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Abstract
Population monitoring must robustly detect trends over time in a cost-effective
manner. However, several underlying ecological changes driving population
trends may interact differently with observation uncertainty to produce abun-
dance trends that are more or less detectable for a given budget and over a given
time period. Errors in detecting these trends include failing to detect declines when
they exist (type II), detecting them when they do not exist (type I), detecting trends
in one direction when they are actually in another direction (type III) and incor-
rectly estimating the shape of the trend. Robust monitoring should be able to
avoid each of these error types. Using monitoring of two contrasting ungulate
species and multiple scenarios of population change (poaching, climate change
and road development) in the Serengeti ecosystem as a case study, we used
a ‘virtual ecologist’ approach to investigate monitoring effectiveness under
uncertainty. We explored how the prevalence of different types of error varies
depending on budgetary, observational and environmental conditions. Higher
observation error and conducting surveys less frequently increased the likelihood
of not detecting trends and misclassifying the shape of the trend. As monitoring
period and frequency increased, observation uncertainty was more important in
explaining effectiveness. Types I and III errors had low prevalence for both
ungulate species. Greater investment in monitoring considerably decreased the
likelihood of failing to detect significant trends (type II errors). Our results suggest
that it is important to understand the effects of monitoring conditions on per-
ceived trends before making inferences about underlying processes. The impacts
of specific threats on population abundance and structure feed through into
monitoring effectiveness; hence, monitoring programmes must be designed with
the underlying processes to be detected in mind. Here we provide an integrated
modelling framework that can produce advice on robust monitoring strategies
under uncertainty.

Introduction

Monitoring is an essential tool used to trigger interventions,
inform decisions, measure success against stated objectives
and learn about the system (Yoccoz, Nichols & Boulinier,
2001; Lindenmayer et al., 2012). Monitoring aims to draw
inferences about changes in the observed system over time
(Yoccoz et al., 2001) and must be able to detect true trends
over time while taking costs into consideration (Kinahan &
Bunnefeld, 2012). In some cases, time, budget and observa-
tional constraints may even mean that managers may be
better off allocating resources to other interventions instead
of monitoring (McDonald-Madden et al., 2010). Monitor-
ing effectiveness (ability to detect trends) and efficiency

(ability to do this at low cost) are thus key considerations
when planning conservation interventions.

The importance of detecting changes at appropriate
spatial and temporal scales and with adequate confidence
levels has often been emphasized (Field et al., 2004; Jones,
2011), but a number of factors affect monitoring effective-
ness, ultimately affecting management decisions and their
robustness to uncertainty. For example, the time frame over
which change can reliably be detected might not match that
required for management (Maxwell & Jennings, 2005),
monitoring effort may not be enough or appropriately tar-
geted to detect trends (Katzner, Milner-Gulland & Bragin,
2007) and sampling design may not be optimal (Blanchard,
Maxwell & Jennings, 2008). The degree of environmental
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and demographic stochasticity also affects the reliability of
monitoring data (Hauser, Pople & Possingham, 2006).

In the face of limited resources in conservation, monitor-
ing is generally limited by budgets and varies with the man-
ager’s willingness to accept different error types (Field et al.,
2004; Rhodes et al., 2006; Lindenmayer et al., 2012). For
example, type I errors (α; rejecting the null hypothesis when
it is true, such as when a species is reported to be declining
but is actually stable) may cause unnecessary restrictions
and waste resources, while type II errors (β; failing to detect
a difference that is present, such as concluding that a species
is stable when is actually declining) could mean failing to
implement required management interventions and poten-
tially allowing the species to go extinct (Brosi & Biber,
2009). Other potential types of error, rarely considered
when planning and evaluating monitoring programmes, are
type III errors (correctly rejecting the null hypothesis but
incorrectly inferring the direction of the effect; Morrison,
2007), and misidentifying the shape of the population tra-
jectory (e.g. by fitting linear models when trends are non-
linear) despite the potential use of shapes of trends to
identify threatening processes (Di Fonzo, Collen & Mace,
2013).

