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Abstract

A general method is formalised for the problem of making predictions for
a fixed group of individual units, following a sequence of repeated measures
on each. A review of some related work is undertaken and, using some of its
terminology, the approach might be described as approximate non-parametric
empirical Bayes prediction. It is contended that the method may often pro-
duce predictions that are, in practice, comparable or not much worse than more
sophisticated methods, but sometimes for a smaller computational cost. Two ex-
amples are used to demonstrate the approach, exploring the prediction of base-
ball averages and spatial-temporal rainfall. The method performs favourably
in both examples in comparison with James-Stein, empirical Bayes and other
predictions; it also provides a relatively simple and computationally feasible way
of determining whether it is worth modelling between-individual variability.
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1. Introduction

The problem considered in this paper is prediction of individual behaviour,
when repeated measurements are observed on a large number of individual
units. Specifically, if y;, = (vi1, ¥i2, - - -, Yin, ) are the data observed on individual
i = 1,...,n, then the objective is to predict y; n,+1,... for each i. Databases
are used to record repeated measurements on units such as consumers, sport
stars, bank accounts or households, in a range of areas, from personal finance
to cricket to supermarket transactions. This motivates methods to predict indi-
vidual behaviour for large fixed n, but where n; may vary between individuals.

Predictions about individual ¢ that only use y,; can be improved upon by
using the whole data Y,, = (yq,...,vy,). Such predictions follow from sup-
posing that, given U,, = (uq,...,u,), with u; = (u;1,...,u;m), the y,’s are
independent with probability densities or mass functions p(y;|u;), where the u;
are independent random effects drawn from some common distribution. Note
that although the y,’s are independent given U,,, the components of y, need
not necessarily be independent given w;. This structure usually results in the
estimates, or predictions of wu;, being shrunk towards their sample mean. In
this work we compare commonly-used shrinkage estimates against the following
approach, called ARMS (approximate repeated-measures shrinkage).

The u; (i =1,...,n) are possibly drawn from some wider population about
which we make no assumptions. We focus on the sampled u; and place equal
weight on them. In effect, our finite population of interest is (w1, ..., u,) with
probabilities assigned uniformly as 1/n; we do not necessarily assume that the
u; are all different. Unlike the usual case, it is the support points w; that
are to be estimated rather than the distribution of probabilities. Let u; be a
consistent estimate for u;, a maximum likelihood estimate for instance, and let

7e(u) be the corresponding empirical distribution, assigning probability 1/n to



each 4;. In the following p.(.) and P.(.) will be used for probabilities based
on this empirical distribution, that is, based on the @; rather than on the wu;.
Then, following the law of total probability, we construct predictions on random

variables or events C' of interest as
pe(Cly;) = > p(Cou; = dyly,). (1)
Thus the predictions are a summation

pe(Cly;) = Zzijp(qyw'&j)- (2)

j=1

with weights z;; obtained by Bayes’ rule

zij = Pe(u; =15ly;)
Pe(yil@;) ) (3)
> k1 De(y;l k)

This approach has two desirable features. Firstly, for fixed n, as the n; be-
come large (@1,...,%,) — (41,...,u,) in probability. More precisely, the
ARMS estimate p(.) converges to a distribution with mass 1/n on atoms
(u1,...,uy,) as min(n;) — oo, because each estimate ; is consistent. Sec-
ondly, computational requirements may be modest: estimation is only required
for the @; (and iterative optimisation routines need not always be required for
this), and the increase in computational complexity in going from univariate
to multivariate random effects may be small. Once the individual estimates @;
have been obtained, the computational complexity is 0(n?) to calculate z;;.

In some other shrinkage methods the random-effects distribution 7(u) is
first estimated, and then used as a prior in Bayes formula to obtain posterior u;

quantities. This has sometimes been called empirical Bayes [11]. Estimation is



a mixture problem, with likelihood

a0 = ] / Py ) p(u 0)du (4)

where @ are the parameters to be estimated. This setup assumes that there
are no fixed effects in the model p(y;|u;). If a model is specified for p(u;;@)
then some have termed this parametric empirical Bayes [25]. An alternative is
to leave the form of p(u,; @) unspecified, but to allow it a number of atoms at
unknown points and mass in the u space, and this has been called nonparametric
mazimum likelihood estimation [18]. A further possibility is to take p(u;; ) to
be generated by a Dirichlet process [24], which fits into a class of techniques
called nonparametric Bayes [26]. Finally, one might take a parametric Bayesian
approach and simulate directly from the posterior distributions.

