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ABSTRACT

A common problem in astrophysics is determining how bright a source could be and still not

be detected in an observation. Despite the simplicity with which the problem can be stated,

the solution involves complicated statistical issues that require careful analysis. In contrast to

the more familiar confidence bound, this concept has never been formally analyzed, leading to

a great variety of often ad hoc solutions. Here we formulate and describe the problem in a

self-consistent manner. Detection significance is usually defined by the acceptable proportion

of false positives (background fluctuations that are claimed as detections, or the Type I error),

and we invoke the complementary concept of false negatives (real sources that go undetected, or

the Type II error), based on the statistical power of a test, to compute an upper limit to the

detectable source intensity. To determine the minimum intensity that a source must have for

it to be detected, we first define a detection threshold, and then compute the probabilities of

detecting sources of various intensities at the given threshold. The intensity that corresponds

to the specified Type II error probability defines that minimum intensity, and is identified as

the upper limit. Thus, an upper limit is a characteristic of the detection procedure rather than

the strength of any particular source. It should not be confused with confidence intervals or

http://arxiv.org/abs/1006.4334v1
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other estimates of a source intensity. This is particularly important given the large number of

catalogs that are being generated from increasingly sensitive surveys. We discuss, with examples,

the differences between these upper limits and confidence bounds. Both measures are useful

quantities that should be reported in order to extract the most science from catalogs, though

they answer different statistical questions: an upper bound describes an inference range on the

source intensity, while an upper limit calibrates the detection process. We provide a recipe for

computing upper limits that applies to all detection algorithms.

Subject headings: methods: data analysis – methods: statistical

1. Introduction

When a known or suspected source remains undetected at a prescribed statistical significance during an

observation, it is customary to report the upper limit on its intensity. This limit is usually taken to mean the

largest intrinsic intensity that a nominal source can have with an appreciable chance of going undetected.

Or equivalently, it is the smallest intrinsic intensity it could have before its detection probability falls below

a certain threshold. We emphasize that the upper limit is not meant to be an estimate or even a bound

on the intensity of the source, but rather it is a quantification of the power of the detection procedure to

detect weak sources. Thus, it is a measure that characterizes the detection process. The endpoints of the

confidence interval, by contrast, provide ranges of possible values for the source intensity rather than quantify

the sensitivity of the procedure. While the concept of upper limits has generally been well understood by

astronomers as a form of censoring (Isobe, Feigelson, & Nelson 1986) with an intrinsic connection to the

detectability of a source (Avni et al. 1980), there has not been a statistically meaningful description that

encapsulates its reliance on detectability as well as statistical significance.

Moreover, while the term “upper limit” has been traditionally used in this manner, it has been also

been used in cases where a formal detection process is not applied (e.g., when a source is known to exist at

a given location because of a detection made in some other wavelength). In such cases, the upper edge of

the confidence interval is derived and noted as the upper limit, regardless of the detectability of that source.

In order to prevent confusion, we shall henceforth refer to the upper edge of a confidence interval as the

“upper bound.” Despite the intrinsic differences, numerous studies have described the computation of the

upper bound as a proxy for the upper limit in increasingly sophisticated ways. The parameter confidence

interval is a statistically well understood and is in common use. Kraft et al. (1991) and Marshall (1992)

for example applied Poisson Bayesian-likelihood analysis to X-ray counts data to determine the credible

range, and thus set an upper bound, on the source intensity. Feldman & Cousins (1998) recognized that the

classical confidence interval at a given significance is not unique, and devised a scheme to determine intervals

by comparing the likelihoods of obtaining the observed number of counts with the maximum likelihood

estimate of the intensity and a nominal intensity; this procedure produces unique intervals where the lower

edge overlaps with zero when there are very few counts, and the upper edge stands as a proxy for an upper

limit. Variations in the background were incorporated via a sophisticated Bayesian analysis by Weisskopf et

al. (2007).

The similarity of nomenclature between upper limits and upper bounds has led to considerable confusion

in the literature on the nature of upper limits, how to compute them, and what type of data to use to do



– 3 –

so. Many techniques have been used to determine upper limits. It is not feasible to list all of these,1 but

for the sake of definiteness, we list a few methods culled from the literature: the techniques range from

using the root-mean-square deviations in the background to set the upper limit (Gilman et al. 1986, Ayres

1999, Perez-Torres, et al. 2009), adopting the source detection threshold as the upper limit (Damiani et al.

1997, Erdeve et al. 2009, Rudnick et al. 2009), computing the flux required to change a fit statistic value

by a significant amount (Loewenstein et al. 2009), computing the p-value for the significance of a putative

detection in the presence of background (Pease et al. 2006, Carrera et al. 2008), and identifying the upper

limit with the parameter confidence bound (Schlegel & Petre 1993, Rolke et al., 2005, Hughes et al. 2007).

Here, we seek to clarify these historically oft-used terms in a statistically rigorous way.

Our goal here is to illustrate the difference between upper limits and upper bounds, and to develop a

self-consistent description for the former that can be used with all extant detection techniques. Bounds and

Limits describe answers to different statistical questions, and usually both should be reported in detection

problems. We seek to clarify their respective usage here. We set out the requisite definitions and statistical

foundations in §2. In §3, we discuss the critical role played by the detection threshold in the definition of

an upper limit and compare upper limits with upper bounds of confidence intervals. In §2 and §3 we use a

simple Poisson detection problem as a running example to illustrate our methods. In §4, we apply them to

a signal-to-noise detection problem. Finally, we summarize in §5.

2. Statistical Background

Here we begin by describing our notation, and then discuss the nuances of the familiar concepts of

confidence intervals, hypothesis testing, and statistical power. A glossary of the notation used is given in

Table 1.

2.1. Description of the Problem

Our study is carried out in the context of background-contaminated detection of point sources in photon

counting detectors, as in X-ray astronomical data. We set up the problem for the case of uncomplicated source

detection (i.e., ignoring source confusion, intrinsic background variations, and instrumental effects such as

vignetting, detector efficiency, PSF structure, bad pixels, etc). However, the methodology we develop is

sufficiently general to apply in complex situations.

There is an important, subtle, and often overlooked distinction between an upper limit and the upper

bound of a confidence interval, and the primary goal of this article is to illuminate this difference. The

confidence interval is the result of inference on the source intensity, while the upper limit is a measure of

the power of the detection process. We can precisely state this difference in the context of an example.

Suppose that we have a typical case of a source detection problem, where counts are collected in a region

containing a putative or possible source and are compared with counts from a source-free region that defines

the background. If the source counts exceed the threshold for detection, the source is considered detected.

1 An ADS query on astronomy abstracts, within the past year (excluding arXiv), containing “upper limit”, yields roughly

two papers per day (759). A quick survey shows this term used in several disparate ways: some are upper bounds of confidence

regions, often convolved with physics information to get the upper bound of a confidence region on (say) mass; others are clearly

the theoretical power of a suggested test; yet others use ’upper limits’ from previous work to obtain, e.g., line slopes.
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Table 1. Symbols and notation

Symbol Description

nS counts observed in source area

nB counts observed in background area

λS source intensity

λB background intensity

ΛB range in background intensity λB

τS exposure time

τB exposure time for the background

r ratio of background to source area

S statistic for hypothesis test

S⋆ detection threshold value of statistic S

n⋆
S detection threshold value of statistic nS

U upper limit

α the maximum probability of false detection

β the probability of a detection

βmin the minimum probability of detection of a source with λS = U

Pr(.) probability of

n ∼ f(.) denoting that n is sampled from the distribution f(.)