Long-term research in the Serengeti includes monitoring
of a range of species, with wildlife censuses having been
conducted since the 1950s (Sinclair et al., 2007). Poaching
(Loibooki et al., 2002), climate change (Ritchie, 2008) and
development of infrastructures, such as a commercial
highway (Holdo et al., 2011), have been suggested as current
or potential threats to this system. Poaching by local com-
munities and environmental variability have been described
as major sources of uncertainty in the system (Pascual &
Hilborn, 1995; Nuno et al., 2013b). Observation error
during the monitoring process further affects wildlife abun-
dance estimates (Nuno, Bunnefeld & Milner-Gulland,
2013a). Using monitoring of two contrasting ungulate
species and multiple scenarios of population change in the
Serengeti ecosystem as a case study, we used a ‘virtual ecolo-
gist’ approach (Tyre, Possingham & Lindenmayer, 2001) to
investigate monitoring effectiveness under uncertainty. Spe-
cifically, we explored how the prevalence of different types
of error (I, II, III and shape) varies depending on budgetary,
observational and environmental conditions.

Methods

Study area and species

We chose two ungulate species to investigate contrasting
issues influencing the effectiveness and efficiency of moni-
toring in savannah ecosystems. The migratory wildebeest
population Connochaetes taurinus, currently numbering
around 1.3 million animals (Hilborn & Sinclair, 2010), has
been extensively studied over the last 60 years (Mduma,
Sinclair & Hilborn, 1999). The importance of the wildebeest
migration has often been demonstrated, both for its ecologi-
cal significance and as a source of tourism revenue
(Norton-Griffiths, 2007; Holdo et al., 2011). The resident

population of impala Aepyceros melampus found in the
Grumeti-Ikorongo Game Reserve (Supporting Information
Appendix S1) has received considerably less attention but
represents a suite of resident ungulate species important
both for local livelihoods as bushmeat, and as constituents
of the Serengeti mammal fauna. Currently, there are around
12 000 impala in the game reserve (Grumeti Fund, 2012).

Methodological framework

The modelling framework was divided into four main com-
ponents (Fig. 1): (1) an ‘operating model’ that produced the
simulated ‘true’ population dynamics under different sce-
narios of population change; (2) an ‘observation model’ that
simulated monitoring of wildlife populations over time; (3)
the ‘assessment model’ that simulated a manager’s estima-
tion of trends in wildlife abundance based on the simulated
monitoring data; and (4) an evaluation of monitoring
effectiveness, in which discrepancies between ‘true’ and
‘observed’ trends and their drivers were investigated.

Operating model

Ungulate population dynamics

We used post-breeding, age-structured, two-sex matrix
models to represent ungulate population dynamics
(Caswell, 2001). The models include juveniles (<1 year old),
yearlings (second year), adults (>2 years old) and senescent
adults (impala: ≥8 years; wildebeest: ≥14 years). The matrix
model was parameterized using vital rates from studies on
wildebeest (Mduma, Hilborn & Sinclair, 1998; Mduma
et al., 1999; Owen-Smith, 2006), impala (Jarman & Jarman,
1973; Fairall, 1983; Owen-Smith, Mason & Ogutu, 2005)
and general ungulate life history (Gaillard et al., 2000).

Figure 1 Conceptual description of the study’s methodological
approach. The ‘operating model’ (A) produces the ‘true’ population
dynamics under different scenarios of population change; the ‘obser-
vation model’ (B) simulates monitoring of wildlife populations over
time t during n number of years; the ‘assessment model’ (C) esti-
mates trends of wildlife abundance from simulated monitoring data;
and ‘analysis’ (D) assesses monitoring effectiveness and efficiency.
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The models account for polygynous mating behaviour
(Caswell, 2001) and the effects of dry season rainfall and
density dependence on ungulate mortality (Gaillard,
Festa-Bianchet & Yoccoz, 1998; Mduma et al., 1999;
Gaillard et al., 2000; Owen-Smith, 2006). The structure and
parameterization of these models is fully described in Sup-
porting Information Appendix S2.

