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The relationship between numerical finite-amplitude equilibrium solutions of the full
Navier-Stokes equations and nonlinear solutions arising from a high Reynolds number
asymptotic analysis is discussed for a Tollmien-Schlichting wave type two-dimensional
vortical flow structure. The specific flow chosen for this purpose is that which arises from
the mutual axial sliding of co-axial cylinders for which nonlinear axisymmetric travelling-
wave solutions have been discovered recently by Deguchi & Nagata (J. Fluid Mech., vol.
678, 2011, pp. 156–178). We continue this solution branch to a Reynolds number R = 108

and confirm that the behaviour of its so-called lower branch solutions, which typically
produce a smaller modification to the laminar state than the other solution branches,
quantitatively agrees with the axisymmetric asymptotic theory developed in this paper.
We further find that this asymptotic structure breaks down when the disturbance wave-
length is comparable with R. The new structure which replaces it is investigated and the
governing equations are derived and solved. The flow visualization of the resultant solu-
tions reveals that they possess a streamwise localized structure, with the trend agreeing
qualitatively with full Navier-Stokes solutions for relatively long wavelength disturbances.

1. Introduction

It is known that laminar-turbulent transition in shear flows involves two types of
distinct vortical structure. The first of these structures arises by consideration of the
linear stability of basic solutions to the Navier-Stokes equations. As Tollmien (1929) and
Schlichting (1933) found for boundary-layer flow, an infinitesimally small growing mode
typically has a two-dimensional orthogonally-aligned roll pattern. In contrast, experi-
mental results and direct Navier-Stokes simulations (e.g. Davies & White 1928, Nishioka
et al. 1975 and Lemoult et al. 2012 for experiments, Orszag & Kells 1980, Henning-
son et al. 1987 and Tsukahara et al. 2005 for simulations) indicate that shear flows can
lose stability to nonlinear three-dimensional streamwise roll structures at much lower
Reynolds numbers than those associated with the two-dimensional linear disturbances
mentioned above. In addition, there exists anomalistic flows which do not exhibit any
linear instability: for example plane Couette flow, pipe flow and square duct flow.
This apparent conflict between theory and experiment has been resolved by the com-
putation of three-dimensional finite-amplitude solutions of the Navier-Stokes equations
(e.g. Nagata 1990 and Clever & Busse 1997 for plane Couette flow, Faisst & Eckhardt
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2003 and Wedin & Kerswell 2004 for pipe flow, Waleffe 1998 for plane Poiseuille flow).
These nonlinear states possess a roll-streak coherent structure and are disconnected from
any linear instability, appearing abruptly by means of a saddle-node bifurcation at the
value of Reynolds number, R, at which the corresponding flow dynamics first begin to
show instability according to experiments or unsteady Navier-Stokes computations. Con-
trolled Navier-Stokes simulations (e.g. Itano & Toh 2001 and Skufca, Yorke & Eckhardt
2006) show that these solutions are situated at the edge of the laminar-turbulent bound-
ary and play a ‘gatekeeper’ role in the transition dynamics. However, it should be noted
that these investigations are undertaken far away from the linearly unstable parame-
ter region. Therefore, such a three-dimensional instability could ‘pass the torch’ to a
Tollmien-Schlichting type disturbance as the critical Reynolds number for linear stabil-
ity is approached. Consequently, two-dimensional finite-amplitude solutions bifurcating
from the linear neutral point could play a crucial role when we consider laminar-turbulent
transition control at high Reynolds number.

One of the primary aims of this paper is to attempt to describe the structure of the
nonlinear travelling-wave solutions using high Reynolds number asymptotic theory. The
theory that we outline here in section 5 involves the presence of a strongly nonlinear
equilibrium critical layer in which viscosity only plays a higher order role. The domi-
nant physical balances are similar to those proposed in studies by Benney & Bergeron
(1969) and Davis (1969), and the properties of such critical layers were investigated fur-
ther by Haberman (1972), Brown & Stewartson (1978), Smith & Bodonyi (1982a,b) and
Bodonyi, Smith & Gajjar (1983). One of the key features which sustains the asymptotic
structure is the jump in vorticity across the layer, which acts as a forcing of the mean-flow
distortion in the bulk of the flow outside the critical layer. Although the properties of
these critical layers and the associated surrounding flow have been known for some time,
the delicate structure of the overall solution, with its asymptotically thin internal and
boundary layers, has proved difficult to detect in full Navier-Stokes computations thus
far. In this paper, by explicitly seeking nonlinear travelling-wave solutions of the Navier-
Stokes equations, and using recent advances in computing power to allow us to compute
solutions at Reynolds numbers in excess of 108, we are able, for the first time, to quantita-
tively compare the flow structures present in full Navier-Stokes computations with those
resulting from an asymptotic analysis. This comparison of full finite-amplitude solutions
and asymptotic analysis is motivated in part by the work of Hall & Sherwin (2010), who
recently successfully linked the asymptotic behaviour of the three-dimensional solutions
described above to the high Reynolds number vortex-wave interaction theory developed
by Hall & Smith (1991). In contrast to vortex-wave interaction theory, where the flow
must be necessarily three-dimensional, the asymptotic theory described in this paper is
derived under the assumption of two-dimensionality, so that the disturbances resemble
Tollmien-Schlichting waves, i.e. they are invariant under any translation in one specific
direction.

If we consider a one-parameter family of flows which exhibit linear instability below a
critical value of that parameter, it is often found that, as the critical value is approached,
the linearly unstable region recedes to R =∞ with the wavenumber scaling as O(R−1),
(e.g. see Cowley & Smith (1985) for plane Couette-Poiseuille flow and Gittler (1993)
for the corresponding generalization to a cylindrical geometry). One of our interests in
this paper concerns the fully nonlinear version of this long-wave cut-off. We find that
the two-dimensional asymptotic structure is broken at the long-wave limit and a new
structure emerges. In the new regime all streamwise Fourier modes become leading order
and we will see that the solution develops a strongly streamwise-localized structure.
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Corresponding work carried out for vortex-wave interaction theory has been recently
described in Deguchi, Hall & Walton (2013).

In this study, the specific flow we consider is that where the fluid motion is produced
by the mutual axial sliding motion of co-axial cylinders of circular cross-section, and the
fluid occupies the annular region between the cylinders. We refer to this flow as annular
sliding Couette flow, and the basic velocity profile is given in equation (2.2) below.
There are three reasons for the selection of annular sliding Couette flow: (i) there exists
an axisymmetric linear instability if the radius ratio is less than 0.1415 (Gittler 1993);
(ii) axisymmetric finite-amplitude travelling-wave solutions bifurcating from this linear
instability have been found at very high Reynolds number by Deguchi & Nagata (2011,
hereinafter referred to as DN11); (iii) asymptotic theory has already been developed for
annular Couette-Poiseuille flow, which is the non-zero axial pressure gradient case of
annular sliding Couette flow, by Walton (2003, 2004 and 2005). In addition, comparisons
can be made with plane Couette flow in the limit as the radius ratio tends to unity. The
flow has many industrial and medical applications especially when extended to annular
Couette-Poiseuille flow (for details see the introduction of DN11) while the zero pressure
gradient state has some relevance to the boundary layer flow along a cylinder (e.g. Tutty
2008 and Cipolla & Keith 2003): see section 6 of Gittler (1993). Despite these important
applications, experimental investigations of annular flow with a sliding inner core can
only found in Shands et al. (1980) and Frei et al. (2000).

Although our study concentrates on annular sliding Couette flow, the story presented
in the rest of the paper would proceed along similar lines for any Tollmien-Schlichting
wave type two-dimensional instability, e.g. the two-dimensional finite-amplitude solutions
for plane Couette-Poiseuille flow (Cherhabili & Ehrenstein 1995) and annular Couette-
Poiseuille flow (Wong & Walton 2012).

In the next section we begin by formulating annular sliding Couette flow mathemat-
ically. Section 3 is devoted to an energy analysis of the flow which proves useful when
checking the reliability of our numerically-generated solution branches. The numerical
method used to obtain axisymmetric travelling waves at finite Reynolds number is pre-
sented in section 4 and the corresponding high Reynolds number asymptotic theory is
given in section 5. The results obtained using these two approaches are compared quan-
titatively in section 6, while the small wavenumber limit of our solutions is investigated
in section 7. Finally, in section 8, we summarize our findings and draw some conclusions.

2. Formulation of the problem

We consider an incompressible viscous fluid flow in the annular region between in-
finitely long co-axial cylinders. Annular sliding Couette flow is assumed throughout this
paper, i.e. the flow is driven by the mutual motion of the cylinders with no axial pressure
gradient applied. We will assume that the motion is axisymmetric and axially periodic.
The length, velocity and density scales are chosen so that the half-gap, inner cylinder
velocity and density are normalized to unity. There are then three parameters in the
problem: the radius ratio η < 1, Reynolds number R and axial wavenumber α. Keeping
the outer cylinder at rest, the Reynolds number can be defined as the half-gap multiplied
by the inner cylinder velocity and divided by the kinematic viscosity of the fluid. As a
consequence, the flow is governed by the non-dimensional Navier-Stokes equations in a
periodic annular domain spanned by the axial and radial coordinates

x ∈ [0, 2π/α], r ∈ [ra, rb] ≡ [2η/(1− η), 2/(1− η)]. (2.1)



4 K. Deguchi and A. G. Walton

We define the unit vectors in the axial and radial directions as ex and er respectively.
The total velocities are written as (UB(r) + u(t, x, r))ex + v(t, x, r)er where the basic
flow UB(r) is the exact Navier-Stokes solution

UB(r) =
ln(r/rb)

ln η
. (2.2)

The equations for the velocity disturbance u = uex + ver and pressure disturbance p to
the basic flow are

ux + vr + r
−1v = 0, (2.3)

ut + UB ux + vU
′
B + u ∙ ∇u = −px +R

−1∇2u, (2.4)

vt + UBvx + u ∙ ∇v = −pr +R
−1(∇2v − r−2v), (2.5)

together with the no-slip boundary conditions

u = v = 0 at r = ra and r = rb.

