
M A J O R A R T I C L E

Influence of Enteric Infections on Response to
Oral Poliovirus Vaccine: A Systematic Review and
Meta-analysis

Edward P. K. Parker,1 Beate Kampmann,2,3 Gagandeep Kang,4 and Nicholas C. Grassly1

1Department of Infectious Disease Epidemiology, and 2Department of Paediatrics, St Mary’s Campus, Imperial College London, United Kingdom; 3MRC
Unit, The Gambia, Fajara; and 4Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India

Background. The impaired immunogenicity of oral poliovirus vaccine (OPV) in low-income countries has been
apparent since the early field trials of this vaccine. Infection with enteropathogens at the time of vaccination may
contribute to this phenomenon. However, the relative influence of these infections on OPV performance remains
uncertain.

Methods. We conducted a systematic review to examine the impact of concurrent enteric infections on OPV
response. Using random-effects models, we assessed the effects of nonpolio enteroviruses (NPEVs) and diarrhea
on the odds of seroconversion and/or vaccine virus shedding.

Results. We identified 25 trials in which OPV outcomes were compared according to the presence or absence of
enteric infections, the majority of which (n = 17) reported only on NPEVs. Concurrent NPEVs significantly reduced
the odds of per-dose seroconversion for type 1 poliovirus (odds ratio [OR] 0.44, 95% confidence interval 0.23−0.84),
but not type 2 (OR 0.53 [0.19−1.46]) or type 3 (OR 0.56 [0.27−1.12]). A similar reduction, significant for type 1
poliovirus (OR 0.50 [0.28−0.89]), was observed in the odds of vaccine virus shedding among NPEV-infected indi-
viduals. Concurrent diarrhea significantly inhibited per-dose seroconversion overall (OR 0.61 [0.38−0.87]).

Conclusions. Our findings are consistent with an inhibitory effect of concurrent enteric infections on OPV
response.

Keywords. diarrhea; enterovirus; immunogenicity; interference; oral poliovirus vaccine.

In 1988, the World Health Assembly committed to the
task of eradicating polio worldwide. The ensuing efforts
of the Global Polio Eradication Initiative have brought
about a decline in the annual incidence of paralytic
poliomyelitis by more than 99%. Yet in spite of this
progress, polio remains endemic in 3 countries—
Afghanistan, Pakistan, and Nigeria—and the risk of

renewed transmission in countries previously clear of
the disease remains.

Although the persistence of polio in the face of con-
certed eradication efforts cannot be attributed to any
single cause, the reduced immunogenicity of oral polio-
virus vaccine (OPV) in low-income countries has con-
tributed to the disease’s resilience. To date, OPV has
been the vaccine of choice for eradication efforts across
much of the globe on account of its ease of administra-
tion, low cost, and ability to induce mucosal immunity.
However, concerns over the impaired immunogenicity
of OPV in low-income countries (particularly those in
tropical and subtropical regions) have existed since the
earliest field trials of this vaccine [1]. In a review of stud-
ies conducted in resource-limited settings, Patriarca
et al [2] documented average seroconversion rates
after 3 doses of trivalent OPV (tOPV) of 73% for type
1 poliovirus (range, 36%−99%), 90% for type 2 (range,
71%−100%), and 70% for type 3 (range, 40%−100%).
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Corresponding rates in high-income settings typically exceed
95% for all serotypes [3].

Continued use of OPV in routine vaccination, supplementary
immunization activities, and outbreak response is essential to
the polio eradication endgame [4]. The diminished immunoge-
nicity of this vaccine in low-income countries therefore repre-
sents an important public health concern. Moreover, this
phenomenon is not unique to polio: oral vaccines against chol-
era [5] and rotavirus [6] have also demonstrated impaired im-
munogenicity in low-income settings.

A range of factors have been implicated in the compromised
performance of oral vaccines in low-income countries, includ-
ing the high incidence of enteric infections, malnutrition, di-
minished vaccine potency, and interference by maternal
antibodies [2, 7]. The potential role of enteric infections was
one of the first to be highlighted as a possible source of interfer-
ence with OPV [8]. However, studies of this phenomenon have
yielded contradictory results: while several reports have sup-
ported the interfering effects of concurrent nonpolio enterovi-
ruses (NPEVs) [9, 10], bacteria [11], or diarrhea [12], others
have refuted these effects [13–15]. The relative contribution of
enteric infections to the impaired immunogenicity of OPV in
low-income countries thus remains uncertain.

