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Abstract

Ever increasing control over the shape and form of a material’s nanoscale features pro-

vokes the pursuit of a detailed understanding for the main factors influencing fluid

transport. It is sought to facilitate the intelligent design of novel materials used in

membrane separation processes. In addition to a strong dependence on molecular

mobility, mass transport is heavily influenced by thermodynamic effects. Isolating

thermodynamic and mobility effects is useful to understand the significant driving

forces for mass transport through porous materials and their selective characterist-

ics. However, experimental techniques are limited in probing this behaviour at the

nanometre scale. In response to experimental challenges, the present study makes ex-

tensive use of the ability of molecular simulations to reflect the molecular character of

nanoscale diffusion and identify equilibrium and transport properties individually.

First, this work investigates diffusive mass transport inside a planar slit pore fo-

cusing on the influence of solid-fluid interactions, pore width, and fluid density. The

influence of solid-fluid interactions, in particular, have often been neglected in studies

of mass transport in porous solids. The vast variety of functionalised nano-materials is

virtually endless and has spurred interest in this area. Equilibrium simulations were

employed to determine self- and collective diffusivities and Grand Canonical inser-

tions were used for the determination of thermodynamic factors. In addition, this

work showcases the implementation of a highly efficient Non-Equilibrium Molecu-

lar Dynamics (NEMD) method through which effective transport was studied. The

method was used to determine effective diffusivities which incorporate thermody-

namic effects, the dominating contribution to transport for dense fluids. It is well

suited to observe effective fluid transport in confined spaces as opposed to measuring

self-diffusion, a measure for single-particle mobility only.

The method is effective in studying mass transport in model systems as well as

more realistic, complex geometries. As a second exemplary case, gas permeation

through an atomistically detailed model of a high free-volume polymer was simu-

lated explicitly with the NEMD approach. In addition to determining permeability

and solubility directly from NEMD simulations, the results also shed light on the per-

meation mechanism of the penetrant gases, suggesting a departure from the expected

pore-hopping mechanism due to the considerable accessibility of permeation paths.
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CHAPTER

ONE

INTRODUCTION

A significant number of chemical engineering processes are targeted at the separation

of different species in a mixture. The understanding and predictability of vapour-

liquid equilibria has provided a reliable route to large-scale separation processes via

selective distillation of gases and liquids. However, the energy expense of perform-

ing a separation through a phase change is considerable. It has been a long-standing

goal to reduce the energy expense of industrial separations by forcing the components

of a mixture through a porous material that exhibits selectivity towards some of the

constituents. A prominent example of topical interest is the desalination of sea wa-

ter, for which reverse osmosis membrane materials have been developed since the late

1960s (Sourirajan and Agrawal, 1969). Desalination requires a high level of selectivity

towards the solved ions, which are only slightly bigger than the water molecules in

which they are solvated. Permeabilities are fairly low and large pressure differences

are required to both overcome the osmotic pressure of sea water and drive the de-

salination process. Over the last decade, the remarkable mass transport properties of

carbon nanotubes (CNTs) have been noted in molecular simulation studies (Hummer

et al., 2001). These findings inspired the use of CNTs in selective layer materials for

separation purposes. Studies have shown that CNT-enhanced membrane materials

allow higher fluxes than state-of-the-art materials (Holt et al., 2006; Karan et al., 2012).

It is said that the narrow and smooth confinement of CNTs forces water molecules to

line up in a single file, while the smooth walls exert minimal momentum transfer from

the fluid to the pore walls. In more general terms, water confined in a non-polar envir-

onment builds tightly hydrogen-bonded wires or clusters (Rasaiah et al., 2008). This

peculiar behaviour was impressively demonstrated in a recent study, in which a mem-
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brane proved to be impermeable to helium while allowing a seemingly unhindered

pervaporation of water (Nair et al., 2012). The active layer of the membrane was com-

posed of stacks of graphene oxide (GO) sheets, spaced less than a nanometre apart,

which allowed water to form a mono-layer between the GO sheets.

The search for a material that can provide high selectivity and permeability is still

the “holy grail” in this area. Desalination, however, is just one example of an indus-

trial separation process for which selective nanoscale materials are expected to provide

disruptive potential. In the area of purifying active pharmaceutical ingredients, the fil-

tration of solvents as well as the separation of gases, microporous materials with spe-

cifically tailored properties are sought to deliver more efficient separation processes.

The general search for discovery and design principles of promising advanced se-

lective materials is fuelled by an ever increasing control over engineered nanoscale

materials for specific purposes. Hybrid membranes made of ceramics or polymers

and encapsulating nanosized particles, such as metal-organic frameworks (MOFs),

are a new frontier in membrane science. MOFs, in particular, exhibit extremely large

surface areas per unit volume. Their adsorption and mass transport properties are an

active area of research (Keskin and Sholl, 2009; Getman et al., 2012). From an engineer-

ing point of view, it is important to understand the underlying mechanisms of mass

transport in these novel nanoscale structures in order to have methods at hand for

predicting their transport properties in technical applications. In parallel to structured

molecular materials such as zeolites, mesoporous silicas, and MOFs, the development

of microporous amorphous polymers and nanostructured carbons have garnered in-

creased interest as a suitable material for efficient gas separations, which is not only

highly selective for certain gas mixtures but also seen to ensure ease of fabrication on

a large scale (Bernardo et al., 2009; Aroon et al., 2010; Li et al., 2009).

Given the dominant nanoscale character of these materials, the applicability of ex-

isting mass transport theories, which originally apply to systems that need not be

treated in molecular resolution, can be investigated with molecular simulations. It is

the purpose of this work to apply molecular simulations to investigate mass transfer

phenomena in porous materials that exhibit confining pores as small as a few nano-

meters. Therefore, the pores are merely a few times larger than the fluid molecules

flowing through them.

To this end, the first chapter of this thesis will review established theories dealing

with diffusion in bulk fluids and mass transfer in porous materials. Subsequently, the

specific molecular modelling and simulation methods used in this work are presen-
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ted, with a detailed discussion of a non-equilibrium Molecular Dynamics approach

employed throughout this work. Chapter 4 presents the application of molecular sim-

ulations to study mass transport in a familiar model system, namely the planar slit

pore, and highlights the effects of fluid density and solid-fluid interactions on the pre-

dictions of mass transport in porous materials. Chapter 5 shows a practical application

of the non-equilibrium simulation method by presenting the simulation of gas per-

meation through a microporous polymer. It also highlights the possible insights into

the dynamics of mass transport that can be obtained from molecular simulations. Fi-

nally, apart from a short review of the investigation’s findings, the concluding chapter

will present further areas in which non-equilibrium techniques can be applied to ob-

tain dynamic properties of molecular systems.



CHAPTER

TWO

DIFFUSION, IN THEORY AND EXPERIMENT

Vielleicht ist der Grund dieser spärlichen Bearbeitung zum Theil in der grossen

Schwierigkeit zu suchen auf diesem Felde genaue quantitative Versuche

anzustellen. Und in der That ist diese so gross, dass es mir trotz andauernder

Bemühungen noch nicht hat gelingen wollen, den Streit der Theorien zu einem

definitiven Abschluss zu bringen.

Adolf Fick,

Über Diffusion in Annalen der Physik (1855)

2.1 Diffusion experiments

The prevalence and significance of diffusion processes in nature and science was ac-

knowledged early through the observation of osmotic processes in the mid 18th cen-

tury (Nollet, 1748, 1995) and the discovery of Brownian motion observed in the early

19th century (Brown, 1828). The exact quantitative determination of diffusion coef-

ficients is far more difficult than the qualitative observation of diffusion processes,

however. An informed assessment of rates of diffusion is a modern achievement and

routine measurements are rare to this date. The first quantitative observations of dif-

fusion phenomena were limited to gaseous diffusion (Graham, 1829) and diffusion in

dilute solutions (Fick, 1855a). The observations of Graham and Fick revealed that gas

diffusion and liquid diffusion occur on different times scales as gas diffusion often

happens a thousand times faster than liquid diffusion. The equipment thus required

to measure differences in concentration, pressure and molar flux depends on whether
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transport occurs in liquid or gaseous states and needs to be chosen specifically for a

particular system of interest. The time-dependent, multi-component character of dif-

fusion processes adds to the experimental complexity, but also allows for a wide range

in experimental approaches to be applied for the quantitative measurement of diffu-

sion coefficients. These span from straightforward techniques, where concentration

differences in stirred bulk liquids are determined after diffusion through a highly por-

ous cell occurred for a specific amount of time (Cussler, 2009), to very elaborate nuc-

lear magnetic resonance experiments, in which no actual concentration differences are

required to determine diffusion coefficients. Instead, the decay of a pulse is observed

(Kärger et al., 2012).

While experimental analysis of bulk liquid diffusion coefficients is highly complex

and involves sophisticated experiments, such as Taylor dispersion, dynamic light scat-

tering, or interferometry (Cussler, 2009), experiments of mass transfer in porous mater-

ials present a particular challenge as confinement in pores can influence the fluid trans-

port significantly. For practical purposes, the determination of gas diffusion through

porous polymers is performed in connection with permeation experiments, which are

of central importance in the characterisation of gas separation materials. The diffu-

sion coefficient of gases in a solid membrane can be determined from the time-lag of

steady-state gas flux through a membrane of specific thickness located between a feed

volume and an evacuated volume (Rutherford and Do, 1997) (see Fig. 2.1). The same

approach is often employed to determine gas solubility from a single permeation and

diffusion experiment. More details on penetrant gas diffusion in porous polymers are

covered in Chapter 5.

Porous materials often exhibit pores that are in the nanometre range and hence the

confining length scales of the pore are strikingly different to those commonly found

in macroscopic studies of diffusion processes. Nevertheless, it is here that the modern

challenges in the field lie, to be able to image and characterise flow and fluid dis-

placement with nanometre precision. The most advanced diffusion experiments ob-

serve diffusion processes with a molecular resolution. Among these experimental ap-

proaches on the nanoscale are pulse-field gradient nuclear magnetic resonance (PFG-

NMR) (Kärger et al., 2012) and quasi-elastic neutron scattering (QENS). The former

uses the alignment of the magnetic moments of the atomic nuclei to monitor the mean

square displacement of molecules. The latter is based on changes in frequency and

wave vector of a neutron beam directed onto the experimental sample. The exchange

of energy between the incident neutron beam and the scattering centres leads to a
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Doppler shift of the scattered beam. Although both PFG-NMR and QENS require

very extensive laboratory infrastructure for experiments to be carried out, an increas-

ing number of investigations in this field is recently being undertaken. For example,

to study the diffusion of adsorbates in microporous zeolites and carbonaceous mem-

branes (Snurr and Kärger, 1997; Mueller et al., 2012) or the surface diffusion of water

on nanoparticles (Chu et al., 2011). In addition, electron microscopy, atomic force mi-

croscopy and X-Ray diffraction techniques are commonly employed to characterise the

porous materials under scrutiny. The considerable cost of acquisition and operation as

well as the level of expertise required to undertake these experiments pose a limitation

on how extensively fluid transport properties in nanoporous materials can be invest-

igated. Understandably, molecular simulations provide an alternative and accessible

route towards studying mass transfer on the nanoscale. Molecular simulation stud-

ies are often performed alongside experiments in order to support and improve the

analysis and interpretation of experimental data and complement the applicability of

theoretical frameworks. It has been pointed out that PFG-NMR and QENS observe the

mean square displacement of a diffusing species, analogous to most molecular simula-

tion studies, and thus measure self-diffusion, also often referred to as tracer diffusion,

rather than transport diffusion (Cussler, 2009). In this regard, molecular simulations

have played an important role in shedding light onto the differences between diffusion

coefficients determined from experiment (Maginn and Elliott, 2010). Self-diffusivities,

transport diffusivities, and corrected diffusivities can all have different dependencies

on concentration, temperature, and system parameters (Sholl, 2006). A clear definition

and an exact calculation of these properties from molecular simulations has helped to

clarify much of the controversy among experimentalists.

2.2 Mass transfer in theory

A detailed mathematical model for diffusive mass transfer was pioneered by Adolf

Fick in the mid 19th century by studying the mass fluxes in dilute mixtures (Fick,

1855b,a). The seminal publication was recently reprinted (Fick, 1995) in the Jounal

of Membrane Science due to its long-lasting impact and relevance. Fick established

an analogy of diffusion, a process driven by “molecular forces” (Fick, 1855b), to the

conductance of heat or the spreading of electricity in a material and therefore the

constitutive relations he established resemble Fourier’s law for heat conductance and

Ohm’s law for electrical currents. The mathematical form of his descriptions of dif-
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Figure 2.1: Schematic of the time lag permeation technique described in (Rutherford

and Do, 1997), which is commonly used to characterise gas separation membranes.

fusion in bulk are under certain assumptions still regarded as accurate today and

find wide-spread use. Nonetheless, the theoretical treatment of mass transfer evolved

from Fick’s phenomenological descriptions of macroscopic observations, which gen-

erally regards the systems of interest as a continuum, to an approach that explicitly

incorporates the molecular nature of materials. By the end of the 19th century, the

triumph of the molecular hypothesis and kinetic theory (Maxwell, 1867; Smoluchow-

ski, 1906) and the significant breakthroughs in thermodynamics (Gibbs, 1875; Einstein,

1905) rendered a molecular theory for diffusion possible and helped clarify much of

the discrepancies of Fick’s laws. Shortly afterwards, the behaviour of fluids confined

in porous structures garnered considerable interest and Martin Knudsen pioneered the

prediction of mass transfer for low density gases in narrow tubes based on molecular

collision arguments (Knudsen, 1909).

From a modern perspective, it is remarkable how relevant these elaborate and

sophisticated theoretical models are to this date, despite the bold assumptions their

originators had to make. Most of them are still very useful and find applicability in

terms of a qualitative, and to a large extent quantitative, treatment of diffusion phe-

nomena today. The limits of mass transfer models prevailing today are in fact very

similar to those that limited the field’s pioneers. Among them is the mathematical dif-

ficulty in describing collision dynamics of complex and dense fluids, strong solid-fluid

interactions and a transferable treatment for complex agents of separation (e.g. tubes

with a very smooth surfaces in contrast to membranes of intrinsic porosity). A general

overview of different mass transfer theories and their classification among the level

of confinement as well as the molecular detail of these theories is given in Figure 2.2.
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Figure 2.2: A broad, qualitative classification of mass transfer models in terms of the

theoretical detail focusing on molecular and confinement effects. From Fick’s descrip-

tion, a purely phenomenological approach for bulk mass transfer, to the Knudsen ap-

proach and molecular simulations which account for a high degree of molecular detail

in fluid medium and confining solid. The following section gives insight into the dif-

ferent theories presented here.

In the following, the most prevailing mass transfer models, in particular those men-

tioned in Figure 2.2, including their limitations to treat nanoscale phenomena, will be

reviewed.

2.2.1 Transfer models for bulk fluids

Bulk diffusion is most commonly described by Fickian diffusion, often called transport

diffusion, which describes a net mass flux, J, driven by a gradient in concentration.

The magnitude of the diffusive flux is related to the gradient by a phenomenological

transport coefficient, the Fickian diffusion coefficient. In the presence of concentration

gradients in a two component system, the diffusive flux in the continuous system is

commonly described by Fick’s first law (Bird et al., 2002):

JD
i = −Dt(ρ)∇ρi , (2.1)

where ρi(r, t) is the local density of species i and Dt is the coefficient of transport diffu-

sion (also called Fickian diffusivity). While the concept was conceived for two mobile
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species, it is important to note that mass transport in porous media deals with the

porous material being stationary and a net flux occurs only for the fluid. Therefore,

when dealing with a pure fluid in confinement, the transport equations simplify sig-

nificantly. Due to its simple formulation, the Fickian approach finds wide-spread use

in engineering and is appropriate for many applications, such as diffusion in dilute

solutions. However, the approach breaks down for non-ideal scenarios. For instance,

at the interface of two separate phases in equilibrium, a considerable gradient in con-

centration will not induce a net flux. In response, the notion of a gradient in chemical

potential being the fundamental driving force of mass transport was conceived:

JD
i = −

m∑
j

Lij(ρ)∇µj , (2.2)

where µj denotes the chemical potential of species j in a system made up ofm different

species. Lij are called the phenomenological linear transport coefficients, or Onsager

diffusion coefficients (de Groot and Mazur, 1962). The Onsager approach showcases

that diffusion processes are traditionally dealing with multi-component mixtures.

The Maxwell-Stefan diffusion model similarly considers the chemical potential gradi-

ent as the driving force behind diffusion (Taylor and Krishna, 1993). It is derived from

arguments based on the kinetic theory of gases and thus incorporates a more detailed

molecular character in describing diffusion phenomena. For bulk diffusion in a two

component system, the Maxwell-Stefan description of diffusive mass transport can be

expressed as:

x2(u1 − u2) = −D
MS
12

kBT
∇µ1 , (2.3)

whereDMS
12 denotes the Maxwell-Stefan diffusivity, T is the temperature, kB is Boltzmann’s

constant, and ui (i=1,2) are the average molecular velocities of the two species. The res-

istance to mix is influenced by the composition of the mixture and a frictional drag,

expressed by the drag coefficient kBT/D
MS
12 . The connection between mass transfer

according to Fick, Onsager, and Maxwell-Stefan has been formerly established based

on arguments derived from kinetic theory (Chapman and Cowling, 1939) and on irre-

versible thermodynamics (Hirschfelder et al., 1954).

Under the assumption that component 1 is the confined fluid and component 2 is

the porous medium behaving as a bulk component in a homogeneous mixture, the

definition of x2 and u2 is difficult due to the porous material being stationary. In the

limiting case of low pressure gas diffusion, x2 tends to zero and u2 = 0. Geometrical
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factors such as tortuosity and porosity or any potential influence of composition is

then accounted for in the drag coefficient DMS
1,p :

u1 = −D
MS
1,p

kBT
∇µ1 , (2.4)

Therefore, extending to an expression of one-dimensional mass transport, the expres-

sion is similar to eq. (2.1) and eq. (2.2):

J1 = ρu1 = − ρ

kBT
DMS

1,p∇µ1 . (2.5)

A notable difference to the Fickian and Onsager expressions is that the flux described

in eq. (2.5) is the total mass flux and not only a diffusive component. This subtlety is

important as it is common to distinguish between diffusive and convective flow and

treat the two components separately:

J = JD + JC . (2.6)

The distinction is often comprehensive since convective flux, JC, stems from inertial

effects on the macroscopic level while diffusive flux, JD, arises from the molecular

scale and occurs due to the random thermal motion of molecules. Notwithstanding,

the distinction depends on the chosen frame of reference (Keffer et al., 2005).

As a further complication, in contrast to the above mentioned transport diffusion

coefficients, self-diffusivities are measured at equilibrium and relate to transport diffu-

sion only in the limiting case of infinite dilution. In essence, self-diffusion is the diffu-

sion of a single particle surrounded only by equivalent particles, such as the diffusion

of a specific isotope in otherwise identical molecules. This isotope is often referred to

as the tracer, thus the term “tracer diffusion”.

2.2.2 Transfer models for fluids in porous solids

A straightforward model of mass transfer through porous materials is based on con-

tinuum hydrodynamic flow in a solid of well-defined and simple geometry. It is math-

ematically based on the Navier-Stokes equations, which in turn are derived from the

momentum balances based on the principle of conservation of momentum. A Newto-

nian fluid exchanges momentum on the macroscale via convective processes. Internal

friction as a result of microscopic momentum transport is accounted for by the vis-

cosity of the fluid. In the simplest case, a pressure difference drives the flow through

pores of a stationary material, e.g. a tubular capillary. Transport only happens in the
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open pores and therefore only the open voids in a porous material contribute to trans-

port. In classical fluid dynamics, it is common to assume no slip between the fluid and

the solid wall at the interface. Following these assumptions, the magnitude of fluid

flow in a tube is described by the Hagen-Poiseuille equation for a cylindrical pore as

follows:

Jx = − d2

32η

dP

dx
, (2.7)

where P denotes the pressure, d denotes the width of the cylindrical pore and η is

the dynamic viscosity of the fluid. This approach to pressure-driven mass transport is

equivalent to one of the earliest mass transfer models, Darcy’s law. It is a phenomeno-

logical observation that the permeating flux through a porous solid is proportional to

the pressure difference across the porous material:

Jx = κP
∆P

∆x
. (2.8)

The permeability κP is the constitutive relation between pressure drop and flux. It is

assumed that the pressure drop across the porous material is linear.

Based on this perception that fluid flow is confined to open voids in the material,

the Pore-Flow model (Silva et al., 2005) was conceived to predict permeabilities and

selectivities of porous membranes. It is often assumed that the confined fluid has the

same viscosity as the bulk fluid. For fluids confined in very narrow pores however,

neither the density nor the viscosity of the fluid are uniform within the pore and can

differ from the bulk properties by a considerable amount. Transport models for mem-

brane separations were extended to account for an increased viscosity of the first layer

of fluid molecules in contact with the solid (Bowen and Welfoot, 2002) by heuristically

adjusting the viscosity of the fluid.

In contrast to the Pore-Flow model, the solution-diffusion model is very common

among membrane scientists, especially in the field of gas separation (Wijmans and

Baker, 1995). Here, the membrane is not viewed as a medium exhibiting defined

pores through which fluid flow occurs, it is rather a continuum microporous material

through which the permeating species diffuse. The permeation process is therefore a

series of adsorption, diffusion and desorption processes that occur in series. The per-

meability κP, which is often also represented by P (in conflict with the denomination

for pressure in this work), is therefore:

κP = D × S , (2.9)
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where D denotes the diffusion coefficient of a specific substance inside the membrane

material and S denotes the solubility of that same substance. The solution-diffusion

model is a very simple, yet powerful model to characterise gas transport. It rests on

the assumption that non-idealities are not significant at the point of interest.

Likewise, the no-slip condition, on which the Hagen-Poiseuille model is based, has

been subject of much debate. While it certainly is a valid assumption for most mac-

roscopic liquid systems, evidence for a departure from the no-slip condition under

certain conditions has surfaced (Thompson and Troian, 1997). Based on molecular

simulations and experiments with structures that exhibit extremely smooth molecular

surfaces (Groombridge et al., 2011; Kunert and Harting, 2007), such as carbon nan-

otubes (Hummer et al., 2001), very high fluxes have been attributed to considerable

slip lengths (Majumder et al., 2005). Thus, the concept of slip length can be exploited

to incorporate molecular particularities. Mathematically, the introduction of a slip

length into the Hagen-Poiseuille equation allows an increased flow through the por-

ous structure at otherwise identical boundary conditions. A schematic drawing of the

Hagen-Poiseuille and slip flow scenarios can be seen in Fig. 2.3. The slip length is

defined as the ratio of the axial velocity to the shear rate,

Ls =
uwall

du/dr
, (2.10)

where uwall denotes the axial velocity at the wall and du/dr the radial velocity gradient

at the wall (Holt et al., 2006). As a result, the expression for the fluid flow is

Jx =
(d2 + 8dLs)

32η

dP

dx
. (2.11)

For low density gases, a different mass transfer model has enjoyed general accept-

ance in many applications. Similar to the Hagen-Poiseuille model, the Knudsen diffu-

sion model deals with a fluid permeating through narrow cylindrical channels. This

approach, however, focuses on gases in the low density limit where the mean free path

of gas molecules is notably larger than the tubular confinement and therefore wall col-

lisions, rather than interparticle collisions, dominate mass transport. In honour of the

ground-breaking work of Martin Knudsen, gaseous flow in porous materials is classi-

fied by the dimensionless number named in his honour, which is defined as:

Kn =
λ

L
, (2.12)

with λ being the mean free path of the particles of the fluid and L being the character-



22 DIFFUSION, IN THEORY AND EXPERIMENT

r

x

Ls

umax

u(r=0) = 0 uwall

Slip length

Figure 2.3: A schematic drawing of the Hagen-Poiseuille and Slip flow model.

istic length of the system, e.g. the diameter of a cylindrical pore. When the Knudsen

number is smaller than 1, the gas diffusion in a cylindrical pore can be predicted with

reasonable accuracy by the Knudsen equation (Arya et al., 2003):

DK =
d

3

√
8kBT

πm
, (2.13)

where m is the molecular mass, T is the temperature and kB denotes Boltzmann’s

constant. The pressure-driven gas flux through a narrow tube is therefore:

Jx = − DK

kBT

dP

dx
. (2.14)

The underlying assumption of the Knudsen model is based on the gas molecules being

reflected diffusively after colliding with the confining wall of the pore. Again, for very

smooth molecular surfaces, collisions are increasingly specular, which makes this as-

sumption break down. The diffusivity of the gas is in fact higher than predicted by eq.

