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COMPOSITION OPERATORS ON WEIGHTED BERGMAN

SPACES OF A HALF PLANE

SAM ELLIOTT AND ANDREW WYNN

Abstract. We use induction and interpolation techniques to prove that a
composition operator induced by a map φ is bounded on the weighted Bergman
space A2

α(H) of the right half-plane if and only if φ fixes ∞ non-tangentially,
and has a finite angular derivative λ there. We further prove that in this case
the norm, essential norm, and spectral radius of the operator are all equal, and
given by λ(2+α)/2.

1. Introduction

Analytic composition operators have been studied in a number of contexts,
primarily on spaces of functions in the unit disc of the the complex plane. It has
long been known as a consequence of the Littlewood subordination principle that
all such operators are bounded on all the Hardy spaces, as well as a large class
of other spaces of functions.

On the half-plane, however, things are somewhat more complicated. It is well
know that there are unbounded composition operators on the half-plane. Indeed,
in [9], Valentin Matache proved that a composition operator is bounded on the
Hardy space H2 of the half plane if and only if the inducing map fixes the point at
infinity, and has a finite angular derivative λ there. Later, in [5] the first named
author and Michael Jury sharpened this result, and showed that in the case when
such a composition operator is bounded, the norm, essential norm and spectral
radius of the operator are all equal to

√
λ. This in particular strengthened a

result on non-compactness of composition operators produced by Matache in [8].
Noting that the Hardy space is effectively the Bergman space with weight

α = −1, we will take the known situation as a base case, and use induction and
interpolation techniques to extend the results to all weighted Bergman spaces.
In particular, we provide a formula for the norm which agrees with the known
results for the Hardy space case. For a thorough discussion of Bergman spaces
and their composition operators, see [3] or [7].
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2. Preliminaries

Let H denote the right half-plane {ℜz > 0}. For α > −1, the weighted
Bergman space A2

α(H) contains those analytic functions F : H → C for which

‖F‖2
A2

α(H) :=
1

π

∫ ∞

−∞

∫ ∞

0

xα|F (x+ iy)|2dxdy <∞.

For each α > −1, the functions {kα
ω;ω ∈ H} defined by

(2.1) kα
ω(z) :=

2α(1 + α)

(ω + z)2+α
, z ∈ H,

are the reproducing kernels for A2
α(H). As such, they have the property that

(2.2) 〈f, kω〉A2
α(H) = f(ω), f ∈ A2

α(H), ω ∈ H.

In order to prove our result, we will show that a certain kernel is positive. We
say a kernel K(z, w) on H × H is positive if

n
∑

i,j=1

cicjK(xi, xj) ≥ 0

for all n ≥ 1, and all scalars c1, . . . cn ∈ C and points x1, . . . xn ∈ H.

Proposition 2.1 (Nevanlinna). A holomorphic function ψ in H has positive real
part if and only if the kernel

ψ(z) + ψ(w)

z + w
is positive.

A sequence of points zn = xn + iyn in H is said to tend non-tangentially to ∞
if

(1) xn → ∞,
(2) the ratio |yn|/xn is uniformly bounded.

We then say that a map φ : H → H fixes infinity non-tangentially, and write
φ(∞) = ∞, if φ(zn) → ∞ whenever zn → ∞ non-tangentially. If φ(∞) = ∞, we
say that φ has a finite angular derivative at ∞ if the non-tangential limit

(2.3) lim
z→∞

z

φ(z)

exists and is finite, under these circumstances, we write φ′(∞) for this quantity.
If we let ψ be the self-map of D equivalent to φ via the standard Möbius identifi-

cation of the disc with the half-plane given by τ(ζ) = 1+ζ
1−ζ

, that is ψ = τ−1 ◦ φ ◦ τ ,
then (2.3) is equal, by the Julia-Carathéodory theorem, the non-tangential limit
of ψ′(ζ) as ζ → 1, which is where the terminology comes from. Indeed, we have
the following half-plane version of the Julia-Carathéodory theorem, proved in [5].
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Lemma 2.2 (Half plane Julia-Carathéodory theorem). Let φ : H → H be holo-
morphic. The following are equivalent:

(1) φ(∞) = ∞ and φ′(∞) exists;

(2) sup
z∈H

ℜz
ℜφ(z)

<∞;

(3) lim sup
z→∞

ℜz
ℜφ(z)

<∞.