Drivers of change

To investigate the ability of monitoring to detect population
trends under a number of types of threat, we considered that
both ungulate populations were potentially affected by three
types of processes. We used simplified scenarios to illustrate
realistic conditions of change under which monitoring may
be conducted.

Poaching

Illegal hunting occurs throughout the Serengeti (Loibooki
et al., 2002) but its prevalence is highly uncertain (Nuno
et al., 2013b). Male bias in wildebeest offtake due to behav-
ioural factors has often been suggested, with reported male
selectivity ranging from 138 to 148% (i.e. the proportion of
males in the harvest offtake is 38–48% higher than in the
population; Georgiadis, 1988; Hofer, East & Campbell,
1993; Holmern et al., 2006). The estimates of annual wilde-
beest offtake in the Serengeti range from 40 000 to 129 000
animals (Mduma et al., 1999; Rentsch & Packer, 2014), cor-
responding to 3–10% of the current population size.

In the poaching scenario, we assumed a 10% harvest rate
for wildebeest, to be precautionary, and a 5% rate for
impala, which is less heavily targeted by poachers (Rentsch
& Packer, 2014). We assumed a rate of 143% male selectivity
in wildebeest offtake, the median of the published estimates.

Climate change affecting rainfall trends
and variability

In sub-Saharan Africa, the predicted primary effect of
global climate change is on precipitation, but there still
remains much debate as to which areas will receive more or
less rainfall (Hulme et al., 2001; Cooper et al., 2013). Global
climate models predict that annual rainfall will increase in
East Africa but several studies have suggested that there will
be a great deal of regional variation (Ogutu et al., 2008;
Mango et al., 2011; Dessu & Melesse, 2012). Ritchie (2008)
suggested that the Serengeti will experience decreased and
less variable rainfall and that overall rainfall has decreased
by approximately 25% over the past 50 years.

In the climate change scenario, the dry season rainfall
mean (148 mm) and the dry season rainfall variability,
expressed by its standard deviation (69 mm), were assumed
to decrease exponentially (rate of annual change: −0.006),
resulting in a cumulative 26% decrease over the 50 years
of the simulation, similarly to ongoing trends (Ritchie,
2008). These changes subsequently affected rainfall-related

processes in our simulated biological model, such as density-
dependent survival and mortality (further details provided
in Supporting Information Appendix S2).

Potential effects of road construction

Vital rates may be affected by a number of processes, such as
encroachment and habitat fragmentation. For example,
landscape fragmentation can lead to reduced population
growth and a lower carrying capacity for migratory ungu-
lates (Hobbs et al., 2008) and the proposed commercial
highway in the Serengeti could affect the ability of migra-
tory animals to effectively track high-quality forage
resources across the landscape (Holdo et al., 2011).
However, these processes often occur unexpectedly and
their effects are poorly understood.

In this scenario, we considered potential impacts of a
proposed road crossing the Serengeti (Holdo et al., 2011).
We assumed consecutive declines in juvenile survival,
yearling fecundity, adult fecundity and adult survival,
following general patterns of stage-specific vulnerability
to changes in environmental stressors among ungulate
species (Gaillard et al., 2000), which started 3 years apart
and then continued for the rest of the simulation at expo-
nentially increasing rates (annual rate of change = −0.002),
resulting in an approximately 10% decrease in vital rates
over 50 years.

Changes to the parameters were applied after the initial
transient dynamics in the baseline scenario (without any
threats) and we ran 10 000 replicates of the operating model
for each of the scenarios, producing estimates for ‘true’
trends of population abundance, and their associated uncer-
tainties, under the three different sets of conditions. Five
pre-threat and 50 post-threat years of each simulation and
iteration were used as outputs.

Observation model

We simulated the monitoring of the ‘true’ wildlife abundance
obtained from the operating model. In the Serengeti ecosys-
tem, migratory wildebeest are monitored through aerial
point sampling and impala using systematic reconnaissance
flight surveys (see Nuno et al., 2013a for a description of
the monitoring procedure and wildlife observation model).
Monitoring was assumed to be carried out using the current
methods, and we simulated the effects of low- and high-
monitoring budgets as defined in Nuno et al. (2013a).

