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Abstract In this paper we discuss the basket options valuation for a jump-diffusion model. The

underlying asset prices follow some correlated local volatility diffusion processes with systematic

jumps. We derive a forward partial integral differential equation (PIDE) for general stochastic

processes and use the asymptotic expansion method to approximate the conditional expectation

of the stochastic variance associated with the basket value process. The numerical tests show

that the suggested method is fast and accurate in comparison with the Monte Carlo and other

methods in most cases.
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1 Introduction

A basket option is an exotic option whose payoff depends on the value of a portfolio of assets.

Basket options are in general difficult to price and hedge due to the lack of analytic character-

ization of the distribution of the sum of correlated random variables. Monte Carlo simulation

is often used to price basket options, which is simple, accurate, but time-consuming. There has

been some extensive research recently for fast and accurate pricing methods.

Most work in the literature assumes that underlying asset prices follow geometric Brownian

motions. The basket value is then the sum of correlated lognormal variables. The main idea

of the analytic approximation method is to find a simple random variable to approximate the

basket value and then to use it to get a closed form pricing formula. The approximate random

variable is required to match some moments of the basket value. Levy (1992) uses a lognormal

variable to approximate the basket value with the matched first and second moments. The

results are remarkably good but there is no error estimation. Curran (1994) introduces the idea

of conditioning variable and conditional moment matching. The option price is decomposed into

two parts: one can be calculated exactly and the other approximately by conditional moment

matching method. Rogers and Shi (1995) derive the lower and upper bounds. Vanmaele et

al. (2004) suggest a moment matching comonotonic approximation for basket options. See Lord

(2006) for other methods and references. Efforts have been made to extend to more general asset
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price models. Albrecher and Predota (2004) discuss the NIG Lévy process, and Flamouris and

Giamouridis (2007) the Bernoulli jump diffusion model.

Xu and Zheng (2009) suggest a jump-diffusion model for underlying asset price processes.

The innovative feature of that model is that, apart from correlated Brownian motions, there are

two types of Poisson jumps: a systematic jump that affects all asset prices and idiosyncratic

jumps that only affect specific asset prices. Such a model can characterize well the market-wide

phenomenon and individual events. Xu and Zheng (2009) use the partial exact approximation

(PEA) method to find a closed form approximate solution which is guaranteed to lie between

the lower and upper bounds. The numerical tests show that the PEA method has superior

performance in comparison with other methods such as the lower bound, reciprocal gamma, and

lognormal approximations. The limitation of the PEA method is that it depends crucially on

the conditioning variable which is derived from the estimation of the basket value and the closed

form solutions of individual asset prices. This may not be possible for general processes. For

example, if individual asset prices follow some local volatility models, see Dupire (1994), then

there are in general no closed form solutions and the PEA method cannot be applied.

To price basket options for general asset price processes one may study directly the basket

value and its associated stochastic processes which may contain stochastic volatilities and/or

stochastic jump intensities and sizes. Dupire (1994) and Derman and Kani (1998) show that

any diffusion model with stochastic volatility can be replaced by a local volatility model with-

out changing the European option price and the marginal distribution of the underlying asset

price thanks to the uniqueness of the solution to the corresponding pricing equation, a parabolic

PDE. In fact, Gyöngy (1986) discovers the equivalence of a non-Markovian model with a Marko-

vian model and proves that one-dimensional margins of any Itô process can be matched by a

one-dimensional Markovian local volatility process, that is, the value of the square of the local

volatility is equal to the expectation of the square of the stochastic volatility conditional on

the final stock price being equal to the strike price. Without the uniqueness one cannot claim

the equivalence of the stochastic and local volatility models but can still derive the same pric-

ing equation. Bentata and Cont (2009) derive a discontinuous analogue of Gyöngy’s result for

semimartingale asset price processes.

The pricing equation for general asset price processes may contain coefficients expressed in

terms of some conditional expectations. It is in general a challenging task to compute these

conditional expectations as there is no closed form solution to the related SDE. One then tries

to find some good approximations. Antonov et al. (2009) use the Markovian projection onto a

displaced diffusion and Avellaneda et al. (2002) apply the steepest decent search with Varadhan’s

formula, both methods require to solve some minimization problems. Xu and Zheng (2009) derive

a closed form approximation to the conditional expectation with a weighted sum of the lower

bound and the conditional second moment adjustments.

In this paper we discuss the European basket options pricing for a local volatility jump-

diffusion model. The main idea is to reduce a multi-dimensional local volatility jump-diffusion

model problem to a one-dimensional stochastic volatility jump-diffusion model, then to derive

a forward PIDE for the basket options price with an unknown conditional expectation, or local

volatility function, and finally to apply the asymptotic expansion method to approximate the

local volatility function. The main contributions of the paper to the existing literature of the

basket options pricing are the following: we propose a correlated local volatility jump-diffusion

model for underlying asset price processes and derive a forward PIDE for general asset price

processes with stochastic volatilities and stochastic jump compensators, which may be used for

other applications in pricing and calibration, and we find the approximation of the conditional

expectation with the asymptotic expansion method. Numerical tests show that the method
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discussed in the paper, the asymptotic expansion method, performs very well for most cases in

comparison with the Monte Carlo method and the PEA method discussed in Xu and Zheng

(2009).