It can be seen that a range of different methods is available. However, most
are likely to be more difficult to apply for large data sets and multivariate
random effects than ARMS. A reason for this is that it may not be possible
to write the integral in equation (4) as an analytical expression, and so one
evaluation of the overall likelihood function will involve n separate numerical
evaluations of a multi-dimensional integral. One aim of this article is to review
the motivation and properties of different shrinkage methods, in order to help
understand what may be lost by using the computationally more attractive
ARMS.

The outline for the rest of the paper is as follows. In Section 2 a brief
history of shrinkage estimators and the terminology introduced is set out. Then
in Section 3 the different approaches are compared in more detail. The later
sections contrast the performance of the proposed ARMS approach on examples
reported previously in the literature, and demonstrate its application to a large

data set.



2. Shrinkage estimators

2.1. A selective history

Early work on shrinkage estimation was motivated by data yi,y2,...,¥n
as realisations of independent random variables with parameters uy, us, .. ., U,-
The objective is to estimate uq, ..., u, given a performance measure. Particular

attention has been paid to two special cases.

The first case is when the data are normal random variables with unknown
mean parameters. Stein [32] showed that estimates U, =Y, will not minimise
the sum of squared errors E(|U,, — U,|?), and James and Stein [17] derived a
better estimate. This result has been called Stein’s paradox, since some saw in
it the possibility of combining apparently unrelated problems. Half a century
later, we can see that the result has not been used in this way. To quote an
example used in 1973 [12], the speed of light and the weight of hogs in Montana
are not used to improve estimates of tea consumption in Taiwan. A more
useful interpretation of the result is given by [33], who frames it using Galton’s
‘regression to mediocrity’ idea.

The second case is a compound decision problem where u; = £1, and a
decision is required on the sign of each so that the expected number of errors
is minimised. Robbins [28] showed that a shrinkage estimator beats the simple
approach of using the sign of the observations. He also suggested that for
more general problems a decision rule could be formed from estimates of 7(u).
Robbins called this approach empirical Bayes [29], missing the opportunity for
a more catchy name (the idea had previously been described as “an attempt
to lift ourselves by our own bootstraps” [28]). A distinction between empirical
Bayes and compound decisions used to be made [10], but the differences are
largely ignored today [11]. It can be shown that the James-Stein estimator is

also an empirical Bayes estimator [25], so in some sense, Robbins anticipated



Stein’s result.

Shrinkage estimates are now formed by many different statistical models.
For example, Bayesian linear models were partly motivated by the above re-
sults [22], and ideas about the variance-bias estimation trade-off are applied by
regularisation methods such as penalised likelihood. Two recent papers in this

journal to use shrinkage estimates are [21] and [15].

2.2. On the proposed approach

The problems in Sections 1 and 2.1 are quite similar. The most obvious
difference is that in the first one the data and parameters are allowed to be
multi-dimensional. But, there is also another difference that led Robbins to
discard the ARMS prediction method [28].

Robbins considered using an empirical distribution of the observed data as
an estimate of w(u), but found that the estimate might be biased, with bias not
tending to zero as n — oo ([28], p. 142). This is important for the compound
decision problem because the observations from the random variables continue
to arrive [30].

However, the potential for such a bias may be less relevant for the problem
described in Section 1 because the number of individual units is taken to be fixed.
The finite population of interest means that while there is theoretical interest
in n; — oo with n fixed, there is none here in n — oo with n; fixed. Thus, the
use of an empirical distribution based on the observed data to derive the ARMS

prediction equation (2) may still have some merit in many real situations.

3. Estimating the random-effects distribution

The ARMS approach might be seen under an empirical Bayes umbrella, as
another way to estimate 7(w). In this section we explore how it compares to

other estimation procedures.



