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Abstract

Intricate computer models can be used to describe complex physical processes in astronomy
such as the evolution of stars. Like a sampling distribution, these models typically predict
observed quantities as a function of a number of unknown parameters. Including them as
components of a statistical model, however, leads to significant modeling, inferential, and com-
putational challenges. In this article, we tackle these challenges in the study of the mass loss
that stars experience as they age. We have developed a new Bayesian technique for inferring
the so-called initial-final mass relation (IFMR), the relationship between the initial mass of a
Sun-like star and its final mass as a white dwarf. Our model incorporates several separate com-
puter models for various phases of stellar evolution. We bridge these computer models with a
parameterized IFMR in order to embed them into a statistical model. This strategy allows us
to apply the full force of powerful statistical tools to build, fit, check, and improve the statistical
models and their computer model components. In contrast to traditional techniques for inferring
the IFMR, which tend to be quite ad hoc, we can estimate the uncertainty in our fit and ensure
that our model components are internally coherent. We analyze data from three star clusters:
NGC 2477, the Hyades, and M35 (NGC 2168). The results from NGC 2477 and M35 suggest
different conclusions about the IFMR in the mid- to high-mass range, raising questions for fur-
ther astronomical work. We also compare the results from two different models for the primary
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hydrogen-burning stage of stellar evolution. We show through simulations that misspecification
at this stage of modeling can sometimes have a severe effect on inferred white dwarf masses.
Nonetheless, when working with observed data, our inferences are not particularly sensitive to
the choice of model for this stage of evolution.

1 Introduction

Complex models that cannot be expressed using analytical forms are becoming more and more
common in the physical, engineering, and social sciences. In many cases the models are the im-
plicit solutions to non-linear simultaneous equations that can only be solved using sophisticated
computational algorithms. Such computer models are used for example to model weather and
climate, the Earths interior and seismology, genetic drift, and many other specific scientific phe-
nomena. Computer models are particularly useful to describe complex astronomical processes,
for example, to model stellar evolution, describe the properties of planetary and stellar atmo-
spheres, simulate chemical reactions in interstellar clouds, calculate the emergence of clusters
and superclusters of galaxies in the early Universe, and determine the yield of different elements
during the Big Bang. In this article we explore how such computer models can be embedded
into a principled statistical analysis and how we can use the resulting statistical methods for
model building, fitting, checking, and improvement. Our ultimate goal is to enhance both the
computer models and our understanding of the underlying astronomical phenomena.

We focus on developing statistical methods that take advantage of a set of computer models
for stellar evolution with the aim of improving our understanding of the composition, age, mass,
and location of clusters of stars. Stars are formed when the dense parts of a molecular cloud
collapse into a ball of hot plasma. If the mass of this ball is sufficient, its core will ignite in a
thermonuclear reaction that is powered by the fusion of hydrogen into helium, forming a so-called
main sequence star. This reaction can continue for millions or billions of years, depending on
the original mass and composition of the star. More massive stars are denser, hotter, and burn
their fuel more quickly. When the hydrogen at the core has been depleted the core collapses,
heating up the inner star and igniting the same reaction in regions surrounding the core. At the
same time, the diameter of the star increases dramatically and the surface temperature cools,
resulting in a red giant star. This period of the star’s life is much shorter, lasting only about one
tenth as long as the initial period. The temperature of the core continues to rise and for more
massive stars will become hot enough to fuse helium into carbon, oxygen, neon, and perhaps
heavier elements. During this time, stars with mass less than about 8 times that of the Sun
undergo mass loss leading to the formation of a very short lived planetary nebula. The dense
core of such a star eventually stabilizes as the outer layers of the star blow away, leaving a small
hot dense ember, known as a white dwarf star. Nuclear reactions cease in a white dwarf star,
which slowly cools via radiation from its surface.

From Earth, main sequence, red giant, white dwarf, and other types of stars can be distin-
guished by the relative intensity of the light emitted by the star at different wavelengths. We
use photometric data which records the luminosity or magnitude of each star under observation
in a particular range of wavelengths. The luminosity is a direct measurement of the amount of
energy an astronomical object radiates per unit time. A magnitude is a negative logarithmic
transformation of the luminosity, thus smaller magnitudes correspond to brighter objects. The
computer models that we employ predict the photometric magnitudes as a function of a number
of parameters that describe the composition, size, distance, and age of the star. Because the
physical processes that power white dwarf stars on the one hand and main sequence and red
giant stars on the other are completely different (i.e., latent heat and thermonuclear fusion, re-
spectively), separate computer models are used for the white dwarf stars and for main sequence
and red giant stars. Since white dwarfs are evolved main sequence stars, predicting the colors
of white dwarfs involves first running a computer model for the main sequence and red giant
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stars (MS/RG computer model) and then running a white dwarf model (WD computer model),
using a transformation of the outputs from the MS/RG model as inputs.

Our goal is to build principled statistical models and methods that embed these computer
models into a likelihood function as components of a statistical model that can be used to learn
about the underlying parameters of scientific interest. The basic components of our model are
described in von Hippel et al. (2006), DeGennaro et al. (2009), and van Dyk et al. (2009) and
applied in Jeffery et al. (2011). These articles employ a Gaussian measurement error model
for multiple photometric magnitudes per star, allow for contaminated data, and account for
binary star systems composed of two separately evolving stars that appear as a single star from
Earth. This article starts with this baseline and develops the linkage between the component
computer models for stellar evolution and describes how we evaluate them and their fit to data.
In particular, we propose a parametric model to link the MS/RG model with the WD computer
model and include the parameters as part of our likelihood function. This enables us to evaluate
and improve existing models that predict the mass of a white dwarf star from the initial mass
of its progenitor star, the so-called initial-final mass relationship (IFMR). This is done within
the context of a fully Bayesian model that allows us to quantify the uncertainty in the fitted
IFMR.

The primary scientific goal of this article is to study the total mass loss between the initial
mass of a newly formed main sequence star and the final mass of a white dwarf. Mass loss
occurs as a main sequence star fuses atoms to produce energy and more dramatically as the
outer layers of a red giant blow away. This later process is not well understood (Catelan,
2009) but drives the relationship between stellar ages, masses, and composition and observed
photometric magnitudes for the brightest stars of a cluster. This relationship is quantified by a
MS/RG computer model and is particularly important in the study of extra-galactic clusters,
especially those outside our local group of galaxies. For such distant clusters, photometric data
can only be obtained for the brightest stars. Thus, an understanding of red giant mass loss
may be our only clue to the ages of such distant stellar systems. Yet this clue is fraught with
uncertainty because we lack a properly determined mass loss formula for stellar models. Our
study is aimed directly at improving our understanding of stellar mass loss.

The hallmark of our approach is principled statistical modeling of as many components of
the data generation and stellar evolution processes as is practicable. This is in contrast to the
standard approaches to fitting computer models for stellar evolution in astronomy. A standard
strategy is to overlay the data with the predictions under the model with a specific parameter
value and to manually adjust the parameters in order to visually improve the fit (e.g., Caputo
et al., 1990; Montgomery et al., 1993; Dinescu et al., 1995; Chaboyer et al., 1996; Rosvick and
VandenBerg, 1998; Sarajedini et al., 1999; VandenBerg and Stetson, 2004). It is difficult to be
sure the best fit has been found in this way or to assess the uncertainty in the fitted values.
While such methods tend to leverage the knowledge and intuition of astronomers, they are
suboptimal and are not reproducible. A more systematic approach involves searching for values
of the parameter that are most consistent with the data (e.g., Raftery et al., 1995), perhaps with
the help of an emulator that speeds computation by approximating the computer model with an
easy to evaluate function. This process of fitting the parameter values of the computer model
is known as calibration and results in a fitted or calibrated computer model that is often used
to run additional experiments under different conditions (e.g., different values of covariates).
When collecting actual data under different experimental conditions is expensive or impossible
researchers may use the calibrated computer model in place of actual experiments (e.g., Higdon
et al., 2008; Kennedy and O’Hagan, 2001; O’Hagan, 2006; Rougier, 2008).