Here we use the notation

∇ = er∂r + ex∂x, ∇
2 = ∂2rr + r

−1∂r + ∂
2
xx (2.6)

and a prime denotes a derivative with respect to r.

3. Energy analysis

In this section we employ standard techniques of energy analysis (e.g. see Joseph &
Carmi 1969) to compute an energy Reynolds number RE for annular sliding Couette flow.
This is a value of Reynolds number below which it is guaranteed that all disturbances
to the basic flow decay monotonically in time, and it therefore represents a lower bound
on R, below which finite-amplitude travelling waves cannot exist. Often, of course, this
bound proves to be extremely pessimistic in practice; however it still provides a useful
partial check on the validity of the travelling-wave solutions discussed in this paper and
reduces the parameter space that needs to be investigated.
We begin by defining the kinetic energy of the disturbance flow as

E ≡
1

2
〈u2 + v2〉,

where the volumetric integrating operator takes the form

〈∗〉 ≡
∫ 2π/α

0

∫ rb

ra

∗ r dr dx.

The development of the energy can be found by considering 〈u(2.4)+ v(2.5)〉. This leads
to the exact result

dE

dt
=
ID

R
(m− 1),

where

ID ≡ 〈|∇u|
2 + |∇v|2 + r−2v2〉 ≥ 0, m ≡ R

IA

ID
, IA ≡ −〈uvU

′
B〉.

It follows that we need m̀ = maxum > 1 in order for the system to experience some
energy growth. Suppose that the solution which realizes m̀ is [ù, v̀]. We then consider all
solutions in the form [u, v] = [ù, v̀] + δ[ú, v́]. By definition, m̀ = m|δ=0 and ∂m

∂δ

∣
∣
δ=0
= 0.
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Using these relations and the definition of m, we obtain

m̀
∂ID

∂δ

∣
∣
∣
∣
δ=0

−R
∂IA

∂δ

∣
∣
∣
∣
δ=0

= 〈ú ∙Φ〉 = 0 (3.1)

where

Φ = (−2m̀∇2ù+Rv̀U ′B)ex + (−2m̀(∇
2v̀ − r−2v̀) +RùU ′B)er.

Because (3.1) is satisfied for arbitrary solenoidal ú, Φ must have a scalar potential ϕ.
By introducing a stream function ψ such that [ù, v̀] = [ψr + r

−1ψ,−ψx] and eliminating
the potential ϕ by combining the axial and radial equations of ∇ϕ = Φ, we find that ψ
satisfies

ψxxxx + 2ψxxrr + 2r
−1ψxxr − 2r

−2ψxx

+ψrrrr + 2r
−1ψrrr − 3r

−2ψrr + 3r
−3ψr − 3r

−4ψ =

R

2m̀
∂x(−2ψrU

′
B − r

−1ψU ′B − ψU
′′
B), (3.2)

together with ψ = ψr = 0 at r = ra and r = rb. Note that the solution can be taken to
be proportional to eiαx because equation (3.2) is now linear. As a consequence, we can
solve this equation numerically by expanding ψ in terms of Chebyshev polynomials of
the first kind Tl(y) as

ψ(x, y) =

L∑

l=0

Xl(1− y
2)2Tl(y)e

iαx

and evaluating (3.2) at the collocation points

yl = cos

(
l + 1

L+ 2
π

)

, l = 0, ..., L. (3.3)

Here

y = r − rm ∈ [−1, 1] (3.4)

is the mapped radial coordinate, with rm =
1+η
1−η representing the mid-gap. The resultant

algebraic eigenvalue problem

AljXj = σBljXj

leads to L+1 eigenvalues σ ≡ αR/m̀. The minimum value of positive purely real σ gives
αRE where RE is the energy Reynolds number. There are no finite-amplitude solutions
if R < RE , because all disturbances monotonically decay.
The results of numerical computations are shown in figure 1. We investigated the
range 0.01 ≤ η ≤ 1 and found that αRE increases with decreasing η. Owing to the
transformation (3.4) and the specific potential form chosen here, (3.2) reduces to its
planar counterpart in the narrow-gap limit η → 1. Because σ(α, η) = σ(−α, η), αRE
must have a local extremal value at α = 0. From the figure, we can see that this point is
a global minimum for the current range of η. However, we note that the minimum of RE
is at a non-zero value of α, e.g. for η = 0.1, the minimum RE = 122 occurs at α = 1.96.
The axisymmetric finite-amplitude solutions found by DN11 have α = O(1) and exist

over a range of R = O(104), comfortably in excess of the energy Reynolds numbers
calculated here. For example, the branch of the axisymmetric solution for α = 0.6546
discovered by DN11 has a turning point at R = 4.0 × 104, which is considerably larger
than the corresponding RE = 224. We revisit the energy analysis in section 7 when
considering finite amplitude solutions in the limit α→ 0, where we find that the bound
obtained here turns out to be surprisingly sharp in this case.
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Figure 1. The energy Reynolds number RE . The solid, dashed and dotted lines are calculated
for η = 1, 0.1 and 0.01 respectively.

4. Computation of finite-amplitude solutions

In this section we compute solutions of (2.3)–(2.5) that take the form of travelling
waves, propagating downstream with phase speed c. The velocities and pressure therefore
become functions of the radial variable r and the travelling-wave coordinate

ξ = α(x− ct) ∈ [0, 2π]. (4.1)

We decompose the disturbance velocity field [u, v](ξ, r) into a spatial mean [ū, v̄](r) and
fluctuation [ũ, ṽ](ξ, r) where the average operator is defined by

∗̄ ≡
1

2π

∫ 2π

0

∗ dξ.

Consideration of the continuity equation shows that v = 0 for the mean-flow distortion
and that there exists a stream function ψ for the fluctuation ũ. From substitution into
(2.3), (2.4), (2.5), the governing equations for the variables ψ and ū are

0 = −(UB + ū− c)(α
2ψξξξ + ψξrr + r

−1ψξr − r
−2ψξ)

−(U ′B + ū
′)r−1ψξ + (U

′′
B + ū

′′)ψξ

+(αR)−1{α4ψξξξξ + α
2(2ψξξrr + 2r

−1ψξξr − 2r
−2ψξξ)

+ψrrrr + 2r
−1ψrrr − 3r

−2ψrr + 3r
−3ψr − 3r

−4ψ}

+ψξ{4r
−3ψ − 2r−2ψr + ψrrr + α

2(ψξξr − r
−1ψξξ)}

−(ψr + r
−1ψ)(α2ψξξξ + ψξrr + r

−1ψξr), (4.2)

and

0 = r−1∂r{rψξ(ψr + r−1ψ) + (αR)
−1rū′}, (4.3)

together with the boundary condition

ψ = ψr = ū = 0 at r = ra and r = rb.

For numerical purposes, ψ and ū are expanded by using the gap coordinate y defined
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in (3.4). They take the form

ψ(ξ, y) =

N∑

n=1

L∑

l=0

Xj(l,n)(1− y
2)2Tl(y)e

inξ + c.c., (4.4)

ū(y) =

L∑

l=0

Xj(l,0)(1− y
2)Tl(y), (4.5)

where j(l, n) ≡ (l + 1) × (n + 1) and c.c. denotes complex conjugate. The jth equation
is found by evaluating the values of e−inξ(4.2) for n = 1, ..., N and (4.3) for n = 0 at the
same collocation points yl (l = 0, . . . L) used in (3.3). The unknown phase velocity c is
added as the top entry in the solution vector, and the corresponding additional equation
is the spatial phase lock condition which we impose here as

F (0)− c.c. = 0,

where the first Fourier coefficient of the axial velocity is defined as

F (y) ≡ 2ue−iξ. (4.6)

This ensures that the sin ξ component of u vanishes at the midpoint of the gap. The
problem has now been reduced to a system of quadratic algebraic equations of the form

DkjXj +Hkjj′XjXj′ = 0.

Noting that the first L + 2 unknowns/equations are purely real whereas the remainder
are complex, we use a Newton iterative method of dimension (2N + 1) × (L + 1) + 1
to obtain the solution. Any signal-to-noise-floor ratio of the converged solutions, i.e.
‖ DkjXj +Hkjj′XjXj′ ‖2 / ‖ DkjXj ‖2, is less than 10−10 throughout the paper. In our
computational approach, all Jacobian elements are explicitly given by straightforward
algebra and are used to update the Newton guess together with an LAPACK direct
linear solver routine. The linear problems, which consume most of the computational
time, are quite massive, but recent advances in computer power allows us to solve them.
Further detail of the method of computation can be found in DN11.

