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The Editor 
Trends in Parasitology 

Dear Dr Sherrer, 

Please find enclosed an invited manuscript entitled “Models for measuring anthelmintic drug efficacy 
for parasitologists”, which my co-authors and I would like you to consider as a review article for 
publication in Trends in Parasitology. Please also accept our apologies for the delay in this submission.  

In this manuscript we review the current statistical approaches used to estimate anthelmintic drug 
efficacy in the contexts of treating and controlling helminth infections of livestock and of monitoring 
and evaluating large-scale control programs of human helminthiases. We describe how these methods 
are: (a) ill-suited for identifying individual and population level explanatory variables; (b) poorly 
adapted to capture the effects of correlated repeated measures (before and after treatment on the 
same individual) data on parasite transmission stages (eggs/larvae), and (c) incompatible with 
individual-level analyses. We illustrate—with an analysis of individual host data on hookworm 
infection before and one week after treatment with albendazole—how contemporary statistical 
modelling techniques can overcome these shortcomings, offering superior inference over the current 
predominating approaches that were developed in the early 1990s. We discuss their application for 
identifying subtle changes in the distribution of drug responses among individuals indicative of 
changing drug efficacy, possibly caused by emerging drug resistance, during mass drug administration 
control of human helminthiases. 

We concentrate on reviewing, applying and extending statistical techniques in a didactic manner, 
inspired by the long-running series of methodological articles published in Trends in Parasitology that 
include: Wilson and Grenfell (1997) Generalized linear modelling for parasitologists; Paterson and 
Lello (2003) Mixed models: getting the best use of parasitological data, and Basáñez et al. (2004) 
Bayesian statistics for parasitologists. Hence, we believe that our manuscript represents a natural 
continuation of this series, applying many of the previously advocated methods to address an issue 
that has been identified as a research priority by the academic community, and by public health 
organisations and initiatives, notably the Mectizan Donation Program and the World Health 
Organization’s Special Programme for Research and Training in Tropical Diseases. 

We look forward to hearing from you, 

 

Martin Walker (first and corresponding author on behalf of all co-authors) 
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Editor’s comment 0.1:  Highlights: Reviews are limited to 4 highlights of 85 characters in 

length including spaces. Currently you have 5 highlights, and one of these (#4) is too long. 

Please revise the highlights within these guidelines. 

Authors’ response 0.1:  We have amended this mistake by deleting the first highlight and 

shortening the fourth to the character limit. 

Editor’s comment 0.2:  Boxes are generally limited to 400 words; while we can be 

somewhat flexible on this, please try to revise Box 1 in order to reduce the word count (do 

not exceed 500 words). 

Authors’ response 0.2:  We have shortened the text in Box 1 from 574 words to 499 words. 

Editor’s comment 0.3:  A Glossary would be a very useful addition to the paper. The 

Glossary allows you to present ideas more succinctly within the main text while adding 

information to aid non-specialists. For this review, it would be beneficial to define both 

statistical terminology and concepts, as well as the specifics of some of the equations. 

Authors’ response 0.3:  We appreciate the Editor’s helpful suggestion and we have included 

a glossary in the revised manuscript. 

Editor’s comment 0.4:  Both reviewers have requested the annotated code used in the 

different methods as supplemental information. This is not required during revision, but if 

the authors wish to include the code, please do so according to the instructions for authors 

for supplementary information, which can be found at: 

http://www.cell.com/trends/parasitology/authors , under the Reviews & Opinions tab. 

Response to Reviewers
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Authors’ response 0.4:  We have created a supplementary material document giving the R 

code, complete with annotation and a didactic description of the critical steps in 

implementing the models described in the main text. 

Editor’s comment 0.5:  The editor has made only minor changes to text, which can be found 

in the marked-up copy of the text. Most of these changes are formatting, or for sentences 

that were too long and lost clarity. Some additional minor changes are requested in the text. 

Authors’ response 0.5:  We thank the Editor for making these changes which improve the 

flow of the manuscript. 

 

Authors’ remarks  

We thank the Reviewers for their complimentary comments and thoughtful suggestions 

which we have endeavoured to incorporate to improve the manuscript. A detail point-by 

point response follows. 

Reviewer 1 

Reviewer’s comment 1.1:  An excellent review that will no doubt prove very useful as a 

reference to statisticians or statistically minded biologists. 

Authors’ response 1.1:  We thank the referee for these encouraging words.  

Reviewer’s comment 1.2:  More emphasis could be made of the orders of magnitude of 

difference between different proposed methods and current paradigms in their estimations 

of intervention efficacy. 

Authors’ response 1.2:  The purpose of taking a modelling approach is primarily to permit 

greater levels of statistical insight into factors associated with anthelmintic drug efficacy (i.e. 

using marginal models) or variation among individual responses to anthelmintic drugs (i.e. 

using mixed models). For simple analyses, such as a population estimate of drug efficacy in a 

relatively homogenous population, one would expect the magnitude of drug efficacy 

estimated by a model or simple sample based approach to be very similar, probably with 

modest differences in estimated magnitudes of uncertainty. Thus, the merit in using a 

model-based analysis really depends on the question at hand and the degree of desired 



statistical insight. We have endeavoured to clarify this in the revised manuscript. For 

example: 

“Anthelmintic drug efficacy can be estimated by two contrasting approaches. 

Sample estimates (statistics), or sample efficacies, are calculated directly from data 

using simple arithmetic operations, without invocation of distributional 

assumptions. Sample efficacies are easy to calculate (without statistical software) 

and straightforward to interpret as population average effects. By contrast, model 

estimated efficacies are derived from fitted statistical models which necessarily 

apply distributional assumptions to the data and require somewhat more expertise 

to implement and interpret.” 

“The most appropriate modelling approach to estimate ADE will depend on the 

question under consideration and the R&D or M&E context. If interest lies only in 

the average ADE among population subgroups, within a population as a whole or 

among different populations, then a marginal model will suffice in giving robust 

point estimates of (average) ADE and accompanying uncertainties within a well-

defined framework that facilitates high quality statistical inference. By contrast, 

mixed models are suitable for inference at the level of the individual, including the 

degree of variation among similar individuals (i.e. individuals sharing measured 

covariates). Yet, rather than representing a dichotomous choice, mixed models 

complement marginal model analyses, adding a depth of insight from the 

population to the individual level.” 

Reviewer’s comment 1.3:  The authors could release annotated code (ideally script for free 

software e.g. R) for their different proposed methods along with this article as supporting 

material. Without this, I fear that these authors will miss out on much of their targeted 

audience. 

Authors’ response 1.3:  We include the R code in a new supplementary material document 

(see Authors’ response 0.4). 

Reviewer 2 

Reviewer’s comment 2.1:  This paper provides a helpful overview of the different methods 

that can be used to estimate anthelmintic drug efficacy (ADE). The argument sometimes 

feels a bit one-sided in favour of multi-level modelling. Although there are advantages to 



this approach, it makes assumptions about the distribution of the data and the random 

effects that could make it less reliable than simple statistics, such as the risk ratio or ratio 

geometric means, when these assumptions are not met.  

Authors’ response 2.1:  In the revised manuscript we have balanced the argument by 

placing more emphasis on the drawbacks of modelling approaches in terms of the need to 

make more assumptions than their sample based counterparts. For example, our conclusion 

now starts with: 

“Model-based approaches to estimating ADE hold advantages over sample 

approaches in terms of power, versatility and strength of statistical inference, albeit 

requiring more assumptions and a somewhat more complicated formulation.” 

Reviewer’s comment 2.2:  It was nice to have a worked example in the paper.  I think it 

would be useful to have the code as an appendix for researchers who have not used these 

methods before. 

Authors’ response 2.2:  We include the R code in a new supplementary material document 

(see Authors’ response 0.4). 

Reviewer’s comment 2.3:  p.2 l.48, Definition of cure rate. Presumably only people with 

parasites are treated, but this should be made clear in the definition e.g. "the proportion of 

those positive for parasites that become negative after treatment"? 

Authors’ response 2.3:  We have modified the definition of cure rate in accordance with the 

Reviewer’s suggestion. The definition is also included in the glossary of the revised 

manuscript (see Authors’ response 0.3). 

Reviewer’s comment 2.4:  p.3 l.53. The risk ratio and relative risk imply the measure is 

binary, but for intensity isn't the measure the ratio of means or geometric mean? 

