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Abstract

In this paper, we study the global behavior of solutions to the spheri-
cally symmetric coupled Einstein-Klein-Gordon (EKG) system in the pres-
ence of a negative cosmological constant. For the Klein-Gordon mass-
squared satisfying a ≥ −1 (the Breitenlohner-Freedman bound being
a > − 9

8
), we prove that the Schwarzschild-AdS spacetimes are asymp-

totically stable: Small perturbations of Schwarzschild-AdS initial data
again lead to regular black holes, with the metric on the black hole exte-
rior approaching, at an exponential rate, a Schwarzschild-AdS spacetime.
The main difficulties in the proof arise from the lack of monotonicity
for the Hawking mass and the asymptotically AdS boundary conditions,
which render even (part of) the orbital stability intricate. These issues are
resolved in a bootstrap argument on the black hole exterior, with the red-
shift effect and weighted Hardy inequalities playing the fundamental role
in the analysis. Both integrated decay and pointwise decay estimates are
obtained. As a corollary of our estimates on the Klein-Gordon field, one
obtains in particular exponential decay in time of spherically-symmetric
solutions to the linear Klein-Gordon equation on Schwarzschild-AdS.
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1 Introduction

The subject of black hole stability has undergone rapid development in the
past ten years. There is now an extensive literature addressing the behavior of
linear wave equations on black hole backgrounds [18, 2, 39, 17, 21, 44, 1, 19], the
current state of the art being a decay result for φ satisfying �gφ = 0 with g being
the metric of a subextremal (|a| < M) Kerr spacetime [20]. In addition, there
has been progress in establishing improved decay rates [37, 36, 12, 22, 41, 43],
in developing techniques to address non-linear problems on fixed backgrounds
[38, 45] and, most recently, preliminary attempts to bridge the gap between
these linear and the prospective full non-linear stability problem [29].
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1.1 Scalar waves and the stability of black holes

While the problem of Kerr stability will, presumably, require the study of the
Bianchi equations as in [9], rather than the scalar wave equation, there is
nonetheless a coupled non-linear gravitational system, whose metric evolution
is governed entirely1 by a scalar field φ satisfying

�gφ = 0. (1)

This is the well-known spherically-symmetric coupled Einstein-scalar field sys-
tem

Rµν −
1

2
gµνR+ Λgµν = 8πTµν = 8π

[
∂µφ∂νφ− 1

2
gµν(∂φ)

2

]
(2)

with Λ being the cosmological constant and gµν a spherically symmetric met-
ric. The study of this system was initiated in the 1960ies. Over the years, a
complete and satisfactory picture of the dynamics has emerged for the asymp-
totically flat case (Λ = 0). In a sequence of papers [5, 7, 6, 8], Christodoulou
proved that generic initial data either evolve into regular black holes or into
spacetimes which are geodesically complete and whose Bondi mass approaches
zero along null-infinity. For the black hole case, quantitative rates of approach
to the Schwarzschild metric on the domain of outer communication have been
established in [15].2

The result of [15] in fact holds for any data containing a trapped surface
and hence applies to a much larger class of data than perturbations of Schwarz-
schild. Its proof, however, exploits extensively the spherical symmetry: (1)-(2)
reduces to a system of 1+1 dimensional PDEs, for which many additional an-
alytical tools are available. On the other hand, it was shown in [13, 30] that
the vectorfield techniques developed for the linear wave equation on a fixed
Schwarzschild background are sufficiently robust to understand the dynamics of
the coupled system (1)-(2) in a neighborhood of Schwarzschild, that is to say
to prove asymptotic stability of Schwarzschild within this model.3 This avoids
the use of techniques which are special to 1+1 dimensional PDEs and connects,
in a satisfactory manner, the numerous works on the linear scalar wave equa-
tion with a non-linear model of gravitational collapse, illustrating at the same
time how appropriate the vectorfield method is for these types of non-linear
applications.

1By this we mean that if φ = 0, the spacetime is stationary. The metric g depends
nonetheless non-linearly on φ via the Einstein equations.

2These polynomial rates are commonly known as “Price’s law”. Note that in [15] the
system studied is actually the spherically symmetric Einstein-Maxwell-scalar field equations,
which reduce to (1)-(2) if the Maxwell field vanishes.

3We remark that the paper [30] studies a five-dimensional version of the spherically-
symmetric Einstein scalar field system, more precisely, a class of vacuum, SU (2)-symmetric
spacetimes, also known as biaxial Bianchi IX. The method, however, easily specializes to the
spherically-symmetric coupled scalar field system in four dimensions.
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1.2 Linear wave equations in asymptotically de-Sitter and
Anti-de-Sitter spacetimes

It is natural to ask how these results change when Λ 6= 0 in (2). The physical
motivation to consider Λ > 0 originates from cosmology and the observed accel-
erated expansion of the universe. The case Λ < 0, on the other hand, appears
naturally in string theory and in the context of the AdS-CFT correspondence,
see Section 1.5.

For a positive cosmological constant, Λ > 0, the system (2) has been stud-
ied (without symmetry assumptions and for more general matter models) to
prove stability of the trivial solution, de Sitter space [25, 42]. In the black hole
context, there has also been work on the linear wave equation �gφ = 0 for g a
fixed Schwarzschild-de Sitter metric [16, 3, 40] and more recently, Kerr-de Sitter
metric [24, 47, 23].

For a negative cosmological constant, Λ = − 3
l2 < 0, there are only few

results available, the linear problem having recently been addressed in [28]. In
the latter paper, the massive wave equation,

�gφ− 2a

l2
φ = 0 , (3)

with the mass-squared of the Klein-Gordon field a satisfying the Breitenlohner-
Freedman (BF) bound −a < 9

8 , is studied for a class of stationary spacetimes
(M, g), which are sufficiently close to a slowly rotating Kerr-AdS spacetime.
A boundedness result is then proven for a certain class of solutions to (3).
The existence and uniqueness (after imposing suitable boundary conditions)
of this class of solutions to (3) on any asymptotically AdS spacetime was only
assumed in [28], with a proof now available in [31]. (See also [46], which likewise
proves well-posedness of (3) with Dirichlet conditions for asymptotically AdS
spacetimes admitting a conformal compactification.) Note that even this local
well-posedness statement is non-trivial in view of the non globally-hyperbolic
nature of these spacetimes. We refer to the introduction of [28], as well as the
original work [4] for more motivation and an explanation of the BF-bound.

1.3 The spherically symmetric Einstein-Klein-Gordon sys-
tem

In the present paper, we study the corresponding non-linear coupled gravi-
tational system, the so-called Einstein-Klein-Gordon (EKG) system. As in
the asymptotically flat case, the metric evolution is governed by (3) in the
sense that if φ = 0, then the only spherically symmetric solutions are the
Schwarzschild-Anti-de-Sitter spacetimes or Anti-de-Sitter, by a simple gener-
alization of Birkhoff’s theorem.

Hence, we are interested in triples (M, g, φ) such that (M, g) is a spherically-
symmetric spacetime satisfying

Rµν −
1

2
gµνR+ Λgµν = 8πTµν , (4)

4



Tµν = ∂µφ∂νφ− 1

2
gµν(∂φ)

2 − a

l2
φ2gµν , (5)

and such that φ satisfies the Klein-Gordon equation (3) associated to (M, g)
with mass a ∈ R and where we recall that Λ = − 3

l2 , with l ∈ R. As for the
linear case, we shall need a bound on a. In this paper, we will assume

a ≥ −1 , (6)

which includes the important conformally invariant case, a = −1. In fact,
several results of this paper will hold under the weaker BF-bound a > − 9

8 . The
only argument which exploits a ≥ −1 is contained in the proof of the integrated
decay estimate (Proposition 3.3).

The study of the EKG system with Λ < 0 was initiated in [33], where we
prove that this system is well-posed under appropriate regularity and boundary
conditions, with the time of existence of solutions depending only on an invariant
H2-type norm for the Klein-Gordon-field. As applications, we formulated two
extension principles and obtained the existence and uniqueness of a maximal
development. These results form the basis for the analysis conducted in this
paper.

1.4 The Stability of Schwarzschild-AdS spacetimes

The main result of this paper may be summarized as follows:

Theorem 1.1. The Schwarzschild-Anti de Sitter spacetime is both orbitally
and asymptotically stable within EKG in spherical symmetry provided the Klein-
Gordon mass satisfies (6). Moreover, the convergence to Schwarzschild-AdS is
exponential in time on the black hole exterior.

In other words, small spherically symmetric perturbations of Schwarzschild-
AdS spacetimes again evolve into black hole spacetimes with a regular event
horizon and a complete null-infinity (orbital stability). Moreover, the scalar
field decays exponentially towards the future (asymptotic stability). A more
precise version of Theorem 1.1, which includes in particular the specific decay
rates and the coordinate systems they are measured in is given in Section 3,
Theorem 3.8.

Remark 1.2. We emphasize that the stability statement of Theorem 1.1 is
expected to be very special to spherical symmetry, as suggested by our recent
analysis [32] of the Klein-Gordon equation on a fixed Kerr-AdS background (with
no symmetry assumptions on the Klein-Gordon field). The underlying reason
is that trapping is entirely absent in spherical symmetry, while in the general
case the combination of the familiar trapping and the boundary conditions near
infinity leads to a version of “stable trapping” which may reasonably be expected
to trigger an instability in the non-linear problem. See [32] for further details.

We spend the remainder of this introduction to discuss the techniques en-
tering the proof of Theorem 1.1. As in the asymptotically-flat case, the system
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(3)-(4)-(5) comes with a conservation law, which is manifest in the properties of
a generalized Hawking mass (renormalized by a cosmological term). Contrary
to the former case case, however, this Hawking mass does not enjoy any mono-
tonicity properties, in view of the possibly negative zeroth order mass term in
(5). This can also be understood from the vectorfield point of view: There is a
certain geometric vectorfield, T , which is not Killing but nevertheless gives rise
to a conservation law via the energy momentum tensor of φ. This is the well-
known Kodama vectorfield in spherical symmetry [34]. From this perspective,
the failure of monotonicity is simply the energy momentum tensor (5) not satis-
fying the dominant energy condition. In any case, this behavior implies that the
extension principle developed for the asymptotically-flat case (see [14, 11, 10])
is not available, since it relied on the monotonicity properties of the Hawking
mass. While the general structure of the Penrose diagram can in fact still be
inferred from a generalized extension principle (originally developed in [35] and
adapted to our problem in [33]), the lack of monotonicity turns proving the com-
pleteness of null-infinity into a difficult problem.4 This is in stark contrast to
(2), where the completeness followed (for any data containing a trapped surface)
from the extension principle and the monotonicity alone [11].

Studying the massive wave equation on Schwarzschild-AdS in [28], we ob-
served that while the energy density is not pointwise positive definite, one can
still prove a global doubly-weighted Hardy inequality on spacelike slices, al-
lowing one to absorb the zeroth order term by a derivative term and hence to
establish positivity in an integrated sense. It turns out that for the non-linear
system (3)-(4)-(5), this integrated monotonicity survives in a region away from
the future event horizon (whose location is bootstrapped in the non-linear prob-
lem under consideration). Close to the horizon, on the other hand, we have the
redshift available, which will allow us to control the wrong-signed zeroth order
term. We will see two manifestations of the redshift here: One in the frame-
work of vectorfields (and hence L2-type estimates), the other in the context
of pointwise estimates along characteristics (originally developed in [15]), the
latter being a typical feature of 1+1 dimensional systems.

It is instructive to compare this situation with the case of the linear wave
equation on slowly rotating asymptotically-flat Kerr spacetimes. For these
spacetimes, there is a conserved energy associated with the Killing field ∂t,
which is negative in a region close to the horizon, as the latter vectorfield be-
comes spacelike there. This is the well-known ergo-sphere and the phenomenon
of superradiance that it triggers. One of the main insights of [21] was that this
problem can be resolved by exploiting the redshift effect as a stability mech-
anism near the horizon. It is very much in this fashion that we are able to
remedy the problems near the horizon for (3)-(4)-(5). Our setting is easier in
that we are dealing with a highly symmetric problem (in particular, there is
no trapping!), but at the same time it introduces new difficulties since we are
addressing a fully coupled problem and since for us the non-positivity is actually

4Note that the completeness is a crucial ingredient of the orbital stability statement of
Schwarzschild-AdS within (3)-(4)-(5).
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a global feature.
Following this strategy, which is unfolded in a bootstrap argument on the

location of the event horizon, we will prove that the scalar field φ remains small
outside the future event horizon, provided the initial data is chosen sufficiently
small. In a second step, we prove an integrated decay estimate, which implies
that φ has to decay towards the future. While the existence of such an esti-
mate may already be suggested from the non-existence of stationary solutions
in the linearized setting (cf. Appendix A), we emphasize that it is the spherical
symmetry which allows such an unrestricted integrated decay estimate here: In
the non-symmetric (linearized) setting this estimate is expected to lose expo-
nentially in the angular momentum modes. See Remark 1.2 and our [32].

This almost completes the proof of the theorem except for an issue which
has to do with the radial decay towards null-infinity. We recall from [33] that
the well-posedness statement is formulated in terms of a weighted H2-norm for
φ. To establish global existence in this space we need to also commute with
the vectorfield T mentioned above. This introduces a fair amount of error-
terms (as T is not Killing) which are, however, easily controlled from previous
bounds and by adding an ǫ of the integrated decay estimate that we can prove
simultaneously for Tφ. It then follows that Tφ satisfies the same boundedness
and decay estimates as φ does, which in particular establishes improved decay
for Tφ. From this, the radial decay for all first derivatives can be improved,
depending on how close a is to the Breitenlohner-Freedman bound (the closer,
the smaller the improvement). This last step uses a version of the redshift
effect which is present for asymptotically AdS spacetimes near null-infinity.5

Collecting the improvements one recovers global uniform boundedness in the
H2-spaces of [33].

Finally, one proves that the integrated decay estimate implies exponential
decay of the energy. This relies on the characteristic r-weights in the energy of
asymptotically AdS spacetimes: Unlike in the asymptotically-flat context, the
integrated decay estimate here controls the energy integrated in time without
any loss of r-weights. From the statement that the energy integrated in time is
controlled by the energy itself, exponential decay follows.6

In summary, the paper settles (excluding questions about black hole interi-
ors) the issue of global dynamics for (EKG) for the mass range (6) and with
Dirichlet boundary conditions for φ near the Schwarzschild-AdS solution.

1.5 Hairy black holes and motivations from high-energy
physics

We conclude this introduction by providing some background information about
the system (3)-(4)-(5). An important motivation for the study of this system
derives from high energy physics, more precisely, the AdS-CFT correspondence

5This improvement arising after commutation has been exploited in [31] in the context of
weighted elliptic estimates on spatial slices and in [33] in the context of pointwise estimates.

