used as an alternative characterization of local pullback

attractors and local pullback repellers. These are called pullback Ω-limit sets and pullback

α-limit sets (it should be clear when the use of a capital omega refers to a pullback limit set,

and when it refers to the probability space), and in this section we give some fundamental

results; these results may be found in the literature in some close form, but we include them

here with their proofs both for completeness and since similar techniques used in the proofs

are called for later.

The material presented in this section is in a more general setting than is required for

the remainder of the chapter.

Assumption 2.4.1. Let (X, d) be a complete separable metric space, and ϕ a continuous

RDS with one- or two-sided time T.

Definition 2.4.2. Given a set D ⊂ Ω×X , the (pullback) Ω-limit set of D is defined as

ΩD(ω) :=
⋂
τ≥0

⋃
t≥τ

ϕ(t, θ−tω)D(θ−tω),

and if the time set T is two-sided, the (pullback) α-limit set of D is defined as

αD(ω) :=
⋂
τ≥0

⋃
t≥τ

ϕ(−t, θtω)D(θtω).

(Equivalently,

ΩD(ω) = {x ∈ X : there exists a sequence of times {ti}i∈N with ti →∞ for i→∞,

and a sequence of points xi ∈ D(θ−tiω) such that lim
i→∞

ϕ(ti, θ−tiω)xi = x},
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and similarly for αD.)

The following lemma gives a measurability result for pullback images of random sets

(the proof follows the proof of Proposition 1.5.1 in [Chu02], which in turn takes the idea

from [CF94]).

Lemma 2.4.3. Let D be a random set. Then for each x ∈ X the mapping

(t, ω) 7→ dist(x, ϕ(t, θ−tω)D(θ−tω))

is (B(T) ⊗ F ,B(R̄+
0 ))-measurable, and hence for each fixed t ∈ T, ϕ(t, θ−tω)D(θ−tω) is

also a random set.

Proof. From Proposition A.0.7 (ii), D is a closed random set. Then by the Representation

Theorem A.0.4, we have that D(ω) = g(ω, Y ) for ω ∈ Ω\E where E := {ω : D(ω) = ∅},
Y is a Polish space, and g : Ω × Y → X is a mapping such that for all ω ∈ Ω, g(ω, ·) is

continuous and for all y ∈ Y , g(·, y) is measurable. Then for each x ∈ X and n ∈ N we

define

ρn(t, ω) := d(x, ϕ(t, θ−tω)g(θ−tω, yn))

where {yn}n∈N is a countable dense set of points in Y , and let

ρ(t, ω) := inf
n∈N

ρn(t, ω).

By definition, the mapping (t, ω) 7→ θtω is (B(T) ⊗ F ,F)-measurable, and then so is the

mapping (t, ω) 7→ θ−t(ω) =: θ−(t, ω). Then we have θ−1
− E ∈ B(T)⊗F and

dist(x, ϕ(t, θ−tω)D(θ−tω)) =dist(x, ϕ(t, θ−tω)D(θ−tω))

=

ρ(t, ω), (t, ω) ∈ (T× Ω)\θ−1
− E,

∞, (t, ω) ∈ θ−1
− E.

We now demonstrate that ρn is a (B(T)⊗F ,B(R+
0 )-measurable function, which then also

implies that ρ is measurable, and this proves the result. It is straightforward to show that the

mapping ψ(t, ω) := (t, θ−(t, ω)) is (B(T)⊗F ,B(T)⊗F)-measurable and that the mapping
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Gn(t, ω) := (t, ω, g(ω, yn)) is (B(T) ⊗ F ,B(T) ⊗ F ⊗ B)-measurable, and by definition

(t, ω, x) 7→ ϕ(t, ω)x is (B(T)⊗F⊗B,B)-measurable. Therefore the composition ϕ◦Gn◦ψ
is (B(T) ⊗ F ,B)-measurable, and it follows that ρn is a (B(T) ⊗ F ,B(R+

0 ))-measurable

function.

The following two results are based on the results [CF94, Lemma 3.2, Proposition 3.6

& Theorem 3.11], [Cra99, Lemma 3.5] and [Liu06, Theorem 3.1]. The following lemma

asserts the invariance of pullback limit sets, and measurability of pullback limit sets of

random sets.

Lemma 2.4.4. Let D ⊂ Ω × X , then ΩD is a closed, forward invariant set, and is also

invariant if T is two-sided. If D is a random set then ΩD is a closed random set.

Proof. The fact that ΩD(ω) is closed for each ω ∈ Ω follows from its definition as an

intersection of closed sets. To show forward invariance, let x ∈ ΩD(ω), then there exist

sequences ti → ∞ and xi ∈ D(θ−tiω) such that limi→∞ ϕ(ti, θ−tiω)xi = x. Then for

t ≥ 0, using the continuity of ϕ,

ϕ(t, ω)x = ϕ(t, ω) lim
i→∞

ϕ(ti, θ−tiω)xi

= lim
i→∞

ϕ(t+ ti, θ−tiω)xi

= lim
i→∞

ϕ(t̃i, θ−t̃iθtω)xi

with t̃i = t + ti, and since t̃i → ∞ with xi ∈ D(θ−t̃iθtω) we have ϕ(t, ω)x ∈ ΩD(θtω).

Then the invariance of ΩD for two-sided time follows from the fact that ϕ(t, ω) is then a

homeomorphism on X for all (t, ω) ∈ T× Ω.

We now show the measurability of ω 7→ dist(x,ΩD(ω)) for any x ∈ X . Since,

⋃
t≥s

ϕ(t, θ−tω)D(θ−tω) ⊃
⋃
t≥u

ϕ(t, θ−tω)D(θ−tω) for u ≥ s ≥ 0,

the Ω-limit set may be formed by taking a countable intersection, i.e.

ΩD(ω) =
⋂
n∈N

⋃
t≥n

ϕ(t, θ−tω)D(θ−tω). (2.4.1)
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We also have the following:

dist

(
x,
⋃
t≥τ

ϕ(t, θ−tω)D(θ−tω)

)
= inf

t≥τ
dist(x, ϕ(t, θ−tω)D(θ−tω)) (2.4.2)

for τ ≥ 0. Lemma 2.4.3 gives that (t, ω) 7→ dist(x, ϕ(t, θ−tω)D(θ−tω)) is a (B(T) ⊗
F ,B(R̄+

0 ))-measurable function. Then in the discrete time case the infimum in (2.4.2) is

over a countable set, and hence ∪t≥τϕ(t, θ−tω)D(θ−tω) is an F-measurable random set.

Then taking a countable intersection as in (2.4.1) and using Proposition A.0.7 (ii), ΩD is an

F-measurable closed random set. We now deal with the continuous time case. For arbitrary

a ∈ R̄+
0 we have

{ω : inf
t≥τ

dist(x, ϕ(t, θ−tω)D(θ−tω)) < a}

= ΠΩ{(t, ω) : dist(x, ϕ(t, θ−tω)D(θ−tω)) < a, t ≥ τ},

and so by the Projection Theorem A.0.6, we have that (2.4.2) is Fu-measurable. Then once

again taking a countable intersection as in (2.4.1), gives us that ΩD(ω) is anFu-measurable

closed random set.

The following theorem gives sufficient conditions for pullback limit sets to be random

sets that are nonempty and compact µ-a.s.

Theorem 2.4.5. Let D be a random set that is nonempty µ-a.s., and such that

⋃
t≥T (ω)

ϕ(t, θ−tω)D(θ−tω)

is pre-compact µ-a.s. for some random variable T : Ω → R+
0 . Then the following state-

ments hold:

(i) ΩD is a closed random set that is both nonempty and compact µ-a.s.

(ii) If T is one-sided, ΩD(ω) is forward invariant and

ϕ(t, ω)ΩD(ω) = ΩD(θtω) for all t ∈ T, µ-a.s.,



2.5 Pullback attractor-repeller pairs 41

whilst if T is two-sided then ΩD is invariant (cf. Definition 1.1.5).

(iii) ΩD pullback attracts D.

Proof. (i) The fact that ΩD is a closed random set is given by Lemma 2.4.4. By the

nonempty condition and ergodicity of θ, for µ almost all ω ∈ Ω there exists a sequence

of times ti →∞ such that D(θ−tiω) 6= ∅, and so combining this with the pre-compactness

condition, ΩD(ω) is almost surely the intersection of nonempty centred compact sets, and

hence is itself nonempty and compact µ-a.s.

(ii) We show that ΩD(θtω) ⊂ ϕ(t, ω)ΩD(ω) for all t ∈ T, µ-a.s., which combined

with the forward invariance given by Lemma 2.4.4, gives that ϕ(t, ω)ΩD(ω) = ΩD(θtω)

µ-a.s. Let y ∈ ΩD(θtω), then y = limi→∞ ϕ(ti, θ−ti+tω)yi for some sequences ti →
∞ and yi ∈ D(θ−ti+tω), and we have y = limi→∞ ϕ(t, ω)ϕ(ti − t, θ−ti+tω)yi. Define

ỹi := ϕ(t̃i, θ−t̃iω)yi, with t̃i := ti− t, so that ỹi ∈ ϕ(t̃i, θ−t̃iω)D(θ−t̃iω). For µ-a.e. ω ∈ Ω,

∪s≥T (ω)ϕ(s, θ−sω)D(θ−sω) is compact, and so there exists a convergent subsequence ỹij →
ỹ ∈ ΩD(ω). By the continuity of ϕ we have that y = ϕ(t, ω)ỹ, and hence the assertion is

proved. The invariance of ΩD for the case of two-sided time is given by Lemma 2.4.4.

(iii) To show that limt→∞ dist(ϕ(t, θ−tω)D(θ−tω),ΩD(ω)) = 0 µ-a.s., let F ∈ F be the

full measure set where the pre-compactness condition holds, and assume there is an ω ∈ F
such that the pullback attraction does not hold. Then there is a sequence of times ti → ∞
and points xi ∈ D(θ−tiω) with dist(ϕ(ti, θ−tiω)xi,ΩD(ω)) ≥ ε for all i ∈ N and some ε >

0. Since ∪t≥T (ω)ϕ(t, θ−tω)D(θ−tω) is compact there is then a convergent subsequence of

the pointsϕ(ti, θ−tiω)xi, converging to a point x ∈ ∪t≥T (ω)ϕ(t, θ−tω)D(θ−tω)\Bε(ΩD(ω)),

which is a contradiction.

2.5 Pullback attractor-repeller pairs

The material in this section is an exposition on the construction of pullback attractor-

repeller pairs due to Liu [Liu06, Liu07a, Liu07b]. Here we review the key results from

those papers, and try to give a clear and concise account of the construction of pullback

attractor-repeller pairs. We first give some basic definitions, then show how local pull-

back attractors may be alternatively described in terms of pullback Ω-limit sets. We then
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establish the independence of the basin of attraction of a local pullback attractor with re-

spect to different pullback attracting neighbourhoods. The main result is Theorem 2.5.11

which shows that the existence of a local pullback attractor implies the existence of a corre-

sponding local pullback repeller. Finally, we discuss some undesirable properties of these

objects, which will be demonstrated by examples in the next section.

Assumption 2.5.1. Let (X, d) be a compact metric space (hence a Polish space), and ϕ a

continuous RDS with two-sided time (T = Z or R).

Definition 2.5.2. An invariant compact random set A is called a local pullback attractor if

there is an open random set U with U(ω) ⊃ A(ω) µ-a.s. such that

lim
t→∞

dist(ϕ(t, θ−tω)U(θ−tω), A(ω)) = 0 µ-a.s.

The random set U is called a pullback attracting neighbourhood of A. The set

B(A)(ω) := {x ∈ X : ϕ(t, ω)x ∈ U(θtω) for some t ≥ 0}

is called the basin of attraction of A. A local pullback attractor is called trivial if µ(A(ω) ∈
{∅, X}) = 1.

Definition 2.5.3. An invariant compact random set R is called a local pullback repeller if

there is an open random set U with U(ω) ⊃ R(ω) µ-a.s. such that

lim
t→−∞

dist(ϕ(t, θ−tω)U(θ−tω), R(ω)) = 0 µ-a.s.

The random set U is called a pullback repelling neighbourhood of R. The set

B(R)(ω) := {x ∈ X : ϕ(t, ω)x ∈ U(θtω) for some t ≤ 0}

is called the basin of repulsion of R. A local pullback repeller is called trivial if µ(R(ω) ∈
{∅, X}) = 1.

Definition 2.5.4. Let U be an open random set. If there exists a random variable T : Ω →
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R+
0 such that ⋃

t≥T (ω)

ϕ(t, θ−tω)U(θ−tω) ⊂ U(ω) µ-a.s.,

then U is called a pullback absorbing set, and T is called the absorbtion time.

Definition 2.5.5. Let U be an open random set. If there exists a random variable T : Ω →
R+

0 such that ⋃
t≥T (ω)

ϕ(−t, θtω)U(θtω) ⊂ U(ω) µ-a.s.,

then U is called a pullback expelling set, and T is called the expulsion time.

All of the results in this section are stated for attractors only; analogous results also

hold for repellers. Under Assumption 2.5.1 we may make the following modification of

Theorem 2.4.5.

Theorem 2.5.6. Let D be a random set, then ΩD(ω) is an invariant compact random set

which pullback attracts D.

The existence of a local pullback attractor may be guaranteed by the existence of a

pullback absorbing set.

Proposition 2.5.7. The Ω-limit set of a pullback absorbing set U is a local pullback attrac-

tor with pullback attracting neighbourhood U .

Proof. Since U is a pullback absorbing set ΩU(ω) ⊂ U(ω) almost surely, and by Theo-

rem 2.5.6 ΩU pullback attracts U .

This demonstrates a mathematical advantage of pullback attractors over forward at-

tractors, that one can show the existence of a pullback attractor when one has a pullback

absorbing set and construct it in a fiber-wise fashion (by taking the pullback Ω-limit set),

whilst there is no analogous method for forward attractors of nonautonomous systems.

The following result shows that the pullback attracting neighbourhood of a local pullback

attractor is a pullback absorbing set, and hence local pullback attractors may also be char-

acterized by Ω-limit sets of pullback absorbing sets.
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Proposition 2.5.8. Let A be a local pullback attractor with pullback attracting neighbour-

hood U , then

(i) ΩU(ω) = A(ω) µ-a.s., and

(ii) U is a pullback absorbing set.

Proof. (i). Let F ∈ F be the set of full measure where A pullback attracts U and U(ω) ⊃
A(ω), and assume that ΩU(ω) 6= A(ω) for some ω ∈ F . Then since A(ω) ⊂ ΩU(ω)

(because of the invariance of A(ω)), there exists an x ∈ ΩU(ω)\A(ω), and there exist

sequences ti → ∞ and xi ∈ U(θ−tiω) such that x = limi→∞ ϕ(ti, θ−tiω)xi. Since A(ω)

is compact there is an ε > 0 such that x /∈ Bε(A(ω)), and hence for some N ∈ N,

ϕ(ti, θ−tiω)xi /∈ Bε(A(ω)) for all i ≥ N . This contradicts pullback attraction of U to A

for ω ∈ F .

(ii). Define η(ω) := d̃(A(ω), U c(ω)) which is measurable by similar arguments to

the proof of Lemma A.0.10. For µ almost all ω ∈ Ω there exists a time T such that

dist(ϕ(t, θ−tω)U(θ−tω), A(ω)) ≤ η(ω)
2

for all t ≥ T , and hence ∪t≥Tϕ(t, θ−tω)U(θ−tω) ⊂
U(ω). It remains to show that there exists a measurable such T . Define

T (ω) := inf

{
τ ∈ R+

0 :
⋃
t≥τ

ϕ(t, θ−tω)U(θ−tω) ⊂ B̄η(ω)/2(A(ω))

}

= inf

{
τ ∈ R+

0 : dist

(⋃
t≥τ

ϕ(t, θ−tω)U(θ−tω), B̄η(ω)/2(A(ω))

)
= 0

}
.

One can show that

%(t, ω) := dist
(
ϕ(t, θ−tω)U(θ−tω), B̄η(ω)/2(A(ω))

)
is (B(T) ⊗ F ,B(R̄+

0 ))-measurable by using similar arguments to the proofs of Lemmas

A.0.10 and 2.4.3. We have

dist

(⋃
t≥τ

ϕ(t, θ−tω)U(θ−tω), B̄η(ω)/2(A(ω))

)
= sup

t≥τ
%(t, ω) =: %τ (ω),
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and then for a ∈ R+
0 ∪ {∞},

{ω : %τ (ω) > a} = ΠΩ{(t, ω) : %(t, ω) > a, t ≥ τ},

which is an Fu measurable set by the Projection Theorem A.0.6. Let Fτ := {ω : %τ (ω) =

0}. Note that Fτ1 ⊂ Fτ2 for τ1 ≤ τ2, and hence

{ω : T (ω) < a} =
⋃

τ∈Q+
0 ,τ<a

Fτ

so that T is Fu measurable.

The following lemma, which shows that there exists a forward invariant pullback at-

tracting neighbourhood for any given local pullback attractor, is needed to demonstrate that

a local pullback attractor is also a local weak attractor (note that the definition of a local

weak attractor, Definition 2.3.2, requires a forward invariant neighbourhood), and is also

required for the proof of Theorem 2.5.11.

Lemma 2.5.9 ([Liu07b, Lemma 3.1]). Let A be a local pullback attractor with pullback

attracting neighbourhood U . Then there exists a forward invariant pullback attracting

neighbourhood of A.

Proof. Define

Ũ(ω) := int

(⋃
t≥0

ϕ(t, θ−tω)U(θ−tω)

)
. (2.5.1)

By Proposition 1.5.1 of [Chu02] and Proposition A.0.7 (xii), Ũ is an Fu-measurable for-

ward invariant open random set. We will show that ΩŨ(ω) = ΩU(ω) for all ω ∈ Ω, and

then by Proposition 2.5.8 and Theorem 2.5.6, we obtain thatA pullback attracts Ũ . We first

note the fact that for a continuous function f and an arbitrary collection of sets {Bi} one

has

∪if(Bi) = ∪if(Bi). (2.5.2)
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Then using (2.5.2), we obtain

ΩŨ(ω) =
⋂
τ≥0

⋃
s≥τ

ϕ(s, θ−sω)Ũ(θ−sω)

=
⋂
τ≥0

⋃
s≥τ

ϕ(s, θ−sω)int

(⋃
t≥0

ϕ(t, θ−tθ−sω)U(θ−tθ−sω)

)
.

Since U(ω) is open and ϕ(t, ω) is a homeomorphism it follows that the latter expression is

equal to

⋂
τ≥0

⋃
s≥τ

ϕ(s, θ−sω)
⋃
t≥0

ϕ(t, θ−tθ−sω)U(θ−tθ−sω)

and using (2.5.2) again, this is equal to

⋂
τ≥0

⋃
s≥τ

ϕ(s, θ−sω)
⋃
t≥0

ϕ(t, θ−tθ−sω)U(θ−tθ−sω).

Finally, the last expression is easily simplified to give

⋂
τ≥0

⋃
s≥τ

⋃
t≥0

ϕ(s+ t, θ−s−tω)U(θ−s−tω) =
⋂
τ≥0

⋃
s≥τ

ϕ(s, θ−sω)U(θ−sω)

= ΩU(ω).

Lemma 2.5.10. The basin of attraction B(A) of a local pullback attractor A is indepen-

dent, up to a zero measure set, of the pullback attracting neighbourhood. If one chooses a

forward invariant pullback attracting neighbourhood of A (the existence of which is guar-

anteed by Lemma 2.5.9) then B(A) is an invariant open random set. Furthermore, A is a

local weak attractor with basin of attraction B(A).

Proof. Let B(A,U) denote the basin of attraction of the local pullback attractor A defined

with respect to the pullback attracting neighbourhood U of A. Given a forward invariant

pullback attracting neighbourhood Ũ of A, since A pullback attracts Ũ it also weakly at-

tracts all closed random sets in Ũ , and so is a local weak attractor with (forward invariant)
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weak attracting neighbourhood Ũ and basin of attraction B(A, Ũ). Lemma 2.3.4 asserts

that B(A, Ũ) is an invariant open random set.

Now consider two arbitrary pullback attracting neighbourhoods U1 and U2 of A. We

now show that B(A,U1) ⊂ B(A,U2) almost surely. Since U1 is pullback attracted to

A, by similar arguments to the proof of Proposition 2.5.8 (ii), there exists a measurable

T : Ω→ R+
0 such that

⋃
t≥T (ω)

ϕ(t, θ−tω)U1(θ−tω) ⊂ U2(ω) µ-a.s. (2.5.3)

Let E ⊂ Ω be the exceptional set in (2.5.3), and choose N ∈ N such that the set FN :=

{ω ∈ Ω: T (ω) ≤ N}\E has µ(FN) > 0. Then by Birkhoff’s ergodic theorem, there exists

a full measure set G ⊂ Ω such that for all ω ∈ G there exists a sequence of times {ti}i∈N
with ti →∞ and such that θtiω ∈ FN for each i. By (2.5.3), for each i ∈ N

⋃
t≥N

ϕ(t, θ−tθtiω)U1(θ−tθtiω) ⊂ U2(θtiω).

Let x ∈ B(A,U1)(ω), which means that there exists an s ∈ T+
0 such that ϕ(s, ω)x ∈

U1(θsω), and choose i ∈ N such that ti ≥ N + s. Then ϕ(ti − s, θsω)U1(θsω) ⊂ U2(θtiω),

and hence x ∈ B(A,U2)(ω), and therefore B(A,U1)(ω) ⊂ B(A,U2)(ω) µ-a.s. Reversing

the roles of U1 and U2 then gives the almost sure opposite inclusion, and so B(A,U1) =

B(A,U2) almost surely, and this completes the proof.

The following result from [Liu07a] says that the existence of a local pullback attractor

implies the existence of a µ-a.s. uniquely determined local pullback repeller (in the proof

given here we also explicitly prove the fact that the complement of a forward invariant

pullback absorbing set is a pullback expelling set).