We carried out a systematic review and meta-analysis with
the aim of estimating the influence of enteric infections and di-
arrhea on the odds of responding to OPV. The review also con-
sidered the effects of environmental enteropathy—a subclinical
disorder associated with blunted intestinal villi, nutrient malab-
sorption, and intestinal inflammation [16]—which has been
widely documented among individuals in low-income coun-
tries, and suggested as a possible cause of impaired oral vaccine
performance [7, 16].

METHODS

Literature Search
We carried out a search of the citation databases PubMed and
ISI Web of Knowledge in October 2012 (see Supplementary
Materials Section 1.1 for search term). Following the removal
of duplicates, titles and abstracts were evaluated for their rele-
vance to the review topic (Supplementary Materials Section
1.2), and full-text copies of eligible articles obtained. Additional
articles were identified by screening the text and bibliographies
of relevant articles and conference proceedings (Supplementary
Materials Section 1.3). PRISMA guidelines were followed
throughout the study selection process [17].

Studies were included in the review if they fulfilled the follow-
ing criteria: (1) delivery of OPV in a prospective trial; (2) report-
ing 0–7 days prior to vaccination of diarrhea, NPEV excretion,
other indicators of enteric coinfection, or markers of environ-
mental enteropathy; and (3) measurement of OPV response, in-
cluding assessment of seroconversion or polio-specific antibody

titers within 8 weeks of vaccination, shedding of OPV between 1
and 4 weeks after vaccination, or intestinal immunity (including
measurement of polio-specific fecal immunoglobin A following
vaccination or shedding of vaccine virus after OPV challenge).
If the reporting of enteric infections spanned the 7 days preced-
ing vaccination, but was not limited to this window, the study
was included. Studies were excluded if: (1) they included only
immunocompromised individuals; (2) less than 10 subjects
were present in the infected or control group; (3) OPV out-
comes were not presented according to the presence or absence
of concurrent infection, diarrhea, or markers of environmental
enteropathy; or (4) the reporting of enteroviruses did not distin-
guish polioviruses from NPEVs. Conference abstracts were ex-
cluded if a complete report of the study was already included in
our review. If multiple eligible reports of the same trial were en-
countered, the most comprehensive report was used for data ex-
traction. Several reports presented data from separate trials of
monovalent OPV (mOPV) and tOPV [18, 19], or of tOPV trials
conducted in different countries [20]—these were considered as
separate studies during the analysis. Publications in languages
other than English were translated with the assistance of profi-
cient speakers.

Data Extraction
Data were extracted from eligible studies regarding the type,
schedule, and potency of the administered OPV, the timing of
sample collection, the collection method for fecal specimens,
the laboratory methods used for the assessment of enteric virus-
es, the criteria used to define diarrhea, and the criteria and
methods used to assess serological response. Results presented
in graphical form were digitized and data extracted using Plot
Digitizer software [21]. Where relevant, an effort was made to
obtain supplementary details from authors of the included
studies.

Statistical Analysis
We carried out a meta-analysis to examine the effects of concur-
rent NPEVs and diarrhea on the odds of seroconversion per
dose of OPV, and of concurrent NPEVs on the odds of vaccine
virus shedding (intestinal immunity was not used to assess OPV
response in any of the eligible studies). Studies were included in
the analysis if they reported serotype-specific seroconversion or
vaccine virus shedding after a given dose of OPV according to
the presence or absence of NPEVs (excluding poliovirus-
infected individuals) or diarrhea. If dose-specific outcomes
were reported for multiple OPV doses within a trial, data for
the first administered dose were used. An additional analysis
was conducted to compare the odds of seroconversion after
multiple OPV doses in individuals presenting with diarrhea at
the time of 1 or more doses with those free of diarrhea at all
doses. If data were presented as proportions, the number of re-
sponders was inferred by rounding to the nearest whole
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Table 1. Summary of Eligible Trials

Studya Country
Income
Groupb Vaccine Doses

Dose
Interval

No. OPV
Recipientsc

Age at
Recruitment

Vaccination
History

Interference Measure OPV Responsed Other Eligible
Articles

Reporting on
TrialDiar NPEV Vir Bac Par EE Ser GMT Take

Benyesh-Melnick
et al, 1959 [8]

Mexico UM mOPV 3e 3 wk 81 0–12 y . . . . . . ✓ . . . . . . . . . . . . ✓ . . . ✓

Fang-Cho, 1960 [27] China UM tOPV 1 . . . 600 <7 y . . . . . . ✓ . . . . . . . . . . . . ✓ . . . . . .