The paper is organized as follows. Section 2 formulates the basket options pricing problem,

reviews some pricing results on jump-diffusion asset price models and forward PIDEs. Section

3 discusses the computation of the conditional expectation and applies the asymptotic expan-

sion method to approximate the local volatility function. Section 4 elaborates the numerical

implementation and compares the numerical performance of different methods in pricing basket

options. Section 5 is the conclusion. The appendix contains the outline of the derivation of a

forward PIDE for a general stochastic process.

2 Forward PIDE for Basket options pricing

Assume a portfolio is composed of n assets and the risk-neutral asset prices Si satisfy the following

SDEs:

dSi(t)

Si(t−)
= (r − λm)dt+ σi(t, Si(t−))dWi(t) + (eY − 1)dN(t) (1)

where Wi(t) are standard Brownian motions with correlation coefficients ρij between Wi(t) and

Wj(t), (e
Y −1)dN(t) is a differential form of a compound Poisson process

∑N(t)
k=1 (e

Yk −1) with N

being a Poisson process with intensity λ and {Yk} iid normal variables with mean η and variance

γ2, eYk − 1 is the proportional change of the asset prices at the kth jump of the Poisson process,

m = E[eY1 −1] = eη+
1

2
γ2

−1, σi(t, S) are bounded local volatility functions, r is constant risk-free

interest rate, and N , W and {Yk} are independent to each other. The basket value at time t is

given by

S(t) =
n
∑

i=1

wiSi(t),

where wi are positive constant weights. The basket value follows the SDE

dS(t)

S(t−)
= (r − λm)dt+

n
∑

i=1

wiσi(t, Si(t−))
Si(t−)

S(t−)
dWi(t) + (eY − 1)dN(t). (2)

Define

V (t)2 :=
1

S(t)2

n
∑

i,j=1

wiwjσi(t, Si(t))σj(t, Sj(t))Si(t)Sj(t)ρij (3)

then (2) becomes

dS(t)

S(t−)
= (r − λm)dt+ V (t)dW (t) + (eY − 1)dN(t) (4)

with the initial price S(0) =
∑n

i=1 ωiSi(0) and a standard Brownian motion W . Note that V (t)

is a stochastic volatility which depends on individual asset prices, not just the basket price. We

have a stochastic volatility jump-diffusion asset price model for the basket option problem. We

next review some related pricing results for jump-diffusion asset price processes.

Andersen and Andreasen (2000) model the risk-neutral asset price S by a jump-diffusion

process

dS(t)

S(t−)
= (r(t)− q(t)− λ(t)m(t))dt+ σ(t, S(t−))dW (t) + (eY (t) − 1)dN(t) (5)
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where W (t) is a Brownian motion, N(t) a Poisson process with deterministic intensity λ(t), Y (t)

a sequence of independent random variables with time dependent density ζ(·; t), σ a bounded

time and state dependent local volatility function, m a deterministic function given by m(t) =

E[eY (t) − 1], r and q deterministic risk-free interest rate and dividend yield, and N , W , Y

independent to each other. Andersen and Andreasen (2000) derive a forward PIDE for the

European call option price C(T,K) at time 0 as a function of maturity T > 0 and exercise price

K ≥ 0:

CT (T,K) = −q(T )C(T,K) + (q(T )− r(T ) + λ(T )m(T ))KCK(T,K)

+
1

2
σ(T,K)2K2CKK(T,K)

+ λ(T )

(
∫ ∞

−∞

C(T,Ke−y)eyζ(y;T )dy − (1 +m(T ))C(T,K)

)

(6)

with the initial condition C(0,K) = (S(0) −K)+. Andersen and Andreasen (2000) also discuss

the stochastic volatility jump-diffusion model and point out that the European call option price

satisfies the same PIDE (6) with the local volatility function σ replaced by

σ(T,K)2 = E[V (T )2|S(T ) = K] (7)

where V (t) is a stochastic volatility process.

Carr et al. (2004) generalize the asset price model of Andersen and Andreasen (2000) to a

general local volatility and local Lévy type model given by

dS(t)

S(t−)
= (r(t)− q(t))dt+ σ(t, S(t−))dW (t) +

∫ ∞

−∞

(ex − 1)[µ(dx, dt) − ν(dx, dt)] (8)

where µ(dx, dt) is a random counting measure and ν(x, t) a compensator with a form ν(dx, dt) =

a(S(t), t)k(x)dxdt, here a(S, t) is a deterministic local speed function that measures the speed at

which the Lévy process is running at time t and stock price S, and k(x)dx specifies the arrival

rate of jumps of size x per unit of time, all other terms are the same as in equation (5). Carr et

al. (2004) derive a PIDE for the European call option price C(T,K) at time 0 as

CT (T,K) = −q(T )C(T,K) + (q(T )− r(T ))KCK(T,K) +
1

2
σ(T,K)2K2CKK(T,K)

+

∫ ∞

0
a(T, z)Czz(T, z)zψe

(

ln
K

z

)

dz (9)

with the initial condition C(0,K) = (S(0)−K)+, where ψe is the double-exponential tail of the

Lévy measure given by

ψe(y) =







∫∞

y
(ex − ey)k(x)dx for y > 0

∫ y

−∞
(ey − ex)k(x)dx for y < 0.