Theorem 2.5.11 ([Liu07a] Lemma 5.1). Let A be a local pullback attractor, then R :=

X\B(A) is a local pullback repeller with basin of repulsion X\A. Furthermore, (A,R) is

also a weak attractor-repeller pair.

Proof. Let U be the forward invariant pullback attracting neighbourhood of A given by
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Lemma 2.5.9. By Proposition 2.5.8 U is a pullback absorbing set, i.e. there exists a non-

negative random variable T such that

⋃
t≥T (ω)

ϕ(t, θ−tω)U(θ−tω) ⊂ U(ω) µ-a.s. (2.5.4)

Since U is a forward invariant open random set, V := U
c

is a backward invariant open

random set (see [Arn98, Exercise 1.6.10] and Proposition A.0.7 (xi)). The proof is divided

into four parts.

Part 1. We show that V is a pullback expelling set, and hence αV is a local pullback

repeller. Lemma 1.1.6 implies that

⋃
t≥T (ω)

ϕ(t, θ−tω)U(θ−tω) = ϕ(T (ω), θ−T (ω)ω)U(θ−T (ω)ω). (2.5.5)

Since ϕ(t, ω) is a homeomorphism for all (t, ω) ∈ T× Ω, we have

ϕ(T (ω), θ−T (ω)ω)U(θ−T (ω)ω) = ϕ(T (ω), θ−T (ω)ω)U(θ−T (ω)ω),

and hence using (2.5.5) and (2.5.4),

U(θ−T (ω)ω) ⊂ ϕ(−T (ω), ω)U(ω).

Then,

U(θ−T (ω)ω)
c
⊃ ϕ(−T (ω), ω)U(ω)c ⊃ ϕ(−T (ω), ω)U(ω)

c

and so,

V (θ−T (ω)ω) ⊃ ϕ(−T (ω), ω)V (ω).

Since V is backward invariant one can apply a backward invariance version of Lemma 1.1.6

to obtain

⋃
t≥T (ω)

ϕ(−t, θt−T (ω)ω)V (θt−T (ω)ω) = ϕ(−T (ω), ω)V (ω) ⊂ V (θ−T (ω)ω), (2.5.6)
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that is, V is expelling for θ−T (ω)ω. Now the idea is to show that the ergodicity of θ

and measurability of T imply there is also a time in the future when V is expelling,

and combining this with the backward invariance of V then means that it is truly an ex-

pelling set. Let E ∈ F be the null set in (2.5.4), and choose N ∈ N such that the set

FN := {ω ∈ Ω: T (ω) ≤ N}\E has µ(FN) > 0. Then by Birkhoff’s ergodic theorem,

there exists a full measure set G ∈ F such that for each ω ∈ G there exists a sequence of

times {ti}i∈N with ti →∞ such that θtiω ∈ FN for each i. Choose i ∈ N such that ti ≥ N ,

then using (2.5.6) we have

⋃
t≥T (θtiω)

ϕ(−t, θt−T (θtiω)+tiω)V (θt−T (θtiω)+tiω) = ϕ(−T (θtiω), θtiω)V (θtiω)

⊂ V (θ−T (θtiω)+tiω), (2.5.7)

Now we have,

ϕ(−ti, θtiω)V (θtiω) = ϕ(T (θtiω)− ti, θ−T (θtiω)+tiω)ϕ(−T (θtiω), θtiω)V (θtiω)

⊂ ϕ(T (θtiω)− ti, θ−T (θtiω)+tiω)V (θ−T (θtiω)+tiω)

⊂ V (ω)

with the first line above using the cocycle property and that ϕ(t, ω) is a homeomorphism,

the second line using (2.5.7), and the last inclusion using the backward invariance of V .

Hence we have, again using the backward invariance of V , that

⋃
t≥ti

ϕ(−t, θtω)V (θtω) ⊂ V (ω),

that is, almost surely there exists a time ti such that V (ω) is expelling. Now the ti must be

replaced by a measurable function T̃ : Ω → R+
0 . We do not need a measurable T̃ to take

the pullback α-limit set, and so first we may define R(ω) := αV (ω) which by the expelling

property and the reverse time version of Theorem 2.5.6 is a local pullback repeller with

repelling neighbourhood V (ω). Then the reverse time version of Proposition 2.5.8 (ii)

demonstrates that there exists a measurable T̃ , and V is a pullback expelling set.
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Part 2. In this step we show that R = X\B(A) µ-a.s. Since R(ω) ⊂ V (ω) µ-a.s.,

we must have that R(ω) ⊂ X\B(A)(ω) µ-a.s., since otherwise there is an x ∈ R(ω) ∩
B(A)(ω), and by the definition of the basin of attraction there exists a t ≥ 0 such that

ϕ(t, ω)x ∈ U(θtω), but by the invariance of R one also has ϕ(t, ω)x ∈ R(θtω), which

contradicts that V (θtω)∩U(θtω) = ∅. Now we demonstrate the opposite inclusion,R(ω) ⊃
X\B(A)(ω) µ-a.s. We first show that U(ω) ⊂ B(A)(ω) almost surely. Let FN be as

defined in Part 1, then for almost all ω ∈ Ω there exists an s ≥ N such that θsω ∈ FN and

then ∪t≥Nϕ(t, θ−t+sω)U(θ−t+sω) ⊂ U(θsω), which implies that ϕ(s, ω)U(ω) ⊂ U(θsω).

Then X\B(A)(ω) ⊂ V (ω), and since X\B(A)(ω) is invariant by Lemma 2.5.10, and

R(ω) = αV (ω), the inclusion follows.

Part 3. We show that B(R) = X\A µ-a.s. It is clear that B(R)(ω) ⊂ X\A(ω) almost

surely. Now let x ∈ X\B(R)(ω), then ϕ(−t, ω)x ∈ U(θ−tω) for all t ≥ 0, or equivalently,

x ∈ ϕ(t, θ−tω)U(θ−tω)

Then since for almost all ω ∈ Ω,

lim
t→∞

dist(A(ω), ϕ(t, θ−tω)U(θ−tω)) = 0

it follows that x ∈ A(ω).

Part 4. Since Lemma 2.5.10 gives that a local pullback attractor A is also a local weak

attractor with the same basin of attraction, and the corresponding local pullback repeller R

is the complement of the basin of attraction of A, Proposition 2.3.6 shows that (A,R) is

also a weak attractor-repeller pair.

Definition 2.5.12. The repeller R in Theorem 2.5.11 is called the repeller corresponding

to A, and (A,R) is called a pullback attractor-repeller pair.

Remark 2.5.13. (i) Lemma 4.3 in [LJS08] states: Let A be a local pullback attractor

and B(A) its basin of attraction, then for any random closed set C ⊂ B(A), A

pullback attracts C. Example 2.6.4 in the next section is a counter-example to this

statement. In [LSZ08, Remark 3.3 (ii)] the authors also make a weakened version of

this statement, and this still holds: Let U be a forward invariant pullback attracting
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neighbourhood of A, then for any random set D ⊂ B(A) such that there exists a

deterministic time T ≥ 0 with ϕ(T, ω)D(ω) ⊂ U(θTω) for all ω ∈ Ω, A pullback

attracts D.

(ii) Example 2.6.9 in the next section is an RDS with a deterministic (i.e. independent of

ω ∈ Ω) pullback attractor-repeller pair (A,R). A pullback attracts all deterministic

closed sets in its (deterministic) basin of attraction, but deterministic closed sets in

the basin of repulsion are not pullback repelled to R. Let V denote the pullback

repelling neighbourhood of R. Since any deterministic point x arbitrarily close to

R is not pullback repelled, there must be a sequence of times ti → ∞ such that

x /∈ V (θtiω), and for this example this implies

lim inf
t→∞

dist(V (θtω), R(θtω)) = 0 µ-a.s.

It can be seen directly in this example that with V constructed according to the proof

of Theorem 2.5.11, V may be arbitrarily small with positive probability.

2.6 Examples of attractor-repeller pairs

In this section we give some examples which are designed to explore the definitions of local

weak, pullback and forward (Definition 2.7.2) attractors. The examples are of projected

linear RDS (as defined by (1.1.2)). They are based around a non-tempered random variable

(see [Arn98, Section 4.1]) and were inspired by Example 1 in [AO03].

Definition 2.6.1. Let (Ω,F , µ, θ) be an ergodic metric DS. A random variable χ : Ω →
(0,∞) is called tempered from above if

lim sup
t→∞

1

t
lnχ(θ±tω) = 0 µ-a.s.

Remark 2.6.2. If a random variable χ as given in the above definition is not tempered from

above, then it follows (see [Arn98, Proposition 4.1.3]) that

lim sup
t→∞

1

t
lnχ(θ±tω) =∞ µ-a.s.
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Remark 2.6.3. We follow [AO03, Theorem 2] to construct a random variable that is not

tempered from above. Let (Ω,F , µ, θ) be an ergodic metric DS with time set T = Z and

such that the probability space is nonatomic. Let {Uk}k∈N be a partition of Ω with µ(Uk) >

0 for all k ∈ N. Then there exists a sequence {Nk}k∈N, Nk ∈ N0, with limk→∞Nk = ∞,

and for almost all ω ∈ Ω there exists an m ∈ N0 and a sequence {nk}k∈N, nk ∈ N0 (both

depending on ω), with limk→∞ nk = ∞ such that nk ≤ Nk, and θnk+mω ∈ Uk. Let α > 1

and define the random variable β : Ω→ [1,∞) by

β(ω) := αN
2
k for ω ∈ Uk.

Then for almost all ω ∈ Ω we have

lim sup
n→∞

1

n
ln β(θnω) = lim sup

n→∞

1

n+m
ln β(θn+mω)

≥ lim sup
k→∞

1

nk +m
ln β(θnk+mω)

= lim sup
k→∞

1

nk +m
N2
k lnα

=∞,

and so β is not tempered from above.

We will also need a similar random variable that is not tempered from above along the

negative orbit of θ: Similarly to the above, there exists a sequence {Ñk}k∈N, Ñk ∈ N0,

with limk→∞ Ñk = ∞, and for almost all ω ∈ Ω there exist an m̃ ∈ N0 and a sequence

{ñk}k∈N, ñk ∈ N0 (both depending on ω), with limk→∞ ñk = ∞ such that ñk ≤ Ñk, and

θ−ñk−m̃ω ∈ Uk. Let α > 1 and define the random variable β̃ : Ω→ [1,∞) by

β̃(ω) := αÑ
2
k for ω ∈ Uk.

First we state the counter-example mentioned in Remark 2.5.13 (ii). The idea is to

take a deterministic attractor-repeller pair, and a closed random set whose values along a

subsequence of the negative orbit in the base space converge to the repeller faster than the

rate of attraction.
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Example 2.6.4. Let α > 1, and take the metric DS and non-tempered random variable β̃

given in Remark 2.6.3. Define the linear RDS Φ: Z × Ω × R2 → R2 by the deterministic

system

Φ(n, ω) :=

(
αn 0

0 1

)
(2.6.1)

and consider the induced RDS PΦ in the projective space P1. Since the RDS is determin-

istic, the pullback mapping equals the forward mapping, i.e. Φ(n, θ−nω) = Φ(n, ω). Take

η ∈ (0,
√

2) and define U(ω) := Bη(P((1, 0))). Then A(ω) := P((1, 0)) is a local pullback

(and local forward, Definition 2.7.2) attractor for PΦ with basin of attraction B(A)(ω) =

P1\P((0, 1)) and the corresponding local pullback repeller obtained by Theorem 2.5.11 is

R(ω) = P((0, 1)). Now consider the closed random set C(ω) := P((1, β̃(ω))). Taking the

pullback images of C along the subsequence of times {ñk + m̃}k∈N one obtains

lim
k→∞

PΦ(ñk + m̃, θ−ñk−m̃ω)C(θ−ñk−m̃ω) = lim
k→∞

P((αñk+m̃, β(θ−ñk−m̃ω)))

= lim
k→∞

P((αñk+m̃, αÑ
2
k ))

= P((0, 1)),

that is, along this subsequence the closed random set C pullback converges to the repeller,

and hence C is not pullback attracted to A.

The next two examples demonstrate the nonequivalence of local forward attraction and

local pullback attraction.

Example 2.6.5. Let α > 1 and take the metric DS and nontempered random variable β

described in Remark 2.6.3. Define

H(ω) :=

(
1 0

0 β(ω)

)
,

Let Ψ: Z×Ω×R2 → R2 be the discrete time linear RDS obtained by applying the random

coordinate transformation H to Φ given by (2.6.1), that is,
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Ψ(n, ω) = H(θnω)Φ(n, ω)H−1(ω)

=

(
αn 0

0 β(θnω)
β(ω)

)
(2.6.2)

The pullback mapping for Ψ is given by

Ψ(n, θ−nω) =

(
αn 0

0 β(ω)
β(θ−nω)

)
. (2.6.3)

Since the second term on the diagonal of (2.6.3) is bounded by β(ω) it is easy to see that

for the induced RDS PΨ on the projective space P1, A(ω) := P((1, 0)) pullback attracts

the neighbourhood U(ω) := Bη(P((1, 0))), for any η ∈ (0,
√

2). However, A is not a local

forward attractor: for the subsequence of times {nk +m}k∈N, (2.6.2) becomes

Ψ(nk +m,ω) =

αnk+m 0

0 αN
2
k

β(ω)


and the images of the neighbourhood U(ω) under PΨ along this subsequence grow arbi-

trarily large.

Example 2.6.6. Let α > 1, and take the metric DS and non-tempered random variable β̃

given in Remark 2.6.3. Now define the linear RDS Ψ̃ : Z× Ω× R2 → R2 by

Ψ̃(n, ω) :=

αn 0

0 β̃(ω)

β̃(θnω)

 .

Since the second term on the diagonal is bounded by β̃(ω), one can see that A is a forward

attractor of PΨ, with A and U defined as in Example 2.6.5. The pullback mapping along
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the sequence {ñk + m̃}k∈N is

Ψ̃(ñk + m̃, θ−ñk−m̃ω) =

αñk+m̃ 0

0 β̃(θ−ñk−m̃ω)

β̃(ω)


which, similarly to the lack of forward attraction in Example 2.6.5, shows that A does not

pullback U under PΨ̃.

Remark 2.6.7. The attractor A for the (autonomous, deterministic) RDS PΦ in Exam-

ple 2.6.4 both forward and pullback attracts deterministic closed sets in its basin of at-

traction. The RDS in Examples 2.6.5 and 2.6.6 may be obtained by random coordinate

transformations of PΦ, but do not forward, respectively pullback, attract deterministic sets

in their basins of attraction. It is well known that the class of sets which are attracted by a

pullback attractor (the so-called attraction universe, see Section 2.9) is not invariant under

arbitrary random coordinate transformations [Och99, Remark 8], unlike in the case of local

weak attractors (Theorem 2.3.9).

The following example shows that there exist local weak attractors that are not local

forward or local pullback attractors.

Example 2.6.8. Let α > 1, β, β̃ and the metric DS θ be as given in Remark 2.6.3 above.

Define the linear RDS Ψ̂ : Z× Ω× R3 → R3, by

Ψ̂(n, ω) :=


αn 0 0

0 β(θnω)
β(ω)

0

0 0 β̃(ω)

β̃(θnω)

 . (2.6.4)

Then the set Â(ω) := P((1, 0, 0)) is not a local pullback or forward attractor for PΨ̂ with

the attracting neighbourhood Û(ω) := Bη(Â), η ∈ (0,
√

2), since as in Examples 2.6.5

and 2.6.6, the second element on the diagonal hinders forward attraction, whilst the third

element on the diagonal hinders pullback attraction. However, Â is a local weak attractor

with forward invariant basin of attraction B(Â) = P2\P(span{(0, 1, 0), (0, 0, 1)}). To see

this, first note that for n → ∞, αn is arbitrarily larger than the other two terms on the

diagonal of (2.6.4) with arbitrarily large probability (since θ preserves µ), and then for any
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deterministic closed set C ⊂ B(Â),

lim
n→∞

µ(distP(PΨ̂(n, ω)C, Â(ω)) > ε) = 0 for all ε > 0.

Define the family of deterministic closed sets

Cζ := P2\Bζ(P(span{(0, 1, 0), (0, 0, 1)}))

for ζ ∈ (0,
√

2). Since for any closed random set K(ω) ⊂ B(Â) and any δ > 0 there exists

a ζ such that µ(K(ω) ⊂ Cζ) > 1− δ, it follows from [Och99, Theorem 3] that Â is a local

weak attractor.

Finally, we revisit Example 2.6.5 in order to demonstrate the comments on pullback

attractor-repeller pairs in Remark 2.5.13 (ii), and we also show that the pullback attractor-

repeller pair is also a weak and a past attractor-repeller pair (which will be introduced in

Section 2.7).

Example 2.6.9. Consider the RDS in Example 2.6.5.

Pullback attractor-repeller pair. Since Ψ possesses a local pullback attractor A (with

pullback attracting neighbourhood U ), by Theorem 2.5.11 there must also exist a corre-

sponding pullback repeller R, given by the complement of the basin of attraction B(A).

All points in P1 except P((0, 1)) enter U in forward time, since by ergodicity there exist

times n ∈ N when αn is arbitrarily larger than β(θnω)/β(ω), and then any point may be

mapped arbitrarily close to A under PΨ(n, ω). Hence the corresponding local pullback

repeller is R = P((0, 1)). The pullback mapping of Ψ in backward time is given by

Ψ(−n, θnω) =

(
α−n 0

0 β(ω)
β(θnω)

)
,

for n ≥ 0. For the sequence {nk +m}k∈N, this becomes

Ψ(−nk −m, θnk+mω) =

(
α−nk−m 0

0 α−N
2
kβ(ω)

)
,
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from which one can see that for any deterministic point x ∈ B(R)\R, one has

lim
k→∞

distP(PΨ(−nk −m, θnk+mω)x,A) = 0.

Note that one starts with a local pullback attractor that pullback attracts an open ball of

constant radius, but the corresponding local pullback repeller pullback repels no open ball

of constant radius. Since β is arbitrarily large with positive probability, one can see from

(2.6.3) that the forward invariant pullback attracting neighbourhood Ũ given by (2.5.1) may

be arbitrarily large with positive probability. Then the pullback repelling neighbourhood

V := Ũ
c

used in the proof of Theorem 2.5.11 is arbitrarily small with positive probability.

Weak attractor-repeller pair. Since

lim
n→∞

µ

(
β(θnω)/β(ω)

αn
> ε

)
= 0 for all ε > 0

and

lim
n→∞

µ

(
α−n

β(θ−nω)/β(ω)
> ε

)
= 0 for all ε > 0,

one can see that all deterministic closed sets in the respective basins of A and R are weakly

attracted and repelled, respectively. Then similarly to Example 2.6.8 above, [Och99, The-

orem 3] demonstrates that A is a local weak attractor, and R is a local weak repeller, and

by Proposition 2.3.6, (A,R) is a weak attractor-repeller pair of PΨ.

Past attractor-repeller pair. Now consider the backward time mapping, given by

Ψ(−n, ω) =

(
α−n 0

0 β(θ−nω)
β(ω)

)

for n ≥ 0, from which it is easy to see that R is a local forward repeller of PΨ (Defini-

tion 2.7.3), with, for example, forward repelling neighbourhood Ṽ (ω) = Bη(R) for arbi-

trary η ∈ (0,
√

2). Then (A,R) is a past attractor-repeller pair of PΨ (see Theorem 2.7.5).
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2.7 Past and future attractor-repeller pairs

The examples in the previous section show that almost sure local attraction may not hold in

both the pullback and forward sense. The ergodicity of the metric DS implies that attraction

in the past and future are equivalent in terms of weak convergence, i.e. weak pullback and

weak forward attraction (Remark 2.2.5), but this is not a strong enough property to ensure

equivalence of attraction in the past and future in terms of almost sure convergence, i.e.

equivalence of pullback and forward attraction. Furthermore, the local pullback attractor A

in Example 2.6.5 pullback attracts an open ball of constant radius, i.e. A has a uniform pull-

back attracting neighbourhood (Definition 2.7.4), whilst the corresponding local pullback

repeller given by Theorem 2.5.11 does not pullback repel any open ball of constant radius.

These facts demonstrate a disparity between the past and future dynamics of the RDS.

This leads us to consider the past and future time domains of the system separately, by

considering so-called past attractor-repeller pairs and future attractor-repeller pairs. Past

attractor-repeller pairs consist of a local forward repeller (Definition 2.7.3) with a uniform

forward repelling neighbourhood paired with a corresponding local pullback attractor, and

future attractor-repeller pairs are the reverse time versions, that is, a local forward attractor

(Definition 2.7.2) with a uniform forward attracting neighbourhood paired with a corre-

sponding local pullback repeller. The construction of past attractor-repeller pairs works

only in one direction: one constructs the local pullback attractor fiber-wise from the local

forward repeller using an Ω-limit set, but there is no analogous method to construct a local

forward repeller from a local pullback attractor.

For a past attractor-repeller pair, the corresponding local pullback attractor has a uni-

form pullback attracting neighbourhood (Theorem 2.7.5) (and similarly for future attractor-

repeller pairs). We will need a pullback attractor possessing a uniform attracting neigh-

bourhood in the proof of Proposition 3.3.3, which will subsequently be needed to obtain

our analogue of Selgrade’s Theorem (Theorem 3.3.6).

Here we will extend the fundamental theory of past and future attractor-repeller pairs

for nonautonomous systems to the setting of random dynamical systems, following the

presentation given in [KR11, Chapter 4]. We will only make statements and proofs for past

attractor-repeller pairs, as corresponding statements for future attractor-repeller pairs are



2.7 Past and future attractor-repeller pairs 59

obtained by a reversal of time.

Assumption 2.7.1. Let (X, d) be a compact metric space (hence a Polish space), and ϕ a

continuous RDS with two-sided time (T = Z or R).

Definition 2.7.2. An invariant compact random set A is called a local forward attractor if

there exists an open random set U with U(ω) ⊃ A(ω) µ-a.s. such that

lim
t→∞

dist(ϕ(t, ω)U(ω), A(θtω)) = 0 µ-a.s. (2.7.1)

The random set U is called a forward attracting neighbourhood of A.

