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Abstract

We study the descriptive complexity of parity games by taking into account the
coloring of their game graphs whilst ignoring their ownership structure. Color-
ings of game graphs are identified if they determine the same winning regions
and strategies, for all ownership structures of nodes. The Rabin index of a par-
ity game is the minimum of the maximal color taken over all equivalent coloring
functions. We show that deciding whether the Rabin index is at least k is in P
for k = 1 but NP-hard for all fixed k ≥ 2. We present an EXPTIME algorithm
that computes the Rabin index by simplifying its input coloring function. When
replacing simple cycle with cycle detection in that algorithm, its output over-
approximates the Rabin index in polynomial time. We evaluate this efficient
algorithm as a preprocessor of solvers in detailed experiments: for Zielonka’s
solver [17] on random and structured parity games and for the partial solver
psolB [11] on random games.
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1. Introduction

Parity games (see e.g. [13, 4, 17, 10]) are infinite-duration, two-person, zero-
sum, graph-based games. A parity game consists of a directed graph in which
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nodes are colored with natural numbers and controlled by two different players.
A play in a parity game may start in some node and consists of an infinite
sequence of nodes such that the next node is chosen by the player who owns the
current node, and where the next node must be a successor node of the current
node in the directed graph. For example, in the parity game in Figure 1, player
0 controls the circle nodes whereas player 1 controls the square nodes. A play
may start in node v3, where player 1 may chose to continue the play at node
v2, and then continue the play at node v1. At node v1, it is now player 0 who
determines the continuation of the play. Player 0 may choose to move to node
v0, where player 1 is back in control. Player 1 may now move to node v1 from
which player 0 may (this time around) decide to move to node v2. If these
choices are repeated thus forever, the play v3(v2v1v0v1)ω gets generated as an
infinite path in the directed graph.

A play in a parity game is won by determining the minimum color of all nodes
that occur infinitely often in the play: the parity of that minimum decides which
of the two players wins the play. In the above example, the colors that occur
infinitely often in the play are 2 and 3 – colors of nodes are specified within
nodes in Figure 1 – and so their minimum 2 is even. Therefore, player 0 wins
that play. We can now define what it means for a player to win a node in a
parity game. A player wins a node iff that player has a way of playing that
guarantees that all plays starting at that node are won by this player. To solve
a parity game means to determine which nodes are won by which player, and
to support such decisions with strategies for each player that realize these wins.

It is a rather deep result about parity games that each node is won by exactly
one player [13, 4, 17]. Moreover, the proofs of this result also show that neither
the use of “memory” that remembers more than the current node of the play,
nor the ability to “mix” strategies through randomization increase the power
of players to win particular nodes. To illustrate the use of memory, player 0
makes moves in the above play that are dependent on the history of the play:
at node v1 it strictly alternates its moves between v0 and v2. Players do not
need such abilities to win. In fact, this strict alternation in the above example
is not a winning strategy for player 0, since player 1 could move from node v2
over to node v4 and trap the play in node set {v3, v4} – and so win the play as
min(1, 2) is odd.

The condition for winning a node can be expressed as an alternation of
existential and universal quantification. In fact, deciding the winner of a node is
equivalent up to polynomial time to local model checking of a modal mu-calculus
formula that captures this alternation as one of least and greatest fixed-points
[5, 14]. In practice, this means that the maximal color present in a parity game
is the only exponential source for the worst-case complexity of most parity
game solvers, e.g. for those in [17, 12, 15]. One approach taken in analyzing
the complexity of parity games, and in so hopefully improving the complexity
of their solution, is through the study of the descriptive complexity of their
underlying game graph. This method therefore ignores the ownership structure
on parity games. An example of this approach is the notion of DAG-width in
[1]. Every directed graph has a DAG-width, a natural number that specifies how
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well that graph can be decomposed into a directed acyclic graph (DAG). The
decision problem for DAG-width, whether the DAG-width of a directed graph is
at most k, is NP-complete in k [1]. But parity games whose DAG-width is below
a given threshold have polynomial-time solutions [1]. The latter is a non-trivial
result since DAG-width also ignores the colors of a parity game.

In this paper we want to develop a similar measure of the descriptive com-
plexity of parity games, their Rabin index, a natural number that ignores the
ownership of nodes, but does take into account the colors of a parity game.
Intuitively, the Rabin index is the number of colors that are required to capture
the complexity of the game structure when the information about node own-
ership is forgotten. By measuring and reducing the number of colors we hope
to improve the complexity of analyzing parity games. The reductions we pro-
pose are related to priority compression and propagation in [8] but, in contrast,
exploit the cyclic structure of game graphs.

Our proposed setting of forgetting ownership structure of nodes may seem
surprising. But we note that if we also were to account for ownership, we could
solve the parity game and assign color 0 to nodes won by player 0 and color 1
to nodes won by player 1. Thus, this would reduce the index of all games to
at most 2. But such a reduction then no longer conveys information about the
descriptive complexity of the colored, directed graph of the solved parity game
and so prevents such a study even at the coarsest level of analysis. Moreover,
our studies of color reductions on parity games reported in this paper show that
it is possible to build preprocessors for parity game solvers that reduce coloring
complexity with methods that originate from the study of the Rabin index of
parity games. And we then show that such preprocessors can yield parity games
that are easier for both conventional (full) solvers [9] and for so-called partial
solvers [11]. These methods rely on the detection of certain cycles through given
nodes. It may be possible that these methods also work for a suitable form of
alternating reachability, which may then lead to the design of new full solvers;
we leave the study of this question as future work.

The name for the measure developed in this paper is inspired by related
work on the Wagner hierarchy for automata on infinite words [16]: Carton and
Maceiras use similar ideas to compute and minimize the Rabin index of deter-
ministic parity automata on infinite words [2]. To the best of our knowledge, our
work is the first to study this notion in the realm of infinite-duration, two-person
games.

The idea behind our Rabin index is that one may change the coloring func-
tion of a parity game to another one if that change neither affects the winning
regions nor the choices of winning strategies. This yields an equivalence relation
between coloring functions on a given game graph. For the coloring function of
a parity game, we then seek an equivalent coloring function with the smallest
possible maximal color, and call that minimal maximum the Rabin index of the
respective parity game.

The results we report here about this Rabin index are similar in spirit to
those developed for DAG-width in [1] but there are important differences, which
we now elaborate on. We propose a measure of descriptive complexity that is
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closer to the structure of the parity game as it only forgets ownership of nodes
and not their colors (which DAG-width does forget). We prove that for every
fixed k ≥ 2, deciding whether the Rabin index of a parity game is at least k is
NP-hard, whereas the decision problems for DAG-width are hard in the param-
eter k. We then characterize the aforementioned equivalence relation in terms
of the parities of minimal colors on simple cycles in the game graph and use
that characterization to design an algorithm that computes the Rabin index
and a witnessing coloring function in exponential time. A closer inspection of
this algorithm reveals that it efficiently computes sound approximations of the
Rabin index when simple cycles are abstracted by cycles in its parts that check
the existence of certain cycles. As a consequence of this approximation, we
derive an abstract Rabin index of parity games such that games with bounded
abstract Rabin index are efficiently solvable. Finally, we conduct detailed ex-
perimental studies that corroborate the utility of that approximation, both as a
preprocessor for solvers and as a means of making so-called partial solvers [11]
more precise.

Outline of paper. Section 2 contains background for our technical developments.
In Section 3, we define the equivalence between coloring functions, characterize
it in terms of simple cycles, and use that characterization to define the Rabin
index of parity games. In Section 4 we develop an algorithm that runs in
exponential time and computes a coloring function which witnesses the Rabin
index of the input coloring function. The complexity of the natural decision
problems for the Rabin index is studied in Section 5. An abstract version
of our algorithm is shown to soundly approximate that coloring function and
Rabin index in Section 6. Section 7 contains our experimental results for this
abstraction. Related work is discussed in Section 8. And we conclude the paper
in Section 9.

2. Background

We begin with providing minimal technical background and notation for
parity games needed to appreciate the technical development of this paper. For
a more detailed account of parity games and their solvers, we refer for example
to [8, 9]. We write N for the set {0, 1, . . . } of natural numbers. A parity game
G is a tuple (V, V0, V1, E, c) where V is a non-empty set of nodes partitioned
into possibly empty node sets V0 and V1, with an edge relation E ⊆ V × V
(where for all v in V there is a w in V with (v, w) in E), and a coloring function
c : V → N.