Unstandardized estimates of precision (measured as the
coefficient of variation, CV) and accuracy (percentage dis-
crepancy between the mean-estimated population size and
the simulated known population size) were taken from
Nuno et al. (2013a: Tables S2 and S3). These estimates were
obtained by fitting generalized linear models to simulated
precision and accuracy as a function of multiple sources
of observation uncertainty for wildebeest and impala
monitoring, such as sampling effort, ecological features
and animal detectability (see Nuno et al., 2013a for a full
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description). Values of accuracy and CV were then applied
to the ‘true’ wildlife estimates to obtain ‘observed’ abun-
dance from ‘true’ abundance for each simulation and
iteration.

Monitoring scenarios

Monitoring was simulated under different conditions of
survey frequency (every 1, 3 or 5 years), monitoring length
(5, 10, 25 or 50 years), observation error (none, low or high
as produced by monitoring budgets defined in Nuno et al.
(2013a) and starting point (how long before or after the
threat started did monitoring begin; 5 years before, at the
same time as the threat started, or 5 years after).

To minimize the influence of simulation variability on
any comparisons between different monitoring options,
we generated complete datasets under maximum monitor-
ing frequency (yearly) and length (50 years) for each
simulated scenario. All monitoring designs were then
applied by subsetting the complete dataset under specific
conditions. We assumed that at least three data points
would be needed for trend assessment so monitoring
was annual if it was conducted only for 5 years, and con-
ducted annually or every 3 years if it was conducted for 10
years.

Assessment model

The assessment model simulated the process of trend esti-
mation from wildlife abundance data. Generalized additive
models with a normal error distribution and identity link
were fitted to both the observed and ‘true’ data, smoothing
the time series of abundance using the package mgcv version
1.7–22 in R v.2.15.2 (R Core Team, 2012). We modelled the
year effect as a cubic smoothing spline with 3 degrees of
freedom (d.f.; given the length of the time series and our
interest in trends instead of short-term fluctuations), as a
linear term or as a constant (null model). Gamma was set to
1.4 to include a penalty for each additional degree of
freedom within the model and prevent model overfitting
(Wood, 2006). Selection of the most parsimonious model
was performed using the Akaike information criterion cor-
rected for small sample size (AICc). We considered that
non-null models would be acceptable instead of null models,
and non-linear instead of linear, only if ΔAIC ≥4; ΔAIC ≥4
indicates considerably less support for the alternative model
(Burnham & Anderson, 2002). In order to explore the
potential effects of ΔAIC on our results, we also ran the
assessment model for ΔAIC = 2 (Supporting Information
Appendix S5). We averaged model weights for each trend
type over all the iterations and, based on the most parsimo-
nious models, quantified how many of the 10 000 replicates
showed decreasing or increasing trends for each trend type.
To identify the direction of the trend, we used the sign of the
slope if year was fitted as a linear term, or the sign of the
mean annual change in smoothed population size if year was
fitted as a smoothing factor (Collen et al., 2011).

Analysis of monitoring effectiveness

We investigated differences between ‘true’ and estimated
trends as a function of different ecological and monitoring
conditions by quantifying different types of error for
each scenario. Type I errors (α) were quantified as the per-
centage of the 10 000 replicates in which a negative or
positive trend was detected in the ‘observed’ data but the
trend from the ‘true’ data was actually stable (i.e. the null
model was the most parsimonious model). Type II errors
(β) were quantified as the percentage for which no signifi-
cant trend was detected in the ‘observed’ data, although
this was present in the ‘true’ data. A subset of the type II
error (β2) represented the worst case in which negative
trends were not detected, despite their presence. Type III
errors (γ) were quantified as the percentage of cases in
which a trend in the ‘observed’ data was identified in the
opposite direction to that in the ‘true’ data. ‘Shape errors’
were quantified as the percentage of non-null cases in
which we identified a linear trend as non-linear and vice
versa.