While these methods provide principled statistical analyses that account for multiple sources
of uncertainty, they are difficult to extend to situations where the computer model is but one
component of a multilevel model or where multiple computer models are used in conjunction as
components of a statistical model. In such situations there may be a large number of parameters
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that cannot be easily manipulated manually. Our strategy is to treat the computer models as
any other component of a statistical model. Like a likelihood function, computer models can
be used to predict observations as a function of unknown parameters. As such, they can be
embedded in a statistical model as the mean function of a conditional distribution in the same
way as any conditional distribution would be incorporated. This strategy allows us to apply the
full force of powerful statistical tools to build, fit, check, and improve the statistical models and
their computer model components. The primary challenge becomes computational. Insofar as
the computer models are time consuming to evaluate standard computational techniques will
be slow to run. Moreover, the complex nature of the computer model can lead to an overall
likelihood function or posterior distribution with complex nonlinear structure and/or multiple
modes. Exploring these functions may involve serious computational challenges. Nonetheless, we
view such computational issues as fundamentally more tractable than establishing the statistical
properties of ad hoc numerical procedures. Our strategy involves Markov chain Monte Carlo
(MCMC) fitting in a Bayesian context. While we build on the computational methods described
in van Dyk et al. (2009) and DeGennaro et al. (2009), fitting the IFMR involves significant new
challenges.

Our method strives for an internal coherence lacking in many previous attempts to fit the
IFMR. Salaris et al. (2009) provide an excellent criticism of the inconsistencies in physical
model assumptions that can plague IFMR studies. Most studies start with the goal of obtaining
accurate initial and final mass estimates for as many white dwarfs as possible, and then derive
an IFMR by treating the estimated masses as observed data. See for instance Weidemann
(2000); Kalirai et al. (2008); Kalirai et al. (2005); Williams et al. (2009); and Williams et al.
(2004). Spectroscopic observations paired with WD computer models can yield estimates of
the current (final) mass and cooling age of each white dwarf. The cooling age is the length
of time the star has been a white dwarf. Separately, the overall age of the cluster can be
derived by comparing photometric observations of the main sequence stars to MS/RG models.
Once a cluster age is determined, each white dwarf progenitor’s lifetime as a main sequence
star is set equal to the cluster age minus the cooling age. This progenitor age can then be
used to derive the progenitor’s initial mass, again in concert with a set of MS/RG computer
models. Calculating reliable measures of the uncertainty for the estimate of the initial mass
computed using this string of correlated calculations would not be a simple task. The typical
strategy is to propagate observational errors through the calculation using delta-method-like
techniques, but ignoring the uncertainty on the cluster age (Williams et al., 2009). There
are numerous statistical challenges beyond accounting for the star-by-star uncertainties on the
initial and final masses. For example, the masses derived for white dwarfs in the same cluster rely
on common estimated cluster characteristics and common MS/RG models, and are therefore
correlated. A typical analysis, however, combines white dwarfs from different clusters as if
they were independent observations. Moreover, internal coherence requires that the two steps
that use MS/RG models—deriving the cluster age from the main sequence stars and deriving
the initial masses given the cluster and cooling ages—should use the same MS/RG models,
but this is not a universal practice (see for example Ferrario et al. (2005)). We address these
concerns by embedding the entire procedure for each cluster into a statistical model, rather than
combining separate star-by-star analyses, which may rely on different evolution models, in an
ad hoc fashion. In this way we aim to arrive at a coherent statistical analysis of the IFMR.

The remainder of the article is divided into four sections. We begin with a detailed de-
scription of our statistical model and likelihood function in Section 2. In Section 3 we describe
the computational challenges and solutions for fitting the model. Numerical results including
simulations, data analyses, and model checking appear in Section 4. Finally, conclusions and
discussion are in Section 5.
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Figure 1: Schematic of the basic computer-model embedded statistical model for stellar evolution.
The five input parameters for the “black box” computer model are listed in the first node. The
second node is the “black box” computer model that predicts the photometric magnitudes of a
single star (Node 3). We apply the computer model to each star in a physical cluster of stars; the
Pleiades is pictured in Node 4. The magnitudes are recorded using filters that allow only light of
specified wavelengths through. Both ground-based and space-based telescopes are used; the Hubble
Space Telescope appears in Node 5. The actual observed photometric magnitudes are observed with
Gaussian measurement errors.

2 Statistical Model

2.1 The Basic Models

MS/RG Computer Models We use a set of computer models that predict the observed
photometric magnitudes of a star given a set of parameters that describe the physical character-
istics of the star, its distance from us, and the density of matter along the line of sight between
the star and the Earth. Figure 1 gives an overview of the basic computer model for stellar
evolution. Age, metallicity, and initial mass describe the star itself and affect the photometric
magnitudes of the star as it evolves. The spectra of all stars change as they evolve, very slowly
as main sequence stars and with much larger and more abrupt changes as the star becomes
and evolves as a giant and eventually a white dwarf. More massive stars are denser, hotter,
bluer, and burn their fuel much more quickly. Thus, massive stars evolve into giants and dwarfs
much more quickly. (The most massive stars end their lives as neutron stars or even black holes
rather than as white dwarfs. These stars are quite rare and would not be in our datasets, since
they evolve so quickly. See van Dyk et al. (2009) for discussion.) The composition of a star
also affects the spectrum. Metals (in astronomy any element heavier than helium) absorb more
blue light, and excess helium at the core reduces the efficiency of the nuclear reaction. The
composition of the star is summarized by the metallicity parameter, which is the logarithm of
the ratio of a star’s iron abundance compared to that of the Sun. (Iron is used as a proxy for all
elements heavier than helium because it is relatively easy to identify from the optical spectrum
of a star.) The final two parameters, distance and absorption, describe not the star itself but
rather our ability to observe the star. More distant stars appear fainter, and some of the emitted
light is absorbed by interstellar material.

The computer models (Node 2 of Figure 1) predict the observed magnitudes as a function
of the five parameters. For the MS/RG model this involves iteratively solving a set of coupled
differential equations. The solution is a static physical model of a star that provides a snapshot
of how a star of a particular mass and radial abundance profile would appear in terms of
its luminosity and color. The radial abundance profile is essentially the stellar metallicity and
helium abundance along its radius, with the assumption that the stellar composition is angularly
homogeneous. Stars are evolved by updating the mass and radial abundance profile to account
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for elements newly produced by the thermonuclear reaction. The model is run forward in
this way from the time of the stellar birth to the current time, at which point absorption and
distance are used to convert absolute magnitudes into apparent magnitudes. There are a number
of competing MS/RG models that differ in their implementation of the underlying physics and
give somewhat different predictions. In this article we implement the Yi et al. (2001) and Dotter
et al. (2008) MS/RG models. A more detailed discussion of the computer models can be found
in van Dyk et al. (2009). Another set of models must be used for white dwarfs. A careful
embedding of the WD models into our statistical model is one of the primary contributions of
this article and is the topic of Section 2.2.

Stellar Clusters Statistical analysis is complicated by the fact that we typically observe
only three or four magnitudes per star but have five unknown parameters per star. To address
this we use data from stellar clusters which are groups of stars that reside physically close
together and were formed together out of the same molecular cloud; see Node 4 of Figure 1.
As such these stars have the same or very similar ages, metallicities, distances, and absorption
parameters. Only their masses vary. The magnitudes are obtained with a mixture of ground-
based and space-based telescopes (depending on how bright the stars are) using filters that
remove the light outside of a particular band of wavelengths. Each magnitude is observed with
Gaussian errors, the variances of which are known from observational and telescopic conditions.

Binary Star Systems Between one third and one half of stars are actually binary or
multiple-star systems (Jao et al., 2009; Sollima et al., 2010), most of which cannot be resolved
into their component stars. The luminosities of the component stars sum, resulting in observed
magnitudes that differ from what is expected under the computer models with parameters set
at the cluster values. Thus, we explicitly model all main sequence and red giant stars as binary
systems. In this way the observed luminosities are modeled as the sum of those expected from
two separate runs of the MS/RG model. Single-star systems can still be reasonably modeled
in this way by setting their secondary masses to be near zero, with a negligible effect on the
modeled luminosity. Because white dwarfs are so dim, a multiple-star system involving a white
dwarf and a main sequence (or red giant) star would appear as a main sequence (or red giant)
and be modeled as a binary system, presumably with a very small secondary mass. Thus, what
appears as a white dwarf star could only be a system composed solely of white dwarfs. We
assume all such systems are single white dwarf systems because white dwarf + white dwarf
binaries are relatively rare (perhaps 10% of the cluster white dwarfs) and because such systems
often have a complex history beyond the scope of our models.