Throughout, we write s for one of 0 or 1 which (as determined by context)
may denote the natural number or its corresponding player. In a parity game,
player s owns the nodes in Vs. A play from some node v0 results in an infinite
play P = v0v1 . . . in (V,E) where the player who owns vi chooses the successor
vi+1 such that (vi, vi+1) is in E. Let Inf(P ) be the set of colors that occur in P
infinitely often:

Inf(P ) = {k ∈ N | ∀j ∈ N : ∃i ∈ N : i > j and k = c(vi)} (1)
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v0 3

v1 3

v2 2 v31

v42

Figure 1: A parity game with winning regions W0 = {v1, v2} and W1 = {v0, v3, v4}. Strategy
σ : V0 → V with σ(v1) = v2 and σ(v4) = v3 is winning on W0. Strategy π : V1 → V with
π(v0) = π(v3) = v4 and π(v2) = v1 is winning on W1

Player 0 wins play P iff min Inf(P ) is even; otherwise player 1 wins play P .
A positional strategy for player s is a total function τ : Vs → V such that

(v, τ(v)) is in E for all v ∈ Vs. A play P is consistent with τ if each node vi
in P owned by player s satisfies vi+1 = τ(vi). Subsequently, we simple write
“strategies” when referring to positional strategies. A strategy τ is winning for
player s from node v if all plays starting at v and consistent with τ are winning
for s. Player s wins from v if she has a winning strategy from v and her winning
region is the set of nodes from which she wins. It is well known that each parity
game is determined [13, 4, 17]: node set V is the disjoint union of two sets W0

and W1, the winning regions of players 0 and 1 (respectively), where one of W0

and W1 may be empty. Moreover, non-randomized and memoryless strategies
σ : V0 → V and π : V1 → V can be computed such that

• all plays beginning in W0 and consistent with σ are won by player 0; and

• all plays beginning in W1 and consistent with π are won by player 1.

We then say that σ is a winning strategy on W0, and π is a winning strategy
on W1, noting that winning strategies are generally not unique. In parity games,
one player may win all nodes. In particular, player 1 may win all nodes in G
even though player 0 owns all nodes in G, i.e. W1 = V = V0 is possible. Solving
a parity game means computing such data (W0,W1, σ, π).

Example 1. We show a parity game and one of its possible solutions in Fig-
ure 1. In this simple parity game, σ is the only strategy of player 0 that is
winning on W0. For example, a strategy σ′ with σ′(v1) = v0 would allow player
1 to win node v1 by playing consistently with strategy π.

3. Rabin Index

We now formalize the definition of equivalence for coloring functions, and
then use that notion in order to formally define the Rabin index of a parity
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game. Throughout, we assume that all nodes in directed graphs have at least
one outgoing edge – an assumption we built into our definition of parity games
above.

We want to reduce the complexity of a coloring function c in a parity game
G = (V, V0, V1, E, c) by transforming c to some coloring function c′. Since we
do not want the transformation to be based on a solution of the game G itself,
we design the transformation to ignore ownership of nodes. That is, it needs
to be sound for every possible ownership structure V = V0 ∪ V1. Therefore,
for all such partitions V = V0 ∪ V1, the two parity games (V, V0, V1, E, c) and
(V, V0, V1, E, c

′) that differ only in colors need to be equivalent in that they have
the same winning regions and the same sets of winning strategies. We formalize
this notion.

Definition 1. Let (V,E) be a directed graph and c, c′ : V → N two coloring
functions.

1. A partition of V is some pair of sets V0 and V1 with V0 ∩ V1 = {} and
V0 ∪ V1 = V . In particular, V0 or V1 may be empty.

2. We say that c and c′ are equivalent, written c ≡ c′, iff for all partitions V0
and V1 of V the resulting parity games (V, V0, V1, E, c) and (V, V0, V1, E, c

′)
have the same winning regions and the same sets of winning strategies for
both players.

Intuitively, changing coloring function c to c′ with c ≡ c′ is sound: regardless
of what the actual partition of V is, we know that this change will neither affect
the winning regions nor the choice of their supporting winning strategies. A
solver of the parity game for c′ outputs winning regions and winning strategies,
and this output is therefore then also sound for the parity game for coloring
function c whenever c ≡ c′ is true.

But the definition of ≡ is not immediately amenable to algorithmic sim-
plification of c to some c′. This definition quantifies over exponentially many
partitions, and for each such partition it insists that certain sets of nodes and of
strategies be equal. It is thus desirable to have a more compact characterization
of ≡ as the basis for designing a static analysis. To that end, we require some
concepts from graph theory first.

Definition 2. Let (V,E) be a directed graph with a coloring function c : V → N.

1. A path P in the directed graph (V,E) is a finite sequence v0, v1, . . . , vn of
nodes in V such that (vi, vi+1) is in E for every i in {0, 1, . . . , n− 1}.

2. A cycle C in the directed graph (V,E) is a path v0, v1, . . . , vn with (vn, v0)
in E.

3. A simple cycle C in the directed graph (V,E) is a cycle v0, v1, . . . , vn such
that for every i 6= j in {0, 1, . . . n} we have vi 6= vj.

4. The c-color of a cycle v0, . . . , vn in (V,E) is min0≤i≤n c(vi).
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Simple cycles are paths that loop so that no node has more than one outgoing
edge on that path. A cycle is defined similarly, except that it is allowed that
vi equals vj for some i 6= j, so a node on that path may have more than one
outgoing edge. The color of a cycle is the minimal color that occurs on it. We
illustrate these concepts through a simple example.

Example 2. For example, for the parity game in Figure 1, a simple cycle is
v0, v4, v3, v2, v1 and its color is 1, a cycle that is not simple is v0, v1, v2, v1 and
its color is 2.

We can now characterize ≡ in terms of colors of simple cycles. Crucially, we
make use of the fact that parity games have pure (i.e. non-random), positional
(i.e. memoryless) strategies [13, 4, 17].

Proposition 1. Let (V,E) be a directed graph and c, c′ : V → N two coloring
functions. Then c ≡ c′ iff for all simple cycles C in (V,E), the c-color of C has
the same parity as the c′-color of C.

Proof: Let us write c ∼ c′ iff for all simple cycles C in (V,E), the c-color of C
has the same parity as the c′-color of C. We have to show that ∼ equals ≡.

1. We show that ∼ is contained in ≡. Let c ∼ c′ be given. We want to show
c ≡ c′. So let the pair V0 and V1 be an arbitrary partition of V . Consider the
two derived parity games

Gc = (V, V0, V1, E, c) Gc′ = (V, V0, V1, E, c
′) (2)

Let W0 be the winning region of player 0 in the parity game Gc and σ a strategy
for player 0 winning for player 0 on W0 in Gc.

Now consider an arbitrary strategy π for player 1. Then π is such a strategy
in both parity games Gc and Gc′ . Let v ∈ W0 and let P be the play in (V,E)
that begins in v and is consistent with σ and π. Since P is consistent with
deterministic strategies of both players, its ultimately periodic behavior deter-
mines a simple cycle C so that P is composed of a finite prefix and infinitely
many repetitions of C. Since v is in W0 and since σ is winning for player 0 in
W0, we infer that the c-color of C has to be even. Since c ∼ c′, this means that
the c′-color of C is even, too. And so that play is also won by player 0 in Gc′ .

Since π was arbitrary, this shows that σ is also a winning strategy on W0

in the parity game Gc′ . Therefore, W0 is a subset of the winning region W ′0 of
player 0 in Gc′ .

A symmetric argument for winning region W1 in Gc for player 1 and winning
strategy π for player 1 onW1 in that game shows that π is also a winning strategy
on W1 in Gc′ and that W1 is contained in W ′1, the winning region of player 1 in
Gc′ .

Combining these two insights, and since V equals W0∪W1, it follows that W0

equals W ′0 and that W1 equals W ′1. So the winning regions are equal in Gc and
Gc′ , and strategies that are winning on these sets in one of the games Gc and
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Gc′ are also winning on these sets in the other game since c ∼ c′. (We showed
this for one player, but the result follows for the other player by symmetry.)

2. We show that ≡ is contained in ∼. Let c ≡ c′ be given. Let C be a simple
cycle in (V,E). Let the parity of the c-color of C be even. (The case when this
is odd is proved symmetrically and so we omit that proof.) Consider the parity
games (V, V, ∅, E, c) and (V, V, ∅, E, c′) where V0 is defined to be V , and so V1 is
empty. Since V0 equals V , player 0 has some strategy σ such that σ(v) is again
in C for all nodes v from C. Since the c-parity of C is even, it then follows that
C is contained in W0, the winning region of player 0 in (V, V0, V1, E, c).