Poisson(λ) Poisson distribution with intensity λ

N (µ, σ) Gaussian (i.e., normal) distribution with mean µ and variance σ2
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This detection threshold is usually determined by limiting the probability of a false detection. If the threshold

were lower, there would be more false detections. Given this setup, we might ask how bright must a source be

in order to ensure detection. Although statistically there are no guarantees, the upper limit is the minimum

brightness that ensures a certain probability of detection. Critically, this value can be computed before

the source counts are observed. It is based on two probabilities, (1) the probability of a false detection

which determines the detection threshold, and (2) the minimum probability that a bright source is detected.

Although the upper limit is primarily of interest when the observed counts are less than the detection

threshold, it does not depend on the observed counts. This is in sharp contrast to a confidence interval for

the source intensity, that is typically of the form “source intensity estimate plus or minus an error bar,” where

the estimate and the error bars depend directly on the observed source counts in the putative source region.

Of course, the functional form of the confidence interval may be more complicated than in this example,

especially in low count settings, but any reasonable confidence interval depends on the source counts, unlike

upper limits. The fact that upper limits do not depend on the source counts while confidence intervals do

should not be viewed as an advantage of one quantity or the other. Rather it reflects their differing goals.

Upper limits quantify the power of the detection procedure and confidence intervals describe likely values of

the source intensity. These distinctions are highlighted with illustrative examples in §3.1.1.

To formalize discussion, suppose that a known source has an intrinsic intensity in a given passband of

λS and that the background intensity under the source is λB. Further suppose that the source is observed

for a duration τS and that nS counts are collected, and similarly, a separate measurement of the background

could be made over a duration τB and nB counts are collected. If the background counts are collected in an

area r times the source area,2 we can relate the observed counts to the expected intensities,

nB|(λB , r, τB) ∼ Poisson(rτBλB)

nS|(λS , λB , τS) ∼ Poisson
(
τS(λS + λB)

)
, (1)

in the background and source regions respectively, where nB and nS are independent. For simplicity, we

begin by assuming that λB is known.

2.2. Confidence and Credible Intervals

Confidence intervals give a set of values for the source intensity that are consistent with the observed

data. They are typically part of the inference problem for the source intensity. The basic strategy is

to compute an interval of parameter values so that on repeated observations a certain proportion of the

intervals contain the true value of the parameter. It is in this “repeated-observation” sense that a classical

confidence interval has a given probability of containing the true parameter. Bayesian credible intervals

have a more direct probabilistic interpretation. They are computed by deriving the posterior probability

distribution of the source intensity parameter given the observed counts and finding an interval with nominal

probability of containing the true rate (see e.g., Loredo 1992, van Dyk et al. 2001, Kashyap et al. 2008).

2 For clarity, we assume that the expected intensities are in units of counts per unit time and that the source and background

counts are collected over pre-specified areas in an image. However, our analysis is not restricted to this scenario. The nominal

background-to-source area ratio r could include differences in exposure duration and instrument effective area. Furthermore,

the nominal exposure duration could also incorporate effective area, e.g., to have units [photons count−1 cm2 s], which implies

that the expected intensity λS will have units [photons s−1 cm−2]. Regardless of the units of λS and λB , the likelihood is

determined by the Poisson distribution on the expected and observed counts as in Equation 1.
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In summary, confidence intervals are frequentist in nature meaning that they are interpreted in terms of

repeated observations of the source. Credible intervals, on the other hand, are Bayesian in nature meaning

that they represent an interval of a certain posterior (or other Bayesian) probability.

2.2.1. Confidence Intervals

From a frequentist point of view randomness stems only from data collection—it is the data, not the

parameters that are random. Often we use a 95% interval, but intervals may be at any level and we more

generally refer to an L% confidence interval. Thus, the proper interpretation of a given interval is

L% of experiments (i.e., observations) with intervals computed in this way will result in intervals

that contains the true value of the source intensity.

In frequentist terms, this means that in any given experiment one cannot know whether the true source

intensity is contained in the interval but if the experiment is repeated a large number of times, about L%

of the resulting intervals will contain the true value. Strictly speaking, the more colloquial understanding

that there is an L% chance that the “source intensity is contained in the reported confidence interval,” is

incorrect.

Put another way, a confidence interval for the source intensity gives values of λS that are plausible given

the observed counts. Suppose that λB = 3 and that for each value of λS , we construct an interval I(λS) of

possible values of the source counts that has at least an L% chance: Pr(nS ∈ I(λS)|λS , λB , τS) ≥ L%. Once

the source count is observed and assuming λB is known, a confidence interval can be constructed as the set

of values of λS for which the observed count is contained in I(λS),

{λS : nS ∈ I(λS )} . (2)

In repeated observations, at least L% of intervals computed in this way cover the true value of λS .

The frequency coverage of confidence intervals is illustrated in Figure 1, where the confidence intervals

of Garwood (1936) for a Poisson mean are plotted as boxes of width equal to the interval for various cases

of observed counts (see van Dyk’s discussion in Mandelkern, 2002). For given values of λS and λB the

probability of the possible values of the observed counts can be computed using Equation 1; for each of these

possible values, there will be a different confidence interval. Thus, the confidence intervals themselves have

their own probabilities, which are represented as the heights of the boxes in Figure 1. Because these are 95%

confidence intervals, the cumulative heights of the boxes that contain the true value of λS in their horizontal

range must be at least 0.95. It is common practice to only report confidence intervals for detected sources

so that only intervals corresponding to nS above some threshold are reported. Unfortunately this upsets

the probability that the interval contains λS upon repeated observations. Standard confidence intervals are

designed to contain the true value of the parameter (say) 95% of time, i.e., in 95% of data sets. If some of

the confidence intervals are taken away (i.e., are not reported because, e.g., the counts are too small), there

is no reason to expect that 95% of those remaining will contain the true value of the parameter. This is

because instead of summing over all values of nS to get a probability that exceeds 95%, we are summing

only over those values greater than the detection threshold. This results in a form of Eddington bias and is

discussed in detail in §3.4.
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Fig. 1.— Confidence Intervals for λS, Computed for Cases with Different Source and Background Intensities. The

true value of λS is shown as a vertical dashed line and noted in the legend along with the true value of λB . We

assume that λB is known exactly and adopt a nominal exposure τS = 1 and background scaling r = 10. Each box

corresponds to a different value of nS . The horizontal width of each box denotes the width of the 95% confidence

interval, and the height denotes the probability of observing that many counts given λS . Top row: λS = 1 and for

λB = 1, 3, 5 for the left, middle, and right columns respectively. Middle row: As for the top row, for λS = 3. Bottom

row: As for the top row, for λS = 5. The figure illustrates that if the models are correctly specfied, very short

intervals should be rare. Bayesian credible intervals (not shown) look similar, at least in high count scenarios.
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2.2.2. Credible Intervals

In a Bayesian setting, probability is used to quantify uncertainty in knowledge and in this regard

parameters are typically viewed as random quantities. This distinction leads to a more intuitive interpretation

of the credible interval. A credible interval at the L% level, for example, is any interval that contains the

true value of the parameter L% of the time according to its posterior distribution. (See Park et al. 2008 for

discussion on interval selection.) Thus, from a Bayesian perspective, it is proper to say that there is an L%

chance that the source intensity is contained in the reported credible interval. The corresponding credible

intervals look similar to the confidence intervals in Figure 1, at least in high count scenarios3.