Field Stars Stars that appear from the Earth’s vantage point to be in or near a stellar cluster
but are not actually part of the physical cluster are called field stars. Even in the best studied
star clusters, there is uncertainty about whether some stars are cluster members or field stars.
These stars may be in the foreground or background of the cluster and typically have different
characteristics than the cluster stars. For example, there is no reason to assume they share
common values of metallicity, age, distance, or absorption with the cluster stars. Our statistical
model is not designed to physically model the characteristics of field stars, but includes the
capability to determine whether a star can adequately be modeled as a cluster member. In
essence we use a mixture model to give our statistical model an escape hatch if a star cannot
be satisfactorily modeled by the computer models in accordance with the parameter preferences
of the cluster stars. For simplicity, field stars are assumed uniformly distributed in magnitude
space. While this is certainly not a realistic assumption from an astrophysical perspective, in
practice it accomplishes our goal of reducing the influence on parameter estimation of poorly
modeled stars. Such poorly modeled stars include white dwarf + white dwarf binaries, objects
known as blue stragglers that are not well understood but thought to be the result of merged
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stars, as well as a subset of binary star systems that are so physically close to each other that
mass is currently flowing or once did flow from one star to the other.

Notation We refer to the observed magnitude in color band j of star i as xij for j = 1, . . . , n
and i = 1, . . . , N , with N the number of stars in the dataset and n the number of magnitudes
observed for star i. The vector of observed magnitudes for star i, Xi = (xi1, . . . , xin)>, has
known variance-covariance matrix Σi. The predicted magnitudes for cluster stars are determined
by the computer models. We express the MS/RG model as

GMS/RG(Mi,Θ),

where Mi is the stellar mass and Θ = (θage, θ[Fe/H], θm−MV
, θAV

) consists of the four parameters
common to all cluster stars, i.e., cluster parameters, see Table 1. The distance is quantified by
comparing how bright a star would appear at a particular fixed distance to how bright it actually
appears. In particular, the absolute magnitude is the magnitude that the star would have if it
were 10 parsecs (32.6 light years) away as opposed to the apparent magnitude it has when
viewed from Earth. The distance modulus, θm−MV

, is the difference between the apparent and
absolute magnitudes.1 The output from the computer model is a vector of predicted apparent
magnitudes for a single main sequence or red giant star.

Since main sequence and red giant stars are presumed binary, each is modeled as a primary
(more massive) star plus a secondary (less massive) star. We denote the mass of the primary
star in observed star system i as Mi and the ratio of the secondary mass to the primary mass
as Ri. The luminosities of the component stars sum to yield the observed luminosity. Since
luminosity is related to magnitude by

magnitude = −2.5 log10(luminosity),

for main sequence and red giant stars, in the absence of noise, xij is predicted by

µij = −2.5 log10

(
10−GMS/RG,j(Mi,Θ)/2.5 + 10−GMS/RG,j(MiRi,Θ)/2.5

)
, (1)

where GMS/RG,j(MiRi,Θ) is the predicted magnitude in the jth filter for the secondary star in

the binary system, since MiRi is the secondary mass. We let µi = (µi1, . . . , µin)> be the vector
of predicted values of Xi if star i is a main sequence or red giant star. Table 1 reviews the
stellar and cluster parameters of the basic model.

2.2 Embedding the WD Computer Models and Fitting the IFMR

In addition to the stellar and cluster parameters our full model also includes evolution param-
eters, by which we mean parameters describing the general physical process involved in stellar
evolution as opposed to parameters describing the specific stars or cluster of stars under investi-
gation. In principle, evolution parameters should be common to all stars and all clusters because
they describe underlying physical processes. In practice, however, we expect enough variation
among datasets and disagreement between our models and reality that we fit these parameters
separately for each star cluster. Combining the resulting fits and measures of uncertainty will
be approached as a second stage in the analysis in order to formulate a global description of the
underlying physical processes across a range of stars and clusters.

The evolution parameters that we aim to fit are involved with relating the MS/RG model
to the WD model in the context of embedding both computer models into a statistical model.
While the MS/RG model simulates the effects of the thermonuclear reaction by stepping forward

1We can compute the distance from the distance modulus. In particular, in the absence of absorption, θm−MV =
5 log10(d) − 5, where d is the distance measured in parsecs.
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Table 1: Cluster and Stellar Parameters
Cluster parameters

θage log10 of the cluster age
θ[Fe/H] metallicity (chemical composition of the cluster)

θm−MV
distance modulus (difference between apparent and absolute magnitudes)

θAV
absorption (loss of light due to interstellar dust)

Stellar parameters

Mi primary initial mass of a binary star system
in units of solar mass, MSun

Ri the ratio of secondary mass to primary mass
Zi indicator for cluster membership

through time, the WD models simulate the energy flow from the interior and its radiation into
space, by which the cinders of the nuclear reaction cool. The actual physical processes that
occur in the transformation of a giant star into a white dwarf are complex and turbulent. In
the last stage, a red giant fuses progressively heavier elements at different shells of its interior,
begins to pulsate, contracting and expanding, finally losing its outer layer in a planetary nebulae
and forming a white dwarf. All of the computer models break down at this stage and we must
use a parametric model to link the inputs and outputs of the MS/RG model to the inputs of
the WD model to form a coherent model of the evolution of the white dwarf stars. To see how
this works, we must go into some detail of how the computer models for the white dwarfs work.

The MS/RG model simulates the life of a main sequence star by stepping forward through
time either until the present age of the star or until the star evolves into a giant and then a
white dwarf, and the nuclear reaction ceases. In the latter case, the MS/RG model returns how
long it lived as a main sequence and red giant star. For a white dwarf, we refer to this as the
progenitor age,

φprog age = FMS/RG(θ[Fe/H],M), (2)

where FMS/RG is the MS/RG computer model, but evaluating the progenitor age rather than the
expected magnitudes. Here we suppress the subscript i because the models are all for individual
stars.

Since the white dwarf is essentially the cooling ember of its progenitor, its age as a white
dwarf will affect its temperature and colors. Thus, the progenitor age is needed to compute the
cooling age of the white dwarf, which is simply the total age of the star, θage, less the progenitor
age, φprog age. The white dwarf cooling model is part of the WD computer model and returns
the effective temperature, φTeff

, and radius of the white dwarf as a function of its age and white
dwarf mass:

(φTeff
, φradius) = F cooling(θage − φprog age,MWD). (3)

The cooling model uses the (final) mass and cooling age of a hydrogen-dominated white dwarf2

2We only consider white dwarfs with hydrogen-dominated atmospheres in our analyses. These stars make up about
70%-75% of white dwarfs and they seem to be even more prevalent in clusters (Kleinman et al., 2004). Most other
white dwarfs have helium-dominated atmospheres, though there are also hybrid types and rare peculiar types, and
some stellar scientists argue that a white dwarf can change its atmospheric type at certain points in its cooling history.
The atmospheric type must be accounted for because it affects the relationship between the stellar characteristics
and the observed magnitudes. Because there are no deterministic models that predict the atmospheric type, we
focus on the dominant type and obtain detailed spectra and/or a combination of optical and infrared photometry to
distinguish white dwarfs of this type from those of other types.
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at any point in its history to derive its latent heat, which it then numerically passes to the
surface via some combination of conduction, convection, and radiation, depending on the lo-
cal temperature throughout the white dwarf. This is used to compute the effective (surface)
temperature and radius of the white dwarf.