Kindermann et al. (2008) show the existence and uniqueness of the solution to the PIDE (9) under

some continuity and uniform positive definiteness conditions. Carr and Wu (2009) generalize the

local volatility asset price process (8) further to a stochastic volatility asset price process with a

stochastic jump compensator ν(dx, dt) = ā(t)k(x)dxdt and ā(t) being the stochastic instantaneous

variance. Carr and Wu (2009) use the model and the fast Fourier transform to value stock options

and credit default swaps in a joint framework. We can show that the European call option price
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C(T,K) satisfies the PIDE (9) for a general stochastic process ā with the local volatility function

σ given by (7) and the local speed function a given by

a(T, z) = E[ā(T )|S(T ) = z] (10)

where E[ā(T )|S(T )] is the conditional expectation of ā(T ) given S(T ). The derivation of the

PIDE (9) with the local volatility function (7) and the local speed function (10) is given in the

appendix.

3 Approximation of Local Volatility Function

For the basket value process (4) the corresponding local volatility function is given by

σ(T,K)2 =
1

K2

n
∑

i,j=1

wiwjρijE[σ̂i(T, Si(T ))σ̂j(T, Sj(T ))|S(T ) = K]

and σ̂i(T, Si(T )) = σi(T, Si(T ))Si(T ). Piterbarg (2007) uses the Taylor formula to approximate

σ̂i(T, Si(T )) to the first order with respect to Si(T ) at point Fi ≡ Si(0)e
rT to get

σ̂i(T, Si(T )) ≈ pi + qi(Si(T )− Fi)

where pi = σ̂i(T, Fi) and qi =
∂

∂Fi
σ̂i(T, Fi). We use the same first order approximation to get

σ̂i(T, Si(T ))σ̂j(T, Sj(T )) ≈ pipj + pjqi(Si(T )− Fi) + piqj(Sj(T )− Fj).

If we define σ̂(T,K)2 = σ(T,K)2K2, then

σ̂(T,K)2 ≈
n
∑

i,j=1

wiwjρijpipj(1 + ϕi(T,K) + ϕj(T,K)) (11)

where ϕi(T,K) = qi
pi
E[Si(T )− Fi|S(T ) = K].

Without loss of generality we may assume r = 0 (otherwise we can work on discounted asset

price processes) so Fi = Si(0). To obtain analytical approximation to E[Si(T )−Si(0)|S(T ) = K],

we use the asymptotic expansion approach related to small diffusion and small jump intensity and

size, see Benhamou et al. (2009). The perturbation and its purpose are different in this paper.

In Benhamou et al. (2009) the authors expand a parameterized process to the second order and

apply it directly to price European options. In this paper we use a different parameterized process

and expand it to the first order to get the analytic tractability and use it to approximate the

conditional expectation of stochastic variance. In other words, we use the asymptotic expansion to

find the unknown local volatility function and then use it in the forward PIDE, while Benhamou et

al. (2009) use a different asymptotic expansion to a process with a known local volatility function

and then find the options value directly. Assume ǫ ∈ [0, 1] and define

dSǫ
i (t) = −λmǫSǫ

i (t−)dt+ ǫσ̂i(t, S
ǫ
i (t))dWi(t) + Sǫ

i (t−)(eǫY − 1)dN(t)

with the initial condition Sǫ
i (0) = Si(0), where mǫ = E[eǫY − 1] = eǫη+

1

2
ǫ2γ2

− 1. Note that

S1
i (T ) = Si(T ). If we define Si,k(t) =

∂kSǫ

i
(t)

∂ǫk
|ǫ = 0, then the first order asymptotic expansion

around ǫ = 0 for Sǫ
i (T ) is

Sǫ
i (T ) ≈ Si,0(T ) + Si,1(T )ǫ. (12)
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We can find Si,0(T ) and Si,1(T ) as follows: Si,0 satisfies the equation dSi,0(t) = 0 with the initial

condition Si,0(0) = Si(0), therefore, Si,0(t) ≡ Si(0) for all t. Si,1 satisfies the equation

dSi,1(t) = −ληSi(0)dt+ σ̂i(t, Si(0))dWi(t) + Si(0)Y dN(t) (13)

with the initial condition Si,1(0) = 0. Here we have used the result Si,0(t) = Si(0). Therefore,

Si,1(T ) = −ληSi(0)T +

∫ T

0
σ̂i(t, Si(0))dWi(t) + Si(0)

N(T )
∑

l=1

Yl. (14)

The asset value Si(T ) at time T may be approximated by

Si(T ) = S1
i (T ) ≈ Si,0(T ) + Si,1(T ) = Si(0) + Si,1(T )

and the basket value by

S(T ) ≈ S(0) +

n
∑

i=1

ωiSi,1(T ) := Sc(T ). (15)

Conditional on N(T ) = k, the variable Si,1(T ), written as Si,1(T, k), is a normal variable with

mean (−λT+k)ηSi(0) and variance
∫ T

0 σ̂2i (t, Si(0))dt+kγ
2Si(0)

2, and the variable Sc(T ), written

as Sc(T, k), is also a normal variable with mean

µc(k) = (1− λTη + kη)S(0) (16)

and variance

σc(k)
2 =

n
∑

i,j=1

ωiωj

[

(

∫ T

0
σ̂i(t, Si(0))σ̂j(t, Sj(0))dt)ρij + kγ2Si(0)Sj(0)

]

. (17)

Therefore,

E[Si(T )− Si(0)|S(T ) = K] ≈ E[Si,1(T )|Sc(T ) = K]

=
∞
∑

k=0

P (N(T ) = k)E[Si,1(T, k)|Sc(T, k) = K].