(2.13). Moreover, adsorption to the pore surface leads to discrepancies in the Knud-

sen approach. Henry’s law constants are used as a measure for adsorption strength

(Bhatia et al., 2011). Both pore width, molecular interactions and temperature have an

influence of how much Knudsen diffusion would be affected by fluid adsorption to

pore walls. In the case of strong adsorption, surface diffusion in addition to Knudsen

diffusion must be accounted for. With increasing complexity of surface topology, of

solid-fluid as well as of fluid-fluid interactions, a rigorous treatment becomes increas-

ingly intractable.

The Dusty-Gas model is an extension of the Maxwell-Stefan diffusion approach and

likewise strongly based on kinetic theory arguments (Krishna and Wesselingh, 1997).
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The porous material is regarded as an ensemble of inert particles (Dusty Gas) ran-

domly distributed in space through which the mobile species diffuse. The expression

for isothermal diffusion of an ideal gas mixture is given by (Bhatia et al., 2011):

n∑
j=1,i 6=j

xjJi − xiJj
ρtDe

ij

+
Ji

ρtDe
i0

=
1

P

dPi
dx
− xiB0

ηDe
i0

dP

dx
i = 1, ..., n . (2.15)

The fluxes of the individual species are represented by Ji. Pi and xi denote the partial

pressure and molar fraction of species i, while η is the mixture viscosity and B0 is

the viscous permeability coefficient. De
ij are the effective binary diffusion coefficients,

which include a correction accounting for the porosity and the tortuosity of the porous

medium. The effective diffusion coefficient De
i0 accounts for the drag on species i by

the Dusty Gas representing the solid pores. The expression for a single-component

fluid can be derived from eq. (2.15):

Jx = −
(
De

0

RT
− ρtB0

η

)
dP

dx
. (2.16)

Although this expression bears considerable similarities with eqs. (2.14) and (2.11), it

has been criticised to be contradictory (Bhatia et al., 2011). Moreover, the Dusty Gas

model is criticised in general of having a number of key flaws with respect to mod-

elling the flow of fluids in porous solids (Bhatia et al., 2011). First, the Dusty Gas

is assumed to be randomly distributed, which is not the case for geometrically well-

defined pores. Second, fluid densities are assumed to be uniform, neglecting solid-

fluid interactions and confinement effects. Third, an arbitrary distinction between

viscous and diffusive flux is introduced, which causes contradictions in the frame of

reference for the definition of diffusion. Especially non-uniform fluid structure influ-

enced by solid-fluid interactions poses a seemingly non-reconcilable limitation for the

Dusty-Gas model. Extensions to non-ideal and dense fluids is equally problematic and

contradictory (Bhatia et al., 2011; Keffer et al., 2005).

Numerous more advanced mass transfer models have been proposed in the lit-

erature. The details of these are beyond the scope of this work and they are only

mentioned briefly, omitting the details of their advantages, pitfalls and intricacies. A

significant amount of these advanced models are variations of the Maxwell-Stefan ap-

proach tackling some of the caveats of the Dusty Gas Model. Interfacial friction-based

models are directly based on the Maxwell-Stefan theory and bear considerable simil-

arities with the Dusty Gas Model (Schneider, 1978; Kerkhof et al., 2001; Zhdanov and

Roldughin, 2002). It is not surprising that these models suffer from similar weak-



24 DIFFUSION, IN THEORY AND EXPERIMENT

nesses, namely the neglect of non-uniform fluid density in nanopores and a large

number of empirical parameters. Similarly based on the Maxwell-Stefan description,

a generalised approach (Krishna and Wesselingh, 1997) was conceived in order to in-

corporate surface diffusion effects into the mass transfer model by superimposing the

diffusion of an adsorbed layer to the Maxwell-Stefan diffusion model. For very narrow

pores where an adsorption field acts within the whole range of the pore, the straight-

forward superposition of surface diffusion is problematic. Based on the Knudsen dif-

fusion model, Bhatia et al. (2004) developed the so-called “Oscillator Model” (Jepps

et al., 2003, 2004), giving an exact theory for low-density fluid transport in the pres-

ence of adsorption effects. This accounts for the fact that collision dynamics under

adsorption to the pore surface are fundamentally different from hard-sphere wall col-

lisions considered by the Knudsen model. Roughness of a molecular surface can also

be incorporated in this approach, which makes it a promising approach to be extended

to finite densities. While it is possible to extend the approach to finite gaseous dens-

ities, modelling high-density, liquid-like fluids seems to be very challenging. Consid-

ering a complex molecular structure of the fluid also seems to be a severe limitation

of the “Oscillator Model” for practical purposes (Bhatia et al., 2011). More applicable

to diffusion processes of dense liquids is the Local Average Density Model (LADM)

(Bitsanis et al., 1987, 1988). It can be viewed as a method to combine exact theories for

the low density with continuum models which account for inhomogeneities in fluids

densities as well as momentum exchange with the confining wall.
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2.3 Single-component mass transfer of a confined fluid

For the analysis of molecular simulations, it is convenient to make the distinction

between a flow induced by diffusion (JD), which does not need to be accompanied

by a pressure gradient, and the flow which is induced by an external force (e.g. a

pressure gradient), called convective flux here (JC). Notwithstanding this conceptual

distinction, both convective (pressure-driven) and diffusive contributions are present

in most cases, and the total flux, J, may be formally decomposed into a diffusive flux

and a convective flux:

Ji,x = JD
i,x + JC

i,x = −
m∑
j=1

Lij

(
∂µj
∂x

)
− κp

(
∂P

∂x

)
, (2.17)

where the diffusive contribution is described via an Onsager approach and the linear

phenomenological transport coefficient for pressure-driven mass transport is repres-

ented by the permeability κp. For simplicity, the expression in eq. (2.17) is in the x

direction only, which stands for the main direction of mass transport in a porous ma-

terial. This formulation of mass transport garnered wide-spread support in the liter-

ature (Travis and Gubbins, 2000a; Nicholson, 1997), because the expression simplifies

to a very straightforward model if the flux of only a single component is considered.

Additionally, the porous material has a unique influence which is not specified and ap-

parent a priori. However, there are conflicting views (Bhatia and Nicholson, 2003) to

this distinction between diffusive and convective components in the literature, in par-

ticular in the case of single-component transport in a porous solid. The Gibbs-Duhem

equation gives a direct relationship between the system’s natural thermodynamic vari-

ables, which in the case of a confined fluid are temperature T , pressure P and, since

the porous solid has an interface with the confined fluid, surface tension γ (Nicholson

and Parsonage, 1982).

m∑
i

Nidµi = −SdT + V dP + Adγ (2.18)

For a bulk single-component system at constant temperature with no present inter-

face, the equation reduces to dµ = dP/ρ. Since chemical potential, pressure and dens-

ity gradient are then dependent on each other, it highlights that a strict separation of

diffusive and convective flux is not applicable for a single-component fluid. This as-

pect is also intuitively apparent as diffusion is a process associated to mixtures. The

diffusion of a guest specie in a porous material is instead described by a gradient in
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one thermodynamic variable that can be translated into the gradient of another and a

flux can be linked to either.

Jx = −L
(
∂µ

∂x

)
= −κp

(
∂P

∂x

)
= −Dp

(
∂ρ

∂x

)
(2.19)

It is important to note that these coefficients are functions of pore loading and surface

pressure, so the pressure of the adsorbing fluid and the interactions between solid and

fluid, which govern pore loading, have a decisive influence on L, κp or Dp. Because

it is most intuitive to measure density in a molecular simulation, the latter version

is generally preferred over the other two entities. The connection between chemical

potential and density, for instance, can be made as follows:

Jx = −L
(
∂µ

∂ρ

)
T

(
∂ρ

∂x

)
=

[
kBTL

ρ

] [
ρ

kBT

(
∂µ

∂ρ

)
T

](
∂ρ

∂x

)
, (2.20)

and making the assignment of

Γ =
ρ

kBT

(
∂µ

∂ρ

)
T

=
1

kBT

(
∂µ

∂ ln ρ

)
T

, (2.21)

where Γ is a dimensionless thermodynamic correction factor, sometimes called Darken

factor (Maginn et al., 1993). Here, the specific contribution of surface effects is in-

cluded in the thermodynamic correction factor and averaged for the entire pore. With

the methodology applicable to both homogeneous and inhomogeneous systems, as

the one studied via non-equilibrium simulation methods in Chapter 3 and 4, this ag-

gregate view allows a comparison in terms of external bulk pressure of the fluid. The

Darken factor may be related to the adsorption isotherms for inhomogeneous systems

(Krishna, 2009; Chempath et al., 2004). When the chemical potential of a substance is

expressed in terms of activity a (µ/µ0 = kBT ln a), the thermodynamic factor can be ex-

pressed as Γ = (∂ ln a/∂ ln ρ)
T

. Equivalently, in terms of fugacity f , Γ = (∂ ln f/∂ ln ρ)
T

.

For low density gases, the Darken factor approaches unity, as the fugacity tends to the

pressure and the ideal gas law is applicable.

As mentioned, it is convenient to express the flux equation in terms of a gradient

in density and therefore eq. (2.21) can be used in eq. (2.20), which yields:

Jx = −D0Γ

(
∂ρ

∂x

)
, (2.22)

where D0 is the corrected diffusivity, defined as D0 ≡ kBTL/ρ.
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It is important to point out that the transport coefficient in eq. (2.22) is comprised

of a thermodynamic component (Γ) and a component accounting for the particle mo-

bility of the substance (D0), which is commensurate with other transport models such

as the solution-diffusion model (Hofmann et al., 2000) or models for liquid transport

in a porous membrane (Deen, 1987), which include thermodynamic effects in a so-

called partition coefficient. In summary, for isothermal mass transfer of a pure species

through a porous medium, there is a relationship between the various diffusion coef-

ficients:

Dt 6= L
kBT

ρ
= D0 = DMS

1,p . (2.23)

An extension of these relations to binary mixtures has been presented and discussed in

the literature (Wang and LeVan, 2008). Moreover, the expression for pressure-driven

flux yields a relation between permeability and diffusion coefficients:

κp = D0Γ

(
∂ρ

∂P

)
T

. (2.24)

As much as composition has a decisive influence on diffusion rates, so does confine-

ment and it is important to note that the influence on transport diffusion is not equival-

ent to the influence on self-diffusion. The confined single-component fluid therefore

provides a special scenario to investigate confinement effects on self- and transport

diffusion independently and allows this study to go beyond focusing purely on the

influence of confinement on self-diffusion. In the following chapter, the necessary

tools to investigate diffusion by performing molecular simulation are described in de-

tail, followed in Chapter 4 by a concrete example which is based on the theoretical

framework above. In Section 6.1, an alternative scenario highlights the relationship

between transport and self-diffusion.



CHAPTER

THREE

THE MOLECULAR SIMULATION “TOOLBOX”

Nous devons donc envisager l’état présent de l’univers comme l’effet de son état

antérieur et comme la cause de celui qui va suivre. Une intelligence qui, pour un

instant donné, connaı̂trait toutes les forces dont la nature est animée, et la

situation respective des êtres qui la composent, si d’ailleurs elle était assez vaste

pour soumettre ces données à l’Analyse, embrasserait dans la même formule les

mouvements des plus grands corps de l’univers et ceux du plus léger atome: rien

ne serait incertain pour elle et l’avenir, comme le passé serait présent à ses yeux.

Pierre Simon Laplace,

Essai philosophique sur les probabilités (1814)

Before digital computing engines came to see the world’s turbid skies in the 1940s,

calculating the collisions in an ensemble of many individual particles was a very te-

dious endeavour. Because statistical thermodynamicists hoped to gain valuable in-

sight into a wide range of challenging problems, the effort certainly did not prevent

such endeavours from being undertaken. In fact, Lord Kelvin delegated the tasks to

his research assistant, William Anderson, who calculated 5000 random collisions with

curved surfaces over the course of thirteen months (Thomson, 1901; Allen and Tildes-

ley, 1987; Izmailov and Myerson, 2005). At the turn of the twentieth century, the fun-

damental workings of the atomic hypothesis were still disputed and scientists were

going great lengths to either produce definitive proof of their theoretical approach or

finally refute a competing approach. Nowadays, a computer can calculate a set of 5000

random collisions in less than a millisecond. It will still require a human intellect to

write the instructions for such a computation though, which will take considerably

longer than a millisecond. Yet it will probably take much less time than calculating
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these trajectories by hand. In the current digital age, most will indeed feel sorry for

Mr. Anderson for the thirteen months a computer could have saved him. Nonetheless,

his efforts exemplify that the value which can be derived from a trajectory of a molecu-

lar ensemble was recognised before computer simulations were possible. Very early

on, the trade of engineering realised the value of molecular simulations and this par-

ticular field of science was often pushed forward by scientists in chemical engineering

departments around the world. Since the mid 20th century, there has been a continu-

ous stream of contributions that were added to this molecular simulation “toolbox”,

in which individual tools often combine breakthroughs in computer science, mathem-

atics, and physics. This selection of tools can be applied to practical issues faced in the

engineering disciplines.

In light of this tradition of molecular simulations, this chapter is devoted to the

thermodynamic roots of molecular simulations, followed by a discourse of molecu-

lar interactions, synonymously referred to as “interaction potentials” or “force fields”.

Subsequently, molecular simulation techniques to calculate transport coefficients are

reviewed, in particular ways to obtain diffusion coefficients. The focus of this work

lies on non-equilibrium techniques and, at the end of this chapter, a modified method-

ology to perform robust and efficient non-equilibrium molecular simulations is out-

lined.

3.1 The thermodynamic roots of Molecular Simulations

Not only was the scientific development of molecular simulations vigorously influ-

enced by practical engineering problems, but also the origins of thermodynamics are

inextricably linked to engineering in the truest sense of the word. The invention of the

engine spawned the science of classical thermodynamics, which is traditionally de-

voted to understanding the relationship between heat and work. In the 19th century,

the technical interest in the steam engine fostered a profound scientific analysis of pro-

cesses that transform heat into work. The young engineer Sadi Carnot poineered the

theoretical thermodynamic treatment and a few years later, the work of James Joule

and Robert von Mayer manifested the equivalence of heat and work (Müller, 2007).

Since much of the 19th century was devoted to exploring this rapidly emerging

field, thermodynamics can therefore still be considered a relatively young field of sci-

ence. Incidentally, the foundation of its main pillars, the first and second law of ther-

modynamics, drew from the attention of other disciplines in the natural sciences. It
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was the biologist Hermann von Helmholtz who is credited as discovering the con-

servation of energy in his experiments on fermentation, which constitutes a holistic

formulation of the first law of thermodynamics. More importantly, the science of ther-

modynamics realised the relevance of non-stationary processes very early on. While

many natural phenomena are observed in a state of equilibrium, non-stationary, time-

dependent, or non-equilibrium processes (all these terms are mostly synonymous)

are prominent in nature and technology. The second law of thermodynamics, which

provides an answer to the question why some processes cannot be reversed despite

the reverse process complying with the first law, was introduced by Rudolf Clausius

and complements the theoretical framework of classical thermodynamics. While these

laws of thermodynamics were established as simple truths of nature, it did not halt

the inquiry into “why” things behave according to these simply rules. With more

evidence pointing towards the accuracy of the atomic hypothesis, an explanation of

thermodynamic phenomena with an atomistic argumentation was shaped by Lud-

wig Boltzmann, Josiah Willard Gibbs and James Clerk Maxwell. Their work foun-

ded the field of statistical mechanics, the groundwork of molecular thermodynamics

and thus the foundation for molecular simulations. The turn of the previous cen-

tury was marked by numerous ground-breaking discoveries in relation to the atomic

hypothesis. Boltzmann’s work on statistical mechanics, giving rise to a molecular ex-

planation of macroscopic properties of bulk fluids, was undeniably of immense value

for science. Following Boltzmann’s pioneering work, other physical phenomena were

under scrutiny for a potential basis in molecular character. As such, Albert Einstein

showed that Brownian motion, in itself the basis for diffusion, can be explained by

molecular thermodynamics (Einstein, 1905). As outlined in section 2.2, the continuum

description of diffusion was made only a few decades prior to Einstein’s seminal the-

oretical work. Likewise, Maxwell and Stefan were attempting to incorporate the work

of Adolf Fick into the contemporary understanding of thermodynamics and statistical

mechanics.

The paradigm shift took place as previously empirical observations could be ex-

plained through a rigorous statistical analysis and the assumption that matter consists

of individual atoms and molecules rather than being a continuum. Relationships that

were previously established could now be broken down to more basic assumptions.

In consequence, it became apparent that the bulk properties of a medium are gov-

erned by the microscopic interactions between the molecules. A statistical observation

of the molecular system yields all intensive and extensive thermophysical quantities.
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Insight into the microscopic behaviour of a system allows for the determination of a

vast number of properties that are of interest to scientists and engineers. These cap-

abilities were the foundation for the scientific and technical demand for systems to

be simulated on a molecular level. Apart from the breadth of information becoming

available, information which was previously not accessible via experimental observa-

tion could be obtained. In other instances, the possibility to replace dangerous and

expensive experiments with computer simulation is beneficial (Borak and Diller, 2001;

Jasperson et al., 1996). In yet other instances, the replacement of routine experimental

work for tedious tasks, such as sensitivity analyses or parameter scanning, was per-

ceived as a remedy which high-throughput molecular simulations in great numbers

could provide (Wilmer et al., 2012). The list of potential applications for molecular

simulations is virtually endless. In many cases, researchers use molecular simulations

to scope a system of interest and rapidly screen the system for the conditions that are

most interesting to be explored experimentally (Smit and Maesen, 2008; Gubbins and

Moore, 2010; Wilmer et al., 2012; Amrouche et al., 2012; Hart and Colina, 2014).

3.1.1 Molecular interactions

The physical properties of a substance are determined by the intermolecular forces

between the atoms and molecules the substance consists of. While statistical mechan-

ics establish the connection between microscopic configurations and a system’s macro-

scopic state, molecular simulations provide access to microscopic configurations based

on a well defined model for the force fields. The molecular interactions are the treas-

ure chest of thermodynamics, since they govern the movement of molecules and hence

determine the evolution of molecular trajectories. Once the motion and position of all

molecules in a system at all times is known, thermodynamic observables follow from

the interaction potential and it is possible to determine temperature, pressure, chem-

ical potential, entropy or any other physical property of the substance in a straightfor-

ward manner as a statistical ensemble average. In fact, molecular simulations are often

useful for obtaining properties which are difficult to determine experimentally, such

as isobaric heat capacities, shear viscosities, surface tensions or diffusion coefficients.

Due to the pivotal role molecular interactions play in obtaining physical properties

from molecular simulations, one of the main challenges is modelling the molecular

interactions effectively and defining the right force field given computational, numer-

ical, mathematical and practical constraints.
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Molecular modelling

Generally speaking, molecular modelling is an attempt to describe the plethora of in-

teractions between molecules in mathematical terms, resulting in a functional descrip-

tion of an average potential energy which combines different physical effects such as

Pauli repulsion, dispersion interactions (i.e. van-der-Waals forces), electrostatic inter-

actions, hydrogen bonding etc. While these effects can be classified as intermolecular

forces, there are also numerous types of intramolecular forces, which keep the atoms

within a molecule together. Historically, molecular interactions have evolved in their

complexity, from simple ideal-gas and hard-spheres, via the square-well potential

and Lennard-Jones potential, up to polarisable force-fields and a quantum-mechanical

treatment of intra- and intermolecular forces (Stone, 2013).

The importance of dispersion interactions for vapor-liquid equilibria, subject of

much inquiry and long-standing debate in scientific circles of the 18th and 19th cen-

tury (Lafitte et al., 2013), was irrefutable since the work of van der Waals (van der

Waals, 1873) in the late 19th century and the early 20th century, which also marked

the proposal of the Lennard-Jones potential (LJ) (Jones, 1924; Lennard-Jones, 1931).

The Lennard-Jones potential is of specific interest for molecular simulations as it is a

simple, closed-form mathematical function capable of representing the effective poten-

tial energy of a simple isotropic fluid in a a qualitative way. The interaction potential

uij is defined by

uLJ(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (3.1)

with rij being the distance between the centres of two equivalent LJ particles i and j.

In conjunction with van der Waals’s approach to molecular interactions, two paramet-

ers σ and ε define the LJ potential and scale the size and interaction energy between

two particles, respectively. The widespread use of the LJ potential roots in the con-

venience of its computation and not its particular accuracy in representing the forces

between molecules. While the exponent of the attractive term, (σ/rij)
6, has a theor-

etical basis, the repulsive term, (σ/rij)
12, is obtained by merely taking the square of

the attractive term, which makes for a very fast and efficient computation. Such ef-

ficiency was of significance when computing power was scarce and it was necessary

to use every short-cut, but with an increasing availability of computational capacity,

force fields have become more versatile (and arguably more accurate). Nonetheless,

the LJ potential is still the most widely used force field and it constitutes a reference
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for every other force field because of the vast amount of data and comparisons that

have accumulated in the literature.

In addition to the dispersive and repulsive interactions, molecular models must of-

ten account for electrostatic interactions due to a non-uniform charge distribution within

molecules. This can be done by the inclusion of point charges. The Coulomb interac-

tion, i.e. the attraction or repulsion of two charged sites i and j, is described by

uC(rij) =
1

4πε0

qiqj
rij

, (3.2)

where rij is the distance between the point charges q and ε0 denotes the permittivity

of vacuum. The forces between molecules that exhibit differences in electronegativity

within the molecule can also be modelled with multipoles. A hydrochloric acid mo-

lecule, for instance, exhibits a strong dipole due to the high electronegativity of the

chlorine atom. By modelling this charge distribution with a single dipole rather than

two individual charges, the number of interactions sites can be reduced. This can be

taken further and higher order poles can replace even more partially charged sites as

in the case of a model for carbon dioxide, where two negative charges on the oxygen

atom and a positive charge on the carbon atom can be replaced by a single quadru-

pole (Gray and Gubbins, 1984). Reducing the number of interactions sites N is useful

because, if no short-cuts are taken, the number of computations for thisN -particle sys-

tem increases with N !. However, defining dipole moments as well as the magnitude

and location of charges requires molecular models to go through a challenging optim-

isation process. It is also worth noting that the LJ potential decays with 1/r6, while

Coulombic interactions only decay with 1/r. They have a much longer range than dis-

persion interactions. The higher the order of the type of polarity, the quicker it decays

with respect to distance. For example, the decay of dipolar interactions is proportional

to 1/r3 and quadrupolar interactions decay with 1/r5.

In a similar way to the intermolecular interactions, one may postulate simple closed-

form analytical expressions for the forces acting within a molecule. The functional

forms of the intramolecular interactions in the molecular simulations presented in this

work are the following:

Uintra =
∑
bonds

[k1(l − l0)2] +
∑

angles

[k2(θ − θ0)2] +
∑

torsions

[k3(1− d cosnφ)] (3.3)

where ki denote the force constants, which will be different for each type of bond

(Wang et al., 2004; Martin and Siepmann, 1998). The equilibrium bond lengths l0,
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bonding angles θ0, and torsion angles φ (also called dihedrals) are specific model para-

meters and can also be optimised based on the model’s representation of physical

properties or quantum mechanical calculations.

In this work, the simple LJ potential provides the basis for an investigation of

the slit pore system presented in Chapter 4. In the subsequent chapters, real gases

are modelled based on a combined potential comprised of the LJ force field, partial

charges and bonded interaction. Likewise, for the force field for a microporous poly-

mer a combination of bonded and non-bonded interactions (LJ and point-charges) is

employed.

It is a true challenge to derive, find and employ the “right” potential for the system

of interest. There are many assumptions, simplifications and trade-offs that need or

should be made when choosing a force field for a specific purpose. It is essential that a

force field is validated for the material and property of interest to provide confidence

in the results obtained.

To this date, many different potential models have been developed. Force fields

exist that were designed to model specific fluid properties, for example gas viscos-

ity, vapour pressure or saturated liquid density or surface tensions (Reid et al., 1987;

Avendaño et al., 2011). A range of studies have tried to produce transferable force

fields which can be used without purpose-fit parameter optimisations. Among them

are the so-called Optimized Potentials for Liquid Simulations (OPLS) (Jorgensen et al.,

1996), transferable force fields to model small molecules (e.g. Transferable Potential for

Phase Equilibria (TraPPE) (Rai and Siepmann, 2007)), force fields applicable to a wide

range of polymeric systems (e.g. Polymer Consistent Force Field (PCFF) (Sun et al.,

1994)). The force field should be chosen with care to model the system of interest, as

each is usually generated for specific types of system to model certain properties. In

light of the specific requirements and known or unknown limitations of a force field,

one can say that the agreement with measurable physical properties is desired in mo-

lecular simulations, as well as the efficiency with respect to computational effort.

“Short cuts”

The theoretical basis of statistical mechanics builds on the assumption that systems

can be taken to the thermodynamic limit, which means that the number of particles N

of the N -body system under consideration is very large, ideally somewhere close to

NA (6.022 × 1023). Repeatedly calculating the interactions between so many particles

is infeasible and mostly unnecessary. To this end, a number of “short cuts” that lower
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the computational effort have been invented.