With φradius in hand, we can compute the base-10 logarithm of the gravity experienced at
the surface of the white dwarf, denoted φlog g. Using Newton’s law, the surface gravity is

φlog g = log10(GMWD/φradius
2), (4)

where G is Newton’s gravitational constant.
Finally, the expected magnitudes rely on a second component of the WD computer model

that simulates the star’s atmosphere,

µ = F atmosphere(φTeff
, φlog g). (5)

The white dwarf atmosphere model uses the surface gravity, which is dictated by the white
dwarf mass, and the effective temperature, given by the cooling model, to derive the emergent
spectrum of the hydrogen-dominated atmosphere as a function of wavelength. The atmosphere
model further integrates the emergent spectrum over the wavelength range of the appropriate
filter(s) in order to calculate the magnitude(s) of the model white dwarf. The missing piece in
these calculations is the white dwarf mass MWD, which is needed in (3) and (4). The initial-final
mass relation (IFMR) aims to fill this gap by computing MWD as a function of the initial mass
of the progenitor star, M . When viewed in this way, the IFMR links the MS/RG models (which
depend on M) to the WD cooling and atmosphere models (which depend on MWD). DeGennaro
et al. (2009) and van Dyk et al. (2009) used a piecewise-linear functional form (with no unknown
parameters) for the IFMR given by Weidemann (2000). The main contribution of this article
is to parameterize the link between the two sets of computer models, to determine how much
information is in the data to constrain this relationship, and in this way to evaluate the model
assumptions inherent in previous analyses. Figure 2 extends Figure 1 to illustrate how we open
up the black box computer model to fit the IFMR that connects the MS/RG model with the
WD model. In our analyses we use the white dwarf cooling model of Wood (1992) and the white
dwarf atmosphere model of Bergeron et al. (1995).

We consider three parameterized forms for the IFMR, which we denote

MWD,i = f(Mi,α).

First, following Williams et al. (2009) and Salaris et al. (2009), we consider a linear relationship,

MWD,i = f(Mi,α) = α0 + α1(Mi −M?), (6)

where α = (α0, α1) are parameters that will be fitted to the data and M? is a pre-selected fixed
value for approximately centering the initial masses, Mi, of the white dwarfs. (Approximately
centering Mi tends to reduce the posterior correlation between α0 and α1.) Although we do not
expect that the linear form given in (6) will hold over a wide range of Mi, we believe that it is
a reasonable default in the context of applying our model to a cluster of stars. This is because
cluster stars are all the same age and the more massive stars are the first to evolve into white
dwarfs. This means that the cluster stars that are now white dwarfs have a lower bound on
their initial mass. The white dwarfs in our dataset will also have an upper bound on their initial
mass because stars more massive than about 8 solar masses will explode as supernovae and
become neutron stars or black holes, instead of white dwarfs. Additionally, the most massive
white dwarfs are rare because the number of stars of all types drops off inversely with about the
square of the mass of the star. Thus, the white dwarfs in any one cluster will typically contain
only white dwarfs that span a fairly narrow range of initial mass, where the linear assumption
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Figure 2: Embedding the IFMR model into a statistical model. This schematic extends the one
in Figure 1. We use a finite mixture model to separate field stars that contaminate the data
from the stars that are members of a physical star cluster. Furthermore, we open up the “black
box” computer models and parameterize the relationship between the input mass of the MS/RG
computer model and the input mass of the WD computer model, M and MWD, respectively. In
this way we include parameters that describe the evolutionary process in addition to parameters
that describe the particular stars and cluster under study. In the interest of space we have included
only one node for the computer model, whereas we actually apply the model twice and sum the
expected luminosities to account for binary systems involving main sequence and red giant stars.

in (6) may be reasonable. Even if there are nonlinearities in the global initial-final mass relation,
local linearity is a much weaker assumption and more likely to be an acceptable approximation.

Although a linear model is our default, we also consider a quadratic IFMR and a broken
linear IFMR, a continuous model with a point where the slope changes. In all three cases we
use α to parameterize the IFMR, though α may have two or three components (we fix the
breakpoint of the broken linear model in advance). We compare the three IFMR models for a
particular star cluster in Section 4.2, in the discussion of NGC 2477.

With the IFMR in place, the parameters we use to describe white dwarf evolution are
φ = (φprog age, φTeff

, φradius, φlog g) and MWD,i, i ∈ IWD, where IWD is the pre-specified set of
indices corresponding to the white dwarf stars. The components of φ are deterministic functions
of the cluster parameters, θage and θ[Fe/H]; the stellar parameters Mi, i ∈ IWD; and the evolution
parameters, α. As such, we do not consider φ to be a model parameter, and do no fit φ in our
formal analyses. It is only used to compute µ for the white dwarfs. Thus, we can express the
WD computer model as GWD(Mi,Θ,α) which is a compilation of FMS/RG, the IFMR, and the
white dwarf cooling and atmosphere models. The output from GWD is a vector of predicted
magnitudes for a single white dwarf star.

2.3 The Likelihood Function

Because the data are a mixture of cluster and field stars, we formulate the statistical model as
a finite mixture of two populations. In particular, we define Z = (Z1, . . . , ZN ), where Zi equals
one if star i is a cluster star and Zi equals zero if star i is a field star. We then specify the
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conditional distribution of the photometric magnitudes for cluster stars and field stars separately.
For cluster stars, we assume that observed photometric magnitudes, Xi, are independent n-

dimensional multivariate Gaussian distribution with mean µi and diagonal variance-covariance
matrix Σi. (The observation errors are small enough in magnitude to justify an assumption of
symmetric errors, even though strictly speaking they are not.) While this appears to be a simple
model, it is actually quite complex owing to the dependence of µi on the cluster, stellar, and
evolution parameters. Because this dependence is quantified via the MS/RG and WD computer
models, the relationship between µ and the model parameters is highly non-linear. In particular,
the components of µi are given by (1) for i ∈ IMS/RG, where IMS/RG is the pre-specified set of
indices corresponding to the main sequence and red giant stars, and

µi = GWD(Mi,Θ,α) for i ∈ IWD. (7)

The MS/RG computer model does not depend on the IFMR, so the IFMR parameters α do
not appear as arguments to GMS/RG, whereas the WD computer model explicitly depends on
α. Recall that our statistical model for white dwarf cluster members differs in two ways from
that for main sequence cluster members: (i) the deterministic models involve more components,
including the IFMR, and (ii) we do not model binaries involving white dwarf stars so that the
functional form of (7) is simpler than that in (1).

For field stars, we simply assume that each magnitude is uniformly distributed over a finite
range that corresponds to the range of the data,

pfield(Xi) = c for minj ≤ xij ≤ maxj , j = 1, . . . , n,

and is zero elsewhere, where (minj ,maxj) is the range of values for magnitude j, and c =[∏n
j=1(maxj −minj)

]−1

. This is equivalent to assuming that a field star is equally probable at

any point in the luminosity space spanned by the cluster stars. In the future, we may incorporate
a more realistic model and even tune the model for specific Galactic fields, where field star
properties are often available. To date, we have found this additional effort unnecessary, as
most field stars are easily identified because their luminosities and colors are inconsistent with
models of cluster stars.

Finallly, the likelihood function can be written,

L(M ,R,Θ,Z,α|X,Σ)

=
∏

i∈IMS/RG

[
Zi√

(2π)n|Σi|
exp

(
−1

2

(
Xi − µi

)>
Σ−1

i

(
Xi − µi

))
+ (1− Zi)pfield(Xi)

]

×
∏

i∈IWD

[
Zi√

(2π)n|Σi|
exp

(
−1

2

(
Xi −GWD(Mi,Θ,α)

)>
Σ−1

i

(
Xi −GWD(Mi,Θ,α)

))

+ (1− Zi)pfield(Xi)

]
(8)

where M = (M1, . . . ,Mn), R = {Ri, i ∈ IMS/RG}, X = (X1, . . . ,Xn), Σ = (Σ1, . . . ,Σn), and
µij is given by (1) for i ∈ IMS/RG.