Definition 2.7.3. An invariant compact random set R is called a local forward repeller if

there exists an open random set U with U(ω) ⊃ R(ω) µ-a.s. such that

lim
t→−∞

dist(ϕ(t, ω)U(ω), R(θtω)) = 0 µ-a.s. (2.7.2)

The random set U is called a forward repelling neighbourhood of R.

Definition 2.7.4. If A is a local weak, forward, pullback or strong attractor with attracting

neighbourhood U given by an open ball of constant radius, i.e. U(ω) = Bη(A(ω)) for some

η > 0, then U is called a uniform weak, forward, pullback or strong, respectively attracting

neighbourhood (and similarly for the definition of a uniform repelling neighbourhood in

the case of a local weak, forward, pullback or strong repeller).

The theorem below establishes the existence of past attractor-repeller pairs in the setting

of random dynamical systems, the proof of which is an adaptation of the version for general

nonautonomous systems, given in [KR11, Theorem 4.1].

Theorem 2.7.5. Let R be a local forward repeller with uniform forward repelling neigh-

bourhood Bη(R) for some η > 0. Then there exists an almost surely uniquely determined

local pullback attractor A given by

A := ΩX\Bη(R)
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with A(ω) ⊂ X\Bη(R(ω)) almost surely, and such that Bε(A) is a uniform pullback

attracting neighbourhood for A for any 0 < ε < η. The attractor-repeller pair (A,R) is

called a past attractor-repeller pair. Furthermore, (A,R) is a weak attractor-repeller pair

and a pullback attractor-repeller pair (the pullback repelling neighbourhood for R may be

nonuniform).

Proof. Since R is a forward repeller, for any ξ ∈ (0, η) and for almost all ω ∈ Ω there

exists a T (ω) such that for all t ≥ T (ω)

dist(ϕ(−t, ω)Bη(R(ω)), R(θ−tω)) < ξ,

or equivalently, ϕ(−t, ω)Bη(R(ω)) ⊂ Bξ(R(θ−tω)). Then

Bη(R(ω)) ⊂ ϕ(t, θ−tω)Bξ(R(θ−tω)) for all t ≥ T (ω),

which implies that

Bη(R(ω)) ⊂
⋂

t≥T (ω)

ϕ(t, θ−tω)Bξ(R(θ−tω))

and so

X\Bη(R(ω)) ⊃
⋃

t≥T (ω)

ϕ(t, θ−tω)X\Bξ(R(θ−tω)).

Let Dξ(ω) := X\Bξ(R(ω)), then we have

Dξ(ω) ⊃ X\Bη(R(ω)) ⊃
⋃

t≥T (ω)

ϕ(t, θ−tω)Dξ(θ−tω). (2.7.3)

Hence the family of open random sets Dξ, ξ ∈ (0, η), are pullback absorbing sets (there ex-

ists a measurable absorbtion time by the same argument in the proof of Proposition 2.5.8 (ii)),

and by Proposition 2.5.7 their Ω-limit sets give pullback attractors ΩDξ that pullback at-

tract the neighbourhoods Dξ. Moreover, by (2.7.3) the ΩDξ are all almost surely con-

tained within X\Bη(R(ω)) and pullback attract this set: hence they pullback attract one

another, which due to the invariance of the ΩDξ (Theorem 2.5.6) means that for arbitrary
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ξ1, ξ2 ∈ (0, η), ΩDξ1
(ω) = ΩDξ2

(ω) for almost all ω ∈ Ω. Then there exists an almost

surely unique local pullback attractor A with A(ω) ⊂ X\Bη(R(ω)) almost surely, that

pullback attracts the Dξ. Since for any ε ∈ (0, η) there exists a ξ ∈ (0, η) such that

Bε(A(ω)) ⊂ Dξ(ω), A pullback attracts Bε(A), which may serve as a uniform pullback

attracting neighbourhood for A.

We now demonstrate the fact that (A,R) is a weak attractor-repeller pair. It follows

from Theorem 2.7.8 (i), thatR is also a local weak repeller with basin of repulsionB(R) =

X\A, and then by the reverse time version of Proposition 2.3.6, A is the corresponding

local weak attractor.

Finally, (A,R) is a pullback attractor-repeller pair: since A is a local weak attractor

with corresponding local weak repeller R, and A is a local pullback attractor, it follows

from Theorem 2.5.11 that R is the corresponding pullback repeller.

Remark 2.7.6. (i) In the case of a general nonautomonous dynamical system differ-

ent forward repellers may give rise to the same pullback attractor, although these

nonunique past repellers converge in backward time (see [KR11, Proposition 4.5]).

For an RDS, since Theorem 2.7.5 shows that a past attractor-repeller pair is also a

weak attractor-repeller pair, Proposition 2.3.6 demonstrates that the local pullback

attractor corresponds to an almost surely unique local forward repeller.

(ii) Example 2.6.9 demonstrates a past attractor-repeller pair.

Definition 2.7.7. For the future time domain version of Theorem 2.7.5, i.e. beginning with

a local forward attractor A and obtaining a local pullback repeller R, the pair (A,R) is

called a future attractor-repeller pair.

The following theorem describes the dynamics of a past attractor-repeller pair. The

proof of this result is an adaptation of the version for nonautonomous systems, given in

[KR11, Theorem 4.4].

Theorem 2.7.8. Let (A,R) be a past attractor-repeller pair. Then the following statements

hold:
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(i) Convergence in backward time: let K ⊂ X\A(ω) be a compact set. Then

lim
t→∞

dist(ϕ(−t, ω)K,R(θ−tω)) = 0 µ-a.s.

(ii) Pullback convergence: let C be a compact random set such that

lim inf
t→∞

dist(C(θ−tω), R(θ−tω)) > 0 µ-a.s., (2.7.4)

then,

lim
t→∞

dist(ϕ(t, θ−tω)C(θ−tω), A(ω)) = 0 µ-a.s.

Proof. Let η and Dξ be as defined in the proof of Theorem 2.7.5; there it was shown that

A pullback attracts the sets Dξ.

(i). Since A pullback attracts the Dξ, for almost all ω ∈ Ω there exists a T (ω) ≥ 0 such

that for all t ≥ T (ω)

K ∩ ϕ(t, θ−tω)Dξ(θ−tω) = ∅.

Then ϕ(−t, ω)K∩Dξ(θ−tω) = ∅ for all t ≥ T (ω), that is, dist(ϕ(−t, ω)K,R(θ−tω)) ≤ ξ.

(ii). By (2.7.4), for almost all ω ∈ Ω there exists T (ω) ≥ 0 and ξ ∈ (0, η) such that

for all t ≥ T (ω), C(θ−tω) ⊂ Dξ(θ−tω), and since A pullback attracts Dξ, A also pullback

attracts C.

Remark 2.7.9. Suppose that {R0, . . . , Rn} is a finite set of local forward repellers with

X = R0(ω) ) R1(ω) ) · · · ) Rn(ω) = ∅ (2.7.5)

holding almost surely, and let (Ai, Ri), i ∈ {0, . . . , n}, be the corresponding past attractor-

repeller pairs. Since by Theorem 2.7.5 the past attractor-repeller pairs are also weak

attractor-repeller pairs, Theorem 2.3.10 implies that the corresponding pullback attractors

are also almost surely nested:

∅ = An(ω) ( An−1(ω) ( · · · ( A0(ω) = X µ-a.s. (2.7.6)
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The definitions of past and future Morse decompositions are given by Definition 2.3.11.

The following result gives some basic properties of past Morse sets, and is the analogue of

[KR11, Proposition 4.7] for nonautonomous systems.

Proposition 2.7.10. The Morse sets of a past Morse decomposition {M1, . . . ,Mn} are

invariant compact random sets that are almost surely nonempty and pairwise disjoint, and

are uniformly isolated, i.e. there exists a β > 0 such that for i 6= j

Bβ(Mi(ω)) ∩Bβ(Mj(ω)) = ∅ µ-a.s.

Proof. Theorem 2.7.5 states that past attractor-repeller pairs are also weak attractor-repellers

pairs, and then most of the statements here follow from Lemma 2.3.14. Theorem 2.7.5

states that the past attractor-repeller pair (A,R) corresponding to a local forward repeller

R with uniform forward repelling neighbourhood Bη(R) for some η > 0, satisfies A(ω) ∩
Bη(R(ω)) = ∅ almost surely; the fact that the Morse sets are uniformly isolated is then a

simple consequence of this uniform isolation of each past attractor-repeller pair.

The following theorem shows that random variables which are bounded away from the

repeller boundaries are pullback attracted to the Morse sets; the proof is an adaptation of

the version for nonautonomous systems, given in [KR11, Theorem 4.9].

Theorem 2.7.11. Let {M1, . . . ,Mn} be a past Morse decomposition formed from the se-

quence of past attractor-repeller pairs (Ai, Ri), i ∈ {0, . . . , n}. Then for any random

variable x satisfying

lim inf
t→∞

dist(x(θ−tω),∪n−1
i=1 ∂Ri(θ−tω)) > 0 µ-a.s. (2.7.7)

one has

lim
t→∞

dist(ϕ(t, θ−tω)x(θ−tω),∪ni=1Mi(ω)) = 0 µ-a.s.

Proof. First note that the invariance of the forward repellers and pullback attractors implies

that (2.7.5) and (2.7.6) hold on a θ-invariant set of full measure, Ω̃ ⊂ Ω. Define Ω̃i := {ω ∈
Ω̃ : x(ω) ∈ Ri−1(ω)\Ri(ω)}, i ∈ {1, . . . , n}, then the Ω̃i form a partition of Ω̃. Also define
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Ti(ω) := {t ∈ T : θtω ∈ Ω̃i}, then for all ω ∈ Ω̃ the Ti(ω) form a partition of T. The

condition (2.7.7) implies that for almost all ω ∈ Ω̃

lim inf
t→−∞,t∈Ti(ω)

dist(x(θtω), Ri(θtω)) > 0

and hence by Theorem 2.7.8, for almost all ω ∈ Ω̃

lim
t→∞,t∈Ti(ω)

dist(ϕ(t, θ−tω)x(θ−tω), Ai(ω)) = 0. (2.7.8)

Now assume there exists ε > 0, and a sequence tn →∞ with tn ∈ Ti(ω) such that

dist(ϕ(tn, θ−tnω)x(θ−tnω),Mi(ω)) > ε for all n ∈ N. (2.7.9)

By compactness one may assume that for n→∞, ϕ(tn, θ−tnω)x(θ−tnω)→ y ∈ Ri−1(ω).

Also, by (2.7.8), y ∈ Ai(ω), and so y ∈ Mi(ω), contradicting (2.7.9). It follows that for

almost all ω ∈ Ω

lim
t→∞

dist(ϕ(t, θ−tω)x(θ−tω),∪ni=1Mi(ω)) = 0.

Remark 2.7.12. Comparing Theorems 2.7.11 and 2.7.8, note that we have not shown for-

ward repulsion to the Morse sets in analogy to Theorem 2.7.8 (i). In the case of nonau-

tonomous systems there exists a counter-example to such convergence [KR11, p. 80], but

we have not as yet proved or disproved this for RDS.

2.8 Local strong attractors

We make the following definition of a local strong attractor, which is a compact random

set that is both a local forward and local pullback attractor.

Definition 2.8.1. An invariant compact random set A is called a local strong attractor if

there is an open random set U with U(ω) ⊃ A(ω) µ-a.s. such that both

lim
t→∞

dist(ϕ(t, ω)U(ω), A(θtω)) = 0 µ-a.s.,
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and

lim
t→∞

dist(ϕ(t, θ−tω)U(θ−tω), A(ω)) = 0 µ-a.s.

The random set U is called a strong attracting neighbourhood of A. The set

B(A)(ω) := {x ∈ X : ϕ(t, ω)x ∈ U(θtω) for some t ≥ 0}

is called the basin of attraction of A. A local strong attractor is called trivial if µ(A(ω) ∈
{∅, X}) = 1.

Definition 2.8.2. An invariant compact random set R is called a local strong repeller if

there is an open random set U with U(ω) ⊃ R(ω) µ-a.s. such that both

lim
t→−∞

dist(ϕ(t, ω)U(ω), R(θtω)) = 0 µ-a.s.,

and

lim
t→−∞

dist(ϕ(t, θ−tω)U(θ−tω), R(ω)) = 0 µ-a.s.

The random set U is called a strong repelling neighbourhood of A. The set

B(R)(ω) := {x ∈ X : ϕ(t, ω)x ∈ U(θtω) for some t ≤ 0}

is called the basin of repulsion of R. A local strong repeller is called trivial if µ(A(ω) ∈
{∅, X}) = 1.

In the next chapter it will be shown that for a projected linear RDS with a local strong

attractor with a uniform strong attracting neighbourhood there exists a corresponding local

strong repeller with a uniform strong repelling neighbourhood (Theorem 3.3.5). Exam-

ple 2.6.9 shows that strong attractor-repeller pairs need not exist in general, since there

the repeller is both a local pullback and forward repeller, hence is a strong repeller (with a

nonuniform neighbourhood), but the corresponding attractor is not a local forward attractor.
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2.9 Discussion

We shall mainly discuss pullback attractor-repeller pairs. The examples in Section 2.6

make use of non-tempered random variables, and this may be considered pathological.

In the theory of global pullback attractors it is usual to consider pullback attraction in

the universe of tempered random sets [IS01], which we shall now explain. A universe

is a family of random sets D such that if D,D′ are random sets such that D′ ⊂ D and

D ∈ D, then also D′ ∈ D. An invariant compact random set A ∈ D is called a D-

pullback attractor if A pullback attracts all random sets D ∈ D (it is easy to see that such

a pullback attractor is unique). A random set D is called a tempered random set if there

exists an x ∈ X and a tempered real random variable r such that D(θtω) ⊂ Br(θtω)(x)

for all t ∈ T, and clearly the family of tempered random sets forms a universe. A number

of examples of global pullback attractors for tempered random sets have been studied (see

[IS01], [Arn98, Chapter 9]). Considering attraction in the universe of tempered random

sets is natural since one generally deals with an exponential rate of attraction, and since

otherwise one is considering different sets in each fiber (with measurability, as a random

set, being the only restriction) and then random sets may ‘fly away’ too quickly along the

θ-orbit. This is the point in Example 2.6.4, where the random set converges to the repeller

with a super-exponential rate. The attraction universe of tempered random sets is invariant

only under random coordinate changes satisfying a sufficiently strong growth condition

(see [IS01]). It is then clear that in the context of local pullback attractors one should also

restrict the class of coordinate changes to obtain attraction of the same universe of sets in

the basin under that coordinate change. From this point of view the differences between

the deterministic Example 2.6.4 and Example 2.6.9 obtained by (the projection of) a non-

tempered random coordinate change are not so surprising. However, the other aspect which

we wish to emphasize is the disparity between the properties of the local pullback attractor

and corresponding local pullback repeller in Example 2.6.9; the attraction universe of the

local pullback attractor is very different to the attraction universe of the corresponding local

pullback repeller. An interesting question is whether or not there exists a sufficiently well

behaved, yet interesting for applications, class of RDS for which pullback attractor-repeller

pairs have attraction and repulsion universes that are similar (e.g. random sets which are
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bounded away from the repeller or attractor, respectively).

Since Example 2.6.9 is based on a linear RDS, the fact that A is not a forward attractor

is directly linked to the fact that R is not a pullback repeller for a uniform neighbourhood:

they are both associated to the same time domain, and linearity means that convergence toA

(or lack of) is in correspondence with convergence to R. Indeed, in the linear case a local

strong attractor with uniform strong attracting neighbourhood has a corresponding local

strong repeller with uniform strong repelling neighbourhood (Theorem 3.3.5). We have not

investigated the existence of strong attractor repeller pairs with uniform neighbourhoods in

the nonlinear case. Also, in relation to past attractor-repeller pairs, we have not investigated

whether there exist systems with local pullback attractors with uniform neighbourhoods but

with no corresponding local forward repellers. An interesting question from [Och99, p. 3]

is whether every weak attractor is a pullback attractor for a suitable universe, which in our

context translates to whether every local weak attractor also pullback attracts some random

neighbourhood.

The theory of weak attractor-repeller pairs is much cleaner, although of course at the

expense of weaker convergence results. On the other hand, it seems that weak attraction is

a sufficiently strong property to obtain many important dynamical results, such as the facts

that weak Morse decompositions support all invariant measures (Theorem 2.3.16) and the

existence of weak global attractors are in correspondence with the existence of random

Lyapunov functions [AS01a].
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Chapter 3

Linear random dynamical systems

In this chapter we focus on linear random dynamical systems, in terms of spectral concepts

and decompositions into invariant subspaces. Spectral studies of random dynamical sys-

tems have so far focused on Lyapunov exponents [Arn98, Con97]. Here we develop an al-

ternative spectral theory based on exponential dichotomies that is related to the Sacker–Sell

(or dichotomy) spectrum for nonautonomous differential equations. The original construc-

tion due to Sacker and Sell [SS78] requires a compact base space (which can be obtained,

for instance, from an almost periodic differential equation). Alternative approaches to the

dichotomy spectrum [AS01b, BAG93, Ras09, Ras10, Sie02] hold in the general noncom-

pact case, and we use similar techniques for the construction of the dichotomy spectrum

by combining them with ergodic properties of the base flow. We note that the relation-

ship between the dichotomy spectrum and Lyapunov spectrum has also been explored in

[JPS87] in the special case that the base space of a random dynamical system is a compact

Hausdorff space, but our set-up does not require a topological structure on the base. The

dichotomy spectrum for RDS has also been investigated in [WC14] with a different set-up

to ours, and we shall discuss this in Section 3.4. We shall demonstrate the utility of the

dichotomy spectrum in the bifurcation theory of random dynamical systems in Chapter 4

(Theorem 4.3.1).

Another approach to spectral theory is provided by Selgrade’s Theorem [Sel75] (alter-

natively see [CK00, Theorem 5.2.5]). This states that for a linear flow on a vector bundle

with compact base space, and such that the flow on the base space is chain transitive, there
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exists a unique finest Morse decomposition of the induced flow on the projective bundle.

This allows one to define the Morse spectrum: for each Morse set in the finest Morse

decomposition one takes the set of limit points as time tends to infinity of finite time ex-

ponential growth rates for trajectories starting in the Morse set, and the Morse spectrum

is then the union over all of the Morse sets of these sets of limit points (see [Grü00] for

this formulation, and [CK00, Chapter 5] for the original formulation using (ε, T )-chains).

The relationship between the Lyapunov, dichotomy, and Morse spectral concepts, among

others, are discussed in [CK96, Grü00]. These results have also been extended to the

noncompact setting [Ras07, Ras08, CKR08, Ras10], and here we use similar techniques

to demonstrate the existence of a (almost surely) unique finest Morse decomposition for

projectivized linear RDS.

This chapter is organized as follows. We first introduce the notion of an exponential

dichotomy for a linear RDS in Section 3.1, and in Section 3.2 the dichotomy spectrum is

defined and fundamental properties of the spectrum are shown, including its relation to the

Lyapunov spectrum. In Section 3.3 we demonstrate an analogue of Selgrade’s Theorem for

RDS using strong attractor-repeller pairs, and we finish with a discussion on the material

in this chapter in Section 3.4.

Many of the results in this chapter are extensions to the setting of random dynamical

systems of results for linear nonautonomous systems given in [KR11, Chapter 5].

We will use the following notation and assumption in this chapter:

Assumption 3.0.1. Let Φ: T×Ω×Rd → Rd denote a linear RDS (Definition 1.1.12), and

we shall always assume the time set T is two-sided.

Below we state the Multiplicative Ergodic Theorem of Oseledets [Ose68] for the case

of a linear RDS on Rd with two-sided time (for statements of the theorem in other settings

and for proofs see, for example, [Arn98, Via14]).

Theorem 3.0.2 (Oseledets’ Multiplicative Ergodic Theorem). Let Φ be a real linear RDS

such that the following integrability condition holds:

sup
t∈[0,1]

ln+(‖Φ(t, ·)±1‖) ∈ L1(µ), (3.0.1)
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where ln+(x) := max{0, ln(x)}. Then there exists a θ-invariant set Ω̃ ∈ F of full measure

such that for every ω ∈ Ω̃ the following statements hold:

(i) there exists a direct sum decomposition of Rd:

O1(ω)⊕ · · · ⊕Op(ω) = Rd,

(ii) the Oi, i ∈ {1, . . . , p}, are invariant, i.e. Φ(t, ω)Oi(ω) = Oi(θtω) for all t ∈ T, and

are closed random sets such that dim(Oi) := dim(Oi(ω)) is constant on Ω̃,

(iii) there exist real numbers, λ1 < λ2 · · · < λp, such that

lim
t→±∞

1

|t|
ln‖Φ(t, ω)v‖ = λi ⇔ v ∈ Oi(ω)\{0}.

The numbers λi are called the Lyapunov exponents of Φ, the sets Oi are called the Os-

eledets subspaces, and dim(Oi) is called the multiplicity of the corresponding Lyapunov

exponent λi. The set of all Lyapunov exponents Λ := {λ1, . . . , λp} is called the Lyapunov

spectrum of Φ.

3.1 Exponential dichotomies∗

An exponential dichotomy is the nonautonomous analogue of hyperbolicity, and describes

a splitting of the state space of a linear system into complementary subspaces of initial con-

ditions, for which the growths of the corresponding trajectories are exponentially bounded,

in forwards time for one subspace and in backwards time for the other subspace, by distinct

exponential growth rates. The subspaces are described using so-called invariant projectors.

Definition 3.1.1. An invariant projector of a linear RDS Φ is a measurable function P :

Ω→ Rd×d with

P (ω) = P (ω)2 and P (θtω)Φ(t, ω) = Φ(t, ω)P (ω) for all t ∈ T and ω ∈ Ω .

∗The material in this section follows that of [CDLR13, Section 2].
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Definition 3.1.2. A random set M (Definition 1.1.7) is called a linear random set if M(ω)

is a linear subspace of Rd for each ω ∈ Ω.