3.1. Nonparametric models

The nonparametric maximum likelihood (NPML) estimate is a discrete dis-
tribution, with number of mass points k£ < n [18]. One effect of this is that the
integral in equation (4) is a summation, simplifying computation. The NPML
estimate is not necessarily the same as the ARMS estimate, indeed the approach
in Section 1 is called ‘approximate’ with regard to NPML, i.e. ARMS predic-
tions approximate those from NPML estimation. However, as min(n;) — oo
for n fixed they should converge to the same distribution (but of course not
when n — oo with n; fixed). This is true for the following reason. Firstly, the
weights m(u;) = 1/nfori =1,...,n as min(n;) — oo by definition. Secondly, as
the n; — oo, p(y;|u;)/p(y;|u;) — 0 for u; # w,; and, therefore, the %, (which
— u;) will eventually maximise all n sums and hence the likelihood.

Several algorithms have been proposed for NPML estimation, including EM
and intra-simplex directional methods [20] and alternatives are still being de-
veloped, e.g. [34]. A practical issue is that computational complexity may
sometimes increase exponentially with dimension of u;, because the number of
parameters for the location of each mass point is equal to the dimension of u;.

A continuous distribution might be preferred to a discrete distribution if
interest is in making predictions for new individuals. That is, when the under-
lying 7(u) really is continuous. [19] consider a computationally efficient way
to smooth non-parametric maximum likelihood estimates, but also note that
NPML may still be competitive against correctly specified parametric distribu-
tions.

Another approach to smoothing the NPML estimate is to represent uncer-
tainty on the distribution function 7(u) as a probability distribution on the
space of distribution functions, that is as a random probability measure. A

Dirichlet process is commonly used [24]. This approach can sometimes be com-



putationally intensive even for scalar w;, but simulation algorithms, such as

Gibbs sampling, can be used to fit [23].

3.2. Parametric models

It might be possible to choose a form p(u; @) that provides an explicit form
for the integral in equation (4). In this case, the parameters 6 might be esti-
mated by maximising (4) with an unconstrained optimisation method, such as
a quasi-Newton algorithm. Otherwise, the integral will need to be evaluated nu-
merically. When Monte Carlo simulation is used and the likelihood is explored
using an optimisation algorithm the approach is sometimes called simulated
maximum likelihood; if an EM algorithm is used it has been called Monte Carlo
EM [8]. Unfortunately, as n and the dimension of w; increase, the approach

rapidly becomes unfeasible.

3.3. Direct prediction

The original proposal by [29] did not estimate 7(u) and then to plug it in to
Bayes’ formula, but used an estimate for p(y;) = [ p(y;|u)m(u)du directly in
the prediction equation for E(u|y;). The best-known example of this approach
from [29] is when p(y;|u) is of Poisson form. The direct approach has sometimes
been called non-parametric empirical bayes (NPEB).

The direct approach has been followed by others, including [7]. Brown [5]
showed how the Bayes estimate can sometimes be obtained by shrinking the
estimate based on the individual’s data by a term {Jp(y,)/0y,}/p(y;). This

approach was exploited in [6] by using a kernel estimator for p(y;).

8.4. Comparison with ARMS
Many ways may be used to estimate m(w), and it is clear that at least
some of the above methods can perform better than w.(u). For example, if a

binomial model is taken for the individual and half the individuals have only



one observation (n; = 1) and the other half have 100 then 7.(u) might be a
very poor approximation to m(u): half of the mass (resulting from individuals
with n; = 1) will be shared between the values of 0 and 1. However, 7(u) is
only a step on the way to prediction, and the numbers of repeated observations
are implicitly considered through (3). For instance, those with 100 observations
are unlikely to be shrunk much for a wide variety of different 7(u) estimates:
Morris notes that the main benefit may be from the richer model form, rather
than the choice of shrinkage technique [25]. Indeed, the direct approach is partly
motivated by the observation that it may be more practical and effective not to
estimate 7(u) [6]. We suggest that ARMS may produce shrinkage estimates that
are not very different to those from more sophisticated and computationally-
expensive methods. In the next section we investigate this claim through some

empirical examples.

