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Abstract

The Ore conjecture, posed in 1951, states that every element of
every finite non-abelian simple group is a commutator. Despite con-
siderable effort, it remains open for various infinite families of simple
groups. In this paper we develop new strategies, combining character
theoretic methods with other ingredients, and use them to establish
the conjecture.
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1 Introduction

In 1951 Ore [40] conjectured that every element of every finite non-abelian
simple group is a commutator. Much work on this conjecture has been
done over the years. In the same paper, Ore established the conjecture
for the alternating groups; in a series of papers, Thompson [44, 45, 46]
established it for PSLn(q). Gow [22] proved that the conjecture holds for the
symplectic groups PSp2n(q) if q ≡ 1 mod 4, and in [23] proved that every
semisimple element of a finite simple group of Lie type is a commutator.
The conjecture was established for the sporadic groups in [37]. Bonten [3]
proved the conjecture for exceptional groups of Lie type of rank at most
4. An important breakthrough was made by Ellers and Gordeev [12], who
showed that the conjecture holds for groups of Lie type over a finite field
Fq, provided q is not too small (q ≥ 8 suffices).

Recently progress was made on probabilistic aspects of the conjecture.
Shalev [41] proved that if g is a random element of a finite simple group
G, then the probability that g is a commutator tends to 1 as |G| → ∞.
This implies that every element of a large finite simple group is a product
of two commutators. In [19] it is shown that the commutator map on finite
simple groups is almost measure-preserving, a result having applications to
the product replacement algorithm [7].

In this paper we complete the proof of Ore’s conjecture.

Theorem 1 If G is a finite non-abelian simple group, then every element
of G is a commutator.

In fact we prove a little more for the classical groups, showing that
in every quasisimple classical group SLn(q), SUn(q), Spn(q), Ω

±
n (q), every

element is a commutator (see Theorems 4.1, 5.1, 6.1 and Lemma 2.1). (Here,
by a quasisimple group we mean a perfect group G such that G/Z(G) is
simple.) However it is not true that every element of every quasisimple group
is a commutator: the smallest counterexample is 3.A6, where no element of
order 12 is a commutator; other examples appear in [2].

Let us now describe the strategy of our proof, which combines three
main ingredients: character theory, induction on the dimension, and certain
computer calculations. Unlike previous methods, this strategy works well
when the underlying field is small (which we are able to assume by the
results of [12] mentioned above). In fact, using generic character tables of
various low rank groups of Lie type, our approach could be used to handle
groups over arbitrary underlying finite fields.

One of the connections with character theory is based on the classical
result of Frobenius [16] that an element g of a finite group G is a commu-
tator if and only if

∑
χ∈ Irr(G) χ(g)/χ(1) 6= 0, where the sum is over the

set Irr(G) of irreducible characters of G. We use the character theory of
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finite groups of Lie type to construct explicitly irreducible characters of rel-
atively small degrees, and to derive information on their character values.
Roughly speaking, we show that if g is an element with a small centralizer,
then |χ(g)|/χ(1) is small for χ 6= 1, and the main contribution to the sum∑
χ∈ Irr(G) χ(g)/χ(1) comes from the trivial character χ = 1. This enables

us to deduce that this sum is positive, so elements with small centralizers
are commutators. We use some of the Deligne-Lusztig theory, and also the
theory of dual pairs and Weil characters of classical groups. We expect that
our explicit construction of irreducible characters of relatively small degrees
will be useful in other applications: it is already used in [36].

For elements whose centralizers are not small, our strategy is to reduce
to groups of Lie type of lower dimension and use induction. In our proof for
symplectic or orthogonal groups, this is usually possible since such elements
have a Jordan decomposition into several Jordan blocks, and hence lie in
a corresponding direct product of smaller symplectic or orthogonal groups;
if we can (inductively) express each block as a commutator in the smaller
classical group, then clearly the original element is itself a commutator.
However, various technical difficulties have to be overcome to make this idea
work. For instance, some blocks may lie in a symplectic or orthogonal group
which is not perfect, such as Sp2(2), Sp2(3), Sp4(2), Ω

+
4 (2), and so on; or in

the orthogonal case they may have determinant −1. This inductive approach
is phrased in terms of “unbreakable” elements, introduced in Section 2.4.

For exceptional groups, we adopt a similar approach: again the aim
is to show that elements with reasonably large centralizer lie in suitable
semisimple subsystem subgroups so that induction can be applied. This is
achieved using a large amount of technical information on conjugacy classes
and centralizers in these groups.

For the unitary groups, the inductive strategy does not work well, mainly
because the Jordan blocks can have many different determinants (for exam-
ple for PSUn(7) there are 8 possible values). We adopt a different approach,
more in the spirit of Thompson’s method for PSLn(q). Some of the ingre-
dients are again character theoretic – but this time using characters to solve
certain equations in unitary groups; and also computation to establish cer-
tain properties of unitary matrices in small dimensions.

Computation, performed using Magma [4], played a significant role in
proving the theorem. Firstly, since the proofs are inductive, we need to
establish various base cases. The conjecture is proved directly for a large
number of such base cases by constructing the character table of the relevant
group and using the character theoretic criterion for commutators discussed
above. For various other groups which are too large to prove the entire
conjecture by computation, such as symplectic groups of dimension at most
16 over F3, we explicitly construct certain elements with prescribed Jordan
forms as commutators (see Lemma 4.14 for example). Secondly, our proof
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of the conjecture for unitary groups is based on an ability to solve certain
equations in such groups (see Section 6). For large dimensions the required
properties are proved using character theory, but in small dimensions they do
not always hold, and we use computation to establish precisely which unitary
matrices have the properties; this information is fundamental to the proof.
These are the most challenging computations, requiring careful organisation
and various refinements to control the number of explicit equations to be
solved. We emphasize that such calculations are effective: that the resulting
matrices indeed enjoy these properties was verified directly in all cases. A
rough estimate for the entire computation is about 150 weeks of CPU time,
distributed over a number of machines.

The layout of the paper is as follows. In Section 2 we present some
preliminary results, and in Section 3 computational methods are applied
to provide the base for our inductive proofs. The symplectic, orthogonal,
unitary and exceptional groups are then considered in turn.

Due to the length of this paper we shall discuss extensions of the Ore
conjecture, as well as further applications of the method developed here, in
a separate paper.