Since c ≡ c′ is assumed, we therefore know that W0 is also the winning
region of player 0 in (V, V, ∅, E, c′), and that σ is also a winning strategy on
W0 in that game. In particular, every play beginning in some node v from C
and consistent with σ is won by player 0 in (V, V, ∅, E, c′). But every such play
just repeats the simple cycle C infinitely often (it cannot generate a sub-cycle
of C as σ is deterministic and C is simple) and so the outcome of that play is
determined by the c′-color of C. Therefore, the c′-color of C has to be even. �

Next, we define the relevant measure of descriptive complexity, which will
also serve as a measure of precision for the static analyses we will develop later
in the paper.

Definition 3. Let (V,E, c) be a colored arena and G a parity game whose col-
ored arena is (V,E, c). Then we define the following expressions

µ(c) = max
v∈V

c(v) (3)

RI(c) = min{µ(c′) | c ≡ c′} (4)

where µ(c) is the index of colored arena (V,E, c), and where RI(c) is the Rabin
index of colored arena (V,E, c) as well as of the parity game G.

The index µ(c) reflects the maximal color occurring in c. So for a coloring
function c : V → N on a directed graph (V,E), its Rabin index is the minimal
possible maximal color in a coloring function that is equivalent to c. This
definition applies to colored arenas and parity games alike. One objection one
might raise against µ(c) as a good complexity measure is that adding an even
constant to all colors affects this measure: µ(c+ n) = n + µ(c) for c + n with
(c+n)(v) = c(v)+n when n is even. Another objection might be that c can have
large color gaps and so not reflect genuine alternation complexity. Fortunately,
such objections do not apply to the Rabin index of c. This is so as for all c′ ≡ c
with µ(c′) = RI(c) we know that the minimal color of c′ is at most 1 and that
c′ has no color gaps – due to the minimality of the Rabin index.

A natural question is how we can compute this Rabin index. Thinking of
this first as a decision problem, in order to prove that RI(c) < k for some k > 0
one has to produce a coloring c′ with µ(c′) < k and show that all simple cycles
in the graph have the same color under c and c′. As we will see below, deciding
for a given colored arena (V,E, c) the dual inequality, whether RI(c) is at least
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k is NP-hard for fixed k ≥ 2. We first develop an algorithm that computes a
coloring function which witnesses the Rabin index of a given c.

4. Computing the Rabin Index

Our algorithm rabin for computing the Rabin index of a colored arena
is shown in Figure 2. It takes a coloring function as input and outputs an
equivalent one whose index is the Rabin index of the input. Formally, rabin
computes a coloring function c′ with c ≡ c′ and where there is no c ≡ c′′ with
µ(c′′) < µ(c′). These two properties therefore imply that RI(c) equals µ(c′) by
definition of the Rabin index in (4).

The central idea behind this algorithm is the concept of an anchor, which
we now formally define.

Definition 4. Let (V,E, c) be a colored arena with nodes v1, v2, . . . , vn. An
anchor of node vi is a color j of (V,E, c) such that

1. there is a simple cycle C through vi whose color j is smaller and of different
parity than that of vi, and

2. for all simple cycles C ′ through vi, either C ′ has a color of the same parity
as the color of vi or its color is less than or equal to j.

We note that an anchor j for vi is maximal in that it is the largest color
of (V,E, c) with the properties above. Our algorithm uses two insights about
anchors. First, if vi has no anchor, then it is safe to change the color of vi to its
parity. Second, if j is the anchor for vi, then it is safe to change the color of vi
to j + 1. By “safe” we here mean that the new coloring function is equivalent
to the old one with respect to the equivalence relation ≡.

Algorithm rabin uses a standard iteration pattern based on a rank function
which sums up all colors of all nodes. In each iteration, two methods are called:

• cycle analyzes the cyclic structure of (V,E) to determine whether anchors
exist, and then reduces the color of nodes based on such determinations

• pop repeatedly lowers all occurrences of maximal colors by 1 until there
is a simple cycle whose color is a maximal color.

These iterations proceed until neither cycle nor pop has an effect on the
current state of the coloring function. Method cycle first sorts all nodes of
(V,E, c) in ascending color values for c. It then processes each node vi in that
ascending order. For each node vi it calls getAnchor to find (if possible) a
maximal anchor for vi. If getAnchor returns −1, then vi has no anchor as all
simple cycles through vi have color of the same parity as c(vi). Therefore, it is
sound to change c(vi) to its parity. Otherwise, getAnchor returns an index j as
anchor for node vi. In that case, method cycle therefore resets c(vi) to j + 1.
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rabin(V,E, c) {
rank =

∑
v∈V c(v);

do {
cache = rank;

cycle(); pop();

rank =
∑
v∈V c(v);

} while (cache != rank)

return c;
}

cycle() {
sort V in ascending c-color ordering v1,v2,...,vn;
for (i=1..n) {
j = getAnchor(vi);
if (j == −1) { c(vi) = c(vi)%2; }
else { c(vi) = j + 1; }

}
}

getAnchor(vi) {
for (γ = c(vi)− 1 down to (c(vi)− 1)%2; step size 2) {

if (∃ simple cycle C with color γ through vi) { return γ; }
}
return −1;

}

pop() {
m = max{ c(v) | v ∈ V };
while (not ∃ simple cycle C with color m) {

for (v in { w ∈ V | c(w) = m}) { c(v) = m − 1; }
m = m − 1;

}
}

Figure 2: Algorithm rabin for computing the Rabin index RI(c) of a colored arena (V,E, c);
the algorithm relies on methods cycle, getAnchor, and pop.
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The idea behind pop is that one can safely lower maximal color m to m− 1
if there is no simple cycle whose color is m. For then all occurrences of m are
dominated by smaller colors on simple cycles.

We show some example runs of rabin, starting with a detailed worked ex-
ample.

Example 3. 1. Consider the parity game in Figure 1. Let the initial sort of
cycle be v3v4v2v0v1. Then cycle changes no colors at v3 (as the anchor
of v3 is −1), at v4 (as the anchor of v4 is 1 due to simple cycle v4v3), at
v2 (as the anchor of v2 is 1 due to simple cycle v2v1v0v4v3), but changes
c(v0) to 1 (as the anchor of v0 is −1). Also, c(v1) won’t change (as the
anchor of v1 is 2 due to simple cycle v1v2).

Then pop changes c(v1) to 2 (as there is no simple cycle with color 3). Let
the sort of the second call to cycle be v0v3v1v2v4. Then the corresponding
list of anchor values is −1,−1, 1, 1, 1 and so cycle changes no colors.
Therefore, the second call to pop changes no colors either. Thus the overall
effect of rabin was to lower the index from 3 to 2 by lowering c(v1) to 2.

2. Consider the colored arena in Figure 3, we see a colored arena with c(vi) =
i (in red/bottom), the output rabin(V,E, c) (in blue/top), and a table
showing how the coloring function changes through repeated calls to cycle

and pop. Each iteration of rabin reduces the measure µ(c) by 1. This
illustrates that the number of iterations of rabin is not bounded by a con-
stant in general.

3. In Figure 4(b), colored arena (V,E, c) has odd index n and Rabin index
2. Although there are cycles from all nodes with color n, e.g., to the node
with color n − 1, there are no simple such cycles. So all colors reduce to
their parity.

We now prove the soundness of our algorithm rabin.

Lemma 1. Let (V,E, c) be a given colored arena and let c′ be the coloring func-
tion that is returned by the call rabin(V,E, c). Then c ≡ c′ holds.

Proof: Let c = c0, c1, . . . be the sequence of coloring functions that reflect the
state changes of c in the call rabin(V,E, c). By Proposition 1, it suffices to
show that cn ∼ cn+1 for all such n. So let cn be given.

1. Consider first the case when cn+1 is obtained from cn by an execution
of the for-statement in pop. Then m is the maximal color of cn but there is
no simple cycle in (V,E) that has cn-color m. In other words, color m will
never decide the cn-color of a simple cycle. It is therefore safe to decrease all
occurrences of m to m − 1, as this will change the color of no simple cycle in
(V,E). Since this change defines cn+1, we have cn ∼ cn+1 as desired.

2. Now consider the case when cn+1 is the result of cn through the execution
of the if-branch in cycle. Then we consider a node vi for which getAnchor
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v0

4 36 5 2

3 31 2 2

0

0

1

1v6 v5 v4 v3 v2 v1

iteration cycle pop

1 nil c(v6) = 5
2 c(v6) = 1 c(v5) = 4
3 c(v5) = 2 c(v4) = 3

Figure 3: Colored arena (V,E, c) and table showing effects of iterations in rabin(V,E, c)

returns −1. Therefore, there is no simple cycle C through vi in (V,E) whose
cn-color is lower than cn(vi) and has different parity than cn(vi). But the color
of cycles through vi can be at most cn(vi). Therefore, all simple cycles through
vi have the same parity as cn(vi). It is therefore safe to reduce the color at
vi to that parity, as done in cycle. For the resulting cn+1 we therefore have
cn ∼ cn+1.