4. Baseball

There has been some interest shown in using shrinkage estimates to predict
individual-player baseball averages, including by [25]. The baseball prediction
problem fits into the general framework of Section 1. There are n individuals,
and each has been observed n; times, where the outcome y;; = 1 if the ball is hit,
0 otherwise. The objective is to predict the proportion of balls hit in the future,
for each individual. Note that the number of individuals to be predicted is
fixed, and the n; increase. In fact, the model and objective described in Section
1 provide a better description of the problem than the traditional compound-
decision setup described in Section 2.

We next introduce the performance measures and shrinkage methods used,

and then present the results.



4.1. Performance measures

Estimates of u; are evaluated in [13] using the sum of squared differences
S, (ti; —0;)? with the observed proportion o; of hits for the rest of the season.
A performance measure is derived in [6] to more accurately measure the quantity

of interest Y., (@; — u;)?. More precisely, setting the proportion of hits in the

second half of the season r; as the ratio of the number of hits yZ@) and total
at-bats ngz), then the measure is
TSER(a) = Y (ri— )2~ ri(l—r)/n (5)
i=1 i=1

where @ are the predictions, and TSE r stands for the total squared error for
the proportion of hits R. We report T/SE;('&), which normalises I{S\ER('&) to
be be 1.0 for predictions using individual maximum likelihood estimates, i.e.
the proportion of hits in the first three months.

An alternative performance measure is a Brier score [4], which is often
used to rank forecasting systems [16]. When an individual ¢ has outcome
yi; (0 or 1) and corresponding prediction 1, the overall average Brier score
is (g mi) 7 Dy 2205 (@ — yi)?. This seems (to us) to be a more sensi-
ble measure of overall model performance than the sum of squared differences
Yo (W —0;)?, or related quantities, because the Brier score weights each predic-
tion equally, whereas the sum of squares implicitly downweights the individual
predictions from the people with more observations.

To obtain standard errors on the performance measures, a non-parametric

bootstrap was applied using 1000 bootstraps, resampling each individual’s fit-

ting and validation sets from their complete season.



4.2. Shrinkage methods

Individual MLEs, an overall mean and ARMS predictions were used. Note
that the ARMS approach may be applied without modification when n; vary for
1 =1,...,n, because the number of observations is automatically considered in
the z;; term in equation (2) via the likelihood p(y;|u). For NPML predictions
we used an EM algorithm on untransformed data and checked convergence using
a stopping rule, and double-checked convergence by calculating the directional
derivative [34].

The Stein prediction approaches from [13] and [6] were taken. These sta-
bilise the variance of observed proportions ¢; = Z;Zl yij/m; through a trans-
formation. An arc-sine transformation w; = arcsin(g;) was used in [13], with

variance v; = (4n;)"L.

This presentation of the transformation from [6] is
slightly different from that presented in [13], because it also caters for the

case where the n; vary. [6] recommended an alternative transformation z; =

arcsin\/(z;l;l yi; +0.25)/(n; + 0.5) because it has better asymptotic control
over bias. Stein predictions of the transformed variables are as [6], their equa-
tion (4.17). Predictions using the w transformation are denoted Stein 1, those
from the x transformation are Stein 2. We also applied the NPEB method

described in [6], using an x transformation.

4.3. Batting averages in 1970

The data and predictions are presented in Table 1. The last column in the
table records the proportion of balls hit in the rest of the season. All the methods
shrink predictions relative to individual MLEs, the NPML predictions being
shrunk the most, but the differences are small. Table 2 presents the results.
They are in line with [13]: the differences are small between the shrinkage
methods. Further inspection of the performance measures for each individual

1 =1,...,18 show that no single shrinkage method is consistently lower than
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Table 1: Baseball data and predictions. Each player is observed 45 times before predictions
are made.