6Note that the method of proof used in this paper to derive the decay statements of Section
3 may naturally be applied to the linear case, cf. Corollary 3.9.
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and its potential applications to condensed matter physics [48, 27, 26]. In this
field, systems such as (3)-(4)-(5) (coupled often also to electromagnetism or
complex scalar fields) are considered as models describing phase transitions in
superconductors. From the gravitational point of view, such phase transitions
correspond to non-trivial (i.e. with non-identically vanishing scalar field) sta-
tionary black hole spacetimes, also known as black holes with “scalar hair”.
Such solutions are possible in principle because the “no-hair” theorems valid in
the asymptotically flat case do not (typically) generalize to the case of a nega-
tive cosmological constant. The main result of this paper excludes the existence
of such hairy black holes in a neighborhood of the Schwarzschild-AdS solution
within the class of boundary conditions on φ considered.

As suggested from asymptotic expansions of (3), there is an important al-
ternative class of boundary conditions, Neumann-conditions, for φ.7 For this
class, one could attempt to carry out a similar program as in [28, 33]: Prove
a well-posedness statement for (3) and thereafter for the non-linear (3)-(4)-(5),
now imposing Neumann conditions at the boundary. The global dynamics un-
der these circumstances may be more complicated, even in a neighborhood of
Schwarzschild. In particular, the aforementioned hairy black hole solutions may
enter the picture. We postpone the analysis of this system to future work.

1.6 Outline

The outline of this paper is as follows. Section 2 contains all necessary back-
ground material to perform the analysis: We construct the Schwarzschild-AdS
spacetime in Section 2.2 and introduce the functional framework adapted to
our problem (Section 2.4.1). The existence of a maximal development is also
recalled (Section 2.4). After these preliminaries, we present a detailed version
of our main results in Section 3. The basic boundedness estimates are proven
in Section 4. In Section 5 we derive integrated decay estimates via vector-
field methods. Higher-order estimates as well as improved decay estimates are
derived in Section 6. Appendix A contains an independent result establish-
ing the non-existence of stationary solutions for the linear wave equation on
Schwarzschild-AdS satisfying the boundary conditions of [28, 31].

Acknowledgement: We thank two anonymous referees for a careful read-
ing of the manuscript which lead to significant improvements in the presentation.

7at least in the range 5
8
≤ −a < 9

8
. For −a < 5

8
, there is only one solution and no freedom

to impose boundary conditions.
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2 Preliminaries

2.1 The spherically-symmetric Einstein-Klein-Gordon
system in double null coordinates

We start by recalling a standard result (see [10, 11, 15]) regarding the form of the
equations in double null coordinates for spherically symmetric solutions. It may
be paraphrased by saying that the analysis of the spherically symmetric EKG
system reduces to the study of the equations (8)–(12) on a 1 + 1 dimensional
Lorentzian manifold.

Lemma 2.1. Let Q be a C3 two-dimensional manifold (possibly with boundary)
and M = Q× S

2. Let g be a C2 Lorentzian metric on M and φ a C2-function
on M. Assume that (M, g, φ) is a solution to the system (3)-(4)-(5) and that
(M, g, φ) is invariant under the natural action of SO(3), i.e. the latter acting
transitively, with spacelike orbits, and by isometry on the S

2-part of M.8 The
manifold Q then inherits a natural Lorentzian metric from (M, g) as follows.
Let π denote the canonical projection π : M → Q. For any XQ,YQ ∈ TQ, there
exist unique vectors X and Y , which are orthogonal to the S

2-orbits and project
to XQ,YQ. Therefore gQ(XQ,YQ) = g(X,Y ) defines a natural metric on Q.
Denote by r the area-radius of the spheres of symmetry. Then, locally around
any point of M, there exist double null coordinates u, v such that the metric
takes the form:

g = −Ω2dudv + r2dσS2 , (7)

such that −Ω2dudv = π∗gQ, Ω > 0 and r > 0 may be identified with C2-
functions depending only on (u, v) and where dσS2 denotes the standard metric
on S

2. Moreover, the Einstein-Klein-Gordon equations9 reduce to the following
set of equations on Q:

∂u

( ru
Ω2

)
= −4πr

(∂uφ)
2

Ω2
, (8)

∂v

( rv
Ω2

)
= −4πr

(∂vφ)
2

Ω2
, (9)

ruv = −Ω2

4r
− rurv

r
+ 4πr

(
aΩ2φ2

2l2

)
− 3

4

r

l2
Ω2, (10)

(log Ω)uv =
Ω2

4r2
+
rurv
r2

− 4π∂uφ∂vφ, (11)

∂u∂vφ = −ru
r
φv −

rv
r
φu −

Ω2a

2l2
φ. (12)

Note that (8) and (9) are the Raychaudhuri equations governing the evo-
lution of area of the spheres of symmetry. Note also that the last equation

8For simplicity, we will exclude here any possible axis of symmetry, since this is sufficient
for the purpose of this paper.

9By a small abuse of notation, we denote functions on M and their projections to Q by
the same symbols.
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is simply the wave operator associated with g acting on spherically symmetric
scalar fields, which may be written shorthand as

0 = �gφ− 2aφ

l2
= − 4

Ω2

(
∂u∂vφ+

ru
r
φv +

rv
r
φu

)
− 2aφ

l2
. (13)

We shall use the following first order notation:

ru = ν ; rv = λ ; rφu = ζ ; rφv = θ ; κ = − Ω2

4ru
; γ =

Ω2

4rv
. (14)

We can then rewrite the Raychaudhuri equations as

∂uκ = −Ω2

ν2
rπ(∂uφ)

2 = − 16

Ω2
κ2rπ(∂uφ)

2 < 0 ; ∂u log κ =
4πr

ν
(∂uφ)

2 (15)

and

∂v log γ =
4πr

λ
(∂vφ)

2. (16)

We define the (renormalized) Hawking mass,

̟ =
r

2

(
1 +

4rurv
Ω2

)
− Λ

6
r3 =

r

2

(
1 +

4rurv
Ω2

)
+
r3

2l2
, (17)

which is seen to satisfy

∂u̟ = −8πr2
rv
Ω2

(∂uφ)
2 +

4πr2a

l2
ruφ

2 , (18)

∂v̟ = −8πr2
ru
Ω2

(∂vφ)
2 +

4πr2a

l2
rvφ

2 . (19)

The quantity

1− µ := 1− 2̟

r
+
r2

l2
= −4rurv

Ω2
(20)

will be used frequently. We finally collect some further identities, which will be

useful to refer to in later computations. The volume element is
√−g = Ω2r2

2

√
σS2

and hence

√−gguv = Ω2r2

2

(−2

Ω2

)√
σS2 = −r2√σS2 . (21)

The following identities hold for the Christoffel symbols: Γµuv = 0 for µ =
{u, v, θ, φ} and

Γuuu = guv (guv)u =
2Ωu
Ω

, Γvvv = guv (guv)v =
2Ωv
Ω

, (22)
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gµνΓuµν =
4rv
rΩ2

=
1

rγ
, gµνΓvµν =

4ru
rΩ2

= − 1

rκ
. (23)

The square of the gradient of φ is

g(∇φ,∇φ) = −4

Ω2
φuφv. (24)

Finally, the wave equation for r may be rewritten using the Hawking mass ̟:

ruv = −Ω2̟

2r2
− Ω2r

2l2
+

2πraΩ2φ2

l2
. (25)

2.2 Schwarzschild-AdS

We now construct the Schwarzschild-AdS family from the point of view of
Lemma 2.1. Let M > 0, l > 0 be given real parameters. Define rASch to

be the unique positive real root of F (X) = 1− 2M
X + X2

l2 . Let us also define the
following dimensionless parameters:

c1 =
rASch
l

=: Rh , c2 = R2
h + 1 , c3 =

Rh
R2
h + 1

, c4 =
R2
h + 1

3R2
h + 1

,

as well as the function h : (0,∞) → R,

h (r) = log (3M − rASch) +
1

lc3

∫ 3M

r

dρ
−c3 · ρl + c4
ρ2

l2 + c1
ρ
l + c2

+
C

lc3
,

where C =
∫∞

3M
dx
F (x) . Note h (r) ∼ log r as r → ∞. Finally, let j : (0,∞) → R,

j (r) = −4l2 (c3)
2
(r − rASch)e

−h(r) .

One checks that j is monotonically decreasing, hence injective, and computes
the constants

Jmax = lim
r→0

j (r) = 4l2 (c3)
2
rASche

−h(0) > 0 Jmin = lim
r→∞

j (r) = −4l2 (c3)
2
.

Define the manifold Q ⊂ R
2 by

Q = {(U, V ) ∈ (−1, 1)× (−1, 1)
∣∣∣ Jmin < tan

(π
2
U
)
tan

(π
2
V
)
< Jmax} .

Finally, equip the manifold M = Q× S
2 with the metric

g = −e
h(r)

4r

[
r2

l2
+
rASch
l2

r +
r2ASch
l2

+ 1

]
π dU

cos2
(
π
2U
) π dV

cos2
(
π
2V
) + r2dσ2

S2
(26)

where the area radius r = r (U, V ) is defined implicitly via

tan
(π
2
U
)
tan

(π
2
V
)
= j (r) = −4l2 (c3)

2
(r − rASch)e

−h(r). (27)

11



The manifold (M, g) with g given by (26) is, by definition, the maximally ex-
tended Schwarzschild AdS spacetime. Note that the set of (U, V ) for which
tan

(
π
2U
)
tan

(
π
2V
)
= Jmax corresponds to two disconnected boundary compo-

nents ofQ ⊂ R
2 with the area radius going to zero as this set is approached. One

may easily check that the curvature blows up at this part of the boundary. The
set of (U, V ) for which tan

(
π
2U
)
tan

(
π
2V
)
= Jmin constitutes another two (also

disconnected) boundary components of Q with the area radius approaching in-
finity as these points are approached from Q. We will write I for the boundary
component with U < 0. The remaining boundary components of Q ⊂ R

2 are
simply the points (0,−1), (0, 1), (1, 0), (−1, 0). The set of points (U, V ) ∈ Q
with U = 0 and V ≥ 0 is called the future event horizon of the black hole, which
we have denoted by H. The Penrose diagram of the spacetime is depicted below
(see Appendix C of [15] for a formal introduction to Penrose diagrams). The
spacetime is maximally extended in the sense that all its geodesics are either
affine complete or they terminate at the curvature singularity at r = 0 in finite
affine time.

VU

r = 0

r = 0

r = ∞

H

I

QI
r = ∞

(0, 1)(1, 0)

(0,−1) (−1, 0)

V
=
V
0

Unfortunately, the coordinates of (26) are not very well suited to identify the
metric as being asymptotically AdS. To remedy this, we now consider the sub-
manifold QI = Q ∩ {U < 0} ∩ {V > 0} and express the metric on QI in the
more familiar Eddington Finkelstein (EF)-coordinates. Perform the following
coordinate transformation to (u, v)-coordinates on QI :

−2lc3e
− u

2lc3 = tan
(π
2
U
)

, 2lc3e
v

2lc3 = tan
(π
2
V
)
. (28)

Note that the (u, v) coordinate system coversQI with range (−∞,∞)×(−∞,∞)
and that the boundary component U = 0 of QI in Q corresponds to u → ∞
and similarly V = 0 to v → −∞. Note also that from (27) we have r > rASch
on QI and r = rASch on the boundary of QI in Q. The metric g on QI × S

2

can then be written as

g = −e
h(r)

r

[
r2

l2
+
rASch
l2

r +
r2ASch
l2

+ 1

]
4l2 (c3)

2
e

v−u
2lc3 dudv + r2dσ2

S2
. (29)

12



Using (27) and (28) one easily checks that

eh(r)

r

[
r2

l2
+
rASch
l2

r +
r2ASch
l2

+ 1

]
4l2 (c3)

2
e

v−u
2lc3 = 1− 2M

r
+
r2

l2
,

which takes (29) into the familiar EF-form on QI . Note that in the EF-

coordinates we have the familiar relations 2rv = −2ru =
(
1− 2M

r + r2

l2

)
. In

particular, the set I gets “straightened out” in these coordinates corresponding
now to a line along which u+ v is constant.

Consider finally a ray V = V0 > 0 in Q as indicated in the figure above.
As this ray may equivalently (and conveniently) be described by its EF-v-
coordinate, v0, we shall denote it by N (v0), and the past limit point where
it intersects the set I by (u0, v0). We can introduce a regular coordinate system
(ũ, v) covering the shaded region by keeping the EF-coordinate v and defining

ũ along N (v0) such that ũ (u0) = u0 and −2rũ (ũ, v0) = 1 + r2(ũ,v0)
l2 holds

along N (v0). In these coordinates we have N (v0) = {q ∈ Q | (ũq, vq) ∈
(u0, u0 + πl) × {v0}}. It is convenient to drop the tilde and (by a small abuse
of notation) identify the set N (v0) with its image in regular coordinates, i.e. to
write N (v0) = (u0, u0 + πl)× {v0}.

2.3 Perturbed Schwarzschild-AdS data

With N (v0) fixed, we will now prescribe perturbations of Schwarzschild data
on N (v0) and study their maximal development as in [33]. Instead of merely
referring to the results of [33], where characteristic initial data are constructed in
appropriate function spaces, we shall give a self-contained construction of initial
data on N (v0) in this section. This will enable us to introduce the smallness
conditions on the matter fields. The notation follows [33] and the reader is
invited to consult the latter paper for more details.

On N (v0) = (u0, u0 + πl) × {v0}, we define r̄ (u) = l tan
(
u0−u+lπ

2l

)
. This

fixes our u-coordinate, cf. [33].

The free-data

The free data then consists in a C2-function φ̄ : N (v0) → R satisfying the
smallness bound

r̄
3
2+

1
2 s

(
|φ̄|+ |r̄ φ̄u

r̄u
|
)
+
∣∣∣r̄ 7

2

∂u
φ̄u

r̄u

r̄u

∣∣∣ ≤ ǫ everywhere on N (v0) , (30)

where s = min
(√

9 + 8a, 2
)
, and in addition, being such that the combination

Φ̄ = r̄2
[
r̄ ∂u

(
φ̄u
r̄u

)
− 4φ̄u −

2ar̄u
r̄

φ̄

]
(31)

13



is integrable, Π (u) =
∫ u
u0

Φ̄ (ū) dū < ǫ for any u ∈ N (v0), and moreover, the
bound

∫

N(v0)

(
Φ̄2 r̄

2

r̄u
+Π2r̄u

)
du < ǫ2 (32)

holds. Note that both (30) and (32) are independent of the choice of the u-
coordinate.

Remark 2.2. The radial decay imposed on φ above is discussed extensively
in both [31] and [33]. Note that in [33], we choose the constant s in (30) to
be min(

√
9 + 8a, 1), compared to min(

√
9 + 8a, 2) here. While this additional

radial decay is not needed to establish well-posedness for the non-linear problem
(cf. [33]), it nonetheless can be shown to propagate. This was already remarked
in [33] and will be shown again explicitly later, Section 6.4.