So far we have considered a very simple problem with only one unknown parameter, λS . The situation

is more complicated if there are unknown nuisance parameters, such as λB. In this case, frequency based

intervals typically are constructed using asymptotic arguments and/or by conditioning on ancillary statistics

that yield a conditional sampling distribution that does not depend on the nuisance parameter. Identifying

ancillary statistics can be a subtle task and the resulting intervals may not be unique. Bayesian intervals, can

be constructed using a simple and clear principle known as marginalization. For example, if λB is unknown,

the marginal posterior distribution of λS is simply

p(λS |nS , nB, τS , τB , r) =

∫
p(λS , λB|nS , nB, τS , τB, r) dλB

=

∫
p(λS |λB, nS , τS) p(λB |nB, τB, r) dλB . (3)

Credible intervals for λS are computed just as before, but using the marginal posterior distribution. 4

2.3. Hypothesis Testing and Power

We emphasize that neither confidence nor credible intervals directly quantify the detection sensitivity

of an experiment. To do this we consider the detection problem in detail, which from a statistical point of

view is a test of the hypothesis that there is no source emission in the given energy band5, i.e., a test of

λS = 0. Formally, we test the null hypothesis that λS = 0 against the alternative hypothesis that λS > 0.

The test is conducted using a test statistic that we denote S. An obvious choice for S is the counts in the

source region, nS ; larger values of nS are indicative of a detection of a source, since they become increasingly

less likely to have been obtained as a random fluctuation from the background. Other choices for S are

the signal-to-noise ratio (as in the case of sliding-cell local-detect algorithms; see §4) or the value of the

correlation of a counts image with a basis function (as in the case of wavelet-based algorithms) or a suitably

calibrated likelihood-ratio test statistic (as in the case of γ-ray detectors like Fermi; see Mattox et al. 1996).

3In small count scenarios Bayesian credible intervals may not exhibit their nominal frequency coverage. They do however

have the proper Bayesian posterior probability.

4A popular frequentist alternative to the marginal posterior distribution is the profile likelihood function (see Park et al.

2008). Rather than averaging over nuisance parameters, the profile likelihood optimizes the likelihood over nuisance parameters

for each value of the parameter of interest.

5There is a close relationship between confidence intervals and hypothesis testing. If the interval includes zero, this indicates

that there is a real possibility of no source emission above the background and if the source has not been otherwise detected

there may be no source at all. Conversely, in Appendix A we discuss how a hypothesis test can be inverted to construct a

confidence interval.
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The count in the source region is an example of a test statistic that is stochastically increasing6 in λS . For

any fixed S⋆, λB , τS , τB and r, the probability that the test statistic S is less than the threshold S⋆ decreases

as λS increases, i.e., Pr(S ≤ S⋆|λS , λB, τS , r) decreases as λS increases. We assume that S is stochastically

increasing in λS throughout.7

Because larger values of S indicate a source, we need to determine how large S must be before we can

declare a source detection. This is the done by limiting the probability of a false detection, also known as a

Type I error. Thus, the detection threshold S⋆ is the smallest value such that

Pr(S > S⋆|λS = 0, λB, τS , τB , r) ≤ α, (4)

where α is the maximum allowed probability of a false detection8 and we declare a detection if the observed

value of S is strictly greater than S⋆:

If S ≤ S⋆ we conclude there is insufficient evidence to declare a source detection. If S > S⋆ we

conclude there is sufficient evidence to declare a source detection.

6 The term “stochastically increasing” means that there is a parameter (here λS) that defines a distribution of observable

values (here nS), and that all of the quantiles of nS increase as λS increases. There is no guarantee that at any single instance

of observation, a higher λS should lead to a higher nS .

7 In principle, the test statistic is only required to have different distributions under the alternative and null hypotheses.

For simplicity, we assume it tends to be larger under the alternative.

8 In the simple Poisson counts case, the probability of a Type I error given in Equation 4 is computed as,

Pr(S > S⋆|λS = 0, λB , τS , τB , r) =
∑

{

e−τSλB (τSλB)n
′

S

n′

S
!

· e
−rτBλB (rτBλB)n

′

B

n′

B
!

}

,

where the summation is over the set of values of (n′

S
, n′

B
) such that S(n′

S
, n′

B
) > S⋆ and we substitute λS = 0 into the mean

of nS given in Equation 1. Each term in the summation is a product of the likelihood of obtaining the specified counts in the

absence of a source, given the background intensity and other observational parameters. In the simple case where S is the

counts in the source region, nS , and λB is known (i.e., nB is not measured), this reduces to

Pr(S > S⋆|λS = 0, λB , τS) =
∞
∑

n′

S
=S⋆+1

e−τSλB (τSλB)n
′

S

Γ(n′

S
+ 1)

= 1−
S

⋆

∑

n′

S
=0

e−τSλB (τSλB)n
′

S

Γ(n′

S
+ 1)

=
γ(S⋆ + 1, τSλB)

Γ(S⋆ + 1)
,

where

γ(S⋆ + 1, τSλB) = Γ(S⋆ + 1)

∫

τSλB

0
e−t tnS dt

is the incomplete gamma function (see Equations 8.350.1 and 8.352.1 of Gradshteyn & Ryzhik (1980)). In large count scenarios

we may use continuous Gaussian distributions with their variances equal to their means in place of the discrete Poisson

distributions in Equation 1, see Equation 13 in §4. In this case, we compute

Pr(S > S⋆|λS = 0, λB , τS , τB , r) =

∫















exp

[

− (n′

S
−τSλB)2

τSλB

]

√
2πτSλB

·
exp

[

− (n′

B
−rτBλB)2

rτBλB

]

√
2πrτBλB















dn′

S
dn′

B
,

where the integral is over the region of values of (n′

S
, n′

B
) such that S(n′

S
, n′

B
) > S⋆.
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Fig. 2.— α-Level Detection Threshold S⋆ as a Function of the Background Intensity λB, for the Given

α Levels. Note that this is calculated assuming that the source intensity λS = 0. The detection threshold

increases with increasing λB for a given α, and increases with decreasing α for a given λB .

We call S⋆ the α-level detection threshold and sometimes write S⋆(α) to emphasize its dependance on α

(see Figure 2). Note that α is a bound on the probability of a Type I error; the actual probability of a

Type I error is given by the probability on the left-hand side of Equation 4. Due to the discrete nature of

the Poisson distribution, the bound is generally not achieved and the actual probability of a Type-I error is

less than α.