In the present study, hydrogen atoms are incorporated into larger atomic clusters

such that groups like CH2 and CH3 constitute a single interaction site. This is referred

to as the United-Atom approach, and many generalised force fields have adopted this

approach. Apart from less interaction sites reducing simulation time, hydrogen atoms

have a minor effect on the thermophysical properties if hydrogen bonding plays no

major role.

Another short cut is the introduction of periodic boundary conditions (PBC) and the

minimum image convention. The number of atoms in a molecular simulation is still ex-

tremely small compared to the number of atoms in thermodynamic systems on the

macroscopic level. Therefore, PBC are applied to mimic the conditions of an infinite

quasi-bulk medium (Metropolis et al., 1953; Allen and Tildesley, 1987). The simula-

tion box is treated as a single cell in the center of an infinite periodic lattice of identical

cells. Once a molecule moves out of the simulation box on one side, it re-enters the

simulation box on the opposite side. By applying periodic boundary conditions, the

simulation box has effectively no walls and the fluid has no phase boundaries. The

system can thus avoid surface and confinement effects and essentially imitate a sub-

system of the bulk. Since the number of interaction partners of a particle rises to in-

finity, the minimum image convention is applied, meaning every molecule only interacts

with a single “image” of every other particle (Allen and Tildesley, 1987).

Yet another short cut aimed at reducing the amount of interactions to be repeatedly

evaluated is the cut-off radius (Frenkel and Smit, 2001), which defines the distance bey-

ond which any interactions are neglected or accounted for implicitly. In order to mit-

igate the effect of non-differentiable energy potentials, the LJ cut-and-shifted potential

was introduced as a variation of the LJ potential. Here, the potential energy is trun-

cated at the cut-off radius rc, but the potential energy within the cut-off radius is also

shifted by the potential energy at the cut-off.

ucs(rij) =


4ε

[(
σ
rij

)12

−
(
σ
rij

)6

−
(
σ
rc

)12

+
(
σ
rc

)6
]

rij < rc

0 rij ≥ rc

(3.4)

It must be noted that shifting the potential and choosing different cut-off radii yields

different potentials with different microscopic and macroscopic physical properties.

Alternatively, the truncated energy of a potential can be accounted for implicitly. One

can assume that the volume outside of the cut-off sphere is made up of a homogeneous

fluid of constant density. The correction term added to the potential is then given by
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∆ui = 2πρ

∫ ∞
rc

u(r)r2dr . (3.5)

When determining the potential energy of the entire system of N molecules, the as-

sumption of pairwise additivity between two molecules reduces the number of inter-

actions significantly by neglecting the fact that the presence of other molecules alters

intermolecular forces between two molecules.

utotal =
1

2

N∑
i=1

N∑
j=1

uij =
N∑
i=1

N∑
j>i

uij . (3.6)

This is in principle an incorrect assumption. The extent to which three-body interac-

tions are affecting the accuracy of a simulation has been studied (Sadus and Prausnitz,

1996) and it accounts for deviations of less than 5 % in the worst cases. In this study

multi-body interactions are neglected. The effects of multi-body interaction can in fact

be averaged and generally included in ’effective’ pair potentials.

Finally, the interaction between two unlike LJ particles can be specified by the

Lorentz-Berthelot combining rules (LB):

σAB =
1

2
(σA + σB) , (3.7)

εAB =
√
εA × εB . (3.8)

The interaction parameters of species A and B are combined to yield the parameters

σAB and εAB. Combining rules are of crucial importance when simulating mixtures,

but they also apply when a molecular model consists of several different LJ particles

and a particle interacts with a different particle of another molecule. Apart from the

LB combining rules, a whole range of different combining rules have been proposed.

The LB combining rules remain the most popular choice, however.

In general, thermodynamic and structural properties may be expressed in reduced

units for all physical quantities including temperature, density, and time. This is done

in most of this work with the exception of Chapter 5. The quantities are defined as

T ∗ = kBT/ε, ρ∗ = Nfσ
3/V and t∗ = t

√
(ε/m)/σ. The asterisk will be omitted and

only be specifically denoting reduced units where confusion with physical units is

possible. The LJ parameters and m, which represents the molecular weight, can be

used to express all other units of interest. For instance, diffusion coefficients may be

expressed in units of σ
√

(ε/m).
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3.1.2 Stochastic and deterministic simulation methods

The two most wide-spread simulation methods are Monte Carlo (MC) simulations,

which are of stochastic nature, and Molecular Dynamics simulations, based on a de-

terministic approach (Allen and Tildesley, 1987; Frenkel and Smit, 2001; Rapaport,

2004). A profound historical account of the development as well as advantages, lim-

itations and future challenges of both Monte Carlo (Theodorou, 2010) and Molecular

Dynamics (Maginn and Elliott, 2010) can be found in the literature. To a large ex-

tent, Molecular Dynamics have lagged behind Monte Carlo techniques in obtaining

equilibrium properties. However, due to its deterministic nature, it gives a realistic

description of the dynamics of a microscopic system, which in turn can be exploited

to calculate transport properties. Moreover, the parallelisation of deterministic Mo-

lecular Dynamics algorithms has proven to be easier to implement than for Monte

Carlo algorithms. Recent advances in parallel computing architectures give Molecular

Dynamics an edge in performing complex large-scale simulations with many trillions

of particles (Eckhardt et al., 2013). The following sections will clarify the specific ap-

proach of both Monte Carlo and Molecular Dynamics techniques and the role they

played in this work.

Monte Carlo Simulations (MC)

Force fields provide the functional form and parameters to calculate the total config-

urational energy U of an ensemble of N atoms as a function of their coordinates (rN ):

Utotal = Uintra + Uinter = U(r1, r2, r3, . . . rN) = U(rN) (3.9)

with the functional forms of intra- and intermolecular potentials differing in complex-

ity between force fields. The total energy of the system is a complex function of all the

positions of the particles (configurational part) and the momenta of all particles (kin-

etic part) which together constitute the system’s phase space. The functional form of

the internal energy is very complex for a dynamic system, yet it clearly has preferred

states which correspond to the natural physical tendency of all system’s to prefer the

state for which its energy is minimised. The role of molecular simulation is to ob-

tain the microscopic structure of a system based on its force field and deducing the

thermodynamic observables by sampling the system’s phase space and finding these

preferred states. The probability of finding a system in a configuration around rN is:
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P (rN) = exp
(
−U(rN)/kBT

)
/Z , (3.10)

where Z is the partition function of the system. It’s symbol Z stems from the German

word Zustandssumme, the summation of all states:

Z =

∫
exp

(
−U(rN)/kBT

)
drN . (3.11)

For a system with more than a handful of particles and a non-trivial functional form for

U , it is impossible to compute the partition function directly. Monte Carlo simulations,

devised to circumvent exactly this direct calculation of the partition function, are a

traditional form to simulate molecular ensembles on computers, dating back to the

post-war era (Metropolis et al., 1953). The name, an insinuation to the eponymous

casino on the French riviera, stems from the fact that the algorithm uses a process

involving random particle movements to sample the phase space. The sampling is

based on random evolutions of the system’s configuration, which are either accepted

or rejected based on the Boltzmann factor exp (−∆U/kBT ), where ∆U is the difference

in potential energy between the new configuration and the former. This procedure is

referred to as importance sampling as it weighs the importance of the states it samples

with the Boltzmann factor.

Since the temperature plays a role in the importance sampling, Monte Carlo simu-

lations are usually but not necessarily performed in the Canonical ensemble (N, V, T ),

i.e. in a system of constant volume, temperature and constant number of particles . In

this scenario, the random evolutions are typically random displacements of particles.

Different ensembles can be sampled if the random moves and weighing factors are

adjusted accordingly, such as systems at constant pressure, which can be simulated by

performing small random changes to the system’s volume (Panagiotopoulos, 1987).

The Grand Canonical ensemble is noteworthy as it allows the simulation at constant

temperature, volume and chemical potential (Adams, 1974). Such simulations are very

useful for obtaining adsorption properties of a specific system, from which in turn

thermodynamic factors can be determined (Theodorou, 2010). For this purpose, ran-

dom insertions and deletions of particles are additional necessary moves. The prob-

ability of insertions P+ or deletions P− being accepted or rejected depends on the

specified chemical potential and the system’s temperature in the following manner:

P+ = min

[
V

Λ3(N + 1)
exp

(
µ−∆U

kBT

)
, 1

]
, (3.12)
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P− = min

[
Λ3N

V
exp

(
−µ+ ∆U

kBT

)
, 1

]
. (3.13)

where µ denotes the chemical potential and the difference in potential energy ∆U is

the difference between the inserted or deleted particle being there or not. Λ denotes

the thermal de Broglie wavelength (Λ =
√
h̄/2πmkBT ), accounting for the thermal

part of the Hamiltonian in the partition function.

∆U = U(N + 1)− U(N) or U(N − 1)− U(N) (3.14)

A cornerstone of Monte Carlo simulations is the fulfilment of detailed balance,

which means that in equilibrium the probabilities of any stochastic manupulation of

the simulated system, such as removing and inserting particles or making the system’s

volume bigger or smaller are equally likely (Frenkel and Smit, 2001). For any Monte

Carlo approach, it is important that at the simulated state point the system is able to

reach detailed balance.

Molecular Dynamics (MD)

Molecular Dynamics simulations offer a route to obtain the explicit movement of all

particles in a molecular ensemble (Alder and Wainwright, 1957; Stillinger and Rah-

man, 1974). The molecules are regarded as mechanical objects which move and collide

predominantly according to classical equations of motion. Quantum effects have been

incorporated into MD simulations, but the majority of MD studies treat particles in

a Newtonian way in order to maintain computational efficiency. The intermolecular

potential yields the force fij between two molecules by deriving the potential with

respect to the distance between the interaction partners i and j:

fij = −∂uij
∂rij

. (3.15)

The acceleration of the particle follows from the sum of all forces acting on it. A numer-

ical integration is required to compute the specific trajectory of every single molecule

during a simulation and acting forces have to be repeatedly updated depending on

the movement of the individual particles. The numerical integration is performed by

time dicretisation methods, where the trajectories of the molecules are computed over

a very large number of small time steps δt. The positions, velocities and accelerations

of all particles at a later time t + δt are calculated considering the forces acting on the
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molecule by the molecules surrounding it at time t, while these forces are often re-

garded constant during the time step δt. A variety of algorithms exist to perform the

time integration, the Verlet, Velocity-Verlet, and Gear predictor-corrector algorithms

being popular and effective examples (Allen and Tildesley, 1987). A main concern in

the application of these algorithms is the approximation that the forces between the

interaction sites are constant throughout the time step. The forces change as the mo-

lecules move during the time interval δt. To generate a more accurate trajectory of

the molecules, modern algorithms employ a cascaded computation. In the case of the

Gear predictor-corrector algorithm, a predicted position of the molecule, based on its

velocity and acceleration, helps to calculate the new forces, and therefore the accel-

eration at the new position. The difference between the former acceleration and the

new acceleration is used to correct the new position, velocity and acceleration of the

molecule. These corrected values are regarded as the state of the molecule at t + δt.

For each time step, the properties of the micro-ensemble can be determined and av-

eraging over observables at each time step allows for the computation of macroscopic

properties (Frenkel and Smit, 2001).

The equations of motion for the particles according to Verlet (1967) are given by:

dri(t)

dt
= vi(t),

dvi(t)

dt
=

fi(t)

mi

(3.16)

where mi, vi(t) and fi(t) denote the mass, velocity and total force acting on particle i,

respectively. The ideal implementation of the Verlet integration conserves energy and

is used to simulate an ensemble in the Microcanonical ensemble (N, V,E). A numerical

Verlet implementation introduces errors, which can be minimised by a sufficiently

small time step. MD simulations are routinely checked to determine if the system’s

energy drifts, which indicates to the choice of time step being too long. Also, it must

be noted that in equilibrium conditions the total momentum of the ensemble should

be zero.

Temperature is proportional to the amount of kinetic energy in the system. The

kinetic temperature is given by

T =
1

3

N∑
i=1

miv
2
i

kBN
, (3.17)

The number of degrees of freedom for a point mass is 3, hence the factor of one third on
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the right hand side, in accordance with the equipartition theorem. A single LJ sphere

does not have any rotational degrees of freedom, thus each LJ particle has the same

three translational degrees of freedom. The number of degrees of freedom is 3N in a

system containing N single LJ spheres.

The equations of motion can be modified to constrain the temperature of the sys-

tem in order to perform simulations in the Canonical ensemble at constant temper-

ature. For an isokinetic thermostat (Brown and Clarke, 1984), the introduction of the

parameter χ(t) into eq. (3.16) acts like a friction coefficient that guarantees a constant

kinetic temperature T .

dri(t)

dt
= vi(t),

dvi(t)

dt
=

fi(t)

mi

− χ(t)vi(t), (3.18)

subject to the constraint:

dT (t)

dt
=

d

dt

(
1

kBNdof

Nw∑
i=1

mivi(t) · vi(t)
)

= 0 , (3.19)

where kB is the Boltzmann’s constant, N is the total number of particles, andNdof is the

number of degrees of freedom. This is a very useful implementation of a thermostat

since for any subsystem that is not subject to a thermostat, the equations of motion that

govern their dynamics are the same as in eq. (3.16) setting χ(t) = 0 at every time step.

To achieve an increase in computational efficiency, a Verlet list of closest neighbours

can be employed when calculating the forces for each time step (Allen and Tildesley,

1987).

3.2 Transport properties from Molecular Simulations

Transport properties are almost exclusively calculated from MD simulations as they

yield a time evolution of the microscopic ensemble. In essence, obtaining transport

properties from MD simulations is based on the fluctuation-dissipation theorem, which

states that a system’s response to an equilibrium fluctuation is equivalent to the re-

sponse to a (small) perturbation. Thus, by monitoring the decay of fluctuations during

an equilibrium simulation, it is possible to compute transport coefficients which relate

the resulting fluxes to a given thermodynamic driving force, such as a resulting mass
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flux due to a gradient in concentration, which embodies a gradient in chemical poten-

tial as the driving force. The well-established Green-Kubo relations (Kubo, 1957) are

used to essentially express most transport properties, such as diffusion coefficients,

viscosity and thermal conductivity, and thereby bestow transport coefficients, which

were previously purely perceived as phenomenological relations, a fundamental mi-

croscopic definition based on statistical mechanics. Equilibrium Molecular Dynamics

(EMD) simulations have been performed to analyse self-diffusivities of liquids since

early 1980s (Evans and Morriss, 1984).

In the following, the equilibrium route to obtain various “flavours” of diffusion

coefficients from Molecular Dynamics simulations is presented, and subsequently fol-

lowed by an account of several methodologies to obtain diffusion coefficients from

non-equilibrium Molecular Dynamics simulations, which in turn are usually not based

on the Green-Kubo formalism.

3.2.1 Self-diffusivity

In the canon of transport properties, self-diffusion is a special case, yet a fundamentally

important one as it is of high interest to the molecular modelling community. Based

on Einstein’s molecular theory for diffusion, self-diffusion is the key property quan-

tifying a fluid’s mobility. In a bulk system of a pure substance at equilibrium, the

self-diffusion is defined as a measure of the mobility of a single tagged particle in

a bulk of otherwise identical particles. The corresponding transport property is the

self-diffusion coefficient Ds (Maginn et al., 1993; Gubbins et al., 2011). Since random

thermal motion of the particles is the source for self-diffusion, it highly depends on

the system’s temperature and density. In the case of fluid transport through porous

materials, confinement also has a non-trivial effect on self-diffusion. The calculation

of Ds within a molecular ensemble can be performed using Einstein’s relation or equi-

valently by using the Green-Kubo relations (Chaikin and Lubensky, 1995):

Ds =
1

2d
lim
t→∞

d

dt

〈
1

Nf

Nf∑
i=1

|ri(t)− ri(0)|2
〉

=
1

d

∞∫
0

〈
1

Nf

Nf∑
i=1

vi(t) · vi(0)

〉
dt , (3.20)

where ri(t) and vi(t) are the position and velocity of particle i at time t, respectively,Nf

is the number of fluid particles, and d is the dimensionality of the system. In Eq. (3.20),

the terms in the angular brackets denote an ensemble average, either of the particle’s

mean square displacement (MSD) for the first expression on the right-hand-side, or
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Figure 3.1: Mean square displacements of the bulk LJ fluid at temperature T = 1.5 and

a fluid density between 0.45 and 0.9.

of the velocity auto-correlation function (VACF) for the second expression. In a dense

fluid, the MSD increases linearly with time due to frequent collisions of the particles

(Chaikin and Lubensky, 1995). This linear relationship relates to the self-diffusivity,

describing the mobility of the particles. An example of MSDs can be seen in Fig. 3.1

showing the time dependence of the MSD of the LJ fluid at various densities. It shows

that the MSD exhibits a so-called ballistic regime at short time scales, meaning a quad-

ratic time dependence. It is due to molecules flying through space in a straight line

before they eventually collide with each other and embark on a random walk through

space. Depending on the density of the substance, the ballistic regime is longer or

shorter. The VACF originates from the more general expression for transport prop-

erties based on statistical mechanics (Kubo, 1957). The diffusion of a single tagged

particle in a mixture of two different species can also be referred to as tracer diffusion,

which is closely related to self-diffusion, as outlined previously. The distinction is due

to the fact that a tagged particle in a mixture will not only interact with particles of the

same species but also with particles of a different species, implying that composition

has an influence.

In general, the self-diffusivity Ds and the transport diffusivity Dt (as defined in eq.
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(2.1)) are inherently different. For an infinitely diluted mixture of low density gases,

the value for Dt, describing the transport diffusion of the solute, approaches the self-

diffusivity Ds (Cussler, 2009).

3.2.2 Collective diffusivity

While self-diffusion is a property defined even for single-component fluids, diffusion

coefficients usually describe the mass flux within fluid mixtures consisting of mul-

tiple components. For such systems, collective diffusion is an appropriate measure to

account for the concentration dependence of diffusion coefficients. The case of a con-

fined single-component fluid is special as collective diffusion is a defined property of

interest for the appropriate systems. As is the case for self-diffusion being calculated

from the VACF, it is possible to calculate the collective diffusion coefficient from the

collective velocity correlation function (CVCF). As mentioned above, the motion of a

single particle is correlated to the motion of other particles within the system. The mo-

bility of a particle is thus inherently a collective property and it is therefore necessary

to take the CVCF of the entire system into account. Accordingly, the integration over

this CVCF yields the collective diffusivity Dc (Gubbins et al., 2011):

Dc =
1

2d
lim
t→∞

d

dt

〈
1

Nf

[
Nf∑
i=1

ri(t)− ri(0)

]2〉
=

1

d

∞∫
0

〈
1

Nf

Nf∑
j=1

vj(t) ·
Nf∑
i=1

vi(0)

〉
dt .

(3.21)

As opposed to the VACF, the collective correlation function the CVCF converges very

slowly. It can be see in Fig. 3.2 that the CVCF has a long time tail and there is consider-

able additional simulation effort required in order to compute the collective diffusion

coefficient to sufficient statistical accuracy (Maginn et al., 1993). Often, several very

long simulations need to be performed to obtain viable results.

It should also be noted that in eq. (3.21), there is an additional summation as com-

pared to Eq. (3.20), but since the movement of individual particles remains part of this

summation, self-diffusivity and a cross contribution Dξ constitute the collective dif-

fusivity. This relationship is more evident when looking at the definition of the CVCF

in eq. (3.21) (on the very right hand side), for which the multiplication of the two

sums yields the definition of self-diffusivity (
∑

j vj(t) ·
∑

i vi(0) =
∑

j vj(t) · vj(0) +∑
j

∑
i 6=j vi(t) ·vj(0)). Therefore, the self-diffusivity and a cross contribution Dξ consti-

tute the collective diffusivity: Dc = Ds + Dξ. For low density fluids, the correlation of
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a specific particle’s velocity with the velocity of other particles is negligible compared

to its auto-correlation and therefore Dξ is negligible. The collective diffusivity thus

approaches the self-diffusivity at the low-pressure limit (Nicholson, 1997).

Especially for porous media at low pore loading, it is convenient to purely cal-

culate self-diffusion coefficients as it is the most common approach to characterise

a system’s transport properties. It is fast and convenient to calculate and is clearly

defined for a pure substance at equilibrium. It is important to keep in mind, however,

that phenomenological transport coefficients, such as the transport diffusivity Dt, or

the Maxwell-Stefan diffusivity DMS are inherent to inhomogeneous and/or multicom-

ponent systems. They only correspond to the self-diffusion coefficient in the special

cases of infinite dilution (Reid et al., 1987).

Collective diffusion coefficient are routinely calculated for multi-component mix-

tures in order to determine Maxwell-Stefan diffusion coefficients (Liu et al., 2011),

as there is a sound theoretical basis of the connection between them (Van De Ven-

Lucassen et al., 1998). Similarly, it is possible to demonstrate that the collective diffu-

sion coefficient is equivalent to D0 as defined in the previous chapter (section 2.3).

Since EMD simulation reproduce realistic molecular trajectories, the MSD or VACF

can be directly determined from the saved trajectories of a MD simulation by using

eq. (3.20) and (3.21). The results can be compared to experimental measurements from

PFG-NMR and QENS experiments (Gubbins et al., 2011).

3.2.3 Non-equilibrium Molecular Dynamics

To simulate collective diffusivities from EMD is computationally expensive and there-

fore non-equilibrium approaches as a direct route to simulate transport phenomena

have been pursued. Since diffusion is a process that is invoked by a departure from

equilibrium, a multitude of different approaches has been devised, of which the major-

ity drive the system of interest away from equilibrium. These approaches frequently

mimic a real experiment in order to link observation from simulation with phenomen-

ological transport properties. Transient MD methods are a telling example for this no-

tion. The Gradient Relaxation Molecular Dynamics (GRMD) method was introduced

by Maginn et al. (1993) to study mass transport in zeolites. The approach determines

the diffusivity by monitoring the time-dependent recurrence of a non-equilibrium sys-

tem to a state of equilibrium. More specifically, a step profile in the density of a fluid

in zeolite cages is imposed and used as a starting point for a transient MD simulation.

Diffusive mass transport causes the density profile to smoothly flatten out to a state of
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Figure 3.2: Collective and Auto-Correlation functions of the LJ fluid confined in the

wide, repulsive pore (H = 5.0 with WCA walls) at T = 1.5. The pore loading of a unit

cell amounted to 305 particles, which corresponds to a bulk pressure of 0.8. The reader

is referred to Chapter 4 and Fig. A.8 and A.9 for the resulting values for Ds and Dc.
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equilibrium density. The time evolution of the density profile is analysed and yields

the diffusion coefficient. A similar methodology was touched on by Salih (2010), the

Joule Expansion method, where a fluid is expanded through a capillary or porous

medium into an initially evacuated subsystem. The relaxation of the density (pres-

sure) can be analytically related to a Fickian diffusion coefficient. Surely, many similar

computer experiments of this transient nature could be envisioned to calculate the dif-

fusivity. The principal difficulty of this methodology, however, lies in determining

whether the simulation occurs in the linear response regime as well as in limitations

of the statistical reliability.

Another statistically more reliable subcategory of non-equilibrium techniques are

methods to simulate a non-equilibrium system in a steady state. Heffelfinger and

Swol proposed the Dual Control Volume Grand Canonical Molecular Dynamics (DCV-

GCMD) method (Heffelfinger and van Swol, 1994) in an attempt to directly simulate

diffusive flux triggered by a gradient in chemical potential and in the absence of a pres-

sure gradient. To this end, an elongated simulation box is divided into three relevant

compartments. Reservoir compartments are located at the right and left end of the

system and the flow region is located in the centre, between the two reservoirs. Each

reservoir is kept at a constant chemical potential by inserting and deleting particles

from the reservoir. In one instance, the simulated fluid is divided into two species

that only differ in colour. By keeping high and low chemical potential regions for

the two species on opposite sites of the simulation box, an individual flow of each of

the coloured species is induced in spite of the overall system being kept at constant

density. In other instances, a single component fluid is simulated and imposing a dif-

ference in chemical potential leads to one reservoir being at a higher pressure than the

other, which in turn allows a net flux to occur in the flow region (Travis and Gubbins,

2000a). The DCV-GCMD method has the advantage that it is evident whether a sim-

ulation happens in the linear response regime or not. While the steady state nature of

the process improves the statistical uncertainties of this method as averaging may be

performed for long simulation times, the combination of stochastic and deterministic

elements poses a challenge for two reasons (Arya et al., 2001). First, inserted particles

must be assigned a velocity that matches the average streaming velocity, which in turn

is not known a priori. Second, the insertion and deletion of particles alters the dynam-

ics of the molecules and the number of insertion or deletion events can have a limiting

influence on mass transport.