Notation The number of conjugacy classes of a finite group G is denoted
by k(G). By a group of simply connected Lie type we mean the fixed points
of a Frobenius morphism on a simple algebraic group of simply connected
type. For example, the families SL, SU , Sp and the spin groups are all of
simply connected type. We use standard Lie theoretic notation for groups
of Lie type. Moreover Aεn(q) (ε = ±) denotes An(q) when ε = + and

2An(q)
when ε = −, with similar notation for other types with twisted analogues.
For Dε4(q) we extend this to allow ε ∈ {+,−, 3}, so including 3D4(q).

For a vector space V over a field F, g ∈ GL(V ) and λ ∈ F (the algebraic
closure of F), we denote by e(g, λ) the dimension of the kernel of g − λ ∙ Id
on V ⊗F F; further, d(g) := e(g, 1). The fixed point space of g ∈ GL(V ) is
denoted by CV (g), and 〈, 〉 is an inner product. Finally, Ji always denotes
an i× i unipotent Jordan block matrix.

2 Preliminaries

2.1 Previous results on Ore’s conjecture

Here we summarize some of the results on Ore’s conjecture mentioned in
the introduction.

Lemma 2.1 ([44, 45, 46]) Every element of SLn(q) is a commutator, except
when (n, q) = (2, 2), (2, 3).
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Lemma 2.2 ([3]) The Ore conjecture holds for all of the simple groups
2B2(q) (q > 2), G2(q) (q > 2),

2G2(q) (q > 3),
3D4(q), F4(q),

2F4(q)
′.

In [2], Blau proves that with a few specified exceptions, every central
element of a finite quasisimple group is a commutator. Here is a particular
instance of his result.

Lemma 2.3 ([2]) If G is a quasisimple group of simply connected Lie type,
then every element of Z(G) is a commutator.

Combining this with the results of Ellers and Gordeev (see [12, Theorem
2] and the remarks following it), we have the following.

Lemma 2.4 Let G be one of the following groups, of simply connected type:

Bn(q) (q ≥ 7)
Cn(q) (q ≥ 4)
Dn(q) (n ≥ 4, q ≥ 5)
2Dn(q) (n ≥ 4, q ≥ 7)
2An(q) (q ≥ 8)
E6(q) (q ≥ 7)
2E6(q) (q ≥ 8)
E7(q) (q ≥ 5)

Every element of G is a commutator.

2.2 Some character theory

In our proofs we use some of the Deligne-Lusztig theory of irreducible char-
acters of groups of Lie type, as expounded in [10]. Let G = G(q) be a
finite group of Lie type, of simply connected type in characteristic p. The
irreducible characters of G fall into Lusztig series E(G, s), one for each con-
jugacy class representative s in the dual group G∗ (which is of adjoint type).
Moreover there is a bijection χ → ψ from E(G, s) to E(CG∗(s), 1), and the
degree of χ is given by

χ(1) = |G∗ : CG∗(s)|p′ψ(1). (1)

The characters in E(G, 1) are the unipotent characters of G, and formulae
for their degrees can be found in [6, 13.8-9].

Next we state for convenient reference the characterization of commuta-
tors mentioned in the introduction.
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Lemma 2.5 If G is a finite group and g ∈ G, then g is a commutator if
and only if

∑

χ∈ Irr(G)

χ(g)

χ(1)
6= 0.

This lemma follows immediately from a well known result of Frobenius
that the number of solutions (x, y) to the equation [x, y] = g in a finite group

G is equal to |G|
∑
χ∈ Irr(G)

χ(g)
χ(1) (see [16, p. 13]).

Finally, we prove an elementary result which helps bound the character
sums in Lemma 2.5 in terms of the number of conjugacy classes k(G) and
centralizer order |CG(g)|.

Lemma 2.6 Let G be a finite group and let g ∈ G. The following hold:

(i)
∑
χ∈ Irr(G) |χ(g)| ≤ k(G)

1/2|CG(g)|1/2;

(ii) If χ1, . . . , χk ∈ Irr(G) are distinct characters of degree at least N ,
then

∑k
i=1 |χi(g)|/χi(1) ≤ (k|CG(g)|)

1/2/N . In particular,

∑

χ∈ Irr(G), χ(1)≥N

|χ(g)|
χ(1)

≤
k(G)1/2|CG(g)|1/2

N
.

Proof Part (i) follows from the fact that
∑
χ∈ Irr(G) |χ(g)|

2 = |CG(g)|,
together with the Cauchy-Schwarz inequality. Part (ii) is proved in a similar
manner.

2.3 Conjugacy class numbers in classical groups

An important ingredient of our analysis is the following result of Fulman and
Guralnick [17] that bounds the number k(G) of conjugacy classes of finite
classical groups G. Recall that GOεn(q) denotes the full isometry group of
some non-degenerate quadratic form on Fnq .

Proposition 2.7 ([17])

(i) k(SL2(q)) ≤ q + 4,
k(SL3(q)) ≤ q2 + q + 8,
k(SLn(q)) ≤ qn/(q − 1) + qn/2+1 if n ≥ 4.

(ii) k(SU3(q)) ≤ q2 + q + 10,
k(SUn(q)) ≤ 11.5((qn/(q + 1)) + ((q + 1)qn/2+1/(q − 1)) if n ≥ 4.

(iii) k(Sp2n(q)) ≤ 12qn if q is odd, and k(Sp2n(q) ≤ 17qn if q is even.
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(iv) k(GO±2n(q)) ≤ 29q
n if q is odd, and k(GO±2n(q)) ≤ 17.5q

n if q is even.
Further, k(SO2n+1(q)) ≤ 7.38qn for q odd.

The bound in Proposition 2.7 for k(GO±2n(q)) is too crude for our pur-
poses when n is small. We now state precise values for these numbers.

Lemma 2.8 Assume q is odd.

k(GOε10(q)) =
1

2

(

q5 + 7q4 + 25q3 +

{
68q2 + 144q + 171
70q2 + 148q + 173

)

;

k(GOε12(q)) =
1

2

(

q6 + 7q5 + 25q4 +

{
71q3 + 172q2 + 320q + 326
69q3 + 170q2 + 316q + 324

)

;

k(GOε14(q)) =
1

2

(

q7 + 7q6 + 25q5 + 70q4 +

{
177q3 + 385q2 + 640q + 593
179q3 + 389q2 + 646q + 595

)

;

in the formulae the first row is for ε = + and the second row is for ε = −.

Proof By [50, p. 38], k(GO+2n(q)) − k(GO
−
2n(q)) is the coefficient of t

n in∏∞
i=1(1− t

2i−1)/(1− qt2i), which is






−q2 − 2q − 1, n = 5,
q3 + q2 + 2q + 1, n = 6,
−q3 − 2q2 − 3q − 1, n = 7.