Player # Suc MLE ARMS Steinl Stein2 NPEB NPML Outcome

1 18 0.400 0.344 0.290 0.290  0.309 0.285 0.346
2 17 0.378 0.333 0.286 0.286  0.324 0.281 0.298
3 16 0.356 0.320 0.281 0.282  0.323 0.276 0.276
4 15 0.333 0.306 0.277 0.278  0.314 0.273 0.222
5 14 0.311 0.291 0.273 0.274  0.300 0.269 0.273
6 14 0.311 0.291 0.273 0.274  0.300 0.269 0.270
7 13 0.289 0.275 0.268 0.270  0.269 0.266 0.263
8 12 0.267 0.261 0.264 0.266  0.230 0.264 0.210
9 11 0.244 0.248 0.259 0.262  0.220 0.262 0.269
10 11 0.244 0.248 0.259 0.262  0.220 0.262 0.230
11 10 0.222 0.237 0.254 0.258  0.238 0.260 0.264
12 10 0.222 0.237 0.254 0.258  0.238 0.260 0.256
13 10 0.222 0.237 0.254 0.258  0.238 0.260 0.303
14 10 0.222 0.237 0.254 0.258  0.238 0.260 0.264
15 10 0.222 0.237 0.254 0.258  0.238 0.260 0.226
16 9 0.200 0.227 0.249 0.253  0.261 0.259 0.285
17 8 0.178 0.218 0.244 0.249  0.265 0.257 0.316
18 7 0.156 0.210 0.239 0.244  0.258 0.257 0.200

Table 2: Performance measures for 1st baseball data set

@; SE  Brier (x10) SE

MLE 1.000 0.000 2.027 0.029
ARMS 0.343 0.129 2.002 0.027
Stein 1 0.149 0.391 1.993 0.027
Stein 2 0.147 0.416 1.992  0.026
NPEB 0.284 0.277 1.998 0.029
NPML 0.140 0.234 1.991 0.027
Mean 0.193 0.255 1.992  0.025

11



another one. However, there is a difference between the shrinkage methods and
the individual MLEs: for example, the ARMS prediction scores are less than
the individual MLE scores in all but two cases.

None of the shrinkage methods do better than using the overall mean. This
suggests that more information may need to be gathered in order to distinguish
batting performance with confidence.

This example reveals two interesting aspects in relation to ARMS. Firstly,
there is little difference between ARMS and NPML predictions, despite the
NPML estimate for the random-effects distribution being quite different to the
empirical distribution of individual fits used by ARMS. The NPML was esti-
mated by an EM algorithm [18] to have just two atoms at 0.254 and 0.311 with
masses 0.797 and 0.203, and log-likelihood -468.675. Secondly, it can be seen
that the more sophisticated shrinkage methods are all approximations in prac-
tice: Stein estimates are justified because the transformed data will approximate
a normal distribution; the NPML only has two mass points and so also clearly

approximates the true random-effects distribution.

4.4. Batting averages in 2005

In the previous section the same, moderately large, number of observations
is recorded on each of the players prior to prediction. The case where the n;
vary is considered in detail by [6] using data from the 2005 USA baseball season.
We use the same data to consider predictions for the second half of the season.

Figure 1 shows a comparison between the Stein estimates of [6], NPML and
ARMS. The chart shows that all methods shrink the predictions from the diago-
nal line of no shrinkage, to the horizontal line of complete shrinkage to the sam-
ple mean. The Stein estimates do not take account of the number of attempts
to hit a ball because the predictions are shrunk by a constant factor; and of the

three shrinkage methods the NPML predictions are shrunk the most, ARMS
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Proportion hits in first 3 months

Figure 1: Shrinkage from Stein 2 (square), NPML (o) and ARMS (x) predictions. The
diagonal line (— — —) corresponds to predictions as the first-three month individual average,
the horizontal line (. —) to using the overall mean (0.266).

the least. The NPML estimates arise from a discrete distribution estimated us-
ing an EM algorithm to have just 4 points (0.0618,0.2054,0.2703, 0.3408) with
masses (0.0268,0.0544,0.9025,0.0163) and log-likelihood -44203.96.

The performance measure results are in Table 3. They show that the ARMS
predictions are not beaten by others. ARMS also performs favourably in com-
parison with some other methods in Table 2 of [6]. Overall, this example shows
that ARMS may again be competitive with more sophisticated methods.

The Stein 1 predictions [13] had a lower Zﬁ; than Stein 2 [6]. This ap-

13



Table 3: Performance measures for 2nd baseball data set, half-season predictions. Two overall
mean definitions are used: the first (0.266) is the number of hits divided by the number of
at-bats; the second (0.240) is the average of the MLEs. The second definition was used by [6].