Last but not least, the External Field Non-Equilibrium Molecular Dynamics (EF-
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NEMD) method has been one of the first methods introduced (Evans and Morriss,

1984), although wide spread use of this method was hindered by limitations in com-

putational power as the systems studied usually need to be relatively large to yield re-

liable results. The approach itself is straightforward and following the general notion

of non-equilibrium thermodynamics. An equilibrated molecular dynamics sample is

taken out of equilibrium by a weak external force field acting on all (or part) of the

fluid particles. The external field implies an additional acceleration in a specific direc-

tion, producing a macroscopic flux in the same direction. For small perturbations, it is

common to regard this external force field equivalent to a chemical potential gradient.

It can be compared to gravity homogeneously acting on all particles of the sample.

However, the external field is an extension to the Hamiltonian of the ensemble (Allen

and Tildesley, 1987), and thus it has an effect on the interaction between particles. The

effect might not be negligible in some cases, in particular, when considering the inter-

action between fluid and wall particles. Moreover, some reservation to the EF-NEMD

method are targeted towards the fact that it has not been formally demonstrated un-

der what conditions the equivalence of external field and chemical potential gradient

is justified and when and if the assumption breaks down (Arya et al., 2001). Nonethe-

less, more recent publications indicate that the method yields good results and shows

greater potential for an extension to more complex systems (Chempath et al., 2004).

3.3 Boundary-driven non-equilibrium MD

Owing to its efficiency and ease of application, the EF-NEMD method has been modi-

fied recently by making the external field act only in a sub-region of the system. This

avoids the fact that an external field alters the Hamiltonian of the particles in the re-

gion of interest. A few studies have applied related approaches to investigate contrac-

tion and expansion of fluid flow (Castillo-Tejas et al., 2009), the permeation of water

through transport proteins (Zhu et al., 2004), pressure-driven transport through nano-

scopic cylinders (Huang et al., 2011) and transport through different graphitic pores

(Salih, 2010).

The investigation in this work is based on a variation of the EF-NEMD method

(Frentrup et al., 2012). The external field also acts as a quasi-gravitational field in the x

direction, i.e. in the direction of the flow, but only in a thin slab at the left boundary of

the simulation box (see the red shaded region in Fig. 3.3) in order to induce the flow

with the minimal perturbation to the system.
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Figure 3.3: Schematic representation of the slit pore geometry. Blue spheres fixed by

harmonic springs represent the particles of a porous solid. Gray spheres are fluid

particles. Periodic boundary conditions are applied in all directions. A close-up of the

slit pore channel and the definition of the pore width H∗ are also shown. The volume

accessible to the fluid is schematically depicted by the dotted line. The y direction (in

plane) is not shown.

Periodic boundaries apply in all three dimensions (Frenkel and Smit, 2001), but

due to the application of the external field, the density is not uniform in the entire sys-

tem. The external force, acting in the x direction, builds up a pressurised bulk on the

left of the porous structure, provoking an increase in density in this region. The fluid

is squeezed into the porous structure and flow through the slit pore develops. While

the density in the bulk region is uniform for a moderate perturbation, a linear density

gradient develops within the pore. In order to quantify the differences in density, the

density distribution along the length of the pore was measured. To this end, the simu-

lation box was divided into thin slabs. For each slab, the average amount of molecules

was measured during the simulation and a density profile along the x direction, the

direction of flow, can be obtained. The flux can be measured by counting net mo-

lecular movements in the x direction. It is also possible to save the initial positions of

the fluid particles, obtain the unwrapped final positions of fluid particles and deduce,

from these two sets of data, the overall displacement corresponding to the net flux.

This approach essentially yields an average velocity vx, and it is thus very conveni-

ent to directly measure velocities during the simulations and compute the net molar

flux from the conservation of mass (Jx = ρ × vx). Due to continuity, the flux must be

constant throughout the simulation box.

The simulations yield a difference in density as well as the flux triggered by this

density gradient and based on these observables a “Pseudo-Fickian” approach can be
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used to determine the effective diffusion coefficient, which is thus defined as:

Jx ≈ −Deff

(
∆ρ

∆x

)
. (3.22)

Eq. (3.22) establishes the relationship between the flux and a gradient in density via the

effective diffusion coefficient. With the bulk densities available from the simulations,

the density gradient can be expressed as:

∆ρ

∆x
=

(
ρright − ρleft

Lp,x

)
, (3.23)

where Lp,x is the length of the respective pore. Due to the external field acting on the

fluid particles, dissipated heat increases the temperature of the fluid during the simu-

lation and the removal of this excess energy from the simulation is crucial to perform

steady state simulations. In order to maintain a simulation at constant temperature,

rather than applying a thermostat to the fluid particles, which can negatively influ-

ence the calculation of transport properties, the release of excess dissipated heat was

carried out by applying a thermostat only to the wall particles of the system. The wall

particles vibrate about their lattice positions and heat is transferred from the fluid to

the wall through particle collisions, leaving the motion of the fluid molecules unper-

turbed by the thermostat.

The described boundary-driven NEMD methodology is tested on model systems

with a LJ fluid flowing through a planar slit pore in the centre of the simulation cell.

The slit pore was constructed using a hexagonal closed packed lattice and the solid

particles were tethered to their lattice positions using a harmonic potential. For the

fluid particles, the cut and shifted LJ potential (Vrabec et al., 2006) was used. The mo-

lecular diameter shall be referred to as the intermolecular distance where the potential

energy is zero, σ. The cut-off distance of the LJ potential was chosen to be 2.5σ. For

the solid-solid and fluid-solid interactions, a purely repulsive potential known as the

Weeks-Chandler-Andersen (WCA) potential was used (Weeks, 1971). The WCA po-

tential is a cut and shifted LJ potential with a cut-off radius rc
ij = 21/6σ. For soft-sphere

molecules, such as the LJ fluid and the WCA wall, the pore width and length cannot

be defined unambiguously (Travis and Gubbins, 2000b). For the following discussion,

the pore width H shall be defined as the distance between the centre of mass of the

inner-most wall layer less one molecular diameter of a fluid molecule, while the width

accessible to fluid, H∗, is the pore width H less one molecular diameter of a fluid mo-

lecule, as outlined in Fig. 3.3.
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Pore size H 2.5 2.5 5.0 5.0

Dimensions of the simulation box [σ]

Simulation box length Lx 40.0 80.0 40.0 40.0

Simulation box depth Ly 8.736 8.736 8.736 8.736

Simulation box height Lz 13.113 13.113 10.371 26.096

Number of wall molecules Nw 1200 2400 600 2400

Number of fluid molecules Nf 1490 2958 1412 2982

Est. volume accessible to fluid V [σ3] 2695.9 5506.1 2589.5 5529.5

Est. overall fluid density [1/σ3] 0.553 0.537 0.545 0.539

Porosity H∗/Lz 0.115 0.115 0.386 0.153

Pore length Lp,x 18.6 36.03 18.6 18.6

Table 3.1: For the purpose of validating the boundary-driven NEMD approach, four

different pore geometries were constructed. The system parameters are listed above.

The volume accessible to the fluid is estimated by subtracting a box-shaped sections

for the wall structure. The values were calculated by subtracting the volume of the

porous medium from entire box volume (Vest = [(LxLz)− Lp,x(Lz −H∗)]Ly), meaning

that smooth edges of the pore wall were not explicitly taken into account.

Two different values for the pore width were realised in order to shed light on the

influence of various combinations of system parameters. Namely, a narrow pore with

a pore width H = 2.5 and a wide pore with H = 5.0. In order to investigate finite size

effects, a smaller system and a larger system was created for each of the two pore sizes.

While the system of the narrow pore was stretched along the length of the slit pore in

the x direction, the system of the wide pore was enlarged perpendicular to the pore in

the z direction by adding more layers of wall molecules. The details of the systems’

geometry are given in Table 3.1.

The slit pore lies symmetrically in the centre of the simulation box. The pore length

Lp,x is defined as the distance between the outer-most wall particles plus 2σ. Thus,

the pores have a length of 18.6 and 36.03σ for the three short and the long systems,

respectively. The values given for the volume accessible to the fluid, V , in Table 3.1 are

close estimates for the actual accessible volume.

It can be seen from Table 3.1 that the overall fluid density was kept constant for the
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different test systems. The systems were equilibrated for 200 000 time steps during

which a steady state could be reached. Subsequently, a production run of 2.5 million

time steps was performed to obtain measurements for molar flux and density gradi-

ents. Simulations were performed for a variety of external field magnitudes between

0.05 and 0.7ε/σ. The thin slab in which the external force acts was chosen to be three

molecular diameters.

Density gradients of different magnitudes of the external field are shown in Fig.

3.4. The grey shaded area depicts the location of the pore. Measuring the density in

the bulk regions is an uncomplicated task as the available volume in these regions is

correctly defined. However, the density within the pore is subject to the complications

in defining the pore width. Furthermore, at the entrance and exit of the pore, the

available volume changes in an abrupt fashion, going from bulk to confinement. This

point transition was not explicitly taken into account in the density profiles, and thus

creates the spikes in the profiles. The spikes are located at the entrance and exit of the

slit pore. The average density in the bulk sections was taken only from the simulations

from which the difference in density could be calculated unambiguously. A weak

external force invokes a linear response in the density distribution at these conditions

producing constant bulk densities and linear density gradients inside the pore

The density gradient and the difference in bulk densities increase with the mag-

nitude of the external field. Depending on the system setup, the response is non-linear

for larger magnitudes of the external force field (Frentrup et al., 2012). The gradient

inside the pore deviates from a linear gradient and for the large system, even the bulk

density can depart from being uniform. A similar conclusion can be derived from Fig.

3.5b. The ratio of the difference in bulk densities between the upstream and down-

stream sections, i.e. the density gradient that induces the flow, ∆ρ, may be calculated

directly. While the molar flux is linearly correlated to the external field, as can be seen

in Fig. 3.5a, the increase in ∆ρ/∆x shows a growing deviation for high magnitudes

of the force field. These larger external forces (fex ≥ 0.3ε/σ) correspond to situations

removed from the linear regime and should be treated with care, if at all.

For the small realisation of the wide pore, the deviation of ∆ρ/∆x from a linear

response is most prominent (triangles in Fig. 3.5b). It is obvious that the fluid faces

less resistance from the porous structure compared to the other realisations because the

ratio of the void area to the total area is much smaller than in the other cases. Porosity

is given as a measure to evaluate this aspect and the values for each system’s porosity

are given in Table 3.1. By enlarging the system and adding porous structure in the z
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Figure 3.4: Density profiles along the length of the simulation box, i.e. in x direction

for a range of external forces. The profiles are shown for the small realisation of the

narrow pore (red) and both small (blue) and large (green) realisation of the wide pore

at an external force of fext = 0.2. The grey shaded area in the centre depicts the region

in which the pore is located.
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Figure 3.5: Influence of the external force field on (a) the molar flux and (b) the dens-

ity gradient, ∆ρ/∆x = (ρright − ρleft)/∆Lx. Circles and squares represent the small

and large realisation of the narrow pore, triangles and diamonds the small and large

realisation of the wide pore, respectively. The straight dashed lines are a guide to the

eye.
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Figure 3.6: Average streaming velocity profile for the wide pore at two different poros-

ities. Solid lines depict the system at low porosity (i.e. large realisation in Fig. 3.1)

while dashed lines represent the results of the high porosity system (i.e. small realisa-

tion in Fig. 3.1). The profiles are for fex = 0.05, 0.3 and 0.5ε/σ from bottom up.

direction, the porosity is greatly reduced and a larger bulk subsystem is created. As

a consequence, the fluid cannot cross through the pore as easily. Similar observations

can be made when analysing the average particle velocity in the flow direction. The

reduction of porosity reduces the streaming velocity of the fluid in the bulk sections

while the streaming velocity in the pore is the same as for the more porous system.

As shown in Fig. 3.6, the bulk streaming velocity is more than halved in the bulk

subsystems by reducing the porosity from 0.386 to 0.153.

Only the wall was thermostatted during these NEMD simulations with an isokin-

etic thermostat and therefore the effective removal of heat is important to ensure that

simulation results are comparable to the equilibrium state. In Fig. 3.7, the temperat-

ure plots shows that the external field has a strong influence on the extent to which

simulations depart from thermal equilibrium. The temperature profiles in Fig. 3.7 also

shows that low magnitudes of the external field only result in a slight departure from

thermal equilibrium. It was furthermore observed that an increase in system size fa-

cilitates the effective removal of heat (Frentrup et al., 2012), which seems logical as it

also increases the interface between solid and fluid.

The dependence ofDeff on the external force is plotted in Fig. 3.8. The figure shows
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Figure 3.7: Temperature profiles for the small realisation of the wide pore. The profiles

for an external force of fex = 0.2 are shown on the left in a) and for fex = 0.5 on the

right in b).

that the effective diffusivity is not independent of the external field applied. As is

expected, Deff increases with the magnitude of the external field. Also, the results for

the larger and the smaller system deviate from each other; as entrance effects play a

larger role for the smaller system, a lower effective diffusion coefficient for the small

system is expected.

Based on linear response theory, the quantity of interest is the limit of Deff as the

force tends to zero (Kjelstrup et al., 2010), corresponding to the transport diffusion

coefficient Dt. As can be seen in Fig. 3.8, this quantity is independent of the size

of the system, and both small and large realisations of each pore width coincide.

For H = 2.5, an effective diffusion coefficient for a vanishing external force field is

(Deff)|
fex→0

= 9.55(5), where the number in parentheses gives the uncertainty in the

last digit. For H = 5.0, (Deff)|
fex→0

is equal to 18.6(1). Certainly, the coefficient changes

with the available pore opening as expected. There is a compromise between applying

an extremely small external force, which would guarantee that the system remains in

the linear regime (thus extrapolation to zero force would be meaningful) but would ex-

hibit poor statistics due to the poorly developed flow and a large external flow which

produces an efficient simulation and smaller fluctuations but may correspond to an

excessive perturbation of the system. There is no recipe for the precise magnitude of

the force to be used.

The fact that the results obtained for effective diffusivities are independent of the

system size is an outstanding feature of this methodology. The traditional pitfall of
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Figure 3.8: Effective diffusivities for the narrow and wide pore. Circles (small realisa-

tion) and squares (large realisation) denote the narrow pore system, triangles (small

realisation) and diamonds (large realisation) denote the wide pore system. Errors are

estimated as the deviation between several runs for the same state point. In general,

the error bars are smaller than the symbols. The dashed lines are a weighted least

square fit to quadratic functions for which the relative errors were used to weigh the

data.
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non-equilibrium techniques are primarily the departure from the linear response re-

gime and for an inhomogeneous system such as the one simulated in the present work,

finite size effect can play a major role in determining the importance of entrance ef-

fects. The simulation results give faith that both these issues could be mitigated by

extending to the limit of zero external force for the calculated diffusivities.

Many simulation studies revert to treating the solid as a rigid structure and apply

a thermostat to the fluid. This can result in large errors when computing dynamic

properties such as diffusion coefficients as the dynamics are artificially modified in

order to account for thermalising effect of the solid.

The simulations presented in this chapter were performed with a purpose-built

MD code. However, it is also important to note that the methodology was devised in

order to allow for easy implementation into existing MD software packages. Given

the breadth of potential applications and the extensive functionality of existing freely

available MD packages, the methodology was implemented into the software pack-

ages DL POLY and LAMMPS. It was soon realized that the capabilities of LAMMPS

(Plimpton, 1995), and especially its suitability to implement non-equilibrium MD sim-

ulations with versatile options for thermostatting and applying perturbations, were

beyond those of the DL POLY package. Therefore, in the subsequent chapters, sim-

ulations were performed with the LAMMPS simulation code (Release date: 25 July

2012).



CHAPTER

FOUR

MODELLING OF DIFFUSIVE MASS TRANSPORT IN

PLANAR SLIT PORES

Essentially, all models are wrong, but some are useful.

G. E. P. Box and N. R. Draper,

Empirical Model Building and Response Surfaces (1987)

4.1 Introduction

Porous materials are classified and to a large extent specifically chosen for industrial

separation purposes based on their pore width. Steric effects are a comprehensive tool

to render a porous material selective. Beyond steric effects, confinement may alter the

perceived properties of fluids and can influence transport properties significantly. It is

very difficult to predict how altered diffusion dynamics, such as ballistic or single-file

diffusion, change the separation characteristics of a porous material.

The most relevant characteristics and technical criteria for porous materials are

pore width and pore size distribution, surface area, and structure factors, i.e. tortuosity

and porosity, which are both related to pore size distribution to some extent. Moreover,

solid-fluid interactions and wall rugosity have a decisive influence on wall friction.

They interplay with the former characteristics by influencing adsorption behaviour

and transport dynamics, such as wall slip and other factors on fluid flow. Recently,

more control over nanoscale features of a material has spurred the investigation of

fluid behaviour in nanoscale confinement, i.e. in materials with pores smaller than 2

nm, which renders them microporous materials according to the International Union
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of Pure and Applied Chemistry’s (IUPAC) definition of pore sizes (McNaught and

Wilkinson, 1997; Schuth et al., 2002).

The effect of a pore size variation on the mobility of fluids in porous materials has

focused primarily on cylindrical pores in the form of zeolites (Bhatia, 2010) and car-

bon nanotubes (Zheng et al., 2012), on slit-shaped pores in the form of graphitic pores

(Nicholson, 1998; Vieira-Linhares and Seaton, 2003; Albo et al., 2006) or model struc-

tures (Furukawa et al., 1997; Nicholson, 1999). A further advanced molecular repres-

entation of porous materials of high interest because of their fluid transport properties

includes random structures (Gelb and Gubbins, 1998, 1999), which attempt to embody

glassy materials, and virtual carbons (Biggs and Buts, 2006; Marsh and Rodriguez-

Reinoso, 2006) as an attempt to model realistic geometries for e.g. amorphous carbon,

as well as realistic structures of polymeric membrane materials (Larsen et al., 2011) or

materials of biological origins, such as water-transporting proteins (Zhu et al., 2004).

The transferability of research findings is limited because the materials can have such

different properties that they cannot be compared to other systems. For example, the

“density” in cylindrical silicalite pores is often reported in loading per unit cell or

zeolite cage, but if no adsorption isotherm is given, it is impossible to relate the results

to properties of other systems.

Such lack of transferability is especially unfortunate in the case of the slit pore sys-

tem, which is often used as a surrogate model for adsorption models (Everett and

Powl, 1976). Despite the slit pore model being a popular and relevant model for mo-

lecular simulations, data on transport diffusion in slit pores is rare and among the

available data, a consensus at the most basic of levels has hardly been reached. As

seen in Fig. 4.1, the reported values for transport diffusion disagree by up to two or-

ders of magnitude. This high level of disagreement stems from the fact that the para-

meter space of a simple planar slit pore system is more extensive and complex than

is apparent at first sight. A specific cylindrical zeolite has a fairly narrow definition

of pore width, pore surface characteristics and even force-field parameters, which de-

termine solid-fluid interactions. The literature holds countless examples of planar slit

pores that have assumed different shape and parameters (Song and Chen, 2008; Travis

and Gubbins, 2001; Sokhan et al., 2001). Adding to the complexity, small differences

in model parameters, such as slightly different wall collision properties, will often sig-

nificantly impact transport properties. The nature of fluid-wall interactions is crucial

and whether they are defined by wall reflections or by defining a specific interaction

potential between fluid particles and wall particles needs to be clearly specified. Nu-
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merous simulation studies have established the discrepancies between smooth walls

with either diffusive, specular or a combination of these types of reflections and struc-

tured, atomic walls (Song and Chen, 2008; Cai et al., 2008). Cai et al. (2008) considered

three different pore models for graphite sheets: a smooth wall (Steele potential, see

eq. (4.2)), a diffuse thermalising wall and a structured wall. Differences in diffusion

coefficient between diffusive, specular and structured pores that differ by four orders

of magnitude were reported (Cai et al., 2008). Likewise, the difference between dif-

fusive and specular collisions has been reported by Cracknell et al. (1995a). While the

low density diffusion coefficient for specular reflections diverges to infinity, diffusive

reflections slow down the transport coefficient and transport and self-diffusion coef-

ficient converge to a limited value. Figure 4.1 also shows the inherent difficulty in

calculating transport diffusion coefficients to a high degree of confidence as the results

from one and the same laboratory can differ by a sizeable amount. Transport diffu-

sion is a collective property of the system and accumulating a sufficient amount of

statistical data to perform a robust analysis is very challenging.

It was pointed out that, while the Steele potential yielded the correct self-diffusivity

of the system, a structured wall was necessary for a correct calculation of the transport

diffusivity. The thermal diffusive wall did not yield correct results at all.

In contrast, there is much more consensus about the transport diffusion of methane,

represented by a single LJ sphere, in a cylindrical silicalite pore. Despite the system’s

complexity, the parameters are well defined and disallow an open parameter space

and ambiguous system parameters. Often, transport diffusivites are reported along-

side self- and collective diffusivities and the results from different research groups are

consistent (Skoulidas and Sholl, 2002; Maginn et al., 1993).

Since an accurate theoretical treatise for the diffusion of low density gases in pores

exists, an accurate treatment of gas transport in pores of varying roughness has been

sought (Arya et al., 2003; Jepps et al., 2003; Bhatia et al., 2011). It has been pointed out

that the self-diffusion of the ideal gas diverges to infinity and therefore DK must also

go to infinity for a Knudsen gas in a perfectly smooth pore exhibiting specular wall

collisions (Arya et al., 2003). For rough walls, DK has a limit, however. It depends

on the roughness of the pore and is minimal for a pore with purely diffusive reflec-

tions. For intermediate scenarios, the magnitude of the effective diffusion coefficient

depends on the ratio of specular to diffusive reflections.

Another difficult aspect with respect to comparing transport coefficients is the

different trends that self-, collective and transport diffusion follow as the fluid gets
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Figure 4.1: A selection of reported simulation data for self- and transport diffusivities

of the LJ fluid ((Cracknell et al., 1995a) in purple and (Cai et al., 2008) in orange) inside

a planar slit pore. The models are designed for methane adsorption and diffusion in

a carbonaceous material at room temperature, which translates to T = 2.0 in reduced

units. The pore width was 2.5 in both cases. Empty circles denote self-diffusivities

while filled triangles denote transport diffusion coefficients. Filled diamonds denote

the data reported by (Cracknell et al., 1995b) which just included two different values

for transport diffusion.
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Figure 4.2: A selection of reported simulation data for self-, collective and transport

diffusivities of CH4 ((Skoulidas and Sholl, 2002) in purple and (Maginn et al., 1993)

in orange) and C2H4 ((Chong et al., 2005) in yellow-brown) inside a cylindrical silica

pore. Empty circles denote self-diffusivities. Filled squares and triangles denote col-

lective and transport diffusion coefficients, respectively.
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denser. While all three properties need to converge to the same value at the ideal

gas limit, self-diffusion rapidly declines as density increases whereas collective and

transport diffusion often increase. These trend are confirmed through comparison

with QENS and PFG-NMR measurements (Sholl, 2006). It is also widely accepted that

collective diffusion is a combination of self-diffusion and cross interactions, and there-

fore D0 > Ds, which is more significant at higher densities (Skoulidas and Sholl, 2002).

While self-diffusivities are commonly reported, collective and transport diffusion coef-

ficients are more challenging properties to obtain. It is very difficult to compute these

properties for non-homogeneous systems, such as a fluid under confinement. The

proliferation of non-equilibrium simulation methods and increased access to compu-

tational resources makes it easier to investigate these properties and reporting is be-

coming more frequent.

A significant number of studies have been targeted toward calculating the diffu-

sion of guest molecules in cylindrical pores of amorphous silica or on various slit pores

models, mostly representing carbon structures. More recently, cylindrical pores rep-

resenting carbon nanotubes have garnered topical interest. Seldom have the effect

of solid-fluid interactions on diffusion coefficients been the focus of an investigation,

although the wide variety of conceivable nano-materials as fostered an increased in-

terest in such effects. The exceptional potential for high flux water transport is often

attributed to the molecular smoothness of a carbon nanotube, but since pores can be

altered through functionalisation, a step change from no transport to high transport

can be observed as hydrophilicity of the pore is altered (Melillo et al., 2011).

It is necessary to have a clear picture of how confinement influences fluid transport

in a qualitative as well as quantitative way and obtain a better understanding of the

properties of the pervasive planar slit pore model. To this end, mainly the effect on

self-, collective and transport diffusion due to a variation in pore loading and solid-

fluid interactions in two differently sized pores is investigated in this chapter. The in-

vestigation is limited to the simple Lennard-Jones fluid confined in a structured planar

slit pore of varying interaction potential, namely a repulsive wall, which is comprised

of WCA particles, and two attractive walls comprised of LJ particles. The different

pore sizes studied are a narrow pore which is 2.5 molecular diameters in width and a

wider pore of 5.0σ. In the following, interaction potentials of the pores are compared

with common models in the literature first. Then, apart from presenting diffusivities,

thermodynamic effects have also been considered and studied by obtaining adsorp-

tion isotherms of the different systems of interest. Subsequently, the calculation of
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diffusion coefficients for bulk and confined systems is given, including self-diffusion

as well as collective and transport diffusivities. Finally, the results are compared to the

Knudsen and Hagen-Poiseuille approach to predict fluid flow in slit pores.