Levine & Goldblum,
1960 [28]

Israel H tOPV ≤2 4 mo Approximately
500

0–4 mo . . . . . . ✓ . . . . . . . . . . . . . . . . . . ✓

Voroshilova et al, 1960
[29]

Russia UM tOPV 2 4–6 wk 140 2 mo–15 y . . . . . . ✓ . . . . . . . . . . . . . . . . . . ✓

Domok et al, 1961 [30] Hungary H tOPV 2 6 wk 160 3 mo–15 y 3 or 4 IPV in
most

. . . ✓ . . . . . . . . . . . . . . . . . . ✓

Ramos-Alvarez, 1961
[31]

Mexico UM mOPV 3e 3 wk 181 <3 y . . . . . . ✓ . . . . . . . . . . . . ✓ . . . ✓

Dardanoni et al, 1962
[32]

Italy H mOPV 1 . . . Approximately
55

3 mo–2 y some IPV . . . ✓ . . . . . . . . . . . . ✓ . . . . . .

Ingram et al, 1962 [33] USA H mOPV 1 . . . 25 10 wk–8 mo some IPV . . . ✓ . . . . . . . . . . . . ✓ . . . ✓

Paul et al, 1962 [34] Costa Rica UM tOPV 2 1 mo 48 5–22 mo some IPV . . . ✓ . . . . . . . . . . . . ✓ . . . ✓ Paul et al [35]
Urasawa, 1964 [19] Japan H tOPV 1 . . . NA NA . . . . . . ✓ . . . . . . . . . . . . ✓ . . . . . .

Spano et al, 1965 [36] Italy H mOPV 3e 1 mo 229 3 mo–5 y . . . . . . ✓ . . . . . . . . . . . . . . . . . . ✓

JLPRC, 1966 [9]f Japan H mOPV 3e 4 wk Approximately
5000

0–60 y some IPV . . . ✓ . . . . . . . . . . . . ✓ ✓ ✓ Urasawa
[19, 37],
Takatsu
[38]

Nardi et al, 1966 [39]g Italy H tOPV 1 . . . 197 1–10 y 3×mOPVe . . . ✓ . . . . . . . . . . . . ✓ ✓ ✓ Monaci et al
[40]

Ramos-Alvarez, 1966
[18]

Mexico UM mOPV 3e 4 wk NA 7 mo–2 y . . . . . . ✓ . . . . . . . . . . . . ✓ . . . ✓

Ramos-Alvarez, 1966
[18]

Mexico UM tOPV 1 . . . NA 7 mo–2 y . . . . . . ✓ . . . . . . . . . . . . ✓ . . . . . .

Sureau et al, 1966 [41] Algeria UM tOPV 3 4 wk 100 3 mo–3 y . . . . . . ✓ . . . . . . . . . . . . . . . . . . ✓

John & Christopher,
1975 [14]

India LM tOPV 2 8 wk 191 3 mo–5 y . . . . . . ✓ . . . . . . . . . . . . ✓ . . . ✓

Mahmoud et al, 1976
[11]

Egypt LM NA 1 . . . 24 3 mo–2 y . . . ✓ . . . . . . ✓ . . . . . . . . . . . . ✓

Faden et al, 1992 [42] USA H tOPV ≤3 2–8
mo

68 6–10 wk . . . . . . ✓ ✓ . . . . . . . . . ✓ ✓ . . .

Kok et al, 1992 [13] Kenya L tOPV 3 2 mo 100 2–3 mo . . . ✓ ✓ . . . . . . . . . . . . ✓ ✓ . . .
WHO, 1995 [20] Gambia L tOPV 4 NA 1087 <6 wk . . . ✓ . . . . . . . . . . . . . . . ✓ . . . . . .

Myaux et al, 1996 [43] Bangladesh L tOPV 3 4 wk 391 6–16 wk . . . ✓ . . . ✓ . . . . . . . . . ✓ ✓ . . .