TSE,  SE Brier (x10)  SE

MLE 1.000 0.000 1.958 0.008
ARMS 0.548 0.086 1.951 0.007
Stein 1 0.484 0.067 1.950 0.008
Stein 2 0.540 0.081 1.949 0.007
NPEB 0.510 0.094 1.949 0.007
NPML 0.717 0.133 1.950 0.007
Mean 1 1.142  0.260 1.951 0.008
Mean 2 0.888 0.233 1.958 0.009

pears to arise because the variance-stabilised variables in [6], and replicated
here in Stein 2 and NPEB, were re-transformed to ; = sin(2;)?, being justified
from asymptotic considerations. However, if they are instead re-transformed
using the actual transformation, i.e. @; = {sin(#;)?(n; + 1/2) — 1/4}/n;, then
the apparent gain in performance of Stein 1 over Stein 2 disappears and both
performance measures decrease. In particular TS/\E; was improved by 0.056 for

the Stein estimates, and by 0.045 for NPEB.

5. Spatial-temporal precipitation prediction

5.1. Introduction

The baseball examples show that ARMS may produce predictions that are
competitive with more sophisticated methods in a univariate setting. We stressed
the computational advantages of ARMS over some other methods in Section 3,
but, of course, Stein estimates are more computationally efficient than ARMS
because they do not involve computation of the z;; matrix. The ARMS ap-
proach is more useful when analytical results are harder to come by, such as
might be the case for more complex models for individual behaviour. One ex-
ample is found in [2], who used ARMS for predictions on the temporal pattern of

individual withdrawals at automated teller machines (ATMs), taking the model
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p(y;|u;) to be a self-exciting point process with 7 parameters. In other work, the
withdrawal amounts were modelled using a multinomial model, and another one
that incorporated a form of serial dependence [3]. For the multinomial model
ARMS was compared against the use of a Dirichlet distribution for p(u;8), a
model that falls into the category described in Section 3.2.

The approach may also be applied when covariates a; are available for each
individual, and conditional predictions are required. We assume that wu; is
independent of a;, that is P.(u; = 4jla;) = P.(u; = @;) = 1/n. Then we

re-define z;; as

zij = Pe(u; =,ly;,a;)
pe(yslai, ;)
Zzzl pe(yilaiaak)

The resulting predictions on random variables or events C' of interest are

n

pe(0|ai, yv) = Zzijp(c‘a'ivﬁ'j)'

j=1

We use this approach next to improve weather forecasts.

5.2. Data and methods

The data consist of n = 444 individual precipitation-monitoring stations,
located over the North American Pacific Northwest. Measurements y;; were
made at each station i over a two-year period of n; = 686 days in 2003-05.
The data used are available from http://www.stat.washington.edu/MURI/,
and some of the methods previously applied to the data are in a computer
package called ensembleBMA [14] for the statistical software R [27]. We review
the approach to prediction with these data taken by [31], in the context of
ARMS.
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Some 56% of the observations are missing, but they are treated as missing at
random. There are also forecasts a;ji of precipitation made 48 hours in advance
from k = 1,...,9 separate computer models. [31] turned these deterministic
predictions into probability densities by using a model for p(y;;|a:jx, wijx) with
Wi = uji for ¢ = 1,...,n. That is, the forecasts of y;; are covariates in a
model where the same model parameters are taken for all stations. The w;i
have dimension seven: three parameters are used in a logistic regression to
model the probability of zero precipitation, and four are used through a gamma
distribution to model the precipitation amount when it is not zero.

Parameters wu;; for j = 31,...,686 and k = 1,...,9 were fitted in [31]
by using the observations y;; and a;;; for ¢ = 1,...,444 from a sliding win-

dow of L = 30 previous days {(j — L),...,(j — 1)}. We use the notation

yEJL) {viG-1) - > ¥i-1}, and yEL) = {y%),...,ym)} Similarly, (,) =

{ai(j_L)k, -+, @i(j—1)k ), and a superset is defined when a subscript is dropped,
L L L

e.g. a' k = {aljk,... n]k} a( ) {agl),... gg)}.