Deduced quantities

From φ̄ we define the quantity ¯̟ as the unique C1-solution of

∂u ¯̟ = 8πr̄2
1− 2 ¯̟

r̄ + r̄2

l2

4r̄u

(
∂uφ̄

)2
+

4πr̄2a

l2
r̄uφ̄

2 , lim
u→u0

¯̟ (u) =M (33)

and the C1 quantity rv as

rv =
1

2

(
1− 2 ¯̟

r̄
+
r̄2

l2

)
exp

(∫ u

u0

4πr̄

r̄u

(
∂uφ̄

)2
du

)
. (34)

Note that rv is independent on the choice of u-coordinate on the data. We also
define the C1 quantity

Ω̄2 = − 4r̄urv

1− 2 ¯̟
r̄ + r̄2

l2

, (35)

and the shorthand κ̄ = rv
1−µ , which both depend on the choice of coordinates.

Finally, we define the C1 quantity T (φ) (see [33] as well as the discussion of the
vectorfield T in Section 5.2) as the unique solution of the ODE

∂u

(
r̄κ̄T (φ)

)
= −r̄rv ∂u

φ̄,u
r̄u

+ φ̄u

[
−2rv − 2

κ̄r̄2

l2
− 2κ̄ ¯̟

r̄
+

8πr̄2aκ̄φ̄2

l2

]
− aΩ̄2r̄

2l2
φ̄

with the boundary condition r̄κ̄T (φ) = 0. It follows from the conditions (32)
and (30) that

∫ u1

u0

r2
(
r̄2

|r̄u|
[
∂uT (φ)

]2
+ T (φ)

2|r̄u|
)
du < Cǫ2 (36)
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and also that |r 3
2T (φ)| < Cǫ, where C > 0 is a constant depending only on a, l

and M . Moreover, defining the C1 quantity φv = κ̄T (φ) + rv
r̄u
∂uφ̄, we see that

it satisfies

(
φv
)
u
= − r̄u

r̄
φv −

rv
r̄
φ̄u −

Ω̄2a

2l2
φ̄ . (37)

Note that (36) does not depend on the choice of u-coordinate.

Definition 2.3. An ǫ-perturbed Schwarzschild-AdS data set on N (v0) consists

in a free function φ̄ : N (v0) → R satisfying (30) and (32), together with the C1

deduced quantities ( ¯̟ , Ω̄, rv) as defined above. In particular, (36) holds for any
ǫ-perturbed Schwarzschild-AdS data set.

Remark 2.4. In [33], we constructed initial data with −2r̄u = 1− 2M
r̄ + r̄2

l2 +
o(r̄−1). Using the coordinate transformation

du⋆

du
=

1 + r̄2

l2

1− 2M
r̄ + r̄2

l2

= 1 +O
(

1

r̄3

)
(38)

near infinity, the ǫ-perturbed data set becomes manifestly a C1+k
a,M asymptotically

AdS data set in the sense of [33].

2.4 Maximum development and set-up

From [33], it follows that any ǫ-perturbed Schwarzschild-AdS data set admits a
unique (up to diffeomorphism) maximal development. We refer to [33] for the
precise statement of this result. Note also that by the uniqueness, specifying
φ = 0 identically will yield (a subset of) the Schwarzschild spacetime as its
maximum development.

Let us denote the quotient (by the symmetry group) of the maximal devel-
opment of some ǫ-perturbed Schwarzschild-AdS data set by Q ⊂ R

2. With λ
and ν defined as in (14), we let R ⊂ Q denote the regular region, i.e. the set of
points such that λ > 0, ν < 0. From [33], we have in particular:

Proposition 2.5. Let (M, g) be the maximal development of some ǫ-perturbed
Schwarzschild-AdS data set defined on N (v0) and Q = M/SO(3) its quotient.
Let u0 be the infimum of u on N (v0). For u > u0 we denote by N (u) ⊂ Q the
outgoing characteristic null-line u = constant emanating from the initial data.
Then the following is true:

1. The set
{u > u0 | N (u) ∈ R and r → ∞ along N (u)}

is non-empty.

2. Defining

uH := sup
u>u0

{u | N (u) ∈ R and r → ∞ along N (u)}, (39)
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as well as the subregions

RH := R∩ {u0 < u < uH} and RH := RH ∪N (uH) , (40)

we have that
sup
RH

v = sup
N(uH)

v .

This says that first singularities10 cannot arise along u = uH.

3. Define the set “null infinity” I = {(u, v∞ (u)) |u0 < u < uH}, where
v∞ (u) is the value of v such that we have limv→v∞(u) r (u, v) = ∞. There
exists a double-null coordinate system (u, v) covering RH such that:

κ =
1

2
on I, −ru

1 + r2

l2

=
1

2
on v = v0. (41)

Proof. By continuity, the data set contains a trapped surface, i.e. a point with
λ < 0. Hence, Corollary A.2 of [33] applies, which yields 1. and 2. as well as
the fact that the set I is well-defined. The existence of the coordinate system
follows from a simple coordinate transformation.11

We have depicted (a subset of) the Penrose diagram below. Note that I is
not a straight line in the regular coordinates (41).

v
=

v
0

u
=

uH

(uH, v1)

I

RH

We emphasize that, for convenience, we have defined null-infinity here so as not
to include the future limit point of the ray u = uH even if r → ∞ along u = uH,
which is a priori possible. It will be an important part of the orbital stability to
establish that r remains bounded along the horizon. In the asymptotically flat
case, the monotonicity of the Hawking mass and the Raychaudhuri equation
alone allow one to immediately conclude that r remains bounded along the
horizon. Here we will have to work quite hard for this statement.

10See for instance [10] for an introduction to the study of singularities in spherically sym-
metric spacetimes.

11Note that under a change of null-coordinates defined by û = f(u), v̂ = g(v), the quantities
Ω2, κ and γ transform as:

Ω̂2 =
Ω2

f ′g′
, κ̂ =

κ

g′
, γ̂ =

γ

f ′
.
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2.4.1 Norms and Constants

We define the following norms on RH. For any point (u, v) ∈ RH let uI (v) de-
note the u-coordinate of the past limit point where the v = const-ray intersects
I. (If confusion is unlikely, we will sometimes abbreviate uI = uI (v).)

‖ψ‖2H1
AdS

(u,v) =

∫ u

uI(v)

r2
[
r2

−ru
(∂uψ)

2 − ruψ
2

]
(ū, v) dū

+

∫ v

v0

r2
[
1− µ

rv
(∂vψ)

2
+ rvψ

2

]
(u, v̄) dv̄ , (42)

‖ψ‖2H1
AdS,deg

(u,v) =

∫ u

uI(v)

r2
[
1− µ

−ru
(∂uψ)

2
(ū, v)− ruψ

2

]
(ū, v) dū

+

∫ v

v0

r2
[
1− µ

rv
(∂vψ)

2
+ rvψ

2

]
(u, v̄) dv̄ . (43)

Note that both of these norms are independent of the choice of double null-
coordinates. From [33], it follows in particular that they are continuous in
(u, v). We also define spacetime energies capturing integrated decay:

Ideg [ψ] (D) =

∫

D

1

r2

[
(∂uψ)

2

γ2
+

(∂vψ)
2

κ2
+ r2ψ2

]
Ω2r2 (ū, v̄) dūdv̄ , (44)

and also the non-degenerate integrated decay norm

I [ψ] (D) =

∫

D

1

r2

[
r4

l4
(∂uψ)

2

r2u
+

(∂vψ)
2

κ2
+ r2ψ2

]
Ω2r2 (ū, v̄) dūdv̄ . (45)

In applications, the region D is often going to be

D (u, v) = RH ∩ {(u0, u]× [v0, v]}, (46)

with (u, v) ∈ RH.
Finally, we denote by BM,l a constant which only depends on the fixed

cosmological constant and the mass at infinity and by BM,l,a a constant which
also depends on the fixed parameter a.

Remark 2.6. The degenerate norm (43) originates from the conservation law
associated with the Hawking mass, cf. (18) and (19). As this norm degenerates
near the horizon (where 1 − µ is very small or zero) we need to control also
(42), which will be achieved using the redshift near the horizon. Similarly, we
have introduced two different energies measuring integrated decay. We will first
control (44) and then, again using the redshift, (45). As mentioned in the
introduction, a key property of the integrated decay energies is that they admit
the same asymptotic r-weights as the energy itself (something that is not possible
in the asymptotically-flat context). This will produce the exponential decay later
and is a characteristic feature of the AdS asymptotic end.
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2.4.2 The constant r-curves rX and rY

Since RH is part of the regular region, r ≥ rmin := r (uH, v0) holds in RH.
By the Raychaudhuri equation, a point on the initial data-ray v = v0 at which
rv < 0 cannot be part of RH. Since moreover in Schwarzschild rv < 0 holds
for r < rASch (recall rASch is the value of r on the horizon in Schwarzschild-
AdS), we have by the smallness assumption on the data the lower bound rmin ≥
rASch (1− C(ǫ)), with C(ǫ) → 0 as ǫ→ 0. Let c > 0 be a small uniform constant

(in particular, c
1
3 should still be much smaller than a+ 9

8 ) and define rY as the
unique real solution of

1− 2M

rY
+
r2Y
l2

= c
1
3 , (47)

Note that for c small we have the estimate

0 < rY − rASch ≤ c
1
3

2rASch

1 +
3r2

ASch

l2

. (48)

We choose c so small that in particular

2Ml2 (1−√
c)

r3Y
>

1

2
(49)

holds. Since this estimate is true for c = 0 from Ml2

r3
ASch

= Ml2

2Ml2−rASchl2
> 1

2 , this

is possible by continuity. Note that a-priori the curve r = rY could lie outside
of RH, namely, if rmin happens to be much larger than rASch. In the same
manner, we define a curve r = rX by solving

1− 2M

rX
+
r2X
l2

= d
1
3 . (50)

We assume d > c (hence rX > rY ). As for rY , we have

0 ≤ rX − rASch ≤ BM,ld
1/3,

By continuity, we can choose d so that the following estimate holds:

log
rX
rmin

<
1

2|a| . (51)

3 The main results

The main theorem can be found at the end of this section. We use this section to
outline the sequence of propositions leading to the theorem. Some propositions
are proven right away, while the proof of the three key propositions containing
the crucial estimates is postponed to Sections 4 to 6.

For the results below, recall the mass bound (6), the definition of an ǫ-
perturbed Schwarzschild-AdS data set (Definition 2.3) and that of the region
RH associated with it, (40).

Step 1: We first establish uniform bounds in the region RH.
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Proposition 3.1 (Basic estimates). There is an ǫ > 0 such that the solution
arising from an ǫ-perturbed Schwarzschild-AdS data set satisfies the following
estimate for (u, v) ∈ RH:

|̟ −M | 12 + |2κ− 1| 12 + |r 3
2φ|+

∣∣∣r 3
2
ζ

ν

∣∣∣+ ‖φ‖H1
AdS

(u,v)

≤ BM,l,a

[
‖φ‖H1

AdS
(uH,v0) + sup

v=v0,u≤uH

∣∣∣r 3
2
ζ

ν

∣∣∣
]
. (52)

We remark that Proposition 3.1 actually holds for the entire Breitenlohner-
Freedman range a > − 9

8 and not only the range (6). The proof of this proposi-
tion is contained in Section 4.

Proposition 3.2 (Improved and higher order bounds). Let

N [φ] (v0) =
[
‖φ‖H1

AdS
(uH,v0) + ‖Tφ‖H1

AdS
(uH,v0)

+ sup
I(v0)

∣∣∣r 3
2+

s
2
ζ

ν

∣∣∣+ sup
I(v0)

∣∣∣r 5
2
∂u (Tφ)

ν

∣∣∣+ sup
I(v0)

∣∣∣r 7
2

∂u
∂uφ
ru

ru

∣∣∣
]
<∞ (53)

with I (v0) = {(u, v0) | u ≤ uH} ⊂ N (v0) be a second order norm on the initial
data. There is an ǫ > 0 such that for any ǫ-perturbed Schwarzschild-AdS data
set we have the following estimates for (u, v) ∈ RH:

∣∣∣r 7
2

∂u
∂uφ
ru

ru

∣∣∣+
∣∣∣r 5

2
∂u (Tφ)

ν

∣∣∣+ ‖Tφ‖H1
AdS

(u,v) ≤ BM,l,a · N [φ] (v0) , (54)

and, for any δ > 0 and s = min
(√

9 + 8a, 2− 2δ
)
,

|r 3
2+

s
2φ|+

∣∣∣r 3
2+

s
2
ζ

ν

∣∣∣+ |r 1
2+

s
2φv| ≤ Cδ ·BM,l,a · N [φ] (v0) , (55)

where Tφ = 1
4κ∂vφ+ 1

4γ ∂uφ.

Note that all these bounds are independent on the choice of u-coordinate.
For a discussion of the role of the vectorfield T and its relation to the Hawking
mass see Section 5.2 and the discussion in the introduction.

Proposition 3.3. (Integrated decay) We have the integrated decay estimates

‖φ‖2H1
AdS

(u,v) + I [φ] (D (u, v)) ≤ BM,l,a‖φ‖2H1
AdS

(u,v0)
, (56)

I [Tφ] (D (u, v)) ≤ BM,l,a · N2 [φ] (v0) . (57)

Remark 3.4. The proof of Proposition 3.1 will not require the construction
of an integrated decay estimate. It exploits the redshift in terms of pointwise
estimates, a characteristic feature of spherical symmetry [15]. On the other
hand, the proof of both Propositions 3.2 and 3.3 will require integrated decay
for both φ and Tφ. It is precisely in our construction of the integrated decay
estimate that the restriction (6) enters.

The estimate (55) can be improved further by another commutation with T
in case that

√
9 + 8a ≥ 2, cf. Remark 6.9.
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The proofs of Propositions 3.2 and 3.3, which in view of the remark are
intertwined, will be carried out in Sections 5 and 6.

Step 2: The above estimates allow one to prove what is essentially the com-
pleteness of null-infinity.

Proposition 3.5. Let vm = supv≥v0{v | (uH, v) ∈ Q}. We must have vm = ∞.

Proof. Consider the family of curves of constant area radius r. In view of ru < 0
and rv > 0 holding in RH, these curves are seen to be timelike in RH and to
foliate RH. Now, either none of these constant r-curves has future limit point
(uH, vm), meaning that all of them intersect the horizon, or one of them, say
r = R, has (and hence all later ones, r > R, as constant r curves cannot
intersect). In the latter case, we consider the infinite “zig-zag”-curve as in the
diagram below

I

v
=

v
0

u
=

uH

r = R

and observe that the v-length of each constant u-piece is uniformly bounded
below. Namely, in view of the bound on κ and the fact that 1−µ

r2 ≤ 2
l2 to the

right of the curve r = R (for R sufficiently large depending only on M and l)
we have for each constant u-piece Ui

∫

Ui

dv ≥ l2

2

∫

Ui

κ (1− µ)

r2
dv =

l2

2

∫

Ui

rv
r2
dv ≥ l2

2R
.