Authors’ response 2.4:  We agree that the statement to which the Reviewer refers is 

somewhat confusing and so we have removed it from the revised manuscript. 

Reviewer comment 2.5:  p.4 Eqn 1. It is a bit odd to write that the first formula equals the 

second since risk of infection is meaningless for the intensity measure. 

Authors’ response 2.5:  We have amended this in the revised manuscript, splitting the 

original formula into two new formulae, one for the sample cure rate and one for the 

sample intensity reduction rate. The relevant section now reads: 

“In the context of longitudinal cohort data, frequently used sample estimates of 

ADE are given by the following generic formulae, 



Sample CR = 1 – (prevalence of infection after treatment) /  

    (prevalence of infection before treatment),  Eqn. I 

Sample IRR = 1 – (mean intensity of infection after treatment) /  

    (mean intensity of infection  before treatment), Eqn. II 

although there are variations of Eqn. II for calculating IRRs [33, 34].” 

We have also revised the proceeding section, distinguishing between the terms risk ratio 

and rate ratio: 

“The quotient in Eqn. I represents a risk ratio (RR) of infection after treatment 

compared to that before treatment. The quotient in Eqn. II is a ratio of means, a 

rate ratio (assuming equal follow-up times among individuals), which is also 

abbreviated to RR.” 

Reviewer comment 2.6:  p.5 l.122. The arguments made in this paragraph are not very clear 

and appear to be inaccurate in places. The difficulties in calculating confidence intervals for 

the effect measures (risk ratio or ratio of geometric means) are related to the sample size 

and validity of the distributional assumptions rather than the standard error per se. For 

example, if on the log scale the data follow a normal distribution with equal variance before 

and after treatment then a confidence interval based on the t-distribution will be valid 

irrespective of the magnitude of the variance, sample size or magnitude of SE. For large 

sample sizes the distribution is less important because of the central limit theorem. I think it 

would help if you distinguish between risk ratio and ratio of means (or geometric means). 

Authors’ response 2.6:  We have endeavoured to clarify our arguments in this paragraph 

which we has been facilitated by the Reviewer’s suggestion of distinguishing between the 

risk ratio and the ratio of means (see Reviewer’s comment 2.5 and Authors’ response 2.5). 

The revised paragraph now reads: 

“The primary limitation of sample estimates is their incompatibility with 

measured explanatory variables (also referred to as covariates) that may 

systematically affect estimates of ADE. Sample estimates can be calculated in 

different population strata, but this is at the expense of sample size. Sample 

estimates also typically lack accompanying mathematical expressions for calculating 

uncertainty metrics such as standard errors (SEs) and confidence intervals (CIs) 

(although see [25] for an exception). There are at least two reasons for this. First, 

the exact sampling distribution of the ratio of two estimated quantities (the 



prevalence of infection, Eqn. I, or the mean intensity of infection, Eqn. II) has a 

number of awkward statistical properties [35, 36], including undefined statistical 

moments. Second, the validity of approximations to the sampling distribution that 

are based on the logarithm of the quotients in Eqn. I and Eqn II [37] are 

questionable in conjunction with hyper-variable repeated measures parasitological 

data. Consequently, SEs and CIs are often calculated numerically (e.g. [15, 38-40]) 

without invoking distributional assumptions, typically using bootstrap methods [41] 

based on case resampling from the empirically observed distribution of the data. 

The CIs of the sample IRRs and CRs calculated from the KSD (Table 2) are estimated 

using one such bootstrap resampling method.” 

Reviewer’s comment 2.7:  p.6 l.143. You could mention the difficulties of log transforming 

the data when there are zeros (they have to be replaced with an arbitrary positive number) 

Authors’ response 2.7: We thank the Reviewer for this suggestion which we have 

incorporated into the amended manuscript. The revised section now reads: 

“While transformations can be useful, they are seldom undertaken using the most 

appropriate arithmetic operations [47, 48], which can lead to biased results [49]. 

More specifically, logarithmic transformations require zero counts to be replaced by 

an arbitrary positive number, which is often performed in a rather subjective and 

equivocal manner.” 

Reviewer’s comment 2.8:  p.6  l.159. It is confusing to describe the data as both cross-

sectional and longitudinal. I would replace "cross-sectionally and longitudinally repeated 

measures" with "repeated measures". 

Authors’ response 2.8:  We have revised the text in accordance with the Reviewer’s 

suggestion. 

Reviewer’s comment 2.9:  p.7 l.191 I couldn't find any discussion of the sandwich estimator. 

This is usually used when fitting generalised estimating equations because it ensures that 

the confidence interval for a parameter estimate is valid even if the correlation structure is 

incorrectly specified. 

Authors’ response 2.9:  We thank the reviewer for noting this omission. We have included a 

glossary in the revised manuscript (see Authors’ response 0.3) that includes a description of 

sandwich estimators and their importance in conjunction with parameters estimated using 

the marginal model framework. We also include a footnote in Table 1 and Table 2 stating 



that sandwich estimators were used to calculate the confidence intervals of relevant 

parameter estimates. 

Reviewer’s comment 2.10:  p.8 l.225. You might want to mention in this section that you 

can be used mixed models to quantify the variability between individuals in the treatment 

effect, and also to make predictions for the size of this effect in particular individuals. 

Authors’ response 2.10:  We have incorporated this welcome suggestion into the revised 

manuscript. The relevant section now reads: 

“Mixed models (Box 3) yield individual estimates of treatment responses (regression 

lines, Figure 1a, 1b) and corresponding individual estimates of ADE (Figure 1c) by 

considering the means of repeated measures conditional on individual-specific 

random effects terms. They also permit quantification of the degree of variation in 

treatment responses among individuals.” 

Reviewer’s comment 2.11:  p.8 l.229. This sentence is unclear. You should clarify that it is 

the parameters of the model rather than covariates that are fixed or random across 

individuals. 

Authors’ response 2.11:  We thank the Reviewer for highlighting this ambiguity which we 

have clarified in the revised text: 

“The mixed model formulation divides covariate coefficients specified as exerting 

random effects into two components” 

Reviewer’s comment 2.12:  p.8 l.234. For a log-link the population average effect is the 

same as the parameter in the random effects model (see p.137 "Analysis of longitudinal 

data" by Diggle, Zeger and Liang). The logit link is more problematic. 

Authors’ response 2.12:  We agree with the Reviewer’s assertion which applies to the 

special case of the log-linear random intercepts model. The models we describe include an 

additional random slope parameter which crucially permits drug efficacy to vary among 

individuals and thus, in this more general case, the population average effect is not the 

same the fixed component of a random effects parameter. We have amended the relevant 

sentence to reflect these subtleties: 

“In particular, and unlike marginal GLMs, fixed effects generally only equate to 

marginal (population) mean effects on the scale of the linear predictor (Box 1, albeit 

with the exception of some special cases [51])” 



Reviewer’s comment 2.13:  p.9 l.262. You might consider dropping the technical aspects of 

this section such as the discussion of the iteratively re-weighted least squares algorithm.  

Authors’ response 2.13:  We thank the Reviewer for this suggestion. We have removed 

specific reference to the iteratively re-weighted least squares algorithm in our overview of 

the generalized estimating equation approach. We have also removed similarly specific 

references to the Laplace and Gauss-Hermite algorithms in the discussion of fitting mixed 

models. 

Reviewer’s comment 2.14:  p.12 l.350. You could mention the issue of regression to the 

mean when discussing the association between pre-treatment infection and ADE. I think 

regression to the mean implies a positive association. 

Authors’ response 2.14:  We have considered this issue in terms of models that include pre-

treatment data on infection levels as a covariate of the post-treatment responses. In such a 

formulation, the estimated drug efficacy would be related to the gradient of the regression 

line with respect to the pre-treatment data. This is in contrast to our longitudinal 

formulation where efficacy is a function of the ‘gradient’ with respect to time (before or 

after treatment). In the former, (considerable) measurement error in the pre-treatment 

data would bias the estimated gradient and consequently also the estimated efficacy by the 

regression to the mean phenomenon. Pre-treatment density-dependent effects on drug 

efficacy would presumably manifest in a non-linear relationship between the post-

treatment response and the pre-treatment covariate. Difficulties in detecting such density 

dependencies would be confounded by regression towards the mean effects. While these 

issues are interesting, we have not discussed them in the manuscript because we feel they 

would detract from the clarity of the arguments already presented by introducing a model 

with a fundamentally different regression structure. 