The approach in [31] averages spatial heterogeneity in estimation, since @ ;x
is taken to be @, for all ¢. They used an EM algorithm to estimate
P{u; = '&jk|y§L),a§.L);9} = 0jk, so that 22:1 Ojx = 1. The 6 are used to

predict precipitation y;; at each site ¢ and time point j through

9
Ly (L), 4 A .
p{vijlaiz, ai™ '\ 0y = " Gup(yilaie, an). (6)
k=1
The basic ARMS method does not average spatial differences across 4, and uses
zije = Pefuiy = aglyl)’, al))}
Pe{yu )|awkauijk}

= ) (7)

Zl 1pe{y ‘awl s Wiji }

so that 22:1 zijr = 1 for given ¢ and j. The ARMS prediction that is equivalent

16



to (6) replaces éjk by averaging z;;; over 4, that is by using

~ L L
s = Polu;=aulal”, y{"}

444

1/444 " zijk,
=1

and so 2221 z jr = 1, for given j.

Spatial effects will be present in the ‘signal’ a;;, but there might also be spa-
tial differences in the performance of the weather forecasts across the recording
stations. For example, for each time point j the computer model forecast a1
might be best for station 1, but forecast as;9 best for station 2. Although such
potential spatial differences are averaged in estimation, they might be used in

prediction. One way to do this is to use

A = Plug =aglyl all; 6}
L L) « A
B p{yz(’j )|a1(‘jk?a ik} ®
- 9 L L) « Ao
S p{yl lall) a5

to make predictions of the form:
9
L) (L), 4 .
P{Z/z‘j|aij,a§j )7.%(- )é 0} = Zzz{jkp{yijmqkauijk}' (9)
k=1

The ARMS version of prediction equation (9) is to use (7) in place of (8). The
difference between these definitions is that the random-effects distribution 7 (u)
in (8) is taken to put mass ;5 on each point @, rather than 1/9 asin (7). In the
remainder of this section we compare the performance of using spatial versus
averaged predictions, with the two choices for m(u). The approach is called
Bayesian model averaging (BMA) in [31]. We call it xBMA to denote that
the predictions do not take into account possible spatial differences; the ARMS
equivalent is denoted xARMS. sBMA and sARMS are used for the predictions
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Table 4: Weights (%) used for the chance (%) of rain at two monitoring stations: (a) KCLM
on 19 May 2003, (b) KPWT on 26 Jan 2003. It rained at both, with 2 and 26 units recorded
respectively. The predictive variance is a plug-in one.

Forecast (a) (b)

Model k xBMA xARMS sBMA sARMS xBMA xARMS sBMA sARMS
AVN/GFS 39 19 35 14 30 21 95 88
CENT 0 10 0 13 0 9 0 3
CMCG 0 8 0 5 23 15 0 1
ETA 29 18 34 18 23 13 5 6
GASP 18 11 10 9 0 8 0 0
JMA 14 11 21 24 0 9 0 2
NGPS 0 7 0 14 3 11 0 0
TCWB 0 8 0 1 16 7 0 0
UKMO 0 8 0 2 5 7 0 0
Prediction 17 19 18 19 63 60 64 63
Variance 14 15 14 15 23 23 23 23

Table 5: Average Brier scores (x10) for the four shrinkage predictions, and the best (UKMO)
and worst (TCWB) performing individual forecasts. Predictions and outcomes are for whether
it will rain, over the period from 11th December 2002 to 31st March 2005.

xBMA xARMS sBMA sARMS UKMO TCWB
1.410 1.414  1.427 1.427 1.470 1.577

from equation (9).

In this example xARMS does not really offer a substantial saving in compu-
tational cost over xBMA. The example is better viewed as a controlled attempt
to compare any loss in performance from using the approximate approach to
obtain weights in model averaging, rather than optimisation. That is, the only
difference between the ARMS and BMA predictions that follow is the weights:

the model parameters are the same.