To investigate the effect of monitoring conditions on the
prevalence of each type of error, we used quasilikelihood
to fit a generalized linear model with a variance–mean rela-
tionship derived from the binomial distribution (to
account for overdispersion) and a logit link to the simula-
tion results (i.e. the number of times a certain error type
occurred out of 10 000 simulations was modelled as a
function of species, monitoring length, frequency, starting
point, observation error and underlying threat). Relevant
two-way interactions between monitoring length, fre-
quency, starting point and observation error were
included.

The monitoring budgets were calculated by multiplying
current unitary costs from itemized monitoring expenses in
the study area for wildlife surveys (J.G.C. Hopcraft, unpubl.
data). Inflation, technological advancements and discount
rates are expected to affect future expenses but are generally
unknown; thus, we kept current costs to simulate into the
future. The total costs for each monitoring scenario were
expressed relative to the baseline scenario.

Results

Baseline scenarios: ‘true’ population
trends under different threat conditions

Under the ‘no threat’ scenario and the baseline
parameterization of the biological models (Table 2.1 in Sup-
porting Information Appendix S2), wildebeest and impala
generally stabilized at around 1.4 million animals and
14 000 animals, respectively. Other studies in the Serengeti
have indicated similar carrying capacities for wildebeest
(1.2–1.5 million; Mduma et al., 1999; Holdo et al., 2011)
and the impala population in the game reserve has been
stabilizing at 12 000 animals (Grumeti Fund, 2012), suggest-
ing that our biological model produces relatively realistic
carrying capacities.
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Declines were greatest in the scenarios of poaching and
road construction, with both species declining, on average,
by 43–69% in 50 years (Fig. 4.1 in Supporting Information
Appendix S4). On average, non-linear models had greater
support than linear and null models for all the scenarios, but
impala and wildebeest populations showed differences in the
prevalence of the shape and direction of abundance trends
depending on the threat type (Table 1). The wildebeest
populations generally declined non-linearly in response to
all threats, although 37% of populations declined linearly in
response to potential effects of road construction. Most
impala populations declined non-linearly in response to the
potential effects of road construction. In response to poach-
ing, about half of the impala simulations showed non-linear
declines and half showed linear declines. The shape and
direction of the effects of climate change on impala were
more uncertain; 15% of populations remained stable or
increased while the others decreased, on average by 31%
over the 50 years.

The prevalence of different error types
according to threat scenario and species

Under the best monitoring conditions (i.e. 50 years of data
collected annually with high-monitoring budgets resulting
in CVs around 0.15 for wildebeest and 0.23 for impala), the
prevalence of different error types was affected by the spe-
cific threat conditions and their impacts on population
abundance, structure and trajectory (Table 2).

Under the simulated conditions, the occurrence of type
I errors, when a negative or positive trend is detected
in the ‘observed’ data but the trend in the ‘true’ data is
actually stable, was very low for all threat scenarios
(α ≤ 0.02, Table 2). Similarly, type III errors (identifying a
trend in the ‘observed’ data with an opposite direction to
that in the ‘true’ data) were low (γ ≤ 0.03) for both the
impala and wildebeest populations, although 82% of type

III errors related to the more serious situation in which a
negative trend was observed as positive (i.e. the remaining
18% of type III errors were positive trends identified as
negative).

Type II errors, failing to find a significant trend in the
‘observed’ data although this was present in the ‘true’ data,
were relatively low for wildebeest (β ≤ 0.34) but higher for

Table 1 Average Akaike model weights per trend type (N: null; L: linear; NL: non-linear), prevalence (percentage of 10 000 simulations) of best-fit
models and trend direction (increasing ↑ or decreasing ↓), and average total change (%) per trend direction over 50 years for each threat
scenario, for the ‘true’ abundance of wildebeest and impala

Threat scenario

Ungulate species

Wildebeest Impala

Average weights Prevalence (%) Average total change Average weights Prevalence (%) Average total change

None N: 0.22 N: 57 N: 0.03 N: 7
L: 0.29 L: ↑9, ↓23 0 L: 0.11 L: ↑11, ↓11 0
NL: 0.49 NL: ↑9, ↓3 NL: 0.86 NL: ↑48, ↓22

Poaching N: 0 N: 0 N: 0 N: 1
L: 0 L: ↑0, ↓0 ↓50% L: 0.22 L: ↑0, ↓50 ↓43%
NL: 1 NL: ↑0, ↓100 NL: 0.78 NL: ↑0, ↓49