2.4 Prior Distributions

We generally take a Bayesian perspective for model fitting both because it allows us to use
sophisticated computational tools to explore the complex structures in the parameter space
resulting from the highly non-linear character of the computer models in (8) and because it
gives us a mechanism for inference in this complex non-Gaussian space, where point estimates
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and confidence intervals simply do not suffice (see Figure 6). A Bayesian analysis also allows
us to handle hundreds of nuisance parameters in a principled manner and to include prior
information based on substantive scientific knowledge. For example, we put an informative
prior distribution on the stellar masses based on what astronomers know to be the population
distribution of stellar masses in the Milky Way. Likewise, since we know the age of the Galaxy
and we know that the cluster is part of the Galaxy, we know something about the cluster age that
can be formulated into a prior distribution. In particular, we use a uniform prior distribution
on the log10 of cluster age in years. This prior distribution quantifies the fact that younger
clusters are more common than older clusters. Similarly, for all of the cluster parameters, we
use substantive external information to set prior distributions when it is available, and relatively
non-informative prior distributions when we have no such information. In particular, for θ[Fe/H],
θm−MV

, and θAV
, we use Gaussian prior distributions (truncated to the positive real line in the

case of θAV
), with means set according to astrophysical prior knowledge and variances chosen

to be reasonably non-informative.
For well studied clusters, we may have multi-decadal deep imaging that can be used to

determine which stars are likely to be cluster stars and which are likely to be field stars. Because
field stars are typically some distance from the cluster and in different orbits in the Galaxy, their
apparent position on the sky relative to the cluster will slowly change as they orbit. Cluster
stars, on the other hand, are gravitationally bound to one another and so orbit the Galaxy with
a common velocity. This enables us to distinguish field stars from cluster stars via their proper
motions or radial velocities, which are their three-dimensional space velocities projected onto
the plane of the sky and along the line of sight, respectively. When such information is available,
we use it to set the prior probability of cluster membership for each star. When it is unavailable,
we simply use the likely fraction of cluster stars in the dataset for all prior probabilities of cluster
membership.

For each of the three models that we consider for the IFMR, we use flat priors on α over
the region such that the parameterized IFMR is monotonically increasing. Thus, we assume
that more massive main sequence stars evolve into more massive white dwarfs, which is well
supported by our understanding of stellar evolution (Salaris et al., 2009).

Our joint prior distribution on (Θ,α,M ,R,Z) is specified so that

p(Θ,α,M ,R,Z) = p(Θ)p(α)p(M ,R,Z). (9)

We denote the prior probability of cluster membership for star i, p(Zi = 1), by πi and note that
given that Zi = 0, the conditional posterior distribution p(Mi, Ri|Xi, Zi = 0), is the same as the
conditional prior distribution p(Mi, Ri|Zi = 0) because the computer models are not involved
in the likelihood function for field stars. We specify a prior distribution for Mi and Ri that
depends on Zi partially because Xi is uninformative for the stellar masses for field stars so that
a proper prior distribution must be used for the masses given Zi = 0 (but not necessarily given
Zi = 1) and partially for computational reasons; see van Dyk et al. (2009). As discussed in the
next section, these choices will simplify our computational techniques.

3 Statistical Computation

There are three stellar parameters per star, four cluster parameters, and two or three evolution
parameters (depending on the choice of IFMR) in model (8), for a total of 3N+4+2 or 3N+4+3
unknown parameters. A typical cluster that we analyze has at least N = 150 stars, yielding a
posterior distribution on hundreds of dimensions.

Because of the high number of parameters and because the computer evolution models are
not available in closed form, this model defies many standard computational techniques. DeGen-
naro et al. (2009) and van Dyk et al. (2009) rely on MCMC with dynamic reparameterization.
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That is, a Metropolis-within-Gibbs sampler is implemented entirely sequentially: first the cluster
indicators are updated, then the primary masses, mass ratios, and finally each cluster param-
eter, one parameter at a time conditioning on the current values of all the other parameters.
The dynamic reparameterization is based on a sequence of initial runs that explore the posterior
correlations among the parameters and automatically derive transformations to reduce the cor-
relations and improve convergence. This strategy has been successful with simulated data and
with several observed clusters, including the Hyades (DeGennaro et al., 2009) and NCG 2477
(Jeffery et al., 2011). However, some datasets frustrate this approach due to a combination of
high posterior correlations and multiple modes. The mixture model for cluster membership can
be particularly challenging computationally because local posterior modes can correspond to
particular configurations of stars selected as cluster members. Once the MCMC sampler arrives
in one of these modes, it may be all but impossible to escape and select a different cluster
membership configuration, even if the latter would yield a higher joint posterior density.

To address these MCMC convergence issues we collapse the parameter space (Liu et al., 1995)
by marginalizing over the parameter vectors M , R, and Z, which for most stellar evolution
analyses are nuisance parameters. The marginal posterior distribution of Θ and α is

p(Θ,α |X) =

∫
· · ·
∫ (∑

Z1

· · ·
∑
ZN

p(Θ,α,M ,R,Z |X)

)
dMdR (10)

∝ p(Θ,α)

N∏
i=1

[
πi

∫ ∫
pclust(Xi |Mi, Ri,Θ,α)pclust(Mi, Ri)dMidRi + (1− πi)pfield(Xi)

]
,

(11)

where pclust(Xi | Mi, Ri,Θ,α) = p(Xi | Mi, Ri,Θ,α, Zi = 1) is the likelihood function for
a cluster star and pclust(Mi, Ri) = p(Mi, Ri | Zi = 1) is the prior distribution of (Mi, Ri) for
a cluster star. The functional form of (11) takes advantage of the simplifications in the prior
distribution described in Section 2.4. If the integral in (11) can be evaluated, the dimension of
the posterior distribution is reduced from hundreds to just six or seven. This integral cannot
be evaluated analytically because pclust(Xi | Mi, Ri,Θ,α) depends on Mi and Ri through the
computer stellar evolution models. However, numerical integration is possible.

Conditional independence allows us to reduce the 2N -dimensional integration and N sum-
mations in (10) to the product of N 2-dimensional integrations in (11). We take advantage of
this factorization of the marginal posterior distribution by parallelizing the evaluation of the
N conditionally independent factors. Each processor can receive a subset of the N stars and
return the appropriate integral evaluations. For numerical integration, we evaluate the poste-
rior densitity over a grid of values of the primary and secondary masses and use a reliable but
computationally expensive Riemann sum approximation. The grid spacing is a refinement of
the mass spacing in the tabulated MS/RG models,3 so that for instance the grid spacing is
extremely fine over the red giant initial mass range, since for these stars small changes in mass
lead to large changes in predicted photometry.

The parameter vector (Θ,α) is six- or seven-dimensional. We implement a Metropolis
algorithm to update all of these parameters together in a single jump within each iteration. We
divide the burn-in period in half, saving draws during the second half to estimate the posterior
covariances. After the burn-in, we use a multivariate t proposal distribution with 6 degrees of
freedom, centered at the current value of (Θ,α) and with scale equal to the estimated covariance
matrix multiplied by 2.42/6 (Gelman et al., 1996), which tends to work well in practice.

Given a set of draws {(Θ(l),α(l))}Ll=1 from the marginal posterior distribution, we can com-
pute cluster membership probabilities and draw initial mass parameters for each white dwarf.

3Instead of solving the coupled differential equations for MS/RG evolution at each parameter value, which would
be computationally prohibitive, we interpolate among tabulated values computed in advance.
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We perform both of these steps by evaluating each conditional posterior distribution on a grid.
In particular, we compute the conditional probability that white dwarf i is a cluster member as

Pr(Z
(l)
i = 1 | Θ(l),α(l),X) =

πi
∫
pclust(Xi |Mi,Θ

(l),α(l))pclust(Mi)dMi

(1− πi)pfield(Xi) + πi
∫
pclust(Xi |Mi,Θ

(l),α(l))pclust(Mi)dMi

where we have dropped the dependence on Ri because we only implement this step for white
dwarfs, which are all modeled as single star systems (Ri = 0). We use the Rao-Blackwellized
estimate of the marginal posterior probability of cluster membership,

P̂r(Zi = 1 |X) =
1

L

L∑
l=1

Pr(Z
(l)
i = 1 | Θ(l),α(l),X).

Finally, we sample initial masses M
(l)
i from their conditional posterior distribution p(M

(l)
i |

Z(l) = 1,Θ(l),α(l),X) and compute final masses M
(l)
WD,i as

M
(l)
WD,i = f(M

(l)
i ,α(l)),

where f is the IFMR model.