4.1.1 Model potentials for a planar slit pore systems

In this work, the walls are comprised of individual LJ particles that are of the same

size as fluid particles. They are tethered by a harmonic force to their lattice positions

in order to render them part of the solid pore wall. It is nowadays common to model

walls explicitly as computing power is less of a limitation. The additional interactions

due to wall-wall collisions are permissible. The larger the pore width of the system and

the denser the confined fluid, the more the wall-wall interactions become negligible.

However, it was previously very common to model walls implicitly rather than

including individual wall particles into the time integration since computational re-

sources were scarce and structured walls were replaced with an averaged wall force

field. A direct attempt to describe fluid wall interactions implicitly is the LJ 9-3 wall

potential. This force field is the result of a straightforward integration of the standard

12-6 LJ potential assuming the individual particles are part of a uniform semi-infinite

quasi-continuum wall (Israelachvili, 2011). The resulting potential is a function of a

single Cartesian coordinate z, which denotes the distance to the centre of mass of the

first layer of wall particles:

ufw(z) =
4

3
πρwεfwσ

3
fw

[
1

15

(σfw

z

)9

− 1

2

(σfw

z

)3
]
, (4.1)

where ρw is the number density of the wall particles, σfw and εfw are size and energy

parameters of the fluid-wall interactions, respectively. The main drawback of the LJ 9-

3 potential is the assumption that wall particles are uniformly distributed throughout

the solid. This is a crude assumption and in reality, they have fixed lattice positions,

which has a big influence on the potential energy surface of a pore wall, particularly at

close distances and for walls sparsely populated, as can be seen in Fig. 4.3. A pseudo-

empirical improvement, which closely resembles the explicit description of walls is the

Steele potential (Steele, 1978), which is widely used in the literature and often employed

to model slit pores of graphitic carbon.
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Here, ∆ denotes the distance between two successive lattice planes of wall particles.

The Steele potential can be understood as an improvement over the LJ 9-3 potential

with respect to incorporating the atomic layers of a crystalline wall. The next layer of

molecules, which a fluid molecule approaching the wall can interact with, is located

at least the distance ∆ from the first surface layer. In effect, the Steele potential is an

analytical closed-form coarse-grained potential of a structured wall consisting of LJ

particles. Free energy mapping of detailed wall-fluid potentials can be performed for

any type of force-field, even with structural and energetic heterogeneities (Forte et al.,

2014).

The functional form of these effective force fields is solely dependent on the dis-

tance z from the wall. Wall collisions have to be addressed explicitly for such a wall

force field. As mentioned previously, the choice often falls on either purely specular

or purely diffusive collisions. The accuracy of the respective choice greatly depends

on the state of the system and surface properties, in particular on fluid density, surface

roughness and pore size. While most systems will exhibit diffusive reflections entirely,

due to their particularly rough walls, it became apparent over time that specular reflec-

tions play a decisive role for nanoporous system. Especially carbon nanotubes exhibit

a specifically smooth surface and molecules colliding with the wall of a carbon nan-

otube are mostly reflected specularly (Bhatia et al., 2005). These arguments become ir-

relevant if atomistically explicit walls are considered. Because of the increased interest

in the transport properties of nanoporous systems, modelling pore walls explicitly has

become the state-of-the-art approach.

Figure 4.3 visualises the differences between a range of potentials for planar walls.

The dashed lines depict the Steele potential with two different parameter sets, the LJ

9-3 wall and, for reference, a single LJ sphere. The three solid lines show the poten-

tial energy surface of the pore walls which are further used throughout this chapter.

The blue line depicts the repulsive WCA potential, which is why it does not exhibit a

potential well, while red and green lines depict the attractive walls with εfw = 1.0 and

εfw = 2.0, respectively. Interaction potentials were calculated by probing the respect-

ive slit pore with a simple Lennard-Jones sphere (σ = 1.0, ε = 1.0) and averaging the

interactions in the xy plane. Hence, the corrugations in the energy surface cannot be

seen in Fig. 4.3.

Because of the closer packing of graphite, both in terms of the in plane packing

as well as the shorter layer-to-layer distance ∆, the graphitic Steele potential has the

deepest potential well. Fig. 4.3 also shows that the Steele potential with the same para-
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Figure 4.3: Interaction potentials of the structured walls with three different types of

interactions (WCA, LJ with εfw = 1.0, and with εfw = 2.0). For reference, the Steele

potential with the same density parameters (ρ = 0.75, ∆ = 0.874) as well as with

parameters for graphite are depicted by dashed lines in orange (Radhakrishnan et al.,

2002). In addition, the LJ 9-3 wall potential as well as a single LJ sphere are depicted

by the dotted lines in purple. The centre of mass of the first wall layer is located at

z = 1.25.

meters as the strongly wetting wall (green line) would be a reasonably good model as

the interactions potentials are very similar. It is important to note that the location of

the well depth for the Steele potential as well as for the structured walls is at the same

distance z from the wall. This is dramatically different for the LJ 9-3 wall, which has

its potential well shifted towards the wall by almost 0.1σ due to the assumption that

interaction sites are uniformly distributed within the solid. A single LJ sphere in turn

has a much weaker interaction than any of the wetting walls depicted since only one

interaction partner is available in this case. Its potential well is shifted further away

from the location of the wall.
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4.1.2 System setup of this work

The parameter space for a planar slit pore is very large, as pointed out previously,

and it is therefore important to specify the system in detail. Apart from pore width,

pore loading and fluid-wall interactions, parameters such as temperature and wall

topology can have a stark influence on transport properties. In this chapter, the in-

vestigated system is the same planar slit pore system as it is described in chapter 3

(section 3.3), yet the focus of this chapter will be on the influence of fluid-wall interac-

tions which determine the adsorption strength of the pore. To this end, the wall will be

modelled in three ways: 1) a repulsive pore comprised of WCA particles (rc = 2(1/6)); 2)

a weakly wetting pore made up of LJ particles that are the same as the fluid (εfw = 1.0);

and 3) a strongly wetting LJ pore with twice as attractive wall particles (εfw = 2.0).

Moreover, two pore sizes will be simulated, a narrow pore with H = 2.5 and a wide

pore, H = 5.0. Confined inside the pore is the cut and shifted Lennard-Jones fluid

with a cut-off radius rc = 2.5. The temperature will be fixed at T = 1.5, which is above

the critical point of the LJ fluid and thus no phase separation is to be expected inside

the pore. Because there are many theories to predict mass transport in pores at low

density, the applicability of NEMD at a range of significantly high pore loadings will

be a major focus of this chapter.

4.2 Adsorption Isotherms

The thermodynamic factor describes the relationship between two thermodynamic

variables, as it was pointed out in Chapter 2. However, the thermodynamic factor

of the bulk is different to that of a fluid inside a porous solid. While the relation-

ship between chemical potential and density constitutes the thermodynamic factor

of a bulk fluid, it is the relationship between chemical potential and the amount of

adsorbed fluid particles inside the pore since density is ambiguously defined for the

confined fluid. Thermodynamic factors can thus be determined from an equation of

state for a bulk fluid and from adsorption isotherms for the confined fluid (Maginn

et al., 1993). A common way to calculate such adsorption isotherms of porous mater-

ials is to perform Grand Canonical Monte Carlo simulations (Chempath et al., 2004).

In this case a hybrid MD and MC approach was employed, in which Grand Canonical

insertions and deletions were carried for the porous system while all particle traject-

ories were calculated via an MD algorithm instead of random displacements. This
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methodology was implemented in the simulation software LAMMPS, since EMD and

NEMD simulations were carried out with the same software. This ensures that the

force fields and pore structures that were used for GC, EMD and NEMD simulations

are exactly the same. Moreover, equations of state are not always available for every

bulk fluid and it is convenient to also determine the PρT behaviour of a bulk fluid via

this Grand Canonical Molecular Dynamics (GCMD) approach. In this case, the integ-

rity of the simulation results of this hybrid GCMD approach is demonstrated by the

comparison of PρT for the pure LJ fluid (see Fig. 4.4).

4.2.1 Grand Canonical insertions

To ensure the accuracy of GCMD simulations, both a bulk PρT behaviour and adsorp-

tion isotherms were calculated and the bulk behaviour was compared to an accurate

equation of state for the LJ fluid, which is reported in the literature (Johnson et al.,

1993). For the calculations of the former, GCMD simulations were initiated on an

empty simulation box at a fixed chemical potential. The Grand Canonical insertions

quickly fill the simulation box with particles and the fluid quickly attains the density

corresponding to the respective chemical potential. Calculations of adsorption iso-

therms were performed in a similar fashion. The simulation box contains an empty

slit pore in such a way that an infinitely big pore is generated due to the application

of periodic boundary conditions. The unit cell of the infinite pore is then quickly filled

with fluid particles according to the applied chemical potential. Throughout the sim-

ulation the number of particles is allowed to fluctuate due to stochastic insertions and

deletions. As with Grand Canonical simulation techniques employing random inser-

tions in general, the method works very well for low density fluids. At high densities

however, the approach reaches its limits since successful insertions become very un-

likely and detailed balance is not guaranteed anymore. In addition, the confinement

effect of the pore limits this further. While it was possible to reach fluid densities up to

0.84, which corresponds to a bulk pressure of 5.11, GCMD simulation for the confined

systems could only reach bulk pressures between 3 and 4 (in red. units).

The system was thermostatted at a temperature of T = 1.5 with a Nosé-Hoover

thermostat (Frenkel and Smit, 2001). The time step was chosen at 0.001. Equilibration

was performed for 100000 time steps. The production run lasted 200000 time steps.

Every 10 time steps 1000 insertions or deletions attempts were undertaken at an equal

50% ratio. The bulk system was cubic with a box length of 20σ. The confined system

consisted of a slit pore which was 11.85σ long in the x direction and 10.26σ in the y
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direction. The height of the simulation box varied with pore width. For the narrow

pore, the simulation box was 6.37σ in the z direction with the pore occupying 3.87σ,

while the wide pore was 8.87σ in height. This leaves a pore width of 2.5 and 5.0σ

respectively. The pore width is defined as described in chapter 3. The pore system

is similar to the pore described in section 3.3, but it is important to note that no bulk

sections were in contact with the slit pore in this case.

Figure 4.4 shows simulation data of GCMD simulations for pressure and chemical

potential of a bulk fluid as a function of density compared to the data from the Johnson

equation of state for the Lennard-Jones fluid (Johnson et al., 1993). A correction term to

the pressure was applied since the simulations were carried out with a cut and shifted

potential employing rc = 2.5 as cut-off. The pressure correction (Johnson et al., 1993)

is

Pcs − P = −32

9
πρ2

[(
σ

rc

)9

− 3

2

(
σ

rc

)3
]
. (4.3)

The reference point of both simulations and equation of state for the chemical poten-

tial, i.e. where µ0 = 0, was chosen at the lowest simulated density (µ0 = µsim(ρ =

0.0041) = µEoS(ρ = 0.0041) = 0). The simulation results are in excellent agreement

with the equation of state. This underlines the applicability of the GCMD approach

for equilibrium simulations in the Grand Canonical ensemble. Individual plots for

pressure vs. density (Fig. A.1), chemical potential vs. density (Fig. A.2), and chemical

potential vs. pressure (Fig. A.3) relationships are included in the appendix.

4.2.2 Thermodynamic factor

Bulk Lennard-Jones fluid

Given the confident agreement between simulation and reference equation of state re-

garding the PρT behaviour of the employed cut-and-shifted LJ potential, the obtained

data can be used to determine the thermodynamic factor of a pure fluid:

Γbulk =
ρ

kBT

(
∂µ

∂ρ

)
T

=
1

kBT

(
∂µ

∂ ln ρ

)
T

. (4.4)

It is important to note that chemical potential and pressure are not independent for

the isothermal pure component fluid. The thermodynamic factor can be related to the

inverse of the isothermal compressibility (McQuarrie, 2000) (compare section 2.3):
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Figure 4.4: Simulation results in comparison to an equation of state for pressure and

chemical potential of the bulk Lennard-Jones fluid with cut-off radius at rc = 2.5.

The error bars are smaller than the symbols. The blue line represents the results for

pressure and corresponds to the axis on the left, while the red line, denoting chemical

potential, corresponds to the right axis.
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The results for the thermodynamic factor of the pure LJ fluid as a function of pres-

sure are shown in Fig. 4.5. Results were obtained by numerical differentiation of the

equation of state data and for the simulation data by differentiating cubic splines. As

the fluid tends to the dilute gas limit, it approaches ideal gas behaviour, for which the

thermodynamic factor is 1. The thermodynamic factor has a minimum at a pressure

of approximately 0.2 and then rises sharply with increasing pressure. The data from

simulation and equation of state also agree very well for this derivative property.

Confined Lennard-Jones fluid

Thermodynamic factors from confined fluids can be obtained from adsorption iso-

therms rather than an equation of state of the bulk fluid, but this implies that eq. (4.4)

does not apply for the bulk fluid. The adsorption isotherms for both small and wide

slit pore are shown in Fig. 4.6 and Fig. 4.7, respectively. The fluid uptake, expressed

as the number of particles inside a pore unit cell, is plotted as a function of pressure.

The difference between a repulsive, weakly and strongly wetting pore walls is appar-

ent. For the system with εfw = 2.0, a significantly increased uptake of fluid particles
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Narrow pore H = 2.5 Wide pore H = 5.0

α β γ τ α β γ τ

WCA 140.32 4.04 23.38 1.66 324.12 2.16 36.34 1.80

εfw = 1.0 378.47 2.19 29.28 1.69 378.47 2.19 29.28 1.69

εfw = 2.0 183.56 18.89 36.72 1.69 453.15 7.67 20.66 0.89

Table 4.1: This table shows the fitted parameters of the modified Tóth equation (Eq.

(4.6)) for the six isotherms that were determined from GCMD simulations.

especially at lower pressures is clearly visible.

A modified Tóth isotherm (Tóth, 1962) was employed to fit adsorption isotherms

to the simulation data:

N(P ) = α
βP

(1 + (βP )τ )(1/τ)
+ γP , (4.6)

where α, β, and γ denote adjustable parameters to fit to the respective isotherm. The

original Toth equation was simply extended with an additional linear term to improve

the fit to the data.

The fluid density inside the pore is not well defined and, in addition, the density

distribution is not constant throughout the pore. Depending on the fluid-wall interac-

tions and the pore loading, the density distribution can exhibit pronounced adsorption

layers and a strong depletion in the centre of the pore, which can be seen in Fig. 4.8.

What is more, the pore width will vary slightly along the structured pore, which is

made up of individual particles. Due to this ambiguity in the definition of pore density,

an alternative definition of the thermodynamic factor for the confined fluid is neces-

sary. Although the pore volume is not well defined, we can assume that it will be the

same for all the variations of the slit pore system studied here. Figure 4.3 showed that

the potential wells are at the same position for each of the wall potentials, although the

WCA wall is an exception here since it has no potential well. When assuming constant

pore volume Vp, the average molar uptake at a fixed external pressure (correspond-

ing to a fixed chemical potential) is 〈ρ〉 = 〈N〉/Vp. One can therefore express Γ as a

function of the molar uptake:

Γconf =
〈ρ〉
kBT

(
∂µ

∂〈ρ〉

)
T

=
〈N〉
kBT

(
∂µ

∂〈N〉

)
T

=
1

kBT

(
∂µ

∂ ln〈N〉

)
T

. (4.7)

The results of eq. (4.7) applied to the simulation data and the respective fits can
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Figure 4.6: Adsorbed particles inside the narrow pore (H = 2.5) at the correspond-

ing bulk pressure. The solid lines are obtained by fitting eq. (4.6) to the respective

adsorption isotherms.
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Figure 4.7: Adsorbed particles inside the wide pore (H = 5.0) at the corresponding

bulk pressure. As in Fig. 4.6, the solid lines denote fits to eq. (4.6).
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Figure 4.8: Profiles of the density distribution inside the narrow pore a) and the wide

pore b). The centre of the pore is the origin of the plots and the centre-of-mass of the

first layers of the wall particles are located at z = 1.25 and z = 2.5 for the narrow and

wide pore respectively.

be seen in Fig. 4.9 for the narrow pore and Fig. 4.10 for the wide pore. For the low

pressure limit, the behaviour is identical to that of the bulk fluid with Γ approach-

ing unity. Figures 4.9 and 4.10 also show that a sharp increase in the thermodynamic

factor is to be expected earlier than for the bulk fluid. Both systems show that solid-

fluid interactions have an influence on the pressure at which this occurs. Especially

for the strongly adsorbing narrow pore shown in Fig. 4.9 (green line denoteing εsf),

the thermodynamic factor surpasses 1.5 at a pressure of 0.04, while for the bulk fluid

the pressure is surpassed at about 0.4, which is an order of magnitude higher than

the confined fluid. The effect is not as pronounced for the wide pore, but the effect

of a variation in solid-fluid interactions is clearly visible. Although confinement can

produce a rapid increase in the thermodynamic factor at lower pressures, the data also

indicates to that the thermodynamic factor reaches a limit at higher pressures. Phys-

ically, this is to be expected as the uptake into the slit pore is limited. With increasing

pressure, it is obvious that fluid transport can only be observed until the fluid solidifies

for both bulk and confined fluid. Thus, the thermodynamic factor has a natural upper

limit. In fact, a slit pore with strong fluid-wall interactions induces a fluid to solidify

inside the pore at a lower pressure compared to a bulk fluid. Determining the limit of

the thermodynamic factor with Grand Canonical simulations is impossible, however.

Since random insertion cannot be performed for dense fluids, the regions of high pres-
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Figure 4.9: Thermodynamic factor of the confined Lennard-Jones fluid, inside the nar-

row pore with H = 2.5. The symbols denote the simulation data obtained by differen-

tiating cubic splines and the solid lines represent the numerical differentiation of fitted

curves for the narrow pore in Fig. 4.6.

sure are difficult to measure in silico. The difficulties stemming from limitations of the

simulation approach are magnified by the fact that the thermodynamic factor is a de-

rivative property and therefore particularly vulnerable to noisy data. Plots containing

additional data of the thermodynamic factor are included in the appendix (Fig. A.4

and Fig. A.5), but the data is not presented here as it is not deemed reliable due to the

complications at simulating higher densities.

4.3 Diffusion and particle mobility

4.3.1 Self-diffusion

Self-diffusion describes the diffusion of a single particle in an ensemble of identical

particles. It is thus a measure for particle mobility. Dense fluids have frequent colli-

sions and the MSD is a linearly correlated with time at longer time scales. While all

real fluids should converge to a linear time progression for time t→∞ in theory, times
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Figure 4.10: Thermodynamic factor of the confined Lennard-Jones fluid, inside the
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scales in the pico-second regime are sufficient to obtain linear scaling for simple dense

liquids. According to the Einstein equation, the linearity of the MSD is proportional

to the diffusion coefficient. In this work, this approach of determining diffusion coef-

ficient from MSD curves was preferred over the integration of the VACF to determine

diffusivity.

It is apparent from eq. (3.20) that the dimensionality of the system has an influence

on the diffusion mechanism. For the bulk LJ fluid, diffusion is isotropic and all ortho-

gonal directions contribute equally. Thus, Ds = Ds,xx+Ds,yy+Ds,zz. Here, the isotropic

bulk self-diffusivity is therefore determined by observing the three-dimensional MSD

(d = 3):

Ds =
1

6
lim
t→∞

d

dt

〈
1

Nf

Nf∑
i=1

|ri(t)− ri(0)|2
〉
. (4.8)

An ensemble of 4000 LJ particles in a cubic simulation box of length 30σ was initiated

from a hexagonally-close-packed lattice structure. During an equilibration of 50000

time steps, the system was thermostatted at a temperature of T = 1.5 with a Nosé-

Hoover thermostat. The time step was chosen at 0.001. Subsequent EMD simulations,

during which no thermostat was applied (NV E ensemble), were run for 5 million time

steps and MSD were continuously calculated during the simulation. Every 1000000

time steps, a new origin was chosen for the calculation of the MSD and the five differ-

ent MSD curves were averaged for increased accuracy. A series of simulations were

performed for various densities at regular intervals between 0.01 and 0.9.

The obtained self-diffusion coefficient for the cut-and-shifted LJ fluid as a function

of pressure is shown in Fig. 4.11, where the results are compared to a correlation for

self-diffusion of the LJ fluid. The correlation for self-diffusion and density reads as

follows (Silva and Liu, 2008):

Ds = α

( √
T

σ2
BLSM

)
exp

(
βρ

(γ − ρ)

)
exp

(
δ
T

)
ρ

, (4.9)

where α, β, γ, and δ are fitted parameters and σBLSM is the Boltzmann radius (Silva

and Liu, 2008), which can be expressed as:

σBLSM = 2(1/6)
(

1 + ω
√
T
)(1/6)

. (4.10)

where ω is a also fitted parameter. The results show that self-diffusion exhibits a

monotonic decline as pressure increases. In fact, the data in Fig. 4.11 is plotted on
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α β γ δ

0.2116 -0.75 1.2588 -0.27862

ω = 1.3229

Table 4.2: This table shows the fitted parameters of the self-diffusion correlation of the

bulk LJ fluid.
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Figure 4.11: Self-diffusion coefficients at T = 1.5 as a function of pressure for the bulk

Lennard-Jones fluid.

a logarithmic scale and self-diffusion decays exponentially as the system gets denser

at increasing pressures.

In contrast to the self-diffusion of the bulk fluid, diffusion of the confined fluid is

anisotropic. Although Ds,zz can be defined mathematically and could in theory be a

measure for particle mobility in the z direction, the fluid is confined in the z dimension

by impermeable walls and no transport can occur in this direction. The definition of a

diffusion in the z direction is therefore not meaningful from a physical point of view.

The property of interest for the LJ fluid confined by a planar slit pore is therefore

the in-plane diffusivity, Ds,xy. The in-plane diffusion process is characterised by two

dimensions (d = 2) and the Einstein equation for the self-diffusion of the confined
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fluid yields:

Ds,xy =
1

4
lim
t→∞

d

dt

〈
1

Nf

Nf∑
i=1

[
(xi(t)− xi(0))2 + (yi(t)− yi(0))2

]〉
. (4.11)

Self-diffusivities for the confined fluid were calculated for each of the slit pore vari-

ations described in section 4.2 at various pore loadings from 30 up to 310 particles per

unit cell for the small pore, and 60 to 590 particles per unit cell for the wide pore. Based

on the adsorption isotherms obtained in section 4.2, the pore loading can be related to

an external pressure.

The results for self-diffusion of the confined LJ system inside the slit pore models

of three different types of fluid-wall interactions as a function of external pressure can

be seen in Fig. 4.12 and Fig. 4.13. For data regarding self-diffusivities as a function

of pore loading per unit-cell, please refer to the appendix, Fig. A.6 and Fig. A.8. As

expected, the self-diffusion of a confined fluid also declines monotonically with an

increase in pressure, as it does for the bulk fluid. The data also shows the significance

of fluid-wall interactions for transport properties. The difference between a repulsive

wall and a strongly wetting wall with εfw = 2.0 amounts to an order of magnitude,

both for the narrow and wide pore system. It can also be seen in Fig. 4.12 and Fig. 4.13

that the differences are more significant in the gaseous regime. Given that repulsive

walls can be expected to generate a higher degree of specular reflections for colliding

gas molecules, the pronounced difference in self-diffusion for low-density fluids is

likely to be found in the nature of fluid-wall collisions.

4.3.2 Collective diffusion

Self-diffusion as a measure for single-particle mobility has limited informative value

with regards to effective mass transport properties. Self-diffusion will significantly de-

crease with an increase in fluid density, while the effective mass transport coefficient of

the system, that is the mass transport as a result of a gradient in density, will be greatly

increased by an increase in fluid density. Diffusion is an inherently collective property

as the motion of molecules is directly correlated to the motion of the molecules sur-

rounding it, both in the state of equilibrium as well as under non-equilibrium condi-

tions.