Given linear random sets M1,M2,

ω 7→M1(ω) ∩M2(ω) and ω 7→M1(ω) +M2(ω)

are also linear random sets, denoted by M1 ∩M2 and M1 +M2, respectively.

The range

R(P ) :=
{

(ω, x) ∈ Ω× Rd : x ∈ RP (ω)
}

and the null space

N (P ) :=
{

(ω, x) ∈ Ω× Rd : x ∈ NP (ω)
}

of an invariant projector P are invariant linear random sets such that R(P ) ⊕ N (P ) =

Ω× Rd.

The following proposition uses the ergodicity of θ to show that the dimensions of the

range and the null space of an invariant projector are almost surely constant.

Proposition 3.1.3. Let P : Ω→ Rd×d be an invariant projector of a linear RDS Φ. Then

(i) The mapping ω 7→ rkP (ω) is measurable, and

(ii) rkP (ω) is almost surely constant.

Proof. (i) We first show that the mappingA 7→ rkA on Rd×d is lower semi-continuous. For

this purpose, let {Ak}k∈N be a sequence of matrices in Rd×d which converges to A ∈ Rd×d,

and define r := rkA. Then there exist nonzero vectors x1, . . . , xr such that Ax1, . . . , Axr

are linearly independent, which implies that det[Ax1, . . . , Axr, xr+1, . . . , xd] 6= 0 for some

vectors xr+1, . . . , xd ∈ Rd. Since limk→∞Ak = A, one gets

lim
k→∞

det[Akx1, . . . , Akxr, xr+1, . . . , xd] = det[Ax1, . . . , Axr, xr+1, . . . , xd] .

Hence, there exists a k0 ∈ N such that vectors Akx1, . . . , Akxr are linearly independent

for k ≥ k0, and thus, rkAk ≥ r for all k ≥ k0. Consequently, the lower semi-continuity
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of the mapping A 7→ rkA is proved. Therefore, the map Rd×d → N0, A 7→ rkA is the

limit of a monotonically increasing sequence of continuous functions by [Ton52], and thus

is measurable. The proof of this part is complete. (ii) By invariance of P , we get that

P (θtω) = Φ(t, ω)P (ω)Φ(t, ω)−1,

which implies that rkP (θtω) = rkP (ω). This together with ergodicity of θ and mea-

surability of the map ω 7→ rkP (ω) as shown in (i) gives that rkP (ω) is almost surely

constant.

According to Proposition 3.1.3, the rank of an invariant projector P can be defined via

rkP := dimR(P ) := dimRP (ω) for almost all ω ∈ Ω ,

and one sets

dimN (P ) := dimNP (ω) for almost all ω ∈ Ω.

The following definition of an exponential dichotomy describes uniform exponential

splitting of a linear RDS.

Definition 3.1.4. Let Φ be a linear RDS, and let γ ∈ R and Pγ : Ω→ Rd×d be an invariant

projector of Φ. Then Φ is said to admit an exponential dichotomy with growth rate γ,

constants α > 0, K ≥ 1 and projector Pγ if for almost all ω ∈ Ω, one has

‖Φ(t, ω)Pγ(ω)‖ ≤ Ke(γ−α)t for all t ≥ 0 ,

‖Φ(t, ω)(1− Pγ(ω))‖ ≤ Ke(γ+α)t for all t ≤ 0 .

The following proposition shows that if a linear RDS satisfies the integrability condition

of Oseledets’ Theorem, then the ranges and null spaces of invariant projectors are given by

sums of Oseledets subspaces.

Proposition 3.1.5. Let Φ be a linear RDS which satisfies the integrability condition of Os-

eledets’ Multiplicative Ergodic Theorem 3.0.2. Let λ1 > · · · > λp and O1(ω), . . . , Op(ω)

denote the Lyapunov exponents and the associated Oseledets subspaces of Φ, respectively,
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and suppose that Φ admits an exponential dichotomy with growth rate γ ∈ R and projector

Pγ . Then the following statements hold:

(i) γ 6∈ {λ1, . . . , λp}.

(ii) Define k := max
{
i ∈ {0, . . . , p} : λi > γ

}
with the convention that λ0 =∞. Then

for almost all ω ∈ Ω, one has

NP (ω) =
k⊕
i=1

Oi(ω) and RP (ω) =

p⊕
i=k+1

Oi(ω) .

Proof. (i) Suppose to the contrary that γ = λk for some k ∈ {1, . . . , p}. Because of the

Multiplicative Ergodic Theorem 3.0.2, we have that for almost all ω ∈ Ω

lim
t→∞

1

t
ln ‖Φ(t, ω)v‖ = λk = γ for all v ∈ Ok(ω) \ {0} . (3.1.1)

On the other hand, for almost all ω ∈ Ω and for all v ∈ RPγ(ω) we get ‖Φ(t, ω)v‖ ≤
Ke(γ−α)t‖v‖ for all t ≥ 0. Thus,

lim sup
t→∞

1

t
ln ‖Φ(t, ω)v‖ ≤ γ − α for all v ∈ RPγ(ω) ,

which together with (3.1.1) implies that Ok(ω) ∩RPγ(ω) = {0}. Similarly, using the fact

that

lim
t→−∞

1

t
ln ‖Φ(t, ω)v‖ = λk = γ for all v ∈ Ok(ω) \ {0}

and Definition 3.1.4, we obtain that Ok(ω)∩NPγ(ω) = {0}. Consequently, Ok(ω) = {0}
almost surely, which leads to a contradiction.

(ii) Let v ∈ RPγ(ω) \ {0} be arbitrary. Then, according to Definition 3.1.4 and the

definition of k we obtain almost surely that

lim
t→∞

1

t
ln ‖Φ(t, ω)v‖ ≤ γ − α < λk. (3.1.2)

Now we write v in the form v = vi + vi+1 + · · ·+ vp, where i ∈ {1, . . . , p} with vi 6= 0 and
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vj ∈ Oj(ω) for all j = i, . . . , p. Using the fact that for j ∈ {i, . . . , p} with vj 6= 0

lim
t→∞

1

t
ln ‖Φ(t, ω)vj‖ = λj ≤ λi,

we obtain that

lim
t→∞

1

t
ln ‖Φ(t, ω)v‖ = λi,

which together with (3.1.2) implies that i ≥ k+ 1 and thereforeRPγ(ω) ⊂
⊕p

i=k+1Oi(ω)

almost surely. Similarly, we also get that NPγ(ω) ⊂
⊕k

i=1 Oi(ω) almost surely. On the

other hand,

Rd = NPγ(ω)⊕RPγ(ω) =
k⊕
i=1

Oi(ω)⊕
p⊕

i=k+1

Oi(ω).

Consequently, we have that RPγ(ω) =
⊕p

i=k+1 Oi(ω) and NPγ(ω) =
⊕k

i=1Oi(ω) hold

for almost all ω ∈ Ω, and the proof is complete.

The monotonicity of the exponential function implies the following basic criteria for

the existence of exponential dichotomies.

Lemma 3.1.6. Suppose that the linear RDS Φ admits an exponential dichotomy with growth

rate γ and projector Pγ . Then the following statements are fulfilled:

(i) If Pγ ≡ 1 almost surely, then Φ admits an exponential dichotomy with growth rate ζ

and invariant projector Pζ ≡ 1 for all ζ > γ.

(ii) If Pγ ≡ 0 almost surely, then Φ admits an exponential dichotomy with growth rate ζ

and invariant projector Pζ ≡ 0 for all ζ < γ.

Definition 3.1.7. Given γ ∈ R, a function g : R→ Rd is called γ+-exponentially bounded

if supt∈R+
0
‖g(t)‖e−γt < ∞. Accordingly, one says that a function g : R → Rd is γ−-

exponentially bounded if supt∈R−
0
‖g(t)‖e−γt <∞.

We define for all γ ∈ R

Sγ :=
{

(ω, x) ∈ Ω× Rd : Φ(·, ω)x is γ+-exponentially bounded
}
,
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and

Uγ :=
{

(ω, x) ∈ Ω× Rd : Φ(·, ω)x is γ−-exponentially bounded
}
.

It is obvious that Sγ and Uγ are invariant linear random sets of Φ, and given γ ≤ ζ , the

relations Sγ ⊂ Sζ and Uγ ⊃ U ζ are fulfilled.

The relationship between the projectors of exponential dichotomies with growth rate γ

and the sets Sγ and Uγ will now be discussed. The proof of the following result is adapted

from the corresponding version for nonautonomous systems given in [KR11, Proposition

5.5].

Proposition 3.1.8. If the linear RDS Φ admits an exponential dichotomy with growth rate

γ and projector Pγ , then N (Pγ) = Uγ andR(Pγ) = Sγ almost surely.

Proof. Suppose that Φ admits an exponential dichotomy with growth rate γ, constants α,

K and projector Pγ . This means that for almost all ω ∈ Ω, one has

‖Φ(t, ω)Pγ(ω)‖ ≤ Ke(γ−α)t for all t ≥ 0 ,

‖Φ(t, ω)(1− Pγ(ω))‖ ≤ Ke(γ+α)t for all t ≤ 0 .
(3.1.3)

We now prove the relation N (Pγ) = Uγ almost surely. (⊃) Choose (ω, x) ∈ Uγ with ω

in the full measure set F ∈ F where both (3.1.3) and Birkhoff’s Ergodic Theorem hold,

and with x arbitrary. We have that ‖Φ(t, ω)x‖ ≤ Ceγt for all t ≤ 0 and some real constant

C > 0. Write x = x1 + x2 with x1 ∈ RPγ(ω) and x2 ∈ NPγ(ω). By Birkhoff’s Ergodic

Theorem there exists a sequence ti → −∞ such that for all i ∈ N one has θtiω ∈ F , and

hence

‖x1‖ = ‖Φ(−ti, θtiω)Φ(ti, ω)Pγ(ω)x‖ = ‖Φ(−ti, θtiω)Pγ(θtiω)Φ(ti, ω)x‖

≤ Ke−(γ−α)ti‖Φ(ti, ω)x‖ ≤ CKe−(γ−α)tieγti = CKeαti .

The right hand side of this inequality converges to zero in the limit i → ∞. This implies

x1 = 0, and thus, (ω, x) ∈ N (Pγ). (⊂) Choose (ω, x) ∈ N (Pγ). Thus, for all t ≤ 0

and almost all ω ∈ Ω, the relation ‖Φ(t, ω)x‖ ≤ Ke(γ+α)t‖x‖ is fulfilled. This means that

Φ(·, ω)x is γ−-exponentially bounded. The proof of the statement concerning the range of

the projector is treated analogously.
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3.2 The dichotomy spectrum∗

In this section we introduce the dichotomy spectrum for random dynamical systems. The

dichotomy spectrum is defined as the set of values γ for which a linear RDS Φ does not

admit an exponential dichotomy with growth rate γ. The growth rates γ = ±∞ are not

excluded from our considerations; one says that Φ admits an exponential dichotomy with

growth rate∞ if there exists a γ ∈ R such that Φ admits an exponential dichotomy with

growth rate γ and projector Pγ ≡ 1. Accordingly, one says that Φ admits an exponential

dichotomy with growth rate −∞ if there exists a γ ∈ R such that Φ admits an exponential

dichotomy with growth rate γ and projector Pγ ≡ 0. In what follows we use the notation

R := R ∪ {−∞,∞} for the extended real line.

Definition 3.2.1. The dichotomy spectrum of a linear RDS Φ is defined by

Σ :=
{
γ ∈ R : Φ does not admit an exponential dichotomy with growth rate γ

}
.

The corresponding resolvent set is defined by ρ := R \ Σ.

The aim of the following lemma is to analyse the topological structure of the resolvent

set. The proof is an adaptation of the version for nonautonomous systems, given in [KR11,

Lemma 5.10].

Lemma 3.2.2. Consider the resolvent set ρ of a linear RDS Φ. Then ρ ∩ R is open. More

precisely, for all γ ∈ ρ ∩ R, there exists an ε > 0 such that Bε(γ) ⊂ ρ. Furthermore,

the relation rkPζ = rkPγ is (almost surely) fulfilled for all ζ ∈ Bε(γ) and every invari-

ant projector Pγ and Pζ of the exponential dichotomies of Φ with growth rates γ and ζ ,

respectively.

Proof. Choose γ ∈ ρ arbitrarily. Since Φ admits an exponential dichotomy with growth

rate γ, there exists an invariant projector Pγ and constants α > 0, K ≥ 1 such that for

∗The material in this section follows that of [CDLR13, Section 3].
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almost all ω ∈ Ω, one has

‖Φ(t, ω)Pγ(ω)‖ ≤ Ke(γ−α)t for all t ≥ 0 ,

‖Φ(t, ω)(1− Pγ(ω))‖ ≤ Ke(γ+α)t for all t ≤ 0 .

Set ε := 1
2
α, and choose ζ ∈ Bε(γ). It follows that for almost all ω ∈ Ω,

‖Φ(t, ω)Pγ(ω)‖ ≤ Ke(ζ−α
2

)t for all t ≥ 0 ,

‖Φ(t, ω)(1− Pγ(ω))‖ ≤ Ke(ζ+α
2

)t for all t ≤ 0 .

This yields ζ ∈ ρ, and it follows that rkPζ = rkPγ for any projector Pζ of the exponential

dichotomy with growth rate ζ . This finishes the proof of this lemma.

The next lemma relates the topological structure of the resolvent set to the invariant

projectors. The proof is an adaptation of the version for nonautonomous systems given in

[KR11, Lemma 5.11].

Lemma 3.2.3. Consider the resolvent set ρ of a linear RDS Φ, and let γ1, γ2 ∈ ρ ∩ R such

that γ1 < γ2. Moreover, choose invariant projectors Pγ1 and Pγ2 for the corresponding

exponential dichotomies with growth rates γ1 and γ2. Then the relation rkPγ1 ≤ rkPγ2

holds. In addition, [γ1, γ2] ⊂ ρ is fulfilled if and only if rkPγ1 = rkPγ2 , and in this case

one has that Pγ = Pζ almost surely for all γ, ζ ∈ [γ1, γ2].

Proof. The relation rkPγ1 ≤ rkPγ2 is a direct consequence of Proposition 3.1.8, since

Sγ1 ⊂ Sγ2 and Uγ1 ⊃ Uγ2 . Now assume that [γ1, γ2] ⊂ ρ. Arguing contrapositively,

suppose that rkPγ1 6= rkPγ2 , and choose invariant projectors Pζ , ζ ∈ (γ1, γ2), for the

exponential dichotomies of Φ with growth rate ζ . Define

ζ0 := sup
{
ζ ∈ [γ1, γ2] : rkPζ 6= rkPγ2

}
.

Due to Lemma 3.2.2, there exists an ε > 0 such that rkPζ0 = rkPζ for all ζ ∈ Bε(ζ0).

This is a contradiction to the definition of ζ0. Conversely, let rkPγ1 = rkPγ2 , then Propo-

sition 3.1.8 together with the fact that Sγ1 ⊂ Sγ2 and Uγ1 ⊃ Uγ2 yields that R(Pγ1) =
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R(Pγ2) and N (Pγ1) = N (Pγ2) almost surely, hence Pγ1 = Pγ2 almost surely and Pγ2 is

also an invariant projector of the exponential dichotomy with growth rate γ1. Thus, one

obtains for almost all ω ∈ Ω,

‖Φ(t, ω)Pγ2(ω)‖ ≤ K1e
(γ1−α1)t for all t ≥ 0

for some K1 ≥ 1 and α1 > 0, and

∥∥Φ(t, ω)(1− Pγ2(ω))
∥∥ ≤ K2e

(γ2+α2)t for all t ≤ 0

with some K2 ≥ 1 and α2 > 0. For all γ ∈ [γ1, γ2] these two inequalities imply, by setting

K := max {K1, K2} and α := min {α1, α2}, that for almost all ω ∈ Ω

‖Φ(t, ω)Pγ2(ω)‖ ≤ Ke(γ−α)t for all t ≥ 0 ,

‖Φ(t, ω)(1− Pγ2(ω))‖ ≤ Ke(γ+α)t for all t ≤ 0 .

This means that γ ∈ ρ, and thus, [γ1, γ2] ⊂ ρ. Now for arbitrary γ, ζ ∈ [γ1, γ2] with γ ≤ ζ

one has rkPγ ≤ rkPζ , and since the relation rkPγ1 = rkPγ2 also holds, one must have that

rkPγ = rkPζ . Then Proposition 3.1.8 together with the fact that Sγ ⊂ Sζ and Uγ ⊃ U ζ

yields thatR(Pγ) = R(Pζ) andN (Pγ) = N (Pζ) almost surely, and hence Pγ = Pζ almost

surely.

For an arbitrarily chosen a ∈ R, define

[−∞, a] := (−∞, a] ∪ {−∞} , [a,∞] := [a,∞) ∪ {∞}

and

[−∞,−∞] := {−∞}, [∞,∞] := {∞}, [−∞,∞] := R .

The following Spectral Theorem shows that the dichotomy spectrum consists of at least

one and at most d closed intervals; it is an extension of the corresponding result for nonau-

tonomous systems given in [KR11, Theorem 5.12] to the setting of random dynamical

systems.
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Theorem 3.2.4. Let Φ be a linear RDS with dichotomy spectrum Σ. Then there exists an

n ∈ {1, . . . , d} such that

Σ = [a1, b1] ∪ · · · ∪ [an, bn]

with −∞ ≤ a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn ≤ ∞.

Proof. Due to Lemma 3.2.2, the resolvent set ρ ∩ R is open. Thus, Σ ∩ R is the disjoint

union of closed intervals. The relation (−∞, b1] ⊂ Σ implies [−∞, b1] ⊂ Σ, because the

assumption of the existence of a γ ∈ R such that Φ admits an exponential dichotomy with

growth rate γ and projector Pγ ≡ 0 leads to (−∞, γ] ⊂ ρ using Lemma 3.1.6, and this is

a contradiction. Analogously, it follows from [an,∞) ⊂ Σ that [an,∞] ⊂ Σ. To show the

relation n ≤ d, assume to the contrary that n ≥ d+ 1. Thus, there exist

ζ1 < ζ2 < · · · < ζd ∈ ρ

such that the d + 1 intervals (−∞, ζ1) , (ζ1, ζ2) , . . . , (ζd,∞) have nonempty intersection

with the spectrum Σ. It follows from Lemma 3.2.3 that

0 ≤ rkPζ1 < rkPζ2 < · · · < rkPζd ≤ d

is fulfilled for invariant projectors Pζi of the exponential dichotomy with growth rate ζi,

i ∈ {1, . . . , n}. This implies either rkPζ1 = 0 or rkPζd = d. Thus, either

[−∞, ζ1] ∩ Σ = ∅ or [ζd,∞] ∩ Σ = ∅

is fulfilled, and this is a contradiction. To show n ≥ 1, assume that Σ = ∅. This implies

{−∞,∞} ⊂ ρ. Thus, there exist ζ1, ζ2 ∈ R such that Φ admits an exponential dichotomy

with growth rate ζ1 and projector Pζ1 ≡ 0 and an exponential dichotomy with growth

rate ζ2 and projector Pζ2 ≡ 1. Applying Lemma 3.2.3, one gets (ζ1, ζ2) ∩ Σ 6= ∅. This

contradiction yields n ≥ 1 and finishes the proof of the theorem.

Each spectral interval is associated to a so-called spectral manifold, which are refine-

ments of the stable and unstable manifolds obtained by the ranges and null spaces of invari-

ant projectors of exponential dichotomies. These are described in the following theorem,
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the proof of which is an adaptation of the version for nonautonomous systems given in

[KR11, Theorem 5.14].

Theorem 3.2.5. Consider the dichotomy spectrum

Σ = [a1, b1] ∪ · · · ∪ [an, bn]

of the linear RDS Φ and define the invariant projectors Pγ0 := 0, Pγn := 1, and for

i ∈ {1, . . . , n− 1}, choose γi ∈ (bi, ai+1) and projectors Pγi of the exponential dichotomy

of Φ with growth rate γi. Then the sets

Wi(ω) := R(Pγi(ω)) ∩N (Pγi−1
(ω)) for all i ∈ {1, . . . , n}

are linear subsets of Rd for all ω ∈ Ω, the so-called spectral manifolds, such that for almost

all ω ∈ Ω they form a direct sum decomposition

W1(ω)⊕ · · · ⊕Wn(ω) = Rd

withWi(ω) 6= {0} for i ∈ {1, . . . , n}.

Proof. The sets W1, . . . ,Wn obviously have linear fibers. We first show that Wi(ω) 6=
{0} almost surely for all i ∈ {1, . . . , n}. If W1(ω) 6= {0} does not hold almost surely,

then Proposition 3.1.3 implies that Pγ1(ω) = 0 almost surely, and Lemma 3.1.6 implies

[−∞, γ1] ∩ Σ = ∅, which is a contradiction. A similar argument may be used forWn. In

the case 1 < i < n, using Lemma 3.2.3, one obtains

dimWi = dim
(
R(Pγi)∩N (Pγi−1

)
)

= rkPγi+d−rkPγi−1
−dim

(
R(Pγi)+N (Pγi−1

)
)
≥ 1.

Now the relationW1(ω) ⊕ · · · ⊕ Wn(ω) = Rd µ-a.s. will be proved. For 1 ≤ i < j ≤ n,

due to Proposition 3.1.8, the relations Wi ⊂ R(Pγi) and Wj ⊂ N (Pγj−1
) ⊂ N (Pγi) are

almost surely fulfilled. This yields that, almost surely,

Wi(ω) ∩Wj(ω) ⊂ R(Pγi(ω)) ∩N (Pγi(ω)) = {0} .
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One also obtains

Rd = W1(ω) +N (Pγ1(ω)) =W1(ω) +N (Pγ1(ω)) ∩
(
R(Pγ2(ω)) +N (Pγ2(ω))

)
= W1(ω) +N (Pγ1(ω)) ∩R(Pγ2(ω)) +N (Pγ2(ω)) =W1(ω) +W2(ω) +N (Pγ2(ω)) .

using the fact that for linear subspaces E,F,G ⊂ Rd with E ⊃ G fulfill E ∩ (F + G) =

(E ∩ F ) +G. It follows inductively that

Rd =W1(ω) + · · ·+Wn(ω) +N (Pγn(ω)) =W1(ω) + · · ·+Wn(ω)

for almost all ω ∈ Ω.