Since there are infinitely many Ui in the zig-zag curve (r = R is timelike!),
vm = ∞ follows.

We turn to the first case (all constant r-curves intersecting the horizon and
hence limv→vm r (uH, v) = ∞). Assuming vm = V <∞ (otherwise, we are done)
we will show that this contradicts the fact that u = uH is the last u-ray along
which r = ∞ can be reached. Pick r = R very large, the corresponding curve
intersecting uH at q = (uH, vq), say. In view of the assumptions and the uniform
bounds on κ and ̟ of Propositions 3.1 and 3.2, we have 1−µ

r2 > c > 0 in RH

for a constant c. Indeed, this is obvious in RH ∩ {r ≥ R} by computation, and
immediate by compactness in RH∩{r ≤ R}, since rv = 0 cannot hold anywhere
in RH ∩{r ≤ R} (this would contradict that r → ∞ along any u = const ray in
RH). It follows that γ = − ru

1−µ is bounded on the data [u0, uH] × {v0}. Using

the bound on 1− µ, κ and φ one easily obtains (integrating (16) in v) that γ is
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uniformly bounded in RH. By a change of u coordinate (cf. the proof of Lemma
6.2 in [33]), one achieves that γ = 1

2 holds on I. In this new coordinate system,
one has that [∂u + ∂v]

1
r = 0 holds on I and hence that u = v on I. Moreover,

γu = 0 on I and, integrating (16) from I, the uniform bounds

∣∣∣r3
(
γ − 1

2

) ∣∣∣+ |r2γu| < C . (58)

With this established, all assumptions of the extension principle of Proposition
8.2 of [33] hold and we can extend the solution to a larger triangle, as depicted
below.

I

u
=

uH

v
=

v
0

r = R

This contradicts the assumption that uH is the last ray along which r → ∞ can
be reached.

Step 3: The estimate (56) implies exponential decay in v.

Corollary 3.6. Define the flux

F (v) =

∫ uH

uI

[
(∂uφ)

2

−ru
r4 + φ2 r2 (−ru)

]
(ū, v) dū (59)

and the region D⋆ (v1, v2) = D (uH, v2) ∩ {v ≥ v1}. Then

F (v) ≤ F (v0) exp (−BM,l,a · v) . (60)

Proof. Note that

I [φ] (D⋆ (v1, v2)) ≥ bM,l

∫ v2

v1

dv̄ F (v̄) (61)

where bM,l is a small positive constant depending only on M and l. Applying
the estimate (56) in the region D⋆ (v1, v2) (i.e. not starting from v = v0 but
from v = v1) yields

F (v2) + bM,l

∫ v2

v1

dv̄ F (v̄) ≤ BM,l,a · F (v1) , (62)

which implies (60).
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From the estimate

|φ (u, v) | ≤ BM,l,a ·
1

r
3
2

·
√
F (v) , (63)

which follows from Cauchy Schwarz, we conclude that |φ| decays pointwise ex-
ponentially in v. Note that the exponential decay of the flux F (v) implies that
̟ → M and κ → 1

2 exponentially in v, uniformly along any u = const ray
including the horizon. In this sense the metric converges exponentially to a
Schwarzschild-AdS metric of mass M . In particular, we have

Proposition 3.7. The Lorentzian Penrose inequality supH r ≤ rASch holds. In
fact, the area radius r converges exponentially in v to rASch along the horizon.

Proof. We will show that the assumption that r ≥ rASch + Mδ along all of
H leads to a contradiction for any δ > 0. Let hence δ > 0 be given and
r ≥ rASch +Mδ hold along H. Then, by the exponential decay of the Hawking
mass along the event horizon, we can pick a vi > v0 such that

1− µ

r2
≥
(

1

r2
− 2M

r3
+

1

l2

)
− 2|M −̟|

r3
≥ bM,lδ

holds on H ∩ {v ≥ vi}. We then have, on the one hand,
∫ v

vi

rv
r2
dv = − 1

r (v)
+

1

r(vi)
, (64)

which is uniformly bounded for all vi < v <∞. On the other hand,
∫ v

vi

rv
r2
dv =

∫ v

vi

κ (1− µ)

r2
dv ≥ bM,lδ · (v − vi) , (65)

which can become arbitrarily large as v → ∞ along H, cf. Proposition 3.5.
With r ≤ rASch established, we prove exponential decay r → rASch along

the horizon. From the exponential decay of ̟ and the finiteness of r along H:
∫ ∞

v

(rASch − r) dv̄ ≤ BM,l

∫ ∞

v

(1− µ) dv̄ +BM,l,ae
−BM,l,av

≤ BM,l

∫ ∞

v

λ dv̄ +BM,l,ae
−BM,l,av ≤ BM,l (rASch − r) +BM,l,ae

−BM,l,av ,

holds along u = uH, from which exponential decay follows.

We summarize the statements of Propositions 3.1, 3.2,3.3, 3.5 and 3.7 as

Theorem 3.8. Given an ǫ-perturbed Schwarzschild-AdS data set on N (v0) in
the sense of Definition 2.3, its associated maximum development is a black hole
spacetime with a regular future event horizon H, and a complete null-infinity I.
Moreover, the estimates of Propositions 3.1, 3.2 and 3.3 hold for any (u, v) in
RH. This implies in particular that φ decays exponentially in v on the latter
set: The non-degenerate energy flux through any null-hypersurface of constant
v, F (v) defined in (59), satisfies (60).
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We finally remark that the techniques of this paper (in particular, the inte-
grated decay estimate of Section 5) are naturally applied to the study of spher-
ically symmetric solutions of the wave equation (3) on a fixed Schwarzschild-
AdS background. In this uncoupled case, we have κ = 1

2 , γ = 1
2 identically in

Eddington-Finkelstein coordinates, and T = ∂t becomes the familiar timelike
Killing field. See [15] for further discussion of the relation between the cou-
pled and uncoupled problem in the (completely analogous) asymptotically-flat
context. We have, in particular, the following result:

Corollary 3.9. Let (M, g) be a fixed Schwarzschild-AdS spacetime with Edding-
ton Finkelstein coordinate system (u, v). Let a ∈ R be a given mass-(squared)
satisfiying (6). Then, spherically-symmetric solutions of the Klein-Gordon equa-
tion (3) decay exponentially in the Eddington Finkelstein coordinate v on the
black hole exterior. In particular, the estimate (60) holds for the non-degenerate
energy flux of the Klein-Gordon field.

4 Proof of Proposition 3.1: Basic Estimates

Proposition 3.1 will be proven by a bootstrap.

4.1 The bootstrap regions and the bootstrap assumptions

We define, for ũ ∈ [u0, uH],

B̂ (ũ) = RH ∩ {u0 ≤ u < ũ} . (66)

Note that RH = B̂ (uH). Let

umax = sup
u

(
conditions (68)-(72) hold in B̂ (u)

)
(67)

1. Auxiliary bound:

|r3φ2| < Ml2

8π|a| . (68)

2. Smallness of matter fields:

4π (−a)
l2

∫ v

v0

dv̄ 1{r≤rY }r
2 rv φ

2 (u, v̄) < M · c , (69)

2π

∫ v

v0

1{r≥rY }
φ2v
κ
r2 (u, v̄) dv̄ < M

√
c, (70)

4π (−a)
l2

∫ u

uI

dū1{r≤rY }r
2 |ru|φ2 (ū, v) < M · c , (71)

23



2π

∫ u

uI

dū1{r≥rY }
φ2u
γ
r2 (ū, v) < M

√
c, (72)

for any (u, v) in B̂ (u) where 1{...} is the indicator function.

Finally, define the bootstrap region B = B̂ (umax) ⊂ RH.

We would like to prove that in fact B = RH. Now B is open in RH by
continuity (recall from [33] that all the norms entering the bootstrap are con-
tinuous in both u and v (uniformly as I is approached) and that u and v are
finite for any (u, v) ∈ RH) and also non-empty by Cauchy stability. Hence we
are done if we could show that B is also closed in RH. To do this, we assume
umax < uH fixed (otherwise there is nothing to show) and prove that in B the
bounds (68)-(72) can be improved.

4.2 Overview of the argument

We will show that the bootstrap assumptions imply thatM−c ≤ ̟ ≤M . This
is done by exploiting Hardy inequalities both in the u- and the v− direction but
restricted to the region r ≥ rY , as well as bootstrap assumption (69) for the
bad term in the region r ≤ rY . Importantly, it will turn out that the Hardy
inequalities do not require the entire good-signed derivative term (provided a
satisfies the Breitenlohner-Freedman bound). This enables us in turn to control
φ-flux trough characteristic lines by the mass difference and hence to improve
(70) and (72) from

√
c to c. With the improvement for the mass-flux, we invoke

the redshift estimate (Section 4.6) and estimates from infinity (Section 4.5) to

prove the pointwise bounds |r3φ2|+|r 3
2

(
φu

ru

)2
| < c everywhere, improving (68).

Finally, we improve (69) and (71) using that the r difference in the region r ≤ rY
is c

1
3 -small (Section 4.7).

4.3 Integrated positivity for ̟ in r ≥ rY

An immediate consequence of the bootstrap assumptions is

Lemma 4.1. In the region B we have

|̟ −M | ≤ 2M
√
c (73)

which follows from integrating (18) using the bootstrap assumptions, and

Lemma 4.2. In the region B ∩ {r ≥ rY } we have

1− µ

r2
≥ 1

8r2Y
c

1
3 . (74)
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Proof. We write

1− 2̟

r
+
r2

l2
=

(
1− 2M

r
+
r2

l2

)
+

2M − 2̟

r
. (75)

Since − 2M
r is increasing in r we can estimate it from below by − 2M

rY
. The mass

difference is estimated by Lemma 4.1. Hence, for r ≥ rY , we have by (47),

1− 2̟

r
+
r2

l2
≥ c

1
3 − 4M

rY

√
c+

r2 − r2Y
l2

≥ 1

2
c

1
3 +

r2 − r2Y
l2

. (76)

Dividing by r2 we discard the the second term in the region r ≤ 2rY , while in
r ≥ 2rY the second term is larger than 3

4l2 >
1

8r2
Y

c
1
3 .

Lemma 4.3. For any ℵ < 9
8 , the following inequality holds in B ∩ {r ≥ rY }:

2

9

ℵ
l2
h2 (r − rY )

2 ≤ (−ru) rv
Ω2

, where h = 1 +
rY
r

+
(rY
r

)2
. (77)

Proof. Define

g̃ = +rv
(−ru)
Ω2

− 2

9
ℵĥ2 (−a)

l2
(r − rY )

2
. (78)

Note that g̃ (rY ) ≥ 1
32c

1
3 by Lemma 4.2.

We first show that the same bound is valid on the initial data for r ≥ rY .
Again, this holds trivially where r = rY intersects the data (call the u-coordinate
of that point uY ). The derivative in the u-direction satisfies

g̃u = ru

[
4πr

(
φu
ru

)2
rurv
Ω2

+
̟

2r2
− 2πarφ2

l2

+
r

2l2

(
1− 8

9
ℵ − 8

9
ℵ
(rY
r

)3(
1− 2

(rY
r

)3))
]
. (79)

We have

g̃ (u, v0) = g (uY , v0) +

∫ uY

u

(−g̃u) , (80)

and we want to show g̃ (u, v0) ≥ 0. Note that the third term in the square
bracket has a good sign for a < 0 while for a > 0 we can use (68). We estimate

g̃ (u, v0) ≥
1

32
c

1
3 − π

rY

∫ uY

u

φ2u
γ
r2dū

+

∫ uY

u

−rur
2l2

(
1− 8

9
ℵ − 8

9
ℵ
(rY
r

)3(
1− 2

(rY
r

)3)
+

(M − ǫ) l2

r3

)
du (81)

and observe that the second term can be estimated by the H1
AdS,deg norm on

the data and is hence ǫ-small. We conclude that the first line is already positive
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for sufficiently small data. Thus, g̃ > 0 holds on the data if we can show that
the second line is positive. Letting A = 8

9ℵ, we have

∫ uY

u

−rur
2l2

(
1− 8

9
ℵ − 8

9
ℵ
(rY
r

)3(
1− 2

(rY
r

)3)
+

(M − ǫ) l2

r3

)
du

=
r2Y
2l2

[
−x

2

2
(1−A)− A

x
+

A

2x4
+

(M − ǫ) l2

r3Y

1

x

]x=1

x=r/rY

>
r2Y
2l2

(
−1

2
+

(
r

rY

)2
1−A

2
+A

rY
r

− A

2

(rY
r

)4
+

1

2

(
1− rY

r

))

=
r2Y
2l2

z

(
r

rY
, A

)
, (82)

where we used that (M−ǫ)l2

r3
Y

> 1
2 holds by (49) to estimate the last term in the

penultimate step. On the other-hand, we easily have:

Lemma 4.4. For any 0 ≤ A < 1, the function

z (x,A) =
1−A

2
x2 +

A

x
− A

2x4
− 1

2x
=

1

x4

(
1−A

2
x6 +

(
A− 1

2

)
x3 − A

2

)

is non-negative in [1,∞).

Proof. Note that z(x,A) is linear in A. For A = 0, we have z(x, 0)x4 = x6

2 − x3

2

which is non-negative on [1,∞). For A = 1, we have z(x, 1)x4 = x3

2 − 1
2 , which

is also non-negative on [1,∞).

To establish g̃ ≥ 0 in the entire region B ∩ {r ≥ rY }, it suffices to show that
the bound (78) is propagated in the v-direction. We compute

g̃v = −πrφ
2
v

κ
+ r,v

̟

2r2
− rv

2πarφ2

l2

+ rv
r

2l2

(
1− 8

9
ℵ − 8

9
ℵ
(rY
r

)3(
1− 2

(rY
r

)3))
. (83)

In analogy to the previous case, we would like to show that g (v) ≥ 1
32c

1
3 +∫ v

v0
1r≥rY g̃v is positive. We note that the bad first term can now be estimated

from the bootstrap assumption (70):

∫ v

v(rY )

πr
φ2v
κ
dv̄ ≤ π

1

rY

∫ v

v(rY )

πr2
φ2v
κ

≤ π
M

rY

√
c . (84)

In view of 1
32c

1
3 − πMrY c

1
2 > 0 for sufficiently small c, we conclude that this

term cannot drive g̃ to zero. To establish positivity of the integral for the other
terms, we simply repeat the argument we followed in the u-direction reducing
the problem to Lemma 4.4.
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For the next Lemma, recall that uI denotes the u-value where the v = const
curve intersects I and similarly vI denotes the v-value where the u = const
curve intersects I.