However, despite the fact the determination of self-diffusion coefficients for pure-

component systems in bulk is very common, a collective diffusion coefficient cannot be

defined for a pure-component bulk fluid. To some extent, this comes down to a matter
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Figure 4.12: Self-diffusion coefficients of the confined Lennard-Jones fluid as a func-

tion of pressure for the narrow pore (H = 2.5). The bulk self-diffusivity as a function

of pressure from Fig. 4.11 (Simulation data at T = 1.5) is plotted in grey.
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Figure 4.13: Self-diffusion coefficients of the confined Lennard-Jones fluid as a func-

tion of pressure for the wide pore (H = 5.0). As in Fig. 4.12, the bulk self-diffusivity is

plotted in grey.
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of definition, but it is physically fairly obvious that no net diffusive mass flux can occur

in a pure bulk. While self-diffusion is related to the MSD of a single particle, collective

diffusion is correlated to the MSD of all particles, that is the MSD of the centre-of-

mass of the ensemble. A vantage point focused on molecular simulations underlines

the lack of collective diffusivity for a pure fluid. From this point of view, the NVE

ensemble conserves the linear momentum of the collection of particles. Thus, there

are no fluctuations in the collective (centre-of-mass) velocity in a single-component

(i.e. pure) bulk fluid and, unlike the MSD of individual particles, the collective MSD is

always zero. For a pure fluid under confinement, however, the confining walls can be

perceived as a second species and it is therefore possible to define a collective diffusion

coefficient. Due to confinement, fluid and wall exchange momentum and the collective

velocity of the fluid particles does fluctuate and the collective MSD is non-zero.

In the case of the planar slit pore, the in-plane diffusion is of interest and thus the

expression for collective diffusivity, eq. (3.21), can be simplified to the two dimensional

form:

Dc,xy =
1

4Nf

lim
t→∞

d

dt

〈[
Nf∑
i=1

xi(t)− xi(0)

]2

+

[
Nf∑
i=1

yi(t)− yi(0)

]2〉
. (4.12)

It is important to note that in comparison to eq. (4.11), the summation over the en-

semble takes precedence and thus the collective mean square displacement is ob-

served. One could also express the collective diffusivity in term of the centre-of-mass

displacement:

Dc =
1

4N2
f

lim
t→∞

d

dt

〈
[rCOM(t)− rCOM(0)]2

〉
, (4.13)

where rCOM denotes the position of the centre-of-mass of all fluid particles. Calculating

self-diffusion coefficients is the standard approach to determine a system’s transport

properties. It is convenient to calculate and is clearly defined for a pure substance at

equilibrium. It is important to keep in mind, however, that phenomenological trans-

port coefficients, such as the transport diffusivityDt, or the Maxwell-Stefan diffusivity

DMS are inherent to inhomogeneous and/or multicomponent systems. They only cor-

respond to the self-diffusion coefficient in the special cases of infinite dilution (Reid

et al., 1987).

Notwithstanding, collective diffusion coefficients are inherently difficult to determ-

ine for low-density states because the pore loading per unit cell is very low and ex-

tremely long simulations are required to overcome the low signal-to-noise ratio in this
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Figure 4.14: Collective diffusion coefficients of the confined Lennard-Jones fluid, in-

side the narrow pore with H = 2.5.

scenario. In this work, it was necessary to perform production runs for 50 million

time steps after an equilibration of 50000 time steps. Such long simulation lengths are

necessary due to the long time tail of collective correlation functions. Collective diffus-

ivities as a function of external pressure for various slit pore models are shown in Fig.

4.14 (H = 2.5) and Fig. 4.15 (H = 5.0). Again, the simulations were performed at fixed

pore loadings and the external pressure was determined from GCMD simulations, as

was the case for the self-diffusion coefficients. The results for collective diffusion as

a function of unit cell loading are given in the appendix (Fig. A.7 (H = 2.5) and Fig.

A.9 (H = 5.0)). The results show that both self- and collective diffusivities generally

decline as the pressure of the fluid increases and therefore the fluid gets denser. This

highlights that they are measures for the mobility of the fluid but neglect thermody-

namic influences on transport originating from the compressibility of the fluid. It is

also important to note that self-diffusivity declines more rapidly than the collective

diffusion coefficients, as is expected based on the treatment in section 3.2.2.
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Figure 4.15: Collective diffusion coefficients of the confined Lennard-Jones fluid, in-

side the wide pore with H = 5.0.

4.3.3 Transport diffusion from NEMD

The above digression focuses on obtaining transport coefficients from EMD simula-

tions. As outlined in section 3.3, NEMD simulations can be used to obtain effective

diffusion coefficients directly by measuring the gradient in density in a system and

the flux resulting from said perturbation. The slit pore system was also used here to

study effective mass transport for the slit pore variations used for EMD simulations:

one narrow and one wide slit pore with pore width H = 2.5 and H = 5.0, respect-

ively, and the same three types of fluid-wall interactions. In order to create a system

where density gradients can be maintained and measured confidently, the pores were

surrounded by two regions on either side in which the bulk fluid is in contact with the

pore rather than generating an infinite pore via periodic boundary conditions. This in

turn makes the system similar to the model systems studied in section 3.3. The sys-

tem was perturbed from its original state via an external field applied to the boundary

as described in section 3.3. An equilibration run of 50000 time steps during which

no external perturbation was applied were followed by another 100000 time step long

simulation during which the external field was activated, allowing the system to reach

a steady-state. Productions runs were then performed for 5 million time steps during
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Figure 4.16: Effective diffusion coefficients of the confined Lennard-Jones fluid from

NEMD simulations, inside the narrow pore with H = 2.5.

which the steady-state flux and density gradients were measured. Density gradient

and steady-state molar flux, J , were calculated from the density and velocity distribu-

tions in the direction of flux. Although the simulation time of 5 million time steps in

an order of magnitude lower than EMD simulations times for collective diffusivity cal-

culations, a set of simulations with varying strengths of the perturbing external field

were required. In this study, the magnitude of the external field was between 0.05 and

1.3ε/σ.

As explained in section 3.3 of this work, effective diffusivities were calculated by

extrapolating the results of a range of simulations with varying magnitude of external

perturbation to the point of no perturbation (i.e. the zero force limit). This approach

follows the notion of linear response theory and it counter-balances the problem that

small perturbations result in a small signal, namely a smaller flux and density gradi-

ent. Large perturbations can divert the system too far from equilibrium.

A set of configurations of both narrow and wide pore were created with a variation

of fluid particle loading. The number of fluid particles varied between 250 and 2500

fluid particles for the narrow pore (10 different values) and between 500 and 4000

particles for the wide pore (15 different values). The bulk regions are in direct contact
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Figure 4.17: Effective diffusion coefficients of the confined Lennard-Jones fluid from

NEMD simulations, inside the wide pore with H = 5.0.

with the fluid inside the pore and once the configurations were equilibrated, the bulk

regions yield the bulk densities (ρ̄). The respective bulk pressure was then determined

from the equation of state data (P (ρ̄)), which was shown to represent the simulation

data with great accuracy (see Fig. 4.4). The results for Deff as a function of external

bulk pressure for each of the variations of the narrow pore system are shown in Fig.

4.16, and for the wide pore in Fig. 4.17. The results are also tabulated in the appendix

(Tables A.3 and A.5).

4.4 Comparison of transport models

The mainstream theories to describe and predict mass transport in microporous ma-

terials have been summarised in chapter 2 (section 2.2.2). Their respective advantages

and drawbacks depend on many factors but for the simple case of a pure-component

LJ fluid diffusing through a porous medium, the various transport theories are equi-

valent to the largest extent. Often there is a fundamental discrepancy in the assumed

boundary conditions applying to fluid flow. As mentioned previously, the Knudsen

model assumes diffusive reflections for fluid particles colliding with the pore wall.
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Since the model is based on observations of gas flowing through micrometer sized

glass cylinders (Knudsen, 1909), the assumption would be very accurate for a very

low density fluid diffusing through large pores with rough walls. It is therefore ap-

plicable to predict dilute gas transport through large capillaries for which the mean

free path of the gas molecules is large in comparison to the pore size (corresponding

to a large Knudsen number). Although the Knudsen approach applies to cylindrical

pores, it can be used for the slit pore model by regarding the pore width H rather

the pore diameter d as the characteristic length scale for Knudsen flow, and thus the

applicable Knudsen equation ((2.13)) is:

DK =
H

3

√
8kBT

πm
. (4.14)

In terms of the model parameters that it takes into account, equation (4.14) considers

only pore width. The Knudsen model is not capable of accounting for fluid-wall inter-

actions or variations in fluid density explicitly. Although refined models of the Knud-

sen approach have been published, they are limited to adjusting the nature of wall

collisions the Knudsen model is based on (Arya et al., 2003). For the two pore models

of interest here, the Knudsen model yields DK = 1.628 σ(ε/m)(1/2) for the narrow pore

H = 2.5, and DK = 3.257 σ(ε/m)(1/2) for H = 5.0. The values are expressed in reduced

units with kBT = 1.5 and m = 1.0. Apart from the limitations regarding solid-fluid

interactions, the Knudsen model is based on a geometrically clear and simple defin-

ition of pore width, which is not satisfied for a structured, molecular pore. Here it

was assumed that the pore width H , which was employed in the Knudsen model, is

simply the width between the first layers of wall molecules, which is erroneous espe-

cially for very small pores. For small structured pores, it is possible to determine an

effective pore width based on the Knudsen model, but the availability of experimental

or simulation data is required to do this.

The Hagen-Poiseuille equation, on the one hand, is based on a no-slip bound-

ary condition, which arguably could also stem from very rough walls that gener-

ate a loss of momentum for the fluid in contact with the pore wall. On the other

hand, the Hagen-Poiseuille equation is applicable to high-density fluids, where con-

vective contributions, i.e. inertial effects, dominate mass transport. Moreover, the no-

slip boundary condition, based on the idea of a rough and sticky pore wall, is ap-

propriate for macroscopic pore dimensions. These assumptions fail on the molecular

level. Porous structures with smooth molecular surfaces, such as carbon nanotubes,

are clear counterexamples and while the definition of a pore wall is challenging itself,
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the application of stick conditions is highly inaccurate for such surfaces. Moreover,

the Hagen-Poiseuille equation, which derives from classical continuum fluid mechan-

ics, applies to Newtonian fluids and is based on: a) a linear constitutive relationship

between shear stress and velocity gradient and b) that the viscosity of the fluid does

not depend on the shear rate. While this assumption would be valid for the LJ fluid,

there are many cases in which non-Newtonian effects need to be considered.

The molar flux in a planar slit pore predicted from classical hydrodynamic theory

can be expressed as:

Jx =
ρH2

32η

(
∂P

∂x

)
, (4.15)

where η denotes the dynamic viscosity of the fluid (and again H is the pore width

and ρ is the molar density of the fluid). As in the case for pressure-driven gas flow

described by Knudsen, the Hagen-Poiseuille equation observes pressure-driven fluid

flow through a capillary and the transport coefficient is therefore a permeability (first

term on the right hand side in eq. (4.15)), which needs to be related to a corresponding

transport diffusivity via an equation of state as follows:

DHP =
ρH2

32η

(
∂P

∂ρ

)
. (4.16)

The Hagen-Poiseuille equation being based on continuum hydrodynamics, the fluid

viscosity is a key property determining the characteristics of fluid flow inside the pore.

It will be assumed that the confined fluid will exhibit bulk viscosity, even though

this assumption bears large potential for error. It allows a correlation for the viscosity

being used for the prediction of Poiseuille flow in a slit pore (Galliéro et al., 2005). The

authors state that the correlation adequately represents the reduced viscosity of the LJ

fluid in gas, liquid, and supercritical states, for 0 ≤ ρ ≤ 1.275 and 0.6 ≤ T ≤ 6. The

error is smaller than 10% for reduced densities up to 0.8. The correlation yields fluid

viscosity from a purely temperature-dependent part and a temperature and density-

dependent part: η(T, ρ) = η0(T ) + ∆η(T, ρ). It is

η0 = a0
(T ∗)1/2

Ωv

Ac , (4.17)

where Ωv denotes the Enskog collision integral (which derives from kinetic theory

(Reid et al., 1987)), and Ac is a correction factor (equal to 1 for the LJ fluid or 0.95 for

methane).
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a0 = 0.17629

b1 b2 b3 b4 b5 b6

0.062692 4.09557 8.743269 ×10−6 11.12492 2.542477 ×10−6 14.863984

ω1 ω2 ω3 ω4 ω5 ω6

1.16145 0.14874 0.52487 0.77320 2.16178 2.43787

Table 4.3: Coefficients of the viscosity correlation for the LJ fluid (Galliéro et al., 2005).
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Figure 4.18: Velocity profiles inside a) the narrow pore at a loading of 1750 particles

which corresponds to a bulk density between 0.61 and 0.66 (P = 1.23 − 1.63), de-

pending on solid-fluid interactions, and b) the wide pore at a loading of 3000 particles

which corresponds to a bulk density between 0.73 and 0.75 (P = 2.52 − 2.92). The

colours are the same as in Fig. 4.8 (blue- WCA; red - ε = 1.0; green - ε = 2.0).

Ωv = ω1T
−ω2 + ω3 exp(−ω4T ) + ω5 exp(−ω6T ) (4.18)

In addition, the correlation for the residual viscosity is given as:

∆η = b1(exp(b2ρ)− 1)− b3(exp(b4ρ)− 1) +
b5

T 2
(exp(b6ρ)− 1) . (4.19)

A further refinement with respect to the solid-fluid interaction (Dusty-Gas Model

(Krishna and Wesselingh, 1997)), wall collisions (Oscillator model (Bhatia, 2010)) or

non-uniform density distribution inside the confining pore (Local area density model
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(Bitsanis et al., 1988)) are possible. While these refinements strive to incorporate solid-

fluid interactions, their success is mostly limited to extreme conditions, such as the

low-pressure limit. The velocity profiles shown in Fig. 4.18 show the influence of

solid-fluid interactions and the slip flow conditions inside the smooth planar pore.

The profiles highlight how significantly the mobility of the adsorbed layer can be in-

fluenced in the case of a strongly wetting wall. It is important to remember that is dif-

ficult to define an unambiguous solid boundary and calculating slip-lengths from the

given profiles is a non-trivial task. By assigning a hard shell around the wall particles

at their van-der-Waals radii and averaging the position of the corrugated wall, a slip

length can be calculated by fitting a parabolic velocity profile to the velocity profile

and extrapolating beyond the boundary. Since Knudsen and no-slip Hagen-Poiseuille

are the most commonly applied theories to predict porous mass transport, the present

comparison will not go beyond these two models.

Figures 4.19 and 4.20 show an extensive comparison between the different routes

to obtain transport coefficients, namely predictions of the Knudsen (dashed line) and

Hagen-Poiseuille equations (solid line), EMD simulations results based on the Darken

model (empty circles) as well as effective transport diffusion coefficients obtained from

NEMD simulations (filled circles). In order to obtain transport diffusivities based on

the Darken model, collective diffusion coefficients were multiplied by the thermo-

dynamic factor at the respective pressure (DDarken
t = DcΓ, refer to Fig. 4.9 and 4.10

and sections 2.3 and 3.2.2 for details). The tabulated results are also given in the ap-

pendix (Tables A.1 and A.2). The Knudsen approach to pressure-driven gas transport

(J = −DK/kBT dP/dx) applies to the low-pressure limit, where the thermodynamic

properties of gases can be approximated by the ideal gas law (ρ = P/kBT ), and thus

the thermodynamic factor is 1. Since the Knudsen approach does not incorporate a

density/pressure dependence, Knudsen diffusivities are only comparable to effective

transport diffusion coefficients at low pressures. Therefore, the dashed line indicating

the Knudsen prediction is a constant.

It is evident from Fig. 4.19 and 4.20 that the Hagen-Poiseuille model rests on iner-

tial effects dominating transport. At lower pressures, the fluid flow departs the hydro-

dynamic regime, where it considerably underestimates transport. Unrelated to this

failure at the low pressure regime, there is a consistent underprediction of effective

transport diffusion coefficients by the Hagen-Poiseuille equation. This is likely due to

the assumption of a no-slip condition. The introduction of a slip length would add

another parameter to the prediction model, which is already based on a large number
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of parameters for viscosity correlation and equation of state.

Figures 4.19 and 4.20 also shows transport diffusion coefficients obtained from

boundary-driven NEMD simulations in comparison to transport diffusivities based

on the Darken model. The results from NEMD simulations appear considerably more

consistent than EMD simulation results. Comparing the narrow and wide pore sys-

tem, however, the EMD and NEMD data show that simulations for wider pores are

more reliable than more narrow pores. Also, it is apparent that NEMD simulations are

particularly useful for the transition regime. NEMD simulations with very low pore

loading are very difficult and do not yield satisfying results because the net molar flux

is very small and most of the computational effort is spent on simulating the move-

ment of wall particles. On the other end of the spectrum, NEMD simulations are

challenging for very dense fluids because the external perturbation can have spurious

effects such as introduce freezing inside the pore (Radhakrishnan et al., 2002), which

results in a collapse in fluid transport. It is likely that a solid-like state was induced

in the case of the narrow, attractive pores at high pressures, which would explain the

pronounced decrease in the effective diffusivity in Fig. 4.19.

4.5 Conclusions

This chapter shows a comprehensive comparison between various routes to obtain

the transport diffusion coefficient of confined fluids in a planar slit pore. Apart from

two different sizes of the pore and three different variations of solid-fluid interactions,

studying the effects of pore loading resulted in very large number of simulations to be

performed in different ensembles (a series of GCMD simulations to obtain isotherms,

EMD simulations to obtain self- and collective diffusion coefficients, and NEMD sim-

ulations for effective diffusion coefficients.) The obtained data set allows for a detailed

analysis of each methodology and a comparison to alternative theoretical methods to

predict mass transfer in confinement. The Knudsen approach and Hagen-Poiseuille

equation are severely limited with respect to incorporating the full molecular charac-

ter of nano-confined systems and do not account for differences in solid-fluid interac-

tions, but for limiting cases, such as the low density limit, or larger pore sizes, they

provide quick semi-quantitative predictions. With respect to performing NEMD sim-

ulation to obtain transport diffusion coefficients, it must be noted that the simulations

are ideally suitable for the transition regime between the Knudsen regime and the

dense Newtonian fluid, because the approach can be challenging and suffers from in-
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Figure 4.19: Predictions of transport coefficients from NEMD simulations (filled

circles) inside the narrow pore with H = 2.5, in comparison to EMD simulations res-

ults based on the Darken model (empty circles), as well as predictions of the Knudsen

model (dashed line) and the Hagen-Poiseuille equation (solid line) based on density

and viscosity correlations for the LJ fluid (Johnson et al., 1993; Galliéro et al., 2005).
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Figure 4.20: Predictions of transport coefficients from NEMD and EMD simulations

and Knudsen and Hagen-Poiseuille equations inside the wide pore with H = 5.0,

depictions as in Fig. 4.19.

accuracies for extreme scenarios. While GCMD simulations for adsorption properties

paired with EMD simulations for obtaining diffusion coefficients is a common route to

obtain transport diffusion coefficients, the complications in calculating collective dif-

fusivities, in particular the limited statistical accuracy, poses a severe limitation. Non-

etheless, it needs to be pointed out that NEMD simulations still require a reasonable

amount of computational power. Simulations are carried out at different values for

the external field and therefore the number of performed simulations adds up. Even if

a long EMD simulation (50 million time steps) is required to obtain reasonable results

for collective diffusion coefficients, an array of 5 − 10 NEMD simulation at 5 million

time steps each adds up to a similar computational load.



CHAPTER

FIVE

MODELLING OF GAS PERMEATION THROUGH PIM-1

Cualquier cosa que puedas imaginar es real.

Pablo Ruiz Picasso (1881-1973)

In the previous chapters, the investigation had a focus on well defined model sys-

tems through which fundamental mechanisms can be studied and the comparison

to theoretical procedures are possible. In the following chapter, the potential of the

boundary-driven NEMD approach is presented for a realistic system with a direct

link to a practical engineering application, namely the permeation of penetrant gases

through a microporous polymer, which is a problem of interest in membrane science

and in the development of novel materials for gas separation purposes.

5.1 Introduction

The quest for improvements in the efficiency of gas separation membrane materials

have spawned interdisciplinary research efforts targeted at searching for novel materi-

als that deliver improved performance with a lower economic and environmental foot-

print (Koros and Mahajan, 2000; Baker, 2002; Bernardo et al., 2009). Pressure-driven

gas separation, through versatile and easily manufactured polymeric membranes with

high permeation and selectivity, are of particular interest and highly sought-after for

fulfilling those purposes (Brunetti et al., 2010; Budd and McKeown, 2010).

Separating gases through a selective polymer membrane requires the gases to ex-

hibit different rates of permeation through the polymer material. In order to find

effective strategies to identify the individual parameters affecting permeability, it is
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important to reach a detailed understanding of permeation mechanisms in porous

polymers. Differences in permeability stem from variations in sorption and diffusion

of gases in the polymer, which in turn are brought about by variations in polymer

chemistry, microstructure or pore topology.

Molecular simulations have been instructive in investigating transport properties

in structured molecular materials such as zeolites (Krishna, 2009), MOFs (Keskin and

Sholl, 2009), and carbon structures (Lim et al., 2010). Equilibrium Molecular Dynam-

ics is the most proliferated method to perform simulations of transport properties on

the molecular scale since the movement of molecules, determined by intermolecular

forces, is simulated explicitly. The usage of alternative techniques, such as Transition

State Theory (TST) and kinetic Monte Carlo (Abouelnasr and Smit, 2012), have also

been published in the literature. There have been several studies about calculating

permeation in glassy polymers through simulation (Neyertz and Brown, 2013; Hof-

mann et al., 2000; Yampolskii, 2012; Müller-Plathe, 1994). Of relevance to this work

are simulations of high free volume polymers such as PIM-1 (Fang et al., 2010, 2011;

Heuchel et al., 2008; Chang et al., 2013). Solubility is usually determined from an ad-

sorption isotherm obtained from a Grand Canonical Monte Carlo (GCMC) simulation,

where the periodic image of the bulk polymer is in virtual contact with a reservoir of

the gas of interest. Diffusivity in turn is determined from the self-diffusion coefficient

of the gas inside the polymer, calculated from the mean square displacement of the

gas molecules captured by the trajectories of an MD simulation. Usually, despite equi-

librium and transport properties both being obtainable from MD simulations, the two

key properties for gas separation membranes, solubility and diffusivity, are not sim-

ultaneously calculated. The solution-diffusion model, which describes permeation as

a sequential process of adsorption, diffusion and desorption, is then used to estimate

permeabilities.

There are significant shortcomings to the above mentioned approach. Firstly, self-

diffusion is an approximation for transport diffusion, which is only exact at the zero

pressure limit, thus at infinitely low gas uptake. Secondly, the solution-diffusion

model applies to non-porous polymers which may exhibit a pore hopping mechan-

ism for diffusing gases, a model incompatible with standard methodologies for calcu-

lating diffusivities from molecular simulation. Random walks, due to frequent ambi-

directional collisions leading to Brownian motion, are the basis for determining dif-

fusivities from the time derivative of the mean square displacement, also known as

the Einstein equation. In this scenario, the mean square displacement (MSD) of the
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molecules is linearly correlated with time: MSD(t) ∼ t (Gubbins et al., 2011). For

amorphous polymers, anomalous diffusion, especially at short time scales under 5 ns,

is observed (Müller-Plathe et al., 1992; Müller-Plathe, 1994). Similar to the diffusion

inside confined spaces, such as single-file diffusion inside a cylindrical pore, the mean

square displacement does not show a linear progression with respect to time, the dif-

fusion is in fact slower. One may express the MSD as a power law, MSD(t) ∼ tγ , with

the exponent γ being equal to one for a linear relationship. In the case of single-file

diffusion, the exponent would be 0.5. The diffusion mechanism in microporous poly-

mers is a combination of random unconstrained diffusion and strongly directional

confined motion, leading to an exponent between 0.5 and 1. For very long time scales,

the diffusion mechanism approaches random Einstein diffusion, but depending upon

the penetrant gas, this can require simulation times of considerably more than 20 ns.

The key challenge for MD simulations is to reach time scales long enough to observe

Einstein diffusion and obtain reliable diffusion coefficients from the time-dependence

of the MSD. Molecular simulation studies of gas diffusion in glassy polymers indicate

that it is very challenging to unambiguously distinguish between diffusion mechan-

isms (Neyertz and Brown, 2009). The combination of these uncertainties, linked to

the sometimes inappropriate invokement of the solution diffusion model lead to large

errors (Fang et al., 2010, 2011; Chang et al., 2013) and overprediction of permeabilit-

ies. Alternatively, modelling of small molecule diffusion processes in high free volume

polymers has been performed with techniques based on transition state theory (Hof-

mann et al., 2000; Heuchel et al., 2008), but the approach does not yet account for the

internal flexibility of the polymer facilitating transport. Recently, an efficient screen-

ing of microporous polymer permeability using Monte Carlo solubility simulations in

combination with empirical calculations of diffusion coefficients has proven useful for

hypothetical PIMs (Hart and Colina, 2014).