4.1. Results

If η . 0.1415, where the long-wave cut-off of linear instability occurs (Gittler 1993), the
basic flow can be destabilized by axisymmetric infinitesimal disturbances. Because the
linear approximation of the growing mode is accurate sufficiently close to the neutral
stability point, it can be used as an initial guess for a nonlinear calculation involving
Newton’s method. As a consequence, the solution branch of the finite-amplitude ax-
isymmetric travelling wave bifurcates from this point. Here we introduce the normalized
momentum transport on the wall M to measure how much a finite-amplitude solution
differs from the basic state. Note that raU

′
B |r=ra = rbU

′
B |r=rb and rau

′|r=ra = rbu
′|r=rb ,

by (2.2) and (4.3). This enables us to define M as

M ≡
ū′ + U ′B
U ′B

∣
∣
∣
∣
r=ra

=
ū′ + U ′B
U ′B

∣
∣
∣
∣
r=rb

. (4.7)

Figure 2 shows the bifurcation diagram for η = 0.1. For this radius ratio, it is known
that the linear instability has a critical Reynolds number R = 3.6× 106, and this occurs
for α = 0.6546. It is also known that the axisymmetric solution subcritically bifurcates
from this neutral point (DN11). We discover that at R = 1.6× 107, the base flow again
becomes stable at this value of wavenumber. From this second neutral point, another
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Figure 2. The axisymmetric travelling-wave bifurcation diagram for (η, α) = (0.1, 0.6546). The
upper and lower figures represent the variation of the critical layer location yc and the momentum
transport M respectively. Open circles in the figures represent linear critical points. The range
of truncation level L ∈ [120, 200] and N ∈ [30, 60] is used to compute the solution curves.

bifurcation of the axisymmetric solution is detected. This bifurcation scenario is also
pictured in figure 2, and it can be seen in the figure that the resultant branch heads in
the direction of increasing R where the basic flow again becomes linearly stable, i.e. the
new bifurcation is also subcritical. We adopt the terminology ‘lower branch’ to represent
the branch that passes through the neutral points, and the points P3–P6 while the phrase
‘upper branch’ is used to denote solutions at higherM , that lie on the solution curve that
passes through P1 and P2. One of the striking features of the lower branch is the kink
at R ' 3.5× 107, and a similar kink can also be found on the upper branch in between
the points P2 and P1, at R ' 6.7×105. The branches behave differently before and after
the kinks, although no bifurcations take place here, and the curves appear smooth when
examined closely. Henceforth we denote the branches before and after the kinks as the
LR (Low Reynolds number) and HR (High Reynolds number) modes respectively.
Along the branches, the streamwise fluctuation flow-field, ũ, is visualized in figures

3 and 4. The plots labelled P1–P6 represent solutions at the corresponding points in
figure 2. For the upper branch solution at sufficiently high Reynolds number (P1, P2),
we can see a relatively slowly-varying, evenly-placed strong positive/negative pattern
in the vicinity of the critical layer yc, where the basic flow speed, UB , coincides with
the phase velocity c of the travelling-wave solution. In these cases, the critical layer is
situated near the inner wall: the distance between the critical layer and inner wall is



Axisymmetric travelling waves in annular sliding Couette flow 9

P1: R = 2× 106 upper branch

P2: R = 2× 105 upper branch

P3: R = 2× 105 lower branch

Figure 3. The axial fluctuation velocity field ũ for (η, α) = (0.1, 0.6546). The dashed lines in
the close-up figures, which are placed just below the full domain representation in each case,
represent the critical layer locations yc. P1, P2 and P3 correspond to the points in figure 2.

only 5% of the gap (see figure 2(a)). As we move towards the point P3, which lies on
the lower branch, the positive part of the flow pattern begins to be squeezed in the axial
direction. Then as R is increased along the lower branch (P4, P5), the critical layer
moves even closer to the inner wall (typically it is now at 1% of the gap from the inner
wall) and the strong positive/negative flow pattern is again evenly-placed, although it
is now much more concentrated than it was on the upper branch. The magnitude of
the solution decreases as the branch approaches the linear instability, but it begins to
grow again after the linear neutral point is passed (P6). The computation of the solution
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P4: R = 2× 106 lower branch

P5: R = 2× 107 lower branch

P6: R = 108 lower branch

Figure 4. Same parameter values as figure 3 but for the solutions at the points P4, P5, P6.

beyond P6, where R is in excess of 108, is very difficult because of the Gibbs phenomena
of the Chebyshev basis due to the very sharp structure near to yc. This feature can also
be found in the mean-flow distortion plot for P1–P6, which is presented in figure 5. When
we examine the high Reynolds number structure of this mode in the next section we will
see that a thin critical layer, centred at y = yc, regularizes this apparent singularity.
To examine the geometry dependence of the travelling-wave solutions, the solution
branches are calculated for various η and R, fixing α = 0.6546. The results are shown
in figure 6, where the solution branches, shown as solid lines, bifurcate from the thick
dashed curve traced in the M = 1 plane, which represents the linear neutral curve for
α = 0.6546. When η is increased to 0.14, The HR mode and the LR mode are separated
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Figure 5. The mean-flow distortion ū. Left and right figures correspond to upper and lower
branch solutions. The crosses on the curves represent the critical layer locations yc.
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Figure 6. The bifurcating branches of the axisymmetric travelling-wave solutions (solid lines)
from the linear neutral curve (thick dashed line) with α = 0.6546. The base level is placed at
M = 1. The range of truncation level L ∈ [120, 200] and N ∈ [30, 60] is used to compute the
solution curves.

into an open branch and a closed branch respectively. Due to this separation, the branch
has three turning points when η is varied at fixed sufficiently high R. Since we originally
defined the HR and LR modes in terms of their position with respect to the kink, it
seems reasonable to consider the first turning point encountered as M is increased from
unity to represent the existence boundary for the LR mode. This boundary defines a
critical value of η, beyond which the LR mode ceases to exist, and its variation with
R is plotted in figure 7 for α = 0.6546, 0.2, 0.1 and 0.05. The linear neutral curves and



12 K. Deguchi and A. G. Walton

104

105

106

107

 0.1  0.15  0.2  0.25  0.3  0.35

R

η

Figure 7. First turning points from the lower branch, which represent the edge of the existence
of the LR mode. ×,�,4 and � are calculated with α = 0.6546, 0.2, 0.1 and 0.05 respectively.
The lines in the figure are the projection of the solution curves in figure 6. The thick solid line
represents the linear neutral curve taken over all wavenumbers.

the branches of the solution in figure 6 are also projected on this figure. We can see
clearly that the solution can exist well beyond the long-wave cut-off of linear instability,
where the thick solid line heads sharply towards R = ∞ at η = 0.1415, and the branch
extends to larger η as α is decreased. The maximum η of the LR mode is at relatively
low R for all α, and then it monotonically decreases for higher R. In contrast, the present
calculations suggest that the existence region of the HR mode expands as R is increased.
We cannot be certain about this however, because there are resolution issues associated
with continuing the branches marked ‘A’ and ‘B’ beyond that indicated in figure 6.

5. Asymptotic solution at large Reynolds number

In this section we propose a nonlinear equilibrium travelling-wave structure for annular
sliding Couette flow, valid for asymptotically large values of the Reynolds number. The
structure consists of a core region of O(1) radial extent in which the flow dynamics
are linear and inviscid to leading order, with viscous wall layers adjacent to the inner
and outer cylinders. We assume that the wavenumber α is O(1), with the unknown real
wavespeed c ∼ O(1), and 1−c ∼ O(1) also. As a consequence, a singularity is encountered
within the core region at the location rc where UB(rc) = c. This singularity is regularized
within a thin nonlinear critical layer. The phase shifts induced across the two wall layers
must be balanced by the corresponding phase shift induced across the critical layer, and
this requirement leads to the determination of the amplitude of the disturbance in terms
of its axial wavenumber and the properties of the basic flow. A sketch of the flow structure
is shown in Figure 8. The structure is similar to that found by Smith & Bodonyi (1982a)
for fully-developed flow through a single pipe, and Walton (2002, 2003) for impulsively-
started pipe flow and pressure-driven annular Couette-Poiseuille flow. A key difference to
the previous studies is the assumption of axisymmetry. We find that unlike for the single
pipe case, axisymmetric solutions are indeed possible here. One of the reasons for this is
that, for the fully-developed flow through a circular pipe, the combination U ′′B − U

′
B/r

is zero, in contrast to the flow under consideration here, where this quantity remains
positive throughout the annulus. It is the non-zero nature of this term that gives rise
to the logarithmic singularity referred to above, and evident in (5.9) below. The same
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r = rc

r = rb

r = ra

Outer wall layerO(R−1/2)

Inner wall layerO(R−1/2)

Nonlinear critical layerO(R−1/6)

Inviscid core

Inviscid core

O(1)

Figure 8. Sketch of the high Reynolds number asymptotic travelling-wave structure for
annular sliding Couette flow.

arguments mean that this structure is also absent in plane Couette flow, implying that
the asymptotic structure presented here does not exist in the narrow gap limit.
The flow behaviour in the various regions is set out in the following sub-sections.

5.1. The inviscid core flow

In the core, the flow dynamics are inviscid to leading order, with the flow expansions
assuming the form

u = εu1(r) + ε
2 {A0F2(r) cos ξ + u2(r)}

+ ∙ ∙ ∙+ ε2R−1/2u5(ξ, r) + ∙ ∙ ∙ ,

v = −ε2A0G2(r) sin ξ + ∙ ∙ ∙+ ε
2R−1/2v5(ξ, r) + ∙ ∙ ∙ , (5.1)

p = ε2A0P2(r) cos ξ + ∙ ∙ ∙+ ε
2R−1/2p5(ξ, r) + ∙ ∙ ∙ .

Here u1(r) is the leading-order mean-flow distortion term and ε is a small parameter that
will be determined in terms of the Reynolds number subsequently. The real constant A0
is also to be determined, and the variable ξ is the same travelling-wave coordinate defined
in (4.1). The terms with subscript 5 are the highest-order terms that break the [even,
odd, even] symmetry of [u, v, p] about ξ = π, i.e.

[u5, v5, p5] contain terms A0 [F5(r) sin ξ,G5(r) cos ξ, P5(r) sin ξ] . (5.2)

In order to fix the phase of the solution we impose the phase normalization condition

P2(rc) = 1, (5.3)

where r = rc is the location of the critical layer, i.e. the radial location where UB(rc) =
c, with UB the basic flow defined in (2.2). The choice of (5.3) is mainly for algebraic
simplicity. If we do not impose this condition then the quantity P2(rc) will appear in
expressions throughout the critical-layer analysis below.