Reviewer’s comment 2.15:  p.14 I think your conclusion that model-based approached are 

superior to sample statistics such as the risk ratio or ratio of geometric means is too strong. 

Authors’ response 2.15:  We have tempered our conclusion in the revised manuscript (see 

Authors’ response 2.1). 

Reviewer’s comment 2.16:  Table 1 You could describe the data in a bit more detail. 

Children came from how many schools? Were there equal numbers of girls and boys? What 

was the average egg count before treatment and after treatment? How variable were egg 

counts before and after treatment? 



Authors’ response 2.16:  In the revised manuscript we have included the additional 

information requested by the Reviewer. 

Reviewer’s comment 2.17:  Table 2 I find it surprising that the model-based confidence 

intervals are so narrow compared to the "sample" estimates. It would be good if this could 

be checked somehow e.g. maybe the model could be fitted using a different statistical 

package? 

Authors’ response 2.17:  We thank the Reviewer for highlighting this surprising result. There 

was a mistake in calculating the confidence intervals in the original manuscript which we 

have now corrected. Regarding comparing results from other statistical packages, the 

models were fitted using the geepack package (Halekoh et al. 2006 J. Stat. Softw. 15) for R, 

primarily because this package permits userdefined correlation structures. This allowed 

different correlations among observations made on the same individual at the same time 

point (before or after treatment) and observations made on the same individual at different 

time points (before and after treatment). We are not aware of other packages that offer 

such functionality. However, we did note that the estimated—and now corrected—

uncertainties were very similar between models fitted using the customized correlation 

structure and those fitted using a simpler exchangeable correlation assumption. This is 

unsrurprising given the use of sandwich estimators which are robust to misspeciicatiob of 

the correlation structure (see Reviewer’s comment 2.9 and Authors’ response 2.9). Further, 

we were able to confirm that an alternative package, gee (Carey 2002 gee: Generalized 

Estimation Equation Solver), which has been ported to R from S-PLUS, yielded identical 

results to geepack under the exchangeable correlation assumption. 

Reviewer’s comment 2.18:  Box 2. If Y_ij is a binary variable (i.e., Y_ij is a Binomail with n=1) 

then the over-dispersion parameter cannot be estimated. To estimate the parameter Y_ij 

must be a binomial with n>1.  

Authors’ response 2.18:  We thank the Reviewer for noticing this oversight. We have 

removed the relevant sentence from the revised manuscript. 

Reviewer’s comment 2.19:  Box 3 I find it a bit misleading to say that e_ij permits extra-

Poisson variation when Y_ij follows a Poisson distribution in the model that includes e_ij 

Authors’ response 2.19:  We have revised the sentence to read: 



“The term, eij, is an observation-specific, normally distributed, random effects error 

term, permitting extra-Poisson variation (overdispersion) among Yij sharing a 

common set of covariates [70, 85, 86].” 

Reviewer’s comment 2.20:  Figure 1 I think you need to give more detail about how you 

fitted the model. What statistical package was used? What Bayesian MCMC techniques 

were used? What priors were used? How did you check for convergence? 

Authors’ response 2.20:  We agree with the Reviewer’s suggestion and have included the 

additional information in the legend to Figure 1. We have also included our Markov chains 

as supplementary figures in the supplementary material document (see Authors’ response 

0.4). The relevant section of the legend to Figure 1 now reads: 

“The model was fitted using Bayesian Markov chain Monte Carlo (MCMC) 

techniques implemented with the MCMCglmm package [85] for R [6]. Fixed effects 

were assigned uninformative normal prior distributions (priors), covariance terms of 

random effects were assigned uninformative inverse-gamma priors. Three starting 

values for the MCMC algorithm were assigned in order to assess convergence on 

the parameter posterior distributions and to check that our conclusions were not 

sensitive to the choice of starting values.” 
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The imperative to measure anthelmintic drug efficacy 21 

The effectiveness of treating and controlling human and livestock helminthiases critically 22 

depends on the efficacy of anthelmintic drugs. In livestock, the utility of anthelmintics has 23 

been severely diminished by the rapid evolution and spread of anthelmintic resistance [1-3]. 24 

Despite the lessons learnt from 50 years of somewhat indiscriminate livestock treatment 25 

strategies [4], there is due concern that resistance, or at least sub-optimal drug efficacy, 26 

could derail the burgeoning global onslaught against helminth infections of humans. The 27 

current strategic intervention is based principally on anthelmintic mass drug administration 28 

(MDA) [5-8], and is endorsed by the World Health Organization (WHO) in their roadmap on 29 

the control and elimination of neglected tropical diseases (NTDs) by 2015 and 2020 [9].  30 

Application of appropriate and powerful statistical methods that enable accurate estimation 31 

of anthelmintic drug efficacy (ADE) is a high priority, both for monitoring and evaluation 32 

(M&E) of control programmes [10] and for analysing outcomes from clinical trials of the 33 

next generation of new [11-13] or repurposed anthelmintics [14-16]. 34 

 In this article, we show that established extensions of generalized linear models 35 

(GLMs) [17] offer a versatile and practical way of estimating ADE both at the population 36 

level, in terms of an average effect, but also at the level of the individual host. We review 37 

the predominant currently used methods for estimating ADE, many of which were 38 

developed in a veterinary context and are based on sample statistics. These are contrasted 39 

with modelling approaches using previously published data on hookworm egg counts 40 

collected from Kenyan schoolchildren before and one week after treatment with 41 

albendazole [18]. These data are summarized in Table 1 and are referred to as the Kenyan 42 

schoolchildren dataset, abbreviated to KSD. We discuss the application of modelling 43 

approaches, particularly in the context of the M&E of ADE during MDA-based control of 44 

human helminthiases. 45 

Cure rates and intensity reduction rates 46 

Anthelmintic drug efficacy is typically, but not exclusively, expressed as either a cure rate 47 

(CR) or an intensity reduction rate (IRR). Cure rates (the proportion of those positive for 48 

parasites that become parasitologically negative after treatment) are calculated from binary 49 

data on the presence or absence of infection; IRRs (the proportional reduction of infection 50 
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load effected by the treatment) are calculated from (typically count) data on the intensity of 51 

infection. Both quantify reduction in infection levels after treatment (the drug response) as 52 

a percentage of infection levels before treatment using longitudinal data from cohort 53 

studies. 54 

 Cure rates and IRRs can be calculated, in principle, using parasitological, molecular or 55 

any other type of data that measure, respectively, infection status or infection intensity. 56 

Currently there are few quantitative molecular methods which yield estimates of infection 57 

intensity [19], albeit with some notable exceptions. One exception is measurement of 58 

circulating filarial antigen (CFA) for Wuchereria bancrofti (causing Bancroftian lymphatic 59 

filariasis) infection, although because of difficulties in counting adult worms, quantities of 60 

CFA have not been calibrated to worm burden, although this has been achieved in animal 61 

models [20]. Other examples include measurement of circulating anodic antigen (CAA), 62 

which have been correlated with Schistosoma mansoni egg output [21], and quantitative 63 

polymerase chain reaction (qPCR) for Ascaris lumbricoides [22, 23] and hookworm [24] 64 

infections. Consequently, molecular diagnostics are mostly used for measuring infection 65 

status. Indeed, even for infections where molecular diagnostics do exist, or are undergoing 66 

field testing, ADE remains overwhelmingly assessed using data on parasite transmission 67 

stages (eggs or larvae). Therefore, we focus on modelling approaches for such 68 

parasitological data, although in principle the methods are readily adaptable to other types 69 

of data. 70 

Intensity reduction rates are more informative and generally more desirable than 71 

CRs, and have been used extensively for assessing anthelmintic efficacy in livestock. Perhaps 72 

the most well-known IRR is the faecal egg count reduction (FECR) [25], which is calculated 73 

from data on egg counts in faeces. More recently, the WHO has endorsed IRRs for the M&E 74 

of human schistosomiasis and soil-transmitted helminthiasis (STH) MDA-based control 75 

programmes [26]. Cure rates are often criticised because some anthelmintics are never truly 76 

curative (e.g. ivermectin only affects the microfilarial progeny of adult female Onchocerca 77 

volvulus and exerts only temporary deleterious effects on worm fertility [27]). Also, CRs are 78 

less relevant to morbidity reduction since morbidity is, by and large, associated with 79 

infection intensity [28], and do not adequately reflect the impact of repeated rounds of 80 

treatment in the context of MDA interventions in human populations [29]. In a research and 81 

development context (R&D; e.g. clinical trials and epidemiological studies), intensity should 82 