Since Si,1(T, k) and Sc(T, k) are normal variables, we can find E[Si,1(T, k)|Sc(T, k) = K] exactly

as

E[Si,1(T, k)|Sc(T, k) = K] = E[Si,1(T, k)] +
Ci(k)

σc(k)2
(K − µc(k))

where Ci(k) is the covariance of Si,1(T, k) and Sc(T, k), given by

Ci(k) =

n
∑

j=1

ωj

[

ρij(

∫ T

0
σ̂i(t, Si(0))σ̂j(t, Sj(0))dt) + kγ2Si(0)Sj(0)

]

.

We obtain ϕi(T,K) in (11) as

ϕi(T,K) =
qi
pi

∞
∑

k=0

P (N(T ) = k)
Ci(k)

σc(k)2
(K − (1− λTη + kη)S(0))

6



and σ̂(T,K)2 in (11) as

σ̂(T,K)2 = a(T ) + b(T )K − c(T )S(0)

where

a(T ) =

n
∑

i,j=1

wiwjρijpipj

b(T ) =

n
∑

i,j=1

∞
∑

k=0

P (N(T ) = k)

σc(k)2
wiwjρijpipj

(

qi
pi
Ci(k) +

qj
pj
Cj(k)

)

c(T ) =
n
∑

i,j=1

∞
∑

k=0

P (N(T ) = k)

σc(k)2
wiwjρijpipj

(

qi
pi
Ci(k) +

qj
pj
Cj(k)

)

(1 − λTη + kη).

The European basket call option price C(T,K) at time 0 satisfies the PIDE (6), i.e.,

CT (T,K) = λmKCK(T,K) +
1

2
σ(T,K)2K2CKK(T,K)

+ λ

∫ ∞

−∞

C(T,Ke−y)eyφη,γ2(y)dy − λ(1 +m)C(T,K) (18)

with the initial condition C(0,K) = (S(0)−K)+, where σ(t, S) is a local volatility function given

by

σ(t, S) =

√

a(t) + b(t)S − c(t)S(0)

S
. (19)

and φη,γ2 is the density function of a normal variable with mean η and variance γ2.

4 Numerical Results

In this section we do some numerical tests for the European basket call options pricing with the

underlying asset price processes (1). We use three different methods to facilitate the comparison:

the full Monte Carlo (MC), the asymptotic expansion (AE), and the control variate (CV) method.

The MC method provides the benchmark results. We use the control variate technique to

reduce the variance. In (15) the basket value S(T ) is approximated by the first order asymptotic

expansion Sc(T ) which is used here as a control variate in MC simulation. The basket option

price with the control variate Sc(T ) is given by

E[(Sc(T )−K)+] =
∞
∑

k=0

P (N(T ) = k)E[(Sc(T, k)−K)+]. (20)

Since Sc(T, k) is a normal variable with mean µc(k) and variance σc(k)
2, see (16) and (17), a

trivial calculation shows that

E[(Sc(T, k) −K)+] = σc(k)ϕ

(

K − µc(k)

σc(k)

)

+ (µc(k)−K)Φ

(

−K +mc(k)

σc(k)

)

(21)

where φ is the density function of a standard normal variable and Φ its cumulative distribution

function.

The AE method is to solve the PIDE (18) with the approximate local volatility function (19).

We find the numerical solution with the log transform of variables and the explicit-implicit finite

difference method of Cont and Voltchkova (2005).
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The CV method approximates the basket value S(T ) with a tractable variable Sc(T ) and

finds a closed form pricing formula (20) and (21). This approach is essentially in the same spirit

as that of Benhamou et al. (2009) with the difference that we only expand to the first order while

Benhamou et al. (2009) to the second order.

The following data are used in all numerical tests: the number of assets in the basket n = 4,

the portfolio weights of each asset wi = 0.25 for i = 1, . . . , n, the correlation coefficients of

Brownian motions ρij = 0.3 for i, j = 1, . . . , n, the initial asset prices Si(0) = 100 for i = 1, . . . , n,

the risk free interest rate r = 0, the dividend rate q = 0, the exercise price K = 100.

Table 1

Table 1 displays the numerical results of the European basket call option prices with the MC,

AE, CV methods. The first column is the maturity (T = 1, 3), the second and the third the

coefficients of local volatility functions (σ(S) = αSβ−1 with α = 01, 0.2, 0.5 and β = 1, 0.8, 0.5),

the fourth the MC results with standard deviations in the brackets, the fifth the AE results with

relative percentage errors in comparison with the MC results, the sixth the CV results with errors,

columns four to six correspond to the case of jump intensity λ = 0.3, and columns seven to nine

are similarly defined for λ = 1. The last row displays the average standard deviations of the MC

method and the average errors of the AE and CV methods. For normal variable Y ∼ N(η, γ2)

we set η = −0.08 and γ = 0.35. Whenever there is a jump event the jump size is relatively small

(about 2% of the value lost). The choice of η, γ and intensity λ = 0.3 follow those of Benhamou

et al. (2009) where the authors claim that these parameters are not small, especially for the jump

intensity λ and the jump volatility γ.