Lemma 4.5. For any ℵ < 9
8 fixed, we have for any (u, v) ∈ B ∩ {r ≥ rY },

∫ u

uI

4πr2ℵ
l2

(−ru)φ2 (ū, v) dū ≤
∫ u

uI

8πr2
rv
Ω2

(∂uφ)
2 (ū, v) dū (85)

and for any fixed u = const curve in B
∫ vI

v

4πr2ℵ
l2

(rv)φ
2 (u, v̄) dv̄ ≤

∫ vI

v

8πr2
−ru
Ω2

(∂vφ)
2 (u, v̄) dv̄ . (86)

Proof. We have by integration by parts:

∫ u

uI

4πr2ℵ
l2

(−ru)φ2du = −4πℵ
l2

r2h (r − rY )

3
φ2
∣∣∣∣
u

uI

−
∫ u

uI

8πℵr2h (r − rY )

3l2
φφudu ,

where we recall h = 1 + rY
r +

(
rY
r

)2
. Of the boundary terms on the right-hand

side, one has a good (negative) sign, while the other vanishes by the decay of φ
as r → ∞. For the remaining term, we apply Cauchy-Schwarz:

∫ u

uI

8πℵr2h (r − rY )

3l2
φφudu

≤ 8πℵ
3l2

(∫ u

uI

r2(−ru)φ2
)1/2

(∫ u

uI

r2h2 (r − rY )
2

−ru
φ2u

)1/2

,

from which we deduce that:

4πℵ
l2

∫ u

uI

r2(−ru)φ2du ≤ 16π

9

ℵ
l2

∫ u

uI

r2h2 (r − rY )
2

−ru
φ2udu.

An application of Lemma 4.3 now yields the result. The inequality in the v-
direction is similar.

Corollary 4.6. In the region B ∩ {r ≥ rY } the estimate ̟ ≤M holds.

Proof. We have

̟ −M =

∫ u

uI

∂u̟du =

∫ u

uI

du

[
−8πr2

rv
Ω2

(∂uφ)
2 +

4πr2 (−a)
l2

(−ru)φ2
]

and by Lemma 4.5 the right-hand side is negative.
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4.4 Improving bootstrap assumptions (70) and (72)

From the conservation of Hawking mass we estimate for (u, v) ∈ B,

BM,l,a ‖φ‖2H1
AdS,deg

(uH,v0)
≥
∫ u

u0

(
2π
φ2u
γ

− 4πa

l2
φ2ru

)
r2 (ū, v0) dū =

∫ u

uI

[
2π
φ2u
γ

− 4πa

l2
φ2ru

]
r2 (ū, v) dū+

∫ v

v0

[
2π
φ2v
κ

+
4πa

l2
φ2rv

]
r2 (u, v̄) dv̄

≥ 1

2

(
a+

9

8

)
‖φ‖2H1

AdS,deg
(u,v) +

9

8

4π

l2

∫ u

uI

1r≤rY φ
2rur

2 (ū, v) dū

−9

8

4π

l2

∫ v

v0

1r≤rY φ
2rvr

2 (u, v̄) dv̄ , (87)

where we used the Hardy inequalities established in Lemma 4.5. Using the
bootstrap assumptions (69) and (71) for the terms in r ≤ rY , we establish

Corollary 4.7. For any (u, v) ∈ B we have

‖φ‖H1
AdS,deg

(u,v) ≤ Ca ·M ·
√
c (88)

with Ca a uniform constant, depending only on how close a is to the BF-bound.

This improves in particular bootstrap assumptions (70) and (72) and also
shows that the overall mass-variation is c-small.

4.5 Estimating φ in r ≥ rX

Next we derive a pointwise smallness bound for φ in r ≥ rX (not rY !), by
integrating in u from infinity:

Lemma 4.8. For all (u, v) ∈ B ∩ {r ≥ rX}, we have

|r 3
2φ(u, v)| ≤ BM,l · d−1/6‖φ‖H1

AdS,deg
(u,v) ≤ BM,l,a ·

√
c . (89)

Proof. Integrating out from infinity (where φ vanishes) we find

|φ (ur≥rX , v) | ≤ 0 +
∣∣∣
∫
duφu

∣∣∣ ≤
√∫

duζ2
λ

Ω2

√∫
du

4

r2 (1− µ)
(−ru)

≤
√

32

3

rX

r
3
2

d−
1
6 ‖φ‖H1

AdS,deg
(u,v) ,

where we used the upper bound on the v-flux as well as the estimate 8r2X
1−µ
r2 ≥

d1/3 (cf. Lemma 4.2), which holds in the region where r ≥ rX .

Note that on r = rY we would only obtain c
1
3 -smallness, as the bad (1− µ)

−1
-

weight would bring in an inverse c-smallness.
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4.6 The red-shift effect: ζ

ν
estimate in r ≤ rX

Recall ζ = rφu. Inspired by [15] we write the wave equation as

∂v

(
ζ

ν

)
= −φv +

2rκaφ

l2
− ζ

ν

[
2κ
̟

r2
+

2κr

l2
− 8πr

a

l2
κφ2

]
. (90)

The following estimate is a refinement of the red-shift estimates in [15] necessi-
tated by the fact that a 6= 0. Recall that I (v0) = {(u, v0) | u ≤ uH} ⊂ N (v0).

Lemma 4.9. For any (u, v) ∈ B ∩ {r ≤ rX} we have

∣∣∣ ζ
ν

∣∣∣+ |φ| ≤ BM,l

(
sup
D(u,v)

‖φ‖H1
AdS,deg

(u,v) + sup
I(v0)

∣∣∣r 3
2
ζ

ν

∣∣∣
)

≤ BM,l,a ·
√
c . (91)

Proof. Let us denote the redshift weight

ρ = 2κ
[̟
r2

+
r

l2
− 4πr

a

l2
φ2
]
. (92)

Note that ρ
κ >

(
2rmin

l2 + M
r2
X

)
using (68).12 Integrating (90) we find

ζ

ν
(u, v) =

(
ζ

ν
(u, v0)

)
· exp

(∫ v

v0

−ρ (u, v̄) dv̄
)

+

∫ v

v0

dv̄

[
exp

(
−
∫ v

v̄

ρ (u, v̂) dv̂

)(
−φv +

2rκaφ

l2

)
(u, v̄)

]
. (93)

Let us study the inhomogeneous term. For the φv-term we need to estimate

∣∣∣∣
∫ v

v0

dv̄

[
exp

(
−
∫ v

v̄

ρ (u, v̂) dv̂

)
φv

]∣∣∣∣

≤
√∫ v

v0

dv̄
1

r2
κ · exp

(
−2

∫ v

v̄

ρ (u, v̂) dv̂

)√∫ v

v0

φ2v
κ
r2 (u, v̄) dv̄ . (94)

The second square root can be controlled from the energy, while the first can
be estimated by a constant:

∫ v

v0

dv̄
1

r2
κ · exp

(
−2

∫ v

v̄

ρ (u, v̂) dv̂

)
=

∫ v

v0

dv̄
κ

2r2ρ
∂v̄ exp

(
−2

∫ v

v̄

ρ (u, v̂) dv̂

)
,

and we can take out the supremum of κ
2r2ρ because the derivative of the expo-

nential has a positive sign, i.e. the integrand is positive everywhere. This finally

12Due to the cosmological term, we actually have a global redshift at work. In the
asymptotically-flat case, the strength of the redshift degenerates at infinity, in view of the
absence of that term. We will exploit this good term which grows in r (“the redshift at
infinity”) later in the estimates near infinity.
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yields

∫ v

v0

dv̄
1

r2
κ · exp

(
−2

∫ v

v̄

ρ (u, v̂) dv̂

)

≤ sup

(
κ

2r2ρ

)
·
[
1− exp

(
−2

∫ v

v0

ρ (u, v̄) dv̄

)]

≤ 1

4
· sup

[(
̟ +

r3

l2
− 4πr3

a

l2
φ2
)−1

]
. (95)

The φ-term in (93) is more delicate because a smallness bound on φ is not
available close to the horizon. The only thing we have at our disposal is that∫
φ2rvdv is controlled by the energy (which is not immediately useful because rv

may be very small in the region under consideration). The idea is to integrate
the inhomogeneity by parts, since a v-derivative falling on r will generate the
required factor of rv. We write

∫ v

v0

dv̄

[
exp

(
−
∫ v

v̄

ρ (u, v̂) dv̂

)(
2rκaφ

l2

)
(u, v̄)

]

=

∫ v

v0

dv̄
2rκaφ

l2ρ
∂v̄

[
exp

(
−
∫ v

v̄

ρ (u, v̂) dv̂

)
(u, v̄)

]
. (96)

When we integrate by parts, the boundary terms that arise are one on data
(which is ǫ-small by assumption) and one at (u, v), which is

∣∣∣∣∣

(
ar

l2
1[

̟
r2 + r

l2 − 4πr al2φ
2
]
)
φ (u, v)

∣∣∣∣∣ ≤ |a||φ| . (97)

To analyze the main term we compute

∂v

(
φ
2rκ

ρ

)
=

2rκ

ρ

(
1 +

2rκ

ρ

8πa

l2
φ2
)
φv

+

(
2rκ

ρ

)2(
3̟

r4
− 4πa

rl2
φ2
)
φ rv −

(
2rκ

ρ

)2

2π
φ

r

φ2v
κ
. (98)

Note again that the factor 2rκ
ρ is both bounded above and below. Hence the

term proportional to φv can (after using (68)) be estimated as before (cf. (94)).
For the term proportional to rv we use Cauchy-Schwarz

∣∣∣∣
∫ v

v0

dv̄

[
exp

(
−
∫ v

v̄

ρ (u, v̂) dv̂

)
φrv

]∣∣∣∣

≤
√∫ v

v0

dv̄
1

r2
κ (1− µ) · exp

(
−2

∫ v

v̄

ρ (u, v̂) dv̂

)√∫ v

v0

φ2r2 rv (u, v̄) dv̄ , (99)

recovering the H1
AdS,deg-norm. Finally, for the cubic term in (98) we apply the

pointwise auxiliary bootstrap assumption (68) to φ and estimate the remainder
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by the square of the H1
AdS,deg-norm. Since this norm itself is

√
c small by

Corollary 4.7, we have ‖φ‖2
H1

AdS,deg

≤M
√
c‖φ‖H1

AdS,deg
.

We summarize that (93) finally turns into the estimate

∣∣∣ ζ
ν
(u, v)

∣∣∣ ≤ BM,l

[
sup
D(u,v)

‖φ‖H1
AdS,deg

(u,v) + sup
I(v0)

∣∣∣r 3
2
ζ

ν

∣∣∣
]
+ |a| |φ| (u, v) , (100)

valid for (u, v) ∈ B∩{r ≤ rX}. Note that the pointwise norm on r
3
2
ζ
ν controls in

particular the φ-term picked up on the data in the integration by parts. From
this we derive an estimate for φ by integrating from the fixed r = rX -curve
towards the horizon:

|φ (u, v) | ≤ |φ (urX , v) |+
∫ u

urX

∣∣∣ ζ
ν

∣∣∣ (−ru)
r

dū (101)

leads, after applying Lemma 4.8 and (100), to

sup
D(u,v)∩{r≤rX}

|φ (u, v) | ≤ BM,l sup
D(u,v)

‖φ‖H1
AdS,deg

(u,v) + log
rX
rmin

[

BM,l

(
sup
D(u,v)

‖φ‖H1
AdS,deg

(u,v) + sup
I(v0)

∣∣∣r 3
2
ζ

ν

∣∣∣
)

+ |a| sup
D(u,v)∩{r≤rX}

|φ (u, v) |
]
,

from which the estimate (91) follows for φ recalling our choice (51). Revisiting

the estimate (100), we obtain the same bound for r
3
2
ζ
ν .

4.7 Improving assumptions (68), (69) and (71)

Note that assumption (68) has already been improved in view of Lemma 4.9
and Lemma 4.8.

Using the global pointwise smallness bound for φ in the region r ≤ rX
established in Lemma 4.9, we can improve both (69) and (71), using that the r-

difference in the region r ≤ rY is c
1
3 small. For (69):

4π|a|
l2

∫ v

v0

dv̄ 1{r≤rY }r
2 rv φ

2 (u, v̄)

≤ 4π|a|
l2

sup
r≤rY

|r2φ2| (rY − rmin) ≤ BM,l,ac
4
3 <

1

2
M · c . (102)

Assumption (71) is improved completely analogously. This improves the last
of the bootstrap assumptions and we conclude that B = RH. In the final
subsection we explain how this implies the estimates of Proposition 3.1.
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4.8 Conclusions

Note first that inserting the estimate of Lemma 4.9 into (87) actually yields

‖φ‖2H1
AdS,deg

(u,v) ≤ BM,l,a

[
‖φ‖2H1

AdS,deg
(uH,v0)

+ sup
I(v0)

∣∣∣r 3
2
ζ

ν

∣∣∣
2
]
, (103)

after exploiting the c
1
3 -smallness. From the general estimate

sup
D(u,v)

‖φ‖H1
AdS

(u,v) ≤ BM,l

[
sup
D(u,v)

‖φ‖H1
AdS,deg

(u,v) + sup
D(u,v)∩{r≤rX}

∣∣∣r 3
2
ζ

ν

∣∣∣
]
,

and Lemma 4.9, we conclude that (103) also holds for the non-degenerate norm
on the left-hand side.

To finally conclude Proposition 3.1 we need the pointwise bound on κ and
a bound for r

3
2
ζ
ν in the region r ≥ rX . For κ, we integrate (15) to obtain

κ(u, v) =
1

2
exp

(∫ u

uI

4πr

ν
(∂uφ)

2du

)
.

Clearly, κ(u, v) ≤ 1
2 globally. To derive a lower bound on κ in the region r ≥ rX

we estimate

κ(u, v) ≥ 1

2
exp

(
− sup
r≥rX

1

r (1− µ)

∫ u

uI

r2
λ

Ω2
(∂uφ)

2du

)
. (104)

Now since in r ≥ rX we have 8r2X
(1−µ)
r2 ≥ d

1
3 , we can conclude that

κ (u, v) ≥ 1

2
exp

(
− 8

rX
d−

1
3 ‖φ‖2H1

AdS,deg
(u,v)

)
in RH ∩ {r ≥ rX}. (105)

From r ≤ rX we continue to integrate up to the boundary of RH, now using
the bound on ζ

ν established in Lemma 4.9:

κ(u, v) ≥ 1

2
exp

(
−BM,l‖φ‖2H1

AdS,deg
(u,v)

)
exp

(∫ u

urX

4πr

ν
(∂uφ)

2du

)

≥ 1

2
exp

(
−BM,l sup

RH

‖φ‖2H1
AdS,deg

(u,v)

)
exp

(
− sup

RH∩{r≤rX}

∣∣∣ ζ
ν
r

3
2

∣∣∣
2
∫ u

urX

−ν
r4
du

)

≥ 1

2
−BM,l

(
sup
RH

‖φ‖2H1
AdS,deg

(u,v) + sup
I(v0)

∣∣∣r 3
2
ζ

ν

∣∣∣
2
)
,

where we used Lemma 4.9 in the last step.
For the r-weighted estimated for ζ

ν we prove

Lemma 4.10. In the entire region B we have

∣∣∣r 3
2
ζ

ν

∣∣∣+ |φ| ≤ BM,l,a

(
sup
B

‖φ‖H1
AdS,deg

(u,v) + sup
I(v0)

∣∣∣r 3
2
ζ

ν

∣∣∣
)
. (106)
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Proof. In view of Lemma 4.8 and Lemma 4.9, we only need to derive the bound
for ζ

ν r
3
2 in the region r ≥ rX . We compute

∂v

(
rn
ζ

ν

)
= −rnφv +

2κaφ

l2
rn+1 − rn

ζ

ν

[
−nλ
r

+
2κ̟

r2
+

2κr

l2
− 8πra

l2
κφ2

]
,

(107)
and observe that

−nλ
r
+ 2κ

̟

r2
+

2κr

l2
− 8πr

a

l2
κφ2 = −nκ (1− µ)

r
+

2κ̟

r2
+

2κr

l2
− 8πr

a

l2
κφ2

= κ
[
2 (n+ 1)

̟

r2
+
r

l2
(2− n)− n

r
− 8πr

a

l2
φ2
]
.