Further, k(GO+2n(q)) + k(GO−2n(q)) is the coefficient of t
2n in

∏∞
i=1(1 +

t2i−1)4/(1− qt2i), which is





q5 + 7q4 + 25q3 + 69q2 + 146q + 172, n = 5,
q6 + 7q5 + 25q4 + 70q3 + 171q2 + 318q + 325, n = 6,
q7 + 7q6 + 25q5 + 70q4 + 178q3 + 387q2 + 643q + 594, n = 7.

The statements follow.

2.4 Unbreakable elements

As sketched in the introduction, our proof of Ore’s conjecture for classical
groups is inductive. We rephrase this inductive approach using the termi-
nology of “unbreakable” elements, which we now define.

Definition Let G = Cl(V ) = Sp(V ), SU(V ) or Ω(V ), where V is a finite-
dimensional vector space over Fq with a non-degenerate symplectic, unitary
or quadratic form fixed by G. An element x of G is breakable if there is a
proper, nonzero, non-degenerate subspace W of V such that x = (x1, x2) ∈
Cl(W )× Cl(W⊥), and one of the following holds:
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(1) both factors Cl(W ) and Cl(W⊥) are perfect groups;

(2) Cl(W ) is perfect, and x2 is a commutator in Cl(W
⊥).

Otherwise, x is unbreakable.

Lemma 2.9 Let G = Cl(V ) = Sp(V ), SU(V ) or Ω(V ), and assume that G
is a perfect group. Suppose that whenever W is a non-degenerate subspace of
V such that Cl(W ) is a perfect group, every unbreakable element of Cl(W )
is a commutator in Cl(W ). Then every element of G is a commutator.

Proof The proof goes by induction on dim V . The inductive hypothe-
sis holds for all perfect subgroups of G of the form Cl(X) with X a non-
degenerate subspace of V .

If x ∈ G is unbreakable, then it is a commutator by hypothesis. Other-
wise x is breakable, so x = (x1, x2) ∈ Cl(W ) × Cl(W⊥) satisfies (1) or (2)
in the above definition. In either case, by induction x1, x2 are commutators
in Cl(W ), Cl(W⊥) respectively, and so x is a commutator, as required.

To show that unbreakable elements are commutators, we apply character
theory and Lemma 2.6 in particular. An important step is to show that
unbreakable elements have rather small centralizers.

3 Some low rank cases

In this section we establish Ore’s conjecture for some groups of Lie type of
small rank. These are base cases for our inductive proof of Ore’s conjecture
in the following sections.

Lemma 3.1 Every element of each of the following groups is a commutator:

(i) Sp2n(2) (3 ≤ n ≤ 6);

(ii) Sp2n(3) (2 ≤ n ≤ 5);

(iii) SU3(q) (3 ≤ q ≤ 7), SU4(q) (q ≤ 7), SU5(q) (q ≤ 4) or SU6(q) (q ≤
4), SU7(2);

(iv) Ω±n (2) (8 ≤ n ≤ 12), Ω
±
n (3) (7 ≤ n ≤ 11), Ω7(5);

(v) simply connected D4(q) (q ≤ 4) or 2D4(q) (q ≤ 5);

(vi) E6(2) or simply connected
2E6(2).

Proof With two exceptions, we proved these results by applying Lemma
2.5 to the character table of the relevant group. Some of these character
tables are available in the Character Table Library of GAP [18]; the re-
mainder were constructed directly using the Magma implementation of the
algorithm of Unger [49].
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It was not possible, using available memory and time resources, to con-
struct the character tables of either Sp10(3) or Ω11(3). Instead, for each
group, its conjugacy classes were computed using the algorithm of [5]; by
constructing random commutators in the group and deciding their conju-
gacy classes, we exhibited a commutator in each conjugacy class, and so
verified the conjecture directly.

Combining this with Lemmas 2.1 and 2.4, we obtain the following.

Corollary 3.2 Every element of each of the following groups of simply con-
nected Lie type is a commutator: Aε2(q), A

ε
3(q), D

ε
4(q) (excluding A

−
2 (2) =

SU3(2)).

4 Symplectic groups

In this section we prove the following result, which implies Ore’s conjecture
for the symplectic groups.

Theorem 4.1 Every element of the symplectic group Sp2m(q) is a commu-
tator, excluding Sp2(2), Sp2(3) and Sp4(2).

By Lemma 2.4, the only cases requiring proof are q = 2 or 3. For
convenience we handle these separately.

4.1 Proof of Theorem 4.1 for q = 2

This is mainly based on character theory, using Lemma 2.5. We use the
following “gap” result for irreducible characters of symplectic groups in even
characteristic, taken from [24, 6.2].

Lemma 4.2 Let G = Sp2n(q) with q even, n ≥ 4. There is a collection W
of q + 3 irreducible characters of G, such that

(i) χ(1) ≥ (qn−1)(qn−q)
2(q+1) if χ ∈ W, and

(ii) χ(1) ≥ 1
2(q
2n−1)(qn−1−1)(qn−1−q2)/(q4−1) for 1 6= χ ∈ Irr(G)\W.

The proof of Theorem 4.1 when q = 2

Let G = Sp2n(2) with n ≥ 3, and let V = V2n(2) be the natural module
for G. For x ∈ G, define

E1(x) =
∑

χ∈W

χ(x)

χ(1)
, E2(x) =

∑

1 6=χ∈ Irr(G)\W

χ(x)

χ(1)
, (2)
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where W is the set of characters in Lemma 4.2. Since

∑

χ∈ Irr(G)

χ(x)

χ(1)
= 1 + E1(x) + E2(x),

Lemma 2.5 gives the following.

Lemma 4.3 If |E1(x)|+ |E2(x)| < 1, then x is a commutator in G.

We now bound E1(x) and E2(x).

Lemma 4.4 Suppose n ≥ 7. If |CG(x)| < 22n+15, then |E2(x)| < 0.6.

Proof In the definition of E2(x) the sum is over at most k(G) characters,
each of which, by Lemma 4.2, has degree at least

1

30
(22n − 1)(2n−1 − 1)(2n−1 − 4).

Lemma 2.6(ii) and Proposition 2.7(iii) imply that

|E2(x)| <
30
√
17 ∙ 2n/2|CG(x)|1/2

(22n − 1)(2n−1 − 1)(2n−1 − 4)
.