 4 

always be measured, permitting calculation of IRRs. Yet for M&E, logistical complexities and 83 

the availability of field-ready quantitative diagnostic tools [19] means that data on the 84 

presence of absence of infection is common, guaranteeing the continued usefulness of CRs, 85 

or other metrics based on binary data. 86 

Contrasting methods of estimation 87 

Anthelmintic drug efficacy can be estimated by two contrasting approaches. Sample 88 

estimates (statistics), or sample efficacies, are calculated directly from data using simple 89 

arithmetic operations, without invocation of distributional assumptions. Sample efficacies 90 

are easy to calculate (without statistical software) and straightforward to interpret as 91 

population average effects. By contrast, model estimated efficacies are derived from fitted 92 

statistical models which necessarily apply distributional assumptions to the data and require 93 

somewhat more expertise to implement and interpret. Yet, the invocation of valid 94 

distributional assumptions makes modelling approaches substantially more powerful than 95 

the sample approach. Despite this, modelling approaches are seldom used for evaluating 96 

ADE, with some exceptions [30-32]. 97 

Sample efficacies 98 

In the context of longitudinal cohort data, frequently used sample estimates of ADE are 99 

given by the following generic formulae, 100 

Sample CR = 1 – (prevalence of infection after treatment) /  101 

    (prevalence of infection before treatment),  Eqn. I 102 

Sample IRR = 1 – (mean intensity of infection after treatment) /  103 

    (mean intensity of infection before treatment), Eqn. II 104 

although there are variations of Eqn. II for calculating IRRs [33, 34]. The quotient in Eqn. I 105 

represents a risk ratio (RR) of infection after treatment compared to that before treatment. 106 

The quotient in Eqn. II is a ratio of means, a rate ratio (assuming equal follow-up times 107 

among individuals), which is also abbreviated to RR. Both equations can be adapted to 108 

incorporate data from untreated controls in case-control study designs [33]. However, 109 

because of the ethical considerations of withholding effective treatment from infected 110 

humans, and an unwillingness of farmers to leave livestock untreated, control groups are 111 

rarely used outside of R&D, particularly trials for novel anthelmintics. Thus, the majority of 112 
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data used in estimating ADE for M&E do not comprise treatment and control groups. For 113 

example, in the KSD, two simultaneously obtained samples by the Kato-Katz thick smear 114 

method were used to obtain two hookworm egg counts per individual before and one week 115 

after treatment (Table 1). Thus, the measurements are repeated (repeated measures) both 116 

cross-sectionally (two measures per time point) and longitudinally (two time points) per 117 

individual. The sample estimates of ADE (sample CRs and sample IRRs) from these data are 118 

given in Table 2 and are calculated by applying Eqn. I and Eqn II respectively. 119 

The primary limitation of sample estimates is their incompatibility with measured 120 

explanatory variables (also referred to as covariates) that may systematically affect 121 

estimates of ADE. Sample estimates can be calculated in different population strata, but this 122 

is at the expense of sample size. Sample estimates also typically lack accompanying 123 

mathematical expressions for calculating uncertainty metrics such as standard errors (SEs) 124 

and confidence intervals (CIs) (although see [25] for an exception). There are at least two 125 

reasons for this. First, the exact sampling distribution of the ratio of two estimated 126 

quantities (the prevalence of infection, Eqn. I, or the mean intensity of infection, Eqn. II) has 127 

a number of awkward statistical properties [35, 36], including undefined statistical 128 

moments. Second, the validity of approximations to the sampling distribution that are based 129 

on the logarithm of the quotients in Eqn. I and Eqn. II [37] are questionable in conjunction 130 

with hyper-variable repeated measures parasitological data. Consequently, SEs and CIs are 131 

often calculated numerically (e.g. [15, 38-40]) without invoking distributional assumptions, 132 

typically using bootstrap methods [41] based on case resampling from the empirically 133 

observed distribution of the data. The CIs of the sample IRRs and CRs calculated from the 134 

KSD (Table 2) are estimated using one such bootstrap resampling method. 135 

The lack of straightforward procedures for quantifying uncertainties associated with 136 

sample efficacies, combined with the ubiquity of extra-Poisson variation (overdispersion) in 137 

parasitological data on infection intensity, has probably contributed to a prevailing focus on 138 

robust and invariant estimates of central tendency, i.e. mean intensity of infection in Eqn I. 139 

This is particularly the case for parasite transmission stages which is compounded (at least) 140 

by the overdispersion of adult parasites among hosts [42, 43] and the high degree of 141 

sampling variation resulting from the most widely used quantification methods [44-46]. A 142 

popular approach is to transform individual intensity data prior to calculation of an IRR. For 143 

example, helminth egg count data are frequently log transformed to calculate geometric 144 



 6 

means, which are then used to estimate sample IRRs (i.e. replace mean by geometric mean 145 

in Eqn. II) [33, 34]. While transformations can be useful, they are seldom undertaken using 146 

the most appropriate arithmetic operations [47, 48], which can lead to biased results [49]. 147 

More specifically, logarithmic transformations require zero counts to be replaced by an 148 

arbitrary positive number, which is often performed in a rather subjective and equivocal 149 

manner. Moreover, inconsistencies in measures of ‘average’ (arithmetic mean, geometric 150 

mean) make it difficult to compare efficacies among populations [50], through time, or 151 

against reference values of expected efficacies [26]. 152 

Modelling approaches 153 

Modelling approaches to estimating ADE are more powerful than methods based on sample 154 

statistics. This means that, subject to a well-specified and judiciously formulated model, 155 

model-derived efficacies offer substantially more insight and robust inference than their 156 

sample-based counterparts. Modelling approaches naturally accommodate measured 157 

covariates, permitting suitable adjustments for the effects of confounders, but also enabling 158 

comparison of efficacies among individuals or population sub-groups. Moreover, when 159 

formulated using an underlying GLM, but with adaptations to account for the repeated 160 

measures [51], models offer a natural way to estimate uncertainties, such as SEs and CIs, 161 

and related indicators of statistical significance (p-values) as part of computationally 162 

efficient and accessible [52, 53] fitting procedures. We first review some of the important 163 

properties of GLMs, before describing two specific extensions suitable for capturing the 164 

effects of correlations among repeated measures data: marginal models, for population-165 

level inference; and mixed models for inference at the level of the individual host. 166 

Generalized linear models relate, via the so-called link function or link, the expected 167 

value (mean) of each observation of the response or dependent variable (either a binary 168 

measure of presence or absence of infection or a count measure of infection intensity) to a 169 

linear combination of covariates and accompanying regression coefficients. Covariates must 170 

include, at least, an indicator of whether an observation is made before or after treatment 171 

(hereafter referred to as the observation time) because the coefficient of this variable 172 

captures the effect of treatment on infection. In the example analysis of the KSD, we include 173 

as explanatory variables, in addition to observation time, the village of observation 174 
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(Chiramani or Kidimu), and the interaction between village and the observation time 175 

(Box 1). 176 

The link function determines how the coefficient of observation time, or the sum of 177 

coefficients of covariates involving observation time if interaction terms are included 178 

(Box 1), is interpreted as a measure of ADE. A logarithmic link, which yields a log-linear 179 

regression structure, is ideal because the exponent of the relevant coefficient(s) translates 180 

directly into an IRR (for count data) or a CR (for binary data). The log-linear structure is a 181 

natural choice for count data. This is not so for binary data, although it can be applied [54], 182 

albeit with potential problems of model convergence because the modelled expected value 183 

of the response variable (the prevalence) is not constrained between 0 and 1. The logit link, 184 

which yields a logistic regression structure, is more practicable for binary data. Although at 185 

extremely low infection probabilities associated with high CRs, the logit link is non-linear on 186 

the scale of the linear predictor [17], which may potentially give misleading results. 187 

However, in this formulation, the natural metric of ADE is the cure odds (CO); not the CR 188 

(Box 1). Odds ratios can be converted to risk ratios [55and hence COs can be converted to 189 