Choosing n = 3
2 we see that we gain an exponential decay factor for large r.

We integrate (107) in v from r = rX (where we already established the bound,
Lemma 4.9) or from the initial data to any point in RH, which leads to the
estimate

∣∣∣r 3
2
ζ

ν
(u, v)

∣∣∣ ≤ sup
I(v0)

∣∣∣r 3
2
ζ

ν

∣∣∣+BM,l,a ·
1√
r

∫ v

v0

1{r≥rX}

√
r

[
r

3
2 |φv|+

2κ

l2
|φ|r 5

2

]

≤ sup
I(v0)

∣∣∣r 3
2
ζ

ν

∣∣∣+BM,l,a ·
1√
r
‖φ‖H1

AdS,deg
(u,v)

√∫ v

v0

1{r≥rX}rvdv

where we used both Cauchy-Schwarz and that rv ≥ 1
BM,l,a

r2 holds in r ≥ rX .

The desired estimate follows. – We remark that later we will improve this
estimate considerably using commutation.

5 Vectorfields and an integrated decay estimate

5.1 Vectorfield identities

Let X = Xu (u, v) ∂u + Xv (u, v) ∂v be a vectorfield. We have the following
formula for its deformation tensor 2(X)παβ = ∇αXβ +∇βXα:

2(X)παβ = gαγ∂γX
β + gβδ∂δX

α + gαγgβδgγδ,µX
µ , (108)

and hence the following non-vanishing components:

(X)πuu = − 2

Ω2
∂vX

u , (X)πvv = − 2

Ω2
∂uX

v , (109)

(X)πuv = − 1

Ω2
(∂vX

v + ∂uX
u)− 2

Ω2

(
Ωu
Ω
Xu +

Ωv
Ω
Xv

)
, (110)

(X)πAB =
1

r
gAB (ruX

u + rvX
v) . (111)
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Let ψ be a spherically symmetric solution to the equation13

�gψ − 2a

l2
ψ = q [ψ] . (112)

Then the energy momentum tensor

Tµν [ψ] = ∂µψ∂νψ − 1

2
gµν(∂ψ)

2 − a

l2
ψ2gµν (113)

satisfies

∇µ
Tµν [ψ] = (∇νψ) q [ψ] . (114)

For future use we collect its components

Tuu [ψ] = (∂uψ)
2

, Tvv [ψ] = (∂vψ)
2

, Tuv [ψ] =
aΩ2

2l2
ψ2 , (115)

gABTAB [ψ] =
4

Ω2
∂uψ∂vψ − 2

a

l2
ψ2 . (116)

We want to make use of the following multiplier identity

∇µJX,fµ [ψ] = KX,f [ψ] , (117)

where f (u, v) is a C2-function and

JX,fµ [ψ] = Tµν [ψ]X
ν + fψ∇µψ − 1

2
ψ2∇µf

KX,f [ψ] = Tµν [ψ]
(X)πµν + (Xψ) q [ψ]

+ f [gµν∂µψ∂νψ] +

(
−1

2
�f+

2a

l2
f

)
ψ2 + fψq [ψ] .

We compute

KX,f [ψ] = − 2

Ω2
(∂vX

u) (∂uψ)
2 − 2

Ω2
(∂uX

v) (∂vψ)
2

(118)

+ (∂uψ) (∂vψ)

[
4ru
Ω2r

Xu +
4rv
Ω2r

Xv − 4

Ω2
f

]
+ (X [ψ] + fψ) q [ψ]

− a

l2
ψ2

[
−2f+

l2

2a
�f+ ∂uX

u +

(
2
ru
r

+ 2
Ωu
Ω

)
Xu + ∂vX

v +

(
2
rv
r

+ 2
Ωv
Ω

)
Xv

]

We finally remark that the identity (117) will typically be integrated over the
spacetime region D (u, v) × S

2 with the diamond-shaped D (u, v) ⊂ Q defined
in section 2.4.

13In applications, ψ will be Tφ and hence q [Tφ] equal to the error arising from commutation
with the vectorfield T .
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5.2 The vectorfield T = 1
4κ
∂v +

1
4γ
∂u

The non-vanishing components of the deformation tensor of T are

(T )πuu =
1

2Ω2

γv
γ2

= 8π r

(
∂vφ

Ω2

)2

, (T )πvv =
1

2Ω2

κu
κ2

= −8π r

(
∂uφ

Ω2

)2

.

This is because

2(T )πuv =
1

2Ω2

κv
κ2

+
1

2Ω2

γu
γ2

− 1

2

(
2

Ω2

)2

T
(
Ω2
)
= 0 , (119)

(T )πAB =
2

r3
T (r) gAB = 0 , (120)

with the last two identities following from

2

Ω2

κv
κ2

= − 2

Ω2
∂v

(
1

κ

)
=

2

Ω2
∂v

(
4ru
Ω2

)
=

8ruv
Ω4

+
2

Ω4

1

κ
∂vΩ

2 , (121)

2

Ω2

γu
γ2

= − 2

Ω2
∂u

(
1

γ

)
= − 2

Ω2
∂u

(
4rv
Ω2

)
= −8ruv

Ω4
+

2

Ω4

1

γ
∂uΩ

2 , (122)

on the one hand, and T (r) = 0 on the other. It follows that (T )πabTab [φ] = 0,
which means that for our non-linear system T is not Killing, but nevertheless
leads to a conservation law in view of the identity (117) becoming

∇a
(
Tab [φ]T

b
)
= 0 . (123)

Inspecting the boundary-terms generated by T it becomes apparent that the
Hawking mass is a potential for the energy fluxes of the vectorfield T through
a hypersurface.

5.3 An integrated decay estimate for φ

Recall the norms defined in section 2.4. We define the fluxes

F (u, v) = ‖φ‖2H1
AdS

(u,v) + ‖φ‖2H1
AdS

(u,v0)
,

Fdeg (u, v) = ‖φ‖2H1
AdS,deg

(u,v) + ‖φ‖2H1
AdS,deg

(u,v0)
. (124)

Proposition 5.1. For any (u, v) ∈ RH we have

∫ u

uI

(∂uφ)
2

−ν r2 (ū, v) dū+

∫ v

v0

κφ2r2 (u, v̄) dv̄ + I [φ] (D (u, v))

≤ BM,l,a

[
‖φ‖2H1

AdS,deg
(u,v) + ‖φ‖2H1

AdS
(u,v0)

]
. (125)
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Note that the boundary terms on the left are almost equal to the non-
degenerate H1

AdS-norm, except that their r-weight at infinity is weaker.
Proposition 5.1 will follow from the sequence of propositions proven in the

remainder of this subsection. We apply (117) with a vectorfield X for which

Xu = − rv
Ω2

F (r) and Xv = − ru
Ω2

F (r) , (126)

with F a bounded C3-function. We compute

∂vX
u = 4πr

(∂vφ)
2

Ω2
F (r)− rv

Ω2
F′ (r) rv , (127)

∂uX
v = 4πr

(∂uφ)
2

Ω2
F (r)− ru

Ω2
F′ (r) ru , (128)

∂uX
u + 2

Ωu
Ω
Xu + ∂vX

v + 2
Ωv
Ω
Xv = −2

rvru
Ω2

F′ (r)− 2
rvu
Ω2

F (r) . (129)

We split

KX,f [φ] = KX,f
main [φ] +KX,f

error [φ] , (130)

where

KX,f
main [φ] =2F′ (r)

[ rv
Ω2
∂uφ+

ru
Ω2
∂vφ

]2

+ (∂uφ) (∂vφ)

[
−4rurv
Ω2Ω2

(
F′ +

2

r
F

)
− 4

Ω2
f

]

− a

l2
φ2
[
−2f− 2

rvru
Ω2

(
F′ +

2

r
F

)
− 2

rvu
Ω2

F (r) +
l2

2a
�gf

]
(131)

and

KX,f
error [φ] = − 16

Ω4
πr (∂uφ)

2
(∂vφ)

2
F (r) . (132)

We may choose

f = −rurv
Ω2

(
F′ +

2

r
F

)
=

1

4
(1− µ)

(
F′ +

2

r
F

)
, (133)

so that

KX,f
main [φ] =2F′ (r)

( rv
Ω2
∂uφ+

ru
Ω2
∂vφ

)2

− a

l2
φ2
[
−2

rvu
Ω2

F (r) +
l2

2a
�g

(
−rurv

Ω2

(
F′ +

2

r
F

))]
. (134)
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We would like to find a bounded, monotonically increasing F, since this will
make the boundary term in the multiplier identity controllable by the energy
and will, in addition, give the derivative term in (134) a sign. Exploiting the
remaining freedom in F to make the square bracket in (134) globally positive
is difficult (if not impossible). However, the next proposition shows that the
zeroth order term can be absorbed by the derivative term for a simple choice of
F.

Proposition 5.2. We have for any a ≥ −1 the estimate
∫

D(u,v)

1

r6

(
1

4γ
φu −

1

4κ
φv

)2
Ω2

2
r2 du dv ≤ BM,l,a · Fdeg (u, v) .

Proof. Apply the identity (117) with F (r) = − 1
r2 and f = 0. We first look at

the boundary terms. We have

(4π)
−1
∫

D(u,v)×S2

∇µJX,fµ [φ] =

∫ v

v0

(TvvX
v + TuvX

u) r2 (u, v̄) dv̄

∫ u

uI

(TuuX
u + TuvX

v) r2 (ū, v) dū−
∫ u

u0

(TuuX
u + TuvX

v) r2 (ū, v0) dū

because the boundary term on I vanishes. It is not hard to see that
∣∣∣
∫

D(u,v)×S2

∇µJX,fµ [φ]
∣∣∣ ≤ BM,l,a · Fdeg (u, v) .

We turn to the spacetime term. Observe that

2a

l2
φ2
rvu
Ω2

F (r) =
a

l2r2
φ2
(
r

l2
+
̟

r2
− 4πraφ2

l2

)
. (135)

This term has the same sign as a since the bracket is positive (cf. 68). Hence for
a > 0 we are done immediately, gaining in addition control over the spacetime
integral

∫
φ2rΩ2 dudvdσS2 . Returning to a < 0, we can write both

a

l2r2
φ2
(
r

l2
+
̟

r2
− 4πraφ2

l2

)
=

a

l2r2

(
1

2ru
∂u (1− µ)− 8πr rv

ruΩ2
(∂uφ)

2

)
φ2

and

a

l2r2
φ2
(
r

l2
+
̟

r2
− 4πraφ2

l2

)
=

a

l2r2

(
1

2rv
∂v (1− µ)− 8πr ru

rvΩ2
(∂vφ)

2

)
φ2

Integrating this zeroth order terms yields (in view of
√
g = Ω2

2 r
2)

∫

D(u,v)

a

l2r2
φ2
(
r

l2
+
̟

r2
− 4πraφ2

l2

)
Ω2

2
r2dudv =

1

2

∫

D(u,v)

a

l2
φ2
(
−κ · ∂u (1− µ)− 4πr rv

ru
(∂uφ)

2

)
du dv

+
1

2

∫

D(u,v)

a

l2
φ2
(
γ · ∂v (1− µ)− 4πr ru

rv
(∂vφ)

2

)
du dv . (136)
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Integrating the first term in the second line by parts, we see that if the derivative
hits the κ it will cancel with the second term in that line. Similarly for the third
line and the derivative falling on γ. This means that

∫

D(u,v)

a

l2r2
φ2
(
r

l2
+
̟

r2
− 4πraφ2

l2

)
Ω2

2
r2 du dv

=

∫

D(u,v)

4a

l2
γκ (1− µ)φ

(
1

4γ
φu −

1

4κ
φv

)
du dv −

∫ u

u0

a

4l2
φ2 (−ru) (ū, v0) dū

+

∫ u

uI

a

4l2
φ2 (−ru) (ū, v) dū−

∫ v

v0

a

4l2
φ2 (rv) (u, v̄) dv̄

since again the boundary term on I vanishes. Clearly, the boundary terms are
manifestly controlled by Fdeg (u, v). For the remaining spacetime term we apply

Cauchy’s estimate xy ≤ x2

2 + y2

2 :

∫

D(u,v)

4|a|
l2
γκ (1− µ)φ

(
1

4γ
φu −

1

4κ
φv

)
du dv

≤
∫

D(u,v)

|a|
2l2

φ2
(
r

l2
+
̟

r2
− 4πraφ2

l2

)
Ω2

2
du dv +

∫

D(u,v)

32|a|
l2

γ2κ2 (1− µ)
2

Ω4

(
r

l2
+
̟

r2
− 4πraφ2

l2

)−1(
φu
4γ

− φv
4κ

)2
Ω2

2
du dv

and using that γ2κ2(1−µ)2

Ω4 = 1
16 we obtain

1

2

∫

D(u,v)

|a|
l2r2

φ2
(
r

l2
+
̟

r2
− 4πraφ2

l2

)
Ω2

2
r2 du dv ≤ BM,l,a · Fdeg (u, v)

+

∫

D(u,v)

2|a|
r

(
1 +

̟l2

r3
− 4πaφ2

)−1(
1

4γ
φu −

1

4κ
φv

)2
Ω2

2
du dv .

Finally, in view of the estimate (recall the bounds (49) and (68))

1− |a|
(
1 +

̟l2

r3
− 4πaφ2

)−1

≥ Ml2

4r3
, (137)

which holds for all 0 ≥ a ≥ −1, we conclude

∫

D(u,v)

KX,f [φ] ≥
∫

D(u,v)

2Ml2

r4

(
1

4γ
φu −

1

4κ
φv

)2
Ω2

2
dudv −BM,l,a · Fdeg (u, v) ,

as KX,0
error [φ] has a good sign. The proposition follows.