This is less than 0.6 when |CG(x)| < 22n+15 and n ≥ 7.

Lemma 4.5 Suppose that n ≥ 7 and x ∈ G is such that dimCV (x) ≤ n.
Then |E1(x)| < 0.2.

Proof This is based on a detailed analysis of the characters in W, taken
from [24, Section 3]. We have

W = {ζ1n, ρ
1
n, ρ

2
n, αn, βn},

with degrees as follows:

χ ζ1n ρ1n ρ2n αn βn

χ(1) 22n−1
3

(2n+1)(2n−2)
2

(2n−1)(2n+2)
2

(2n−1)(2n−2)
6

(2n+1)(2n+2)
6

Moreover,
ρ1n(x) + ρ

2
n(x) = |CV (x)| − 2, (3)

and, via the embedding G = Sp2n(2) < SU2n(2), taking V̄ := V2n(4) to be
the unitary space, we see that both |ζ1n(x)| and |αn(x) + βn(x)| are at most

1

3
(2dimCV̄ (x) + 2dimCV̄ (ωx) + 2dimCV̄ (ω

2x)), (4)
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where ω ∈ F4 is a cube root of unity.

Now we estimate the contributions of the characters in W to E1(x).
Since x ∈ G = Sp2n(2) and dimCV (x) ≤ n by hypothesis, the dimensions
of CV̄ (x), CV̄ (ωx) and CV̄ (ω

2x) are all at most n, and hence

|ζ1n(x)| ≤ 2
n, |αn(x) + βn(x)| ≤ 2

n.

Therefore

|αn(x)
αn(1)

+ βn(x)
βn(1)

| ≤ |αn(x)+βn(x)|
βn(1)

+ βn(1)−αn(1)
βn(1)

≤ 2n∙12
(2n+1)(2n+2) .

As n ≥ 7 this gives

|
αn(x)

αn(1)
+
βn(x)

βn(1)
| < 0.1. (5)

Similarly

|
ζ1n(x)

ζ1n(1)
| ≤

2n ∙ 3
22n − 1

< 0.03. (6)

Finally

|
ρ1n(x)

ρ1n(1)
+
ρ2n(x)

ρ2n(1)
| ≤
|ρ1n(x) + ρ

2
n(x)|

ρ2n(1)
+
ρ2n(1)− ρ

1
n(1)

ρ2n(1)
,

and since ρ1n(x) + ρ
2
n(x) = |CV (x)| − 2 ≤ 2

n − 2, and n ≥ 7, this yields

|
ρ1n(x)

ρ1n(1)
+
ρ2n(x)

ρ2n(1)
| < 0.04. (7)

The conclusion now follows from (5), (6) and (7).

Recall the definition of an unbreakable element of G given in Section 2.4.

Lemma 4.6 Assume n ≥ 4. Let x ∈ Sp(V ) = Sp2n(2), and suppose one of
the following holds:

(i) x fixes a non-degenerate subspace W of V with 6 ≤ dimW ≤ n;

(ii) CV (x) contains a nonzero non-degenerate subspace.

Then x is breakable.

Proof If (i) holds then x ∈ Sp(W ) × Sp(W⊥), and both factors are
perfect since W and W⊥ have dimension at least 6. In case (ii), let W
be a non-degenerate 2-space in CV (x). Then x = (1W , x2) ∈ Sp(W ) ×
Sp(W⊥). Obviously 1W is a commutator in Sp(W ), and Sp(W

⊥) is perfect
as dimW⊥ ≥ 6. Hence x is breakable in either case.

Lemma 2.9 shows that it suffices to prove that every unbreakable element
of G is a commutator. The following is a key step towards this goal.
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Lemma 4.7 Assume n ≥ 7, and let x be an unbreakable element of G =
Sp(V ) = Sp2n(2). Then |CG(x)| < 22n+15.

Proof Since x is unbreakable, by Lemma 4.6 every non-degenerate sub-
space of V fixed by x has dimension either at most 4, or at least 2n−4; and
CV (x) is totally singular.

First assume that x is unipotent, and let x = (Jmii ) be the Jordan form
of x, where Ji denotes a unipotent Jordan block of dimension i. By [25,
p. 172], any minimal non-degenerate 〈x〉-submodule of V is either a single
Jordan block, or a sum of two Jordan blocks of equal size. By the first
paragraph, the following hold:

(a) m1 = 0;

(b) if mi = 1, then i is even, and either i ≥ 2n− 4 or i ≤ 4;

(c) if mi ≥ 2, then either i ≤ 2, or i ≥ n− 2.

It follows that the possible Jordan forms for x are

(J2n−2, J4 or J
2
2 ), (J

2
n−1, J2), (J

2
n), (J2n−4, J4 or J

2
2 ), (J2n−2, J2), J2n.

We refer to [50, p. 60] (see also [30]) for the structure of CG(x). From this
we see that

|CG(x)| ≤ 2
k+f

∏
|Spmi−δi(2)|, (8)

where k is the number of “big component sets”, δi is 0 if mi is even and is
1 if mi is odd, and

f =
∑

i<j

imimj +
1

2

∑
(i− 1)m2i +

1

2

∑
mi.

From the definition, k is certainly no more than the total number of Jordan
blocks, so it is clear that the largest centralizer occurs for x = (J2n−2, J

2
2 ).

For this class, (8) gives
|CG(x)| < 2

2n+15,

as in conclusion (i). This completes the proof when x is unipotent.

The general case is similar. Write x = su, where s 6= 1 is the semisimple
part of x and u is the unipotent part. Then

CG(s) = Sp2r(2)×
∏

GLεiai(2
bi),

where each εi = ±1, 2r = dimCV (s), and r +
∑
aibi = n; and CG(x) =

CCG(s)(u). By the first paragraph of the proof, each of the quantities r, aibi
is either at most 2, or at least n − 2; and not all of them are at most 2.
Hence either 2r ≥ 2n − 4, or there exists i with 2aibi ≥ 2n − 4. In the
former case, we apply the above analysis to the unipotent element u acting
on the non-degenerate 2r-dimensional space CV (s) to deduce that |CG(x)| <
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22n+15, giving the conclusion (i). In the latter case, write a = ai, b = bi,
so 2ab ≥ 2n − 4 and in its action on the appropriate non-degenerate 2ab-
subspace, u gives a unipotent element u0 of GL

ε
a(2
b). Each Jordan block Jk

of u0 gives an x-invariant non-degenerate 2bk-subspace of V , so it follows
that the Jordan decomposition of u0 is one of

(Ja−2, J2 or J
2
1 ), (Ja−1, J1).