It is clear that the overall performance of the AE method is excellent. All relative errors are

less than 0.5% except for the four cases when the local volatility function is σ(S) = 0.5. This is

the case corresponding to the high volatility in the Black-Scholes setting and is irrelevant to the

maturity T and jump intensity λ. This is the phenomenon also reported by other researchers.

The CV method is not satisfactory with average relative error about 7%. We use the Matlab

to do the computations. When T = 1 we run 30,000 simulations for each case and repeat 10

times to get the average value, which is used as the Monte Carlo result. We choose the time step

size 1/512 and state step size 1/1024 for the explicit-implicit finite difference method, it takes 40

seconds for the AE method and more than 30 minutes for the MC method. When T = 3 we run

100,000 simulations for each case and repeat 10 times to get the average Monte Carlo result and

choose the same step sizes as those for T = 1, it takes 2 minutes for the AE method and more

than 6 hours for the MC method. The AE method is much faster than the MC method while

the accuracy is reasonable for most cases.

Table 2

Table 2 is similar to Table 1 with the only difference that the mean of Y is η = −0.3.

Whenever there is a jump event the jump size is relatively large (about 21% of the value lost).

The performance of the AE method is very similar to that in Table 1 with the average relative

error 0.5%, but the performance of the CV method becomes much worse with the average relative

error 18%. Since the CV method is similar in spirit to the method of Benhamou et al. (2009)

there is a possibility that large errors may appear when η = −0.3 in Benhamou et al. (2009).

Table 3

8



Table 3 displays the results with three different methods: MC, AE, and the partial ex-

act approximation (PEA) method suggested in Xu and Zheng (2009) when the local volatil-

ity function is σ(t, S) = 0.2 and the variable Y is a constant −η. The purpose of the test is

to see and compare the performance of the AE and PEA methods. The basic data are the

same as those in Table 1 and 2. We perform numerical tests for three constant jump sizes

m = e−η − 1 with η = 0.25, 0.125, 0.0625, which results in m = −0.2212,−0.1175,−0.0606,

respectively. The first column is the jump intensity (λ = 0.3, 1), the second the jump size

(m = −0.2212,−0.1175,−0.0606), the third maturity (T = 1, 3), the fourth the MC results, the

fifth the PEA results with relative errors compared with the MC results, the last the AE results

with relative errors. It is clear that both the PEA method and the AE method perform well with

the relative error less than 1% for all cases, and the former is more accurate than the latter (the

average relative error 0.1% vs 0.4%).

Table 4

Table 4 is similar to Table 3 with the difference that the local volatility function is changed

to σ(t, S) = 0.5. It is clear that the performance of the PEA method is much better than that of

the AE method: the former has relative errors less than 1 percent for all cases while the latter

has relative errors about 2 percent when T = 1 and jumps to about 6 percent when T = 3,

irrespective to the jump intensities and sizes. We can reasonably say that the PEA method

is a better approximation method for the European basket call options pricing when the local

volatility functions are of the Black-Scholes type. However, the AE method is much more flexible

and can handle general local volatility functions (and stochastic volatilities) and general jump

variables eY (t), the two cases cannot be solved with the PEA method for the time being.

5 Conclusion

In this paper we have discussed the European basket options pricing for a local volatility jump-

diffusion model. We have derived a forward PIDE for the European options price with general

asset price processes. We have applied the asymptotic expansion method to find the approxi-

mation of the conditional expectation of the correlated stochastic variance. We have shown the

excellent numerical performance of the AE method in comparison with the Monte Carlo and

other methods in most cases. The idea and methodology of the paper opens the way for other

processes and refinements, for example, we may get better approximation if we asymptotically

expand to the second order or we may introduce individual jump processes or different jump sizes

for the common jumps. We are currently working on these problems.

Appendix

Outline of the proof of the PIDE (9) with the local functions (7) and (10). According to Protter

(2003), Theorem IV.68,

(S(T )−K)+ = (S(0)−K)+ +

∫ T

0
1[S(t−)>K]dS(t) +

1

2
LK
T

+

∫ T

0

∫ ∞

−∞

[

1[S(t−)≤K](e
xS(t−)−K)+ + 1[S(t−)>K](K − exS(t−))+

]

µ(dx, dt)

9



where LK is a local time at K of process S. Taking the expectation on both sides, using Fubini’s

theorem and the martingale property, we have

E[(S(T )−K)+]

= (S(0) −K)+ +

∫ T

0
(r(t)− q(t))E[1[S(t)>K]S(t)]dt +

1

2
E[LK

T ]

+

∫ T

0
E

[
∫ ∞

−∞

[1[S(t)≤K](e
xS(t)−K)+ + 1[S(t)>K](K − exS(t))+]ā(t)k(x)dx

]

dt. (22)

We have replaced S(t−) by S(t) due to the time integral taken with respect to the Lebesgue

measure. Differentiating (22) with respect to T yields

∂E[(S(T )−K)+]

∂T
= (r(T )− q(T ))E[1[S(T )>K]S(T )] +

1

2

∂E[LK
T ]

∂T

+E

[
∫ ∞

−∞

L(T,K, x, S(T ))ā(T )k(x)dx

]

(23)

where

L(T,K, x, S(T )) = [1[S(T )≤K](e
xS(T )−K)+ + 1[S(T )>K](K − exS(T ))+].