Climate change N: 0 N: 0 N: 0.02 N: 6
L: 0 L: ↑0, ↓0 ↓40% L: 0.15 L: ↑4, ↓28 ↓27%
NL: 1 NL: ↑0, ↓100 NL: 0.83 NL: ↑5, ↓57

Potential effects of
road construction

N: 0 N: 0 N: 0 N: 0
L: 0.15 L: ↑0, ↓37 ↓63% L: 0.03 L: ↑0, ↓7 ↓69%
NL: 0.85 NL: ↑0, ↓63 NL: 0.97 NL: ↑0, ↓93

Table 2 Prevalence of different error types (out of 10 000
simulations) for each threat scenario from the ‘observed’ wildebeest
and impala data, monitored annually over 50 years with a
high-monitoring budget

Threat scenario

Ungulate species

Wildebeest Impala

None α: 0.02 α: 0
β: 0.34 β: 0.76
β2: 0.20 β2: 0.26
γ: 0.01 γ: 0.02
‘shape’: 0.16 ‘shape’: 0.51

Poaching α: 0 α: 0
β: 0 β: 0.35
β2: 0 β2: 0.35
γ: 0 γ: 0
‘shape’: 0.55 ‘shape’: 0.50

Climate change α: 0 α: 0
β: 0 β: 0.66
β2: 0 β2: 0.59
γ: 0.03 γ: 0.01
‘shape’: 0.15 ‘shape’: 0.58

Potential effects of road
construction

α: 0 α: 0
β: 0 β: 0
β2: 0 β2: 0
γ: 0 γ: 0
‘shape’: 0.52 ‘shape’: 0.68

α, prevalence of type I errors; β, prevalence of type II errors; β2,
prevalence of ‘worst case scenario’ type II errors; γ, prevalence of
type III errors; shape, prevalence of ‘shape errors’.
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impala (β ≤ 0.76), except in the scenario of potential effects
of road construction in which both species had similar low
levels (Table 2). Moreover, 90% of the type II errors
involved negative trends being undetected (i.e. only 10% of
undetected trends were positive). Reporting the wrong
trajectory shape, that is, identifying a linear trend as non-
linear and vice versa, was common for all threat scenarios;
on average, 46% of the non-null trends were misclassified,
96% of which were identified as linear but were actually
non-linear.

The effect of monitoring conditions on the
prevalence of different error types

The occurrence of type I and type III errors was unaffected
by any of the monitoring conditions (frequency, length,
observation error and starting point), given the threat and
assessment scenarios considered in this study, generally
remaining at very low levels (Table 4.1 in Supporting Infor-
mation Appendix S4). Increasing monitoring length did not
significantly affect the occurrence of different types of
errors; changing the monitoring length tended to change the
shape, direction and magnitude of the true trends, offsetting
the expected benefit of increasing monitoring length. For
example, if monitoring was conducted for only 5 years after
the threat, virtually no errors were found because the
‘actual’ trend, to which observed trends were compared, was
identified as stable. Therefore, increasing monitoring length
was likely both to increase the possibility of errors occurring
as well as the possibility of detecting them.

Type II and shape errors were more likely to occur when
surveys were conducted with observation error or less fre-
quently. The effects of the level of observation error were,
however, strongly conditioned on survey frequency and
length of the monitoring period (Table 4.1 in Supporting
Information Appendix S4): as surveys were conducted more
frequently or monitoring length increased, the importance
of observation error increased in determining the ability of
monitoring to detect trends correctly. For example, in order
to detect true negative trends in wildebeest numbers more
than 80% of the time over a 50-year period, one would have
to monitor with no observation error every 3 years or with
low error every 2 years (Fig. 2). Starting monitoring 5 years
before or after the actual threat started only affected the
probability of occurrence of type II errors; fewer negative
trends went undetected when monitoring started 5 years
before, although this effect was less important as monitoring
length increased.