Posey et al, 1997 [12] Brazil UM tOPV 4 4–6 wk 1395 0 (birth) . . . ✓ . . . . . . . . . . . . . . . ✓ . . . . . . WHO [20]
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number. Summary odds ratios (ORs) and 95% confidence inter-
vals (CIs) were calculated separately for each serotype on a log
scale using random-effects models [22]. Heterogeneity among
studies was assessed using the χ2 statistic. A continuity correction
of 0.5 was used in trials with zero events (zero responders or non-
responders) in 1 or both study arms. Data across the serotypes
were then combined in a multilevel meta-analytic model based
on structural equation modeling [23], incorporating study as a
cluster effect. Overall ORs for the multilevel model were calculat-
ed using maximum likelihood estimation, with likelihood-based
CIs. Mixed-effects meta-regression analyses were used to assess
the impact of serotype, formulation (mOPV vs tOPV), and
trial setting (low-, lower-middle- or upper-middle-income vs
high-income countries, as currently listed by the World Bank
[24]) on effect size; the impact of each factor on the fit of the
model was assessed using the likelihood ratio test (LRT). Sensi-
tivity analyses were performed to include studies with at least 5
individuals in the infected and control groups (rather than 10),
and to assess trials in which poliovirus infections were not distin-
guished from NPEVs. Potential publication bias was assessed
using funnel plots and Egger’s test [25].Analyses were conducted
in the programming language R [26] and using Review Manager
software (RevMan 5.2).

RESULTS

Study Selection
The literature search led to the identification of 203 articles of
potential relevance to the review. Among these articles, 28 ful-
filled the inclusion criteria, reporting on 25 distinct trials
(Table 1) [8–14, 18–20, 27–44]. Figure 1 presents a flow chart
of the study selection process.

NPEV Coinfection
Serological Response
Sixteen eligible studies reported serological response to OPV ac-
cording to the presence or absence of NPEVs (Supplementary
Table 1). Across 9 studies eligible for inclusion in the meta-
analysis (all involving delivery of Sabin vaccine), the presence
of NPEVs had a significant inhibitory effect on seroconversion
rates for type 1 poliovirus, but not types 2 or 3 (Figure 2). Overall,
the reduction in per-dose seroconversion among NPEV-infected
individuals approached significance (summary OR, 0.47; 95% CI,
.20−1.04). There was no evidence of marked publication bias
(Egger’s test, P > .1 for each serotype; Figure 3). Serotype did
not significantly influence effect size (LRT, P = .680). Significant
heterogeneity in ORs across studies was observed for each sero-
type (χ2, P values .002, <.001, and <.001 for types 1, 2, and 3,
respectively) and overall (χ2, P < .001).

When the meta-analysis was stratified according to OPV for-
mulation, NPEV-associated interference was significant for
each serotype following the administration of mOPV (summaryTa
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OR, 0.17; 95% CI, .07−.42), but not tOPV (summary OR, 0.92;
95% CI, .45−1.86; Supplementary Table 2). The impact of for-
mulation on effect size was significant (LRT, P = .008). A sepa-
rate subgroup analysis revealed that interference was generally

greater among studies conducted in low-, lower-middle-, or
upper-middle-income than high-income countries (Supple-
mentary Table 2), although the impact of trial setting was not
significant (LRT, P = .181).

Figure 1. Flow chart of study selection process. A study by Swartz et al [45] was classified as ineligible based on details in a separate report [46], which
clarified that the presence of NPEVs infections in the week following (as opposed to preceding) OPV delivery had been used as an indicator of concurrent
infection. Citation details of the eligible studies are provided in Table 1. Abbreviations: NPEVs, nonpolio enteroviruses, OPV, oral poliovirus vaccine.
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A sensitivity analysis including studies with a minimum of 5
individuals in the infected and control groups did not alter the
outcomes of this meta-analysis (Supplementary Table 2). How-
ever, when the inclusion criteria were broadened to incorporate
studies that did not distinguish polioviruses from NPEVs, the
inhibitory effect of concurrent infection was significant overall
(summary OR, 0.55; 95% CI, .33−.89; Supplementary Materials
Section 2.1).

A limited number of studies examined whether concurrent
NPEVs influenced seroconversion after multiple doses of
tOPV [13, 14, 34, 44]. The influence of NPEVs on overall sero-
conversion rates remains unclear based on the small number
and heterogeneous nature of these studies (Supplementary Ma-
terials Section 2.2).