Since the European call option price at time 0 with maturity T and exercise price K is given by

C(T,K) = e−
∫
T

0
r(t)dtE[(S(T )−K)+]. (24)

we have (Klebaner (2002))

E[1[S(T )>K]] = 1− FS(T )(K) = −
∂C(T,K)

∂K
e
∫
T

0
r(t)dt (25)

where FS(T ) is the cumulative distribution function of S(T ), and

dFS(T )(K)

dK
= e

∫
T

0
r(t)dtCKK(T,K). (26)

Note that the above equation and derivatives are defined in the sense of distribution. If S(T )

admits a continuous probability density function then C(T,K) is twice continuously differentiable

and (26) holds in the classical sense. Since

E[(S(T )−K)+] = E[1[S(T )>K]S(T )]−KE[1[S(T )>K]]

we can combine (24) with (25) to yield

E[1[S(T )>K]S(T )] = e
∫
T

0
r(t)dtC(T,K)−Ke

∫
T

0
r(t)dt ∂C(T,K)

∂K
.

We also clearly have

∂E[(S(T )−K)+]

∂T
=

∂

∂T
C(T,K)e

∫
T

0
r(t)dt + C(T,K)e

∫
T

0
r(t)dtr(T )

Following the same proof as in Klebaner (2002), Theorem 4, we can show that

∂E[LK
T ]

∂T
= E[V (T )2K2|S(T ) = K]e

∫
T

0
r(t)dtCKK(T,K). (27)

10



The equation (27) and derivatives are defined in the sense of distribution. Klebaner (2002) proves

(27) for continuous semimartingale asset price process, it also works for the case here thanks to

the property of the local time, that it,

∫ ∞

−∞

g(K)LK
T dK =

∫ T

0
g(S(t−))d〈Sc〉t

for all positive bounded functions g, where 〈Sc〉v is the quadratic variation of the continuous part

of the process S. Everything then proceeds exactly the same. We now estimate the last term in

(23). Using Fubini’s theorem and the tower property, also noting (10) and (26), yield

E

∫ ∞

−∞

[L(T,K, x, S(T ))ā(T )] k(x)dx

=

∫ ∞

−∞

E [E[L(T,K, x, S(T ))ā(T )|S(T )]] k(x)dx

=

∫ ∞

−∞

E [L(T,K, x, S(T ))a(T, S(T ))] k(x)dx

=

∫ ∞

−∞

∫ ∞

0
L(T,K, x, z)a(T, z)dFS(T )(z)k(x)dx

=

∫ ∞

−∞

∫ ∞

0
L(T,K, x, z)a(T, z)e

∫
T

0
r(t)dtCzz(T, z)dzk(x)dx

= e
∫
T

0
r(t)dt

∫ ∞

0
a(T, z)Czz(T, z)

(
∫ ∞

−∞

L(T,K, x, z)k(x)dx

)

dz

= e
∫
T

0
r(t)dt

∫ ∞

0
a(T, z)Czz(T, z)zψe

(

ln
K

z

)

dz

where ψe is the double-exponential tail of the Lévy measure k. The last equality follows exactly

Carr et al. (2004). Substituting everything into (23) and simplifying the expression we then get

the PIDE (9) with local functions (7) and (10).
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Computational and Applied Mathematics, 172, 153-168.

[2] Andersen, L. and Andreasen, J. (2000). Jump-diffusion processes: volatility smile fitting and

numerical methods for option pricing, Review of Derivative Research, 4, 231-262.

[3] Antonov, A., Misirpashaev, T. and Piterbarg, V.(2009). Markovian projection onto a Heston

model, J. Computational Finance, 13, 23-47.

[4] Avellaneda, M., Boyer-Olson, D., Busca, J. and Friz, P. (2002). Reconstructing volatility,

Risk, October, 91-95.

[5] Benhamou, E., Gobet, E. and Miri. M. (2009). Smart expansion and fast calibration for

jump diffusions, Finance and stochastics, 4, 563-589.

[6] Bentata, A. and Cont, R. (2009). Matching marginal distributions of a semimartingale with

a Markov process, Academie des Sciences, Paris, Series I 347.

[7] Carr, P., Geman, H., Madan, D. and Yor, M. (2004). From local volatility to local Lévy
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λ 0.3 1

T α β MC (stdev) AE (err%) CV (err%) MC (stdev) AE (err%) CV (err%)

1 0.1 1 5.91 (0.03) 5.91 (0.0) 6.14 (3.9) 11.86 (0.05) 11.83 (0.3) 12.7 (7.1)

0.2 8.14 (0.02) 8.13 (0.1) 8.31 (2.1) 13.25 (0.06) 13.24 (0.1) 13.85 (4.5)

0.5 15.50 (0.04) 15.18 (2.1) 15.52 (0.1) 18.89 (0.05) 18.60 (1.5) 19.25 (1.9)

0.1 0.8 4.64 (0.02) 4.64 (0.0) 5.03 (8.4) 11.13 (0.03) 11.16 (0.3) 12.43 (11.7)

0.2 5.47 (0.02) 5.47 (0.0) 5.74 (4.9) 11.60 (0.06) 11.58 (0.2) 12.56 (8.3)