CRs, although uncertainties resulting from this non-linear conversion cannot be adequately 190 

approximated by closed formulae [and should be evaluated numerically. 191 

Marginal models for measuring population-level drug efficacy 192 

Marginal models yield population estimates of ADE, analogous to sample efficacies, but 193 

estimated within a modelling framework that can efficiently incorporate the effects of 194 

covariates (Table 2). An attractive property of marginal models is that their regression 195 

coefficients have exactly the same interpretation as the corresponding GLM, albeit with 196 

suitably adjusted (inflated) SEs to reflect correlation among repeated measures. The term 197 

marginal refers to individuals (or more generally, units of observation) sharing a common 198 

set of covariates, and reflects that these models consider the marginal means of repeated 199 

observations (measures) per individual. For example, in the KSD, the four marginal means 200 

are the mean egg counts in children from Chiramani or Kidimu, before or after treatment.  201 

Unlike GLMs for independent (uncorrelated) data, marginal models require explicit 202 

specification of the correlation structure among repeated measures. For example, a popular 203 

correlation structure for normally distributed time series data is to model the correlation as 204 

an exponentially declining function of their degree of temporal separation [56]. Non-205 
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normally distributed data are more restricted in the range of permissible correlation 206 

structures [51]. The so-called exchangeable structure is simplest, assuming that the 207 

correlation among repeated measures is constant among individuals. However, in the KSD, 208 

and more generally in data collected for the purposes of estimating ADE, a more plausible 209 

correlation structure may comprise two exchangeable coefficients; one describing the cross-210 

sectional correlation among repeated measures at the same time point (before or after 211 

treatment), the other describing the longitudinal correlation among repeated measures 212 

made at different time points, but with constant (among individuals) temporal separation 213 

(Box 2). 214 

In addition to the correlation structure, the two other components of a marginal 215 

model are the same as a standard GLM, namely, a regression structure relating the mean 216 

response to a linear combination of covariates and coefficients (the linear predictor) via a 217 

link function, and a model for the marginal variance among observations from individuals 218 

sharing covariates. Typically, the marginal variance is derived from the variance of a suitable 219 

distribution; for count data, the default choice is the Poisson distribution. However, in the 220 

KSD, and typically for parasitological intensity data, especially on egg or larval transmission 221 

stages, the variance among observations (sharing common covariates) is much greater than 222 

the Poisson variance (variance-to-mean ratio >> 1, not least because of the hierarchical 223 

structuring of the data). A typical solution is to include a scale parameter which inflates the 224 

variance relative to the marginal mean (Box 2). 225 

Mixed models for estimating individual-level drug efficacy 226 

Mixed models (Box 3) yield individual estimates of treatment responses (regression lines, 227 

Figure 1a, 1b) and corresponding individual estimates of ADE (Figure 1c) by considering the 228 

means of repeated measures conditional on individual-specific random effects terms. They 229 

also permit quantification of the degree of variation in treatment responses among 230 

individuals. The mixed model formulation divides covariate coefficients specified as exerting 231 

random effects into two components; a fixed component which is constant among 232 

individuals, and a random component which varies among individuals. The random 233 

component reflects the stochastic effect of unmeasured or unmeasurable differences 234 

among individuals. Subtleties in the interpretation of these fixed and random components 235 

can prove troublesome for mixed models defined within the GLM framework, so-called 236 
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generalized linear mixed models (GLMMs). In particular, and unlike marginal GLMs, fixed 237 

effects generally only equate to marginal (population) mean effects on the scale of the 238 

linear predictor (Box 1, albeit with the exception of some special cases [51]); so, for log-239 

linear mixed models, on the logarithmic scale. This interpretation is lost on the scale of the 240 

response because of the non-linearity induced by the link function (Box 1). 241 

In a mixed (or random effects) model, the correlation among repeated measures 242 

made on the same individual is implicitly captured by a random effects intercept term which 243 

permits individual-specific random deviations from the fixed component of the intercept. 244 

For example, in the KSD, one would expect a priori that repeated egg counts from the same 245 

individual would be correlated and consistently higher or lower than the population average 246 

egg count before or after treatment; hence the inclusion of a random intercept term 247 

(Box 3). Because assessment of ADE is made using data collected soon after treatment (one 248 

week in the KSD) prior to substantive re-infection, this correlation is presumably 249 

predominantly driven by individuals’ unknown underlying adult worm burden combined 250 

with an ADE less than 100%, rather than by predisposition to (re-)infection [57, 58]. 251 

A mixed model must treat (at least some) coefficients of covariates that include 252 

observation time (before or after treatment) as exerting random effects to enable 253 

estimation of individual ADEs; a mixed model that includes only a random intercept term 254 

would not possess this quality. In the mixed model analysis of the KSD, the coefficient of 255 

observation time is treated as a random effect, while the interaction between observation 256 

time and village (Chiramani or Kidimu) is considered as a fixed effect. This means that ADE 257 

can vary among individuals within a village, but that any systematic difference in ADE 258 

between villages exerts a constant (fixed effect) among individuals (Box 3). Despite 259 

remaining limitations in our understanding of anthelmintic pharmacology [59], plausible 260 

explanations of why ADE may vary among individuals are drawn readily from the 261 

manifestations of physiological and pharmacokinetic-pharmacodynamic (PK-PD) variation 262 

on individual responses to antimicrobial agents [60]. Indeed, random effects are ideally 263 

suited to capture such differences which are difficult to measure directly. 264 
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Parameter estimation 265 

Marginal models 266 

Generalized estimating equations (GEEs) [61, 62] are used to estimate the parameters of 267 

marginal models. The principles of GEE estimation are closely tied to methods used for 268 

estimating parameters in GLMs [17]. In both cases, estimation involves minimising the 269 

weighted sum of squared residuals; the weights being functions of the modelled variance 270 

which depends on the nominal choice of parametric distribution (Box 2). In GEE approaches, 271 

the weights assigned to individual observations not only depend on the nominal variance, 272 

but also on the correlation among observations within a cluster, or in the KSD, within an 273 

individual. For perfectly correlated data, the weight per observation is the reciprocal of the 274 

number of observations. This gives an effective sample size that equals the number of 275 

individuals, not the number of observations. By contrast, for uncorrelated data, each 276 

observation within an individual is treated as independent, assigned a relative weight of 277 

one, and the effective sample size is equal to the total number of observations. Hence, the 278 

value of the GEE approach lies in estimating unbiased (suitably weighted) coefficients and 279 

accompanying SEs that adequately reflect the effective sample size of the data [53, 63]. 280 

Routines for implementing GEEs are widely available in statistical software packages [64], 281 

including, proc genmod in SAS [65]; the gee procedure in SPSS [66]; the xtgee command in 282 

Stata [67], and the geepack package [68] in R [69]. 283 

Mixed models 284 

There are numerous approaches to mixed model parameter estimation [52]. Unlike GEEs for 285 

parameter estimation in marginal models, the (log-) likelihood of the data is integral to all 286 

mixed model estimation approaches. Maximum likelihood (ML) estimation involves 287 

evaluating and maximising the likelihood directly, although this is slow and computationally 288 

unfeasible for more than two or three random effects [70]. A more versatile approach is to 289 

maximise an approximation of the likelihood, although it noteworthy that one of the most 290 

popular algorithms for this purpose, the penalized quasi-likelihood method, is unsuitable for 291 

ADE estimation because it works poorly for binary data or when the mean count is less than 292 

about 5 [52]. Generalized linear mixed models are readily implemented in statistical 293 
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software packages [52], including proc glimmix in SAS; the meglm command in Stata and the 294 

lme4 package in R.  295 

Maximum likelihood optimization methods yield biased estimates of the random effects 296 

parameters. This occurs because estimation is conditional on the fixed effects, which are 297 

treated as precisely known. Restricted maximum likelihood (REML) estimation is a solution 298 

which works by averaging over some of the uncertainty in the fixed effects. However, by 299 

either ML or REML optimization, there is no consensus on estimating uncertainty for the 300 

variance components, nor the random effects parameters [71]. In the context of estimating 301 

individual ADEs, this represents a significant drawback because uncertainty in the variance 302 

components is of direct interest for quantifying the distribution of ADE among individuals, 303 

and the precision of individual estimates of ADE. 304 

Bayesian Markov chain Monte Carlo (MCMC) estimation approaches offer a powerful 305 

and flexible alternative to ML or REML optimization, albeit with the requirement to assign 306 

prior distributions to unknown parameters. Markov chain Monte Carlo algorithms generate 307 

random samples from the posterior distribution of parameter values for fixed and random 308 

effects enabling construction of uncertainty intervals (often so-called Bayesian credible 309 

intervals, BCIs) on all parameters and any other derived quantities. Moreover, the approach 310 

offers flexibility to estimate parameters of bespoke and highly complex models suitable for 311 

analysing highly (hierarchically) structured datasets [52, 72], and a means to incorporate 312 

external information on diagnostic performance [73] as informative priors [74]. A variety of 313 

software packages are available for implementing MCMC methods within a Bayesian 314 

framework including WinBUGS [75], OpenBUGS [76], JAGS [77], and the MCMCglmm 315 

package [78] for R. 316 

Which model to use? 317 

The most appropriate modelling approach to estimate ADE will depend on the question 318 

under consideration and the R&D or M&E context. If interest lies only in the average ADE 319 

among population subgroups, within a population as a whole or among different 320 

populations, then a marginal model will suffice in giving robust point estimates of (average) 321 