Repeating the proof above with a slightly different r-weight, we can derive
the following more general Hardy inequality, which will be important later to
optimize the radial weights near infinity.
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Corollary 5.3. Set y = rn
(

2r
l2 + 2̟

r2 − 8πraφ2

l2

)
+ nrn−1 (1− µ). We have, for

0 ≤ n ≤ 1, the estimate

∫

D(u,v)

y φ2Ω2dudv ≤
∫

D(u,v)

Ω2 r
2n

y

(
φu
γ

− φv
κ

)2

dudv +BM,l,a · Fdeg (u, v)

Proof. Write y = 1
ru
∂u (r

n (1− µ)) − rn 16πrrv
ruΩ2 (∂uφ)

2
and analogously for the

v-derivative. Then repeat the proof above (n = 0 being the previous case).

Remark 5.4. Note that the proof of Proposition 5.2 shows that if we have
the strict inequality a > −1, we obtain in addition control over the spacetime
integral of φ2 (with the control degenerating as a → −1, cf. (137)). Moreover,
the weight 1

r6 for the derivative-term improves to 1
r3 in case that a > −1. The

next Proposition shows that the control over the zeroth order term actually does
not degenerate as a → −1. It also retrieves control over the missing derivative
and optimizes the r-weights near infinity.

Proposition 5.5. We have for any a ≥ −1 the estimate

∫

D(u,v)

(
φ2 +

1

r2
1

γ2
(∂uφ)

2
+

1

r2
1

κ2
(∂vφ)

2

)
Ω2

2
r2 du dv ≤ BM,l,a · Fdeg (u, v)

Proof. As mentioned we first wish to prove uniform control over the spacetime
integral of φ2 as a→ −1. In view of Remark 5.4 we can assume a ≤ − 1

2 for this
“Step 1”, since for a > −1/2 we already control the spacetime integral of φ2.

Step 1: We choose F = 1
r5 in (134). With this choice the derivative term is

controlled from Proposition 5.2. The zeroth order term with ruvF has a globally
(positive) sign. The zeroth order term with the �g in it will be integrated by
parts via the identity

−1

2

∫
φ2�gG = −1

2

∫
∇α
(
φ2∇αG

)
+

∫
φgαβ∇αG∇βφ (138)

producing boundary terms controlled by the energy as well as a cross-term of
the form φ (φu/γ + φv/κ). The latter appears because G = − rurv

Ω2

(
F′ + 2

rF
′
)
=

1
4 (1− µ)

(
F′ + 2

rF
′
)
depends only on r except for a harmless error arising from

the ̟ (u, v) in (1− µ). Since the derivative appearing in the cross term is
already controlled by Proposition 5.2, it suffices to borrow a δ from the good
ruvF term, leading to overall control of the zeroth order spacetime term:

∫

D(u,v)

(
1

r4
φ2
)

Ω2

2
r2 du dv ≤ BM,l,a · Fdeg (u, v) + ǫ · Ideg [φ] (D (u, v)) .

(139)

Here the last term appears to estimate the error-terms mentioned and to control∫
D(u,v)

KX,f
error ≤ ǫ · Ideg [φ] (D (u, v)), the ǫ coming from the pointwise bound on

φu

ru
of Proposition 3.1.
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Step 2: To retrieve the missing derivative, we revisit (131). It is apparent

that choosing F = 1
r5 and f = 0, we can dominate the mixed derivative term by

the good-signed quadratic terms, while the zeroth order term is controlled by
(139). The boundary terms are again controlled by the energy. Hence

∫

D(u,v)

(
1

r4
φ2 +

1

r6
1

γ2
(∂uφ)

2
+

1

r6
1

κ2
(∂vφ)

2

)
Ω2

2
r2 du dv

≤ BM,l,a · Fdeg (u, v) + ǫ · Ideg [φ] (D (u, v)) .

Step 3: Finally, we optimize the weights near infinity by choosing F = − 1
r

in (134). Note that the dominant term near infinity of the zeroth order term
becomes

−1

8
�g

(
(1− µ)

(
F′ +

2F

r

))
− a

l2
F

(
r

l2
+
M

r2

)
=
a

l4
+ l.o. terms in r (140)

in this case. On the other hand, the derivative term in (134) becomes

1
8r2

(
1
γφu − 1

κφv

)2
. By Corollary 5.3, applied with n = 1 we can absorb the

zeroth order term by the derivative term near infinity provided that −a < 9
8 .

This finally yields the proposition, since an integrated decay estimate away from
infinity was proved in Step 2. Note once more that for any bounded F we have∫
D(u,v)

KX,f
error ≤ ǫ · Ideg [φ] (D (u, v)) and that this error is finally absorbed by

the main term.

Up until now we proved (Proposition 5.5)

Ideg [φ] (D (u, v)) ≤ BM,l,a · Fdeg (u, v) . (141)

The missing ingredient to reach Proposition 5.1 as stated is to go from the degen-
erate to the non-degenerate spacetime term, and to obtain the missing boundary
term. This is achieved with the (future-directed, null) redshift vectorfield

Y = (−ru)−1
∂u . (142)

From (117) we obtain

KY,0 [ψ] =
(∂uψ)

2

2r2u

(
2̟

r2
+

2r

l2

)
+
∂uψ

ru

1

rκ
∂vψ +

a

l2
ψ2

[
2

r

]
, (143)

JY,0 [ψ] (Y, ∂u) =
(∂uψ)

2

r2u
(−ru) , JY,0 [ψ] (Y, ∂v) =

2aκ

2l2
ψ2 , (144)
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which in turn leads to the estimate
∫ u

uI

(∂uφ)
2

r2u
r2 (−ru) (ū, v) dū+

∫

D(u,v)

r (∂uφ)
2

r2u
Ω2r2dudv

≤ BM,l,a

∫

D(u,v)

[
(∂vφ)

2

r3κ2
+
φ2

r

]
Ω2r2dūdv̄ +BM,l,a

∫ v

v0

1

l2
κφ2r2 (u, v̄) dv̄

+

∫ u

uI

(∂uφ)
2

r2u
r2 (−ru) (ū, v0) dū . (145)

The first term on the right hand side is controlled by the degenerate term
Ideg [φ] (D (u, v)) that we already control by (141). The second term, a boundary
term, can be converted into a spacetime-term, which is partly absorbed by the
left and partly adds a term of the first type to the right hand side of (145).
Indeed,

∫ v

v0

1

l2
κφ2r2dv̄ =

∫ u

u0

dū ∂u

∫ v⋆(u)

v0

1

l2
κφ2r2dv̄ , (146)

where v⋆ (u) is the v-value where the ray of constant u intersects either I or the
constant v-ray (whatever happens first). The right hand side of the previous
equation is equal to

=
1

l2

∫

D(u,v)

(
−rπ (∂uφ)

2

r2u
φ2 − 1

2
φ
∂uφ

ru
− 1

2r
φ2

)
Ω2r2dūdv̄ , (147)

observing that the boundary term on I vanishes in view of the decay of φ and
that v⋆ (u) is constant in u after the point where u intersects the point where
v = const meets I. A simple application of Cauchy’s inequality then shows that
(145) also holds without the v-boundary term. Proposition 5.1 then follows since
the last term in (145) is on data (requiring, however, the non-degenerate norm).

5.4 Proof of the estimate (56) of Proposition 3.3

In view of the general estimate

|φr 3
2 (u, v) | ≤ BM,l sup

D(u,v)

‖φ‖H1
AdS

(ū,v̄) , (148)

we obtain from the estimate (87),

‖φ‖2H1
AdS,deg

(u,v) ≤ BM,l,a

[
‖φ‖2H1

AdS,deg
(u,v0)

+ c
1
3 sup
(ū,v̄)∈D(u,v)

‖φ‖2H1
AdS

(ū,v̄)

]
.

We can insert this estimate on the right hand side of the estimate of Proposition
5.1 and also add it to the resulting equation. This yields

‖φ‖2H1
AdS

(u,v) + I [φ] (D (u, v))

≤ BM,l,a

[
‖φ‖2H1

AdS
(u,v0)

+ c
1
3 sup
(ū,v̄)∈D(u,v)

‖φ‖2H1
AdS

(ū,v̄)

]
.
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Taking the sup in D (u, v) and absorbing the c
1
3 -term on the right yields (56).

6 Proof of Proposition 3.2: Improved and higher
order bounds

For the estimates in this section, recall the initial data norm (53).

6.1 Further consequences of the bootstrap assumptions

In this section we will derive estimates for higher derivatives. These estimates
are not sharp but sufficient to control the error in the commuted estimates later.

Lemma 6.1. We have the pointwise estimate

∣∣∣r 7
2

∂u
φu

ru

ru

∣∣∣ ≤ BM,l,a · N [φ] (v0) (149)

Proof. We derive the following evolution equation:

∂v

(
∂u

φu

ru

ru

)
=

[
−4κ

(
̟

r2
+
r

l2
− 4πaφ2

l2
+

1− µ

4r

)](
∂u

φu

ru

ru

)

+
2

r2
φv + 8πr

κa

l2
φ

(
φu
ru

)2

− 2κaφ

l2r
+
φu
ru

(
2λ

r2
− 1

rru
∂u

(
r
ruv
ru

)
+

2aκ

l2

)
(150)

Note the exponential decay factor (redshift) in the square bracket in the first
line. Integrating and estimating the errors as in Lemma 4.9 yields the result.
See also Section 7 of our [33], where the same computation is carried out.

Interestingly enough, we were able to derive this pointwise bound for a sec-
ond u-derivative without second v-derivatives appearing anywhere in the esti-
mate. Note also that at this point we do not yet have a pointwise bound for
φv available as we can not integrate from infinity, this being part of the diffi-
culty of the AdS-end. The way we are going to establish such a bound is via
commutation: We consider the wave equation for Tφ and prove its H1-energy
estimate, which in turn implies a pointwise bound on Tφ which finally yields a
pointwise bound on φv via the pointwise bound on φu already proven. In fact,
our argument requires bootstraping the pointwise bound on φv (cf. Lemma 6.7)
as the error in the H1-estimate for Tφ seems to require pointwise control on φv.

6.2 The wave equation for Tφ

We turn to the commutation of the wave equation by the vectorfield T =
1
4κ∂vφ+ 1

4γ ∂uφ.
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Lemma 6.2. Let ψ be a solution of the equation �gψ = 0 and X be a vectorfield.
Then

�g (Xψ) = q [Xψ] with (151)

q [Xψ] = 2(X)παβ∇α∇βψ +
[
2∇α(X)παµ −∇µ

(
tr(X)π

)]
∇µψ . (152)

Proof. Note that on functions f

LX∇αf = ∇αLXf = Xβ∇β∇αf +
(
∇αX

β
)
∇βf , (153)

while on (co)-vectors Vβ (writing παβ for (X)παβ for the moment)

LX∇αVβ −∇αLXVβ = Xγ [∇γ ,∇α]Vβ − V γ [∇γ ,∇α]Xβ

+ (∇γ∇αXβ − 2∇απγβ)V
γ .

Contracting with gαβ we obtain the formula

gαβLX∇αVβ = gαβ∇αLXVβ + V γ∇γ (tr π)− 2V γ∇απγα . (154)

With Vβ = ∇βψ combining (153) and (154) yields

gαβLX∇α∇βψ = gαβ∇α∇βLXψ +∇γ (tr π)∇γψ − 2∇απγα∇γψ . (155)

Finally, the desired formula follows from

X (�gψ) = LX
(
gαβ∇α∇βψ

)
= −2παβ∇α∇βψ + gαβLX∇α∇βψ (156)

after applying (155) to the second term on the right hand side.

From the computations

2gαβ
(
∇α

(T )πβγ

)
∇γψ = 2

(
2

Ω2

)2 [
∂uψ ∂u

(
2πrφ2v

)
− ∂vψ ∂v

(
2πrφ2u

)]

− 8

γrΩ2
∂vψ

(
πrφ2u

)
− 8

κrΩ2
∂uψ

(
πrφ2v

)

=
−4

γrΩ2
∂vψ

(
πrφ2u

)
− 4

κrΩ2
∂uψ

(
πrφ2v

)
− π

8

Ω2γ
ψuφuφv

− 8π

Ω2κ
ψvφuφv −

16

Ω2
r
a

l2
(∂uψ)φφv +

16

Ω2
r
a

l2
(∂vψ)φφu

and

2(T )παβ∇α∇βψ = 2(T )παβ
(
∂α∂βψ − Γδαβ∂δψ

)

= 16
πr

Ω2

[
(∂vφ)

2
∂u

(
∂uψ

Ω2

)
− (∂uφ)

2
∂v

(
∂vψ

Ω2

)]

=
πrφ2v
κ2



∂u

(
∂uψ
ru

)

ru


− 4π2r2φ2v

κ2

(
φu
ru

)2
ψu
ru

− 16
πr

Ω2
(∂uφ)

2

[
− 1

ru
∂v (T [ψ]) +

ruv
ru

1

ru

1

κ
∂vψ − 4

Ω2
rπφ2v

φu
ru

+
φuv
4γru

]
,
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we find using the Lemma applied with ψ = φ,

q [Tφ] = −4πr

(
φu
ru

)2
1

κ
∂v (Tφ) +

πrφ2v
κ2



∂u

(
∂uφ
ru

)

ru




+
(
−16πr

ruv
Ω2

− 2π (1− µ)
) φv
κ

(
φu
ru

)2

+ 3π
φ2v
κ2

(
φu
ru

)

− π

(
φu
ru

)3

(1− µ)
2 − 2πar

l2
(1− µ)φ

(
φu
ru

)2

. (157)

6.3 Estimates for Tφ

For any point (u, v) in RH, we define the higher order energy

E [Tφ] (u, v) =

∫ u

uI

[
2πr2

1

γ
(∂u(Tφ))

2 − 4aπ
r2

l2
ru (Tφ)

2
]
(ū, v) dū

+

∫ v

v0

[
2πr2

1

κ
(∂v(Tφ))

2
+ 4aπ

r2

l2
rv (Tφ)

2
]
(u, v̄) dv̄ . (158)

Lemma 6.3. The energy E [Tφ] (u, v) is almost conserved in that

E [Tφ] (u, v) = E [Tφ] (u, v0) +

∫

D(u,v)

Q Ω2r2dudv

where Q =
1

Ω2r2

(
− 32r3π2 1

Ω2
(∂vφ)

2
(∂u(Tφ))

2

+32r3π2 1

Ω2
(∂uφ)

2
(∂v(Tφ))

2
+ πr2Ω2 · (TTφ) · q [Tφ]

)
(159)

holds.

Proof. The quantity Tφ satisfies the wave equation �g(Tφ) = q [Tφ]. Integrat-
ing the energy identity (117) for the energy momentum tensor associated with
Tφ with the vectorfield T = 1

4κ∂v+
1
4γ ∂u yields the above identity using that the

energy-flux through the boundary at infinity is zero by the local well-posedness
result [33].