5.1.1. The core-flow fluctuation

Substitution of (5.1) into the Navier-Stokes equations (2.3)–(2.5) leads to the following
inviscid balances:

(UB(r)− c)αFi +GiU
′
B = −αPi, (UB(r)− c)αGi = P

′
i , (5.4)
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for i ∈ {2, 5}, together with the continuity equation. Further manipulation and elimina-
tion of the velocity components leads to Rayleigh equations for the pressure components

(UB(r)− c)
(
P ′′i + r

−1P ′i − α
2Pi
)
= 2U ′BP

′
i , i ∈ {2, 5}. (5.5)

For the P2-component, the appropriate boundary conditions are

P ′2(ra) = P
′
2(rb) = 0, (5.6)

which arise from imposition of the condition of zero radial velocity at the wall. For the
P5-component, the wall-layer analysis (section 5.2) predicts the existence of a non-zero
radial velocity component of O(ε2R−1/2) as each wall is approached, implying that the
appropriate conditions on the radial fluctuation in the core are

G5(ra) = ga, G5(rb) = gb, (5.7)

with the precise values of ga and gb to be fixed in (5.26), (5.32). In terms of the pressure,
the boundary conditions are therefore

P ′5(ra) = (1− c)αga, P
′
5(rb) = −αcgb, (5.8)

from the radial momentum balance in (5.4).
For the purposes of the critical-layer analysis to be presented in section 5.3, we need
to know the limiting behaviour of the flow as the critical layer is approached. This can
be calculated by the Frobenius method, and the relevant asymptotes, as r → rc±, are:

Pi ∼ Pi(rc)

[

1−
α2r2c
2

(
rc − r
rc

)2
−
2α2r2c
3

(
rc − r
rc

)3(

ln

∣
∣
∣
∣
rc − r
rc

∣
∣
∣
∣+ j

(i)
±

)

+ ∙ ∙ ∙

]

,

Fi ∼ 2τ
−1
0 Pi(rc)

[

ln

∣
∣
∣
∣
rc − r
rc

∣
∣
∣
∣+ j

(i)
± +

1

6
(1 +

5τ1
τ0
) + ∙ ∙ ∙

]

, (5.9)

(with a similar expansion for Gi) for i ∈ {2, 5}, with the ± denoting the limits r → rc± .
Here we have defined

τ0 = −rcU
′
B(rc) = −(ln η)

−1, τ1 = (r
2
c/2)U

′′
B(rc) = −(2 ln η)

−1, (5.10)

to represent the shear and curvature of the basic flow at the critical location, and we have
made use of the property 2τ1/τ0 = 1 to simplify the expressions slightly. The constants

j
(i)
± are determined by solving the Rayleigh equation for Pi numerically. This is described
for P2 in more detail in section 5.1.2 below. A feature of the nonlinear critical layer is
the smallness of the jump in velocity and pressure induced across it, in contrast with
a classical linear critical layer in which the phase shift is O(1). This feature can be

anticipated here by taking j
(2)
+ = j

(2)
− . However it will be necessary for j

(5)
+ − j

(5)
− to be

non-zero in order to accommodate the velocity jump across the critical layer. We shall
see that the critical layer analysis shows that there is a jump

ε2R−1/2φ sin ξ (5.11)

in the streamwise velocity as we cross the critical layer from r = rc− to r = rc+, with φ
determined specifically in (5.52). In terms of the core properties, we therefore have

φ = 2A0P5(rc)τ
−1
0 (j

(5)
+ − j

(5)
− ), (5.12)

in view of the asymptotic expansion for F5 in (5.9). The quantity (j
(5)
+ − j

(5)
− ) can be

related to the wall velocities ga, gb, by considering the Wronskian of the solutions to (5.5),
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which has the form

r(UB(r)− c)−2(P5P ′2 − P2P
′
5) = ω±. (5.13)

Applying the boundary conditions (5.6), (5.8), we can determine the constants ω± as

ω+ = αgbrbP2(rb)/c, ω− = −αgaraP2(ra)/(1− c). (5.14)

Then, letting r → rc± in (5.13), using the series expansions in (5.9) for P2 and P5, and
the phase normalization (5.3) we find that (5.12) can be rewritten as

φ = −(ω+ − ω−)α
−2r−2c A0τ0, (5.15)

so that the velocity jump across the critical layer is now related to the wall-layer prop-
erties by (5.14) and (5.15).

5.1.2. The numerical solution of the Rayleigh equation

Aside from a number of numerical integrations, the only part of the asymptotic analysis
where a non-trivial numerical approach is required is in the solution of the Rayleigh
equation (5.5) for P2(r). This solution is important as it yields, for a given wavenumber α,
the corresponding wavespeed c, and hence the location rc of the critical layer. We briefly
describe the method we used here for α of O(1) and also the corresponding approach for
the limiting case α→ 0.

(i) Solution for α of O(1)
First we introduce a new radial variable s such that r = rcs and define sa = ra/rc, sb =

rb/rc, α̂ = αrc. The Rayleigh equation (5.5) for P2(r) = Q(s) say, can then be rewritten
as

Q′′(s) +
1

s
Q′(s)− α̂2Q(s) =

2

s
(ln s)−1Q′(s), Q′(sa) = Q

′(sb) = 0, Q(1) = 1. (5.16)

For fixed values of sa and α̂, (5.16) is marched forward from s = sa with a guess for
Q(sa) (equal to Qg, say). The values of Q and Q

′ are found at s = s1 = (1 + sa)/2.
Equation (5.16) is then marched backwards from s = s2 = 1−ε1 (with ε1 suitably small)
using the series expansion (5.9) to provide values for Q(s2), Q

′(s2). A guess is made for

the constant j
(2)
− . As a result of this procedure we can calculate a second set of values

for Q(s1), Q
′(s1). We then iterate on the guesses Qg and j

(2)
− until the two estimates for

Q and Q′ at s1 are in agreement. Next we set j
(2)
+ = j

(2)
− (as discussed just below (5.10))

and march (5.16) forward from s = 1+ε1, again using the series expansion for P2 in (5.9)
to provide suitable starting values. The marching process is stopped when the location
sb is reached at which Q

′(sb) = 0. The required value for the critical layer location is
then given by rc = rbs

−1
b . The wavespeed follows from c = UB(rc) and the corresponding

wavenumber and radius ratio from α = r−1c α̂, η = sa/sb. The pressure at both walls
is also required later and so these values are also stored. Clearly this procedure can be
repeated for a range of wavenumbers and radius ratios.

(ii) Solution in the limit α→ 0
In addition to providing a partial check on the accuracy of the numerical procedure
outlined in part (i), the form of the solution of the Rayleigh equation (5.5) as α → 0 is
significant as it provides an important clue as to the form of the new long-wave solution
structure that emerges in place of the present structure when α ∼ O(R−1). This structure
is discussed in some detail in section 5.4 and draws on the asymptotic forms set out here.
If we consider the inviscid disturbance equations (5.4) in the core, together with the
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continuity balance, we find that as α→ 0:

F2 ∼ F20(r) +O(α
2), G2 ∼ αG20(r) +O(α

3), P2 ∼ P20 +O(α
2), (5.17)

where P20 is a constant. The leading-order terms (F20, G20, P20) satisfy the balances

F20 +G
′
20 +G20/r = 0, (UB(r)− c)F20 +G20U

′
B = −P20,

and elimination of F20 leads to the result

rG20

(UB − c)
=

{
P20

∫ r
ra
s(UB(s)− c)−2 ds, (r < rc),

P20
∫ r
rb
s(UB(s)− c)−2 ds, (r > rc).

Across the critical layer we have a zero jump in the component G20 and this implies that
the following integral condition must hold:

−
∫ rb

ra

r dr

(UB(r)− c)2
= 0, (5.18)

where the bar denotes the finite part of the integral. Equation (5.18) can be viewed as
the α → 0 limit of the Rayleigh equation (5.5) and determines the solutions for the
leading-order wavespeed c for a given value of radius ratio η. To evaluate the integral
numerically we make the substitution s = r/rc as in part (i) and use the specific form
for UB given in (2.2). The integral condition (5.18) can then be rewritten as

−
∫ sc

ηsc

s ds

(ln s)2
= 0, (5.19)

which determines the values of the quantity sc = rb/rc. The finite-part integral in (5.19)
can then be easily evaluated by using integration by parts as, for example, in Appendix
B of Walton (2011).

5.1.3. The mean-flow distortion in the core

Again, from substitution of the expansions (5.1) into the Navier-Stokes equations
(2.3)−(2.5), we find that the leading-order contribution to the mean-flow distortion sat-
isfies

u′′1 + r
−1u′1 = A

2
0 (G5F

′
2 −G2F

′
5) /2 = 0,

using (5.4) and (5.13), so that the distortion is unforced in the core at this order. The
solution satisfying no-slip at the walls therefore has the simple form

u1 =

{
Ma ln(r/ra), (ra < r < rc),
Mb ln(r/rb), (rc < r < rb).

(5.20)

The solution in the critical layer requires that u1 be continuous across r = rc, but that
there is a jump in u′1. We therefore have

Ma ln(rc/ra) =Mb ln(rc/rb), (5.21)

withMb−Ma non-zero and to be determined later, in terms of the disturbance amplitude,
by the critical-layer analysis. Although the mean flow distortion is unforced in the core,
it is forced in the wall layers, and the specific forms that it takes will be determined in
the next sub-section where we consider those layers in some detail.
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5.2. The viscous wall layers

Since the dynamics in the core are inviscid to leading order, the leading-order axial
fluctuation F2(r) does not tend to zero as r → ra, rb. Viscous wall layers are therefore
required in order that the no-slip condition can be satisfied.