ADE and accompanying uncertainties within a well-defined framework that facilitates high 322 

quality statistical inference. By contrast, mixed models are suitable for inference at the level 323 

of the individual, including the degree of variation among similar individuals (i.e. individuals 324 
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sharing measured covariates). Yet, rather than representing a dichotomous choice, mixed 325 

models complement marginal model analyses, adding a depth of insight from the 326 

population to the individual level. 327 

 The example analysis of the KSD offers a pertinent illustration of the 328 

complementarity of the two approaches. The marginal model analysis indicates that 329 

albendazole is a highly efficacious treatment of hookworm within the village populations of 330 

Chiramani and Kidimu; the IRR in both villages is between 97% and 99% (Table 2). Yet this 331 

overlooks the substantial variation among individuals (Figure 1c). More generally, whether 332 

such variation constitutes normal variability among individual drug responses or something 333 

more insidious, such as reduced parasite susceptibility in certain individuals, is of particular 334 

concern to the M&E of chemotherapeutic control, particularly MDA control of human 335 

helminthiases. This cannot be determined purely from isolated statistical analyses, but one 336 

can envisage an early warning analytical framework based on mixed models whereby: (a) 337 

the distribution of estimates among individual responses are tracked through repeated 338 

rounds of MDA, looking for shifts that may be indicative of changing ADE; and (b) sub-339 

optimally responding individuals are followed-up and assessed further to identify the cause 340 

of their poor response. Such a framework would benefit from characterising baseline 341 

distributions of normal responses to anthelmintics using contemporary or historical data 342 

from communities predominately naïve to MDA, and thus presumably harbouring maximally 343 

susceptible parasites, before any possible emergence of drug resistance. These analytical 344 

advances would enhance current WHO recommendations for the M&E of ADE during MDA 345 

control of human STHs and schistosomiasis [26]. These recommendations are based on 346 

sample estimates of average ADE and therefore are ill-suited for identifying subtle changes 347 

in the distribution of drug responses among individuals [79], which may mark the early 348 

stages of decreased ADE. In particular, by the time changes in average ADE are detectable, 349 

parasite genotypes with relatively low drug susceptibility will likely be at relatively high 350 

frequencies [80]. 351 

 In addition to M&E applications, mixed models are also suited to testing hypotheses 352 

in R&D contexts, over and above what is achievable with marginal models alone. For 353 

example, ADE is (negatively) associated with pre-treatment levels of infection, both at an 354 

individual [81] and population level (i.e. the level of endemicity) [34], and generally 355 

increasing with decreasing level of infection. This is postulated to occur either via the (non-356 
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linear) relaxation of density-dependent constraints on female worm fecundity or other 357 

parasite population parameters following anthelmintic treatment [82], or on interference 358 

with the bioavailability of anthelmintics in high intensity infections [7]. Yet the opposite 359 

association of increasing efficacy with increasing infection level has also been reported [83]. 360 

These conflicting conclusions perhaps reflect the difficulty in robustly testing the hypothesis 361 

of density-dependent ADE using either sample-based or marginal model-based approaches. 362 

In the mixed model approach, however, inference is achieved via the off-diagonal elements 363 

of the variance-covariance matrix, which describes the correlation between an individuals’ 364 

infection level before treatment and their response to treatment (Box 3). In the analysis of 365 

the KSD, the mean of this parameter’s posterior distribution was -2.45, but with uncertainty 366 

intervals (Bayesian credible intervals) which cross 0 (-6.90 to 2.02), indicating no statistically 367 

significant association in either direction. This is also reflected visually in in Figure 1b where 368 

the intercept and the gradient of the individual fitted regression lines (on the logarithmic 369 

scale) show not obvious relationship. 370 

Diagnostic sensitivity 371 

An important enhancement to the modelling approaches described here will be to capture 372 

the effects of diagnostic performance on estimates of ADE, particularly on CRs which are 373 

believed to be particularly sensitive to imperfect diagnostic sensitivity [84]. A recent meta-374 

analysis [85] concluded that the use of single or (cross-sectional) duplicate Kato-Katz egg 375 

counts makes little difference to sample estimates of IRRs, but improves the accuracy of 376 

prevalence estimates and resulting (sample) CRs. This suggests that diagnostic performance 377 

may only influence CRs, but this conclusion is confounded by the fundamentally different 378 

ways in which prevalence and intensity are calculated. The customary procedure to 379 

estimate helminth prevalence from repeated cross-sectional diagnostic tests is to treat 380 

individuals contributing at least on positive test result as infected, discarding other negative 381 

results. Therefore, an individual is deemed uninfected only if the diagnostic produces a 382 

string of negative results; while an individual is deemed infected if a single positive result is 383 

returned. By contrast, intensity is typically calculated either by pooling all measured counts 384 

or by taking an average of the mean of repeated counts measured per individual. Therefore, 385 

it is unsurprising that the number of identified infected individuals increases with increasing 386 

diagnostic repeats (repeated measures), producing seemingly more accurate estimates of 387 
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prevalence and CRs (assuming 100% diagnostic specificity). However, this fails to capture 388 

uncertainty arising from imperfect sensitivity (and possible specificity) on each individual 389 

measurement or observation, whether a count or a binary indicator of infection status, 390 

which rather requires adaptation of the modelling approaches outlined here to incorporate 391 

prior information on diagnostic performance [73, 74]. 392 

Concluding remarks 393 

Model-based approaches to estimating ADE hold advantages over sample approaches in 394 

terms of power, versatility and strength of statistical inference, albeit requiring more 395 

assumptions and a somewhat more complicated formulation. Marginal models are suitable 396 

for inference at a population level, suitably inflating SEs of coefficients estimated from 397 

longitudinal and cross-sectional repeated measures while simultaneously allowing ADE to 398 

vary with individual- or community-level covariates. Mixed models permit greater depth of 399 

insight at the individual level, particularly on variation among individual drug responses and 400 

estimated ADE. This has an important potential M&E application for detecting shifts in the 401 

distribution of drug responses among individuals that may be indicative of decreasing ADE, 402 

possibly caused by emerging drug resistance, during chemotherapeutic control of human 403 

and livestock helminthiases. 404 
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Boxes 599 

Box 1 Regression model notation, structure and interpretation 600 

Response variable 601 

The response variable is denoted Yij, where j = 1, 2, …, mi indicates an observation on 602 

individual i =1, 2, …, n. Hence a dataset comprises Σi mi realisations of Yij, denoted yij. The 603 

Kenyan schoolchildren dataset (KSD) comprises mi = 4 Kato-Katz hookworm egg count 604 

observations of Yij—two before treatment, yi1 and yi2, and two after treatment, yi3 and yi4—605 

from each of n =78 individuals, giving 78 × (2 + 2) = 312 observations. The expected value 606 

and variance of Yij are denoted μij and νij respectively. In the analysis of the KSD, μij naturally 607 

represents a mean egg count. However, for illustration, if Yij denotes a binary variable 608 

indicating the presence or absence of hookworm eggs, then μij represents prevalence. 609 

Covariates 610 

Covariates are collected in a p + 1 vector of xij = (1, xij1, xij2, …, xijp) with accompanying 611 

coefficients β = (β0, β1, β2, β3), the intercept denoted β0. This notation is adapted to focus on 612 

the time of observation covariate which permits estimation of anthelmintic drug efficacy 613 