Although its role in the definition of the detection threshold indicates that it is viewed as the more

important concern, a false detection, also known as a “false positive,” is not the only type of error. A false

negative, or Type II error, occurs when a real source goes undetected (see Figure 3). The probability of a

false negative is quantified through the power of the test to detect a source as a function of its intensity,

β(λS) = Pr(S > S⋆|λS , λB, τS , τB, r) . (5)

Equation 5 gives the probability of a detection. For any λS > 0, this is the power of the test or one

minus the probability of a false negative.9 For λS = 0, Equation 5 gives the probability of a false detection

9 Here we use β to represent the power of the test, or one minus the probability of a Type II error. The statistical literature

uses the notation β to denote either the Type II error (i.e., accepting the null hypothesis when it is false; e.g., Eadie et al.

1971) or for the power of the test itself (as we have done here; e.g., Casella & Berger 2002). As in the case of calculating α (see

footnote 8), we can calculate β as

Pr(S > S⋆|λS , λB , τS , τB , r) =
∑

{

e−τS(λS+λB)(τS (λS + λB))n
′

S

n′

S
!

· e
−rτBλB (rτBλB)n

′

B

n′

B
!

}

,

where again the summation is over the set of values of (n′

S
, n′

B
) such that S(n′

S
, n′

B
) > S⋆. In the simple case where S = nS ,

λB is known, and nB is not measured, we find

Pr(S > S⋆|λS , λB , τS) =
γ(S⋆ + 1, τS(λS + λB))

Γ(nS + 1)
.
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(cf. Equation 4) and consequently, β(0) ≤ α. This reflects the trade-off in any detection algorithm: the

compromise between minimizing the number of false detections against maximizing the number of true

detections. That is, if the detection threshold is set low enough to detect weaker sources, the algorithm

will also produce a larger number of false positives that are actually background fluctuations. Conversely,

the more stringent the criterion for detection, the smaller the probability of detecting a real source (this is

illustrated by the location of the threshold S⋆ that defines both α and β in Figure 3). Note that although

our notation emphasizes the dependence of the power on λS , it also depends on λB , τS , τB, and r.

The power calculation is shown for the simple Poisson case in Figure 4, where β(λS) is plotted for

different instances of λB and for different levels of the detection threshold S⋆. As expected, stronger sources

are invariably detected. For a given source intensity, an increase in the background or a larger detection

threshold (i.e., lower α) both cause the detection probability to decrease. In a typical observation, the

background and the detection threshold are already known, and thus it is possible to state precisely the

intensity λS at which the source will be detected at a certain probability. We may set a certain minimum

probability, βmin of detecting a “bright” source by setting the exposure time long enough so that any source

with intensity greater than a certain pre-specified cutoff has probability βmin or more of being detected.

Conversely, we can determine how bright a source must be in order to have probability βmin or more of

being detected with a given exposure time. This allows us to define an upper limit on the source intensity

by setting a minimum probability of detecting the source. This latter calculation is the topic of § 3.1 and

the basis of our definition of an upper limit.

Power calculations are generally used to determine the minimum exposure time required to ensure a

minimum probability of source detection (see Appendix B). In §3 we use them to construct upper limits.

3. Upper Limits

In this section, we develop a clear statistical definition of an upper limit that (i) is based on well-

defined principles, (ii) depends only on the method of detection, (iii) does not depend on prior or outside

knowledge about the source intensity, (iv) corresponds to precise probability statements, and (v) is internally

self-consistent in that all values of the intensity below the upper limit are less likely to be detected at the

specified Type-I error rate and values above are more likely to be detected.

3.1. Definition

In astronomy upper limits are inextricably bound to source detection: by an upper limit, an astronomer

means

The maximum intensity that a source can have without having at least a probability of βmin of

being detected under an α-level detection threshold.

or conversely,
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The smallest intensity that a source can have with at least a probability of βmin of being detected

under an α-level detection threshold.

Unlike a confidence interval, the upper limit depends directly on the detection process and in particular on

the maximum probability of a false detection and the minimum power of the test, that is on α and βmin

respectively. In this way, an upper limit incorporates both the probabilities of a Type I and a Type II error.

Formally, we define the upper limit, U(α, βmin) to be the smallest λS such that

Pr(S > S⋆(α)|λS , λB , τS , τB , r) ≥ βmin. (6)

Commonly used values for βmin throughout statistics are 0.8 and 0.9. If βmin ≈ 1, U(α, βmin) represents the

intensity of a source that is unlikely to go undetected, and we can conclude that an undetected source is

unlikely to have intensity greater than U(α, βmin).

The simplest example occurs in the hypothetical situation when λB is known to be zero and there is no

background observation. In this case we set S = nS and note that Pr(nS > 0|λS = 0, λB = 0, τS) = 0 so

the detection threshold is zero counts and we declare a detection if there is even a single count. (Recall, we

declare a detection only if S is strictly greater than S⋆.) The upper limit in this case is the smallest value of

λS with probability of detection greater than βmin. Figure 5 plots Pr(nS > 0|λS , λB = 0, τS) as a function

of τSλS , thus giving U(α, βmin) for any given τS and every value of βmin. Notice the upper limit decreases

in inverse proportion to τS .

When λB is greater than zero but well-determined and can be considered to be known, the detection

threshold using S = nS is given in Equation 4. With this threshold in hand we can determine the maximum

intensity a source can have with significant probability of not producing a large enough fluctuation above

the background for detection. This is the upper limit.

In particular, U(α, βmin) is the largest value of λS such that Pr(nS ≤ S⋆(α)|λS , λB, τS) > 1 − βmin.

This is illustrated for three different values of βmin (panels) and three different values of α (line types) in

Figure 6. Notice that the upper limit increases as βmin increases and as α decreases.

3.1.1. Illustrative Examples

To illustrate the difference between confidence bounds and upper limits, in the context of a detection

process, we consider two simple examples. The first is an extreme case where the background intensity is

known to be identically zero, and even one count in the source region would be classified as a detection. In

this case the upper limit is the smallest source intensity that can produce one count at a specified probability,

e.g., a source with intensity of 5 generates one or more counts at a probability of ≈ 99.7% (see §3.1). In

contrast, if one count is seen in the source region, the upper bound of an equal-tail 99.7% interval on the

source intensity is 8.9 (Gehrels 1986). Thus, while similar in magnitude, it can be seen that upper bounds

and upper limits are different quantities, describing different concepts.

Second, consider a more realistic case where the background is measured in a large region thought to be

free of sources and scaled to the area covered by the source. Suppose that 800 counts are observed in an area

400 times larger than the source area, and 3 counts are seen in the putative source region itself. The credible

interval for the source intensity may be calculated at various significance levels (§2.2; see also van Dyk et al.

2001), and for this case we find that the 68% credible interval with the lower bound at 0 is [0, 2.1], and the

99.7% interval is [0, 8.3]. But the question then arises as to whether the counts seen in the source region are
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consistent with a fluctuation of the observed background or not. Since at a minimum 7 counts are needed for

a detection at a probability of 0.997 (corresponding to a Gaussian-equivalent “3σ” detection), it is considered

that the source is not detected. The question then becomes how bright the source would have to be in order

to be detected with a certain probability. Since a source of intensity 5.7 would have a 50% probability of

producing sufficient counts for a detection, this sets an upper limit U(α = 0.003, βmin = 0.5) = 5.7 counts

on the undetected source’s intensity (for a Type I error α = 0.003 and a Type II error β = 0.5; see §3.1).