5.2.1. The boundary-layer on the inner cylinder

The boundary-layer has the classical O(R−1/2) thickness, and the relevant flow expan-
sions are

UB + u = 1 + ε
2ua(ξ, Za) +R

−1/2U ′B(ra)Za + ε
4Ua(Za) + ∙ ∙ ∙ ,

v = ε2R−1/2va(ξ, Za) + ∙ ∙ ∙ , p = ε
2A0P2(ra) cos ξ + ∙ ∙ ∙ , (5.22)

with r = ra + R
−1/2Za, where we have anticipated the independence of the pressure on

the normal coordinate. The continuity and axial momentum balances for the fluctuation
terms are

α
∂ua

∂ξ
+
∂va

∂Za
= 0, α(1− c)

∂ua

∂ξ
= αA0P2(ra) sin ξ +

∂2ua

∂Z2a
,

with ua = va = 0 on Za = 0 and the condition of no exponential growth as Za → ∞.
The appropriate solutions are

ua =
1

2
Fa(Za)e

iξ + c.c., va =
1

2
Ga(Za)e

iξ + c.c., (5.23)

with

Fa(Za) = −
A0P2(ra)(1− e−μaZa)

(1− c)
, (5.24)

Ga(Za) =
iαA0P2(ra)

(
Za + μ

−1
a (e

−μaZa − 1
)
)

(1− c)
, (5.25)

and μa = (iα(1− c))
1/2

. Taking the limit of (5.25) as Za → ∞ and matching to the
core, we conclude that

ga = −α
1/22−1/2(1− c)−3/2P2(ra). (5.26)

The mean-flow distortion is forced by the fluctuation and satisfies

U
′′
a =
1

4
G∗a(Za)F

′
a(Za) + c.c.,

with Ua ∼ MaZa/ra as Za → ∞ to match to the core flow (5.20) and Ua(0) = 0 to
satisfy the no-slip condition. Use of (5.24), (5.25) for Fa,Ga and integration leads to the
explicit expression

Ua =
(A0P2(ra))

2

4(1− c)3
(2(maZa + 2) cos (maZa) e

−maZa

+2(maZa − 1) sin(maZa)e
−maZa − e−2maZa − 3) +

MaZa

ra
, (5.27)

with ma = Re(μa) = (α(1− c)/2)
1/2

.
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5.2.2. The boundary-layer on the outer cylinder

Since the basic flow is zero on the outer cylinder, the appropriate expansion in the
upper layer is

UB + u = ε
2ub(ξ, Zb)−R

−1/2U ′B(rb)Zb + ε
4Ub(Zb) + ∙ ∙ ∙ ,

v = −ε2R−1/2vb(ξ, Zb) + ∙ ∙ ∙ , p = ε
2A0P2(rb) cos ξ + ∙ ∙ ∙ , (5.28)

with r = rb − R−1/2Zb. The governing equations for the fluctuations and the mean-
flow distortion are very similar to those in the inner boundary layer and the method of
solution proceeds in an identical fashion to yield

ub =
1

2
Fb(Zb)e

iξ + c.c., vb =
1

2
Gb(Zb)e

iξ + c.c., (5.29)

with

Fb(Zb) =
A0P2(rb)(1− e−μbZb)

c
, (5.30)

Gb(Zb) = −
iαA0P2(rb)

(
Zb + μ

−1
b (e

−μbZb − 1)
)

c
, (5.31)

and μb = (−iαc)1/2. From the expression for Gb we can calculate that

gb = α
1/22−1/2c−3/2P2(rb). (5.32)

The corresponding solution for the mean-flow distortion is found to be

Ub = −
(A0P2(rb))

2

4c3
(2(mbZb + 2) cos (mbZb) e

−mbZb

+2(mbZb − 1) sin(mbZb)e
−mbZb − e−2mbZb − 3)−

MbZb

rb
, (5.33)

with mb = Re(μb) = (αc/2)
1/2. Here we have applied no slip on Zb = 0 and the core-

matching condition Ub ∼ −MbZb/rb as Zb →∞.
Now that we have determined the radial velocities ga and gb, we can rewrite the jump
condition (5.15) as

φ =
A0τ0

(2α)
1/2

r2c

{
ra [P2(ra)]

2

(1− c)5/2
−
rb [P2(rb)]

2

c5/2

}

. (5.34)

The aim now is to investigate the dynamics of the critical layer with a view to obtaining an
alternative, amplitude-dependent expression for φ, and hence determining the amplitude
dependence of the neutral modes.

5.3. The critical-layer analysis

The aims of the critical-layer analysis are three-fold. The first is to determine the small
parameter ε in terms of the Reynolds number R. Next, the jump in the mean-flow
distortion across the critical-layer is calculated, and allows us to determine the constants
Ma,Mb introduced in (5.20), thus fixing the core mean-flow distortion. Finally, we find
the velocity jump across the layer in terms of the disturbance amplitude A0, which can
then be determined explicitly as a result. The velocity and pressure expansions are as
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follows

UB + u = c+ εÛ1 + (ε
2 ln ε)Û2L + ε

2Û2 + ∙ ∙ ∙+ ε
5Û5 + ∙ ∙ ∙ ,

v = ε2V̂1 + (ε
3 ln ε)V̂2L + ε

3V̂2 + ∙ ∙ ∙+ ε
6V̂5 + ∙ ∙ ∙ , (5.35)

p = ε2P̂1 + ε
3P̂2 + ∙ ∙ ∙+ ε

6P̂5 + ∙ ∙ ∙ ,

with r = rc+ εY. The solutions at the first two orders, which match appropriately to the
core via (5.1) and (5.9), are relatively simple and can be shown to be

Û1 = −τ0Y/rc + u1(rc), V̂1 = −μ sin ξ, P̂1 = A0 cos ξ, (5.36)

Û2L = 2A0τ
−1
0 cos ξ, V̂2L = 2αA0τ

−1
0 Y sin ξ, (5.37)

where the amplitude parameter μ is defined by

μ = αrcA0τ
−1
0 . (5.38)

The terms with subscript 2 in (5.35) are the first to possess a non-trivial dependence on
the radial coordinate. The governing equations for these terms are

αÛ2ξ + V̂2Y + V̂1/rc = 0, P̂2Y = 0,

α
{
Û1Û2ξ + Û2Û1ξ

}
+ V̂2Û1Y + V̂1Û2Y = −αP̂2ξ, (5.39)

and the match to the core requires

Û2 ∼ τ1Y
2/r2c + u

′
1(rc±)Y + 2A0τ

−1
0 ln

∣
∣r−1c Y

∣
∣ cos ξ

+A0τ
−1
0

(
2j(2) + (1/3)(1 + 5τ1/τ0)

)
cos ξ, (5.40)

as Y → ±∞, in view of (5.9). Differentiating the third of equations (5.39) with respect
to Y, using (5.36) for Û1, V̂1, and switching to a characteristic variable

ζ =
ατ0

2rc

(
Y − rcu1(rc)τ

−1
0

)2
+ μ cos ξ, (5.41)

we eventually obtain the following expression for the shear term Û2Y :

Û2Y = ∓(2τ0/αr
3
c )
1/2(ζ − μ cos ξ)1/2 + κ(ζ). (5.42)

An asymptotic condition on the unknown function κ can be found by applying the
matching condition (5.40), and this yields:

κ(ζ) ∼ ±23/2τ1/20 (αr
3
c )
−1/2ζ1/2 + Λ±, as ζ →∞, (5.43)

where the constants Λ± are undetermined at this order. Here, the ± signs refer to the
upper/lower parts of the critical layer wherein Y −rcu1(rc)τ

−1
0 > (2rcμ(1−cos ξ)/ατ0)1/2,

and Y −rcu1(rc)τ
−1
0 < −(2rcμ(1−cos ξ)/ατ0)1/2, respectively. Later in the analysis it will

become clear that Λ+ 6= Λ−, and this jump fixes the leading-order mean-flow distortion
in the core, via the matching condition (5.40).

The [even, odd, even] symmetry about ξ = π of the solution [Ûm, V̂m, P̂m] is not
broken until viscous effects enter the critical layer equations. Since (from (5.36)) we have

Û1Y Y = 0, the first non-zero term of this type is Û2Y Y , which makes a contribution at
O(R−1) in the axial momentum equation that determines the quantity Û5. Balancing
inertia and viscosity at this order requires ε3R−1/2 ∼ R−1, and hence fixes the small
parameter

ε = R−1/6. (5.44)
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If we then carry on to consider the equations at the m = 5 level and impose periodicity
in ξ (which is now a non-trivial condition due to the presence of viscosity and inertia)
we can determine fully the unknown function κ introduced in (5.42), and we find that

κ(ζ)− κ0 =

{
±23/2πτ1/20 (αr

3
c )
−1/2

∫ ζ
μ
(I(ζ1))

−1 dζ1, (ζ > μ),

0, (ζ < μ).
(5.45)

with

I(ζ) =

∫ 2π

0

(ζ − μ cos ξ)1/2 dξ. (5.46)

The specific form given for κ in (5.45) can be deduced from equation (A 1) in Appendix
A, together with the asymptotic condition (5.43). A routine numerical calculation then
shows that

Λ+ − Λ− = −(2μτ0/αr
3
c )
1/2C0, C0 ' 3.90, (5.47)

and this expression is equal to the distortion shear jump u′1(rc+) − u
′
1(rc−), in view of

(5.40). This enables us to fix the constants in the core mean flow distortion as

Ma = C1 ln(rc/rb)A0
1/2/ ln η, C1 = 2

1/2C0 ' 5.52, (5.48)

with Mb following from (5.21). The same matching condition also allows us to determine
the constant of integration κ0 in (5.45) as

κ0 = (2rc)
−1(Ma +Mb) + 2rc

−1Ma ln(rc/ra). (5.49)

Since κ is now fully determined, it is possible to go back and integrate (5.42) to obtain
the explicit expression

Û2 = −
ζ

αrc
+

(

Y −
rcu1(rc)

τ0

)

κ(ζ)∓

(
2rc
ατ0

)1/2 ∫ ζ

μ

(ζ−μ cos ξ)1/2κ′(ζ) dζ+q(ξ), (5.50)

where

q(ξ) =
μ cos ξ

αrc

{

1 +
1

3
(1 +

5τ1
τ0
)− 2 ln

(
ατ0/2r

3
cμ
)1/2
+ 2j(2)

}

+ q0

+2(αrc)
−1
∫ ∞

μ

{
2π(ζ − μ cos ξ)1/2(I(ζ))−1 + (μ cos ξ)(2ζ)−1 − 1

}
dζ, (5.51)

and q0 is a constant, the determination of which would require higher-order analysis.
Finally, in order to determine the amplitude A0 we need to calculate the phase shift
across the critical layer (i.e. the jump in the sin ξ component of axial velocity across the
layer). The calculation is very similar to that performed in Walton (2003), but for the
axisymmetric case. The details are given in an appendix, and lead to the expression