In an effort to overcome some of these shortcomings, the present study of gas trans-

port in microporous polymers implements the boundary-driven NEMD methodology

in which the imposed external field creates a gradient in density, which in turn corres-

ponds to a pressure gradient between the bulk gas phases, corresponding to permeate

and retentate. As previously described in chapter 3, the external field is applied at the

boundary and the thermostat is applied only to the solid. In the following, the meth-

odology to set up the molecular model and its characteristics are outlined, followed

by a discussion on developing the non-equilibrium simulation scheme. The simula-

tion results presented thereafter cover the essential gas separation properties such as
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Figure 5.1: The final polymerised structure of the thin-slice PIM-1 simulation box,

PIM-1(2D). The polymer is polymerised and periodic in the y and z dimensions, with

the x dimension being capped by fluid-transparent rigid walls. The polymer is illus-

trated in unwrapped coordinates; however, periodic boundary conditions were used,

with the wrapped coordinates sample shown in Figure 5.3.

permeability and gas uptake, and inquire into the transport mechanism of penetrant

gases in PIM-1.

5.1.1 Molecular modelling

The porous material representing the polymer membrane is constructed by placing

polymer slice in contact with bulk gas on either side, which exhibit different pressures

during the NEMD simulations due to the external field applied, driving the transport

of gas through the polymer. An atomistically thin polymer layer subject to gas adsorp-

tion will most likely swell. Furthermore, ultra-thin polymer membranes will exhibit an

enhanced molecule mobility at the free surfaces with significant changes in conforma-

tion. In a finite-size simulation box, modelling this behaviour will require excessively

large system sizes with no guarantee of accuracy. While one could study a “frozen”

polymer configuration, the need to consider the flexibility and possible rearrangement

of the polymer matrix is recognised in this study. Thus, as a compromise of limiting

the displacement of the polymer, artificial walls are placed along the yz plane on each

side of the polymer facing the gaseous bulk (Fig. 5.1). These walls are transparent to
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sample ρsim f SAgeo ϕ

(g cm−3) % (m2g−1) (cm3g−1) Ref.

PIM-1 0.93(0.02) 24.3(1.3) 595(85) 0.448(0.019) (Hart et al., 2013a)

PIM-1(2D) 0.916 25.8 530 0.469 this work

Table 5.1: Porosity of the PIM-1 simulated samples

the fluid and allow for gases to permeate. They also ensure that the polymer slice will

retain its bulk properties throughout the simulation on average.

Force fields

The force fields used to simulate the molecular mechanics of the polymer and gas

models were taken from available transferable force fields, which model the structural

and adsorptive properties of PIM-1 with quantitative accuracy (Larsen et al., 2011;

Hart et al., 2013a). The polymer is described by means of a united-atom representation

to facilitate computational efficiency with non-bonded interaction parameters taken

from the Transferable Potential for Phase Equilibria (TraPPE-UA) (Rai and Siepmann,

2007; Martin and Siepmann, 1998; Wick et al., 2005; Lee et al., 2005). To model the

flexibility and motion of polymer chains, bonded interaction parameters were taken

from the Generalized Amber Force Field (GAFF) (Wang et al., 2004). All polymer

force field parameters of PIM-1, including atomic partial charges, are given in detail

by Larsen et al. (2011). Available models for Helium (Martin and Siepmann, 1997)

and a flexible model for CO2 (Potoff and Siepmann, 2001) were used, which are based

on LJ sites with point charges in the case of carbon dioxide. As the presence of the

bulk regions make the system inhomogeneous, the periodicity required to account

for long-range interaction is not given and thus NEMD simulations are run without

Ewalds summations for the electrostatic interactions (Frenkel and Smit, 2001). Instead,

Coulombic interactions are cut off at 15 Å.

Structure Generation

In order to construct an atomistic sample of a slice of an amorphous polymer, the

predictive virtual synthesis software, Polymatic (Abbott, 2013; Abbott et al., 2013), in

conjunction with the LAMMPS simulation package (Plimpton, 1995) (Release date: 25
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July 2012) was used. Polymatic has recently been used to simulate a wide variety

of polymeric materials including porous and nonporous glassy polymers (Hart et al.,

2013b; Abbott et al., 2013; Hart et al., 2013a, and references therein). One of the benefits

of using this procedure is the versatility in designing an environment in which the

sample is polymerised. To construct the initial simulation sample, a 3D periodic cell

of 4.44 nm in edge length is packed with PIM-1 monomers. Rigid walls are placed

at the periodic boundaries of the x direction of the sample, which resulted in a 3D

simulation box of PIM-1 monomers with the restriction that no monomer can penetrate

the x boundary. To facilitate polymerisation, high temperature MD simulations in

the canonical ensemble are run at 2000 K in between bonding steps. During the MD

simulations, the walls are held frozen. With the aid of artificial charges (±0.3e) on

bonding capable chain ends, the polymerisation proceeds until no more bonds can be

made within a reasonable time frame. In this particular scenario, 250 cycles of 5 ps MD

simulations were emplyed. The result is a polymerised PIM-1 sample that resembles

a 4.5 nm thin slice of polymer, as the polymer is not periodic in the x dimension. The

final simulation configuration is shown in Figure 5.1.

5.1.2 Model characterisation

The physical properties of the polymer sample were characterised by means of density,

fractional free volume, geometric surface area, and pore size distribution. To calculate

these propeties, the rigid walls were removed, and the box dimensions were corrected

to account only for space occupied by the polymer (a = b = 4.44 nm, c = 4.53 nm).

The density (ρsim) was calculated as the mass of the polymer, m, divided by the total

volume of the simulation cell (including all pore volume). The fractional free volume

(f ) was calculated as f = 1 − 1.3(VvdW/Vsp), where VvdW is the volume occupied by

the polymer in the simulation sample, and Vsp is the specific volume calculated as the

reciprocal of the density (1/ρsim). VvdW was calculated by subtracting the void volume

(ϕ) from the Vsp. As the molecular model is built on the basis of soft spheres, the

volumes and areas occupied by the polymer are ill-defined. One can consider VvdW to

be defined at the point where the intermolecular potential is null, i.e. by employing

a probe molecule of 0.0 nm and accounting for the regions of space where the probe

experiences a repulsive interaction. Similarly, the geometric surface area (SAgeo) was

calculated as the amount of surface area outlined by the centre of a N2-sized probe

molecule, dN2 = 3.681 Å. The pore size distribution (PSD) is the numerical derivative

of the cumulative pore volume function V (r) with respect to probe size, r. All porosity
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Figure 5.2: The pore size distribution (PSD) of the 2-dimensional thin film model

of PIM-1, PIM-1(2D) (solid), compared with an average of five periodic simulation

samples from Ref. (Hart et al., 2013c) (dashed).

characterisations were calculated using the Pore Blazer code (Sarkisov and Harrison,

2011).

Molecular simulations of PIM-1, studying the same force field model used here,

have shown to resemble the physical polymer in properties such as BET surface area,

adsorption isotherms, enthalpies of adsorption, gas selectivities, and wide angle X-

ray scattering experimental data (Hart et al., 2013c,b; Abbott et al., 2013; Hart et al.,

2013a; Hart and Colina, 2014). Moreover, the results of the structural characterisation

of the PIM-1 (2D) model is in excellent agreement with the average values of the pre-

vious 3D periodic PIM-1 simulated sample density, fractional free volume, geometric

surface area, and void volume, as shown in Table 5.1. In addition, the pore size dis-

tribution profile of the polymer slice model, PIM-1 (2D), and 3D simulation samples

are consistent (see Fig. 5.2). As such, it is reasonable to conclude that the PIM-1 (2D)

model will exhibit similar gas permeability characteristics to a similarly sized element

of a bulk PIM-1 membrane, as a result of the similar pore structure characteristics.

5.1.3 NEMD simulations

The walls confining the polymer in the x direction are made permeable to gas mo-

lecules and two regions filled with gas molecules are constructed next to the polymer

sample, creating an elongated simulation box in the x direction three times the size as

the original polymer sample. A preliminary MD equilibration is performed to allow

the gases adsorb onto the polymer. As expected, inert helium exhibits modest adsorp-
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tion, while carbon dioxide adsorbed strongly. As gases saturate the polymer during

equilibration, the gas uptake, which depends on the bulk pressure, was measured dir-

ectly by integrating the gas density distribution:

c(P ) =
1

VP

∫
ρ(x)dx (5.1)

where ρ denotes the gas density and VP denotes the volume of the polymer, which will

specifically depend on the integration boundaries multiplied by the height and depth

of the simulation box (in z and y directions respectively). The gas regions initially

contained 56 and 330 molecules for helium and carbon dioxide, respectively, such that

the bulk gas pressure at equilibrium was in the order of 10 bar.

An external field applied in a thin slab (0.3 nm thickness) at the boundary of the

simulation box perturbs the system from its equilibrium state. The field acts like an

acceleration in the z direction on the gas particles at the boundary and creates regions

of higher and lower bulk density on opposite sides of the polymer slice. The resulting

difference in pressure drives molecules to permeate through the polymer matrix. The

steady state response of the system is observed, where gas flux and pressure difference

between the two bulk regions are averaged over time. Permeability, κP, can then be

determined by invoking Darcy’s law:

J = κP
∆P

∆x
. (5.2)

The fixed walls keep the polymer in place in the direction of transport (x direction).

In order to prevent perpendicular drifting of the polymer within the confining sheets,

six carbon atoms of the entire polymeric sample (from central spiro-bisindane groups)

were tethered to their initial positions with a spring constant of ks = 5 kcal/(mol Å2
).

During the extent of the simulation the polymer is allowed to move, subject to the

tethering of these six sites, i.e. a flexible structure is modelled rather than a static one.

Notwithstanding, due to the inherent rigidity of the PIM, the initial conformation is

not seen to change significantly nor swell.

The external field performs work on the gas molecules, which must dissipate as

heat to maintain isothermal conditions and hence needs to be removed from the sys-

tem in order to maintain a steady state response. To this end, the Nosé-Hoover thermo-

stat at 298 K was used for the polymer while the gas was left without a thermostat and

left to release the additional energy through interactions with the polymer. This pro-

tocol is followed in order to prevent unphysical perturbations arising from thermostat-

ting to be introduced during the transport process. It is important here to balance the
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Figure 5.3: (top) Snapshot of an instantaneous configuration of the simulation cell.

Periodic boundary conditions are applied in all directions and an external force ap-

plied to the fluid molecules in the left boundary. Carbon dioxide molecules are depic-

ted by black and red while a stick representation of a slab of PIM-1 is shown in yellow.

(bottom) Average velocity profile in the direction of transport (red) and fluid density

profile (blue) across the simulation cell. Density within the porous region is referred

to the total volume including the polymer.

magnitude of the external field with the system’s ability to release heat through gas-

polymer collisions. A series of simulations were performed with four increasing mag-

nitudes for the external field strengths, ranging from 0.01179 to 0.0472 kcal/(mol Å).

After the initial MD equilibration of 3 ns which allows the polymer to saturate with

gas, NEMD simulations are performed for 2 ns for the system to reach steady state and

subsequently 10 ns to gather statistics. The time step was set to 1 fs. Simulations are

started by allowing the gases to saturate the polymer and reach their equilibrium state

in the bulk, i.e. no external field is imposed at the boundary. The bulk gas pressure

at equilibrium resulted in 10.19 bar for helium and 9.12 bar for carbon dioxide. Equi-

librium solubilities were determined from the gas uptake at the respective pressure,

S(P ) = c(P )/P . For helium, 0.065 mmol/cm3 were adsorbed by the polymer and for

carbon dioxide the uptake resulted in 4.73 mmol/cm3. This corresponds to solubilities



RESULTS AND DISCUSSION 103

of 0.14 and 11.77 cm3 (STP) / cm3 bar, for helium and CO2 respectively. These results

are in good agreement with gas solubilities determined experimentally (Li et al., 2013,

2014; Bezzu et al., 2012), which are reported below 0.25 cm3 (STP) / cm3 bar for helium

and between 11.2 to 11.3 cm3 (STP) / cm3 bar for CO2.

5.2 Results and Discussion

NEMD simulations are reported for pure helium and carbon dioxide. Helium, being

a small, light and relatively inert gas at the conditions here studied, has a high diffu-

sion coefficient in PIM-1 with little adsorption while carbon dioxide strongly adsorbs

to the polymer and exhibits low diffusivity. The steady state response of the system

during a typical NEMD simulation can be observed in Fig. 5.3, where the region on

the left exhibits a higher density than the one on the right. Velocity profiles present the

opposite behaviour due to mass continuity. The spikes in density shown in the lower

part of Fig. 5.3 (blue line) showcase the strong adsorption of carbon dioxide on the

polymer. The profile is shown for the largest force applied (fex = 0.0472 kcal/molÅ).

Directly observable from the plot are the differences in density (which relate to pres-

sure differences) between the two bulk sections as well as the average velocity. AS

pointed out in section 3.3, the effective flux can be determined from the averages of

density and velocity (Jx = v̄xρ̄). Pressure differences can be obtained from the NEMD

simulations directly via the Virial route (Allen and Tildesley, 1987) or by performing a

separate simulation of bulk gas to obtain an isotherm and determine the pressure dif-

ference corresponding to the densities measured during the NEMD simulations. Upon

obtaining the steady-state flux and pressure difference, equation 5.2 was employed to

determine permeabilities, with ∆x being equal to the thickness of the polymer slice

(4.53 nm). The results in comparison to experimental data are shown in Fig. 5.4. Ex-

perimental data was reported from time-lag and gas chromatography experiments of

PIM-1 membranes (Budd et al., 2008, 2005; Li et al., 2013, 2014; Bezzu et al., 2012).

The spread in experimental results presumably stems from the different methods and

solvents used in casting of the membrane and subsequent treatments. The permeabil-

ity of carbon dioxide obtained in this work, through the thin slice model polymer, is in

very good agreement with experimental data, lying at the upper end of the data range.

The result obtained for helium in this work is above the spread of experimental data.

The permeabilities obtained in this work might also be overpredicted since hydrogen

atoms are not explicitly modelled but lumped together as a group with their bon-
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Figure 5.4: Permeability and solubility results from NEMD simulations compared to

experimental results for helium in blue and carbon dioxide in red. The shaded area of

the bar chart shows the spread of experimental data (Budd et al., 2005, 2008; Li et al.,

2013, 2014; Bezzu et al., 2012).

ded carbon atoms, resulting in a smoother structure as opposed to the full-atomistic

detailed model. In other words, a smoother force field exhibits higher diffusivity be-

cause there is less molecular friction within the system. Additionally, the interfacial

regions could also contribute to higher transport by exhibiting more free volume than

the bulk regions.

The NEMD approach closely mimics how experiments are conducted to character-

ise membrane separation performance, yielding a macroscopic view on the gas per-

meation through the polymer. However, it also allows further investigation of effects

influencing transport on the molecular scale with an abundance of detailed informa-

tion not available through physical experiments. The specific diffusion paths for each

gas molecule individually can be obtained from the simulation trajectories. One of

such trajectories is plotted in Fig. 5.5 where the time dimension is colour-coded. It
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starts at purple and blue and progresses through the colour spectrum to yellow and

red. The trajectory shown is a small excerpt from the full 10 ns trajectory to show-

case a single permeation event through the polymer slice. The differences between

the permeation of carbon dioxide and helium become apparent in Fig. 5.5. The dif-

fusion of carbon dioxide is slowed down by frequent and complex interactions inside

the polymer and in the event shown in Fig. 5.5, the passage takes 3400 ps compared

with only 80 ps for helium. As expected, a helium atom interacts very little with the

polymer and finds a path through the polymer matrix much more quickly than a CO2

molecule. Both pathways suggest that molecules within the polymer matrix spend a

considerable amount of time in “random walks” throughout the extent of the avail-

able free volume, i.e. the mechanism deviates from a simple “pore hopping” trajectory

expected for a dense polymer as a result of exhibiting highly interconnected porosity.

The occurrence of pore hopping is likely proportional to the amount of pore volume,

and thus high free volume polymers exhibit fewer pore hopping events during per-

meation. As such, penetrant molecules that plasticise the polymer matrix to a greater

extent may induce further deviation from the solution-diffusion model. For example,

it has been suggested that alcohols and alkanes, which considerably swell the PIM-1

membrane, are well described by a convective transport model and exhibit pore flow

transport (Vopička et al., 2013). The extent to which pore flow contributes to the per-

meation of these gases in PIM-1 has, however, yet to be quantified.

Experimentally determined diffusion coefficients are in the order of 100 and 3000

×10−8cm2/s for CO2 and helium, respectively, although reported diffusivities can vary

as much as permeabilities do. If a characteristic length to compare diffusion processes

were defined as L = 2
√
Dτ , where D is the diffusion coefficient and τ the time span,

one can then determine this diffusion length based on the duration of the passages in

Fig. 5.5. With 3.4 ns for CO2 and 80 ps for Helium, this results in diffusion lengths of

3.7 nm for CO2 and 3.1 nm for Helium, numbers that compare well with the thickness

of the polymer at 4.5 nm.

An aggregate perspective on the diffusion paths underlines this aspect further. Fig-

ure 5.6 shows three slices of the density distributions accumulated over an entire 10 ns

simulation in the xz plane. The regions occupied by the polymer which are not acces-

ible to the gas molecules are depicted in green. They are interfused by red denoting

an average occupation and white areas which denote frequently explored diffusion

channels for the gases. These channels are highly connected and build a percolated

diffusion path through the polymer. This path is very tortuose, but it percolates from
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Figure 5.5: The movement of a single CO2 molecule (left) and He atom (right) through

the polymer matrix (yellow shaded region). Each point represents the location of a

molecule at every 0.5 ps of simulation time, with the colour of the points scaled ac-

cording to the relative time (see colour bar). The simulation time was selected such

that only a single permeation event of the many occurring during the 10 ns simulation

is shown. ∆t = t1 − t2 is 3.4 ns for CO2 and 80 ps for Helium. The top and bottom

plots represent the XZ and YX projections, respectively.

one bulk region to the next. The density plots (Fig. 5.3) and density distribution maps

(Fig. 5.6) show an enhanced excess adsorption of CO2 at the solid-fluid interface. This

behaviour is commensurate with the interfacial properties of CO2 at room temperature

and the high pressures employed.

The influence of free volume on permselectivity and permeability of gases in glassy

polymers is the focus of a number of recent studies with the objective of pushing

the trade-offs between selectivity and permeability past its current thresholds. When

measuring permeability experimentally, one has the option to measure either time-lag

diffusion or secant solubility and invoking the solution-diffusion model (S = P/D or

D = P/S) to obtain the other property of interest. Robeson et al. (Robeson et al., 2014)

noted a discrepancy between these two alternative routes and showed that the devi-

ation between diffusion coefficients in PIM-1 depends on pressure and can amount

to more than 50% in the pressure range 8-12 bar. Similar trends were observed by Li

et al. (Li et al., 2014) upon measuring the temperature and pressure dependence of

permeability in PIM-1. They found a decline in carbon dioxide permeability in the

pressure range from 1-10 bar of up to 25%. These observations underline the nature

and limitations of the solution-diffusion model where the main assumption is that the
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Figure 5.6: A density map showing the density of locations for the (left) He atoms and

(right) CO2 molecules on an XZ projection calculated at three different Y slices: (A)

0.675, (B) 1.275 and (C) 2.775 nm, from top to bottom respectively. The plots show areas

of high (white), average (red), and low (green) gas density. The top model shows the

relative location of the polymer and the corresponding plane locations. Only a small

fraction of the bulk fluid sections is depicted to the left and right of each plot.

sorption process and several transport phenomena are all sequentially related and in-

dependent. NEMD simulations follow the experimental approach very closely and do

not rely on the solution-diffusion model to obtain permeabilities.

Li et al. point out that as “the molecular picture of the solid-state structure is still

emerging” (Li et al., 2014), the main reason for high permeability through PIM-1 and

other glassy high free volume fraction are high diffusion coefficients. The simulation
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data concur with this view point by highlighting the considerable diffusion path ac-

cessibility inside the polymer. While dense glassy polymers are situated at one end

of the spectrum, exhibiting a common pore hopping diffusion mechanism, and struc-

tured materials with sieving and Knudsen-type separation mechanisms at the other

end of the spectrum, the separation mechanism in high free volume polymers seems

to simultaneously exploit the tortuosity of its diffusion path and the energetic interac-

tion between polymer solid and permeating gases. Mixed-matrix membranes of glassy

polymers and structured molecular materials, such as MOF or carbon structures, are

garnering interest for improved separation performance by tapping into both regimes

(Bushell et al., 2013). The method herein presented would be ideally suited to study

in detail the transport dynamics of such inhomogeneous materials. It is well known

that physical ageing, residues of casting solvents, humidity, plasticisation and swell-

ing can influence significantly. In silico experiments are ideally clean and any of these

mentioned effects can or should be controlled individually. NEMD permeation exper-

iments could be further employed to investigate the details of how the presence of

pollutants can influence transport dynamics at the smallest scale.

5.3 Conclusions

As opposed to measuring self-diffusion coefficients and invoking the solution-diffusion

model to obtain permeation properties, this study obtains a picture from an atomist-

ically detailed simulation of direct gas permeation through a slice of PIM-1 polymer.

The thin polymer slice was generated by the Polymatic algorithm and compares very

well with 3D-periodic simulated samples in terms of porosity and pore size distribu-

tions. By confining the generated structure between rigid walls, the polymer slice is

forced to keep its structure resembling the 3D periodic image of a bulk. With gas re-

gions placed on either side of the slice, direct permeation simulations were performed

by applying a non-equilibrium scheme. In analogy to experimental measurements,

permeabilities were calculated from the steady-state flux and pressure gradient. As

the simulation is initiated with an equilibrium simulation to allow the gases to satur-

ate the polymer before applying external perturbations, adsorption characteristics can

also be calculated. Although there are large uncertainties in the experimental results

for gas permeability in PIM-1 and the molecular interaction force fields are not fitted

explicitly to transport properties, the quality of agreement is good. Furthermore, the

information obtained from NEMD simulations sheds light on the diffusion mechan-
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ism. In this case, a deviation from a straightforward gate-hopping mechanism was

observed. Moreover, the present approach allows for a range of crucial phenomena to

be investigated in silico. Most notably, the approach lends itself to the simulation of

mixtures and complex organic molecular fluids as well as composite and inhomogen-

eous membranes. Similarly, the approach could be refined to account for swelling of

the polymer (Eslami and Müller-Plathe, 2009).



CHAPTER

SIX

CONCLUDING REMARKS AND OUTLOOK

The study of mass transport properties through molecular simulation is predomin-

antly focused on determining self-diffusion coefficients of bulk fluids. Thermody-

namic effects linked to the compressibility of the fluid and other intricacies, such as

the influence on collective diffusion, are often neglected. In an attempt to show the

significance of these effects for confined fluids, this work has given several examples

how molecular simulations that focus on effective transport properties can be carried

out. Moreover, it has highlighted the effective application of molecular simulations

in determining transport properties for abstract and realistic porous materials. The

results are a valuable contribution towards the understanding and rationalisation of

various theoretical interpretations as well as their connection to experiments.

The investigations carried out in this work were particularly concerned with ap-

plication of boundary-driven NEMD simulations to determine effective mass trans-

port coefficients in planar slit pores as well as complex polymeric structures. The

approach is useful in determining effective diffusion coefficients and permeabilities

and, in general, compares well with alternative simulation methodologies with respect

to computational effort and ease of application. However, boundary-driven NEMD

simulations cannot be considered a “magic bullet”. As is the case for simulations of

transport properties in general, the computational expense is considerable and, while

it is possible to overcome a number of complications, the methodology suffers lim-

itations in areas such as very dilute concentrations in explicitly modelled molecular

materials or extremely dense systems in which perturbations can affect transport ad-

versely. Notwithstanding, equilibrium simulation methods based on the Darken ap-

proach have similar limitations for these extreme cases. These shortcomings are partly
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compensated by the fact that useful tractable theories exist for these extreme scenarios,

especially at the low density limit.

The advantage of boundary-driven NEMD approach is that it is easily implemen-

ted in existing Molecular Dynamics simulation software. Because complex changes to

the source code can often be avoided, the application of the methodology is greatly

facilitated. Furthermore, for multi-component systems with complex molecules, com-

peting approaches such as the DCV-GCMD are very inefficient or cumbersome to be

widely applied, but boundary-driven NEMD is ideally suitable for such applications.

Beyond such application, it remains to be pointed out that the application of ex-

ternal perturbations at the boundary can be used for entirely different purposes. In

what follows, two examples are given in which the boundary-driven NEMD method-

logy was used to determine self-diffusion via a cross-colour diffusion scenario, as well

as the application of NEMD simulation in determining the rejection performance of

ultra-thin membrane structures. These are slightly different problems from the single-

component mass transfer studied in the preceding chapters. These two examples are

merely showing the possibilities beyond the scenarios the methodology was applied

to so far and barely scratch the surface of the areas they intend to inquire into and are

summarised here to pave the way for further studies.