Vaccine Take
The shedding of vaccine poliovirus has frequently been used as
a marker of OPV take owing to its strong correlation with sero-
logical response. Nine studies reporting vaccine take according
to the presence or absence of NPEVs were eligible for inclusion
in the meta-analysis (Figure 4). Sabin vaccine was used in each
study (where specified). As with serological response, a signifi-
cant decrease in the odds of shedding in NPEV-infected indi-
viduals was observed for serotype 1, but not types 2 or 3.
There was no evidence of marked publication bias (Egger’s
test, P > .1 for each serotype). Overall, the reduction in shedding
among NPEV-infected individuals was not significant (sum-
mary OR, 0.58; 95% CI, .26−1.24). The impact of serotype
was not significant following meta-regression (LRT, P = .489).

Figure 2. Forest plot of the impact of concurrent nonpolio enterovirus infections on the odds of seroconversion per dose of oral poliovirus vaccine. ORs
and 95% CIs, calculated using random-effects models, are presented for each serotype by boxes and black lines, with box area proportional to study weight.
Summary ORs for each serotype are indicated by a diamond, the width of which represents the 95% CI. The overall OR was calculated by maximum
likelihood estimation using a multilevel meta-analytic model based on structural equation modeling, incorporating study as a cluster effect. Abbreviations:
CI, confidence interval; JLPRC, Japan Live Poliovaccine Research Commission; mOPV, monovalent oral poliovirus vaccine; N, number of vaccinees; OR, odds
ratio; tOPV, trivalent oral poliovirus vaccine.

858 • JID 2014:210 (15 September) • Parker et al

http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiu182/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiu182/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiu182/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiu182/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiu182/-/DC1


Heterogeneity among studies was significant for serotypes 2 and
3 (χ2, P values .081, .015, and .001 for types 1, 2, and 3, respec-
tively) and for the overall OR (χ2, P < .001). Again, stratification
of the meta-analysis according to vaccine formulation revealed
that NPEV-associated interference was greater for mOPV than
tOPV (LRT, P = .032), and in low-, lower-middle-, or upper-
middle-income than high-income countries (LRT, P = .019;
Supplementary Table 2).

Impact of Specific NPEVs
In 7 studies, the influence of NPEVs on OPV take and/or sero-
conversion was reported according the presence of specific
pathogens [19, 28, 32, 33, 36] or pathogen groups [14, 27]. The
numbers of individuals infected with particular NPEVs were
generally too small to enable the influence of specific pathogens

to be evaluated, and there was no strong evidence to support the
particular inhibitory effect of any specific NPEV or NPEV
group (Supplementary Materials Section 2.3).

Concurrent Diarrhea
Serological Response
Four of the included trials considered the influence of concur-
rent diarrhea on serological response to tOPV (Supplementary
Table 3), of which 2 were eligible for inclusion in the meta-
analysis [12, 43]. Both studies involved the delivery of Sabin
vaccine. Concurrent diarrhea was associated with a significant
decrease inper-dose seroconversion for serotypes 2 and3, but not
type 1 (Figure 5). Overall, the impact of diarrhea on seroconver-
sion was significant (summary OR, 0.61; 95% CI, .38−.87). The
impact of serotype on effect size approached significance (LRT,
P = .067). Heterogeneity among studies was not significant for
any serotype (χ2, P values > .1) or overall (χ2, P = .207).

We carried out a separate analysis to compare seroconversion
rates after multiple tOPV doses among individuals experiencing
diarrhea at the time of 1 or more doses with those free of diar-
rhea at every dose (Figure 6). Overall, a significant decline in the
odds of seroconversion was observed in children who experi-
enced at least 1 concurrent diarrheal episode (summary OR,
0.68; 95% CI, .48−.93). This interference effect was significant
for serotypes 2 and 3, but not type 1. Heterogeneity among
studies was not significant for any serotype (χ2, P values > .1)
or overall (χ2, P = .154). Effect size differed significantly accord-
ing to serotype (LRT, P = .024). Notably, 2 other studies did not
observe a significant impact of concurrent diarrhea on serolog-
ical response after multiple doses of tOPV, but were not eligible
for inclusion in this analysis [13, 43]. There were insufficient
studies to formally assess publication bias regarding diarrhea-
associated interference.

Vaccine Take
One trial considered the influence of concurrent diarrhea on
OPV take [11]. Over a 3-week period after OPV delivery, vac-
cine shedding was observed in 10% (1/10) of infants with diar-
rhea at the time of immunization, and 64.3% (9/14) of those
without diarrhea.