φ =
2τ0C1

αr2cA
1/2
0

. (5.52)

Equating this to the expression (5.34) for φ found from the core and wall-layer analyses,
enables us to derive an explicit expression for the amplitude dependence of the neutral
modes:

A0 =
2α−1/3C

2/3
1

(
ra [P2(ra)]

2
(1− c)−5/2 − rb [P2(rb)]

2
c−5/2

)2/3 . (5.53)

The high-Reynolds-number analysis is now complete. An independent check on the
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analysis can be performed by recalling from section 4 that the momentum transport
M defined in (4.7) is the same on both walls. In terms of our asymptotic solution this

implies that raU
′
a(0) = −rbU

′
b(0) with the wall-layer solutions Ua,Ub given in (5.27),

(5.33). By explicit calculation it can be shown that this is indeed the case if and only
if A0 satisfies (5.53). This gives us a high degree of confidence in the correctness of the
analysis presented in this section. The corresponding expression for M is

M = 1 +R−1/6
{

A
1/2
0 C1 ln(rc/ra) +

(αc
2

)1/2
rb ln(1/η)

(A0P2(rb))
2

2c3

}

, (5.54)

neglecting terms of O(R−1/3), from which it can be seen that the perturbation to M is
always positive.
For a given wavenumber α and radius ratio η we can compute all the necessary flow

quantities to make a direct comparison with the full Navier-Stokes solutions presented in
section 4. In order to determine quantities in the core we first solve the eigenvalue problem
(5.5) to determine the pressure component P2(r), the wavespeed c and the critical layer lo-
cation rc. The amplitude of the neutral modes follows from (5.53) with C1 given in (5.48),
and ra, rb given in terms of η by (2.1). The core fluctuations A0F2(r) cos ξ,A0G2(r) sin ξ
can then be calculated from the solution for P2 using (5.4). The mean-flow distortion
u1(r) in the core follows from (5.20), (5.21) and (5.48). The fluctuations in the wall layers
are given by (5.22)–(5.25) for the inner layer, and (5.28)–(5.31) for the layer on the outer
cylinder. The mean-flow distortions in the two wall layers can be calculated from (5.22),
(5.27) and (5.28), (5.33). Finally, in the critical layer, we have found expressions for the

first three terms Û1, Û2L, Û2 in the streamwise velocity expansion in (5.35) and these are
given in (5.36), (5.37) and (5.50).

5.4. The breakdown of the asymptotic solution at small wavenumber and the emergence
of the long-wave structure

Eventually, if the wavenumber α is sufficiently small, the asymptotic structure set out in
this section for O(1) wavenumbers will become invalid and a new structure will take its
place.
To see why the present structure fails, consider first the thickness of the critical
layer. From (5.53) we observe that A0 ∼ O(α−1/3) as α → 0, which in turn means
that from (5.38), the parameter μ ∼ O(α2/3). It follows that the critical-layer variable
Y ∼ O(μ/α)1/2 ∼ O(α−1/6), from (5.41). Thus, in the long-wave limit, the critical-layer
thickness ∼ O(εY ) ∼ O(αR)−1/6, in view of (5.44). Turning now to the viscous wall
layers, the thickness of the layer on the inner cylinder is O(R−1/2μ−1a ) ∼ O(αR)−1/2,
using (5.22), (5.24). A similar argument leads to the same order-of-magnitude estimate
for the thickness of the boundary-layer on the outer cylinder. Eventually, when α is suf-
ficiently small, the thicknesses of the critical layer and wall layers become comparable.
This occurs when αR ∼ O(1), and implies the existence of a new larger amplitude regime
in which

α ∼ O(R−1), A0 ∼ O(R
1/3). (5.55)

In this new structure the wall layer and critical layer have grown and merged to fill
the whole of the annulus, so that viscous effects are now important at leading-order
everywhere in the flow-field.
To determine the new scalings for the velocity and pressure we again consider the
critical-layer expansions of the previous regime. From (5.35), (5.36) we see that the

streamwise perturbation εÛ1 ∼ εY and this becomes O(1) upon using the new scalings

(5.55). The corresponding radial perturbation is ε2V̂1 ∼ ε2μ ∼ O(R−1) in the new



22 K. Deguchi and A. G. Walton

regime. In addition, the pressure scales as ε2P̂1 ∼ ε2A0 and so also becomes O(1).
The same velocity and pressure scalings can also be deduced by considering the flow
in the core or in the viscous wall layers as α → 0. An important extra feature in this
new regime is that the leading-order pressure is independent of the radial coordinate.
This can be seen most easily by appealing to the asymptotic form for P2 in (5.17), which
shows that the r-dependent part of the pressure ∼ O(ε2A0α2) ∼ O(R−2) in the long-wave
structure. It is also worth noting that in the limit α→ 0, the jump condition (5.34) yields
φ ∼ O(A0α

−1/2) ∼ O(α−5/6), and so from (5.11) the jump in the streamwise velocity
component across the critical layer ∼ ε2R−1/2α−5/6 and therefore approaches an O(1)
size as α → O(R−1). This emphasizes the fact that, in the new regime, nonlinearity is
important at leading-order throughout the flow-field and that all the harmonics of the
fluctuation are of equal significance. In view of the new scaling for the wavenumber, the
disturbance will now operate over a long streamwise lengthscale of O(R) and evolve over
an O(R) timescale.
The preceding order-of-magnitude analysis now allows us to deduce the governing
equations for the long-wave regime. We write

[u, v, p] = [u†(t†, x†, r), R−1v†(t†, x†, r), p†(t†, x†)](1 +O(R−2)), (5.56)

with x = Rx†, t = Rt†. Substitution into the Navier-Stokes equations (2.3)–(2.5) yields,
at leading order, the following nonlinear, viscous balances:

u†
x†
+ v†r + r

−1v† = 0, (5.57)

u†
t†
+ UBu

†
x†
+ v†U ′B + u

†u†
x†
+ v†u†r = −p

†
x†
(t†, x†) + u†rr + r

−1u†r. (5.58)

We note that the leading-order contribution from the radial momentum equation (2.5)
only serves as an equation to determine the higher-order correction to the pressure and
so need not be considered further. Thus, in the long-wave regime we need to solve (5.57),
(5.58) subject to the no-slip conditions

u† = v† = 0 at r = ra and r = rb.

The main features of these equations are the absence of streamwise diffusion, rendering
them parabolic in the axial direction, and also the fact that due to the Reynolds number
scaling in (5.56), the effective Reynolds number in (5.58) is unity.
The numerical solution of this long-wave problem will be discussed in section 7.

6. Comparison of asymptotic and numerical results

In the previous section we proposed an asymptotic form for the nonlinear instability
of annular sliding Couette flow. Now we wish to compare this solution with our Navier-
Stokes computations from section 4. In particular we are interested in (i) how large the
Reynolds number needs to be to obtain reasonable agreement between the solutions, (ii)
which of the modes discovered in section 3 does the asymptotic solution best approximate
and (iii) is it possible to see the delicate asymptotic flow structure in the finite Reynolds
number computations?
First, from numerical computation of the Rayleigh equation (5.5) we find that there is
a unique value yc = −0.9866 at (η, α) = (0.1, 0.6546) for which A0 in (5.53) is finite. It
is therefore clear immediately from figure 2(a) that the asymptotic theory is a better ap-
proximation to the lower branch than the upper branch. A close-up version of figure 2(a)
for the lower branch at high R is shown in figure 9(a), together with the corresponding
asymptotic result. In the figure, we can see that the agreement between the numerical
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Figure 9. The solid lines represent the lower branch solution for (η, α) = (0.1, 0.6546). The trun-
cation level (L,N) = (240, 100) is used. The dashed lines are the asymptotic results yc = −0.9866
and M = 1 + 0.0613R−1/6. Open circles in the figures represent linear critical points.

Figure 10. The flow structure in the vicinity of the critical layer for (η, α) = (0.1, 0.6546).

The grey scale represents contours of
˜̂
U2Y .

and asymptotic solutions is good once the kink at R = 3.5 × 107 has been passed. In
figure 9(b) we compare the corresponding values of the momentum transport M . Again,
it can be seen that after the kink, the solution branch is approximated reasonably well
by the asymptotic result.
Encouraged by the agreement obtained thus far, we now seek to compare the nu-
merically and asymptotically determined flow structures. For this purpose, we make the
comparisons for each layer by using only the leading order asymptotic solutions as follows.
First we consider the nonlinear critical layer structure in terms of the stretched radial
coordinate Y = ε−1(y − yc). The asymptotic critical layer solution for the streamwise
velocity has the expansion

u = εÛ1(Y ) + ε
2 ln εÛ2L(ξ) + ε

2{ ˜̂U2(ξ, Y ) + Û2(Y )}+ ∙ ∙ ∙ , (6.1)

where Û2(ξ, Y ) is numerically decomposed into the fluctuation
˜̂
U2(ξ, Y ) and the mean

Û2(Y ). For the sake of clarity, the fluctuation is differentiated with respect to Y , and the
result is shown in figure 10. We compare this with the corresponding numerical result
ε−2ũY (ξ, Y ) (figure 11). One of the characteristic structures associated with the asymp-

totic solution
˜̂
U2Y is the cats-eye shape which possesses, at this order, a discontinuity

in the first derivative at Y − rcu1(rc)τ
−1
0 = ±(2rcμ(1 − cos ξ)/ατ0)1/2. We can detect

a similar quasi-discontinuous structure in the high R numerical solutions (P1 and P6).
However, when R is smaller than its value at the kink, the discontinuity seems to be
smoothed out due to the thicker nonlinear critical layer structure which effectively over-
laps with the inner wall layer. For example, the visualization for P1 and P2 is similar at
first glance, but there is only an upper (outer) discontinuity for P2 whereas we can see a
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P1: R = 2× 106 upper branch