0.5 8.11 (0.03) 8.11 (0.0) 8.29 (2.2) 13.25 (0.04) 13.23 (0.2) 13.84 (4.5)

0.1 0.5 4.06 (0.02) 4.08 (0.5) 4.81 (18.5) 10.96 (0.03) 10.98 (0.2) 12.40 (13.1)

0.2 4.24 (0.01) 4.25 (0.2) 4.83 (13.9) 11.00 (0.02) 11.01 (0.1) 12.41 (12.8)

0.5 4.85 (0.01) 4.85 (0.0) 5.19 (7.0) 11.24 (0.04) 11.26 (0.2) 12.44 (10.7)

3 0.1 1 12.18 (0.02) 12.16 (0.2) 12.75 (4.7) 22.94 (0.11) 22.99 (0.2) 24.36 (6.2)

0.2 15.25 (0.03) 15.14 (0.7) 15.65 (2.6) 24.49 (0.13) 24.45 (0.2) 25.78 (5.3)

0.5 27.23 (0.09) 25.64 (5.8) 27.21 (0.1) 33.03 (0.14) 31.55 (4.5) 34.02 (3.0)

0.1 0.8 10.69 (0.02) 10.68 (0.1) 11.65 (9.0) 22.45 (0.10) 22.51 (0.3) 23.97 (6.8)

0.2 11.64 (0.02) 11.62 (0.2) 12.29 (5.6) 22.81 (0.10) 22.79 (0.1) 24.19 (6.1)

0.5 15.19 (0.03) 15.14 (0.3) 15.62 (2.8) 24.51 (0.07) 24.48 (0.1) 25.76 (5.1)

0.1 0.5 10.16 (0.02) 10.16 (0.0) 11.53 (13.5) 22.35 (0.04) 22.43 (0.4) 23.90 (6.9)

0.2 10.29 (0.02) 10.29 (0.0) 11.55 (12.2) 22.43 (0.07) 22.44 (0.0) 23.91 (6.6)

0.5 10.92 (0.02) 10.91 (0.1) 11.77 (7.8) 22.51 (0.10) 22.57 (0.3) 24.01 (6.7)

Average (0.03) (0.6) (6.6) (0.07) (0.5) (7.1)

Table 1: The comparison of European basket call option prices with the Monte Carlo (MC), the

asymptotic expansion (AE), and the control variate (CV) methods. The asset price processes

are modelled by SDE (1). The table displays results with different maturities T , local volatility

functions σi(t, S) = αSβ−1, and jump intensities λ. The numbers inside brackets in the MC

columns are the standard deviations and those in the AE and CV columns are the relative

percentage errors in comparison with the MC results. The data used are: number of assets n = 4,

weights wi = 0.25, correlation of Brownian motions ρij = 0.3, initial asset prices Si(0) = 100,

interest rate r = 0, exercise price K = 100, normal variable Y ∼ N(η, γ2) with η = −0.08 and

γ = 0.35.
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λ 0.3 1

T α β MC (stdev) AE (err%) CV (err%) MC (stdev) AE (err%) CV (err%)

1 0.1 1 6.99 (0.02) 7.00 (0.1) 8.4 (20.2) 15.23 (0.03) 15.28 (0.3) 18.20 (20.0)

0.2 8.84 (0.01) 8.84 (0.0) 9.91 (12.1) 15.76 (0.05) 15.79 (0.2) 18.62 (18.2)

0.5 15.89 (0.02) 15.62(1.7) 16.51 (3.9) 20.24 (0.04) 20.02 (1.1) 22.34 (10.4)

0.1 0.8 6.45 (0.01) 6.45 (0.0) 8.13 (26.1) 15.14 (0.03) 15.17 (0.2) 18.09 (19.5)

0.2 6.72 (0.01) 6.73 (0.2) 8.24 (22.6) 15.20 (0.04) 15.23 (0.2) 18.15 (19.4)

0.5 8.83 (0.02) 8.83 (0.0) 9.89 (12.0) 15.75 (0.02) 15.79 (0.3) 18.62 (18.2)

0.1 0.5 6.43 (0.01) 6.44 (0.2) 8.12 (26.3) 15.11 (0.03) 15.15 (0.3) 18.07 (19.6)

0.2 6.44 (0.01) 6.44 (0.0) 8.12 (26.1) 15.12 (0.03) 15.16 (0.3) 18.07 (19.5)

0.5 6.49 (0.01) 6.49 (0.0) 8.14 (25.4) 15.15 (0.05) 15.19 (0.3) 18.10 (19.5)

3 0.1 1 14.70 (0.02) 14.71 (0.1) 17.46 (18.8) 27.00 (0.07) 27.03 (0.1) 31.92 (18.2)

0.2 16.85 (0.03) 16.79 (0.4) 19.11 (13.4) 28.08 (0.06) 28.04 (0.1) 32.93 (17.3)

0.5 27.99 (0.04) 26.51 (5.3) 29.19 (4.3) 35.31 (0.06) 33.92 (3.9) 39.44 (11.7)

0.1 0.8 14.27 (0.02) 14.29 (0.1) 17.12 (20.0) 26.64 (0.07) 26.74 (0.4) 31.63 (18.7)

0.2 14.48 (0.02) 14.49 (0.1) 17.30 (19.5) 26.82 (0.07) 26.91 (0.3) 31.79 (18.5)