Note that this limit is the same regardless of how many counts are actually seen within the source region,

as expected from a quantity that calibrates the detection process. In contrast, the inference on the source

intensity is always dependent on the number of observed source counts.

3.2. Unknown Background Intensity

So far our definition of an upper limit assumes that there are no unknown nuisance parameters, and in

particular that λB is known. Unfortunately, the probabilities in Equations 4 and 6 cannot be computed if

λB is unknown. In this section we describe several strategies that can be used in the more realistic situation

when λB is not known precisely.

The most conservative procedure ensures that the detection probability of the upper limit is greater

than βmin for any possible value of λB. Generally speaking, the larger λB is, the larger λS must be in order to

be detected with a given probability, and thus the larger the upper limit. Thus, a useful upper limit requires

a finite range, ΛB, to be specified for λB . Given this range, a conservative upper limit can be defined as the

smallest λS that satisfies

inf
λB∈ΛB

Pr(S > S⋆(α)|λS , λB , τS , τB , r) ≥ βmin. (7)

(We use the term infimum (inf) rather than minimum to allow for the case when the minimum may be on

the boundary of, but outside, the range of interest. It is the largest number that is smaller than all the

numbers in the range. For instance, the minimum of the range {x > 0} is undefined, but the infimum is 0.)

Unfortunately, unless the range of values ΛB is relatively precise, this upper limit will often be too large to

be useful.

In practice, there is better solution. The background count provides information on the likely values of

λB that should be used when computing the upper limit. In particular the distribution of λB given nB can

be computed using standard Bayesian procedures10 and used to evaluate the expected detection probability,

β(λS) =

∫
Pr(S > S⋆(α)|λS , λB, τS , τB , r)p(λB |nB, τB , r)dλB , (8)

where S⋆(α) is the smallest value such that
∫

Pr(S > S⋆(α)|λS = 0, λB, τS , τB, r)p(λB |nB, τB, r)dλB ≤ α. (9)

The upper limit is then computed as the smallest λS that satisfies β(λS) ≥ βmin. Unlike the upper limit

described in §3.1, these calculations require data, in particular nB. For this reason, we call the smallest λS

10In the presence of a nuisance parameter, frequentist procedures are more involved and typically require conditioning on an an-

cillary statistic, see, e.g., Appendix C. In the Bayesian case, the posterior distribution, p(λB |nB, τB , r) ∝ p(λB) p(nB |λB, τB , r),

is the product of a prior distribution and the likelihood, normalized so that the posterior distribution integrates to 1. There

are many choices of prior distributions available for λB, ranging from uniform on λB, to γ, to uniform in log(λB) (see, e.g., van

Dyk et al. 2001).
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that satisfies Equation 8 the background count conditional upper limit or bcc upper limit. An intermediate

approach that is more practical than using Equation 7 but more conservative than using Equation 8 is to

simply compute a high percentile of p(λB |nB), perhaps its 95th percentile. The procedure for known λB can

then be used with this percentile treated as the known value of λB. This is a conservative strategy in that

it assumes a nearly worst case scenario for the level of background contamination.

As an illustration, suppose the uncertainty in λB given the observed background counts can be summa-

rized in the posterior distribution plotted in the left panel of Figure 7. This is a gamma posterior distribution

of the sort that typically arises when data are sampled from a Poisson distribution. Using this distribution,

we can compute S⋆ for any given value of α as the smallest value that satisfies Equation 9; the results are

given for three values of α in the legend of Figure 7. We then use Equation 8 to compute β(λS) as plotted

in the right panel of Figure 7. The upper limit can be computed for any βmin using these curves just as in

Figure 6.

3.3. Confidence Intervals versus Upper Limits

Although the form of a confidence interval makes it tempting to use its upper bound in place of an

upper limit, this is misleading and blurs the distinction between the power of the detection procedure and

the confidence with which the flux is measured. As an illustration we have computed the upper limit for

each of the nine panels in Figure 1 (using the true values of λB reported in each panel). The results are

plotted as solid vertical lines in Figure 8. Notice that unlike the upper bound of the confidence interval the

upper limit does not depend on nS and takes on values that only depend on λB. Using the upper bound of

the confidence interval sometimes overestimates and sometimes underestimates the upper limit. In all but

one of the nine cases with the highest λS/λB (i.e., λS = 5, λB = 1) the upper limit for λS is larger than λS .

Of the nine cases, this is the one that is mostly likely to result is a source detection and is the only one with

a probability of detection greater than βmin = 0.8.

Alternatively, we can compute the value of βmin required for the upper bound of Garwood’s confidence

interval to be interpreted as an upper limit. Figure 9 does this for the three values of λB used in the three

columns of Figures 1 and 8. Consider how the upper bound of Garwood’s confidence interval increases with

nS in Figure 8. Each of these upper bounds can be interpreted as an upper limit, but with an increasing

minimum probability of a source detection, βmin. The three panels of Figure 8 plot how the required βmin

increases with nS for three values of λB. Notice that a source with intensity equal to the upper bound of

Garwood’s confidence interval can have a detection probability as low as 20% or essentially as high as 100%.

Thus, the upper bound does not calibrate the maximum intensity that a source can have with appreciable

probability of going undetected in any meaningful way.

3.4. Statistical Selection Bias

As mentioned in §2.2.1 it is common practice to only report a confidence interval for detected sources.

Selectively deciding when to report a confidence interval in this way can dramatically bias the coverage

probability of the reported confidence interval11. We call this bias a statistical selection bias. Note that

11A similar concern was raised by Feldman and Cousins (1998) who noticed that deciding between a one-sided and a two-sided

confidence interval can bias the coverage probability of the resulting interval, if the decision is based on the observed data.
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this is similar to the Eddington bias (Eddington 1913) that occurs when intensities are measured for sources

close to the detection threshold. For sources whose intrinsic intensity is exactly equal to the detection

threshold, the average of the intensities of the detections will be overestimated because downward statistical

fluctuations result in non-detections and thus no intensity measurements. In extreme cases this selection

bias can lead to a nominal 95% confidence interval having a true coverage rate of well below 25%, meaning

that only a small percentage of intervals computed in this way actually contain λS . As an illustration,

Figure 10 plots the actual coverage of the nominal 95% intervals of Garwood (1936) for a Poisson mean

when the confidence intervals are only reported if a source is detected with α = 0.05. These intervals are

derived under the assumption that they will be reported regardless of the observed value of nS . Although

alternative intervals could in principle be derived to have proper coverage when only reported for detected

sources, judging from Figure 10 such intervals would have to be wider than the intervals plotted in Figure 1.