P2: R = 2× 105 upper branch

P3: R = 2× 105 lower branch

P4: R = 2× 106 lower branch

P5: R = 2× 107 lower branch

P6: R = 108 lower branch

Figure 11. The flow structure in the vicinity of the critical layer for (η, α) = (0.1, 0.6546). The
grey scale represents contours of ε−2ũY . The radial plot intervals are the same as the close-up
plots in figures 3 and 4.

lower (inner) discontinuity for P1. In other words the kink, which differentiates between
the LR and HR modes, can be considered to be the product of the separation of the
nonlinear critical layer and the inner wall layer structures. This feature is reminiscent of
the role of the kink investigated by Healey (1995) for the linear stability of the Blasius
boundary layer, but seen here in a nonlinear setting.
Next we compare asymptotic and numerical streamwise velocity solutions in the core
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Figure 12. The comparison of the real part of the fluctuation F for the lower branch finite-am-
plitude solutions (solid lines, ε−2F ) and the asymptotic results (dashed lines, A0F2 for (a) and
(b), Fa for (c), Fb for (d)) for (η, α) = (0.1, 0.6546). The values of R = A× 10N are abbreviated
as AeN.

and the wall layers, restricting our attention to the lower branch numerical solution. The
asymptotic core solution for the streamwise component expands in the form

u = εū1(y) + ε
2{A0F2(y) cos ξ + ū2(y)}+ ∙ ∙ ∙ , (6.2)

while the inner wall layer solution is written in terms of functions of Za = R
1/2(1+ y) as

u = ε2{
1

2
Fa(Za)e

iξ + c.c.}+ ε4Ua(Za) + ∙ ∙ ∙ , (6.3)

and the outer wall layer solution is expressed in terms of the variable Zb = R1/2(1 − y)
as

u = ε2{
1

2
Fb(Zb)e

iξ + c.c.}+ ε4Ub(Zb) + ∙ ∙ ∙ . (6.4)

Therefore we see that the axial-dependence in the leading-order terms of the asymptotic
solution in both the core and the wall layers consists of just a single harmonic. We recall
that the numerical solution for the streamwise velocity takes the form

u = ū(y) + {
1

2
F (y)eiξ + c.c.}+ higher order Fourier modes. (6.5)

The real and imaginary parts of ε−2F and A0F2, Fa,Fb are compared in figures 12 and 13
respectively. Note that the real and imaginary part of F corresponds to the even (cos ξ)
and odd (sin ξ) axial dependence respectively. In the outer part of the core, above the
critical layer, both asymptotic and numerical solutions predict that F is even, to leading
order. In the inner core, where the asymptotic theory again predicts an even stream-
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Figure 13. Caption as for figure 12 except that the imaginary parts are now compared.

wise velocity, such agreement is harder to obtain, in part due to the interaction of the
nonlinear critical layer and inner wall layer referred to earlier. Except for this difference,
the numerical solutions qualitatively agree with the asymptotic result. Furthermore, the
solutions begin to show quantitative agreement after the kink is passed, as predicted in
figure 9. The two peaks of F for R = 108 in figure 12(b) also suggest that the separation
of the inner wall layer and the nonlinear critical layer is underway.
The mean-flow distortion is also compared in figure 14. Because the leading order
magnitude of the asymptotic solutions is different in each layer, we compare ε−1ū and ū1
for the core region and ε−4ū and Ua, Ub for the wall layers. Again, good qualitative and
quantitative agreement of asymptotic and numerical solutions can be found before and
after the kink. There are two prominent features close to the inner wall. One is the sharp
peak, which is related to the asymptotic discontinuity of the core solution at the critical
layer. The other is the negative perturbation to the mean flow near the inner wall which
arises in order to maintain the same value of M at the inner and outer walls. A plot of
the normalized nonlinear forcing

Nf (y) ≡ (αR)r
−1∂r{rψξ(ψr + r−1ψ)} = −r

−1∂r(rū
′), (6.6)

calculated from the numerical solution (figure 15), reveals that the mean-flow distortion
is almost unforced in the outer core, as predicted by asymptotic theory.

7. The behaviour of the solutions as α→ 0
Here we focus on LR mode solutions which, we recall, do not show quantitative agree-
ment with the asymptotic analysis of section 5 due to the incomplete nature of the
nonlinear critical layer structure (see, for example figure 11). One of the reasons that
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Figure 14. The comparison of the mean-flow distortion for the lower branch finite-amplitude
solutions (solid lines, ε−1ū for (a) and (b), ε−4ū for (c) and (d)) and the asymptotic results

(dashed lines, ū1 for (a) and (b), Ua for (c), Ub for (d)) for (η, α) = (0.1, 0.6546). The values of
R = A× 10N are abbreviated as AeN.
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Figure 15. The nonlinear forcing of the mean-flow distortion for (η, α) = (0.1, 0.6546). The
solid, dashed and dotted lines correspond to P6 (R = 108, lower branch), P3 (R = 2×107, lower
branch), P1 (R = 2× 106, upper branch) respectively.
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(a): α = 0.05

(b): α = 0.02

(c): α = 0.01

Figure 16. The axial fluctuation velocity field ũ for (η,R) = (0.33, 5 × 104). The resolution
(L,N) = (50, 240) is used for (a) while (L,N) = (30, 500) is used for (b) and (c). The dashed
line represents the location of the critical layer.
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Figure 17. The fluctuation velocity field at the critical layer location y = yc for (η,R) = (0.33,
5×104). Left and right figures represent ũ and ṽ. The solid, dashed and dotted curves correspond
to α = 0.01, 0.02 and 0.05 respectively. The truncation level is the same as for figure 16.

this limit is of interest is that numerical evidence suggests that the maximum value of
η, ηmax say, beyond which solutions do not exist, occurs as α → 0. In this section we
will first study the behaviour of the solutions of the full Navier-Stokes equations at fixed
Reynolds number and radius ratio when α is small but finite. We will then continue the
solution branch in the limit α → 0 by studying the reduced (long-wave) problem that
emerges when α ∼ O(R−1).
From examination of figure 7, it appears that ηmax tends to a maximum limiting value

in the range 0.33 − 0.40 as α → 0. A more accurate estimate than this is difficult to
obtain due to the high resolution required. In view of this, we choose to examine the
behaviour as α → 0 by fixing η = 0.33, R = 5 × 104. The fluctuation component of the
streamwise velocity is visualized in figure 16(a)–(c) for α = 0.05, 0.02 and 0.01. These
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Figure 18. The convergence of the flow field as the wavenumber α is decreased for (η,R) = (0.33,
5×104). The truncation level is the same as for figure 16. (a): Plot of flow field along the axis in
the phase space spanned by ũ and ṽ for ξ ∈ [0, 2π] at the critical layer location y = yc. (b): The
normalized mean flow ū/α. The solid, dashed and dotted curves correspond to α = 0.01, 0.02
and 0.05 respectively. The crosses indicate the critical layer locations.

figures show an intriguing localization of the disturbance in the streamwise direction. To
see the localization more clearly, the fluctuation field at the critical level y = yc is shown
in figure 17 where we can see the concentration of both the axial and radial velocities in
the localized region.
For the reader who is interested in the spectral convergence properties of the localized
solution, we remark in passing that the shape of this localized structure does not change
when the resolution level is increased with η below the cut-off value (which lies in the
range 0.33 − 0.40 as mentioned previously). If a lower resolution level is used however,
it is possible to continue our branch beyond this threshold; however, these solutions are
sensitive to spectral accuracy and cease to exist once the resolution level is improved. The
latter property of our solution is similar to that for poorly-resolved localized solutions
observed in plane Couette flow by Cherhabili & Ehrenstein (1995); see Rincon (2007),
Ehrenstein et al. (2008), Mehta (2004) and Mehta & Healey (2005) for more discussion
of this issue. Thus, we conclude that our existence threshold of η for the LR mode is
reliable.
The smaller the value of α, the stronger the localization becomes and it appears that
the shape of the fluctuation is converging to a limiting form as α → 0. To show this
tendency more clearly, the plots of ũ and ṽ are combined in figure 18(a). The mean-flow
distortion for the different values of α is compared in figure 18(b) and we see that this
quantity scales with α when α is small. This makes sense because the mean-flow distortion
is sustained by the spatial average of the nonlinear self-interaction of the fluctuation (see
(4.3)) and therefore if the shape of the fluctuation is becoming independent of α, the
mean-flow distortion divided by α must converge to a limiting form. However when α
is sufficiently small, specifically of O(R−1), the solution cannot continue to exist in its
present form at finite R as it would violate the energy analysis of section 3 which, for
η = 0.33, shows that all disturbances must monotonically decay if αRE . 108.20.
The new structure that controls the behaviour of the modes at very small α is the long-
wave version of the asymptotic structure of section 5, and the governing equations are
(5.57)–(5.58). Indeed, in figure 16, we can see that the nonlinear critical layer structure
we saw in figure 11 is completely smoothed out as we discussed in subsection 5.4.
The strategy we adopt to obtain the solution of (5.57)–(5.58) is the continuation of
the solution branch of (4.2)–(4.3), gradually decreasing α, while keeping the quantity
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Figure 19. (a): The continuation to the long-wave limit for α† ≡ Rα = 2500. (b): The solid
line shows the solution branch of the long-wave limit problem. The vertical dash-dotted line
represents the energy threshold, calculated from the analysis of section 3. The truncation level
(L,N) = (50, 240), which is sufficient to see the tendency of the branch, is used. Crosses are
the same solution but computed at a higher resolution level, i.e. (L,N) = (50, 400) is used for
α† = 1500 while (L,N) = (40, 500) is used for α† = 500.