4 Numerical Results

4.1 Simulations

As an initial test of our method, we simulated and fitted eight stellar clusters under our model.
Each cluster was simulated with solar metallicity (θ[Fe/H] = 0), no absorption (θAV

= 0), and
distance equal to 1 kiloparsec, (θm−MV

= 10 magnitudes). We use a distance of 1 kpc because
many clusters of interest are within this distance. The stellar masses were generated from the
prior distribution for mass, which is a representation of the population distribution of stellar
masses in our Galaxy. The clusters were generated with no field star contamination and all stars
were generated as single-star systems. The ages of the clusters varied between approximately
250 million years and 4 billion years (see Figure 3). This range was chosen because it covers
most of the age range of clusters we hope to analyze. The age parameter is the most important
to vary because it affects the initial and final masses of the stars that are currently white dwarfs.
The older the cluster, the less massive were the typical progenitor stars of the current white
dwarfs. Thus, varying age allows us to explore a wider range of the IFMR. Because stellar
masses were generated from the prior distribution, a random number of simulated stars would
not have sufficient mass to be detectable when compared with the realistic threshold signal-to-
noise ratio and were therefore dropped from the simulated cluster. Simulating a total of 600
stars resulted in each of the eight clusters having about 150 detectable stars, a typical size for an
actual observed cluster. The first set of simulations was run using the MS/RG computer model
of Yi et al. (2001), the white dwarf cooling model of Wood (1992), the white dwarf atmosphere
model of Bergeron et al. (1995), and the IFMR of Williams et al. (2009):

MWD = 0.339 + 0.129Minit,

so the true simulated IFMR was linear. For each of the eight simulations, we generated three
magnitudes, corresponding to the filters B (blue), V (visual), and I (infrared) filters.

We fit each of the eight simulated clusters using our Bayesian MCMC code, using all of
the same model components as in the simulation models, except we fit the parameters of the
linear IFMR instead of fixing them at the Williams et al. (2009) values. Each star was given
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a 99% prior probability of cluster membership, and the model allowed MS/RG binary systems.
The prior distributions for θ[Fe/H], θm−MV

, and θAV
were centered at the true values used in

simulating data, with variances 0.09, 0.04, and 0.01, respectively, which are typical values of the
prior variances for clusters we analyze.

The MCMC fitting code behaved well for all eight clusters. We ran one chain for 25000
iterations for each cluster, saving every 25th iteration. Inspection of the time series and au-
tocorrelation functions showed that the chains converged quickly to their apparent stationary
distributions. Results from the simulations appear in the first row of Figure 3, which plots the
true initial mass M (left column) and the true final mass MWD (right column), both against
their 95% central posterior intervals for each of the white dwarfs generated in the eight simula-
tions. As is evident in Figure 3, our method performs extremely well—at least when computer
models for stellar evolution are correctly specified. The posterior distributions of the initial and
final masses are all very close to their true values.

One of the primary goals of this article is to investigate the effects of model misspecification
and to propose model diagnostics for the IFMR. As an initial test, we investigate the effect
of using one MS/RG computer model for cluster simulation and another for model fitting. In
particular we exactly replicated the simulation study illustrated in the first row of Figure 3
except that the clusters were simulated using the MS/RG computer model of Dotter et al.
(2008); the model of Yi et al. (2001) was still used in model fitting. The results appear in the
second row of Figure 3. Conversely, the third row of Figure 3 shows the results when the model
of Yi et al. (2001) was used for simulations and that of Dotter et al. (2008) was used for model
fitting. Figure 3 clearly shows the systematic error in the fitted masses resulting from model
misspecification. This is troubling since both of these computer models are viewed as viable by
the scientific community. Of course ultimately we are interested in the bias introduced by the
use of our models in place of the actual physical processes that govern the birth, evolution, and
transformations of stars. Insofar as we believe that the range of available models has a broad
enough span to include these physical processes, we may be willing to accept that the magnitude
of the actual systematic error is on the order of the errors we see in Figure 3. This, however, may
be hard to justify given the overlap among the physical assumptions and numerical techniques
used by the computer models. There are likely correlations among the models and the actual
systematic error could quite possibly be larger than what is illustrated in rows two and three of
Figure 3.

Nonetheless, by quantifying these systematic errors we illustrate the challenges involved with
these models for the stellar model creators and users. Insofar as we can precisely quantify the
effect of the choice of MS/RG computer model on the IFMR, we not only provide the best
current estimate of the IFMR, but also point the way toward possible improvement in the
underlying computer models. For example, if external data can be used to rule out a fitted
statistical model, it will correspondingly call into question the computer model upon which that
statistical model was based.

4.2 Analyses of Observed Star Clusters

In this section we apply our method to three stellar clusters in order to fit the IFMR. Our aim
is to provide a more coherent analysis than has been conducted to date and to evaluate existing
models for the IFMR. When comparing our fits with those in the literature it is important
to bear in mind that we use only two or three photometric magnitudes per star, whereas the
existing models are based on much more costly high resolution spectra that can be viewed as
hundreds of photometric magnitudes per star. Despite the fact that our data is coarser by a
factor of hundreds, our results agree very well with existing models for the IFMR and we are
able to provide principled measures of the uncertainty in our fitted model. Because we are
interested in the shape of the IFMR over a wide range of initial mass (M) and believe that a
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Figure 3: Results of a simulation study designed to test the recovery of parameters from clusters
simulated under the model. In the top row, both simulations and model fitting were performed
using the MS/RG computer model of Yi et al. (2001) and the linear IFMR of Williams et al. (2009).
We fit the intercept and slope of the linear IFMR. The panels compare the true initial mass (left
column) and the true final mass (right column) with 95% posterior intervals of these quantities
for each white dwarf generated in the simulation study. In the middle row, the eight clusters were
simulated using the Dotter et al. (2008) model and fitted with the Yi et al. (2001) model. The roles
of the two MS/RG computer models were reversed for the bottom row.
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Figure 4: Results for NGC 2477, the Hyades, and M35 white dwarfs, using the Yi et al. (2001)
and Dotter et al. (2008) models (left and right panels, respectively). M35 does not appear in the
right panel because the Dotter et al. (2008) models do not have predictions for clusters as young
as M35. Contours are 95% highest posterior density regions of each white dwarf’s joint initial and
final mass posterior distribution. The IFMR model enforces linearity within each cluster, but not
between clusters.

simple functional form may only be appropriate locally, we chose clusters of varying age with
the hope of getting a hint of a global fit for the IFMR. (Recall that the younger the cluster, the
more massive the progenitor stars that have evolved into the current bright white dwarfs.) We
detail the analysis of each of the three clusters in turn, starting with NGC 2477, followed by
the nearby and well studied Hyades, and conclude with the young cluster known as M35.

NGC 2477 At approximately one billion years old, NGC 2477 is a moderately old cluster
(Jeffery et al., 2011). It is composed of hundreds of stars, and in the night sky it is about the
size of the full moon. We analyze the dataset compiled in Jeffery et al. (2011), which consists
of observations in the V (visual) and I (infrared) photometric filters. Because the MS/RG
computer models tend to do a poor job at fitting faint main sequence stars (see the discussion
in DeGennaro et al. (2009)), we removed from our dataset MS/RG stars fainter than 15.5
magnitudes in the V band. The dataset then contained 7 white dwarfs and 223 MS/RG stars. We
use the default linear IFMR and prior distributions described in Section 2.4 for the cluster age,
IFMR intercept, and IFMR slope and fix the other three cluster parameters at the mean values
of the prior distributions used in Jeffery et al. (2011), namely θ[Fe/H] = −0.1, θm−MV

= 11.46
magnitudes, and θAV

= 0.75.4 By fixing the values for these three parameters, we avoid a full
study of the posterior distribution of this cluster’s parameters, which is affected by variations
in the amount of absorption along the line-of-sight to different stars, which astronomers call
differential reddening. We expect this component of the analysis to be presented in a future
article in an astronomy journal.

4These values are also close to the posterior inferences for these parameters in Jeffery et al. (2011).
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The MCMC code was run for 30000 iterations, discarding the first 5000 iterations as burn-
in, for two separate chains with different starting values. (We followed this same procedure for
the Hyades and M35 as well.) Inspection of the time series and autocorrelation plots indicated
that the chains converged quickly to their apparent stationary distributions. With 8 cores, the
MCMC code took approximately 49 hours to run using the Dotter et al. (2008) models; with
16 cores, it took 19.5 hours using the Yi et al. (2001) models. Results using the Yi et al. (2001)
and Dotter et al. (2008) computer models are shown in the first and second panel of Figure 4,
respectively. The blue solid contours correspond to 95% highest posterior density regions of the
joint posterior distribution of the initial and final masses of each white dwarf in the dataset.
For comparison, the IFMRs from Weidemann (2000), Williams et al. (2009), and Salaris et al.
(2009) are displayed as grey lines of varying line type. The impact of the choice of MS/RG
model can be seen by comparing the solid blue contours in the left and right panels of Figure 4,
corresponding to the models of Yi et al. (2001) and of Dotter et al. (2008). The contours plotted
with different colors correspond to other clusters and are discussed below.