3. Now consider the case when cn+1 is the result of cn through the execution
of the else-branch in cycle. If the call to getAnchor returns j ≥ 0 for node
vi, then consider an arbitrary simple cycle C in (V,E) through vi whose color
p has a parity other than that of cn(vi). Then it must be that p ≤ j by the
definition of method getAnchor. So every simple cycle through vi has either a
color that has the parity of cn(vi) or has a color p with p ≤ j. Therefore, it
is safe to change the color at vi to j + 1 (the case j + 1 = cn(vi) will have no
effect), resulting in new coloring function cn+1: this is so since then all simple
cycles through vi have the same parity with respect to cn and cn+1. (And both
coloring functions could only break cn ∼ cn+1 by means of simple cycles through
vi.) �

We note that ≡ cannot be captured by just insisting that the winning regions
of all abstracted parity games be the same. Let us write c u c′ when the
coloring functions c and c′ always give rise to the same winning regions (but not
necessarily to the same set of winning strategies). Clearly, c ≡ c′ implies c u c′

but the converse is not true: Figure 4(a) shows a colored arena with two coloring
functions c (in red/bottom) and c′ (in blue/top). The player who owns node v
will win all nodes as she chooses between z or o the node that has her parity.
So c u c′ follows. But if v is owned by player 1, she has a winning strategy for
c′ (move from v to w) that is not winning for c, and so c 6≡ c′ follows.

The example in Figure 4(a) also suggests that computing u may be diffi-
cult. Cycle and simple cycle detection won’t capture u precisely. Topological
reasoning about strongly connected components seems hard as well: if we re-
place nodes o and z with entire strongly connected components C0 and Cz so
that o is in Co and z in Cz, and if we keep the outgoing edges (v, o) and (v, z) of
node v, then we cannot reason about node v in the manner we did above since
we won’t know whether nodes o and z will inevitably have different winners.
Therefore, we focus our attention on ≡ in this paper.
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Figure 4: Two colored arenas that each have two coloring functions c (in red/bottom) and c′

(in blue/top)

Now we can prove that algorithm rabin is basically as precise as it could be.
First, we state and prove an auxiliary lemma which provides sufficient conditions
for a coloring function c to have its index µ(c) as its Rabin index RI(c). Then
we show that the output of rabin meets these conditions.

Lemma 2. Let (V,E, c) be a colored arena where

1. there is a simple cycle in (V,E) whose color is the maximal one of c

2. for all v in V with c(v) > 1, node v is on a simple cycle C with color
c(v)− 1.

Then there is no c′ with c ≡ c′ and µ(c′) < µ(c). And so µ(c) equals RI(c).

Proof: Let k be the maximal color of c and consider an arbitrary c′ with c ≡ c′.
Proof by contradiction: Let the maximal color k′ of c′ satisfy k′ < k.

By the first assumption, there is a simple cycle C0 whose c-color is k. Since
k′ < k and c ≡ c′, we know that the c′-color of C0 can be at most k − 2. Let
v0 be a node on C0 such that c′(v0) is the c′-color of C0. Then c′(v0) ≤ k − 2.
As all nodes on C0 have c-color k, we have also c(v0) ≥ k. For k < 2, then
c′(v0) ≤ k − 2 gives us a contradiction c′(v0) < 0. It thus remains to consider
the case when k ≥ 2.

By the second assumption, there is some simple cycle C1 through v0 such
that the color of C1 is k − 1. In particular, there is some node v′0 in C1 with
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color k − 1. But k − 1 cannot be the color of C1 with respect to c′ since v0 is
on C1 and c′(v0) ≤ k − 2. Since c ≡ c′, the c′-color of C1 is therefore at most
k − 3. So there is some v1 on C1 such that c′(v1) ≤ k − 3 < k − 1 ≤ c(v1).

If c(v1) > 1, we repeat the above argument at node v1 to construct a simple
cycle C2 through v1 with color c(v1) − 1. Again, there then have to be nodes
v′1 and v2 on C2 such that the color c′(v′1) is the c′-color of C2, and such that
c′(v2) ≤ k − 4 < k − 2 ≤ c(v2) holds.

We can repeat the above argument to construct simple cycles C0, C1, C2, . . .
and nodes v0, v

′
0, v1, v

′
1, v2, v

′
2, . . . such that c′(vj) ≤ k−j−2 < k−j ≤ c(vj) until

j equals k−1. But for that value of j we obtain c′(vj) ≤ k− j−2 ≤ 1−2 = −1,
a contradiction. �

We now show that the output of rabin satisfies the assumptions of Lemma 2.
Since rabin is sound for ≡, we therefore infer that it computes a coloring func-
tion whose maximal color equals the Rabin index of its input coloring function.

Theorem 1. Let (V,E, c) be a colored arena. And let c∗ be the output of the
call rabin(V,E, c). Then c ≡ c∗ and µ(c∗) is the Rabin index of c.

Proof: By Lemma 1, we have c ≡ c∗. Since ≡ is clearly transitive, it suffices
to show that there is no c′ with c∗ ≡ c′ and µ(c′) < µ(c∗). By Lemma 2, it
therefore suffices to establish the two assumptions of that lemma for c∗. As c∗

is returned by rabin neither cycle nor pop have an effect on it.
The first assumption of Lemma 2 is therefore true since pop has no effect on

c∗ and so there must be a simple cycle in (V,E) whose color is the maximal one
in c. This also applies to the case when c∗ has only one color, as (V,E) has to
contain cycles since it is finite and all nodes have outgoing edges.

As for the second assumption, let by way of contradiction there be some
node v with c∗(v) > 1 and no simple cycle through v with color c∗(v)−1. Then
cycle would have an effect on c∗(v) and would lower it, a contradiction. �

To illustrate the need of method pop in this proof, consider a colored arena
(V,E, c) such that all its simple cycles have even c-color but where some node
has odd c-color. Then c ≡ 0 for the coloring function 0 that maps all nodes
to color 0. Method cycle preserves the parity of nodes as invariant. And so c
could never be reduced to 0 without the help of pop.

5. Complexity

We next analyze the computational complexity of algorithm rabin and study
the computational complexity of the decision problems associated with the Ra-
bin index. We turn to the complexity of rabin itself first.

Let us assume that we have an oracle that checks for the existence of simple
cycles. Then the computation of rabin is efficient modulo polynomially many
calls (in the size of the game) to that oracle. Since deciding whether a simple
cycle exists between two nodes in a directed graph is NP-complete (see e.g.
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Figure 5: Construction for NP-hardness of deciding whether RI(c) ≥ k for k ≥ 2

[6, 7]), we infer that rabin can be implemented to run in exponential time.
This decision problem is therefore in ∆P

2 = PNP.
Next, we study the complexity of deciding the value of the Rabin index. We

can exploit the NP-hardness of simple cycle detection to show that the natural
decision problem for the Rabin index, whether RI(c) is at least k, is NP-hard
for fixed k ≥ 2. In contrast, for k = 1, we show that this problem is in P.

Theorem 2. Deciding whether the Rabin index of a colored arena (V,E, c) is
at least k is NP-hard for every fixed k ≥ 2, and is in P for k = 1.

Proof: First consider the case when k ≥ 2. We use the fact that deciding
whether there is a simple cycle through nodes s 6= t in a directed graph (V,E)
is NP-complete (see e.g. [7]). Without loss of generality, for all v in V there is
some w in V with (v, w) in E (we can add (v, v) to E otherwise). Our hardness
reduction uses a colored arena (V ′, E′, c), depicted in Figure 5, which we now
describe:

We color s with k− 1 and t with k, and color all remaining nodes of V with
0. Then we add k+ 1 many new nodes (shown in blue/top in the figure) to that
graph that form a “spine” of descending colors from k down to 0, connected by
simple cycles. Crucially, we also add a simple cycle between t and that new k
node, and between s and the new k − 2 node.

We claim that the Rabin index of (V ′, E′, c) is at least k iff there is a simple
cycle through s and t in the original directed graph (V,E).