5.8. Results

Predictions for each method are formed from weighted sums. Table 4 shows
the different weights assigned to the 9 computer model forecasts for two mon-
itoring stations and time points. A similar table is found in [31], and further

details of the computer forecasts are given therein. The xBMA and xARMS pre-
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Table 6: Percentage of precipitation monitoring stations for which the method labelled in the
first column has a lower average Brier score that the method in the top row. Predictions are
for whether it will rain at each station. The best (UKMO) and worst (TCWB) performing
individual forecasts under the overall Brier score are included for comparison.

xBMA xARMS sBMA sARMS UKMO TCWB

xBMA 0 62 74 71 86 96
xARMS 38 0 65 72 84 96
sBMA 26 35 0 53 (0] 95
sARMS 29 28 47 0 74 96
UKMO 14 16 25 26 0 86
TCWB 4 4 ) 4 14 0

dictions apply one set of weights to all monitoring stations at each time point,
but the weights vary across stations for sSBMA and sARMS. The table shows
that there is a difference between the weights. For example, in column (b) the
AVN/GFS forecast receives a much higher weighting under sSBMA and sARMS.
However, the predictions shown at the bottom of the table are broadly similar.

To assess the performance across the monitoring sites and predictions made
through time we focus on assessing predictions about the probability of rain,
using average Brier scores. Table 5 shows that xBMA and xARMS perform
better than SBMA and sARMS, but that all do better than the top-performing
single density prediction based on the United Kingdom Met Office (UKMO)
forecasts. It is tricky to obtain bootstrap estimates of standard errors of the
Brier scores because of the temporal nature of the data. However, the difference
between the methods may be further investigated by examining the performance
for thei = 1,...,444 monitoring stations in Table 6. Reading along a row shows
the percentage of monitoring stations in which the row label beat the column
label under an average Brier score. It shows that no method outperformed
the others all the time: even the worst performing overall TCWB forecasts did
better than xBMA for some monitoring stations. The table also suggests that,
for a given time point, performance is worse when the weights in the predictions

are allowed to vary across the stations.
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For an overall Brier score performance measure, it is not worth using ARMS
to account for spatial effects beyond the information in the a;; terms. This
might also be the case for more complicated models. A Gaussian model for
spatial variability additional to that in the density predictions based on the
UKMO deterministic forecasts was built by [1]. The model was evaluated in
a similar manner to Table 5 and had a Brier score of 0.148, which is not an

improvement over using the UKMO density predictions alone.

5.4. Remarks

The use of ARMS in this section shows a relatively simple way to investigate
whether improvements may be gained through modelling spatial effects beyond
the ‘signal’ a;; from deterministic computer forecasts. Under a Brier score for
the data analysed, we found that it is not worth modelling additional spatial
variability. This was also found in some other work using the same data set,
but a more sophisticated model [1]. The result is likely to be because there is
very little spatial heterogeneity in relation to the noise in the system. Applying
such a model leads to a worsening in performance because the estimates for an
individual monitoring site are better shrunk all the way to the mean.

The example also showed that predictions in which the random-effects dis-
tribution 7(w) is taken to put mass ;5 on each point @, might perform slightly
better than using equal weights 1/9. The latter approach has the benefit of not
requiring optimisation. But, in the context of the general problem described
in Section 1, fitting individual parameters and then estimating weights is an

interesting extension to be investigated in future work.

6. Conclusion

In this article we have formalised a general shrinkage approach (ARMS) for

repeated-measures data. Using some of the terminology from relevant previous
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work, the method might be described as approximate non-parametric empirical
Bayes prediction. The main advantage of ARMS is that it is computation-
ally feasible to apply to a range of problems, and that its shrinkage estimates
might not practically differ from those obtained by more sophisticated meth-
ods. Two examples were presented to investigate the legitimacy of this claim.
In the first some baseball data with univariate random-effect binomial models
were re-examined. The method was found to perform favourably in compari-
son with Stein and other empirical Bayes predictions. In the second example
ARMS was applied to a spatial-temporal forecasting problem with multivariate
random-effects, and was shown to provide a relatively easy way to check whether
performance might be improved by modelling spatial effects.

In a famous piece of statistical folk lore, the Box-Jenkins forecasting proce-
dure was variously compared to a Rolls Royce, or a racing car [9]. Following
the automobile analogy, we do not claim that ARMS is the leanest, meanest
Formula 1 car around: more sophisticated methods might do better in certain
situations. However, it will usually have better predictive performance than the
family hatchback of modelling individuals separately. ARMS is perhaps most
akin to a Morris Mini Cooper S: it is a versatile vehicle that can take a few
knocks in a range of environments without too much specialist training, and it

will get you there relatively quickly.
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