The initial masses of the NGC 2477 white dwarfs appear to span a fairly large range, which
makes it more difficult to support the default linear IFMR for this cluster. However, much of
the apparent age range is due to large uncertainties in the initial mass of the high mass white
dwarfs, a common phenomenon in IFMR studies (see Salaris et al. (2009) for more examples).
To test the sensitivity of our inferences for the NGC 2477 white dwarfs to the linear IFMR, we
also fit the piecewise linear IFMR and a quadratic IFMR; see Figure 5. For the piecewise linear
IFMR, we fixed one breakpoint at 4 solar masses. As is evident in Figure 5, the initial and final
masses posterior distributions are somewhat sensitive to the choice of IFMR model. However,
in the context of the posterior distributions for the other clusters (Figure 4), the results from
the three IFMR models are qualitatively similar. Under any of the three IFMRs, the high mass
NGC 2477 white dwarfs appear to agree more with the Salaris et al. (2009) and Weidemann
(2000) IFMRs than with the Williams et al. (2009) IFMR, but there is enough uncertainty to
prevent any definitive statement.

The Hyades The Hyades is the nearest star cluster to our Solar System and is visible to
the unaided eye as the nose of Taurus the Bull. As one of the best studied clusters in the sky,
it is ideal for checking the results of our method against established knowledge. The Hyades is
the only cluster fit in DeGennaro et al. (2009) and van Dyk et al. (2009). Here we extend their
results by fitting the IFMR within a single coherent analysis.

The dataset includes U (ultraviolet), B (blue), and V (visual) photometry from the General
Catalogue of Photometric Data (Mermilliod et al., 1997). As in our analysis of NGC 2477,
we removed the faintest main sequence stars, using a cut-off of 4.5 magnitudes in the V band,
leaving 93 MS/RG stars and 6 white dwarf stars. We fit our model using the MS/RG computer
models of Yi et al. (2001) and Dotter et al. (2008) with a linear IFMR to the Hyades data. The
prior distributions, except where noted below, were

θ[Fe/H] ∼ N(0.07, 0.052),

θm−MV
∼ N(0, 0.032), and

θAV
∼ TN(0.009, 0.0062; 0),

where the three parameters are a priori independent, with TN(µ, σ2; 0) representing a Gaussian
distribution with mean µ and variance σ2, truncated to be greater than 0. The prior distribu-
tions were chosen to reflect astronomers’ knowledge of the Hyades, with somewhat conservative
uncertainties. See the Appendix for a discussion of why the prior on θm−MV

is centered at 0.
Figure 4 summarizes the resulting posterior distributions for the initial and final masses from
each separate analysis of the Hyades. Typical runtimes were 6.6 hours with the Dotter et al.
(2008) models and 3.7 hours with the Yi et al. (2001) models, each using 16 cores.
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Figure 5: Initial and final mass inferences for NGC 2477 white dwarfs under three different models
for the IFMR. The blue contours corresponding to the linear IFMR are the same in the top and
bottom rows.

Ultra-precise distance estimates obtained with the Hipparcos Satellite are available for the
Hyades (Perryman et al., 1997). Although such distance measurements are not available for a
typical cluster, they do allow us to check the fitted value of θm−MV

we obtain for the Hyades.
While the estimate of θm−MV

fit using the Dotter et al. (2008) model matched the Hipparcos
value well, that obtained with Yi et al. (2001) is lower than expected. To address this we reran
both models with θm−MV

fixed at 0.0, corresponding to an adjusted distance of 10 parsecs.
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(See the Appendix and DeGennaro (2009) for more on the distance-correction procedure.) In
Figure 6 we compare the resulting posterior distribution of θage under the two MS/RG models.
The solid red curve corresponds to the MS/RG model of Dotter et al. (2008) and the solid black
to that of Yi et al. (2001), without the constraint on θm−MV

. The color-coded dashed lines give
the posterior distributions for θage with θm−MV

fixed at 0. The posterior distribution for θage is
multimodal in all four cases and in three cases is younger than the generally accepted value of
the Hyades age, 625±50 million years (Perryman et al., 1998), shaded in gray in Figure 6. As
expected, conditioning on the distance had little effect under the model of Dotter et al. (2008)
but the effect is rather pronounced under the model of Yi et al. (2001).

The two models yield somewhat discrepant estimates of θage. In this case, the model of
Dotter et al. (2008) appears more trustworthy because it was able to match the external and
reliable estimate of θm−MV

obtained with Hipparcos. Although its estimate of θage is somewhat
less than that obtained by Perryman et al. (1998) it is based on more, newer, and more precise
data and models. The uncertainty in the Perryman et al. (1998) estimate was obtained by
running a progenitor computer model with different input ages and with other parameter values
fixed at their fitted values. The resulting expected magnitudes were then plotted and compared
with the observed magnitudes. Visual inspection of this plot was used to propose an initial
measure of uncertainty that was then inflated based on intuition about the magnitude of other
sources of error in the models and in data processing. This stands in stark contrast to our
approach that delivers principled estimates of uncertainty under a coherent statistical model.

The joint posterior distributions of the white dwarf initial and final masses conditioning on
θm−MV

= 0 appear in Figure 7. Comparing the Hyades fits in Figures 4 and 7 shows that fixing
θm−MV

results in much better agreement in terms of the posterior distribution of the initial and
final masses between the two MS/RG computer models (despite their discrepancy in terms of
θage). Given this improvement, we fixed θm−MV

in all our final analyses of the Hyades.
Contrary to the assumption in (8), the errors in different bands are not independent for this

data set. This issue is unique to the Hyades, which occupies such a large area of the sky that
the data were collected one star at a time. That is, each star was observed through three filters
before moving on to the next star, likely introducing correlations in photometric errors across
filters. To address the possibility of correlated errors in the Hyades, we also fit this data set
using a multivariate Student’s t distribution with 3 degrees of freedom, centered at µi and with
scale Σi, for the cluster star component of the likelihood. This can be viewed as first drawing
a covariance matrix V i from an inverted Wishart distribution W−1(Σi, 5) with expectation
E(V i) = 3Σi, and then conditional on V i, drawing observations Xi | V i ∼ N(µi,V i). Thus,
in addition to treating observational errors conservatively, this model allows some flexibility to
fit correlations among filters. As seen in Figure 8, while the inferences are sensitive to the choice
of likelihood, our substantive conclusions regarding the agreement between the Hyades white
dwarfs and previously published IFMRs change very little.

M35 (NGC 2168) M35 is a young cluster, and hence the progenitors of all of its white
dwarfs must have had relatively high initial masses. (While the M35 results appear in the
middle of the initial mass range plotted in Figure 4, this range is considered “high mass” by
astronomers.) To analyze this cluster, we combined the white dwarf data of Williams et al.
(2009) with the upper main sequence data from Sung and Bessell (1999). For both datasets,
we used the U (ultraviolet), B (blue), and V (visual) photometric filters. Williams et al. (2009)
provide a thorough study of the white dwarfs, including spectroscopic observations of 14 of
them. We analyze all of these white dwarfs except LAWDS 11 because its cluster membership
is in doubt (see Williams et al., 2009). For the main sequence data, we included those stars
that Sung and Bessell (1999) were able to match with the proper-motion study of McNamara
and Sekiguchi (1986), which yields probabilities of cluster membership for each star system that
we use as prior probabilities in our statistical model. We set the prior probabilities of cluster

20



0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

age (Myr)

p
o
s
te

ri
o
r 

d
e
n
s
it
y

450 500 550 600 650 700 750 800

Dotter

Dotter, fixed dist

Yi

Yi, fixed dist

Figure 6: Sensitivity of the Hyades cluster age inferences to fixing the distance modulus. “Dotter,
fixed dist” and “Yi, fixed dist” are results from fitting the remaining parameters while fixing the
adjusted cluster distance to 10.0 parsecs. The generally accepted age of the Hyades along with its
somewhat questionable uncertainties (Perryman et al., 1998) are shown in gray.