Remark 3.2.6. If the linear RDS Φ under consideration fulfils the conditions of the Multi-

plicative Ergodic Theorem, then Proposition 3.1.5 implies that the spectral manifolds Wi

of the above theorem are given by direct sums of Oseledets subspaces.

The remaining part of this section on the dichotomy spectrum will be devoted to the

study of boundedness properties of the spectrum. Firstly, a criterion for boundedness from

above and below is provided by the following proposition.

Proposition 3.2.7. Consider a linear RDS Φ, let Σ denote the dichotomy spectrum of Φ,

and define

α±(ω) :=

{
ln+
(
‖Φ(1, ω)±1‖

)
: T = Z ,

ln+
(

supt∈[0,1]‖Φ(t, ω)±1‖
)

: T = R .

Then Σ is bounded from above if and only if

ess sup
ω∈Ω

α+(ω) <∞ ,

and Σ is bounded from below if and only if

ess sup
ω∈Ω

α−(ω) <∞ .

Consequently, if the dichotomy spectrum Σ is bounded, then Φ satisfies the integrability

condition of the Multiplicative Ergodic Theorem.



82 Chapter 3. Linear random dynamical systems

Proof. Suppose that Σ is bounded from above. Then there exist K ≥ 1 and Γ ∈ R such

that for almost all ω ∈ Ω

‖Φ(t, ω)‖ ≤ KeΓt for all t ≥ 0 ,

which implies that ess supω∈Ω α
+(ω) ≤ ln(K) + |Γ|. On the other hand, suppose that

ess supω∈Ω α
+(ω) < ∞. Then there exists a full measure set F ∈ F such that for all

ω ∈ F we have α+(ω) ≤ β for some positive number β. Define

Ω̃ :=
⋂
n∈Z

θnF .

Due to the measure preserving property of θ, we get that µ
(
Ω̃
)

= 1. Then for all ω ∈ Ω̃,

we have

‖Φ(t, ω)‖ ≤ ‖Φ(t− btc, θbtcω)‖‖Φ(1, θbtc−1ω)‖ · · · ‖Φ(1, ω)‖ ≤ eβ(t+1) for all t ≥ 0.

Let γ > β be arbitrary and ε < γ − β. Then

‖Φ(t, ω)‖ ≤ eβe(γ−ε)t for all t ≥ 0 ,

which implies that Φ admits an exponential dichotomy with growth rate γ and projector

Pγ ≡ 1, and hence Σ ⊂ [−∞, γ). Similarly, we get that Σ is bounded from below if and

only if ess supω∈Ω α
−(ω) <∞. This finishes the proof of this proposition.

The following example shows that there exist linear random dynamical systems which

satisfy the integrability condition of the Multiplicative Ergodic Theorem, but which have

no bounded dichotomy spectrum.

Example 3.2.8. Let (Ω,F , µ) be a nonatomic probability space and θ : Z × Ω → Ω be a

metric dynamical system which is ergodic. Then there exists, by using [Hal56, Lemma 2,
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p. 71], a measurable set U of the form

U =
∞⋃
k=1

k⋃
j=0

θjUk, (3.2.1)

where Ui, i ∈ N, are measurable sets such that

(i) for all k, ` ∈ N, i ∈ {0, . . . , k} and j ∈ {0, . . . , `}, we have

θjUk ∩ θiU` = ∅ whenever k 6= ` or i 6= j ,

(ii) 0 < µ(Uk) ≤ 1
k3

for all k ∈ N .

We now define a random variable a : Ω→ R by

a(ω) :=


1 : ω ∈ Ω \ U ,
k : k is even and ω ∈ θjUk ,
1
k

: k is odd and ω ∈ θjUk ,

with j ∈ {0, . . . , k}. Using the random variable a, we define a discrete-time scalar linear

RDS Φ : Z× Ω→ R by

Φ(n, ω) =


a(θn−1ω) · · · a(ω) : n ≥ 1 ,

1 : n = 0 ,

a(θ−1ω)−1 · · · a(θnω)−1 : n ≤ −1 .

A direct computation yields that

E ln+(‖Φ(1, ω)‖) =
∞∑
k=1

(2k + 1)µ(U2k) ln(2k) ≤
∞∑
k=1

(2k + 1)
ln(2k)

8k3
<∞ ,
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and

E ln+(‖Φ(1, ω)−1‖) =
∞∑
k=1

(2k + 2)µ(U2k+1) ln(2k + 1)

≤
∞∑
k=1

(2k + 2)
ln(2k + 1)

(2k + 1)3
<∞ .

Then the linear system Φ satisfies the integrability condition of the Multiplicative Ergodic

Theorem. The fact that the dichotomy spectrum of Φ is unbounded from above follows

from

‖Φ(n, ω)‖ = kn for all ω ∈ Uk with k even and 0 ≤ n ≤ k + 1 .

Similarly, one can prove that the spectrum is unbounded from below.

Remark 3.2.9. [JPS87, Theorem 2.3] contains the following statement. LetM be a compact

connected Hausdorff space and Ψ: M × T × Rd → Rd a continuous linear cocycle with

two-sided time, over a continuous dynamical system φ : T × M → M equipped with a

unique ergodic measure µ, then

∂Σ ⊂ Λ ⊂ Σ.

In particular, the endpoints of the intervals in the dichotomy spectrum are given by Lya-

punov exponents. Example 3.2.8 shows that the first inclusion does not hold in general for

a linear RDS. The metric DS in this example may be chosen to satisfy the above set-up

(e.g. an irrational circle rotation equipped with the Lebesgue measure); the difference here

arises from the lack of continuity of the cocycle with respect to the base, which allows

the time-one mapping of the cocycle to be arbitrarily large with positive probability, whilst

still satisfying the integrability condition of Oseledets Theorem. The second inclusion was

shown for linear RDS in Proposition 3.1.5.
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3.3 Morse decompositions for linear systems

A linear RDS Φ: T × Ω × Rd → Rd induces an RDS PΦ: T × Ω × Pd−1 → Pd−1 on the

real projective space, given by

PΦ(t, ω)P(x) := P(Φ(t, ω)x)

for every (t, ω, x) ∈ T×Ω×Rd (see Section 1.1: Linear RDS, projected linear RDS, p. 25).

Since the real projective space is a compact metric space, one can analyse the dynamics of

PΦ using attractor-repeller pairs, as discussed in Chapter 2. The main result in this section

is Theorem 3.3.6, which is an analogue of Selgrade’s Theorem on the existence of a unique

finest Morse decomposition of PΦ. This is achieved using strong attractor-repeller pairs

with uniform attracting and repelling neighbourhoods, the existence of which are demon-

strated in Theorem 3.3.5. The main ingredient in the proof of Theorem 3.3.6 is the fact

that a strong attractor-repeller pair corresponds to a direct sum decomposition of the state

space, and then since the state space is finite dimensional, there can only exist a finite num-

ber of nested attractor-repeller pairs. The fact that the attractor and corresponding repeller

are linear subspaces relies on Proposition 3.3.3, which itself relies on a local pullback at-

tractor having a uniform pullback attracting neighbourhood. For this reason we cannot

proceed with the techniques employed here using pullback attractor-repeller pairs, since

Remark 2.5.13 (ii) asserts that a local pullback attractor with uniform pullback attract-

ing neighbourhood may have a corresponding local pullback repeller with a nonuniform

pullback repelling neighbourhood. We are also unable to prove an analogue of Selgrade’s

Theorem using past or future attractor-repeller pairs — see Remark 3.3.4.

The following two lemmas will be needed in this section.

Lemma 3.3.1 ([KR11, Lemma A1]). For all η > 0 there exists a δ ∈ (0, 1) such that for

all nonzero vectors x, y ∈ Rd satisfying

〈x, y〉2

‖x‖2‖y‖2
≥ 1− δ,
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one has

dP(Px,Py) ≤ η.

Lemma 3.3.2. Let V,W ⊂ Rd be linear subspaces with dim(W ) > dim(V ). Then,

distP(PW,PV ) =
√

2.

Proof. Define the linear subspace V ⊥ := {x ∈ Rd : 〈x, v〉 = 0 for all v ∈ V }, then the

linear subspace V ⊥ ∩W is nontrivial. Let w ∈ (V ⊥ ∩W )\{0}, then for all v ∈ V we have

dP(Pw,Pv) = min

{∥∥∥∥ v

‖v‖
± w

‖w‖

∥∥∥∥}
= min

{√〈
v

‖v‖
,
v

‖v‖

〉
+

〈
w

‖w‖
,
w

‖w‖

〉
± 2

〈
v

‖v‖
,
w

‖w‖

〉}
=
√

2

Then since dP(x, y) ≤
√

2 for all x, y ∈ Pd−1, the result is implied.

3.3.1 Past attractor-repeller pairs for linear systems

The following result shows that for a projected linear RDS, a pullback attractor with a

uniform pullback attracting neighbourhood almost surely corresponds to a linear subspace.

The proof is an adaptation of the nonautonomous case, given in [KR11, Proposition 5.18].

Proposition 3.3.3. Let A be a nontrivial local pullback attractor of PΦ with pullback at-

tracting neighbourhood given by the random open ball Bη(A), for some constant η > 0.

Then for almost all ω ∈ Ω one has that for all compact sets C ⊂ Sd−1\P−1A(ω),

lim
t→−∞

supu∈Sd−1∩P−1A(ω)‖Φ(t, ω)u‖
infv∈C‖Φ(t, ω)v‖

= 0.

Moreover, the set P−1A(ω) is almost surely a linear subspace of Rd.

Proof. The proof of this proposition is divided into five parts. For fixed ω ∈ Ω let C denote

an arbitrary compact set such that C ⊂ Sd−1\P−1A(ω). For any two vectors u, v ∈ Rd,

define the linear subspace Lu,v := span({u, v}).
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Part 1. It will be shown that for almost all ω ∈ Ω, nonzero u ∈ P−1A(ω) and v ∈ C
such that Pu is a boundary point of A(ω) ∩ PLu,v relative to PLu,v, one has

lim
t→−∞

‖Φ(t, ω)u‖
‖Φ(t, ω)v‖

= 0. (3.3.1)

By the definition of A,

lim
t→∞

distP(PΦ(t, θ−tω)Bη(A(θ−tω)), A(ω)) = 0 µ-a.s. (3.3.2)

By Lemma 3.3.1 there exists a δ ∈ (0, 1) such that dP(Px,Py) ≤ η
2

holds for all x, y ∈
Rd\{0} with

〈x, y〉2

‖x‖2‖y‖2
≥ 1− δ. (3.3.3)

Let F ∈ F be the set of full measure where the limit in (3.3.2) holds and A is nontrivial,

and assume there exists an ω ∈ F such that (3.3.1) does not hold, then there exists a γ > 0

and a sequence {tn}n∈N with limn→∞ tn = −∞ such that

‖Φ(tn, ω)v‖
‖Φ(tn, ω)u‖

≤ γ, for all n ∈ N.

For nonzero c ∈ R with |c| sufficiently small, this implies (using the Cauchy-Schwarz

inequality) that for all n ∈ N the following holds:

〈Φ(tn, ω)(cv + u),Φ(tn, ω)u〉2

‖Φ(tn, ω)(cv + u)‖2‖Φ(tn, ω)u‖2
≥ 1− δ.

Hence, for |c| > 0 sufficiently small, by (3.3.3) one has that

distP(PΦ(tn, ω)P(cv + u), A(θtnω)) ≤ η

2
for all n ∈ N.
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Then,

distP(P(cv + u), A(ω)) = lim
n→∞

distP(P(cv + u), A(ω))

= lim
n→∞

distP(PΦ(−tn, θtnω)PΦ(tn, ω)P(cv + u)︸ ︷︷ ︸
∈Bη(A(θtnω))

, A(ω))

=0,

using the pullback attraction to A given in (3.3.2). This is a contradiction since Pu was

assumed to be a boundary point of A(ω) ∩ PLu,v in PLu,v, and hence (3.3.1) holds for all

ω ∈ F .

Part 2. It will be shown that for each ω ∈ F (with F defined as in Part 1), that for

arbitrary nonzero u ∈ P−1A(ω) and v ∈ C, the intersection A(ω) ∩ PLu,v is a singleton.

First note that any point in PLu,v\{Pu} is given by P(v + cu) for some c ∈ R. It follows

from Part 1 that for all ω ∈ F

lim
t→−∞

〈Φ(t, ω)(v + cu),Φ(t, ω)v〉2

‖Φ(t, ω)(v + cu)‖2‖Φ(t, ω)v‖2
= 1

if Pu is a boundary point of A(ω)∩PLu,v relative to PLu,v. This then implies together with

Lemma 3.3.1 that

lim
t→−∞

dP(PΦ(t, ω)P(v + cu),PΦ(t, ω)Pv) = 0 µ-a.s.

If P(u + cv) ∈ A(ω) then this implies that there is a T ≤ 0 such that PΦ(t, ω)Pv ∈
Bη(A(θtω)) for all t ≤ T , and then

distP(Pv, A(ω)) = lim
t→−∞

distP(PΦ(−t, θtω)PΦ(t, ω)Pv, A(ω))

=0

which is a contradiction since Pv is in the compact set PC. Therefore, A(ω) ∩ PLu,v
consists of a single point.

Part 3. It now follows directly from Parts 1 and 2 that for almost all ω ∈ Ω, and all
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nonzero u ∈ P−1A(ω) and v ∈ C one has

lim
t→−∞

‖Φ(t, ω)u‖
‖Φ(t, ω)v‖

= 0.

Part 4. It is now shown that P−1A(ω) is a linear subspace of Rd µ almost surely. Part

2 asserted that for all ω ∈ F and for u ∈ P−1A(ω) and v ∈ C, A(ω) ∩ PLu,v consists

of a single point. Now this implies that for any two nonzero vectors x, y ∈ Rd, we have

µ-a.s. that A(ω)∩PLx,y is either a single point, the empty set, or equals the set PLx,y. This

implies that P−1A(ω) is a linear subspace.

Part 5. We finally show that

lim
t→−∞

supu∈Sd−1∩P−1A(ω)‖Φ(t, ω)u‖
infv∈C‖Φ(t, ω)v‖

= 0 µ-a.s.

Let F be as defined in Part 1, and assume there exists an ω ∈ F such that the above

does not hold, so that there exists a sequence of times {tn}n∈N with limn→∞ tn = −∞, and

sequences {un}n∈N in Sd−1 ∩ P−1A(ω) and {vn}n∈N in C, which by compactness one may

assume converge with limn→∞ un = u for some u ∈ Sd−1 ∩ P−1A(ω) and limn→∞ vn = v

for some v ∈ C, and there exists a γ > 0 such that the following holds:

‖Φ(tn, ω)vn‖
‖Φ(tn, ω)un‖

≤ γ for all n ∈ N.

Then, similarly to Part 1, for all nonzero c ∈ R with |c| sufficiently small, this implies that

for all n ∈ N
〈Φ(tn, ω)(cvn + un),Φ(tn, ω)un〉2

‖Φ(tn, ω)(cvn + un)‖2‖Φ(tn, ω)un‖2
≥ 1− δ

holds, with δ ∈ (0, 1) chosen as in Part 1. Hence by Lemma 3.3.1, for |c| > 0 sufficiently

small one obtains

distP(PΦ(tn, ω)P(cvn + un), A(θtnω)) ≤ η for all n ∈ N.

Part 2 gave that A(ω) ∩ PLu,v is a singleton, and so P(cv + u) /∈ A(ω). Hence there

exists an n0 ∈ N and a β > 0 such that P(cvn + un) /∈ Bβ(A(ω)) for all n ≥ n0. Then
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using the pullback attraction to A in a similar argument to the end of Part 1, we get a

contradiction.

Remark 3.3.4. By the above proposition and Theorem 2.7.5, given a local forward repeller

R of PΦ with a uniform forward repelling neighbourhood, one obtains a corresponding lo-

cal pullback attractor A that almost surely corresponds to a linear subspace. In the nonau-

tonomous theory the local forward repeller is nonunique, and may be chosen to be the

projection of any invariant linear subspace complementary to the pullback attractor, so that

one obtains a direct sum decomposition by the local forward repeller and local pullback

attractor [KR11, Proposition 5.19]. For RDS we have seen (Remark 2.7.6 (i)) that R is

almost surely unique, and we are unable to determine whether R must also necessarily

correspond to a linear subspace, which we shall need to show the existence of a unique

finest Morse decomposition in Theorem 3.3.6. For this reason we proceed by considering

local strong attractors. Given a local strong attractor of PΦ with a uniform strong attract-

ing neighbourhood, since it is also a local forward attractor, by Theorem 2.7.5 there exists

a corresponding local pullback repeller with a uniform pullback repelling neighbourhood.

Then, since they are both pullback objects we can apply Proposition 3.3.3 to obtain that

they both correspond to linear subspaces. Furthermore, it is shown in Theorem 3.3.5 that

the local pullback repeller is in fact a local strong repeller, and that the attractor-repeller

pair forms a direct sum decomposition of Rd.

3.3.2 Strong attractor-repeller pairs for linear systems

The following theorem demonstrates the existence of strong attractor-repeller pairs with

uniform neighbourhoods for projected linear RDS. The proof uses techniques from the

proof of [KR11, Theorem 5.26] on the existence of so-called all-time attractor-repeller

pairs for projected linear nonautonomous systems.

Theorem 3.3.5. Given a local strong attractor A of PΦ with attracting neighbourhood

Bη(A) for some η > 0, then the compact random set R given by the pullback α-limit set

R(ω) :=
⋂
τ≥0

⋃
t≥τ

PΦ(−t, θtω)(Pd−1\Bη(A(θtω)))
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is a local strong repeller with a repelling neighbourhood given by Bε(R) for some ε > 0.

Furthermore, the following properties hold almost surely:

(i) A and R are uniformly isolated:

Bη(A(ω)) ∩R(ω) = ∅ (3.3.4)

(ii) P−1A(ω) and P−1R(ω) are linear subspaces and form a direct sum decomposition

P−1A(ω)⊕ P−1R(ω) = Rd, (3.3.5)

such that the dimensions of P−1A(ω) and P−1R(ω) are almost surely constant.

The pair (A,R) is called a strong attractor-repeller pair. Moreover, (A,R) is also a

past, future, pullback and weak attractor-repeller pair.

Proof. By the reverse time version of Theorem 2.7.5 the compact random set R is a lo-

cal pullback repeller such that (i) holds, and (A,R) is also a future, pullback and weak

attractor-repeller pair. Next we demonstrate (ii). Since A is a local pullback attractor and

R a local pullback repeller, Proposition 3.3.3 asserts that almost surely both P−1A(ω) and

P−1R(ω) are linear subspaces of Rd. Now define the closed random set K : Ω→ 2Pd−1 by

K(ω) :=

{x ∈ Pd−1 : distP(x,R(ω)) ≥
√

2}, ω ∈ F,

A(ω), ω ∈ Ω\F,

where F ∈ F is the set of full measure where P−1A(ω) and P−1R(ω) are linear subspaces.

Note that since

distP(x,R(ω)) ≥
√

2⇔ 〈x̂, ξ̂〉 = 0

for any x̂ ∈ P−1{x} and for all ξ̂ ∈ P−1R(ω), it means that for ω ∈ F , P−1K(ω) is

the orthogonal complement of P−1R(ω); hence P−1R(ω) ⊕ P−1K(ω) = Rd, and also

dim(P−1K(ω)) = d − dim(P−1R(ω)). Note that ω 7→ dim(P−1A(ω)) is a θ-invariant
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function, since by the invertibility of Φ and invariance of A,

dim(P−1A(ω)) = dim(P−1(PΦ(t, ω)A(ω)))

= dim(P−1A(θtω)).

Also, since Φ is invertible, for all ω ∈ F and for all t ∈ T, P−1(PΦ(t, ω)K(ω)) is also

a linear subspace of dimension d − dim(P−1R(ω)). Since K is a compact set valued

function such that K(ω) ∩ R(ω) = ∅ µ-a.s., we have by the reversed time version of

Theorem 2.7.8 (i) that

lim
t→∞

distP(PΦ(t, ω)K(ω), A(θtω)) = 0 µ-a.s.

Hence by the contrapositive of Lemma 3.3.2, there exists a t > 0 such that

dim(P−1A(θtω)) ≥ d− dim(P−1R(ω))

and by θ-invariance we have dim(P−1A(ω)) ≥ d − dim(P−1R(ω)) almost surely. Since

A(ω) ∩R(ω) = ∅, we must have dim(P−1A(ω)) = d− dim(P−1R(ω)) and hence

P−1A(ω)⊕ P−1R(ω) = Rd µ-a.s.

To show that dim(P−1A(ω)) is constant µ-a.s., we already have that it is a θ-invariant

function and hence just need to show that it is measurable. For a linear random set M in

Rd on a complete probability space, the proof of Corollary 4.7 in [Via14] demonstrates

that the measurability of dist(x̂,M(ω)) for all x̂ ∈ Rd is equivalent to the measurability of

distP(x,PM(ω)) for all x ∈ Pd−1; hence P−1A(ω) is a linear random set in Rd on F . Then

by Lemma 5.2.1 in [Arn98], ω 7→ dim(P−1A(ω)) is measurable (restricted to F ) and so by

the ergodicity of θ, dim(P−1A(ω)) is almost surely constant.

Next we show that R is a local forward repeller as well as a local pullback repeller. The

proof of this is divided into two parts.