Other Enteropathogens
Five studies considered the effect of enteric infections other
than NPEVs on OPV outcomes [10, 11, 42–44]. Although
these reports provide some indication of a potential inhibitory
effect of enteric bacteria [11, 44] and protozoa [10] on response
to OPV (Supplementary Materials Section 2.4), the extent of
this interference remains uncertain owing to the small number
and heterogeneous nature of the available studies.

Environmental Enteropathy
No studies encountered in this review examined the influence of
environmental enteropathy on OPV response.

Figure 3. Funnel plots for the influence of nonpolio enterovirus infec-
tions on the odds of seroconversion per dose of oral poliovirus vaccine.
Data are presented for serotype 1 (A), serotype 2 (B), and serotype 3 (C).
Abbreviations: OR, odds ratio; SE, standard error.
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DISCUSSION

The impaired immunogenicity of OPV in low-income countries
has been consistently documented since the early field trials of
this vaccine. However, explanations for this phenomenon re-
main poorly resolved. Our systematic review supports the role
of enteric infections as a risk factor for impaired OPV response:
for type 1 poliovirus, a significant reduction in the odds of se-
roconversion and vaccine take was observed in NPEV-infected
individuals, while concurrent diarrhea significantly inhibited
seroconversion for serotypes 2 and 3. Enteropathogens
other than NPEVs may also interfere with response to OPV,
but have been considered by only a small number of studies
to date.

Significant heterogeneity in the extent of NPEV-associated
interference was observed among studies included in this re-
view. Factors that may contribute to this heterogeneity include
vaccine potency, age at vaccination, collection method for fecal
samples, viral isolation methods, and the starting dilutions and
seroconversion thresholds adopted during neutralization tests,
which varied widely among studies (Supplementary Table 1).
Stratification of the analysis revealed that interference with
both take and seroconversion was generally greater following
the delivery of mOPV than tOPV, and in trials conducted in
low- or middle-income as opposed to high-income countries.
The trends were consistent across serotypes (Supplementary
Table 2). These stratified findings should be interpreted with
caution given the small number of studies in each subgroup,

Figure 4. Forest plot of the impact of concurrent nonpolio enterovirus infections on the odds of vaccine shedding per dose of oral poliovirus vaccine. See
Figure 2 for labeling. Abbreviations: CI, confidence interval; JLPRC, Japan Live Poliovaccine Research Commission; mOPV, monovalent oral poliovirus vac-
cine; N, number of vaccinees; OR, odds ratio; tOPV, trivalent oral poliovirus vaccine.
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and the potential for individual studies with marked interfer-
ence effects (eg, Ramos-Alvarez [18, 31]) to exert a strong influ-
ence on a particular subgroup. Nonetheless, they raise the
possibility that mOPV may be more susceptible than tOPV to
the influence of enteric infections. This observation may reflect
the dynamics of competition between enteroviruses coinciding
in the gut: while an established NPEV infection may have a

marked inhibitory effect on a single attenuated vaccine strain
in mOPV, the additive effect on top of the interserotype inter-
ference arising between poliovirus strains in tOPV may be
smaller. The disparity in effect according to trial setting suggests
that individuals in low- or middle-income countries may be
more susceptible to NPEV-associated interference. However,
one must also consider the possibility that individuals in

Figure 5. Forest plot of the impact of concurrent diarrhea on the odds of seroconversion per dose of oral poliovirus vaccine. See Figure 2 for labeling.
Abbreviations: CI, confidence interval; N, number of vaccinees; OR, odds ratio; tOPV, trivalent oral poliovirus vaccine.

Figure 6. Forest plot of the impact of concurrent diarrhea on the odds of seroconversion following multiple doses of oral poliovirus vaccine. See Figure 2
for labeling. Data were obtained from 1 article [20], reporting on separate trials of tOPV in Brazil ([WHO] 1995a) and the Gambia ([WHO] 1995b). Abbre-
viations: CI, confidence interval; N, number of vaccinees; OR, odds ratio; tOPV, trivalent oral poliovirus vaccine; WHO, World Health Organization.
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these regions who are—for other reasons (eg, malnutrition)—at
risk of OPV nonresponse may be more susceptible to NPEV in-
fections, and that the apparent association between NPEVs and
impaired OPV response is not causal.