Lemma 6.4. For any (u, v) ∈ RH we have the estimate

‖Tφ‖H1
AdS

(u,v) ≤ BM,l,a · N [φ] (v0) +BM,l

(∫

D(u,v)

|Q| Ω2r2dudv

) 1
2

(160)

Proof. We can prove this estimate in the same way that we proved it for φ
itself in the context of the bootstrap of Section 4 (in which case there was no
commutation error Q, of course). In fact, a bootstrap is no-longer necessary,
since the important Hardy inequalities have already been established in RH.
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Integrating Tφ from infinity one derives the pointwise bound

|Tφ| ≤ BM,l · r−
3
2 · ‖Tφ‖H1

AdS,deg
(u,v) in RH ∩ {r ≥ rX} (161)

using Cauchy-Schwarz as in Lemma 4.8. Repeating the redshift estimate of

Lemma 4.9, now with ∂v

(
∂u(Tφ)
ru

)
, we derive for any (u, v) ∈ RH ∩ {r ≤ rX}

∣∣∣∂u (Tφ)
ν

∣∣∣+ |Tφ| ≤ BM,l,a

[
sup

(ū,v̄)∈D(u,v)

‖Tφ‖H1
AdS,deg

(ū,v̄) + N [φ] (v0)

]
. (162)

Indeed, the only difference to Lemma 4.9 is that there is now an error-term
rκq [Tψ] on the right hand side of the equation due to the commutation term
in the wave equation. For this error-term we note that (using definition (92))

∣∣∣∣
∫ v

v0

dv̄

[
exp

(
−
∫ v

v̄

ρ (u, v̂) dv̂

)
rκq [Tφ]

]∣∣∣∣

≤ ǫ

(
sup

(ū,v̄)∈D(u,v)

‖Tφ‖H1
AdS,deg

(ū,v̄) +BM,l,a · N [φ] (v0)

)
, (163)

which follows by inspecting the terms in q [Tφ] (cf. (157)) individually:

• the first term is estimated as in Lemma 4.9, cf. the estimate (94). The
same holds for the first term in the second line. Note the smallness factor
arising from the pointwise bound on φu

ru
, Proposition 3.1.

• terms which have φ2v can be estimated using the pointwise bound on φu

ru

and (149) and the H1
AdS,deg-norm for φ. Note that ‖φ‖2

H1
AdS,deg

(u,v)
≤

BM,l · ǫ · ‖φ‖H1
AdS,deg

(u,v) from Proposition 3.1.

• the terms which have (1− µ) have λ = κ (1− µ) in them and are easily
integrated using the pointwise bound on φu

ru

With the pointwise bound on |Tφ| we repeat the conservation of energy argu-
ment (87), now modified to the almost conservation (159): For any (u, v) ∈ RH,

‖Tφ‖2H1
AdS,deg

(uH,v0)
≥
∫ u

u0

(
2π

(∂u (Tφ))
2

γ
− 4πa

l2
(Tφ)

2
ru

)
r2 (ū, v0) dū

=

∫ u

uI

(
1{r≥rY } + 1{r≤rY }

)
(
2π

(∂u (Tφ))
2

γ
− 4πa

l2
(Tφ)

2
ru

)
r2 (ū, v) dū+

∫ v

v0

(1r≥rY + 1r≤rY )

(
2π

(∂v (Tφ))
2

κ
+

4πa

l2
(Tφ)

2
rv

)
r2 (u, v̄) dv̄ +

∫

D(u,v)

Q

Using the Hardy inequalities of Lemma 4.5 (which clearly hold for φ replaced by
any ψ satisfying the same boundary conditions at infinity, hence in particular
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for Tφ), we continue to estimate

‖Tφ‖2H1
AdS,deg

(uH,v0)
≥
∫

D(u,v)

Q+
9

8

4π

l2

∫ u

uI

1r≤rY |Tφ|2rur2 (ū, v) dū

−9

8

4π

l2

∫ v

v0

1r≤rY |Tφ|2rvr2 (u, v̄) dv̄ +
1

2

(
a+

9

8

)
‖Tφ‖2H1

AdS,deg
(u,v)

≥
(
a+

9

8

)
‖Tφ‖2H1

AdS,deg
(u,v) +

∫

D(u,v)

Q

−BM,lc
1
3

(
sup

RH∩{v̄≤v}∩{ū≤u}

‖Tφ‖2H1
AdS,deg

(ū,v̄) +BM,l,a · N2 [φ] (v0)

)
,

where we inserted the pointwise estimate (162) in the last step and exploited

the c
1
3 smallness of the r-difference is the region r ≤ rY . Taking the sup over

all (ū, v̄) ∈ D (u, v) of this estimate we arrive at the estimate of Lemma 6.4 for
the H1

AdS,deg-norm on the left hand side. However, in view of (162) and the

remarks of Section 4.8, the estimate also holds for the H1
AdS-norm.

Corollary 6.5. For any (u, v) ∈ RH we have the estimate

∣∣∣r 3
2
r∂u (Tφ)

ru

∣∣∣ ≤ BM,l,a · N [φ] (v0) +BM,l

(∫

D(u,v)

|Q| Ω2r2dudv

) 1
2

. (164)

Proof. This is immediate in r ≤ rX from (162) and the Lemma 6.4. For r ≥ rX
one repeats the proof of Lemma 4.10.

Since Tφ satisfies the wave equation with an inhomogeneous error-term on
the right hand side, we can prove the same integrated decay estimate for Tφ that
we proved for φ, corrected only by the error-term arising from commutation:

Lemma 6.6. For any (u, v) ∈ RH we have the estimate

‖Tφ‖2H1
AdS

(u,v) + I [Tφ] (D (u, v)) ≤ BM,l,a · N2 [φ] (v0)

+BM,l

∫

D(u,v)

P Ω2r2dudv (165)

with

P =

(∣∣∣ r
ru
∂u (Tφ)

∣∣∣+ 1

rκ

∣∣∣∂v (Tφ)
∣∣∣+ 1− µ

r2

∣∣∣Tφ
∣∣∣
) ∣∣∣q [Tφ]

∣∣∣+ |Q| . (166)

Proof. We are proving an estimate for the same wave equation as in Proposition
5.1, except that there is the inhomogeneity q [Tφ] on the right hand side. Look-
ing at formula (118), we see that this inhomogeneous term enters the vectorfield
estimates as the spacetime error-term

∫

D(u,v)

(X [Tφ] + f Tφ) q [Tφ] . (167)
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Checking carefully which pairs of multipliers (X, f) were used to derive the
integrated decay estimate, we see that the first term in (166) accounts for these
terms. The boundary terms in the integrated decay estimate are again controlled
by the ‖Tφ‖H1

AdS
(u,v)-norm. Inserting the estimate (160) for these will produce

the last term in (166).

Lemma 6.7. Let |φv

κ | < 1 hold in D̃ (u, v). Then

∫

D̃(u,v)

P Ω2r2dudv ≤ BM,l,a · ǫ ·
(
I [Tφ]

(
D̃ (u, v)

)
+ I [φ]

(
D̃ (u, v)

))
, (168)

with the ǫ-factor arising from the smallness of the N [φ] (v0) norm.

Proof. Inspecting the terms in (157), this is an easy application of Cauchy’s
inequality after using the pointwise bounds for φv from the assumption and the
smallness bounds we already established for φu

ru
and (149).

We can finally derive the second estimate (57) of Proposition 3.3 by a boot-

strap on the size of |φv

κ | < 1. Recall the region B̂ (ũ) from (66). Let

umax = sup
u

( ∣∣∣φv
κ

∣∣∣ < 1 holds in B̂ (u)
)
. (169)

and B = B̂ (umax). By the local well-posedness, B is non-empty and by con-
tinuity of the pointwise norm, the region B is open. We show that B is also
closed, which implies B = RH. Combining Lemma 6.6 and Lemma 6.7 with
Proposition 5.1, we obtain that for (u, v) ∈ B we have

∣∣∣r 5
2
∂u (Tφ)

ru

∣∣∣
2

+ ‖Tφ‖2H1
AdS

(u,v) + I [Tφ] (D (u, v)) ≤ BM,l,a · N2 [φ] (v0) . (170)

Integrating Tφ = 0 +
∫
du ∂u (Tφ) du from infinity (where Tφ vanishes) yields

in view of the previous estimate,

|Tφ| ≤ BM,l,a · N [φ] (v0) · r−
3
2 . (171)

Finally, from the relation φv = κ(Tφ) + κ (1− µ) φu

ru
and the pointwise bounds

already established for the right hand side we obtain in particular φv

κ < 1
2 in B.

The bootstrap closes, hence (170) holds in all of RH, which implies both the
estimate (57) of Proposition 3.3 and (54) of Proposition 3.2.

6.4 Improved r-weighted bounds for φ and first derivatives

It remains to establish (55) of Proposition 3.2:

Lemma 6.8. We have, in RH ∩ {r ≥ rX} the bounds

|φ (u, v) | ≤ Cδ ·BM,l,a · N [φ] (v0) · rmax(2p−3,− 5
2+δ) (172)
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∣∣∣r2φu
ru

(u, v)
∣∣∣+ |φv (u, v) | ≤ Cδ ·BM,l,a · N [φ] (v0) · rmax(2p−4,− 3

2+δ) (173)

for any δ > 0.

Proof. On the initial data and on r = rX these bounds hold by assumption and
Proposition 3.1 respectively. Let now

p =
3

4
−
√

9

16
− −a

2
. (174)

One derives the following evolution equation for

A = rn
ζ

ν
+ 2prnφ : (175)

∂vA = A

[
λ

r
(n+ 2p− 1)− ρ

]
+ f

f = (2p− 1) rnκT (φ) + 2φκrn+1p

[
1

r2
(1− 2p) +

4̟p

r3
− 8π

a

l2
φ2
]

(176)

where we recall the redshift weight ρ from (92). This computation exploits an
important cancellation: The zeroth order term in f decays better (in r) than
naively expected while we have already shown improved decay for Tφ by our
commutation argument. Note in this context that the conformally coupled case,
p = 1

2 is special.14 Noting that

λ

r
(n+ 2p− 1)− ρ =

κ

r

(
n− 3 + 2p

l2
r2 + (n+ 2p− 1) + terms decaying in r

)

we choose n = min
(
3− 2p, 52 − δ

)
. Note that for n = 3 − 2p we have (using

that κ ≤ 8d−
1
3
l2λ
r2 in r ≥ rX)
∫ v

v0

1r≥rX

(
λ

r
(n+ 2p− 1)− ρ

)
(u, v̄) dv̄ ≤ BM,l (177)

uniformly, while for n = 5
2 − δ we obtain an exponential decay factor in (176).

Either way, integrating (176), one easily obtains the following estimate for A in
all of r ≥ rX :

|A (u, v) | ≤ BM,l ·
∫ v

v0

1r≥rX |f | (u, v̄) dv̄ . (178)

To estimate this, we exploit the pointwise bounds available for both φ and Tφ.
For instance, from (171),
∫ v

v0

1r≥rX r
n|κTφ| (u, v̄) dv̄ ≤ BM,l,a · N [φ] (v0)

∫ v

v0

1r≥rX r
n− 3

2
rv
r2

(u, v̄) dv̄

≤ BM,l,a · N [φ] (v0)Cδ .

14In particular, commutation by T is not necessary to obtain the improved estimates of the
Proposition since the Tφ-term drops out of (176).
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The φ-term can be estimated in the same way. What we have shown so far is

∣∣∣rmin(3−2p, 52−δ)
(
ζ

ν
+ 2pφ

) ∣∣∣ ≤ BM,l,a · N [φ] (v0)Cδ , (179)

which in view of 2p < 3
2 is an improvement over previous estimates of the two

summands individually.
With the improved decay for the quantity above one can re-estimate φ from

infinity by integrating r2pφ. The latter quantity vanishes at infinity, since 2p <
3
2 , which is the decay we already established for φ.

r2pφ (u, v) =

∫ u

uI(v)

∂u
(
r2pφ

)

ν
ν (ū, v) dū

≤ BM,l,a · N [φ] (v0)

∫ u

uI(v)

rmax(4p−4,2p− 7
2+δ) (−ν) (ū, v) dū

≤ Cδ ·BM,l,a · N [φ] (v0) r
max(4p−3,2p− 5

2+δ) (180)

and hence

|φ| (u, v) ≤ Cδ ·BM,l,a · N [φ] (v0) · rmax(2p−3,− 5
2+δ) , (181)

which is the first estimate of the Lemma. The second immediately follows by

combining the first with (179). For the bound on φv note that φv =
Ω2

−ru
(Tφ)−

rv
φu

ru
and use the previous bounds.

Remark 6.9. For 3 − 2p > 5
2 , one can actually improve the decay further by

another commutation with T (which will improve the pointwise decay for Tφ
to what we have just shown for φ) to establish the heuristically expected r3−2p

decay for φ. Since the gain is not needed, we do not concern ourselves with
optimizing the result in that direction.

A Absence of stationary solutions in the linear
case

We present here an elementary argument to establish the non-existence of sta-
tionary solutions for the wave equation on Schwarzschild-AdS backgrounds sat-
isfying the boundary conditions of [28, 31]. For spherically-symmetric solutions
this is of course implied by Corollary 3.9. The simple computation is given here
because it motivated the analysis of the present paper and the subsequent [32].

Assume that there was a stationary solution ψ of (3) on a fixed AdS-
Schwarzschild background,

g = −F (r) dt2 + F (r)
−1
dr2 + r2

(
dθ2 + sin2 dϕ2

)
, F (r) = 1− 2M

r
+
r2

l2
.
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In view of ∂tψ = 0, ψ must satisfy

1

r2
∂m
(
r2gmn∂nψ

)
+

2a

l2
ψ = 0 with m,n = {r, θ, ϕ} . (182)

Multiplying this equation by r2ψ and integrating over a constant t-slice with
drdθdϕ we obtain after integrating by parts,

∫
dr dθ dϕ r2

[
F (r) (∂rψ)

2
+ r2gAB∂Aψ∂Bψ − 2a

l2
ψ2

]
= 0 . (183)

Note that the boundary-terms vanish both at infinity (in view of the boundary
conditions of [28]) and at the horizon (since grr = F (r) = 0 there) in this
computation. By the Hardy inequalities proven in [28] this implies that ψ = 0,
as the zeroth order term can be absorbed by the derivative term for −a > 9

8 .
Hence there are no non-trivial stationary solutions for the wave equation on
Schwarzschild satisfying the boundary conditions.
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[38] Luk, J. The Null Condition and Global Existence for Nonlinear Wave
Equations on Slowly Rotating Kerr Spacetimes. arXiv:1009.4109.

[39] Marzuola, J., Metcalfe, J., Tataru, D., Tohaneanu, M. Strichartz
Estimates on Schwarzschild Black Hole Backgrounds. Comm. Math. Phys.
293 (2010), arXiv:0802.3942.
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