Part 1. It will be shown that for almost all ω ∈ Ω and compact sets C such that
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C ∩ A(ω) = ∅, one has

lim
t→−∞

inf
06=v∈P−1C

‖Φ(t, ω)vr‖
‖Φ(t, ω)v‖

= lim
t→−∞

sup
06=v∈P−1C

‖Φ(t, ω)vr‖
‖Φ(t, ω)v‖

= 1

where v = va + vr with va ∈ P−1A(ω) and vr ∈ P−1R(ω). The infimum relation follows

from

lim
t→−∞

inf
06=v∈P−1C

‖Φ(t, ω)vr‖
‖Φ(t, ω)v‖

≥

(
lim
t→∞

sup
06=v∈P−1C

‖Φ(t, ω)va‖
‖Φ(t, ω)vr‖

+ 1

)−1

=

(
lim
t→−∞

sup
v∈P−1C,va 6=0

‖va‖‖Φ(t, ω) va
‖va‖‖

‖vr‖‖Φ(t, ω) vr
‖vr‖‖

+ 1

)−1

= 1

and

lim
t→−∞

inf
06=v∈P−1C

‖Φ(t, ω)vr‖
‖Φ(t, ω)v‖

≤

(
lim
t→−∞

sup
0 6=v∈P−1C

∣∣∣∣1− ‖Φ(t, ω)va‖
‖Φ(t, ω)vr‖

∣∣∣∣
)−1

=

(
lim
t→−∞

sup
v∈P−1C,va 6=0

∣∣∣∣∣1− ‖va‖‖Φ(t, ω) va
‖va‖‖

‖vr‖‖Φ(t, ω) vr
‖vr‖‖

∣∣∣∣∣
)−1

= 1.

with the last line in each relation above following from Proposition 3.3.3, and the fact that

‖va‖/‖vr‖ is bounded. This fact can be seen by considering the projection P ∈ Rd×d

with range P−1A(ω) and null space P−1R(ω), which demonstrates that the following set is

compact

{va : v ∈ P−1C ∩ Sd−1} = P (P−1C ∩ Sd−1),

and that the following set is compact and hence bounded away from zero (sinceC∩A(ω) =

∅):
{vr : v ∈ P−1C ∩ Sd−1} = (1− P )(P−1C ∩ Sd−1).
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The supremum relation follows analogously.

Part 2. It will now be shown that for almost all ω ∈ Ω and all compact sets C ⊂ Pd−1

with C ∩ A(ω) = ∅, one has

lim
t→−∞

distP(PΦ(t, ω)C,R(θtω)) = 0. (3.3.6)

By the Cauchy-Schwarz inequality and Proposition 3.3.3 one obtains

0 ≤ lim
t→−∞

sup
v∈Sd−1∩P−1C

〈Φ(t, ω)va,Φ(t, ω)vr〉2

‖Φ(t, ω)v‖2‖Φ(t, ω)vr‖2
≤ lim

t→−∞
sup

v∈Sd−1∩P−1C

‖Φ(t, ω)va‖2

‖Φ(t, ω)v‖2
= 0

and

0 ≤ lim
t→−∞

sup
v∈Sd−1∩P−1C

2|〈Φ(t, ω)va,Φ(t, ω)vr〉|
‖Φ(t, ω)v‖2

≤ lim
t→−∞

sup
v∈Sd−1∩P−1C

2
‖Φ(t, ω)va‖
‖Φ(t, ω)v‖

‖Φ(t, ω)vr‖
‖Φ(t, ω)v‖

= lim
t→−∞

sup
v∈Sd−1∩P−1C

2
‖Φ(t, ω)va‖
‖Φ(t, ω)v‖

= 0.

Then since

〈Φ(t, ω)v,Φ(t, ω)vr〉2

‖Φ(t, ω)v‖2‖Φ(t, ω)vr‖2
=

(〈Φ(t, ω)va,Φ(t, ω)vr〉+ 〈Φ(t, ω)vr,Φ(t, ω)vr〉)2

‖Φ(t, ω)v‖2‖Φ(t, ω)vr‖2

=
〈Φ(t, ω)va,Φ(t, ω)vr〉2

‖Φ(t, ω)v‖2‖Φ(t, ω)vr‖2
+
‖Φ(t, ω)vr‖2

‖Φ(t, ω)v‖2

+
2〈Φ(t, ω)va,Φ(t, ω)vr〉

‖Φ(t, ω)v‖2
,

it follows by the above and Part 1 that

lim
t→−∞

sup
v∈Sd−1∩P−1C

〈Φ(t, ω)v,Φ(t, ω)vr〉2

‖Φ(t, ω)v‖2‖Φ(t, ω)vr‖2
= 1.

Using Lemma 3.3.1, this implies the assertion. It follows from (3.3.6) and (3.3.4) that R

forward repels a neighbourhood, say Bη/2(R), and hence it is a local strong repeller, and
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(A,R) is also a past attractor-repeller pair.

Below we give the analogue of Selgrade’s Theorem for strong Morse decompositions.

The proof is an adaptation of that for [KR11, Theorem 5.23] on the existence of a finest

past Morse decomposition for a projected linear nonautonomous system.

Theorem 3.3.6. There exists a unique finest strong Morse decomposition {M1, . . . ,Mn}
of PΦ. Moreover, n ≤ d, and for almost all ω ∈ Ω the Morse sets correspond to a direct

sum decomposition:

P−1M1(ω)⊕ · · · ⊕ P−1Mn(ω) = Rd.

Proof. It is first shown that for any two local pullback attractors A and Ã that differ on a

positive measure set, we have that either A(ω) ⊂ Ã(ω) or Ã(ω) ⊂ A(ω), almost surely. In

the case that one or both of A and Ã are trivial this is simple, and so assume that both are

nontrivial. Let F ∈ F be the set of full measure where Proposition 3.3.3 holds for both A

and Ã, and suppose there is an ω ∈ F such that there exist vectors

x ∈ Sd−1 ∩ (P−1A(ω)\P−1Ã(ω)) and x̃ ∈ Sd−1 ∩ (P−1Ã(ω)\P−1A(ω)).

By Proposition 3.3.3 one obtains that both

lim
t→−∞

‖Φ(t, ω)x‖
‖Φ(t, ω)x̃‖

= 0 and lim
t→−∞

‖Φ(t, ω)x̃‖
‖Φ(t, ω)x‖

= 0,

which are contradictory statements. Proposition 3.3.3 also establishes that the ω-sections

of local pullback attractors almost surely correspond to linear subspaces. Therefore there

are at most d+ 1 local strong attractors of PΦ, namely {A0, . . . , An}, n ≤ d, such that

∅ = A0(ω) ( A1(ω) ( · · · ( An(ω) = Pd−1 µ-a.s.

Let {M1, . . . ,Mn} denote the corresponding strong Morse decomposition, and let {M̃1,

. . . , M̃m} be another strong Morse decomposition obtained from a set of local strong at-

tractors {Ã0, . . . , Ãm}, m ≤ d with ∅ = Ã0(ω) ( Ã1(ω) ( · · · ( Ãm(ω) = Pd−1 µ-a.s.

Now for each i ∈ {0, . . . ,m}, there exists an ni ∈ {0, . . . , n} such that Ãi(ω) = Ani(ω) al-
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most surely. Hence we have that Mni(ω) ⊂ M̃i(ω) almost surely, andM := {M1, . . .Mn}
is the unique (up to a null set) finest strong Morse decomposition.

Now the decomposition,

P−1M1(ω)⊕ · · · ⊕ P−1Mn(ω) = Rd µ-a.s.

will be shown. Using (3.3.5) we have that, µ-a.s.,

Rd = P−1A1(ω)⊕ P−1R1(ω)

= P−1M1(ω)⊕ (P−1R1(ω) ∩ (P−1A2(ω)⊕ P−1R2(ω)))

= P−1M1(ω)⊕ (P−1R1(ω) ∩ P−1A2(ω))⊕ P−1R2(ω)

= P−1M1(ω)⊕ P−1M2(ω)⊕ P−1R2(ω),

where the third line follows from the fact that for linear subspaces E,F,G ⊂ Rd with

G ⊂ E, the following holds:

E ∩ (F +G) = (E ∩ F ) +G.

The result then follows by induction.

3.4 Discussion

As noted earlier, the dichotomy spectrum for RDS has also been investigated by Wang and

Cao [WC14] with a different set-up to ours, and we shall now describe the key differences

in the set-up and results. There the authors consider a random linear skew product, that is,

they take an invertible, bounded and continuous linear skew product with a compact metric

base space and Banach state space, and then randomize it by placing an ergodic metric DS

as the base to this system. Their definition of an exponential dichotomy is weaker than ours,

in particular they allow the constants K and ε to be certain random variables, and hence

have a nonuniform notion of an exponential dichotomy. Neither one of our set-ups includes

the other. They obtain a similar spectral theory and spectral manifolds as we do: under the
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assumptions that the spectrum is hyperbolic (i.e. zero is in the spectrum), the compact base

is connected and that an integrability condition holds, they obtain a nonempty and bounded

spectrum and associated invariant linear spectral manifolds. This contrasts to our theory

where we allow the spectrum to be unbounded and nonhyperbolic. It would be interesting

to see if it is possible to allow for nonuniformity of the constants within our set-up. Given

the importance of the dichotomy spectrum in nonautonomous systems (see the introduction

in [WC14] for an overview and the references therein), it will be important to investigate

the use of the dichotomy spectrum in analogous situations in random dynamics.

We now discuss the results of Section 3.3. We have established an analogue of Sel-

grade’s Theorem in Theorem 3.3.6 using strong Morse decompositions. As noted in Re-

mark 3.3.4, we required the definition of a local strong attractor in order to obtain that the

components of the attractor-repeller pair correspond to linear subspaces. This relied on

Propostion 3.3.3, which explicitly uses pullback arguments, i.e. using the fact that pull-

back convergence is convergence to a fixed set at time zero, and we would not expect to be

able to prove directly that a local forward attractor corresponds to a linear subspace. We

believe it should be possible to establish that the components of a weak attractor-repeller

pair for a projected linear RDS correspond to linear subspaces, by using weak attraction

in the pullback sense. Establishing this result would be desirable, as it would then apply

to all the other attractor-repeller pair types considered in Chapter 2. However, the analysis

proves more difficult as linearity of the set needs to be established using random variables,

as opposed to the case of almost sure pullback attraction where one works pointwise in ω

from a full measure set. In [CDS04, Theorem 6.1] it is shown that the projection of the

Oseledets subspaces form a weak Morse decomposition in the projective space. Since in

general the angle between the Oseledets subspaces may not be bounded away from zero,

and the Morse sets of a strong Morse decomposition are uniformly isolated (this follows

from Theorem 3.3.5 (i)), it follows that the decomposition by Oseledets subspaces will not

be a strong Morse decomposition in general. On the other hand, we believe it should be

straightforward to prove an analogue of Theorem 6.9 in [Ras09], that is, the projection of

the spectral manifolds of the dichotomy spectrum represents a strong Morse decomposi-

tion.

The next step from obtaining the existence of a finest Morse decomposition is to define
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the Morse spectrum and investigate its basic properties; we have yet to do this for RDS and

it forms future research. Following the deterministic definition given in [Grü00], a natural

definition for the Morse spectrum for a linear RDS Φ is the following. Let {M1, . . . ,Mn}
be the finest Morse decomposition of PΦ, then for each ω ∈ Ω, i ∈ {1, . . . , n} define

Ξ(Mi)(ω) := {ξ ∈ R : there exists a sequence {(Tk, tk, xk)}k∈N with Tk, tk ∈ T,

xk ∈ P−1M(θtkω)\{0} such that lim
k→∞

Tk =∞ and lim
k→∞

λTk(θtkω, xk) = ξ},

where

λT (ω, x) :=
1

T
ln
‖Φ(T, ω)x‖
‖x‖

is the finite-time Lyapunov exponent. Then the Morse spectrum is given by

Ξ(ω) :=
n⋃
i=1

Ξ(Mi)(ω).

Given the ergodicity of θ this should be almost surely constant. For nonautonomous sys-

tems it has been shown that the Morse spectrum coincides with the dichotomy spectrum

[Ras10], and it would be interesting to see if an analogous result can be obtained for random

dynamical systems.
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Chapter 4

Pitchfork bifurcation with additive

noise∗

Despite its importance for applications, relatively little progress has been made towards

the development of a bifurcation theory for random dynamical systems. Main contribu-

tions have been made by Ludwig Arnold and co-workers [Arn98], distinguishing between

phenomenological (P-) and dynamical (D-) bifurcations. P-bifurcations refer to qualitative

changes in the profile of densities of stationary probability measures [SN90, HL84]. This

concept carries substantial drawbacks such as providing reference only to static properties

and not being independent of the choice of coordinates. D-bifurcations refer to the bifur-

cation of a new invariant measure from a given reference invariant measure, in the sense of

weak convergence, and are associated with a qualitative change in the Lyapunov spectrum

[Arn98, Theorem 9.2.3]. They have been studied mainly in the case of multiplicative noise

[Bax94, CIS99, Wan14], and numerically [ABSH99, KO99].

Here we contribute to the bifurcation theory of random dynamical systems by shedding

new light on the influential paper Additive noise destroys a pitchfork bifurcation by Crauel

and Flandoli [CF98], in which the one-dimensional stochastic differential equation

dxt =
(
αxt − x3

t

)
dt+ σdWt , (4.0.1)

∗The material in this chapter follows that of [CDLR13, Sections 4 & 5].
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with two-sided Wiener process {Wt}t∈R and parameters α, σ ∈ R, was studied. In the

deterministic (noise-free) case, σ = 0, this system has a pitchfork bifurcation of equilibria:

if α < 0 there is one equilibrium (x = 0) which is globally attractive, and if α > 0,

the trivial equilibrium is repulsive and there are two additional attractive equilibria ±
√
α.

[CF98] establish the following facts in the presence of noise, i.e. when |σ| > 0:

(i) For all α ∈ R, there is a unique invariant measure given by a globally attracting

random fixed point {aα(ω)}ω∈Ω.

(ii) The Lyapunov exponent associated to {aα(ω)}ω∈Ω is negative for all α ∈ R.

As a result, [CF98] concludes that the pitchfork bifurcation is destroyed by the additive

noise. (This refers to the absence of D-bifurcation, as (4.0.1) admits a qualitative change

P-bifurcation from a unimodal distribution to a bimodal distribution, see [Arn98, p. 473].)

However, we are inclined to argue that the pitchfork bifurcation is not destroyed by addi-

tive noise, on the basis of the following additional facts concerning the dynamics near the

bifurcation point that we obtain here:

(i) The attracting random fixed point {aα(ω)}ω∈Ω is uniformly attractive only if α < 0

(Theorem 4.2.3).

(ii) At the bifurcation point there is a change in the practical observability of the Lya-

punov exponent: when α < 0 all finite-time Lyapunov exponents are negative, but

when α > 0 there is a positive probability to observe positive finite-time Lyapunov

exponents, irrespective of the length of time interval under consideration (Theo-

rem 4.2.5).

(iii) The bifurcation point α = 0 is characterized by a qualitative change in the dichotomy

spectrum associated to {aα(ω)}ω∈Ω (Theorem 4.3.1). In addition, we show that the

dichotomy spectrum is directly related to the observability range of the finite-time

Lyapunov spectrum (Theorem 4.3.2).

In light of these findings, we thus argue for the recognition of qualitative properties of

the dichotomy spectrum as an additional indicator for bifurcations of random dynamical

systems.
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In analogy to the corresponding bifurcation theory for one-dimensional determinis-

tic dynamical systems, we finally study whether the pitchfork bifurcation with additive

noise can be characterized in terms of a breakdown of topological equivalence. We re-

call that two random dynamical systems (θ, ϕ1) and (θ, ϕ2) are said to be topologically

equivalent if there are families {hω}ω∈Ω of homeomorphisms of the state space such that

ϕ2(t, ω, hω(x)) = hθtω(ϕ1(t, ω, x)), almost surely (Definition 1.1.11). We establish the

following results for the stochastic differential equation (4.0.1):

(i) Throughout the bifurcation, i.e. for |α| sufficiently small, the resulting dynamics are

topologically equivalent (Theorem 4.4.1).

(ii) There does not exist a uniformly continuous topological conjugacy between the dy-

namics of cases with positive and negative parameter α (Theorem 4.4.4).

These results lead us to propose the association of bifurcations of random dynamical sys-

tems with a breakdown of uniform topological equivalence, rather than the weaker form of

general topological equivalence with no requirement on uniform continuity of the involved

conjugacy. Note that uniformity of equivalence transformations plays an important role in

the notion of equivalence for nonautonomous linear systems (i.e. in contrast to random sys-

tems, the base set of nonautonomous systems is not a probability but a topological space),

see [Pal79].

This chapter is organized as follows. We first review in Section 4.1 the main results

of Crauel and Flandoli [CF98]. We then show in Section 4.2 the change from uniform

to nonuniform attractivity of the random fixed points {aα(ω)}ω∈Ω at the bifurcation point

α = 0, and also that there is a positive probability to observe positive finite-time Lyapunov

exponents for α > 0. In Section 4.3 we demonstrate that at the bifurcation point, one losses

hyperbolicity of the dichotomy spectrum obtained from the linearization along the random

fixed point. In Section 4.4 we demonstrate the topological equivalence of the systems

corresponding to α values sufficiently close to zero, and the lack of uniform topological

equivalence between systems with negative and positive α values. Finally, we discuss our

results and future work in Section 4.5.
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4.1 Existence of a unique random attracting fixed point

We first look at the case where σ = 0 in (4.0.1) i.e. the deterministic initial value problem

ẋ = αx− x3, x(0) = x0 , (4.1.1)

and we denote the solution by φ : R+
0 × R → R. For α < 0, the ordinary differential

equation (4.1.1) has one equilibrium (x = 0) which is globally attractive. For positive α,

the trivial equilibrium becomes repulsive, and there are two additional equilibria, given by

±
√
α, which are attractive. This also means that the global attractorKα of the deterministic

equation undergoes a bifurcation from a trivial to a nontrivial object. It is given by

Kα :=

{
{0} : α ≤ 0 ,[

−
√
α,
√
α
]

: α > 0 .
(4.1.2)

It was shown in [CF98] that such an attractor bifurcation does not persist to the ran-

domly perturbed system, i.e. for |σ| > 0, and we will now explain the details.

Since the solutions of (4.0.1) explode in backward time, we need the notion of a local

RDS, see [Arn98, Section 1.2] for further details.

Definition 4.1.1. Suppose that T = R, and (Ω,F , µ, θ) is a metric DS. A local continuous

random dynamical system over θ on a topological space X is a measurable mapping

ϕ : D → X, (t, ω, x) 7→ ϕ(t, ω, x)

whereD ⊂ R×Ω×X is a measurable set, with the following properties: For all ω ∈ Ω

(i) The random domain

D(ω) := {(t, x) ∈ R×X : (t, ω, x) ∈ D} ⊂ R×X

is nonvoid and open, and

ϕ(ω) : D(ω)→ X, (t, x) 7→ ϕ(t, ω, x)
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is continuous.

(ii) For each x ∈ X
D(ω, x) := {t ∈ R : (t, ω, x) ∈ D} ⊂ R

is an open interval containing 0, hence can be written as

D(ω, x) =: (κ−(ω, x), κ+(ω, x)).

(iii) ϕ(ω) satisfies the local cocycle property:

ϕ(0, ω) = idX

and for all x ∈ X and all s ∈ D(ω, x) we have the following property: t ∈
D(θsω, ϕ(s, ω, x)) if and only if t+ s ∈ D(ω, x). In this case we have,

ϕ(t+ s, ω)x = ϕ(t, θsω)ϕ(s, ω)x.

Some basic properties of local continuous RDS are given in [Arn98, Theorem 1.2.3].

By [Arn98, Theorem 2.3.36] the stochastic differential equation (4.0.1) generates a local

continuous RDS ϕ : D → R over the standard metric DS (Ω,F , µ, θ) representing the

Wiener process. Solutions may explode only in backward time, and for each (ω, x) ∈ Ω×R
we have D(ω, x) = (κ(ω, x),∞), where the measurable function κ : Ω ×X → R− is the

explosion time of the trajectory ϕ(·, ω)x starting at x at time t = 0.

It can be shown [Arn98, p. 474] that for any α ∈ R, |σ| > 0, the Markov semigroup

associated with (4.0.1) admits a unique stationary measure ρα,σ which is equivalent to the

Lebesgue measure, with density

pα,σ(x) = Nα,σ exp
(

1
σ2 (αx2 − 1

2
x4)
)
, (4.1.3)

where Nα,σ is a normalization constant. This stationary measure ρ corresponds to an in-
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variant measure ν of the RDS ϕ, and ν has the disintegration given by

νω = lim
t→∞

ϕ(t, θ−tω)ρ for almost all ω ∈ Ω .

It was shown in [CF98] that νω is a Dirac measure concentrated on a random variable aα(ω),

and is the unique invariant measure for the random dynamical system. The random fixed

point {aα(ω)}ω∈Ω is the only solution of (4.0.1) which does not explode in backward time

(that is, D(ω, aα(ω)) = R). Linearizing along this random fixed point yields a negative

Lyapunov exponent, given by

λα = − 2

σ2

∫
R
(αx− x3)2pα,σ(x) dx .

Moreover, the random fixed point {aα(ω)}ω∈Ω is the unique global pullback attractor (see

Definition 4.1.2 below) of ϕ, which implies that the attractor bifurcation associated with the

deterministic pitchfork bifurcation (that is, Kα bifurcates from a singleton to a nontrivial

object) is destroyed by noise.

In the previous chapters we have considered notions of local attraction for RDS. Here

we deal with a global random attractor that attracts in the pullback sense (see in particular

[CF94, FS96, CDF97, Cra99]).

Definition 4.1.2. Let ϕ be an RDS with complete separable metric state space (X, d). A

closed random set A is called a global pullback attractor if

(i) A(ω) is compact µ-a.s.

(ii) A is invariant.

(iii) For all bounded deterministic sets B ⊂ X one has

lim
t→∞

dist(ϕ(t, θ−tω)B,A(ω)) = 0 µ-a.s.

A global pullback attractor, when it exists, is almost surely unique, and the existence of

a global pullback attractor may be guaranteed by the existence of a compact global pullback

absorbing set [Cra99, Theorem 4.3].
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Definition 4.1.3. Let ϕ be an RDS with complete separable metric state space (X, d).

A bounded random set G is called a global pullback absorbing set if for any bounded

deterministic set B ⊂ X there exists a (possibly random) time TB(ω) > 0 such that

ϕ(t, θ−tω)B ⊂ G(ω) for all t ≥ TB(ω) and almost all ω ∈ Ω.