The size of the centralizer of u in CG(s) is given by [50, p. 34]. The centralizer
of maximal size occurs when b = 1, ε = −, a = n and u = u0 = (Jn−2, J

2
1 ).

In this case
|CG(x)| = |CGUn(2)(u)| < 2

2n+4.

Conclusion (i) follows. This completes the proof.

Lemma 4.8 For n ≥ 3, every unbreakable element of Sp2n(2) is a commu-
tator.

Proof Let G = Sp(V ) = Sp2n(2) with n ≥ 3, and let x ∈ G be unbreak-
able. If 3 ≤ n ≤ 6 then x is a commutator by Lemma 3.1(i). Now assume
that n ≥ 7.

As x is unbreakable, dimCV (x) ≤ n by 4.6, and |CG(x)| < 22n+15

by Lemma 4.7. It follows from Lemma 4.4 that |E2(x)| < 0.6, and from
Lemma 4.5 that |E1(x)| < 0.2. Lemma 4.3 implies that x is a commutator,
as required.

Lemmas 4.8 and 2.9 now imply that every element of G is a commutator,
completing the proof of Theorem 4.1 for q = 2.

4.2 Proof of Theorem 4.1 for q = 3

As before, we start with a “gap” result for characters, this time for sym-
plectic groups in odd characteristic, taken from [47, 5.2].

Lemma 4.9 Let G = Sp2n(q) with q odd, n ≥ 2. Then G has a collection
W of 4 irreducible characters of degree 12(q

n ± 1), such that χ(1) ≥ (qn −
1)(qn − q)/2(q + 1) for 1 6= χ ∈ Irr(G)\W.

We require more detailed information about character degrees and con-
jugacy class numbers of Sp20(3).

Lemma 4.10 Let G = Sp20(3).

(i) G has a collection X of 4 irreducible characters such that if χ ∈
Irr(G)\(1∪W ∪X ), then χ(1) > 319/2. The degrees of the characters in X
are 3(39 − ε)(310 − ε)/8 (ε = ±1) and (320 − 1)/8.

(ii) k(G) = 602929.
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Proof (i) This goes a little beyond [47, Theorem 5.2], and is proved
by the same method, using some of the Deligne-Lusztig theory described
in Section 2.2. Here G = Sp20(3) and the dual group is G

∗ = SO21(3).
Formulae for the degrees of the unipotent characters of G can be found
in the proof of [47, 5.1]; following that proof, we find that there are just
two unipotent characters of degree at most 319/2, and these have degree
3(39 − ε)(310 − ε)/8 with ε = ±1.

For the non-unipotent characters of degree at most 319/2, by (1) these
must occur in Lusztig series E(G, s) with |G∗ : CG∗(s)|3′ ≤ 319/2, and it
follows that CG∗(s) must be SO

±
20(3).2 or (SO19(3)× SO

−
2 (3)).2; moreover

the corresponding unipotent character of CG∗(s) must be a linear character.
The first possibility for CG∗(s) gives the characters in W, and the second
gives two further characters of degree (320 − 1)/8.

(ii) The number of conjugacy classes of G is given by [50, p. 36]: it is
the coefficient of t20 in the infinite product

∏∞
l=1(1 + t

2l)4/(1− 3t2l).

We need the following result about the values of the characters in W.

Lemma 4.11 Let G = Sp2n(q) with n ≥ 3 and q odd. Let x ∈ G with

|CG(x)| ≤ qe. If χ ∈ W then |χ(x)| ≤ q
√
e/2.

Proof We know (see for example [31, p. 79]) that for χ ∈ W there are
complex numbers a, b of modulus 1 such that

χ(x) =
1

2
(a ∙ |CV (x)|

1/2 + b ∙ |CV (−x)|
1/2), (9)

where V = V2n(q) is the natural module.

Consider first the case where x is unipotent. Let the Jordan form of x
be (Jnii ). By [50, p. 34],

|CG(x)| = q
k
∏

i odd

Spni(q)
∏

i even

qni/2Oni(q),

where k =
∑
i<j ininj +

∑
i(i − 1)n

2
i /2. Since |Spni(q)| >

1
2q
ni(ni+1)/2 and

|Oni(q)| >
1
2q
ni(ni−1)/2, it follows that

|CG(x)| > qf/2 ∙ 2−g, (10)

where g = |{i : ni 6= 0}| and

f = 2
∑

i<j

ininj +
∑

i

in2i +
∑

i odd

ni.
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Let l = dimCV (x). Then l =
∑
i ni, so

f = (
∑

ni)
2 +

∑
(i− 1)n2i + 2

∑
(i− 1)ninj +

∑

i odd

ni ≥ l
2 + l.

Also g ≤ l/2 (recall that n ≥ 3 by hypothesis). Hence (10) implies that

|CG(x)| > ql
2/2.

By hypothesis, |CG(x)| ≤ qe and so l <
√
2e; hence from (9), |χ(x)| ≤

1
2q
l/2 < 1

2q
√
e/2 for χ ∈ W , as required. This completes the proof where x

is unipotent.

Now consider the general case, x = su with s, u the semisimple and
unipotent parts of x. For ε = ± let Vε = CV (εs), and set lε = dimVε. Then
CG(s) contains Sp(V+)× Sp(V−), and we see as above that

|CSp(Vε)(u)| > ql
2
ε/2.

Hence e ≥ 1
2(l
2
++ l

2
−) (where |CG(x)| ≤ q

e), and so it follows from (10) that
for χ ∈ W ,

|χ(x)| ≤
1

2
(ql+/2 + ql−/2) ≤ q

√
e/2.

This completes the proof.

The proof of Theorem 4.1 for q = 3

Let G = Sp2n(3) with n ≥ 2, let x ∈ G, and define E1(x), E2(x) as in
(2) (where W is as in 4.9).

Lemma 4.12 If n ≥ 3 and |CG(x)| < 33n−8 then |E2(x)| < 1/2.

Proof Now E2(x) is a sum over at most k(G) characters, each of which, by
Lemma 4.9, has degree at least (3n− 1)(3n− 3)/8. Moreover k(G) ≤ 12 ∙ 3n

by Proposition 2.7(iii). Hence Lemma 2.6 yields

|E2(x)| <
8
√
12 ∙ 3n/2|CG(x)|1/2

(3n − 1)(3n − 3)
.