1. Let there be a simple cycle through s and t in (V,E). Since there is a
simple cycle between s and the new k−2 node, cycle does not change the color
at s. As there is a simple cycle through s and t, method cycle also does not
change the color at t. Clearly, no colors on the spine can be changed by cycle.
Since there is a simple cycle between t and the new k node, method pop also
does not change colors. But then the Rabin index of c is k and so at least k.

2. Conversely, assume that there is no simple cycle through s and t in the
original graph (V,E). It follows that the anchor j of t has value 0 or, if k is
even, has value −1. This is so since the only simple cycles through s and t have
color either 0 or k−2. In this case, cycle changes the color at t to the parity of
k. Then, pop reduces the color of the remaining node colored k to k− 1. Thus,
it cannot be the case that the Rabin index of c is at least k.
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This therefore proves the claim. Second, consider the case when k = 1.
Deciding whether RI(c) is at least 1 amounts to checking whether c ≡ ~0 where
~0(v) = 0 for all v in V . This is the case iff all simple cycles in (V,E, c) have
even c-parity. But that is the case iff all cycles in (V,E, c) have even c-parity.

To see this, note that the “if” part is true as simple cycles are cycles. As for
the “only if” part, this is true since if there were a cycle C with odd c-parity,
then some node v on that cycle would have to have that minimal c-color, but v
would then be on some simple cycle whose edges all belong to C.

Finally, checking whether all cycles in (V,E, c) have even c-parity is in P. �

The decision problem of whether RI(c) = 1 cannot be in NP, unless NP
equals coNP. Otherwise, the decision problem of whether RI(c) ≤ 1 would also
be in NP, since we can decide in P whether RI(c) = 0 and since NP is closed
under unions. But then the complement decision problem of whether RI(c) ≥ 2
would be in coNP, and we have shown it to be NP-hard already. Therefore,
all problems in NP would reduce to this problem and so be in coNP as well, a
contradiction.

We now discuss an efficient version of rabin which replaces oracle calls for
simple cycle detection with calls for over-approximating cycle detection.

6. Abstract Rabin index

In the last section, we saw that rabin runs in exponential time in the worst
case. Therefore, we want to trade off this complexity with the precision of color
reductions in the colored arena. The idea we propose is to replace oracle calls for
simple cycle detection within rabin with over-approximating cycle detections.
This modified version of rabin then computes an abstract Rabin index, whose
definition is based on an abstract version of the equivalence relation ≡. We
define these notions formally.

Definition 5. 1. Let rabinα be rabin where all existential quantifications
over simple cycles are replaced with existential quantifications over cycles.

2. Let (V,E) be a directed graph and c, c′ : V → N two coloring functions.
Then c ≡α c′ iff for all cycles C, the parities of their c- and c′-colors are
equal.

3. The abstract Rabin index RIα(c) of a colored arena (V,E, c) is defined as

RIα(c) = min{µ(c′) | c ≡α c′} (5)

The abstract Rabin index RIα(c) and our algorithm rabinα are very similar
to a Rabin index for deterministic parity word automata and its computation
in [2]; we discuss these similarities in Section 8.

Algorithm rabinα uses the set of cycles in (V,E) to overapproximate the set
of simple cycles in (V,E). We point out that c ≡α c′ implies c ≡ c′ but not the
other way around, as can be seen in the example in Figure 6. In that example,
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Figure 6: Coloring functions c (blue/top) and c′ (red/bottom) with c ≡ c′ but c 6≡α c′

we have c ≡ c′ since all simple cycles have the same parity of color with respect
to c and c′. But there is a cycle that reaches all three nodes and which has odd
color for c and even color for c′. Thus, c 6≡α c′ follows.

We now show that the overapproximation rabinα of rabin is sound in that
its output coloring function is equivalent to its input coloring function. Below,
in Theorem 3, we further show that this output yields an abstract Rabin index.

Lemma 3. Let (V,E, c) be a colored arena and let rabinα(V,E, c) return c′.
Then c ≡α c′ and µ(c′) ≥ RI(c).

Proof: We first show that c ≡α c′ holds. Let c = c0, c1, . . . be the sequence of
coloring functions that reflect the state changes of c in the call rabinα(V,E, c).
Since ≡α is transitive, it suffices to show that cn ≡α cn+1 for all such n. So let
cn be given.

1. Consider first the case when cn+1 is obtained from cn by an execution
of the for-statement in pop. Then m is the maximal color of cn but there is no
cycle in (V,E) that has cn-color m. In other words, color m will never decide
the cn-color of a cycle. It is therefore safe to decrease all occurrences of m to
m − 1, as this will change the color of no cycle in (V,E). Since this change
defines cn+1, we have cn ≡α cn+1 as desired.

2. Now consider the case when cn+1 is the result of cn through the execution
of the if-branch in cycle. Then we consider a node vi for which getAnchor

returns −1. Therefore, there is no cycle C through vi in (V,E) whose cn-color
is lower than cn(vi) and has different parity than cn(vi). But the color of cycles
through vi can be at most cn(vi). Therefore, all cycles through vi have the same
parity as cn(vi). It is therefore safe to reduce the color at vi to that parity, as
done in cycle. For the resulting cn+1 we therefore have cn ≡α cn+1.

3. Now consider the case when cn+1 is the result of cn through the execution
of the else-branch in cycle. If the call to getAnchor returns j ≥ 0 for node
vi, then consider an arbitrary cycle C in (V,E) through vi whose color p has a
parity other than that of cn(vi). Then it must be that p ≤ j by the definition
of method getAnchor. So every cycle through vi has either a color that has the
parity of cn(vi) or has a color p with p ≤ j. Therefore, it is safe to change the
color at vi to j+ 1 (the case j+ 1 = cn(vi) will have no effect), resulting in new
coloring function cn+1: this is so since then all cycles through vi have the same
parity with respect to cn and cn+1. (And both coloring functions could only
break cn ≡α cn+1 by means of cycles through vi.)
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Second, since we have shown that c ≡α c′ holds, we also get that c ≡ c′ is
true. But the latter in turn implies µ(c′) ≥ RI(c) by the definition of the Rabin
index. �

We can now adapt the results for rabin to this abstract setting.

Lemma 4. Let (V,E, c) be a colored arena where

1. there is a cycle in (V,E) whose color is the maximal one of c, and

2. for all v in V with c(v) > 1, node v is on a cycle C with color c(v)− 1.

Then there is no c′ with c ≡α c′ and µ(c′) < µ(c), and so µ(c) = RIα(c).

Proof: Let k be the maximal color of c and consider an arbitrary c′ with c ≡α c′.
Proof by contradiction: Let the maximal color k′ of c′ satisfies k′ < k.

By the first assumption, there is a cycle C0 whose c-color is k. Since k′ < k
and c ≡α c′, we know that the c′-color of C0 can be at most k − 2. Let v0 be a
node on C0 such that c′(v0) is the c′-color of C0. Then c′(v0) ≤ k − 2. As all
nodes on C0 have c-color k, we have also c(v0) ≥ k. Again, if k < 2 we have a
contradiction right away. So let k ≥ 2.

By the second assumption, there is some cycle C1 through v0 such that the
color of C1 is k− 1. In particular, there is some node v′0 in C1 with color k− 1.
But k − 1 cannot be the color of C1 with respect to c′ since v0 is on C1 and
c′(v0) ≤ k − 2. Since c ≡α c′, the c′-color of C1 is therefore at most k − 3. So
there is some v1 on C1 such that c′(v1) ≤ k − 3 < k − 1 ≤ c(v1).

If c(v1) > 1, we repeat this argument at node v1 to construct a cycle C2

through v1 with color c(v1)− 1. Again, there then have to be nodes v′1 and v2
on C2 such that the color c′(v′1) is the c′-color of C2, and such that c′(v2) ≤
k − 4 < k − 2 ≤ c(v2) holds.

In this manner, we can repeat this argument to construct cycles C0, C1, C2, . . .
and nodes v0, v

′
0, v1, v

′
1, v2, v

′
2, . . . such that c′(vj) ≤ k−j−2 < k−j ≤ c(vj) un-

til j equals k−1. But for that value of j, we get c′(vj) ≤ k−j−2 ≤ 1−2 = −1,
a contradiction. �

Similarly to the case for algorithm rabin, we now show that the output of
rabinα satisfies the assumptions of Lemma 4. Since algorithm rabinα is sound
for the equivalence relation ≡α, we infer that it computes coloring functions
whose maximal color equals the abstract Rabin index of their input coloring
function.

Theorem 3. Let (V,E, c) be a colored arena. And let c∗ be the output of the
call rabinα(V,E, c). Then c ≡α c∗ and µ(c∗) is the abstract Rabin index RIα(c).