(ADE). Hence, in the KSD analysis, we indicate observations made before and after 614 

treatment by tij = 0 and tij = 1 respectively. The level of infection before treatment is allowed 615 

to vary among villages by setting xij = 0 and xij = 1 for Chiramani and Kidimu respectively. We 616 

include the interaction xij × tij, such that observations made after treatment in Chiramani 617 

and Kidimu are indicated by xij × tij = 0 and xij × tij = 1 respectively. This allows ADE to vary 618 

among villages. The complete covariate vector is xij = (1, tij, xij, xij × tij). 619 

Regression structure 620 

The linear combination (linear predictor), ηij = xijβ, relates to μij by a link function, g(μij). 621 

Binary and count data are typically modelled using links that convert μij to the logarithmic 622 

scale; often ηij = g(μij) = ln(μij) and ηij = g(μij) = logit (μij) = ln [μij/(1 − μij)], yielding log-linear 623 

and logistic regression structures respectively. The logarithmic scale permits relative rather 624 

than absolute comparison of covariate effects (i.e. the relative change in infection levels 625 
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before and after treatment). Risk or rate ratios (RRs) and odds ratios (ORs) are natural 626 

outputs from log-linear and logistic models respectively. 627 

Coefficient interpretation 628 

Anthelmintic drug efficacy is expressed as the proportional reduction in infection levels after 629 

treatment compared to before treatment;  one minus the relative change. For log-linear 630 

structures, ADE = 1 – RR, representing either an intensity reduction rate (applied to count 631 

data) or a cure rate (CR, applied to binary data). For logistic structures applied to binary 632 

data, ADE = 1 – OR, but here ADE represents cure odds (CO) not CR. Since the OR is less 633 

intuitive than the RR (prone to misinterpretation [86]) one can either convert CO to CR [55], 634 

or preferably, estimate CR directly using a log-linear regression [54]. The latter approach 635 

was used to estimate the model-derived CRs (Table 2) from the KSD. 636 

  637 
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Box 2 Marginal models for measuring population anthelmintic drug efficacy 638 

A marginal model appropriate for estimating anthelmintic drug efficacy (ADE) is defined by 639 

g(μij) = xijβ, 640 

νij = f(μij), 641 

Corr(Yij, Yik) = R,         Eqn. I 642 

where R is a correlation matrix comprising coefficients r1 and r2 which indicate, respectively, 643 

cross-sectional and longitudinal correlations among Yij and other notation is as defined in 644 

Box 1. Note that the simplest exchangeable correlation structure would comprise only a 645 

single correlation coefficient and could be written succinctly as Corr(Yij,Yik) = r for j ≠ k. 646 

Marginal models are fitted to data using generalized estimating equations (GEEs) [61, 62], a 647 

quasi-likelihood approach [87] that does not require assumptions on the distribution of Yij 648 

beyond its first two moments [51, 53]; here defined by μij, νij and R.  649 

In the example analysis of the Kenyan schoolchildren dataset (KSD) (Table 2) extra-650 

Poisson variation among marginal observations (observations sharing a set of covariates) 651 

was modelled by incorporating a scale parameter φ, such that f(μij) = φμij. To facilitate 652 

interpretation of the estimated coefficients as a measure of ADE (Box 1), a log-link function, 653 

g(μij), was used both for when Yij was considered as a count variable (to estimate intensity 654 

reduction rate, IRR) and when it was considered as binary variable (to estimate cure rate, 655 

CR). Specifically,  656 

ADEi = 1 – exp[β1 + β3(xij × tij)],       Eqn. II 657 

noting that the interaction between village and observation time (xij × tij, Box 1) allows ADEi 658 

to be different among individuals from different villages; but within a village ADEi is 659 

constant. 660 

  661 
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Box 3 Mixed models for measuring individual anthelmintic drug efficacy 662 

A mixed model appropriate for estimating individual anthelmintic drug efficacy (ADE) is 663 

defined by 664 

Yij ~ D(μij), 665 

g(μij) = βxij + bizij + eij, 666 

bi ~ MVN(0, Σ).         Eqn I 667 

Here D denotes a parametric distribution for Yij; typically either a Poisson distribution if Yij is 668 

a count, or a Bernoulli distribution if Yij is binary. Vector zij comprises covariates which are 669 

treated as having coefficients that exert random effects; vector bi comprises accompanying 670 

coefficients. An ubiquitous assumption is that bi follows a multivariate normal (MVN) 671 

distribution with means 0 and variance-covariance matrix (VCM) Σ. The term, eij, is an 672 

observation-specific, normally distributed, random effects error term, permitting extra-673 

Poisson variation (overdispersion) among Yij sharing a common set of covariates [70, 78, 88]. 674 

Other notation is defined in Box 1. 675 

In the example mixed model analysis of the Kenyan schoolchildren dataset (KSD) 676 

(Figure 1), the intercept, β0, and coefficient of observation time tij, β1, are treated as 677 

exerting random effects. Hence, zij = (1, tij), bi = (bi0, bi1) and Σ is a 2-by-2 VCM. The 678 

coefficient bi0 captures correlation among repeated observations per individual; the 679 

coefficient bi1 permits ADE to vary among individuals. The variance components in the main 680 

diagonal of Σ (top left to bottom right) quantify, respectively, variation in β0 and β1 among 681 

individuals; the anti-diagonal elements (top right to bottom left) quantify the covariance. 682 

Defining a log-link function, g(μij), ensures that the measure of ADE is an intensity reduction 683 

rate (IRR) or a cure rate (CR) when fitting to count or binary data respectively (Box 1). 684 

Specifically,  685 

ADEi = 1 – exp[β1 + β3(xij × tij) + bi1],       Eqn II 686 

noting that bi1 allows ADEi to vary among individuals, even among those sharing the same 687 

xij, i.e. within the same village.  688 

 689 
  690 



 25 

 Glossary 691 

Arithmetic mean: the sum of a collection of numbers divided by the number in the 692 

collection, often simply called the mean or average. 693 

Cure rate (CR):  the proportion of individual hosts positive for parasites who become 694 

parasitologically negative after treatment. 695 

Exchangeable correlation: correlation among observations measured from a single unit (e.g. 696 

multiple parasite counts measured from a single host) that is assumed constant among units 697 

(i.e. among hosts).  698 

Fixed and random effects: definitions of fixed and random effects vary with the specific 699 

context [89]. Here, a covariate coefficients (parameter) specified as fixed exert a constant 700 

effect among individuals while coefficients specified as random effects exert a variable 701 

effect among individuals. Parameters exerting random effects include a fixed component 702 

which represents the hypothetical effect on the ‘average individual’ but not necessarily the 703 

average effect among individuals. 704 

Generalized estimating equation (GEE): a technique for estimating the parameters of a 705 

marginal model fitted to correlated repeated measures (observations). The GEE approach is 706 

semi-parametric because it relies on the first two moment of the observed data, but not on 707 

the full likelihood. 708 

Generalized linear model (GLM): an extension of the simple linear regression model that is 709 

compatible with error distributions from any of the exponential family of probability 710 

distributions, including the normal, Poisson, binomial and gamma distributions. The simple 711 

linear regression model is a GLM with normally distributed errors. 712 

Generalized linear mixed model (GLMM): an extended GLM that includes a linear predictor 713 

comprised of covariate and accompanying coefficients that exert both fixed and random 714 

effects. 715 

Geometric mean: a type of mean or average which quantifies the central tendency of a set 716 

of numerical observations using the product, rather than the sum, of their values. Typically, 717 

geometric means are calculated by first taking the arithmetic mean of the log-transformed 718 

values before taking the exponent of the result to transform back onto the original scale. 719 

Hierarchical structure: observations that are nested within units to define a natural 720 

hierarchy. Examples are multiple parasite counts measured within a host; multiple hosts 721 
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living within a single household; multiple households within a single community. Such 722 

structure typically produces correlations among repeated measures (observations) made on 723 

the same unit. Thus repeated measures cannot be assumed statistically independent. 724 

Intensity reduction rate (IRR):  the infection load after treatment expressed as a proportion 725 

of the infection load before treatment. 726 

Linear predictor: the linear combination of covariates and coefficients within a statistical 727 

model. 728 

Link function: a function that relates the expected value of a probability distribution to the 729 

linear predictor within a statistical model. The natural logarithmic link function is typically 730 

used within statistical models for count data. For binomial models, where p is the 731 

probability of ‘success’, the logit link is often used, logit(p) = ln[p / (1 – p)]. 732 