This is less than 1/2 when |CG(x)| < 1
3072(3

n−1)2(3n−3)2/3n, which holds
if |CG(x)| < 33n−8.

Lemma 4.13 If n ≥ 4 and |CG(x)| < 33n−8 then |E1(x)| < 1/2.
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Proof Suppose |CG(x)| < 33n−8. Lemma 4.11 implies that |χ(x)| ≤

3
√
(3n−8)/2 for χ ∈ W , so

|E1(x)| <
8 ∙ 3
√
(3n−8)/2

3n − 1
,

and this is less than 1/2 if n ≥ 4.

We need the following technical result concerning various elements in
symplectic groups of low dimension over F3. In the statements, Ji denotes
an i× i unipotent Jordan block matrix.

Lemma 4.14 (i) For even n ≤ 12, the elements of G with Jordan form
±(J2n−1, J2) are commutators.

(ii) For even n ≤ 8, the elements of G with Jordan form ±(J2n−1,−J2)
are commutators.

(iii) For n = 7, the elements of G with Jordan form ±(J27 ) are commu-
tators.

Proof (i) For n ≤ 8 we proved this by computational methods, as follows.
For each of the two Jordan forms, there are precisely two conjugacy classes
of elements in Sp2n(3) having this form, and these can be distinguished
using the criterion of Wall [50, p. 36]. We proved the result by explicit
computation using Magma: for each Jordan form, by random search in the
corresponding group Sp2n(3), we constructed explicit commutators having
this form until we found two that were not conjugate.

For n ≥ 10 the group Sp2n(3) is too large to be handled by random
search, and a theoretical argument is required. Let x = ±(J2n−1, J2). From
[50, p. 36],

|CG(x)| = 3
2n+1 ∙ |Sp2(3)| ∙ |O1(3)| = 3

2n+1 ∙ 48.

Suppose n = 12. As in the proof of Lemma 4.13 we have |E1(x)| < 1
2 . Also,

as in the proof of Lemma 4.12,

|E2(x)| <
8
√
12 ∙ 36|CG(x)|1/2

(312 − 1)(312 − 3)
≤
8
√
12 ∙ 36 ∙ 325/2 ∙

√
48

(312 − 1)(312 − 3)
<
1

2
,

and hence x is a commutator.

Now suppose n = 10, so that G = Sp20(3). For this case we need a rather
more detailed argument using Lemma 4.10. First, |CG(x)| = 321 ∙ 48 < 325,
so as in Lemma 4.13,

|E1(x)| <
8 ∙ 3
√
25/2

310 − 1
< 0.011. (11)
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Next, by Lemma 4.10, Irr(G) = {1} ∪ W ∪ X ∪ Y , where X consists of
4 characters of degree at least 3(39 − 1)(310 − 1)/8 = 435818526, and the
characters in Y have degree at least 319/2. Moreover k(G) = 602929 and
|CG(x)| = 321 ∙ 48. Hence

E2(x) <
4|CG(x)|1/2

435818526 +
2(k(G)∙|CG(x)|)1/2

319

= (321 ∙ 48)1/2( 4
435818526 +

2
√
602929
319

) < 0.954.
(12)

The conclusion follows from (11) and (12).

(ii) For n ≤ 6 we prove this computationally by random search as in part
(i), so assume n = 8. Let x = ±(J27 ,−J2) ∈ G. By [50, p. 36],

|CG(x)| = |CSp14(3)(J
2
7 )| ∙ |CSp2(3)(J2)| = 3

14 ∙ 16.

As usual |E1(x)| is small, and

|E2(x)| <
8
√
12 ∙ 34|CG(x)|1/2

(38 − 1)(38 − 3)
<
1

2
,

giving the conclusion.

(iii) Let G = Sp14(3). As in the proof of Lemma 4.10(ii) we see that
k(G) = 19952. Let x = ±(J27 ) ∈ G. By [50, p. 36], |CG(x)| = 3

12 ∙ |Sp2(3)| <
315, so

|E2(x)| <
8(k(G)|CG(x)|)1/2

(37 − 1)(37 − 3)
< 0.85.

Also, as in the proof of Lemma 4.13,

|E1(x)| <
8 ∙ 3
√
15/2

37 − 1
< 0.1.

The result follows.

Now we consider unbreakable elements of G (defined in Section 2.4).

Lemma 4.15 Assume n ≥ 3. Let x ∈ Sp(V ) = Sp2n(3), and suppose one
of the following holds:

(i) x fixes a non-degenerate subspace W of V with 4 ≤ dimW ≤ n;

(ii) CV (εx) contains a nonzero non-degenerate subspace for ε ∈ {+,−}.

Then x is breakable.

Proof If (i) holds this is clear. In case (ii), let W be a non-degenerate
2-space in CV (εx). Then x = (±1W , x2) ∈ Sp(W )×Sp(W⊥). Since −1W is
a commutator in Sp(W ) ∼= Sp2(3), and Sp(W

⊥) is perfect as dimW⊥ ≥ 4,
x is breakable.
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Lemma 4.16 Let G = Sp(V ) = Sp2n(3) with n ≥ 6, and let x be an
unbreakable element of G. One of the following holds:

(i) |CG(x)| < 33n−8;

(ii) x is a commutator in G.

Proof The proof is similar to that of Lemma 4.7. Assume first that x
or −x is unipotent, with Jordan form (Jmii ). Since x is unbreakable, and
an even block J2i fixes a non-degenerate subspace, the possibilities for this
Jordan form are

J2n, (J2n−2, J2), (J
2
n) (n odd), (J

2
n−1, J2) (n even).

We summarise the order of CG(x) given in [50, p. 36]:

±x |CG(x)|
J2n 3n ∙ 2
(J2n−2, J2) 3

n+2 ∙ 4
(J2n) 32n−2 ∙ 24
(J2n−1, J2) 32n+1 ∙ 48

For the first two cases, |CG(x)| < 33n−8 (recall that n ≥ 6 by hypothesis),
giving (i). In the third case, (i) holds if n ≥ 9; since n is odd, we may
assume that n = 7. Then x is a commutator by Lemma 4.14(iii), so (ii)
holds. Finally, in the last case ±x = (J2n−1, J2) (n even), (i) holds if n ≥ 13,
so we may take n ≤ 12, and x is a commutator by Lemma 4.14(i). This
proves the result when ±x is unipotent.