6.1 Avendaño’s demon and the self-diffusion coefficient

With the external field applied in only one direction within a slit pore system as it is

described in section 3.3, the fluid acquires momentum in the direction of the force and

upon reaching the steady state, the system exhibits unidirectional flow. As pointed out

previously, the slit pore poses a resistance to the flow and creates a build up in dens-

ity on one side. The system is therefore brought out of mechanical equilibrium and

the mass flux measured has a convective contribution. The measured transport coeffi-

cient is an effective diffusivity as outlined in Chapter 3 and 4. As an alternative to the

Green-Kubo approach to obtain self-diffusion, a non-equilibrium method is proposed

which allows the calculation of self-diffusivity Ds in an independent manner, consid-

ering a system which externally appears to be at or very close to equilibrium. The

homogeneous fluid is artificially equipartitioned into two differently tagged species,

i.e. of different “colour”, that otherwise are identical. Furthermore, an external force is

applied to the system on the opposite side of the simulation box and acting in the op-

posite direction, but only on one particular coloured species, while the original force
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Figure 6.1: Density gradients for the narrow pore, H = 2.5, at fex = 0.2, 0.3, 0.4 repres-

ented by dotted, dashed and solid lines, respectively. The black lines correspond to the

overall density, while the red and green lines are the gradients of the pseudo-species.

field acts on the second species only. The flow of one species is therefore countered

by a flow of the other species. The pressure and total density in the system can thus

be maintained uniform and with the heat being rapidly removed from the system, it

is also at a constant temperature. In other words, a “colour-blind” observer would

only see a bulk fluid in equilibrium. The only gradient in this system is a colour con-

centration gradient of the two pseudo-species. The opposing force field distinguishes

between the two species and separates them at the boundary. The mechanism, which

has been named “Avendaño’s demon”, can be compared to a Maxwell demon that is

able to reduce the entropy of the system (Thomson, 1879). Similar approaches to sep-

arate the colour-distinguished species involve the insertion and deletion of particles,

such as the DCV-GCMD method (Heffelfinger and van Swol, 1994), or a stochastic

enhancement of the periodic boundary conditions under which some molecules are

reflected from the boundary according to a certain probability (Whitman et al., 2011).

This approach was published alongside the boundary-driven NEMD approach as it is

closely related (Frentrup et al., 2012).

Counter-flux simulations of the planar slit pore were carried out, in which the pore
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is located at the centre of the pore, surrounded by two bulk regions on either side, sim-

ilar to the system described in Chapter 3 and 4. Likewise, two variations for the pore

width were simulated, a narrow and wide pore of pore width 2.5 and 5.0, respectively.

The system setup was identical to the systems in Section 3.3 (small realisations for

both pores) and the average density of the fluid, ρ̂, was estimated in the same way (by

dividing the number of particles by the volume accessible to the fluid, estimated from

the total volume minus the box shaped volume of the solid; see Table 3.1 for details).

Fig. 6.1 depicts the density distribution along the x axis in a narrow slit pore. It shows

that the total density in the system is uniform except for the section where the oppos-

ing forces have been applied. A slight increase in density is recorded in this region. It

stems from the opposing external fields that push the molecules into each other and

provoke a slight increase in pressure, and therefore also a rise in density. In the central

part of the simulation, the density is uniform and it can be concluded that the simu-

lation is very close to a state of mechanical equilibrium. The distribution of the two

colour-distinguished species of the fluid can also be taken from Fig. 6.1. The density

gradients exhibit a linear behaviour and the slope can be calculated from the profiles

by fitting a linear function to the density distribution. By obtaining the molar flux for

each species as well as the density gradients from the profiles in Fig. 6.1, the same

pseudo-Fickian approach can be inkoved to determine “colour” diffusion coefficients:

Ji = −Dx,i
dρi
dx

(6.1)

The two species have opposing gradients of the same magnitude, which can be taken

from Table 6.1. The approach gives a similar picture to the density gradient in the

DCV-GCMD approach (Heffelfinger and van Swol, 1994), with a similar counter-flux

of colour-distinguished species of an otherwise homogeneous LJ fluid. Along with the

density gradients, the flux for each species is given in the same table for three different

external field strengths. Based on this information, the diffusivity of each ”colour” can

be calculated similar to the way it was calculated for the pressure-induced diffusion.

For the systems discussed in the previous section, the molecular flux happens pre-

dominantly in one direction only, due to the presence of a pressure difference, and the

diffusion coefficient has a certain convective contribution to it. With the mechanical

equilibrium restored by opposing forces acting each on the colour-distinguished spe-

cies, the flux for each species is opposed to the other species’ flux and these counter-

fluxes hinder mutually the diffusion of each species. The magnitude of the external

force has an effect on the magnitude of the flux and the slope of the density gradient.
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fex J1 J2
dρ1
dx

dρ2
dx

Dx,1 Dx,2

H = 2.5, Average density ρ̂ = 0.553

0.2 -0.0018(6) 0.0021(6) 0.00411 -0.00428 0.5(2) 0.5(1)

0.3 -0.0030(3) 0.0031(5) 0.00580 -0.00586 0.53(6) 0.52(8)

0.4 -0.0041(5) 0.0041(6) 0.00781 -0.00775 0.52(6) 0.53(7)

H = 5.0, Average density ρ̂ = 0.545

0.2 -0.0012(3) 0.0013(3) 0.00336 -0.00344 0.37(9) 0.37(9)

0.3 -0.0020(2) 0.0018(2) 0.00489 -0.00494 0.40(3) 0.35(3)

0.4 -0.0025(3) 0.0023(3) 0.00657 -0.00669 0.39(4) 0.39(4)

Table 6.1: Avendaño’s demon results for the small realisations of the narrow and wide

pore. The number in the parentheses denotes the uncertainty in the last digit.

It has no effect on the diffusion coefficients as in this case there is no convective con-

tribution. A large external force is beneficial in this case, as the uncertainties for the

calculation of the diffusion coefficient decrease with a stronger force field.

The resulting “colour” diffusion coefficients Dx,i, 0.52 for the narrow pore and 0.38

for the wide pore, are an order of magnitude lower than in the case of unidirectional

mass transport, which is in the order of 3.1 for the narrow and 24.0 for the wide pore

(see DNEMD
eff in Table A.3 and A.5). The transport diffusion coefficient corresponds ex-

clusively to Dt. In the absence of convective forces and only one type of fluid-fluid

interaction present, a comparison to the self-diffusion coefficient is in order. The res-

ults for the self-diffusion coefficient of the confined fluid were independently calcu-

lated from the MSD in the xy plane using the trajectories of EMD simulations. For the

narrow pore, the two-dimensional (d = 2) self-diffusivity Ds,xy = 0.508 at ρ = 0.57,

and for the wide pore, Ds,xy = 0.402 at ρ = 0.54. The results are of the same order of

magnitude and agree very well. It is worth noting that both methods indicate a higher

diffusivity of the narrow pore, presumably because of confinement which favours a

ballistic transport (Cruz and Müller, 2009; Barati Farimani and Aluru, 2011).
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Figure 6.2: Schematic drawing of a membrane separation process (left) and the corres-

ponding rejection curve of a common membrane.

6.2 Rejection Modelling

Since molecular simulations model transport dynamics by incorporating the system’s

full molecular character, they can support existing theories where their assumptions

are brought in question because of finite-size effects. Especially in the case of ultra-

thin membranes that are merely a few molecular diameters in thickness, they can help

answer question such as whether an infinitely thin membrane would constitute the

ideal membrane or whether it is possible to achieve ideal separation characteristics at

all.

The ideal characteristics of a membrane are maximum flux and ideal separation,

while it is obvious that there is a trade-off between them. It is a long-standing goal of

membrane science to control the molecular-weight cut-off (MWCO) of a membrane,

which means that the membrane is very permeable to species of small molecular

weight (which correlates to molecular size) but perfectly retains molecules of a spe-

cific site. In reality the rejection curve is not ideal and a sharp cut-off is impossible to

achieve. A typical rejection curve in comparison to the ideal scenario is shown in Fig.

6.2, which indicates that the actual separation performance is “smeared”.

This smearing effect can be explained through a hindered diffusion process (Deen,

1987). If we consider solutes of a specific size in an implicit solvent, meaning the

solvent will behave according to classical hydrodynamics, steric exclusion and other

effects such as electrostatic or other membrane-solute interactions can be incorporated

into the the transport equations. It is important to note that the length of the pore, i.e.

the membrane thickness, is assumed to be much bigger than the pore size. Unrelated

of whether diffusive or convective flow dominate the separation process, solutes that

are smaller than the size of the pore are still hindered in their passing because of in-
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Figure 6.3: This schematic drawings shows the geometry of the solute and solvent

fluid particles in relation to the pore size of the membrane.

pore resistance against flow.

A series of systems with pores of different lengths (between 2.5 nm and 118 nm)

was set up. The pore width was fixed at 1.5 nm and solutes were half the size of

the pore, i.e. 0.75 nm. The solvent was modelled explicitly as LJ spheres with 0.25

nm diameter (shown in Fig. 6.3). The wall was modelled as a slit-shaped structure

of varying length comprised of repulsive spheres (WCA potential), which resembles

the structures in Section 3.3 and Chapter 4. The external field was applied at the left

boundary, solvent particles felt a moderate force of 0.1ε/σ in the positive x direction,

while solute particles felt a very strong force into the negative x direction upon en-

tering the thin slab (10ε/σ). This generates a steady state flux of solvent particles in

the x direction but prevents solute particles from passing the boundary. The only way

for solute particles to pass from the left bulk region to the right is a passage through

the pore. The rejection is then measured in the simulations in a similar fashion as in

experiments, by comparing the solute concentrations of permeate and retentate. The

results of the simulations is given in Fig. 6.4.

It can be seen that the pore’s rejection of solute particles half the size of the pore

decreases as the “membrane” gets thinner. Since the pore is double the size of the

solute, there are no steric exclusion effects present and a thinner membrane enables

particles to permeate through the membrane more easily while particles bigger than

the pore size would be retained completely. It is also possible to deduce from Fig. 6.4

that in order for thin membranes to have a sharper rejection profile, the pore length

needs to be in the order of the pore width (L ∼ H). A dramatic decrease in rejection

can be seen for a pore length of less than 10 nm. This is an interesting finding because

it shows that in these cases entrance effects perform the separation rather than the

transport dynamics inside the pore.

This point of view is in line with the established perspective following the hindered
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Figure 6.4: Simulation results for rejection as a function of the pore length. Rejection is

calculated as follows: R = 1− cP/cR. The error bars are estimates from 5 independent

simulations.
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diffusion model of Deen (1987). Hindered diffusion relies on hydrodynamic flow be-

ing fully developed inside the pore and it is assumed that the length of the pore is

much larger than the pore diameter (Lp >> H). As the pore gets shorter, the full

development of hydrodynamic flow is impeded by the entrance effects. For an in-

finitely short pore, it can be envisioned that the flow conditions inside the pore are

equivalent to those in the bulk and therefore purely steric effects generate selectivity.

This in turn would result in an ideal membrane. Creating infinitely short pores is,

of course, physically not possible and even making membranes as thin as two times

the pore size (see Fig. 6.5) is extremely challenging for most purposes. However,

membranes comprised of a single graphene layer perforated by electron beams, which

punches geometrically well-defined nanoholes into the material, have been created in

the laboratory (Zan et al., 2012) and the race to bring such technology into real-world

applications is already well under way.
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(a) Under the assumption that the pore is consider-
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Figure 6.5: The schmematic drawings highlight the influence of pore length on the

ability of pores to allow the full development of hydrodynamic flow.
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A

APPENDIX

A.1 Translation of epigraphs

Chapter 2 - Fick

Adolf Fick in “Über Diffusion, Annalen der Physik” (1855)

“Perhaps the reason for such scarce treatment is the great difficulty in conducting

exact quantitative experiments in this field. And, in deed, it is so great that, despite

my ongoing effort, I did not succeed in ultimately consolidating the conflict between

the theories.”

Chapter 3 - Laplace

Pierre Simon Laplace in “A Philosophical Essay on Probabilities” (1814)

“We may regard the present state of the universe as the effect of its past and the

cause of its future. An intellect which at a certain moment would know all forces that

set nature in motion, and all positions of all items of which nature is composed, if this

intellect were also vast enough to submit these data to analysis, it would embrace in a

single formula the movements of the greatest bodies of the universe and those of the

tiniest atom; for such an intellect nothing would be uncertain and the future just like

the past would be present before its eyes.”
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Chapter 5

Pablo Ruiz Picasso (1881-1973)

“Anything you can imagine is real”
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A.2 Additional data on the slit pore system

Thermodynamic observables of the bulk LJ fluid

In addition to the data presented in Chapter 4, simulation results in comparison to

equation of state data for the bulk LJ fluid is shown in Fig. A.1 (P − ρ-relationship),

Fig. A.2 (µ − ρ-relationship), and Fig. A.3 (µ − P -relationship). The data is shown to

provide clarity and additional information about the dependence of thermodynamic

variables.
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Figure A.1: Pressure isotherm at T = 1.5 as a function of density for the bulk Lennard-

Jones fluid. The error bars are smaller than the symbols.
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Figure A.2: Chemical potential as a function of density for the bulk Lennard-Jones

fluid. The error bars are smaller than the symbols.
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Figure A.3: Chemical potential as a function of pressure for the bulk Lennard-Jones

fluid. The error bars are smaller than the symbols.



ADDITIONAL DATA ON THE SLIT PORE SYSTEM 141

Thermodynamic factors of the confined LJ fluid

The results show in Fig. A.4 and A.5 are the same as the thermodynamic factor data

for the confined fluid given in Chapter 4, the pressure range is extended though and

shows considerable deviation at high pressures due to the problem highlighted in con-

nection to molecular simulation of dense fluids.

10−2 10−1 100

Pressure P / εσ−3

0

2

4

6

8

10

12

T
he

rm
od

yn
am

ic
fa

ct
or

Γ

WCA, H = 2.5

ε = 1.0, H = 2.5

ε = 2.0, H = 2.5

Figure A.4: Thermodynamic factor of the confined Lennard-Jones fluid, inside the

narrow pore with H = 2.5. The entire simulated range is shown here, but results at

higher pressure (dense fluids) are not considered reliable results.
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Figure A.5: Thermodynamic factor of the confined Lennard-Jones fluid, inside the

wide pore with H = 5.0. The entire simulated range is shown here, but results at

higher pressure (dense fluids) are not considered reliable results.

Diffusion coefficients from EMD simulations as a function of pore

loading

The results for diffusion coefficients are tabulated here and plotted in Fig. A.6 and A.7

as a function of pore loading. The tabulated results are given with six relevant as they

were computed, but it is important to note that this does not imply that the results are

computed to this accuracy. Given the range of results, they are tabulated for reference

and error bars are usually not straight-forward to calculate for transport properties

such as the diffusion coefficients.

Step-by-step guide to obtaining transport diffusion coefficients from EMD simula-

tions

In order to reproduce the results for transport diffusivities based on the Darken model

given in Fig. 4.19 and 4.20, there are a number of steps which need to be performed:

• The equation of state of the bulk fluid must be obtained either from simulation or

literature (if available). This yields the relationship between chemical potential
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and pressure (→ P (µ)).

• The adsorption isotherm of a given slit pore must be obtained by performing

Grand Canonical insertions. The µV T results (N(µ)) can be converted into load-

ing curves via the bulk data (→ N(P )).

• At the same time, the µV T data can be used to obtain the thermodynamic factor

at the given external bulk pressure (∂µ/∂ ln〈N〉(P )).

• Subsequently, EMD simulations at a specified loading must be performed in or-

der to obtain self- and collective diffusion coefficients. It is important that the

unit cell is exactly the same as the one used during the Grand Canonical simula-

tions.

• The results for collective diffusivity at a specified loading can be converted into

diffusivity as a function of external pressure via the adsorption isotherm (Dc(N)→
Dc(P )).

• According to the Darken model, the collective diffusivity multiplied by the ther-

modynamic factor yields the transport diffusivity (Dt = Dc(P )× Γ(P )).
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N P Γ Ds Dc DEMD
eff

Repulsive wall (WCA)

30 0.276947 1.47898 2.00355 13.6357 20.167

60 0.63774 3.3694 1.03406 14.2744 48.0962

90 0.999392 5.12762 0.589335 9.47697 48.5943

120 1.47568 6.35043 0.402417 6.73517 42.7712

150 2.1552 7.11901 0.302768 5.55514 39.5471

180 3.2024 7.76432 0.194288 3.88304 30.1492

215 4.91016 8.62267 0.122759 1.82246 15.7144

Wetting wall (ε = 1.0)

30 0.0517276 0.985202 1.46269 2.9974 2.95305

60 0.104218 1.03441 0.777956 3.16892 3.27795

90 0.164802 1.14044 0.530999 2.74488 3.13037

120 0.284604 1.48442 0.3377 2.14472 3.18367

150 0.582529 3.15536 0.247243 1.35704 4.28195

180 1.15224 5.70343 0.180804 1.10176 6.28381

215 2.2442 6.99434 0.117272 0.914323 6.39508

245 3.43095 7.61549 0.0784741 0.63561 4.84048

Strongly wetting wall (ε = 2.0)

30 0.00954771 1.03576 0.834009 1.04393 1.08127

60 0.0191797 1.15258 0.535395 1.3089 1.50861

90 0.0302947 1.33142 0.361342 1.16669 1.55335

120 0.0477568 1.71292 0.249646 0.735202 1.25934

150 0.0873454 2.83048 0.206836 0.771132 2.18268

180 0.21037 5.94241 0.130169 0.610926 3.63038

215 0.835889 6.7762 0.0985354 0.57139 3.87186

245 1.73359 6.65663 0.0663508 0.350502 2.33316

Table A.1: Simulation results of EMD simulations for the narrow pore.
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N P Γ Ds Dc DEMD
eff

Repulsive wall (WCA)

60 0.167727 0.920637 2.26471 34.758 31.9995

120 0.34115 1.08698 1.21251 33.2064 36.0948

180 0.538793 1.69361 0.748863 20.7464 35.1362

245 0.84696 3.1701 0.444246 27.7289 87.9033

305 1.33407 5.67024 0.319592 25.0743 142.177

365 2.13403 8.21547 0.223951 11.8838 97.6307

425 3.41387 9.80329 0.161764 7.40272 72.571

Wetting wall (ε = 1.0)

60 0.0779872 0.948975 1.65692 5.06337 4.80502

120 0.154017 0.93969 0.835819 5.72151 5.37645

180 0.239561 0.974906 0.60463 5.36373 5.22913

245 0.373954 1.19577 0.3765 5.90721 7.06366

305 0.629414 2.14345 0.290416 4.12935 8.85105

365 1.1412 5.07697 0.227898 4.98006 25.2836

425 2.09104 9.69285 0.145289 2.2173 21.492

490 3.95518 12.8441 0.0913086 1.86669 23.976

Strongly wetting wall (ε = 2.0)

60 0.020749 1.16156 0.737531 1.751 2.0339

120 0.0509012 1.33791 0.518686 1.17841 1.57661

180 0.100251 1.55759 0.418343 1.42931 2.22628

245 0.177069 1.79395 0.332969 1.51541 2.71856

305 0.304527 2.14319 0.252498 1.90162 4.07555

365 0.624114 3.82687 0.184165 1.69913 6.50236

425 1.37746 8.65643 0.132056 1.72962 14.9724

490 3.08437 15.0863 0.0798054 1.01451 15.3052

Table A.2: Simulation results of EMD simulations for the wide pore.
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Figure A.6: Self-diffusion coefficients of the confined Lennard-Jones fluid, inside the

narrow pore with H = 2.5.
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Figure A.7: Collective diffusion coefficients of the confined Lennard-Jones fluid, inside

the narrow pore with H = 2.5.
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Figure A.8: Self-diffusion coefficients of the confined Lennard-Jones fluid, inside the

wide pore with H = 5.0.
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Figure A.9: Collective diffusion coefficients of the confined Lennard-Jones fluid, inside

the wide pore with H = 5.0.
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Effective diffusion coefficients from NEMD simulations as a function

of density

Simulation results for boundary-driven NEMD simulations are tabulated in Table A.5

and shown as a function of pore loading in Fig. A.11. The given densities ρ̄ were

obtained from the bulk section on either side of the pore at equilibrium and bulk pres-

sures were determined from the equation of state data.

Step-by-step guide to obtaining transport diffusion coefficients from NEMD simu-

lations

• As in the case of diffusivities from EMD, it is necessary to have access to thermo-

dynamic data for the bulk fluid (see above).

• Subsequently an inhomogeneous slit pore system is set up, that is the slit pore is

surrounded by to sufficiently large bulk compartments on either side (they are

usually at least as big as the pore itself). The system must be populated with a

specified number of atoms, so that an equilibration in the NV T ensemble can be

performed.

• From the density gradients along the pore axis, the equilibrium bulk density of

the fluid can be calculated ρ̄. This bulk density can be converted into an external

bulk pressure via the equation of state data obtained previously→ P (ρ̄).

• The system is then perturbed with a range of external forces acting on the bound-

ary. They yield effective diffusion coefficients as a function of external force

(Deff(fext)).

• Taking the external force to the limit of zero yields the transport diffusion coef-

ficient (Deff |fext→0) at the given loading (as outlines in section 3.3 and depicted

in Fig. 3.8), which has already been connected to the appropriate external bulk

pressure previously.
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Figure A.10: Effective diffusion coefficients of the confined Lennard-Jones fluid from

NEMD simulations as a function of density, inside the narrow pore with H = 2.5.
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Figure A.11: Effective diffusion coefficients of the confined Lennard-Jones fluid from

NEMD simulations as a function of density, inside the wide pore with H = 5.0.
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ρ̄ P (ρ̄) DNEMD
eff

Repulsive wall (WCA)

0.100264 0.127147 1.21429

0.202557 0.227098 0.76098

0.302153 0.323416 0.683341

0.396757 0.446573 0.869903

0.487813 0.646689 1.59252

0.574531 1.00049 3.16438

0.65839 1.63326 6.00491

0.741566 2.74623 9.75976

0.823522 4.58307 13.274

0.902228 7.34551 13.5766

Wetting wall (ε = 1.0)

0.0760373 0.100102 2.30858

0.161713 0.188988 1.54707

0.256365 0.277327 1.27151

0.353169 0.383236 1.37094

0.448747 0.546118 1.87427

0.540903 0.836446 2.85735

0.631015 1.3841 4.07432

0.718736 2.37818 5.72764

0.803206 4.04224 6.21424

0.883931 6.59835 0.753354

Strongly wetting wall (ε = 2.0)

0.0393695 0.0550859 2.60272

0.119298 0.147183 1.06157

0.218243 0.241574 0.640715

0.318306 0.341122 0.601739

0.417411 0.482345 0.787748

0.51544 0.736387 1.18756

0.610824 1.22881 1.85337

0.701982 2.14054 2.25947

0.787324 3.66136 0.530742

0.878037 6.37213 0.0438451

Table A.3: Simulation results of boundary-driven NEMD simulations for the narrow

pore.
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ρ̄ P (ρ̄) DNEMD
eff

Repulsive wall (WCA)

0.0656994 0.0879489 6.58763

0.131982 0.160043 7.03176

0.198221 0.223095 7.65021

0.264109 0.284801 8.95533

0.328845 0.353232 10.9772

0.392251 0.439323 13.4779

0.454218 0.558645 16.6527

0.515034 0.734933 20.5317

0.574961 1.00285 24.427

0.634147 1.41024 28.7742

0.751112 2.91656 38.4288

0.811227 4.24834 45.5222

0.867087 5.96981 49.7928

0.924725 8.36282 45.4103

0.956471 10.0001 40.2912

Wetting wall (ε = 1.0)

0.0546871 0.0745538 4.77416

0.110972 0.138536 4.44181

0.170466 0.197268 4.32399

0.233879 0.256086 4.59201

0.299273 0.320355 5.28075

0.365309 0.399485 6.38139

0.429778 0.506004 8.17757

0.492848 0.661751 10.0847

0.554664 0.898757 12.4536

0.615888 1.26568 15.5713

0.737151 2.67082 23.3544

0.797388 3.89861 26.604

0.857194 5.62571 27.8277

0.915761 7.94394 25.099

0.94772 9.52394 21.2168

Table A.4: Simulation results of boundary-driven NEMD simulations for the wide

pore.
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ρ̄ P (ρ̄) DNEMD
eff

Strongly wetting wall (ε = 2.0)

0.0327589 0.0463636 3.9708

0.0802181 0.104907 3.05738

0.136169 0.164212 2.53615

0.198934 0.223754 2.29098

0.266483 0.287114 2.33994

0.336253 0.362045 2.73776

0.405415 0.46104 3.53155

0.472581 0.604239 4.62569

0.537754 0.823046 6.20615

0.601963 1.16742 8.37406

0.728218 2.52456 13.1907

0.790547 3.73582 14.967

0.851976 5.45139 16.7534

0.911578 7.75467 15.977

0.943683 9.31081 11.7426

Table A.5: Simulation results of boundary-driven NEMD simulations for the wide

pore (continued).
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