2 4 6 8

0
.6

0
.8

1
.0

1
.2

Initial Mass (MSun)

W
h

it
e

 D
w

a
rf

 M
a

s
s
 (

M
S

u
n
)

Yi et al. models

NGC 2477

Hyades

M35 (NGC 2168)

Weidemann 2000

Williams et al 2009

Salaris et al 2009 (I)

Salaris et al 2009 (II)

2 4 6 8

0
.6

0
.8

1
.0

1
.2

Initial Mass (MSun)

W
h

it
e

 D
w

a
rf

 M
a

s
s
 (

M
S

u
n
)

Dotter et al. models

NGC 2477

Hyades

Figure 7: An alternative version of Figure 4, with initial-final mass posterior distributions for the
Hyades computed conditional on its adjusted distance, θm−MV

= 0, i.e., 10 parsecs.

21



2 4 6 8

0
.6

0
.8

1
.0

1
.2

Initial Mass (MSun)

W
h

it
e

 D
w

a
rf

 M
a

s
s
 (

M
S

u
n
)

Yi et al. models

Gaussian likelihood

t likelihood

Weidemann 2000

Williams et al 2009

Salaris et al 2009 (I)

Salaris et al 2009 (II)

2 4 6 8

0
.6

0
.8

1
.0

1
.2

Initial Mass (MSun)

W
h

it
e

 D
w

a
rf

 M
a

s
s
 (

M
S

u
n
)

Dotter et al. models

Gaussian likelihood

t likelihood

Figure 8: Sensitivity of Hyades white dwarf initial and final masses to the choice of likelihood. The
solid contours show the results from the likelihood in (8). The dashed contours are the results from
replacing the multivariate Gaussian cluster star component of the likelihood with a multivariate t
distribution with 3 degrees of freedom.

membership equal to one for all of the white dwarfs included in our dataset. Allowing the
white dwarfs to become field stars resulted in numerical difficulties. For cluster parameter prior
distributions, we used

θ[Fe/H] ∼ N(−0.2, 0.32),

θm−MV
∼ N(10.3, 0.12), and

θAV
∼ TN(0.682, 0.12; 0),

which are the values adopted in Williams et al. (2009), with a more conservative uncertainty on
θ[Fe/H].

For M35, we cannot compare the results of the different MS/RG models because, at approxi-
mately 200 million years, M35 is too young for the Dotter et al. (2008) models. Results using the
Yi et al. (2001) models are displayed in Figures 4 and 7. The MCMC code took approximately
10.2 hours to run, using 16 cores. Our results for M35 agree remarkably well with the IFMR
of Williams et al. (2009), while diverging from the results for NGC 2477 and from the IFMRs
of Weidemann (2000) and Salaris et al. (2009). This discrepancey may be due to concerns with
the NGC 2477 white dwarf data or possible cluster differences not accounted for by the IFMR.
See Section 5 for discussion.

While it is perhaps unsurprising that our M35 results agree with the IFMR of Williams et al.
(2009) because we are using observations of the same white dwarfs as Williams et al. (2009) to
constrain this high-mass portion of the IFMR, we have only used their photometric magnitudes
and cluster membership information, whereas their work determined white dwarf final masses
spectroscopically. That is, our method of coherently linking the physical computer models
for different stages of stellar evolution agrees with results that rely on both additional data
and additional physical models. This is a powerful demonstration of the value that principled
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modeling of computer models can add: we can obtain sensible results, even with less data than
traditional methods may demand. We interpret this as empirical evidence that our requirement
of coherence among the model assumptions at different evolutionary stages allows us to extract
more information out of the physical models than would be possible by performing separate
analyses of the different evolutionary stages and using ad hoc methods to combine them.

5 Conclusion

Our ultimate goal for the IFMR is to model the conditional distribution of the final mass given
the initial mass in a robust non-parametric manner, perhaps including other covariates that
affect the conditional distribution such as measures of the star’s composition. In this first
analysis we focus on the simple deterministic linear model given in (6). Our hope is that this
linear form will suffice over the relatively narrow ranges of the initial mass that are typically
observed in a single cluster and that by analyzing a number of clusters of differing ages we can
begin to piece together the conditional distribution, or more simply, the overall deterministic
relationship. Unfortunately the situation is a bit more complicated. The disagreement that we
see between our analysis of the Hyades and M35 on the one hand and of NGC 2477 on the other
mirrors the disagreement between the published IFMR of Williams et al. (2009) and those of
Weidemann (2000), and Salaris et al. (2009). NGC 2477 poses particular difficulties because we
know less about its white dwarfs than we do about those of the Hyades or M35. In particular
the cluster membership and atmosphere type (hydrogen versus helium dominated; see Footnote
2) are much better established for the Hyades and M35 white dwarfs. Thus one explanation for
the discrepancy is that one of the supposed NGC 2477 white dwarfs is actually a field star or
has a helium dominated atmosphere. Another possibility is that there may be peculiarities of
the particular clusters (e.g., metallicity or other measures of composition) that affect the IFMR
and that the IFMR parameters should be allowed to vary as random effects between clusters.

Ideally, the analyses from multiple clusters could be combined into a single analysis of a
hierarchical model. This would allow for shrinkage of the IFMR parameters and the sharing of
information for the IFMR across clusters. Furthermore, as pointed out by a reviewer, there may
also be an advantage to embedding both the Dotter et al. (2008) and Yi et al. (2001) components
in a larger statistical model that accounts for uncertainty in the underlying deterministic com-
puter models. In either case, the appropriate formulation and parameterization requires careful
intermediate analyses of the within-cluster IFMR and how the IFMR varies among clusters. We
hope that the methods proposed in this article will help in the formulation of such an omnibus
model.

Acknowledgments

We are grateful to two anonymous reviewers and the review editor for many helpful comments
that greatly improved this paper. Professors van Dyk and von Hippel’s research was supported
in part by NASA under grant 10-ADAP10-0076. In addition Professor van Dyk was supported
in part by NSF grant DMS-09-07522, by a British Royal Society Wolfson Research Merit Award,
and by the STFC (UK). N. Stein was supported in part by NSF grant DMS-09-07185. We are
grateful to Kurtis Williams for helpful discussions and for providing us with M35 white dwarf
data. The computations in this article were run on the Odyssey cluster supported by the FAS
Science Division Research Computing Group at Harvard University.

23



Appendix

Because the stars in a cluster are spatially near each other, one of the assumptions we make
is that their distances from us are all the same. Thus θm−MV

need not be subscripted by i.
Of course, the distances to individual stars within a cluster are not identical, yet we typically
assume that any such differences are negligible relative to the overall distance from our Solar
System. Because the Hyades is so close to us, however, the variation in the distances from
the Solar System to the individual cluster members is an appreciable fraction (approximately
20-40%) of the distance from the Solar System to the center of the cluster (DeGennaro, 2009).
Thus, we cannot assume that all of the distances are equal. Stars that are closer to us appear
too bright and stars that are farther away appear too dim when compared to the predictions of
the stellar evolution computer models. To address this issue, DeGennaro (2009) adjusted the
magnitudes of each star for its distance using the ultra-precise distance estimates obtained with
the Hipparcos Satellite (Perryman et al., 1997). In particular, the differences in the perceived
brightness that the various individual distances would imply were computed and the observed
magnitudes were adjusted for these differences.

Rather than offsetting each individual Hyades star to the distance of the cluster center (46.34
± 0.27 pc or θm−MV

= 3.33 ± 0.01, Perryman et al. (1998)), each Hyades star was offset to a
nominal distance modulus, θm−MV

= 0.0, equivalent to 10 pc. This was partially done for con-
venience and partially because Perryman et al. (1998) measured the cluster center distance from
Hipparcos trigonometric parallaxes whereas DeGennaro (2009) determined individual stellar dis-
tances from Hipparcos proper motions via the moving cluster method. This allowed DeGennaro
(2009) to avoid adding in the small uncertainty in the trigonometric parallax distances as well
as including any possible unknown systematic from these data.
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