Now assume that ±x is not unipotent. Then x = su, where s, u are the
semisimple and unipotent parts, and s 6= ±1. We have

CG(s) = Sp2a(3)× Sp2b(3)×
∏

GLεici(3
di),

where 2a, 2b are the dimensions of the 1- and −1-eigenspaces of s, and
a + b +

∑
cidi = n. As x fixes all the eigenspaces of s and is unbreakable,

one of the following must hold:

(1) 2a or 2b is equal to 2n− 2;

(2) 2cidi ≥ 2n− 2 for some i.

In case (1), CG(s) = Sp2n−2(3)× Sp2(3). Write u = u1u2, where u1, u2 are
the projections of u into the factors of CG(s). As x is unbreakable, we must
have u2 = J2 and u1 = J2n−2 or (J

2
n−1) (n even). When u2 = J2n−2, we

have |CG(x)| = 3n ∙ 4, so conclusion (i) holds. When u2 = (Jn−1)2, we have
|CG(x)| = 32n−2 ∙ 48. Hence (i) holds if n > 8, and if n ≤ 8 then (ii) holds,
by Lemma 4.14(ii).

In case (2), either CG(s) = GLεc(3
d) with cd = n, d ≥ 2, or CG(s) =

Sp2(3) × GLεc(3
d) with cd = n − 1, d ≥ 2. Since each Jordan block Jk of
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u in the GLεc(3
d) factor corresponds to a non-degenerate 2kd-space fixed

by x, the projection of u in this factor must be a single Jordan block Jc.
Hence when cd = n we have |CG(x)| = 3d(c−1)(3d − ε), so (i) holds. When
cd = n− 1 we have |CG(x)| = 6 ∙ 3d(c−1)(3d − ε), and again (i) holds.

Lemma 4.17 For n ≥ 2, every unbreakable element of Sp2n(3) is a com-
mutator.

Proof Let G = Sp(V ) = Sp2n(3) with n ≥ 2, and let x ∈ G be un-
breakable. If n ≤ 5 then x is a commutator by Corollary 3.2. If n ≥ 6,
then we may assume that |CG(x)| < 33n−8 by Lemma 4.16, and hence x is
a commutator by Lemmas 4.12 and 4.13.

Lemmas 4.17 and 2.9 imply that every element of G is a commutator,
completing the proof of Theorem 4.1 for q = 3.

5 Orthogonal groups

In this section we prove the following result, which implies Ore’s conjecture
for the orthogonal groups.

Theorem 5.1 Let G be one of the orthogonal groups Ω2n+1(q) (n ≥ 1, q
odd) or Ω±2n(q) (n ≥ 2), excluding the groups Ω3(3),Ω

+
4 (2),Ω

+
4 (3). Then

every element of G is a commutator.

Lemma 2.4 implies that we may assume that q < 7, and that q < 5 if
G = Ω+2n(q). Further, by Lemma 3.1(iv), writing G = Ω(V ), we may assume
that dimV ≥ 14 if q = 2, dimV ≥ 12 if q = 3, and dimV ≥ 10 if q = 4, 5.

Our proof of Theorem 5.1 follows the same conceptual lines as the proof
for symplectic groups, but requires a great deal more effort. In particular,
we first prove some new character theoretic results for orthogonal groups in
Section 5.1. We next establish some centralizer bounds in Section 5.2, and
finally prove the theorem in Section 5.3.

5.1 Character theory of orthogonal groups

The main results of this section are Corollary 5.8 and Propositions 5.12
and 5.14, which identify values of irreducible characters of small degree
for orthogonal groups. Their proof requires some substantial results and
methods in the character theory of orthogonal groups, in particular the use
of dual pairs and Weil characters in Proposition 5.7.

First we collect some results from [38] on complex irreducible characters
of relatively small degrees for orthogonal groups.
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Proposition 5.2 ([38]) Let G := Spin2n+1(q) with n ≥ 5 and q an odd
prime power. Assume χ ∈ Irr(G) and 1 < χ(1) ≤ q4n−8. Then χ is one of
q + 4 characters, of the following degrees:

(i) (q2n − 1)/(q2 − 1) (1 character),

(ii) q(q2n − 1)/(q2 − 1) (1 character),

(iii) (qn+α1)(q
n+α2q)/2(q+α1α2) (4 characters, where each of α1, α2

is ±1),

(iv) (q2n−1)/(q−α) (q−2 characters in total: (q−α−2)/2 characters
for α = ±1).

Proposition 5.3 ([38]) Let G := Spinε2n(q) with n ≥ 5 and q an odd prime
power, and let χ ∈ Irr(G).

(A) Assume that n ≥ 6 and 1 < χ(1) ≤ q4n−10. Then χ is one of q + 4
characters, of the following degrees:

(i) (qn − ε)(qn−1 + εq)/(q2 − 1) (1 character),

(ii) (q2n − q2)/(q2 − 1) (1 character),

(iii) (qn − ε)(qn−1 + εα)/2(q − α) (4 characters, two for each α = ±1),

(iv) (qn− ε)(qn−1+ εα)/(q−α) (q− 2 characters in total: (q−α− 2)/2
characters for α = ±1).

Further, Spinε12(3) has at most 22 irreducible characters of degree at most
4 ∙ 315.

(B) Assume that n = 5, and 1 < χ(1) ≤ q10 if ε = +, and 1 < χ(1) <
(q−1)(q2+1)(q3−1)(q4+1) if ε = −. Then χ is one of the q+4 characters
listed in (A)(i)–(iv).

Proposition 5.4 ([38]) Let G := Ωε2n(q) with n ≥ 5 and q an even prime
power. Assume χ ∈ Irr(G) and 1 < χ(1) ≤ q4n−10.

(A) If n ≥ 6, then χ is one of q + 1 characters, of the following degrees:

(i) (qn − ε)(qn−1 + εq)/(q2 − 1) (1 character),

(ii) (q2n − q2)/(q2 − 1) (1 character),

(iii) (qn− ε)(qn−1+ εα)/(q−α) (q− 1 characters in total: (q−α− 1)/2
characters for α = ±1).

(B) Assume n = 5 and ε = +. If q ≥ 4, then χ is one of q + 1 characters
listed in (A)(i) – (iii). If q = 2, then there is one more character of degree
868.

(C) Assume n = 5 and ε = −. Then χ is one of 2q + 2 characters: q + 1
characters listed in (A)(i) – (iii), and q+1 characters of the following degrees:

(iv) q2(q4 + 1)(q5 + 1)/(q + 1) (1 character),
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(v) (q − 1)(q2 + 1)(q3 − 1)(q4 + 1) (q characters).