It is critical that if standard confidence intervals are reported they be reported regardless of the observed value

of nS and regardless of whether a source is detected.12

3.5. The Detection Threshold as an Upper Limit

As discussed in Section 1, the detection threshold is sometimes used as an upper limit. Under certain

circumstances, this can be justified under our definition of an upper limit. Suppose that some invertible

function f(S) can be used as an estimate of λS and that for any λB, the sampling distribution of f(S) is

continuous with median equal to λS . That is,

Pr
(
f(S) > λS

∣∣∣λS , λB , τS , τB, r
)
= 0.5. (10)

Because Equation 10 holds for any λS , it holds for λS = f(S⋆). That is,

Pr
(
f(S) > f(S⋆)

∣∣∣λS = f(S⋆), λB , τS , τB, r
)
= 0.5. (11)

Inverting f and integrating over p(λB |nB, τB, r), we have
∫

Pr
(
S > S⋆

∣∣∣λS = f(S⋆), λB , τS , τB , r
)
p(λB|nB, τB , r)dλB = 0.5. (12)

Comparing Equation 12 with Equation 8 we see that f(S⋆) = U(α, βmin = 0.5). Thus, if f is an identity

function the detection threshold is an upper limit. Although the assumption that the sampling distribution

of f(S) has median λS for every λB , is unrealistic in the Poisson case, it is quite reasonable with Gaussian

statistics. Even if this assumption holds, f(S⋆) is a weak upper limit in that half the time a source with this

intensity would go undetected and there is a significant chance that sources with intrinsic intensity larger

than f(S⋆) would remain undetected.

It should be emphasized that even when the detection threshold is used as an upper limit, it is not an

“upper limit on the counts,” but an upper limit on the intrinsic intensity of the source. The counts are an

observed, not an unknown quantity. There is no need to compute upper bounds, error bars, or confidence

intervals on known quantities. It is for the unknown source intensity that these measures of uncertainty are

useful.

12 Though this is usually not feasible when sources are detected via an automated detection algorithm such as celldetect

or wavdetect. However, in many cases, source detectability is determined based on a pre-existing catalog, and in such cases,

both Limits and Bounds should be reported in order to not introduce biases into later analyses.
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3.6. Recipe

Our analysis of upper limits and confidence interval assumes that the observables are photon counts

that we model using the Poisson distribution. However, the machinery we have developed is applicable to

any process that uses a significance-based detection threshold. Here, we briefly set out a general recipe to

use in more complicated cases. For complex detection algorithms, some of the steps may require Monte

Carlo methods.

1. Define a probability model for the observable source and background dataset given the intrinsic source

and background strengths, λS and λB, respectively. For the simple Poisson case, this is defined in

Equation 1. In many applications, these could be approximated using Gaussian distributions. It is

typically required that a background data set be observed but in some cases λB may be known a priori.

The source could be a spectral line, or an extra model component in a spectrum, or possibly even more

complex quantities that are not directly related to the intensity of a source.

2. Define a test statistic S for measuring the strength of the possible source signal. In the simple Poisson

case, we set S = nS . The “source” could be a spectral line or any extra model component in a

spectrum, or a more complex quantity that is not related to the intensity of a source.

3. Set the maximum probability of a false detection, α, and compute the corresponding α-level detection

threshold, S⋆. Although S⋆ depends on λB, we can compute the expected S⋆ by marginalizing over λB

using p(λB |nB) when λB is not known exactly. Likewise, if λS is defined as a function of several param-

eters, the same marginalization procedure can be used to marginalize over any nuisance parameters. In

this case, we typically marginalize over p(η|nB) or perhaps p(η|nS , nB), where η is the set of nuisance

parameters. In this regard, we are setting α to be a quantile of the posterior predictive distribution of

S, under the constraint that λS = 0, see Gelman et al. (1996) and Protassov et al. (2002).

4. Compute the probability of detection, β(λS), for the adopted detection threshold S⋆.

5. Define the minimum probability of detection at the upper limit, βmin. Traditionally βmin = 0.5 has

been used in conjunction with α = 0.003 in astronomical analysis (see §3.5).

6. Compute the smallest value of λS such that β(λS) ≥ βmin. This is the upper limit.

4. Example: Signal to Noise Ratio

We focus below on Signal-to-Noise (SNR) based detection at a single location as an example applica-

tion. The SNR was the primary statistic used for detecting sources in high-energy astrophysics before the

introduction of maximum-likelihood and wavelet-based methods. Typically, S
N = 3 was used as the detection

threshold, corresponding to α = 0.003 in the Gaussian regime. Here we apply the recipe in §3.6 to derive

an upper limit with SNR-based detection. Our methods can also be applied to more sophisticated detection

algorithms such as sliding-cell detection methods such as celldetect (Harnden et al. 1984, Dobrzycki et al.

2000, Calderwood et al. 2001), and wavelet-based detection methods such as pwdetect (Damiani et al. 1997),

zhdetect (Vikhlinin et al. 1997), wavdetect (Freeman et al. 2002), etc. Implementation of our technique

for these methods will vary in detail, and we leave these developments for future work.

We begin with a Gaussian probability model for the source and background counts (Step 1 in §3.6)

nB|(λB , r, τB) ∼ N
(
µ = rτBλB, σ =

√
rτBλB

)
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nS |(λS , λB , τS) ∼ N
(
µ = τS(λS + λB), σ =

√
τS(λS + λB)

)
, (13)

where λB and λS are non-negative. We assume that the source is entirely contained within the source cell

and that the PSF does not overlap the background cell. We can estimate λB and λS by setting nB and nS

to their expectations (method of moments), as

λ̂B =
nB

rτB
and λ̂S =

nS

τS
−

nB

rτB
. (14)

The variance of λ̂S is

var(λ̂S) =
λS

τS
+

(τS + rτB)λB

rτSτB
(15)

which we can estimate by plugging in λ̂S and λ̂B as

v̂ar(λ̂S) =
nS

τ2S
+

nB

r2τ2B
. (16)

To use the SNR as a detection criterion, we define (Step 2 in §3.6)

S =
λ̂S√

v̂ar(λ̂S)
=

rτBnS − τSnB√
r2τ2BnS + τ2SnB

(17)

Step 3 in §3.6 says that the maximum probability of a false detection should be set and S⋆ computed

accordingly. Instead we adopt the standard detection threshold, S⋆ = 3, used with the SNR and compute

the corresponding α,

α(λB) =

∫

R

p(n′
B |λB, r, τB)p(n

′
S |λS = 0, λB, τS)dn

′
Bdn

′
S , (18)

where R is the region where S(n′
S , n

′
B) > S⋆ = 3 (see footnote 8). For given values of λB and r, the integral

in Equation 18 can be easily evaluated via Monte Carlo. Alternatively, we can compute α by marginalizing

over λB if it is unknown,

α =

∫ ∞

0

α(λB)p(λB |nB, r, τB)dλB , (19)

where nB is the observed background count and α(λB) is computed in Equation 18. The probability of

detection, β(λS) is computed (Step 4 in §3.6) by evaluating the same integral as in Equation 18 except that

λS is not set to zero. We can make the same substitution in Equation 19 if λB is unknown. With βmin in

hand (Step 5 in §3.6), we can find the value of λS such that β(λS) = βmin (Step 6 in §3.6). This is the upper

limit.