At present, we can only speculate as to the potential mecha-
nisms that may account for the observed interference effects.
Although NPEVs do not use the poliovirus receptor (CD155)
to access cells, their binding to nearby receptors may impede
the attachment and entry of vaccine polioviruses. The potential
for species C enteroviruses to infect the same cells as poliovirus-
es is supported by the observation of recombinant strains in cir-
culating vaccine-derived polioviruses [47]. Interference by
NPEVs or other enteropathogens may also arise indirectly via
the induction of nonspecific innate antiviral immunity, or—in
the case of diarrhea—by reducing the gut’s mucosal surface area
(and hence access to poliovirus receptors) and increasing the
rate of gastrointestinal transit.

The inhibitory effect of NPEVs was more pronounced for se-
rotype 1 than types 2 or 3, while the opposite was true of diar-
rhea-associated interference. Although the differences were
generally not significant following meta-regression, these find-
ings suggest that the extent of interference may differ among se-
rotypes, and that this specificity may vary according to the
nature of the concurrent infection. The notion that Sabin type
1 poliovirus may be more susceptible to interference by concur-
rent enteroviruses is consistent with the need for an elevated po-
tency of this serotype within the tOPV formulations currently
in use, while the enhanced replicative fitness of Sabin type 2
virus may be associated with a greater resistance to these inter-
ference effects [2].

The relative influence of individual NPEVs or NPEV groups on
OPV response remains unclear based on the available evidence.
While Urasawa [19, 37] highlighted the potential inhibition of
mOPV responses by Coxsackie B5 virus, this pathogen did not
interfere with seroconversion following tOPV delivery. Moreover,
studies carried out in India [14] and China [27] documented
comparable seroconversion rates in individuals infected with
Coxsackie A, Coxsackie B, and ECHO/other viruses at tOPV de-
livery, albeit with small numbers of individuals in each group.

Several limitations of the present review should be acknowl-
edged. By considering the influence of enteric infections 0–7
days preceding vaccination, the study did not account for the
possible effects of the stage of infection on the outcomes of co-
infection [48], or the potential influence of infections arising
after OPV delivery [29, 45, 46]. In addition, a history of expo-
sure to enteropathogens may induce inflammatory and other
changes in the innate immune status of the intestinal mucosa
that affect OPV response even in the absence of concurrent in-
fection, or give rise to a state of mucosal or systemic immune
tolerance that diminishes OPV response. Environmental enter-
opathy has been linked with exposure to enteropathogens, and
may contribute to the impaired immune response to OPV in

low-income settings [16]. However, we encountered no studies
reporting on the association between markers of this subclinical
disorder and OPV response.

Another important consideration is the general tendency of
the included studies to focus on a specific group of enteropath-
ogens. Only 2 studies examined the influence of both viral and
nonviral pathogens on OPV responses [10, 44], while the use of
only monkey kidney cells for enterovirus detection by several
trials [8, 9, 28, 30, 33] would result in certain NPEV infections
going undetected [49]. Given the pervasive nature of entero-
pathogens [50], it is likely that many individuals classified as
“controls” during the present analysis harbored other pathogens
at the time of vaccination. This could result in an underestimate
of the association between NPEVs and vaccine nonresponse.
Conversely, coinfection with other pathogens among individu-
als harboring NPEVs may be common given the shared risk fac-
tors for infection. An effect of these coinfections may be
captured by the meta-analysis, which would bias our findings
in the opposite direction.

Of the 25 studies included in the present review, it is notable
that none were performed in the last 15 years. This may relate to
the costly, labor-intensive efforts required to detect enteropath-
ogens, as well as a gradual shift away from the early conviction
in the importance of concurrent infections as an inhibitor of
OPV response [2, 14].Given recent advances in molecular diag-
nostics, pathogen detection is no longer the cumbersome task it
was when OPV was first introduced. There is considerable
potential, therefore, to return to the question of whether enter-
opathogens, either through concurrent infection or enteropa-
thy, contribute to the impaired immunogenicity of OPV in
low-income countries. Further research is warranted to deter-
mine the relative influence of particular pathogens, as well as
the potential role of the gut microbiota as a whole in shaping
OPV response. These questions are relevant not only to polio
eradication efforts, but to the use of oral vaccines in general.
While the present review validates the potential contribution
of enteric infections to impaired oral vaccine performance in
low-income settings, further research is required to determine
the full extent of this contribution, as well as the best strategies
toward overcoming its detrimental effects.
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