4.2 Qualitative changes in uniform attractivity

In order to demonstrate a qualitative change in the attractivity of the unique random fixed

point {aα(ω)}ω∈Ω of (4.0.1) we first establish that for all parameter values α ∈ R, for an

arbitrarily large time interval this random fixed point may remain arbitrarily close to the

origin with positive probability.

Proposition 4.2.1. Consider the RDS ϕ generated by (4.0.1), and let {aα(ω)}ω∈Ω be its

unique random fixed point corresponding to the parameter value α ∈ R. Then for any

ε > 0 and T ≥ 0, there exists a measurable set A ∈ FT−∞ (see Section 1.1: Stochastic

differential equations, p. 19) of positive measure such that

aα(θsω) ∈ (−ε, ε) for all s ∈ [0, T ] and ω ∈ A .

Proof. The unique stationary measure ρα,σ for the Markov semigroup associated to (4.0.1)

with |σ| > 0 is equivalent to the Lebesgue measure with the density function given by

(4.1.3). The invariant measure δa(ω) and stationary measure ρ are in correspondence by the

following relations: the invariant measure is obtained as the limit of the pullback images of

the stationary measure, i.e.

δa(ω) = lim
t→∞

ϕ(t, θ−tω)ρ for almost all ω ∈ Ω ,

and the stationary measure is obtained as the expectation of the invariant measure, i.e.

ρ(·) =

∫
Ω

δa(ω)(·)dµ(ω) (4.2.1)
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(see [CF98]). Now define

η :=
εe−|α|T

2(1 + |σ|)
.

Since the support of ρ is the entire real line, it follows from (4.2.1) that the set

A1 := {ω ∈ Ω: aα(ω) ∈ (−η, η)} (4.2.2)

has positive probability for any α ∈ R. The global pullback attractor {aα(ω)} is measurable

with respect to the past of the noise F0
−∞ (again see [CF98]), and hence A1 ∈ F0

−∞. Define

A2 :=
{
ω ∈ Ω: supt∈[0,T ] |ω(t)| ≤ η

2

}
∈ FT0

which, by [IW81, Section 6.8], has positive probability. Since the sets A1 and A2 are

independent, the set A := A1 ∩ A2 ∈ FT−∞ also has positive probability. Choose and fix

an arbitrary ω ∈ A. By the definition of A1 we have that |aα(ω)| < η. Since aα(ω) is a

random fixed point of ϕ it follows, using the integral from of (4.0.1), that

aα(θtω) = aα(θsω) +

∫ t

s

(
αaα(θrω)− aα(θrω)3

)
dr + σ(ω(t)− ω(s)) . (4.2.3)

Choose and fix an arbitrary t ∈ [0, T ]. Define I := {s ∈ [0, t] : aα(θsω) = 0}; by

continuity the set I is closed (but possibly empty). We consider the following three cases:

Case 1. If t ∈ I, then |aα(θtω)| = 0.

Case 2. If I is not empty and t /∈ I, then s := sup I < t and aα(θsω) = 0. By the

definition of I and continuity, we have either aα(θrω) > 0 for all r ∈ (s, t] or aα(θrω) < 0

for all r ∈ (s, t]. Using this observation and (4.2.3), we obtain that

|aα(θtω)| ≤ |σ|η +

∫ t

s

|α||aα(θrω)| dr.

Case 3. If I is empty, then either aα(θsω) > 0 for all s ∈ [0, t] or aα(θsω) < 0 for all

s ∈ [0, t]. Using (4.2.3) and noting that |aα(ω)| < η, we arrive at the following inequality:

|aα(θtω)| ≤ (1 + |σ|)η +

∫ t

0

|α||aα(θsω)| ds.
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In view of the three cases above, we have that

|aα(θtω)| ≤ (1 + |σ|)η +

∫ t

0

|α||aα(θsω)| ds for all t ∈ [0, T ] .

Then, using Gronwall’s inequality, we obtain that

|aα(θtω)| ≤ (1 + |σ|)ηe|α|t < ε for all t ∈ [0, T ] .

Thus we have that for all ω ∈ A, aα(θtω) ∈ (−ε, ε) for all t ∈ [0, T ], which completes the

proof.

We now give a detailed description of the random bifurcation scenario for the stochas-

tic differential equation (4.0.1) by means of both asymptotic and finite-time dynamical be-

haviour. The change in asymptotic behaviour at the bifurcation point α = 0 is apparent

as a qualitative change in the uniformity of attraction of the unique random fixed point

{aα(ω)}ω∈Ω. Then in terms of finite-time dynamics, after the bifurcation point, the (asymp-

totic) Lyapunov exponent is not observable by a finite-time Lyapunov exponent (over an

arbitrarily large time interval) with nonzero probability; however, before the bifurcation,

the (asymptotic) Lyapunov exponent can be approximated by the finite-time Lyapunov ex-

ponent almost surely. Finite-time Lyapunov exponents for random dynamical systems have

not been considered in the literature so far, but play an important role in the description of

Lagrangian coherent structures in fluid dynamics [HY00].

Definition 4.2.2. Let ϕ : T×Ω×X → X be an RDS with a random fixed point {a(ω)}ω∈Ω.

Then {a(ω)}ω∈Ω is called locally uniformly attractive if there exists a δ > 0 such that

lim
t→∞

sup
x∈Bδ(a(ω))

ess sup
ω∈Ω

d(ϕ(t, ω)x, a(θtω)) = 0.

Theorem 4.2.3. Consider the stochastic differential equation (4.0.1) with the unique at-

tracting random fixed point {aα(ω)}ω∈Ω. Then the following statements hold:

(i) For α < 0, the random fixed point {aα(ω)}ω∈Ω is locally uniformly attractive; in
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fact, it is even globally uniformly exponentially attractive, i.e.

|ϕ(t, ω, x)− ϕ(t, ω, aα(ω))| ≤ eαt|x− aα(ω)| for all x ∈ R . (4.2.4)

(ii) For α > 0, the random fixed point {aα(ω)}ω∈Ω is not locally uniformly attractive.

Proof. (i) Let x ∈ R be arbitrary such that x 6= aα(ω). Since ϕ is monotone with re-

spect to initial conditions [Arn98, Theorem 1.8.4 (i)], we may assume that ϕ(t, ω, x) >

ϕ(t, ω, aα(ω)) for all t ≥ 0. The integral form of (4.0.1),

ϕ(t, ω)x = x+

∫ t

0

(
αϕ(s, ω)x− (ϕ(s, ω)x)3

)
ds+ σω(t),

yields that

ϕ(t, ω)x− ϕ(t, ω)aα(ω) ≤ x− aα(ω) + α

∫ t

0

(
ϕ(s, ω)x− ϕ(s, ω)aα(ω)

)
ds .

Using Gronwall’s inequality implies (4.2.4), which finishes this part of the proof.

(ii) Suppose to the contrary that there exists δ > 0 such that

lim
t→∞

sup
x∈(−δ,δ)

ess sup
ω∈Ω

|ϕ(t, ω, aα(ω) + x)− aα(θtω)| = 0 ,

which implies that there exists N ∈ N such that

sup
x∈(−δ,δ)

ess sup
ω∈Ω

|ϕ(t, ω, aα(ω) + x)− aα(θtω)| <
√
α

4
for all t ≥ N . (4.2.5)

According to Proposition 4.2.1, there exists A ∈ F0
−∞ of positive probability such that

aα(ω) ∈ (− δ
2
, δ

2
). Consider the corresponding deterministic (σ = 0) system to (4.0.1), that

is the differential equation (4.1.1) which has the two attractive fixed points −
√
α and

√
α,

and let φ(·, x0) denote the solution which satisfies x(0) = x0. Then there exists T > N

such that

φ(T, δ/2) >

√
α

2
and φ(T,−δ/2) < −

√
α

2
. (4.2.6)
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For any ε > 0, we define

A+
ε :=

{
ω ∈ Ω : supt∈[0,T ] |ω(t)| < ε

}
.

By [IW81, Section 6.8], A+
ε ∈ FT0 has positive probability, and thus, µ(A ∩ A+

ε ) =

µ(A)µ(A+
ε ) is positive. Due to the compactness of [0, T ], there exists ε > 0 such that

for all ω ∈ A+
ε , we have

|ϕ(T, ω, δ/2)− φ(T, δ/2)| <
√
α

4
and |ϕ(T, ω,−δ/2)− φ(T,−δ/2)| <

√
α

4
,

which implies together with (4.2.6) that

ϕ(T, ω, δ/2) >

√
α

4
and ϕ(T, ω,−δ/2) < −

√
α

4
.

Since |aα(ω)| < δ
2

for all ω ∈ A ∩A+
ε , we obtain that for all ω ∈ A ∩A+

ε

sup
x∈(−δ,δ)

|ϕ(T, ω, aα(ω) + x)− aα(θTω)|

≥ max
{
ϕ(T, ω, δ/2)− aα(θTω)|, |ϕ(T, ω,−δ/2)− aα(θTω)|

}
.

Consequently,

sup
x∈(−δ,δ)

ess sup
ω∈Ω

|ϕ(t, ω, aα(ω) + x)− aα(θtω)| >
√
α

4
,

which contradicts (4.2.5) and the proof is complete.

For the description of the bifurcation via finite-time dynamics, we consider finite-time

Lyapunov exponents.

Definition 4.2.4. Given a linear RDS Φ: T × Ω × Rd → Rd, for T > 0, ω ∈ Ω and

x ∈ Rd\{0} the finite-time Lyapunov exponent is defined as

λT (ω, x) :=
1

T
ln
‖Φ(T, ω)x‖
‖x‖

.
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Clearly the (classical) Lyapunov exponent λ (see Theorem 3.0.2) associated with the

vector x ∈ Rd\{0} is given by

λ(ω, x) = lim
T→∞

λT (ω, x) .

The finite-time Lyapunov exponent associated with the linearization along the random fixed

point aα(ω) is given by

λTα(ω) :=
1

T
ln

∣∣∣∣∂ϕα∂x
(T, ω, aα(ω))

∣∣∣∣ .
In contrast to the classical Lyapunov exponent, the finite-time Lyapunov exponent is, in

general, a non-constant random variable.

Theorem 4.2.5. Consider the stochastic differential equation (4.0.1) with the unique at-

tracting random fixed point {aα(ω)}ω∈Ω. For any finite time T > 0, let λTα(ω) denote the

finite-time Lyapunov exponent associated with the linearization along {aα(ω)}ω∈Ω. Then

the following statements hold:

(i) For α < 0, the random fixed point {aα(ω)}ω∈Ω is finite-time attractive, i.e.

λTα(ω) ≤ α < 0 for all ω ∈ Ω .

(ii) For α > 0, the random fixed point {aα(ω)}ω∈Ω is not finite-time attractive, i.e.

µ
{
ω ∈ Ω : λTα(ω) > 0

}
> 0.

Proof. (i) This follows directly from Theorem 4.2.3 (i).

(ii) Let ε :=
√
α

2
> 0. According to Proposition 4.2.1, there exists a measurable set

A ∈ FT−∞ of positive probability such that for all ω ∈ A

aα(θsω) ∈ (−ε, ε) for all s ∈ [0, T ] .

We will estimate λTα(ω) for arbitrary ω ∈ A. Let Φα(t, ω) := ∂ϕα
∂x

(t, ω, aα(ω)) denote
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the linearized RDS along the random fixed point aα(ω). Note that the linearized equation

along the random fixed point aα(ω) is given by

ξ̇(t) = (α− 3aα(θtω)2)ξ(t) ,

from which we derive that

Φα(t, ω) = exp

(∫ t

0

(
α− 3aα(θsω)2

)
ds

)
.

We thus get

λTα(ω) = α− 1

T

∫ T

0

3aα(θtω)2dt ≥ α

4
,

which completes the proof.

This theorem implies that the change in the sign of finite-time Lyapunov exponents

indicates a qualitative change in the dynamics. This means that the bifurcation is observ-

able in practice, since finite-time Lyapunov exponents are numerically computable quan-

tities. Note that the numerical approximation of classical Lyapunov exponents is difficult

in general. In the special case of random matrix products with positive matrices, however,

[Pol10] recently established explicit bounds for the numerical approximation of (classical)

Lyapunov exponents.

4.3 The dichotomy spectrum at the bifurcation point

We will compute the dichotomy spectrum of the linearization around the unique attracting

random fixed point {aα(ω)} of the system (4.0.1). As a direct consequence, we observe

that hyperbolicity is lost at the bifurcation point α = 0.

Theorem 4.3.1. Let Φα(t, ω) := ∂ϕα
∂x

(t, ω, aα(ω)) denote the linearized RDS along the

random fixed point aα(ω). Then the dichotomy spectrum Σα of Φα is given by

Σα = [−∞, α] for all α ∈ R .
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Proof. From the linearized equation along aα(ω)

ξ̇(t) = (α− 3aα(θtω)2)ξ(t) ,

we derive that

Φα(t, ω) = exp

(∫ t

0

(
α− 3aα(θsω)2

)
ds

)
. (4.3.1)

Consequently,

|Φα(t, ω)| ≤ eα|t| for all t ∈ R ,

which implies that Σα ⊂ [−∞, α]. Thus, it is sufficient to show that [−∞, α] ⊂ Σα.

For this purpose, let γ ∈ (−∞, α] be arbitrary. Suppose the opposite, that Φα admits an

exponential dichotomy with growth rate γ, invariant projector Pγ and positive constants

K, ε. We now consider the two possible cases: (i) Pγ = 1 and (ii) Pγ = 0:

Case (i). Pγ = 1, i.e. we have

Φα(t, ω) ≤ Ke(γ−ε)t for all t ≥ 0 . (4.3.2)

Choose and fix T > 0 such that e
ε
4
T > K. According to Proposition 4.2.1, there exists a

measurable set A ∈ FT−∞ of positive measure such that

aα(θsω) ∈
(
−
√
ε/2,
√
ε/2
)

for all ω ∈ A and s ∈ [0, T ] .

From (4.3.1) we derive that

|Φα(T, ω)| ≥ eT(α− 3ε
4 ) > Ke(γ−ε)T ,

which leads to a contradiction to (4.3.2).

Case (ii): Pγ = 0, i.e. we have for almost all ω ∈ Ω

Φα(t, θ−tω) ≥ 1

K
e(γ+ε)t for all t ≥ 0 ,
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which together with (4.3.1) implies that

lnK + (α− γ)t

3
≥
∫ t

0

aα(θsθ−tω)2 ds . (4.3.3)

Choose and fix T > 0 such that

(T − 1)3

3
>

lnK + (α− γ)T

3
.

Consider the following integral equation

x(t) =

∫ t

0

(
αx(s)− x(s)3

)
ds+

t4

4
− αt

2

2
+ t .

Clearly, the explicit solution of the above equation is x(t) = t. Due to the compactness of

[0, T ], there exists an ε > 0 such that for any x(0) ∈ (−ε, ε) and ω(t) with supt∈[0,T ] |ω(t)−
t4

4
+ α t

2

2
− t| ≤ ε then the solution x(t) of the following equation

x(t) = x(0) +

∫ t

0

(αx(s)− x(s)3) ds+ ω(t)

satisfies that supt∈[0,T ] |x(t) − t| ≤ 1. According to Proposition 4.2.1, there exists a mea-

surable set A−ε ∈ F0
−∞ of positive measure such that aα(ω) ∈ (−ε, ε) for all ω ∈ A−ε .

Define A+
ε ∈ FT0 by

A+
ε :=

{
ω ∈ Ω : supt∈[0,T ] |ω(t)− t4/4 + αt2/2− t| ≤ ε

}
.

Therefore, for all ω ∈ A−ε ∩ A+
ε , we get

sup
t∈[0,T ]

|aα(θtω)− t| ≤ 1 ,

which implies that ∫ T

0

aα(θsω)2 ds >
(T − 1)3

3
>

lnK + (α− γ)T

3
.
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Note that µ(A−ε ∩A+
ε ) = µ(A−ε )µ(A+

ε ) > 0. Then for ω ∈ θT (A−ε ∩A+
ε ), the above leads

to a contradiction to (4.3.3), and the proof is complete.

We have seen in Theorem 4.2.5 that the bifurcation of (4.0.1) manifests itself also via

finite-time Lyapunov exponents: before the bifurcation, all finite-time Lyapunov exponents

are negative, and after the bifurcation, one observes positive finite-time Lyapunov expo-

nents with positive probability for arbitrarily large times. This implies in particular that for

positive α the set of all finite-time Lyapunov exponents observed on a set of full measure

does not converge to the (classical) Lyapunov exponent when time tends to infinity. The

following theorem makes precise the fact that, in contrast to the Lyapunov spectrum, the

dichotomy spectrum includes limits of the set of finite-time Lyapunov exponents.

Theorem 4.3.2. Let Φ be a linear RDS on Rd with dichotomy spectrum Σ. Let λT (ω, x)

denote the finite-time Lyapunov exponent (Definition 4.2.4) for T > 0, ω ∈ Ω and x ∈
Rd \ {0}. Then

lim
T→∞

ess sup
ω∈Ω

sup
x∈Rd\{0}

λT (ω, x) = sup Σ

provided that sup Σ <∞ and

lim
T→∞

ess inf
ω∈Ω

inf
x∈Rd\{0}

λT (ω, x) = inf Σ

provided that inf Σ > −∞.

Proof. By definition of λT (ω, x), we get that for all T, S ≥ 0

(T + S) ess sup
ω∈Ω

sup
x∈Rd\{0}

λT+S(ω, x) ≤ T ess sup
ω∈Ω

sup
x∈Rd\{0}

λT (ω, x) + S ess sup
ω∈Ω

sup
x∈Rd\{0}

λS(ω, x).

This implies that the sequence {T ess supω∈Ω supx∈Rd\{0} λ
T (ω, x)}T≥0 is subadditive. We

thus obtain that the limit T →∞ exists and so

lim
T→∞

ess sup
ω∈Ω

sup
x∈Rd\{0}

λT (ω, x) = lim sup
T→∞

ess sup
ω∈Ω

sup
x∈Rd\{0}

λT (ω, x).
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We first prove that provided sup Σ <∞, we have

γ := lim sup
T→∞

ess sup
ω∈Ω

sup
x∈Rd\{0}

λT (ω, x) = sup Σ.

Since sup Σ <∞ it follows that there exists K > 0 such that

‖Φ(t, ω)‖ ≤ Ket sup Σ for all t ≥ 0 . (4.3.4)

Assume first that γ < sup Σ. This means that there exists a t0 > 0 such that for all t ≥ t0

and for almost all ω ∈ Ω, we have ‖Φ(t, ω)‖ ≤ et(γ+sup Σ)/2. Thus, together with (4.3.4),

we obtain for all t ≥ 0 and for almost all ω ∈ Ω that

‖Φ(t, ω)‖ ≤ K̂et(γ+sup Σ)/2, K̂ := max{1, Ket0(sup Σ−γ)/2}.

Hence, sup Σ ≤ (γ + sup Σ)/2, which is a contradiction. Assume now that γ > sup Σ.

This means in particular that sup Σ <∞. Hence, there exists a K > 0 such that for almost

all ω ∈ Ω, we have

‖Φ(t, ω)x‖ ≤ Ket(γ+sup Σ)/2‖x‖ for all x ∈ Rd .

This leads to λt(ω, x) ≤ (γ + sup Σ)/2 for all x ∈ Rd \ {0}, and thus,

γ = lim sup
T→∞

ess sup
ω∈Ω

sup
x∈Rd\{0}

λT (ω, x) ≤ (γ + sup Σ)/2,

which is a contradiction. This proves the first equality. Similar arguments may be used to

show that

lim
T→∞

ess inf
ω∈Ω

inf
x∈Rd\{0}

λT (ω, x) = inf Σ

provided that inf Σ > −∞.

In the following example, we explicitly construct a linear RDS with sup Σ = ∞ but

with

lim
T→∞

ess sup
ω∈Ω

sup
x∈Rd\{0}

λT (ω, x) <∞.
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An example of a linear RDS with inf Σ = −∞ but with

lim
T→∞

ess inf
ω∈Ω

inf
x∈Rd\{0}

λT (ω, x) > −∞

can be constructed analogously. This example shows the importance of the assumption

sup Σ <∞ or inf Σ > −∞ in the above theorem.

Example 4.3.3. Following the construction in Example 3.2.8, there exist infinitely many

measurable sets {Un}n∈N of positive measure such that for n ≥ 2, Un, θUn, θ2Un are pair-

wise disjoint. We define a random mapping A : Ω→ R as follows:

A(ω) =


1
n

: ω ∈ Un ∪ θ2Un , n ≥ 2 ,

n : ω ∈ θUn , n ≥ 2 ,

1 : otherwise.

Let Φ denote the discrete-time RDS generated by A. Since ln ‖A(·)‖ is neither bounded

from above nor from below, we get that Σ(Φ) = [−∞,∞]. On the other hand, it is easy to

see that for all T ≥ 2 we get that

ess sup
ω∈Ω

|Φ(T, ω)| = 1,

which implies that

lim
T→∞

ess sup
ω∈Ω

1

T
ln |Φ(T, ω)| = 0.

4.4 Topological equivalence

This section deals with topological equivalence of random dynamical systems ([IS01, IL02,

LL05, Arn98]). This concept has not been used so far to study bifurcations of random dy-

namical systems, and the main aim of this section is to discuss topological equivalence

for the stochastic differential equation (4.0.1). The concept of topological equivalence for

random dynamical systems [Arn98, Definition 9.2.1] differs from the corresponding deter-

ministic notion of topological equivalence in the sense that instead of one homeomorphism
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(mapping orbits to orbits), the random version is given by a family of homeomorphisms

{hω}ω∈Ω. The precise definition is given by Definition 1.1.11. A bifurcation is then de-

scribed by means of a lack of topological equivalence at the bifurcation point.

The following theorem says that near the bifurcation point α = 0, all systems of (4.0.1)

are equivalent; since we have a local RDS ϕ, the definition of topological equivalence used

is a modification of that given in Definition 1.1.11.