Proof: By Lemma 3, we have c ≡α c∗. Since ≡α is transitive, it suffices to show
that there is no c′ with c∗ ≡α c′ and µ(c′) < µ(c∗). By Lemma 4, it therefore
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suffices to establish the two assumptions of that lemma for c∗. What we do
know is that neither cycle nor pop have an effect on c∗ as it was returned by
rabinα.

The first assumption is therefore true since pop has no effect on c∗ and so
there must be a cycle in (V,E) whose color is the maximal one in c. (This
also applies to the boundary case when c∗ has only one color, as (V,E) has to
contain cycles since it is finite and all nodes have outgoing edges.)

As for the second assumption, let by way of contradiction be some node v
with c∗(v) > 1 and no cycle through v with color c∗(v)− 1. Then cycle would
have an effect on c∗(v) and would lower it, a contradiction. �

We now study the sets of parity games whose abstract Rabin index is below
a fixed bound. It turns out that these parity games can be solved efficiently.
Moreover, it is efficient to decide whether a parity game is below such a fixed
bound. We first define these sets formally.

Definition 6. Let Pαk be the set of parity games (V, V0, V1, E, c) with RIα(c) <
k.

For this abstract Rabin index we can indeed prove that membership in Pαk
is efficiently decidable and that games in that set are efficiently solvable. We
note that deciding whether the (exact) Rabin index is below a fixed bound is
the complement of an NP-hard problem by Theorem 2 and so is unlikely to have
an efficient solution.

Theorem 4. Let k ≥ 1 be fixed. All parity games in Pαk can be solved in
polynomial time. Moreover, membership in Pαk can be decided in polynomial
time.

Proof: For each parity game (V, V0, V1, E, c) in Pαk , we first run rabinα on
it, which runs in polynomial time. By definition of Pαk , the output coloring
function c∗ has index < k. Then we solve the parity game (V, V0, V1, E, c

∗),
which we can do in polynomial time as the index is bounded by k. But that
solution is also one for (V, V0, V1, E, c) since c ≡α c∗ by Lemma 3, and so c ≡ c∗
as well.

That the membership test is polynomial in the running time can be seen as
follows: for coloring function c, compute c′ = rabinα(V,E, c) and return true

if µ(c′) < k and return false otherwise; this is correct by Theorem 3. �

We note that algorithm rabinα is precise for colored arenas A = (V,E, c)
with Rabin index 0. These are colored arenas that have only simple cycles with
even color. Since a colored arena has a cycle with odd color iff it has a simple
cycle with odd color, rabinα correctly reduces all colors to 0 for such arenas
and so computes the exact Rabin index in these instances.

For Rabin index 1, the situation is more subtle. We cannot expect algorithm
rabinα to always be precise, as the decision problem for RI(c) ≥ 2 is NP-hard.
Algorithm rabinα will correctly compute Rabin index 1 for all those arenas
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that do not have a simple cycle with even color. But for c from Figure 6, e.g.,
algorithm rabinα does not change c with index 3, although the Rabin index of
c is 1.

We observe that rabinα is not just an overapproximation of rabin, but cap-
tures the preservation of color parity for cycles generated by strategies that may
not be positional, for example those that have finite or infinite memory. Thus,
equivalence relation ≡α can de defined similarly to how ≡ is defined in Defini-
tion 1, where strategies are now deterministic but not necessarily positional.

7. Experimental results

We now provide some experimental results. These experiments are meant
to evaluate the algorithms rabin and rabinα. All experiments are carried out
on a test server that has two Intel E5 CPUs – with 6-core each running at
2.5GHz – and 48G of RAM. During the experiments, Intel performance enhanc-
ing technologies such as Turbo Boost and Hyper-Threading were turned off. The
implementations of algorithms used on these experiments are written in Scala
and realize, for sake of simplicity, all game elements as objects. This design
decision is made since our main interest is in descriptive complexity measures
and in the comparison of relative computation time.

We now sketch our implementations of algorithm rabinα. It reduces cycle
detection to the decomposition of the graph into strongly connected components,
using Tarjan’s algorithm (which is linear in the number of edges). The rank
function within rabinα is only needed for complexity and termination analysis,
we replaced it with Booleans that flag whether cycle or pop had an effect.

Our implementation of the standard static compression algorithm simply re-
moves gaps between colors, e.g. a set of colors {0, 3, 4, 5, 6, 8} is being compressed
to {0, 1, 2, 3, 4}. Below, we write s(c) for the statically compressed version of
coloring function c.

7.1. First experiment

In our first experiment, we program algorithm rabin by reducing simple
cycle detection to incremental SAT solving. This approach does not scale to
games (with graph structure described in section 7.3) with more than 40 nodes.
But for those games for which this could compute the Rabin index, our efficient
approximation rabinα(V,E, c) of rabin(V,E, c) often computes the Rabin index
RI(c) or does get very close to it.

7.2. Second experiment: structured games

Our second experiment compares the effectiveness of color compression of
the approximative algorithm rabinα to a known color compression algorithm –
the so called static color compression. We here want to see by how much rabinα

reduces the index of the game in comparison to static color compression. And
we want to learn how effective rabinα is as a preprocessor to Zielonka’s solver
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Game Type µ(c) µ(s(c)) RIα(c)

Clique[100] 100.00 100.00 99.00

Ladder[100] 2.00 2.00 2.00

Jurdziński[5 10] 12.00 12.00 11.00

Recursive Ladder[15] 48.00 46.00 16.00

Strategy Impr[8] 237.00 181.00 9.00

MC Ladder[100] 200.00 200.00 0.00

Towers of Hanoi[5] 2.00 2.00 1.00

Game Type #I S rabinα Zie S; Zie rabinα; Zie

Clique[100] 2 0.15 318.57 7.79 6.97 6.88

Ladder[100] 1 0.14 6.34 3.57 2.92 2.61

Jurdziński[5 10] 2 0.11 14.98 95.84 94.40 93.66

Recursive Ladder[15] 2 0.05 8.43 408.09 402.87 239.89

Strategy Impr[8] 2 0.13 31.98 229.06 52.38 10.14

MC Ladder[100] 2 0.17 123.18 32.85 32.79 0.36

Towers of Hanoi[5] 2 0.63 114.27 31.65 31.14 49.20

Figure 7: Experiments for structured game types. Top: index µ(c) of game, index of statically
compressed coloring function µ(s(c)), and index of game computed by rabinα. Bottom: run-
time characteristics averaged over 100 runs of the game; #I is the number of iterations within
rabinα, S is run-time of static color compression, rabinα shows the run-time of rabinα,
followed by the run-time of Zielonka’s solver on original game (Zie), the statically compressed
game (S; Zie) and the game preprocessed with rabinα (rabinα; Zie).

of parity games (called Zie here) [17]. For the latter, we are interested in also
comparing this to static color compression as a preprocessor for Zie.

Figure 7 shows results of this second experiment for structured games. We
use PGSolver to generate these non-random games. A detailed description of
these games can be found in [9], whose notation for such games we adopt here.
Seven different game types were evaluated for the listed parameter choices. Each
row in Figure 7 corresponds to such a game type and shows the average of mea-
surements made for 100 executions of the corresponding game type. For each
such type, we repeat and average results for the same game to account for aver-
age lapse time in experiments. Of course, the number of iterations within rabinα

does not change when repeating the execution of a game (so the average equals
that constant). In the top of that figure, we see the (average of the) index of the
generated game, the index obtained from this through static color compression,
and the index computed by rabinα applied to the generated game. We learn
from this table that rabinα has significantly reduced the indices of Recursive
Ladder, Strategy Impr, and Model Checker Ladder, where RIα(c) is 0% to
35% of the index µ(s(c)) of the statically compressed coloring function. Game
types Ladder and Tower of Hanoi have very low indices and their colors can-
not be compressed further. The definition of game type Clique implies that
method cycle has no effect on such games, only pop manages to reduce the
index of such games by 1.
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At the bottom of Figure 7, we report the time taken to execute static com-
pression and rabinα, as well as the number of iterations that rabinα runs until
cycle and pop have no effect, i.e. the number of iterations needed for µ(c)
to reach RIα(c). Finally, we here record the wall-clock time required to solve
original, statically compressed, and rabinα-compressed games, using Zielonka’s
solver [17]. From this table we learn that the application of rabinα improves
performance of solvers for some game types. For the three game types men-
tioned above, we observe 40% to 99% in solver time reduction between solving
statically compressed and rabinα-compressed games.

The time required to perform static compression is low compared to the time
needed for rabinα-compression, but rabinα-compression followed by solving
the game is still faster than solving the original or solving statically compressed
games for Recursive Ladder and Strategy Impr.