Longitudinal data: measurements or observations made repeatedly on the same unit 733 

(repeated measures) through time, e.g. multiple hookworm egg counts made from the same 734 

individual host at different times. 735 

Marginal model: an adaptation of a GLM for use with correlated repeated measures 736 

(observations). Marginal refers to the marginal mean of observations from individuals 737 

(units) sharing a set of covariates. A marginal model comprises three model components; a 738 

marginal mean which depends on covariates; a marginal variance which is typically a 739 

function of the marginal mean, and a correlation structure for the repeated measures.  740 

Markov chain Monte Carlo (MCMC): a stochastic algorithm central to Bayesian statistical 741 

inference which samples parameter values from the posterior probability distribution by 742 

combining information from the likelihood of the observed data and the prior probability 743 

distribution of the parameters.  744 

Maximum likelihood (ML) estimation: a framework for estimating parameters of a 745 

statistical model by conditioning the probability of the observed data (the likelihood) on 746 

unknown parameter values using a probability distribution. 747 

Odds ratio (OR): the ratio of the odds that an outcome occurs given a set of covariates 748 

compared to the odds that the outcome occurs in their absence. E.g., the odds of observing 749 

(by Kato-Katz) hookworm eggs after one week treatment with albendazole divided by the 750 

odds of observing hookworm eggs before treatment. 751 

Overdispersion: the occurrence of variance that is greater than expected based on a simple 752 

probability distribution. Extra-Poisson variation is an example of overdispersed count data; 753 
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where the variance is greater than expected if the data were Poisson distributed (i.e. 754 

variance greater than the mean, ν > μ). 755 

Posterior probability distribution (posterior): the probability distribution of a random 756 

variable conditional on relevant observed data and prior information. The posterior 757 

probability is proportional to the likelihood of the data conditional on a set of parameter 758 

values multiplied by prior probability of the parameters. That is, posterior 759 

probability ∝ likelihood × prior probability. 760 

Prior probability distribution (prior): the probability distribution of a random variable that 761 

captures one’s uncertainty before (prior to) observing relevant data. An uninformative or 762 

vague prior expresses a high degree of prior uncertainty. This results in a posterior 763 

distribution which is dominated by the likelihood of observed data. Conversely, an 764 

informative prior will dominate the posterior if the data holds little information on the 765 

variable of interest. 766 

Rate ratio (RR):  the ratio of the rate of occurrence of an event given a set of covariates 767 

compared to the rate of occurrence in their absence. E.g., the average number of hookworm 768 

eggs counted (by Kato-Katz) one week after treatment with albendazole divided by the 769 

average number of hookworm eggs counted before treatment. 770 

Risk ratio (RR):  the ratio of the probability of an event occurring given a set of covariates 771 

compared to the probability of the event occurring in their absence. E.g., the probability of 772 

observing hookworm eggs (by Kato-Katz) one week after treatment with albendazole 773 

divided by the probability of observing hookworm eggs before treatment. 774 

Repeated measures: measurements or observations made repeatedly on the same unit, e.g. 775 

multiple hookworm counts measured from the same individual host. 776 

Restricted maximum likelihood (REML) estimation: an alternative to ML estimation for 777 

models that include random effects. In REML estimation, the dispersion of the random 778 

effects is estimated having averaged over some of the uncertainty in the fixed effects. By 779 

contrast, in ML estimation, the fixed effects estimates are treated as precisely correct.   780 

Sample statistic: a quantity calculated from a sample of data using simple mathematical 781 

functions which are independent of the sample’s distribution. 782 

Sampling distribution: the hypothetical expected distribution of a quantity estimated from 783 

a random sample of observations. 784 
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Sandwich estimator:  a standard error (SE) of an estimated quantity that is robust to 785 

misspecifications in the variance-covariance of the error distribution in a statistical model. 786 

Sandwich estimators are typically used with marginal models so that SEs (and confidence 787 

intervals) are invariant to inaccuracies in the specification of the repeated measures 788 

correlation structure. In this context, sandwich estimators are based on the empirically 789 

observed variation among unit-level statistics rather than on the model-derived variance-790 

covariance matrix which depends on the assumed correlation structure [53]. 791 

Standard error (SE):  the standard deviation of the sampling distribution of an estimated 792 

statistic (e.g. an arithmetic or geometric mean). 793 
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Figure legend 795 

Figure 1 Mixed model estimation of the efficacy of albendazole against 796 

hookworm in individual Kenyan schoolchildren 797 

The outputs depicted in panels (a)-(c) are derived from the log-linear mixed model described 798 

in Box 3, fitted to the longitudinal hookworm egg count data from the Kenyan 799 

schoolchildren dataset (KSD) summarized in Table 1. The model was fitted using Bayesian 800 

Markov chain Monte Carlo (MCMC) techniques implemented with the MCMCglmm package 801 

[85] for R [6]. Fixed effects were assigned uninformative normal prior distributions (priors), 802 

covariance terms of random effects were assigned uninformative inverse-gamma priors. 803 

Three starting values for the MCMC algorithm were assigned in order to assess convergence 804 

on the parameter posterior distributions and to check that our conclusions were not 805 

sensitive to the choice of starting values (see Supplementary material). In panel (a) black 806 

circles denote means of the two Kato-Katz egg counts observed per individual, before (BT) 807 

and seven days after (AT) treatment with albendazole in the villages of Chiramani and 808 

Kidimu. The grey lines join the estimated posterior means of the two Kato-Katz egg counts 809 

per individual. The thick black lines join the (population) posterior means marginalised over 810 

all individuals. These marginal means are indistinguishable from the sample mean egg 811 

counts BT and AT given in Table 1. In panel (b) thin grey lines and thick black lines join, 812 

respectively, the estimated individual and (population) marginal posterior means on the 813 

natural logarithmic scale of the linear predictor. The error bars are 95% Bayesian credible 814 

intervals (BCIs) (analogous to classical confidence intervals, CIs) about the posterior means. 815 

Note that after transformation onto the count scale depicted in panel (a), the BCIs become 816 

narrower than the thickness of the plotted black lines. In panel (c) the small black circles 817 

represent the estimated posterior medians of the individual intensity reduction rates (IRRs; 818 

also egg reduction rates, ERRs) and thin horizontal lines are accompanying 95% BCIs. Note 819 

the scale of the x-axis which indicates that the vast majority of individual IRRs are above 820 

90%, with a minority of substantive ‘outliers’. 821 
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Tables 

Table 1 The Kenyan schoolchildren dataset 

Village Mean (range) 
age in years 

Males / 
females 

na Timeb Datac Mean  
(±95% CId) 

Variance 

Chiramani 10 

(7, 13) 

15 / 13 56 BT Binary 0.75  

(0.62, 0.85) 

0.19 

    Count 12.75 

(6.50, 25.02) 

869 

   AT Binary 0.16 

(0.07, 0.32) 

0.14 

    Count 0.20 

(0.09, 0.42) 

0.27 

Kidimu 13 

(9, 18) 

20 / 30 200 BT Binary 0.46  

(0.34, 0.58) 

0.25 

    Count 9.81  

(5.05, 19.05) 

696 

   AT Binary 0.05 

(0.02, 0.13) 

0.05 

    Count 0.28  

(0.06, 1.30) 

4.5 

a Sample size, two observations per individual at each time point. The effective sample size is smaller 
because of the correlation among repeated measures. 
b Before treatment, BT, after treatment, AT. 
c Data on hookworm eggs in faeces measured by Kato-Katz, either recorded as a count or a binary 
(presence or absence) variable. 
d Confidence intervals calculated using a robust ‘sandwich’ estimator [53]. 
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Table 2 Efficacy of albendazole against hookworm in the Kenya 

schoolchildren dataset: sample and marginal model efficacies 

Village Method Efficacy (±95% CIa) 

  Intensity reduction rateb Cure rate 

Chiramani Sample 98% (88%, 100%) 79% (66%, 97%) 

 Model 99% (96%, 99%) 79% (53%, 90%) 

Kidimu Sample 97% (92%, 100%) 89% (70%, 95%) 

 Model 97% (85%, 100%) 89% (72%, 96%) 

a Confidence interval. For sample estimate, calculated by Monte Carlo block resampling percentile 
bootstrap [41]; for model estimate, calculated using a robust sandwich estimator [53]. 
b Also an egg reduction rate. 
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