Moreover the quantities in (2) and (3) are both equal to the angular derivative
φ′(∞).

Lemma 2.3. Suppose that K(ω, z) is a positive kernel on H×H and let c ≥ 0 be

a positive constant. Then K̃(ω, z) := K(ω, z) + c is a positive kernel on H × H.

Proof. Since the analytic function ψ(z) = z on H has positive real part, Propo-

sition 2.1 implies that L(ω, z) ≡ 1 is positive. Since K̃ = K + cL, it follows that
K̃ is positive. �

3. Main Results

For a natural number n ≥ 1 and a holomorphic function φ : H → H with finite
angular derivative λ at infinity, we define the kernel Kn(ω, z) on H × H by

Kn(ω, z) :=
(φ(z) + φ(ω))n − λ−n(z + ω̄)n

(z + ω̄)n
, ω, z ∈ H.

Lemma 3.1. Suppose that φ : H → H has finite angular derivative 0 < λ < ∞
at infinity. Then for every natural number n ≥ 0, the kernel K2n

is positive.

Proof. It is shown in [5] that K1 is positive. Now suppose that K2n

is positive for

some natural number n ≥ 1. Then, using the fact that the numerator of K2n+1

is the difference of two squares,

K2n+1

(ω, z) =

(

(φ(z) + φ(ω))2n

)2

−
(

λ−2n

(z + ω̄)2n
)2

(z + ω̄)2n+1

=
(φ(z) + φ(ω))2n − λ−2n

(z + ω̄)2n

(z + ω̄)2n
· (φ(z) + φ(ω))2n

+ λ−2n

(z + ω̄)2n

(z + ω̄)2n

= K2n

(ω, z) ·
(

(φ(z) + φ(ω))2n

(z + ω̄)2n
+ λ−2n

)

= K2n

(ω, z)
(

K2n

(ω, z) + 2 · λ−2n)

.

By assumption that K2n

is positive and Lemma 2.3, this is the product of two
positive kernels, and hence, K2n+1

is positive by the Schur product theorem [1].
The result now follows by induction. �



4 S. J. ELLIOTT AND A. WYNN

As a result of Lemma 3.1, it is possible to provide conditions for boundedness of
composition operators on weighted Bergman spaces, for certain integer weights.

Proposition 3.2. Let φ : H → H be holomorphic and let n ≥ 1 be a natural
number. The composition operator Cφ : A2

2n−2(H) → A2
2n−2(H) is bounded if

and only if φ has finite angular derivative 0 < λ < ∞ at infinity, in which case
‖Cφ‖ = λ2n−1

.

Proof. Let n ≥ 1 be a natural number and define α := 2n − 2. Following [5], if it
can be shown that

(3.1) λ2n〈kα
ω, k

α
z 〉A2

α(H) − 〈C∗

φk
α
ω , C

∗

φk
α
z 〉A2

α(H)

is a positive kernel, then Cφ : A2
α(H) → A2

α(H) is bounded with ‖Cφ‖ ≤ λ2n−1
.

Using the fact that C∗
φk

α
ω = kα

φ(ω) and (2.2), it follows that (3.1) is equal to

2α(1 + α)

(

λ2n

(z + ω̄)2n
− 1

(φ(z) + φ(ω))2n

)

.

This can easily be seen to factorise as

λ2n 2α(1 + α)

(φ(z) + φ(ω))2n
· (φ(z) + φ(ω))2n − λ−2n

(z + ω̄)2n

(z + ω̄)2n
,

which is just
λ2n〈kα

φ(ω), k
α
φ(z)〉A2

α(H) ·K2n

(ω, z).

This is positive, being the product of positive kernels and positive scalars.
For the converse, the calculation is similar to the Hardy space case. If the

composition operator Cφ : A2
α(H) → A2

α(H) is bounded and ‖Cφ‖ ≤M then,

2α(1 + α)

22+α(ℜφ(z))2+α
= ‖kα

φ(z)‖2
A2

α(H) = ‖C∗

φk
α
z ‖2

A2
α(H)

≤M2‖kα
z ‖2

A2
α(H)

= M2 2α(1 + α)

22+α(ℜz)2+α
.

As such,
ℜ(z)

ℜ(φ(z))
≤M2/(2+α),

hence by Lemma 2.2, φ has finite angular derivative

φ′(∞) = λ ≤ ‖Cφ‖2/(2+α) = ‖Cφ‖2−(n−1)

.