7.3. Third experiment: random games

We now discuss the results of our second experiment on random games. The
notation we use here to describe randomly generated parity games is

xx/yy/zz/cc (6)

where xx is the number of nodes (node ownership is determined by a fair coin
flip for each node independently), with between yy to zz out-going edges for
each node, and with colors at nodes chosen at random from {0, . . . , cc}. We fix
the minimal number of out-going edges (yy) to be 1. This means that the games
have no dead-ends. We also disallow self-loops (no (v, v) in E). The generation
of these games is realized by the random method of the PGSolver tool [9].

Figure 8 shows the average statistics of 100 runs of experiments on five
random game configurations. (Our experiments on larger random games are
consistent with the data reported here, and so omitted.) The meaning of these
tables is the same as for the tables in Figure 7, except that the first column lists
the type of random games generated here.

The results indicate that static compression is effective in reducing the colors
for randomly generated games, it achieves around 54% index reduction for all
game types reported in Figure 8. The color compression of rabinα achieves
a further 2% to 21% reduction. Due to the relatively small additional index
reduction by rabinα, we do not see much improvement in solving rabinα-
compressed games over solving statically-compressed ones.

The results in Figure 8 show that these games take an average of more than
2 rabinα iterations. This indicates that certain game structure, such as the one
found in the game in Figure 3, is present in our randomly generated games.

We summarize the insights of this second experiment. The experimental re-
sults show that rabinα is able to reduce the indices of parity games significantly
and quickly, for certain structured games such as Recursive Ladder. Hence it
effectively improves the overall solver performance for those games. However,
algorithm rabinα has a negative effect on the overall performance for other
non-random games and for the random games we generated, when we consider
rabinα-compression time plus solver time.
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Game Configs µ(c) µ(s(c)) RIα(c)

100/1/20/100 99.19 46.19 36.31
200/1/40/200 198.93 92.03 80.45
400/1/80/400 399.00 184.78 172.14
800/1/160/800 799.13 371.83 357.68
1000/1/200/1000 998.97 463.91 449.35
1600/1/320/1600 1599.07 739.37 723.77

Game Configs #I S rabinα Zie S; Zie rabinα; Zie

100/1/20/100 2.09 0.20 31.12 5.21 4.35 4.28
200/1/40/200 2.04 0.18 175.95 10.58 9.98 9.93
400/1/80/400 2.03 0.18 1637.22 38.72 35.82 35.67
800/1/160/800 2.02 0.39 16666.34 146.81 142.14 141.79
1000/1/200/1000 2.06 0.49 35505.83 213.68 205.29 204.64
1600/1/320/1600 2.08 1.43 300850.49 656.06 614.70 611.26

Figure 8: Experiments for random game types. Top: averages of the index µ(c) of game,
the index of statically compressed coloring function µ(s(c)), and the index of game computed
by rabinα. Bottom: run-time characteristics averaged over 100 runs of the game; #I is the
number of iterations within rabinα, S is run-time of static color compression, rabinα shows
the run-time of rabinα, followed by the run-time of Zielonka’s solver on original game (Zie),
the statically compressed game (S; Zie) and the game preprocessed with rabinα (rabinα; Zie).

7.4. Fourth experiment: enhancing the precision of partial solvers

Partial solvers for parity games were proposed in [11]. For parity game G
with node set V , a partial solver produces as output winning regions W0 and
W1 of players, along with strategies that win on these regions for the respective
players – just as a full solver does. But for partial solvers the node set W0 ∪W1

may be a proper subset of the node set V of input parity game G. Therefore,
partial solvers also output a residual game Gr whose node set is V \(W0∪W1). It
is therefore interesting to see whether algorithm rabinα, used as a preprocessor,
can decrease the size of the node set of such residual games. We conduct this
experiment for the partial solver psolB introduced in [11]. This solver examines
each color k of the input game G and determines whether there are node sets
X ⊆ Y in G such that all nodes in X have color k, and player k%2 can reach
from all nodes in Y some node in X whilst preventing that nodes of color less
than k are visited along the way. If so, node set Y is called a fatal attractor
for color k and is won by player k%2 in game G. The partial solver psolB

removes the usual k%2 attractor of a fatal attractor Y for some k. This process
is repeated until no color of the residual game has a fatal attractor left.

We next give an example demonstrating that algorithm rabinα can indeed
have a positive effect on the partial solver psolB.

Example 4. Consider the parity game in Figure 9(a), taken from [11] where
it is shown that psolB can solve no nodes of this game. In Figure 9(b), we see
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(a) A parity game G for which psolB can solve no
nodes.
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(b) Parity game G′ produced by applying rabinα

on the above parity game G.

Figure 9: An example of a parity game G that psolB cannot solve at all, but that psolB solves
completely after rabinα is run as preprocessor.

the result of rabinα on that input game. This resulting game has index 2 and
psolB solves all games of index 2 completely [11]. So this is an example where
the preprocessor rabinα turns a game that psolB cannot solve at all into one
that psolB can solve completely.

In evaluating how typical such positive effects of rabinα are on psolB, it
also makes sense to compare the running times of partial solvers for original
and preprocessed games. In [11] it is shown that the residual game of psolB
is independent of the order in which it searches for fatal attractors of colors in
the game. Therefore, our measure of how many additional nodes rabinα can
remove as a preprocessor of psolB is not affected by such an implementation
choice. Since psolB solves almost all standard structured parity games from
the PGSolver suite completely [11], we confine our attention here to randomly
generated parity games with configurations specified as in (6). Specifically, we
generate random games with configuration

2i/1/[1..2i]/[1..2i] (7)

where i ranges from 2 up to 9. These games have 2i nodes. For each node, its
out-degree in (V,E) is randomly selected from the integer interval [1, 2i] such
that there are no self-loops. Also, the index of these games is randomly selected
from the integer interval [1, 2i].
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i #G µ(c) RIα(c) #I rabinα

2 6842 3.11 0.83 1.95 1.19
3 1888 5.01 1.63 1.95 1.67
4 1116 9.31 3.56 2.00 3.14
5 2485 19.37 6.37 2.04 4.71
6 6853 36.19 8.21 2.05 8.91
7 16925 70.18 12.94 2.13 19.40
8 43561 134.24 20.08 2.19 69.03
9 86304 237.41 35.23 2.29 375.67

i psolB rabinα; psolB r c; r Eff max avg

2 0.33 0.28 4.0 0.48 88 4 4
3 0.32 0.32 6.73 2.83 59 8 6
4 0.71 0.67 9.55 6.22 33 16 10
5 1.18 1.10 16.77 14.45 10 32 23
6 2.69 2.09 35.67 28.07 22 64 34
7 5.49 2.93 66.46 55.98 17 128 61
8 15.41 8.96 133.72 118.89 9 256 164
9 31.38 24.71 277.75 274.79 4 85 74

Figure 10: Experiments for randomly generated games with configuration as in (7). Top: the
first two columns depict the value of i and the number of games generated in order to have
100 games that psolB does not solve completely (#G); the next four columns have the same
meaning as for the previous two experiments but averaged over these 100 games. Bottom:
the first two columns are the average solver time using psolB on the original (psolB) and on
rabinα-compressed (rabinα; psolB), respectively. The next two columns depict the average
size of the residual game for psolB (the r), and for rabinα; psolB (the c; r). The last columns
show the number of these 100 games for which rabinα; psolB removes more nodes from the
input game than psolB (Eff ), and the maximum (max) and average of how many more nodes
rabinα; psolB removes.

For each such value of i, we program an iteration that keeps generating ran-
dom games for this configuration until 100 such games are identified that psolB
does not solve completely. Figure 10 shows our results for this in tabular form.
For each of these 100 games we record similar information as in the previous
two experiments. Since we here want to study how rabinα may enhance the
precision of the partial solver psolB, we did not run any static color compression
in this experiment.

In Figure 10, we see that it takes longer to first run rabinα and then psolB

on the output of rabinα than it takes to run psolB on the original game.
But we would like to stress that the intention of these experiments is to show
that the changes made by rabinα are beneficial to parity game solving, not to
demonstrate rabinα is ready to use as a practical tool. The results in Figure 10
show that rabinα as preprocessor of psolB helps with removing more nodes.
However, we can also see that there are less games where this happens when
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the size of the game increases. Noting the sizes of games for values of i, we see
a similar pattern in the maximum and average of such increased node removal
when rabinα is used as a preprocessor for psolB. On the other hand, the column
#G shows that more and more games have to be generated as i increases to
find 100 games that psolB does not solve completely.