Characteristics related to threat type and species
explained some of the differences in the likelihood of type II
and shape errors. Impala populations were 1–5% more
likely to present these errors than those of wildebeest, while
keeping all the other variables constant. Threat scenarios
were only 4–5% more likely to have shape errors than the
‘no threat’ scenario but the likelihood of failing to detect a
negative trend (subset of the type II error; β2) was 7–15%
higher in threat scenarios than in the no threat scenario.

Trade-offs between monitoring budget
and effectiveness

Negative trends would go undetected 32 or 2% of the time in
impala and wildebeest populations, respectively, if conduct-
ing annual surveys over 50 years with a low observation
error (Fig. 3). A reduction in budget leading to reduced
survey frequency and higher observation error would
increase the likelihood of not detecting negative trends and
misclassifying the shape of trends (Table 4.1 in Supporting
Information Appendix S4). For example, when compared
with the total costs of conducting annual surveys for 50
years with low observation error, conducting surveys only
every 5 years and with higher levels of observation error
would save up to 90% of the budget, but negative trends
would go undetected more than 80% of the time (Fig. 3).

Discussion
Using a ‘virtual ecologist’ approach, we have linked changes
in population abundance and structure caused by simulated
realistic conservation threats to specific monitoring

Figure 2 Effect of survey frequency and observation error on the
occurrence of (a) type IIa errors (negative trends being undetected)
and (b) shape errors for wildebeest (circles) and impala (triangles).
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effectiveness outcomes. Different types and rates of human
pressure are likely to produce different shapes of declines in
wildlife population abundance. For example, Di Fonzo
et al. (2013) showed that wildlife population decline curves
can be used to distinguish between broad categories of pres-
sure or threat types, although not for detailed threat attri-
butions. Shoemaker & Akçakaya (2014) also provided a
framework for inferring the nature of anthropogenic threats
from long-term abundance records but did not consider
observation error processes. Our results suggest the need to
better understand the effects of monitoring conditions on
our perceptions of observed trends before we can make any
inferences about processes. Although we used a simple
linear versus non-linear distinction, we showed that
misclassifying the shape of trends, particularly classifying
non-linear trends as linear, was common under realistic
environmental and monitoring conditions. As the preva-
lence of non-linear trends was affected by threat type and
monitoring length, knowing how specific threats affect the
abundance and structure of wildlife populations is essential
for designing robust monitoring programmes, as well as
assessing their impacts across time and space (Spangenberg
et al., 2012). Otherwise, trends in abundance may be mis-
takenly assumed to represent underlying threats or biologi-
cal processes, when in fact they are artefacts of the
observation process. By focusing on understanding whether
observed changes obtained through monitoring represent
real changes in wildlife trends, our study casts doubt on the
validity of inferring the processes underlying observed
population trends unless the uncertainties of the monitoring
process are first accounted for.

Different factors might affect the monitoring of different
wildlife species. In the Serengeti, monitoring of highly
aggregated species, such as wildebeest, is improved by
increasing survey precision, while for random or slightly
aggregated species, such as impala, accuracy is the key
factor, being most sensitive to observer effects (Nuno et al.,
2013a). By linking population models with a realistic repre-
sentation of the observation and assessment processes, we
can provide monitoring advice that makes explicit the trade-
offs between monitoring budgets and power to detect
changes. For example, if monitoring in the Serengeti is con-
ducted with the current survey frequency (approximately
every 3 years; TAWIRI, 2010) and low observation error,
negative trends in wildebeest and impala populations might
go undetected approximately 23 or 30% of times, respec-
tively. A reduction in monitoring budgets by 66%, leading to
higher observation error and surveys being conducted less
frequently, could increase this likelihood to 50%. Our results
also suggest that the likelihood of not detecting negative
trends would be particularly high in scenarios of climate
change for impala. These findings can be used to interpret
the data on ungulate population abundance being currently
collected in the study area and to aid decisions on budget
allocation to make monitoring fit for purpose. This is par-
ticularly relevant given the internationally expressed impor-
tance of identifying robust and reliable monitoring targets,
such as CBD Aichi targets, that can be used to infer declines
in specific populations and biodiversity in general (Collen
et al., 2009; Rhodes et al., 2011; Porszt et al., 2012). Moreo-
ver, the feasibility of acting upon different drivers of change
(e.g. rainfall changes or poaching) should be considered
when making management decisions and planning their
implementation. By providing a relatively intuitive single
framework that links population dynamics, scenarios of
change and monitoring effectiveness, our approach may
ultimately contribute to more robust decisions in applied
settings.