Figure 11 illustrates the use of Equation 18 to compure β(λB) for several values of λB , with r = τS =

τB = 1. The upper limit is computed as the value of λS such that β(λS) = βmin. The three panels of

Figure 11 report the resulting upper limits for βmin = 0.5, 0.9, and 0.95, respectively.

5. Summary

We have carefully considered the concept of upper limits in the context of undetected sources, and have

developed a rigorous formalism to understand and express the concept. Despite its seeming simplicity, upper

limits are not treated in a uniform fashion in astronomical literature, leading to considerable variations in
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meaning and value. We formally define an upper limit to the source intensity as the maximum intensity it

can have without exceeding a specified detection threshold at a given probability. This is defined by the

statistical power of the detection algorithm. This is equivalent to defining it as the largest source intensity

that remains undetected at the specified probability, and is defined by the probability of Type II error. Thus,

if the detection probability is computed for a variety of source intensities, the upper limit is then identified

by determining the intercept of the required probability with this curve. Thus, an upper limit is dependent

only on the detection criterion, which is generally a function only of the background, and independent of the

source counts. This is different from the upper bound (i.e, the upper edge of a confidence interval), which is

obtained when the probability distribution of the source intensity is computed given that some counts are

observed in the putative source region. We distinguish between the upper bound of the confidence interval

and the upper limit of source detectability. Unlike a confidence interval (or Bayesian credible interval), an

upper limit is a function of the detection procedure alone and does not necessarily depend on the observed

source counts.

The primary goals of this paper are to clearly define an upper limit, to sharpen the distinction between an

upper limit and an upper bound, and to lay out a detailed procedure to compute the former for any detection

process. In particular, we have shown how to compute upper limits for the simple Poisson case. We also

provide a step-by-step procedure for deriving it when a simplified significance-based detection method is

employed. To extract the most science from catalogs, we argue for using a consistent, statistically reasonable

recipe of an upper limit being related to the statistical power of a test. In addition, we illustrate the peril of

using an upper bound in place of an upper limit and of only reporting a frequentist confidence interval when

a source is detected. Conversely, including confidence bounds, even for non-detections, is a way to avoid the

Eddington bias and increase the scientific usefulness of large catalogs.

We also describe a general recipe for calculating an upper limit for any well-defined detection algorithm.

Briefly, the detection threshold should be first defined based on an acceptable probability of a false detection

(the α-level threshold), and an intensity that ensures that the source will be detected at a specifed probability

(the β-level detection probability) should be computed; this latter intensity is identified with the upper limit.

We recommend that when upper limits are reported in the literature, both the corresponding α and β values

should also be reported.
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Appendix

A. Constructing a Confidence Interval by Inverting a Hypothesis Test

Here we discuss the relationship between confidence intervals and hypothesis tests and in particular how

a hypothesis test can be used to construct a confidence interval.

A confidence interval reports the set of values of the parameter that are consistent with the data.

When this set includes λS = 0 it means that the data are consistent with no source and we expect the null
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hypothesis not to be rejected and no source to be detected. There is a more formal relationship between

confidence intervals and hypothesis testing and we can use a detection method to generate a confidence

interval. Suppose that rather than testing the null hypothesis that λS = 0, we are interested in testing the

more general null hypothesis that λS ≤ λ⋆
S , where λ

⋆
S is any non-negative number. That is, we are interested

in detecting only sources of at least a certain brightness. In this case, the detection threshold, S⋆(λ⋆
S), is

defined as the smallest value such that

Pr(S > S⋆(λ⋆
S)|λS = λ⋆

S , λB , τS , τB , r) ≤ α. (A1)

Given an observed value of S, we can construct the set of values λ⋆
S for which we cannot reject the null

hypothesis that λS ≤ λ⋆
S . This is a set of values of λS that are consistent with the data and they form a

100(1 − α)% confidence interval. This particular, confidence interval, however is of the form (a,+∞): For

any observed count there is a λ⋆
S large enough so that we cannot reject the null hypothesis that λS ≤ λ⋆

S .

By reversing the null hypothesis to λS ≥ λ⋆
S we can obtain an interval of the form (0, a) and by setting up a

two-sided test of the null hypothesis that λS = λ⋆
S against the alternative hypothesis that λS 6= λ⋆

S we can

obtain an interval of the more common form (a, b).

B. The Relationship between Upper Limits and the Power of the Test

An upper limit turns around the usual use of the power of a test. Power is ordinarily used to determine

the exposure time required to be sure that a source with intensity λSmin or greater has at least probability

βmin of being detected. That is, the smallest τS is found that satisfies Equation 6 for any λS ≥ λSmin and

with λSmin fixed in advance. Thus, power is used to design an observation so that we have at least a certain

probability of detecting a source of given brightness. With an upper limit on the other hand τS is fixed and

Equation 6 is solved for λS . This is illustrated in Figure 12 which plots τS versus λS with fixed λB, τB , r, α,

and βmin and shows what values of τS and λS satisfy Equation 6 in the simple Poisson case. The shaded area

above and to the right of the curve is where the detection probability exceeds βmin = 0.90. Thus the curves

give the upper limit (on the horizontal scale) as a function of the exposure time. The upper limit generally

decreases as the exposure time τS increases, but not monotonically. Due to the discrete nature of Poisson

data, the threshold value S⋆ changes in integer steps to allow for the inequality in Equation 4 to be satisfied.

This behavior may be graphically illustrated by considering the sketch of the relevant quantities in Figure 3.

As τS increases, S⋆ increases in steps, causing the probability of false detection to abruptly fall and then

smoothly increase to α. As the expected background in the source region increases, the upper curve shifts

to the right, thereby increasing the shaded area that lies above the threshold value. However, when the area

of the shaded region in the upper plot becomes larger than the tolerable probability of a Type I error, S⋆

must be increased by one to reduce that probability. As τS increases, the lower curve remains stationary

while S⋆ is unchanging. At this stage, the upper limit, U(β) is set as that value of λS which ensures that

the Type II error is β (see Equation 6), and thus slowly decreases as τS increases. When S⋆ increases as a

step function, the lower curve shifts to the right in order to maintain the same value of β, and the upper

limit abruptly increases.

C. An Alternative Method for an Unknown Background Contamination Rate

In the body of the article, we suggested conditioning on nB in order to effectively estimate λB when

it is unknown. A different strategy conditions instead on the total count nS + nB in order to remove λB
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from the model. This method is based on the simple probabilistic result that if X and Y are independent

Poisson variables with means λX and λY , respectively, then given X+Y , the variable X follows a binomial

distribution. Applying this result to nS and nB with Poisson models given in Equation1, we have

nS | (nS + nB, λS , λB, r, τS , τB) ∼ Binomial

(
nS + nB,

τS(λS + λB)

τSλS + (τS + rτB)λB

)
, (C1)

a binomial distribution with nS + nB independent counts each with probability τS(λS + λB)/(τSλS + (τS +

rτB)λB) of being a source count. Reparameterizing (λS , λB) via ξSλB = λS + λB , Equation C1 becomes

nS | (nS + nB, λS , λB, r, τS , τB) ∼ Binomial

(
nS + nB,

ξS
ξS + rτB/τS

)
, (C2)

which does not depend on the unknown background intensity. Here ξS = (λS + λB)/λB which is equal to

one if there is no source and grows larger for brighter sources. Because Equation C2 does not depend on λB

it can be used for direct frequency based calculations even when λB is unknown. In particular, a detection

threshold can be computed based on a test of the null hypothesis that ξS = 1, which is equivalent to λS = 0.