We also see that rabinα is effective in reducing indices of these 100 games,
with 62% to 85% index reductions for all values of i. These reductions have
a positive effect on psolB running times: the data in columns psolB and
rabinα; psolB show a running time reduction of 0% to 47% for most i when
using rabinα as preprocessor of psolB (ignoring time taken to run rabinα).

Another insight, not shown in these data but observable in the raw data of
this experiment, is that the 100 games identified for a value of i tend to have
a low maximal out-degree. Our intuition for this is that in such games the
probability of a node vi having an anchor value j is lower as there are fewer
cycles in the game. Therefore, rabinα should become more effective in such
games.

We repeated this experiment with variants of the configuration in (7). In
a first variant, we changed that configuration so that the index of games is
restricted to the integer interval [2, 4]. Then algorithm rabinα is expected to
be less effective. The observed solver reduction times now only vary from 0%
to 39% now. The effectiveness measure Eff is similar here to the one observed
in Figure 10 though.

A second variant of (7) we ran changes that configuration also only in one
place, so that the out-degree is now restricted to the integer interval [2, 4] (and
so still allows for an index in the range of 1 and 2i). The results for this variant
were also similar, except that the low out-degree meant that the 100 games were
found much quicker than in the other variants.

In [3], it has been shown that priority propagation have no effect on psolB

when used as a preprocessor: it neither eliminates nor creates fatal attractors
in the input game. In the above context, it is interesting to note that prior-
ity propagation does not exploit cycle structure of the game, unlike algorithm
rabinα which has a (positive) effect on psolB because of its cyclic analysis.

8. Related work

Carton and Maceiras define a notion of Rabin index for deterministic parity
word automata in [2], where they also develop an algorithm that computes a
coloring function on the same automaton that witnesses this Rabin index. We
now show that our notion RIα(c) and algorithm rabinα are very similar to their
notion and computation of Rabin index for deterministic parity word automata.

Deterministic parity word automata can be thought of as 1-player parity
games, where the player chooses input letters. An infinite word can be compared
to a strategy with memory for the player. In [2], max-parity deterministic parity
automata are used. We present the work in [2] with the equivalent notion of
min-parity deterministic parity word automata, since this allows us to directly
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relate their work to our own work reported here for min-parity games. A word
is accepted if its strategy is winning, that is, if the minimal color to be visited
infinitely often is even. Minimization of the Rabin index should preserve the
language of the automaton or, put in our terms, every winning strategy should
remain to be winning.

Their algorithm for this minimization, which we call RabinWA, is shown in
Figure 11 but reformulated in this figure to work with min-parity instead of
max-parity deterministic parity automata. Algorithm RabinWA constructs the
“coloring dependencies” of all states in an automaton arena by decomposing the
automaton into maximal (non-trivial) strongly connected components (SCCs).
For each R being a maximal SCC, algorithm RabinWA removes the states with
the minimal color (and pushes them onto a stack), then recursively SCC de-
composes the remaining arena of R.

Eventually, the input arena is reduced to a set of states that exist in their
own respective SCCs (hence do not exist in the same cycle as each other). We
first let k be the maximal color m, then assign k to these states. The algorithm
then propagates the new color k to the states in the “layer” below. Those states
receive a new color k or k−1, depending on whether their original parities equal
the parities of the states in the “layer” above. In essence, SCC decomposition
is used to detect the cycle dependency of states. Finally, pushDown reduces the
minimal color to 0 or 1.

Our implementation of rabinα also uses SCC decompositions and so our
algorithm cycleα has almost the same input/output behavior as RabinWA. The
input/output differences between RabinWA and rabinα are a result of subtle
definitional variations. Our notion of abstract Rabin index takes the maximal
color of the game arena as descriptive complexity measure; their notion of Rabin
index is concerned with the maximal length of alternating (positive) chains of
essential sets, where a node set is essential if it is the set of nodes of some
cycle. The length of such a maximal chain differs from the maximal color in
the arena with no color gaps by at most 1 (in either direction). Therefore,
the Rabin index in [2] and our abstract Rabin index are almost the same and,
consequently, algorithms RabinWA and rabinα compute almost the same output.

The correctness proof for (the equivalent of) RabinWA in [2] depends upon
the fact that the union of two essential sets with non-empty intersections is
essential again. In other words, two cycles that intersect can be interpreted as
a single cycle. But the latter is no longer true for simple cycles and so it does
not seem possible to adapt RabinWA to compute our (non-abstract) Rabin index
for parity games – something that we showed algorithm rabin is able to do.

9. Conclusions

We have provided a descriptive measure of complexity for parity games that
(essentially) measures the number of colors needed in a parity game if we forget
the ownership structure of the game but if we do not compromise the winning
regions or winning strategies by changing its colors.
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RabinWA(V ,E, c) {
m = max { c(v) | v ∈ V };
for (v ∈ V ) { c′(v) = m; }
reduce(V ,E, c, c′,m);

return pushDown(V , c′);
}

reduce(V ,E, c, c′,m) {
i = m;

SCCs = set of maximally non-trivial SCCs of (V ,E);
for (R ∈ SCCs){
if (π(R) == m) { k = m; }
else {
R′ = {v ∈ R | c(v) 6= π(R)};
k = reduce(R′, E|R′ , c|R′ , c′|R′ , m);

if (π(R) − k is odd) { k = k − 1; }
}
for (v ∈ {w ∈ R | c(w) = π(R)}) { c′(v) = k; }
i = min{i, k};

}
return i;

}

pushdown(V , c′) {
n = min { c′(v) | v ∈ V };
if (n is odd) { n = n− 1; }
for (v ∈ V ) { c′(v) = c′(v) − n; }
return c′;

}

Figure 11: Algorithm RabinWA to compute Rabin index [2], but modified to work with min-
parity (instead of max-parity) parity automaton A = (V , E, c), where R ⊆ V , π(R) =
min{c(v) | v ∈ R}, E|R is E with restriction to nodes in R, and similarly for c|R.
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We called this measure the Rabin index of a parity game. We then studied
this concept in depth. By analyzing the structure of simple cycles in parity
games, we arrived at an algorithm that computes this Rabin index in exponential
time.

Then we studied the complexity of the decision problem of whether the
Rabin index of a parity game is at least k for some fixed k > 0. For k equal to
1, we saw that this problem is in P, but we showed NP-hardness of this decision
problem for all other values of k. These lower bounds therefore also apply to
games that capture these decision problems in game-theoretic terms.

Next, we asked what happens if our algorithm rabin abstractly interprets
all detection checks for simple cycles through detection checks for cycles. The
resulting algorithm rabinα was then shown to run in polynomial time, and to
compute an abstract and sound approximation of the Rabin index.

We then evaluated this concept of Rabin index experimentally. We did this
by studying its approximating algorithm rabinα. In these experiments, we
wanted to understand whether rabinα can be used as a preprocessor so that
existing solvers would benefit from solving a parity game with colors reduced
by rabinα. Our result indicate that rabinα is only of limited value as a means
of speeding up solver time, and this is shared with techniques such as priority
propagation [9]. More concretely, these experiments were performed on random
and non-random games. We observed that rabinα-compression plus Zielonka’s
solver [17] achieved 29% and 85% time reduction for Jurdziński and Recursive

Ladder games, respectively, over solving the original games. But for other game
types and random games, no such reduction was observed. We also saw that for
some structured game types, the abstract Rabin index is dramatically smaller
than the index of the game.

A more theoretical experiment focused on partial solvers, that run in poly-
nomial time but may not solve a parity game completely. We asked whether
rabinα can help such partial solvers to solve more games completely, and our
experiments do indeed confirm this. Although it appears that the effectiveness
of this processor on the types of random models we studied wanes quickly as
the size of models grows exponentially.

We finally list some research issues that are raised by the work reported in
this paper. The complexity measure

RIα(c)− RI(c) (8)

appears to be of interest. Intuitively, it measures the difference of the Rabin
index based on the structure of cycles with that based on the structure of simple
cycles. From Figure 4(b) we already know that this measure can be arbitrarily
large. Understanding this measure better may provide a deeper insight into the
complexity of colored arenas.

It will also be of interest to study variants of RI(c) that are targeted for
specific solvers. For example, the SPM solver in [12] favors fewer occurrences
of odd colors but also favors lower index. This suggests a measure with a
lexicographical order of the Rabin index followed by an occurrence count of odd
colors.
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There is also the question of whether there are ways of replacing method
cycle with some other method that could soundly detect anchors in colored
arenas whose nodes preserve the ownership of parity games. Deriving such
methods may indeed result in the design of new parity game solvers.
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