By the first part of the proof, the norm of Cφ must be at most λ2n−1
, and by the

second part it must be at least that large. It follows that indeed

‖Cφ‖ = λ2n−1

.

�
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Proposition 3.2 tells us that the result holds for particular integral values of α
of arbitrarily large size. We proceed by interpolating for the spaces A2

α(H), where
2n < α < 2n+1. The following weighted version of the Paley-Wiener Theorem
(see [4] or [6]) will be useful.

Lemma 3.3. The Bergman space A2
α(H) is isometrically isomorphic, via the

Laplace transform L, to the space L2(R+, dµα). Here,

dµα =
Γ(1 + α)

2αtα+1
dt,

and dt is Lebesgue measure on R+ := (0,∞).

Theorem 3.4. Let φ : H → H be holomorphic and α > −1. The composition
operator Cφ : A2

α(H) → A2
α(H) is bounded if and only if φ has finite angular

derivative 0 < λ <∞ at infinity, in which case ‖Cφ‖ = λ(2+α)/2.

Proof. Let α > −1. By Proposition 3.2, the result holds if α is of the form
α = 2n−2. Hence, it may be assumed without loss of generality that there exists
a natural number n ≥ 0 such that α ∈ (2n − 2, 2n+1 − 2). Write A := 2n − 2,
B := 2n+1 − 2. In the following, for simplicity, write L2(dµ) for L2(R+, dµ).
Define a linear operator

T : L2(dµA) → L2(dµA); T : L2(dµB) → L2(dµB)

by T := L−1◦Cφ ◦L. Since L is an isometric isomorphism between the respective
spaces (Lemma 3.3), Proposition 3.2 implies that

‖T‖L2(dµA)→L2(dµA) = ‖Cφ‖A2
A

(H)→A2
A

(H) = λ2n−1

= λ(2+A)/2;

‖T‖L2(dµB)→L2(dµB) = ‖Cφ‖A2
B

(H)→A2
B

(H) = λ2n

= λ(2+B)/2.

(Note that in the case n = 0, A2
A(H) should be replaced by the Hardy space

H2(H)). Since α ∈ (A,B), there exists θ ∈ (0, 1) such that α = A(1 − θ) + Bθ.
By the Stein-Weiss interpolation theorem [2, Corollary 5.5.4],

(3.2) ‖T‖L2(dw)→L2(dw) ≤ λ(2+A)(1−θ)/2λ(2+B)θ/2 = λ(2+α)/2,

where

dw =
Γ(1 + A)1−θΓ(1 +B)θ

2A(1−θ)+BθtA(1−θ)+Bθ+1
dt =

Γ(1 + A)1−θΓ(1 +B)θ

2αt1+α
dt
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By Lemma 3.3, for any g ∈ A2
α(H) there exists f ∈ L2(dµα) such that Lf = g

and ‖g‖A2
α(H) = ‖f‖L2(dµα). Thus,

‖Cφg‖A2
α(H) = ‖Cφ(Lf)‖A2

α(H) = ‖L(Tf)‖A2
α(H)

= ‖Tf‖L2(dµα)

=
Γ(1 + α)1/2

Γ(1 + A)(1−θ)/2Γ(1 +B)θ/2
‖Tf‖L2(dw)

(by (3.2)) ≤ λ(2+α)/2Γ(1 + α)1/2

Γ(1 + A)(1−θ)/2Γ(1 +B)θ/2
‖f‖L2(dw)

= λ(2+α)/2‖f‖L2(dµα)

= λ(2+α)/2‖g‖A2
α(H).

As such, Cφ is bounded with ‖Cφ‖ ≤ λ(2+α)/2.
For the converse assume that Cφ is bounded. Then by exactly the same proof

as the second half of Proposition 3.2, it follows that φ has finite angular derivative
λ and that ‖Cφ‖ ≥ λ(2+α)/2. �

The following results, concerning the spectral radius and essential norm of Cφ,
can be deduced from Theorem 3.4 by the methods used in [5] for the Hardy space
H2(H).

Theorem 3.5. If Cφ is bounded on A2
α(H), then its spectral radius and norm are

equal.

Theorem 3.6. Every bounded composition operator on A2
α(H) has essential norm

equal to its operator norm. In particular, since the zero operator is not a compo-
sition operator, there are no compact composition operators on any of the spaces
A2

α(H).
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