Although type II errors, failing to detect effects, may
result in serious consequences to the ecosystem, type I
errors, incorrectly rejecting the null hypothesis, would result
in unnecessary restrictions and waste of resources. Much
more attention is given to type I errors (Field et al., 2004;
Brosi & Biber, 2009), but our results suggest that for this
case study the type I error rate is low and unaffected by most
forms of uncertainty under the considered assessment con-
ditions (such as choice of ΔAIC). This means that, under the
simulated conditions, reports of population decline in the
system are very unlikely to be wrong, suggesting that this
information should be promptly used to inform manage-
ment decisions.

Linear models are commonly applied to population
trend assessment (Thomas, 1996) but most populations
naturally exhibit non-linear dynamics (Clutton-Brock et al.,
1997). Our study shows that making a correct distinction
between linear and non-linear trends may be challenging,
although these might have different implications for man-
agement decision making (e.g. population under ongoing
decline or stabilizing at lower carrying capacity). While in

Figure 3 The potential effects of monitoring costs scenarios (high
budgets: low observation error and annual surveys; low budgets:
high observation error and surveys every 5 years) on the prevalence
of type IIa errors (negative trends not being detected) and relative
total costs (diamonds) when monitoring is conducted for 50 years for
wildebeest and impala populations.
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conservation more attention is generally given to detecting
declines, our results demonstrate that it is also relatively
common for positive trends to be wrongly identified as
declines; this could be particularly relevant, for example,
when dealing with overabundant populations (Chee &
Wintle, 2010). Our approach could be extended to include
populations that are increasing; the expectation is that these
populations would grow in a non-linear way, and hence that
more complex models would better reflect their true trend.
In addition, our framework could be useful for exploring
how modelling assumptions in both the operating model
(e.g. more complex population dynamics models; Cornulier
et al., 2013) and assessment model (e.g. distinguishing
several types of non-linear shapes; Di Fonzo et al., 2013)
might affect the robustness of decisions based on monitor-
ing data. Additionally, as choice of ΔAIC implies trade-offs
between type I and II errors (Supporting Information
Appendix S5), a ‘strength of evidence’ approach could be
adopted instead of defining AIC thresholds that might affect
robustness of scientific results (Johnson, 2013).

Applying the concept of ‘learning by doing’ from adap-
tive management (Keith et al., 2011), our virtual monitoring
tool can allow managers to learn from past monitoring data
and to narrow down the range of possible processes that
could be producing the shapes and trends concerned. A
process of adaptive monitoring in which multiple monitor-
ing strategies are implemented and adapted in response to
data collected could also be developed (Lindenmayer &
Likens, 2009).

Most biological surveys are constrained by observational
and economic constraints that affect the way resources can
be allocated (Field, Tyre & Possingham, 2005). The impli-
cations of monitoring uncertainty are often unknown and
given little consideration in the design of monitoring pro-
grammes worldwide. As shown in this study, the likelihood
of not detecting negative trends and misclassifying shapes
may be too high to be ignored. Uncertainty mitigation
efforts must be focused on the kinds of information that are
most valuable and make a meaningful difference to our
understanding of processes, and to the way we manage
threats (Wintle, Runge & Bekessy, 2010; Runge, Converse
& Lyons, 2011; Runting, Wilson & Rhodes, 2013).
Decision-theoretic approaches that incorporate uncertain-
ties and trade-offs are essential to providing clear and trans-
parent advice for conservation decision making (Chee &
Wintle, 2010; McDonald-Madden et al., 2010), and ulti-
mately promoting the efficient use of scarce conservation
resources (Mackenzie, 2009).
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