0.5 16.81 (0.02) 16.80 (0.1) 19.09 (13.6) 28.07 (0.06) 28.09 (0.1) 32.92 (17.3)

0.1 0.5 14.22 (0.01) 14.23 (0.1) 17.07 (20.0) 26.58 (0.04) 26.68 (0.4) 31.58 (18.8)

0.2 14.23 (0.01) 14.25 (0.1) 17.07 (20.0) 26.62 (0.05) 26.69 (0.3) 31.59 (18.7)

0.5 14.31 (0.02) 14.32 (0.1) 17.15 (20.0) 26.71 (0.06) 26.78 (0.3) 31.66 (18.5)

Average (0.02) (0.5) (18.0) (0.05) (0.5) (17.9)

Table 2: The comparison of European basket call option prices with the Monte Carlo (MC), the

asymptotic expansion (AE), and the control variate (CV) methods. The asset price processes

are modelled by SDE (1). The table displays results with different maturities T , local volatility

functions σi(t, S) = αSβ−1, and jump intensities λ. The numbers inside brackets in the MC

columns are the standard deviations and those in the AE and CV columns are the relative

percentage errors in comparison with the MC results. The data used are: number of assets n = 4,

weights wi = 0.25, correlation of Brownian motions ρij = 0.3, initial asset prices Si(0) = 100,

interest rate r = 0, exercise price K = 100, normal variable Y ∼ N(η, γ2) with η = −0.3 and

γ = 0.35.
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λ m T MC (stdev) PEA (err%) AE (err%)

0.3 -0.2212 1 7.35 (0.01) 7.35 (0.0) 7.35 (0.0)

3 12.93 (0.01) 12.92 (0.1) 12.85 (0.6)

-0.1175 1 6.08 (0.01) 6.08 (0.0) 6.07 (0.2)

3 10.57 (0.01) 10.56 (0.1) 10.49 (0.8)

-0.0606 1 5.66 (0.01) 5.66 (0.0) 5.65 (0.2)

3 9.83 (0.01) 9.82 (0.1) 9.74 (0.9)

1 -0.2212 1 10.78 (0.01) 10.77 (0.1) 10.78 (0.0)

3 18.64 (0.01) 18.63 (0.1) 18.57 (0.4)

-0.1175 1 7.28 (0.01) 7.28 (0.0) 7.28 (0.0)

3 12.65 (0.01) 12.64 (0.1) 12.58 (0.6)

-0.0606 1 6.02 (0.01) 6.02 (0.0) 6.01 (0.2)

3 10.45 (0.01) 10.43 (0.2) 10.37 (0.8)

Average (0.01) (0.1) (0.4)

Table 3: The comparison of the Monte Carlo (MC), the partial exact approximation (PEA), and

the asymptotic expansion (AE) methods. The asset price processes are modelled by SDE (1).

The table displays the results with different jump intensities λ, jump sizes m, and maturities

T . The numbers inside brackets in the MC columns are the standard deviations and those in

the PEA and AE columns are the relative percentage errors in comparison with the MC results.

The data used are: number of assets n = 4, weights wi = 0.25, correlation of Brownian motions

ρij = 0.3, initial asset prices Si(0) = 100, interest rate r = 0, and exercise price K = 100, local

volatility function σi(t, S) = 0.2, and jump variable Y a constant.
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λ m T MC (stdev) PEA (err%) AE (err%)

0.3 -0.2212 1 14.71 (0.01) 14.66 (0.3) 14.42 (2.0)

3 25.69 (0.04) 25.44 (1.0) 24.14 (6.0)

-0.1175 1 14.08 (0.01) 14.03 (0.4) 13.79 (2.1)

3 24.61 (0.03) 24.39 (0.9) 23.07 (6.3)

-0.0606 1 13.90 (0.01) 13.85 (0.4) 13.61 (2.1)

3 24.32 (0.04) 24.11 (0.9) 22.77 (6.4)

1 -0.2212 1 16.60 (0.01) 16.55 (0.3) 16.32 (1.7)

3 28.80 (0.04) 28.55 (0.9) 27.28 (5.3)

-0.1175 1 14.64 (0.01) 14.59 (0.3) 14.35 (2.0)

3 25.52 (0.05) 25.28 (0.9) 24.00 (6.0)

-0.0606 1 14.05 (0.01) 14.00 (0.4) 13.76 (2.1)

3 24.55 (0.04) 24.33 (0.9) 23.02 (6.2)

Average (0.03) (0.6) (4.0)

Table 4: The comparison of the Monte Carlo (MC), the partial exact approximation (PEA), and

the asymptotic expansion (AE) methods. The asset price processes are modelled by SDE (1).

The table displays the results with different jump intensities λ, jump sizes m, and maturities

T . The numbers inside brackets in the MC columns are the standard deviations and those in

the PEA and AE columns are the relative percentage errors in comparison with the MC results.

The data used are: number of assets n = 4, weights wi = 0.25, correlation of Brownian motions

ρij = 0.3, initial asset prices Si(0) = 100, interest rate r = 0, and exercise price K = 100, local

volatility function σi(t, S) = 0.5, and jump variable Y a constant.

16


	1 Introduction
	2 Forward PIDE for Basket options pricing
	3 Approximation of Local Volatility Function
	4 Numerical Results
	5 Conclusion