This is done using Equation 4 with S = nB and using distribution given in Equation C2 with ξS = 1. In

particular, we find the smallest S⋆ such that Pr(nS > S⋆|nS +nB, ξS = 1, r, τS , τB) ≤ α. With the detection

threshold in hand, we can compute an upper limit for ξS using Equation 6. The upper limit is the smallest

ξS such that Pr(nS > S⋆|nS + nB, ξS , r, τS , τB) ≥ βmin. Unfortunately, this upper limit cannot be directly

transformed into an upper limit for λS without knowledge of λB since λS = λB(ξS − 1).
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Fig. 3.— Illustration of Type I and Type II errors. A sketch of the probability distribution of test statistic

S for specified values of the source and background intensities is shown for the simple case where S ≡ nS

and the background is known (see footnotes 8,9). The top panel depicts the probability Pr(S = nS |λS =

0, λB = 2, τS = 1) and the bottom panel shows Pr(S = nS |λS = 5, λB = 2, τS = 1). The vertical dashed line

is a nominal detection threshold S⋆ that corresponds to a significance of α ≤ 0.1, i.e., S⋆ = 5. The Type I

error, or the probability of a false positive, is shown by the shaded region to the right of the threshold. (The

actual Type-I error for the adopted parameters is 0.05; values of S⋆ less than 5 will cause the Type-I error

to exceed the specified significance.) The Type II error is the probability of a false negative and is shown

(for λS = 5) by the shaded region to the left of the threshold in the lower panel. The detection probability

of a source with intensity λS = 5 is β = 0.7 for this choice of α, for the given background intensity, and for

the exposure time.
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Fig. 4.— Power of the Test, β, to Detect a Source as a Function of Source Intensity, λS , and Detection

Threshold, S⋆. The curves are calculated for different values of the background intensity (the same values

as in Figure 1), λB = 1 (left), λB = 3 (middle), and λB = 5 (right). The individual curves show β(λS)

for different S⋆, each of which corresponds to a different bound on the probability of a Type I error, α,

see Figure 2. The solid, dashed, and dash-dotted lines correspond to increasing detection thresholds, and

decreasing values of α. As one would expect, β is higher for larger λS and lower λB, i.e., if the source is

stronger or the background is weaker, it is easier to detect.
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Fig. 5.— Upper Limit with No Background Contamination. The figure plots Pr(nS > 0|λS , λB = 0, τS) as

a function of τSλS , thus giving U(α, βmin) for any given τS and every value of βmin. For example, reading

across the line plotted at β = 0.8, gives τSU(α = 0.05, βmin = 0.8) = 1.6, which can be solved for the upper

limit for any value of τS . Notice the upper limit decreases in inverse proportion to τS .
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Fig. 6.— Computing Upper Limits Based on the Probability of Detecting a Source. The figure illustrates

how upper limits may be defined for different probabilities of source detection under a given detection

threshold. The curves correspond to β(λS) for different values of S⋆ and α: 5 and 0.1 (solid), 6 and 0.05

(dashed), and 8 and 0.01 (dash-dotted) and were all computed with λB = 3, as in the middle panel of

Figure 4. Upper limits are computed by first adopting an acceptable probability for a source detection, and

then computing the intercept on λS of the β(λS) curves. The panels show the value of the upper limits for

the different values of S⋆ for βmin = 0.5 (top), βmin = 0.9 (middle), and βmin = 0.95 (bottom).
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Fig. 7.— Upper Limit with Unknown Background Intensity. The left panel plots a Bayesian posterior

distribution for λB, p(λB|nB, τB , r) ∝ λ6.5
B e−λB/2.5, that is used in Equations 8 and 9 to compute β, the

expected detection probability, as a function of λS with τS = τB = r = 1. The right panel plots β(λS) for

three values of α and their corresponding detection thresholds.
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Fig. 8.— Illustrating the Difference Between Confidence Intervals and Upper Limits. This figure is identical to

Figure 1, with an additional solid vertical horizontal line showing the location of the upper limit computed with

βmin = 0.8. The legend denotes the true value of λS , the assumed known value of λB, and the computed upper limit,

U . Note that unlike the confidence interval, which depends strongly on the number of observed source counts, nS , the

upper limit is fixed once the detection threshold S
⋆ (which depends on λB) and the minimum detection probability

βmin are specified.
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Fig. 9.— Interpreting Upper Bounds as Upper Limits. The three panels plot the probability or source

detection for a source with λS equal to the upper bound of Garwood’s confidence intervals. Because the

confidence intervals depend on nS , the detection probability, βmin increases with nS . The three panels

correspond to λB = 1 (left), λB = 3 (middle), and λB = 5 (right), as in the columns of Figure 8. All

calculations were preformed with τS = τB = r = 1. Because a source with intensity equal to the upper

bound can have a detection probability as low as 20% or as high as 100%, the upper bound does not

calibrate the maximum intensity that a source can have with appreciable probability of going undetected in

any meaningful way.
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Fig. 10.— Conditional Coverage Probability of Confidence Interval Reported Only for Detected Sources.

When confidence intervals are only reported for detected sources the coverage probability may be very

different than the nominal level of the interval. This plots shows the true coverage of the 95% nominal

intervals of Garwood (1936) when they are only reported for sources detected with α = 0.05 (with λB = 3).

For small values of λS the coverage can be very low and as λS grows, the coverage probability converges to

95%. Far fewer intervals contain λS than one would expect given the nominal level. Confidence intervals

must be reported regardless of nS and regardless of whether a source is detected. The jagged appearance of

curve stems from the discrete nature of Poisson data.
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Fig. 11.— Computing Upper Limits Based on the Probability of SNR Detection of a Source. The curves

in each panel correspond to the probability of source detection as a function of λS using an SNR detection

threshold of S⋆ = 3. The curves were computed with r = 1, τS = 1, τB = 1, and with λB = 10, 20, and

50 (dashed, dotted, and dash-dotted lines, respectively). Upper limits are computed by first adopting an

acceptable probability for a source detection, and then computing the intercept on λS of the β(λS) curves.

The panels show the value of the upper limits for the different values of λB for βmin = 0.5 (top), βmin = 0.9

(middle), and βmin = 0.95 (bottom).
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Fig. 12.— Dependence of the Upper Limit on the Exposure Time. The shaded area to above and to the

right of the curve is where the detection probability exceeds βmin = 0.90. Thus the curves give the upper

limit (on the horizontal scale) as a function of the exposure time. The plot was made with λB = 3, r = 5,

τS = τB, and α = 0.05 and shows how the upper limit generally decreases as the exposure time increases.

Because of the discrete nature of Poisson data, the probability of type one error can not be set exactly equal

to α. This results in the step function nature of α in Figure 2 and the non-monotonic decrease of the upper

limit as a function of exposure time here.
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