(a): α† = 1500

(b): α† = 500

Figure 20. The axial fluctuation velocity field ũ† for the long-wave limit solution at a radius
ratio η = 0.33. The resolution (L,N) = (50, 400) is used for α† = 1500, while (L,N) = (40, 500)
is used for α† = 500. The dashed line represents the location of the critical layer.
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Figure 21. The fluctuation velocity field at the critical layer location y = yc for η = 0.33. The
left figure represents ũ† whereas the right figure represents ṽ†/α†. The solid and dashed curves
correspond to α† = 500 and 1500 respectively. The truncation level is the same as for figure 20.
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α† ≡ αR constant. Once the solutions for ψ(ξ, y) and u(y) are obtained, [u†, v†](ξ, y) can
be found as [u+ ψr + r

−1ψ,−α†ψξ]. The continuation is started from the lower branch
solution at (η, α,R) = (0.33, 0.05, 5× 104) as shown in figure 19(a). The solution branch
successfully reaches α = 0, allowing us to then compute the bifurcation curve shown in
figure 19(b) by varying α†. The solution branch reaches a minimum inM at α† ' 500 and
then further decrease in α† leads to a rapid increase in M , thereby avoiding crossing the
energy boundary calculated in section 3 and shown as a vertical dot-dashed line on figure
19(b). As expected, the solutions of the long-wave problem possess highly streamwise-
localized fluctuations with no discernible critical layer structure (figures 20 and 21) and
there is good qualitative agreement with the finite Reynolds number calculations shown
in figure 16. The strong localization observed here clearly requires a large number of axial
modes N for satisfactory resolution. However, the lack of an obvious critical layer means
that the solution can be fully-resolved in the radial direction without L needing to be
excessively large. We have exploited this fact when producing figure 19(b) where we have
lowered L and increased N to calculate the solution marked with a cross for α† = 500.

8. Conclusion

In this paper we have examined the large Reynolds number asymptotic behaviour of
two-dimensional finite-amplitude travelling-wave solutions of shear flows. For this pur-
pose, we extended the axisymmetric solution branch of annular sliding Couette flow com-
puted by DN11 and developed a corresponding axisymmetric asymptotic theory valid at
high Reynolds number.

The initial finite-amplitude computation was conducted at a radius ratio η = 0.1, where
we can find linear instability, and we fixed the wavenumber α at its linear critical value of
0.6546. Finite-amplitude solutions come into existence due to a saddle-node bifurcation,
and upper and lower branches in amplitude–Reynolds number space are formed. Both
branches continue to exist as R is increased, although the lower branch coincides with
the linear instability, i.e. the zero-amplitude state, for a finite range of R. At sufficiently
high R, our calculations indicated that there exist kinks in both the upper and lower
branches. The part of each branch before and after the kink is referred to as the LR (low
Reynolds number) and HR (high Reynolds number) mode respectively.

A multi-structured analytic solution valid for asymptotically large R was derived in
section 5: this asymptotic theory divides the shear layer into five decks (figure 8). At lead-
ing order viscosity is only present in the boundary layers near the inner and outer walls
and is also vital in the nonlinear critical layer where a cats-eye shape quasi-singularity
exists and the mean flow is strongly modified. The asymptotic theory was then com-
pared with the finite Reynolds number calculations. For the LR mode, where R is in the
range O(104)–O(107), we observed good qualitative agreement between the asymptotic
solutions for the various layers and the corresponding visualization of the numerical so-
lutions. However, for this mode, the inner inviscid core layer is absent and hence the
nonlinear critical layer structure is incomplete, due to the effective interaction with the
inner wall layer. The reason for this is that the distance between the nonlinear critical
layer and the inner wall layer is so close that it is comparable with the thickness of the
critical layer, which is of order R−1/6 according to the theory. When we further increase
R to 108, so that the relevant solution branch belongs to the HR mode, we find that the
flow visualization of the lower branch solution agrees quantitatively with the asymptotic
solution, with visualizations showing a clear separation of the inner wall layer and the
critical layer. Therefore we conclude that the kink in the solution branch results from the
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separation of the inner wall layer and the nonlinear critical layer. In the linear setting,
Healey (1995) came to a similar conclusion when considering boundary-layer stability.
One of the notable properties of this asymptotic solution, and one which agrees with the
numerically-computed lower branch asymptotic behaviour, is that all disturbances decay
as R is increased. This means that when we consider practical laminar flow control at high
R, the present Tollmien-Schlichting type flow structure could become more important
than the vortex-wave interaction type streamwise roll equilibrated states, which require
an O(1) modification of the mean flow, because it would be ‘closer’ to laminar flow in
the sense of disturbance magnitude (e.g. disturbance norm or energy). Thus it is likely
that our solution opens up the route to transition first in some cases. We also note
here that for moderate R, it is known that an O(R−1) streamwise roll can trigger shear-
flow transition by the lift-up mechanism (e.g. Lemoult et al. 2012). When R is sufficiently
large, our solutions, which have O(R−1/6) deviation from the basic flow, would also affect
this route to transition where the magnitude of the disturbance evolves from O(R−1) to
an O(1) size.
As we have already remarked in the introduction, one of the possible practical appli-
cations of annular sliding Couette flow would be to the boundary-layer flow surrounding
an object in flight. At first, one might be concerned that the values of Reynolds number
R considered in this paper are too large to apply to this real situation. However, we note
here that the length scale must be chosen as the inner cylinder radius in order to make
the comparison. Thus when the results of annular sliding Couette flow with η = 0.1 are
applied, we find that the Reynolds number, Rf say, determined by the radius and speed
of the flying body is given by Rf = 2Rη/(1− η) = 0.22R, and therefore stays at a real-
istic value. Obviously the smaller the value of η, the smaller the corresponding value of
Rf . We also note that our results demonstrate that the main activity in the flow-field is
localized near the inner wall so that the effective boundary-layer thickness is significantly
less than the gap width.
We also examined how the finite-amplitude solution branch behaved as η is varied. It
is found that the solution branches of both the HR and LR mode can be continued well
beyond the linear long-wave cut-off value of η ' 0.1415. For the LR mode, the nonlinear
cut-off value of η increases as α decreases. The ultimate value for small α is estimated
to lie between 0.33 and 0.40. This observation suggests that the nonlinear version of the
cut-off is also a long-wave phenomenon. Although the present calculation failed to trace
the HR mode solution branch beyond a value of η ' 0.159, it must also reach a cut-off if
we assume that this mode asymptotes according to the large R theory which must itself
experience a cut-off before the narrow gap limit of plane Couette flow is reached.
The viscous layers in the asymptotic structure become thinner as R is increased, but

thicken as α is decreased. A distinguished limit α ∼ O(R−1) arises at which the wall
layers and critical layer thicken to an O(1) size and merge together. An identical effect is
observed in the numerical solutions where we observe that as α is decreased to 0.01 for
η = 0.33, the rapidly-varying behaviour near the critical location is completely smoothed
out. Instead, there is the formation of a prominent streamwise localized structure. This
localized structure can be explained by the α ∼ O(R−1) theory because all streamwise
Fourier modes become leading order in size, in contrast to the asymptotic theory for
α ∼ O(1). In order to check this argument, we examined numerically the limit α→ 0 of
the finite-amplitude solution branch, while keeping the product αR fixed. In this limit, the
governing equations coincide with the α ∼ O(R−1) version of the asymptotic equations.
The visualization of the corresponding solution indeed shows strong localization. The
retreat of the solution to high Reynolds number in the small wavenumber limit is also
necessary so that the solutions do not cross the energy boundary derived in section 3.
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Although the axisymmetric solutions presented here appear to have some connection
to the initiation of localized turbulent spots, it should be noted that the present solutions
cannot be linked directly to fully developed ‘puffs’ in pipe flow, because the axisymmetric
asymptotic solution presented in this study does not exist in this flow (as remarked at the
beginning of section 5). Instead, by analogy with our results, it might be expected that
a more relevant asymptotic model for that situation would be the spiral wave structure
given by Smith & Bodonyi (1982a), and in particular its long-wave limit, which gives a
threshold amplitude for the instability.
This work was partially supported by the JSPS Institutional Program for Young Re-
searcher Overseas Visits. K.D. would like to thank Professors P. Hall and R. R. Kerswell
for inspiring discussions concerning localized solutions.

Appendix A. The phase shift calculation for the asymptotic solution

Here our aim is to calculate the jump in the sin ξ component of axial velocity across
the critical layer considered in section 5.3. It is shown there that the term Û5(ξ, Y ) in
(5.35) is the largest to possess an odd part about ξ = π. We therefore write

Û5 = Û5O + Û5E,

with subscripts O and E to denote the odd and even parts of this expression, and we do
likewise for the corresponding radial velocity and pressure components. From substitution
of (5.35) into the Navier-Stokes equations (2.3)–(2.5), we find that (Û5O, V̂5E, P̂5O) are
governed by

αÛ5Oξ + V̂5EY = 0,

αÛ1Û5Oξ + V̂1Û5OY + V̂5EÛ1Y = −αP̂5Oξ + Û2Y Y + Û1Y /rc.

If we differentiate the second of these equations with respect to Y, use expressions (5.36),
(5.42) for the velocity components, and change to the characteristic variable ζ defined in
(5.41), we can simplify this system to

∂

∂ξ̂
(Û5OY ) = ∓

(
2ατ0
rc

)1/2
∂

∂ζ

(
(ζ − μ cos ξ)1/2κ′(ζ)

)
, (A 1)

where κ(ζ) is given by (5.45), and ∂/∂ξ̂ denotes differentiation with respect to ξ, holding
ζ fixed.
To determine the velocity jump we write

Û5O =

∞∑

n=1

bn(Y ) sinnξ,

so that the quantity φ defined in (5.11) is given by

φ = lim
Y→∞

b1 − lim
Y→−∞

b1,

where

b1(Y ) =
1

π

∫ 2π

0

Û5O(ξ, Y ) sin ξ dξ.

By changing variables from (ξ, Y ) to (ξ̂, ζ), where ξ = ξ̂, integrating by parts with respect
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to ξ̂, and using (A 1), we finally obtain

b1 =
2

μ
(2ζκ′ − κ) + constant.

Then, using the properties of κ given in (5.43), (5.45), (5.46) and (5.47), we can establish
that

φ =
2τ0C1

αr2cA
1/2
0

,

which is the result (5.52) quoted in the main text.
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