Theorem 4.4.1. Let ϕα : Dα → R denote the local continuous RDS generated by the SDE

(4.0.1). Then there exists an ε > 0 such that for all α ∈ (−ε, ε) the random dynamical sys-

tems ϕα are topologically equivalent to the dynamical system (e−tx)t,x∈R, in the following

sense: there exists a conjugacy h : Ω× R→ R such that for almost all ω ∈ Ω, we have

ϕα(t, ω, h(ω, x)) = h(θtω, e
−tx) for all t ∈ (κα(ω, h(ω, x)),∞), x ∈ R .

Proof. Let aα(ω) denote the unique random fixed point of (4.0.1). According to the results

in [CF98], we obtain that

Eaα(ω)2 =

∫∞
−∞ u

2 exp
(

1
σ2

(
αu2 − 1

2
u4
))

du∫∞
−∞ exp

(
1
σ2

(
αu2 − 1

2
u4
))

du
.

and therefore,

lim
α→0

Eaα(ω)2 =

∫∞
−∞ u

2 exp
(
− u4

2σ2

)
du∫∞

−∞ exp
(
− u4

2σ2

)
du

> 0.

Then there exists an ε > 0 such that for all α ∈ (−ε, ε), we have

δ :=
3

4
Eaα(ω)2 − α > 0 .

We define the local continuous RDS ψ : D̃ → R by

ψ(t, ω, x) := ϕα(t, ω, x+ aα(ω))− aα(θtω) . (4.4.1)

where D̃ := {(t, ω, x) ∈ R×Ω×R : t > κα(ω, x+ aα(ω))}. By using the transformation

function f(ω, x) := x− aα(ω), the random dynamical systems ϕα and ψ are topologically

equivalent. Hence, it is sufficient to show that ψ is topologically equivalent to the dynamical
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system (e−tx)t,x∈R; the proof of this is divided into four parts.

Part 1. We first summarise some properties of ψ:

(i) Since aα(ω) is a random fixed point of ϕα, it follows that

ψ(t, ω, 0) = 0 for all t ∈ R and ω ∈ Ω . (4.4.2)

(ii) Due to the monotonicity of ϕα, for x1 > x2, we have

ψ(t, ω, x1) > ψ(t, ω, x2) for all ω ∈ Ω and t ∈ D̃(ω, x1) ∩ D̃(ω, x2) . (4.4.3)

(iii) From (4.0.1), we derive that

ψ(t, ω, x) = x+

∫ t

0

ψ(s, ω, x)
(
α− aα(θsω)2 − aα(θsω)ϕα(s, ω, aα(ω) + x)

− ϕα(s, ω, aα(ω) + x)2
)

ds ,

consequently,

ψ(t, ω, x) = x exp

(∫ t

0

α− aα(θsω)2 − aα(θsω)ϕα(s, ω, aα(ω) + x)

− ϕα(s, ω, aα(ω) + x)2 ds

)
. (4.4.4)

Part 2. We shall now demonstrate some estimates on ψ. According to Birkhoff’s er-

godic theorem, there exists an invariant set Ω̃ of full measure such that

lim
t→±∞

1

t

∫ t

0

aα(θsω)2 ds = Eaα(ω)2 . (4.4.5)

Choose and fix ω ∈ Ω̃. From (4.4.5), there exists T > 0 such that for all |t| > T we have∣∣∣∣1t
∫ t

0

aα(θsω)2 ds− Eaα(ω)2

∣∣∣∣ ≤ δ . (4.4.6)
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The elementary inequality u2 + uv + v2 ≥ 3
4
u2 for u, v ∈ R implies with (4.4.4) that for

x > 0

ψ(t, ω, x) ≤ x exp

(∫ t

0

α− 3

4
aα(θsω)2 ds

)
,

then for t ≥ T , (4.4.6) implies the following estimate

ψ(t, ω, x) ≤ xe−
δ
4
t, for all x > 0. (4.4.7)

For negative time ψ explodes, and we have

lim
t→κ̃(ω,x)+

ψ(t, ω, x) =∞ for x > 0 and lim
t→κ̃(ω,x)+

ψ(t, ω, x) = −∞ for x < 0.

(4.4.8)

Part 3. We now show the required conjugacy. By (4.4.2) and (4.4.3), for x > 0 we have

ψ(s, ω, x) > 0 for all s ∈ D̃(ω, x), and consequently by (4.4.7) and (4.4.8) we obtain that

lim
r→∞

∫ ∞
r

ψ(s, ω, x) ds = 0 and lim
r→κ̃(ω,x)+

∫ ∞
r

ψ(s, ω, x) ds =∞.

Hence there exists a unique r(ω, x) such that∫ ∞
r(ω,x)

ψ(s, ω, x) ds = 1. (4.4.9)

Similarly, r(ω, x) for x < 0 is defined to satisfy∫ ∞
r(ω,x)

ψ(s, ω, x) ds = −1, (4.4.10)

and we define r(ω, 0) := −∞. Using the local cocycle property of ψ, we obtain that

r(ω, x) = r(θsω, ψ(s, ω, x)) + s. (4.4.11)
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Define the function

g(ω, x) :=


er(ω,x), x > 0 ,

0, x = 0 ,

−er(ω,x), x < 0 .

We will now show that g transforms the random dynamical system ψ to the dynamical

system (e−tx)t,x∈R. For any x > 0, we have ψ(s, ω, x) > 0 and thus from the definition of

the function g it follows that

g(θsω, ψ(s, ω, x)) = er(θsω,ψ(s,ω,x)),

which implies together with (4.4.11) that

g(θsω, ψ(s, ω, x)) = er(ω,x)−s = e−sg(ω, x) .

Similarly, for x < 0 we also have g(θsω, ψ(s, ω, x)) = e−sg(ω, x) for all s ∈ (κ̃(ω, x),∞),

ω ∈ Ω.

Part 4. We will show that gω : R→ R, x 7→ g(ω, x) is a homeomorphism, and that g is

jointly measurable. Choose and fix ω ∈ Ω̃.

Injectivity: From the definition of g, it is easily seen that for x1 > 0 > x2 we have

gω(x1) > 0 > gω(x2).

On the other hand, based on strict monotonicity of ψ we get that for x1 > x2 > 0∫ ∞
r(ω,x2)

ψ(s, ω, x1) ds >

∫ ∞
r(ω,x2)

ψ(s, ω, x2) ds = 1.

Consequently, r(ω, x1) > r(ω, x2) and thus gω(x1) > gω(x2). Similarly, for 0 > x1 > x2

we also have gω(x1) > gω(x2). Therefore, gω is strictly increasing and thus injective.

Continuity: We first show that limx→0+ gω(x) = 0. Let ε > 0 be arbitrary. Choose
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T̃ > T such that 4
δ
e−

δ
4
T̃ < 1

3
and e−T̃ < ε. By (4.4.7), for all t ≥ T̃ we have

ψ(t, ω, x) ≤ e−
δ
4
tx .

As a consequence, for all x ∈ (0, 1) we get∫ ∞
T̃

ψ(s, ω, x) ds ≤
∫ ∞
T̃

e−
δ
4
s ds <

1

3
. (4.4.12)

Since limx→0 ψ(s, ω, x) = 0,
[
−T̃ , T̃

]
is a compact interval and limx→0 κ̃(ω, x) = −∞,

there exists δ∗ > 0 such that ∫ T̃

−T̃
ψ(s, ω, δ∗) ds <

1

3
,

which together with (4.4.12) implies that∫ ∞
−T̃

ψ(s, ω, x) ds <
2

3
for all x ∈

(
0,min{1, δ∗}

)
.

Therefore, r(ω, x) < −T̃ and thus gω(x) < ε for all x ∈
(
0,min{1, δ∗}

)
. Hence,

limx→0+ gω(x) = 0. One can similarly show that limx→0− gω(x) = 0, and thus gω is

continuous at 0. The continuity of g on the whole real line can be proved in a similar way.

Surjectivity: It is easy to prove surjectivity from

lim
x→∞

gω(x) =∞ and lim
x→−∞

gω(x) = −∞ .

Measurability: By the definition of g, in order to prove the joint measurability of g it

is enough to show the joint measurability of the mapping (ω, x) 7→ r(ω, x). Since the map

x 7→ r(ω, x) is continuous for each fixed ω ∈ Ω, it follows from e.g. [Cra02b, Lemma 1.1]

that it is sufficient to show that the map ω 7→ r(ω, x) is measurable for each fixed x ∈ R.

Choose and fix an arbitrary x > 0, and let β ∈ R be arbitrary. Then, by the definition of
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r(ω, x) we have

{
ω : r(ω, x) ≤ β

}
=

{
ω :

∫ ∞
β

ψ(t, ω, x) dt ≤ 1

}
=

⋂
n∈N,n≥β

{
ω :

∫ n

β

ψ(t, ω, x) dt < 1

}
.

It should be clear that for each n ∈ N, the map ω 7→
∫ n
β
ψ(t, ω, x) dt is measurable, and

consequently the map ω 7→ r(ω, x) is measurable. The case x < 0 is similar, and we

have defined r(ω, 0) = −∞ for all ω ∈ Ω. Thus we obtain the measurability of the map

ω 7→ r(ω, x) for all x ∈ R.

This completes the proof of this theorem.

The above theorem implies that the stochastic differential equation (4.0.1) does not

admit a bifurcation at α = 0 which is induced by the concept of topological equivalence.

In addition, because of the observations in Theorem 4.3.1, this concept of equivalence is

not in correspondence with the dichotomy spectrum (linear systems which are hyperbolic

and non-hyperbolic can be equivalent). We will now show that the concept of uniform

topological equivalence is the right tool to obtain the bifurcations studied here.

Definition 4.4.2. Let (Ω,F , µ) be a probability space, θ : T × Ω → Ω an ergodic metric

dynamical system and (X1, d1), (X2, d2) be metric spaces. Then two random dynamical

systems ϕ1 : T × Ω × X1 → X1 and ϕ2 : T × Ω × X2 → X2, both over θ, are called

uniformly topologically equivalent with respect to a random fixed point {a(ω)}ω∈Ω of ϕ1

if there exists a conjugacy h : Ω×X1 → X2 fulfilling the following properties:

(i) For almost all ω ∈ Ω, the mapping x 7→ h(ω, x) is a homeomorphism from X1 to

X2.

(ii) The mappings (ω, x1) 7→ h(ω, x1) and (ω, x2) 7→ h−1(ω, x2) are measurable.

(iii) The random dynamical systems ϕ1 and ϕ2 are cohomologous, i.e.

ϕ2(t, ω, h(ω, x)) = h(θtω, ϕ1(t, ω, x)) for all x ∈ X1 and almost all ω ∈ Ω .
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(iv) We have

lim
δ→0

ess sup
ω∈Ω

sup
x∈Bδ(a(ω))

d2(h(ω, x), h(ω, a(ω))) = 0

and

lim
δ→0

ess sup
ω∈Ω

sup
x∈Bδ(h(ω,a(ω)))

d1(h−1(ω, x), a(ω)) = 0 .

Note that, in comparison to the concept of topological equivalence (Definition 1.1.11),

we added (iv) to take uniformity into account. We now show that uniform topological

equivalence preserves local uniform attractivity.

Proposition 4.4.3. Let (Ω,F , µ) be a probability space, θ : T×Ω→ Ω a metric dynamical

system and (X1, d1), (X2, d2) be metric spaces. Let ϕ1 : T × Ω × X1 → X1 and ϕ2 :

T × Ω × X2 → X2 be two random dynamical systems, both over θ, which are uniformly

topologically equivalent with respect to a random fixed point {a(ω)}ω∈Ω of ϕ1. Let h :

Ω × X1 → X2 denote the conjugacy. Then {a(ω)}ω∈Ω is locally uniformly attractive for

ϕ1 if and only if {h(ω, a(ω))}ω∈Ω is locally uniformly attractive for ϕ2.

Proof. Suppose that {a(ω)}ω∈Ω is locally uniformly attractive for ϕ1. Let η > 0, then there

exists a γ > 0 such that

ess sup
ω∈Ω

sup
x∈Bγ(a(ω))

d2(h(ω, x), h(ω, a(ω))) ≤ η .

Since {a(ω)}ω∈Ω is locally uniformly attractive for ϕ1, there exists a δ > 0 and a T > 0

such that

ess sup
ω∈Ω

sup
x∈Bδ(a(ω))

d1(ϕ1(t, ω, x), a(θtω)) ≤ γ

2
for all t ≥ T .

Hence, for all t ≥ T , we have

ess sup
ω∈Ω

sup
x∈Bδ(a(ω))

d2(h(θtω, ϕ1(t, ω, x)), h(θtω, a(θtω))) ≤ η ,

which means that for all t ≥ T ,

ess sup
ω∈Ω

sup
x∈Bδ(a(ω))

d2(ϕ2(t, ω, h(ω, x)), h(θtω, a(θtω))) ≤ η .
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There exists a β > 0 such that

ess sup
ω∈Ω

sup
x∈Bβ(h(ω,a(ω)))

d1(h−1(ω, x), a(ω)) ≤ δ

2
,

and finally, this means that for all t ≥ T we have

ess sup
ω∈Ω

sup
x∈Bβ(h(ω,a(ω)))

d2(ϕ2(t, ω, x), h(θtω, a(θtω))) ≤ η ,

which finishes the proof that {h(ω, a(ω))}ω∈Ω is locally uniformly attractive for ϕ2. The

converse is proved similarly.

As a corollary to this proposition, it follows that (4.0.1) admits a bifurcation.

Theorem 4.4.4. The stochastic differential equation (4.0.1) admits a random bifurcation

at α = 0 which is induced by the concept of uniform topological equivalence.

Proof. This is a direct consequence of Theorem 4.2.3 and Proposition 4.4.3.

4.5 Discussion

We have shown how the pitchfork normal form with additive noise admits a bifurcation in

terms of a break-down of the uniformity of the dynamics, which manifests via nonuniform

attractivity of the global attractor, the existence of positive finite-time Lyapunov exponents,

a loss of hyperbolicity of the exponential dichotomy spectrum and a loss of uniform topo-

logical equivalence. The bifurcation is observable since finite-time Lyapunov exponents

are numerically computable. It would be interesting to see if one could calculate the distri-

bution of the finite-time Lyapunov exponents for this example.

In future work we would like to investigate the use of these concepts in other elementary

examples, and ultimately generalize these ideas. In particular, one could investigate the use

of a lack of (uniform or nonuniform) topological equivalence as a defining concept for

bifurcations in general one-dimensional random dynamical systems, and investigate the

use of the dichotomy spectrum in higher dimensional examples.
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Appendix A

Random Sets

Here we give some fundamental theorems and facts on random sets (Definition 1.1.7). The

classic reference on random sets, or measurable multifunctions, is [CV77]. The material

presented here has been adapted from [Cra02b, Chapters 1 & 2] and [Chu02, Section 1.3],

to which we refer the reader for further details, and also to the references given therein.

In what follows let X be a Polish space and let B denote its Borel σ-algebra. Let d be

a complete metric on X and dist : 2X × 2X → R+
0 denote the Hausdorff semi-distance on

the subsets of X with respect to d, as defined in Section 1.1 (p. 21). Also, let (Ω,F , µ) be

a probability space.

Definition A.0.1. For a given measurable space (Ω,F), the universal completion of F is

defined to be the σ-algebra given by Fu := ∩νF̄ν , where F̄ν denotes the completion of F
with respect to the probability measure ν and the intersection is taken over all probability

measures on F .

Remark A.0.2. Note that for any given probability measure µ, (F̄µ)u = F̄µ; that is, if a

σ-algebra is already complete with respect to some probability measure, it coincides with

its universal completion. Also note that Fu ⊂ F̄µ, i.e. Fu-measurability implies F̄µ-

measurability.

Remark A.0.3. We are only able to demonstrate that the closed and open random balls

(Definition 1.1.9) are closed, respectively open, random sets with respect to Fu (including

the case of a constant radius). It is straightforward to show that their graphs are measurable
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subsets of F ⊗ B (this is similar to the proof of (i)⇒(iii) in [Cra02b, Proposition 2.4]),

but this only implies that they are Fu-measurable using Proposition A.0.7 (ix). See also

[Cra02b, Remark 2.11 (ii)].

The next three results are useful in establishing measurability results.

Theorem A.0.4 (Representation Theorem, [Iof79]). Let C : Ω → X be a closed random

set taking values in a Polish space X . Then there exist a Polish space Y and a mapping

g : Ω× Y → X such that

(i) g(ω, ·) is continuous for all ω ∈ Ω, and g(·, y) is measurable for all y ∈ Y ,

(ii) let dX and dY be metrics onX and Y , respectively, then for all ω ∈ Ω and y1, y2 ∈ Y
one has:

dX(g(ω, y1), g(ω, y2)) ≤ dY (y1, y2)(1 + dX(g(ω, y1), g(ω, y2))),

(iii) for all ω ∈ Ω such that C(ω) 6= ∅, one has C(ω) = g(ω, Y ).

The preceding theorem leads to the following one.

Theorem A.0.5 (Selection Theorem, [Cra02b, Theorem 2.6]). A set valued map C : Ω →
2X taking values in the nonvoid closed subsets of a Polish space X is a closed random set

if and only if there exists a countable sequence {cn}n∈N of measurable maps cn : Ω → X

such that C(ω) = {cn(ω) : n ∈ N} for all ω ∈ Ω. In particular, if C is a closed random

set, then there exists a measurable selection, i.e., a measurable map c : Ω → X such that

c(ω) ∈ C(ω) for all ω ∈ Ω.

Theorem A.0.6 (Projection Theorem, [Cra02b, Theorem 2.12]). Let (Ω,F) be a measur-

able space and X a Polish space. Then the projection onto Ω of any set A ∈ F ⊗ B, given

by

ΠΩ(A) := {ω ∈ Ω: (ω, x) ∈ A for some x ∈ X},

is universally measurable, i.e. ΠΩ(A) ∈ Fu.
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The following proposition lists some key facts about random sets. They have been

collated from [Chu02, Proposition 1.3.1] and [Cra02b, Proposition 2.4, Proposition 2.9 &

Corollary 2.10]. We first note the elementary fact that the continuity of a 7→ d(x, a) implies

that for any x ∈ X and any set A ⊂ X ,

dist(x,A) = dist(x,A). (A.0.1)

Proposition A.0.7. Let (Ω,F , µ) be a probability space, X be a Polish space andD : Ω→
2X a set valued mapping, then the following hold:

(i) D is a random set if and only if the set {ω : D(ω) ∩ U 6= ∅} is measurable for any

open set U ⊂ X ,

(ii) D is a random set if and only if ω 7→ D(ω) is a closed random set (by (A.0.1)),

(iii) D is a compact random set if and only if D(ω) is compact for every ω ∈ Ω and the

set {ω : D(ω) ∩ C 6= ∅} is measurable for any closed set C ⊂ X ,

(iv) if {Dn}n∈N is a sequence of closed random sets with nonvoid intersection and there

exists an n0 ∈ N such that Dn0 is a compact random set, then ∩n∈NDn is a compact

random set,

(v) if {Dn}n∈N is a sequence of random sets, then D = ∪n∈NDn is also a random set,

(vi) if f : Ω×X → X is a mapping such that f(ω, ·) is continuous for all ω and f(·, x)

is measurable for all x, then ω 7→ f(ω,D(ω)) is a random set if D is a random set

(and is a compact random set if D is a compact random set),

(vii) D is a random set if and only if for every δ > 0, graph(Bδ(D)) ∈ F ⊗ B

(viii) if D is a closed random set, then graph(D) ∈ F ⊗ B (and hence if D is an open

random set, graph(D) = graph(Dc)c ∈ F ⊗ B),

(ix) if F is universally complete and D is a closed or an open set valued map such that

graph(D) ∈ F ⊗ B, then D is a closed or an open, respectively, random set,
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(x) if D is a closed random set, then ω 7→ Dc(ω) is also a closed random set,

(xi) if D is an open random set, then D is a closed random set (and it follows by (A.0.1)

that ω 7→ dist(x,D(ω)) is F-measurable for each x ∈ X),

(xii) If D is a closed random set then ω 7→ int(D(ω)) is an open random set.

The following two results allow one to replace Fu-measurable objects with almost

equal F-measurable versions.

Lemma A.0.8 ([Cra02b, Lemma 2.7]). Suppose that C : Ω → 2X is a set valued map

taking values in the closed subsets of a Polish spaceX , such that graph(C) ∈ F̄µ⊗B. Then

there exists a closed random set C̃ : Ω → 2X (which is F-measurable) and C̃(ω) = C(ω)

µ-almost surely.

As a particular application of the above lemma, if C ⊂ F ⊗ B is a product measurable

set with closed ω-sections, then since F ⊗ B ⊂ F̄µ ⊗ B, there exists an F-measurable

random set C̃ which is almost surely equal to C.

Lemma A.0.9 ([Cra02b, Lemma 1.2]). Let (Ω,F , µ) be a probability space, Y a separable

metric space. Then for any F̄µ-measurable map f : Ω → Y there exists an F-measurable

map f̃ : Ω→ Y with f̃(ω) = f(ω) µ-almost surely.

The following lemma demonstrates that the distance between two random sets is a

measurable function.

Lemma A.0.10. Let D1 and D2 be random sets, then ω 7→ dist(D1(ω), D2(ω)) is measur-

able.

Proof. By Proposition A.0.7 (ii), D1,2 are closed random sets and we define E1,2 :=

{ω : D1,2(ω) = ∅}. Then let g : Ω×Y → X be a representation of D1 and h : Ω×Z → X

be a representation of D2 as described in Theorem A.0.4, and let {yn}n∈N and {zn}n∈N be
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dense subsets in Y and Z, respectively. Then using (A.0.1),

dist(D1(ω), D2(ω)) = dist(D1(ω), D2(ω))

=


supn∈N infm∈N d(g(ω, yn), h(ω, zm)), ω ∈ Ω\(E1 ∪ E2),

0, ω ∈ E1,

∞, ω ∈ E2\E1,

and measurability follows since d(g(ω, yn), h(ω, zm)) is measurable for each n and m.
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