Next we study some dual pairs to find the explicit values of small char-
acters of finite orthogonal groups over fields of odd characteristic. Our
consideration is based on the following well known formula.

Lemma 5.5 Let ω be a character of the direct product S×G of finite groups
S and G. For s ∈ S and g ∈ G,

ω(sg) =
∑

α∈ Irr(S)

α(s) ∙Dα(g),

where

Dα(g) =
1

|S|

∑

x∈S

α(x)ω(xg).

Proof By the orthogonality relations,
∑
α∈ Irr(S) α(s)α(x) is equal to 0 if

x /∈ sS and |S|/|sS | otherwise. Hence

∑

α∈ Irr(S)

α(s) ∙Dα(g) =
1

|S|

∑

x∈S

ω(xg)




∑

α∈ Irr(S)

α(s)α(x)



 = ω(sg).

Let q be an odd prime power. The dual pair we have in mind is S ×G
inside Γ := Sp2n(q), where S = Sp2(q) and G ∈ {Ωn(q), SOn(q), GOn(q)},
and ωn is one of the two reducible Weil characters of Sp2n(q), of degree
qn (see [48]). More precisely, we view S as Sp(U), where U = 〈e, f〉Fq is

endowed with the symplectic form (∙, ∙), and Gram matrix

(
0 1
−1 0

)

in

the basis {e, f}. Fix γ ∈ F×q . Next, GOn(q) means GO(W ), where W =
〈v1, . . . , vn〉Fq is endowed with the orthogonal form (∙, ∙), and Gram matrix
diag(1, 1, . . . , 1, γ) in the basis {v1, . . . , vn}. Now we consider V = U ⊗W
with the symplectic form (∙, ∙) defined via (u⊗ w, u′ ⊗ w′) = (u, u′) ∙ (w,w′)

for u ∈ U and w ∈W , which has Gram matrix

(
0 In
−In 0

)

in the basis

{
e⊗ v1, e⊗ v2, . . . , e⊗ vn, f ⊗ v1, f ⊗ v2, . . . , f ⊗ vn−1, f ⊗ γ

−1vn
}
.

The action of S ×G on V induces a homomorphism S ×G→ Γ := Sp(V ).

Lemma 5.6 Under the above assumptions, assume that n ≥ 6. Then

(ωn|G, ωn|G)G = (q + 1)(q
2 + 1).

Further, (ωn|G, 1G)G = q + 1 if G = Ωn(q) or SOn(q).

21



Proof Let A be the matrix of g ∈ G in the basis {v1, . . . , vn} of W . Then
g has matrix diag

(
A, (AT )−1

)
in the basis of V listed above. In particular,

G embeds in the Levi subgroup GLn(q) of the parabolic subgroup

StabΓ
(
〈e⊗ v1, e⊗ v2, . . . , e⊗ vn〉Fq

)

of Γ. Let ν denote the unique nontrivial character of order 2 of F×q . By [20,
Theorem 3.3], the restriction of ωn to GLn(q) is h 7→ τ(h) ∙ ν(h), where

τ(h) := qdimFq Ker(h−1),

and we take the fixed point subspace of h on the natural module Fnq of
GLn(q). It follows that for any g ∈ G,

|ω2n(g)| = q
2 dimFq Ker(g−1),

where we take the fixed point subspace of g on W . In other words, |ω2n(g)|
is just the number of g-fixed points on the set W ×W . Hence (ωn|G, ωn|G)G
equals the number of G-orbits on W ×W . Using Witt’s theorem and the
assumption n ≥ 6, one can show that G has exactly (q + 1)(q2 + 1) orbits
on W ×W , with the following representatives: (0, 0), (v, λv) where λ ∈ Fq,
0 6= v ∈ V and (v, v) = μ ∈ Fq, (0, v) where 0 6= v ∈ V and (v, v) = μ ∈ Fq,
and (u, v) where u, v ∈ V are linearly independent and (∙, ∙) has Gram matrix(
a b

b c

)

with a, b, c ∈ Fq. Similarly, if G ≤ SOn(q), then (ωn|G, 1G)G is just

the number of G-orbits on W , which is q + 1.

Remark The first statement of Lemma 5.6 also holds for G = GO5(q)
or SO5(q). However, the number of G-orbits on W , and so (ω5|G, ω5|G)G,
equals (q+1)(q2+1)+1, since G has two orbits on the pairs (u, v) such that
〈u, v〉Fq is a totally singular 2-space. This explains the fact that an SO5(q)-
irreducible constituent of degree q2+1 of ω5 splits into two Ω5(q)-irreducible
constituents of degree (q2 + 1)/2.

Proposition 5.7 Assume that G = Ωεn(q) and S = Sp2(q), where n ≥ 6
and q is an odd prime power.

The restriction ωn|S×G of a reducible Weil character of degree qn of
Sp2n(q) decomposes as

∑
α∈ Irr(S) α⊗Dα, where kα ∈ {0, 1}, and the char-

acters D◦α := Dα − kα ∙ 1G are all irreducible and distinct.

Further, kα = 1 if and only if one of the following holds:

(i) n is odd, and α is one of the two irreducible Weil characters of degree
(q + 1)/2 of S;

(ii) n is even, and α is either the trivial character, or the Steinberg
character (of degree q) of S.

Moreover, each D◦α extends to GOn(q).
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Proof We present the proof in various steps.

1) Apply Lemma 5.5 to the character ω = ωn, and define lα := (Dα, 1G)G
and D◦α := Dα − lα ∙ 1G. By Lemma 5.6,

∑
α∈ Irr(S) α(1)lα = q + 1,

ωn|G = (q + 1) ∙ 1G +
∑

α∈ Irr(S)

α(1)D◦α,

and (D◦α, 1G)G = 0 for all α. Again by Lemma 5.6,

∑

α∈ Irr(S)

α(1)2 = |S| = q(q2 − 1) =




∑

α∈ Irr(S)

α(1)D◦α,
∑

α∈ Irr(S)

α(1)D◦α





G

.

It follows that all D◦α, α ∈ Irr(S), must be irreducible and distinct, if all of
them have positive degrees. Set δ := (−1)(q−1)/2.

2) We consider the case where n is odd, or n is even and ε = δn/2. In
the above construction we can choose γ = 1 (or any square in F×q ). If s ∈ S
is represented by the matrix B in the basis {e, f} of U , then it has matrix
diag(B,B, . . . , B) in the basis

{e⊗ v1, f ⊗ v1, e⊗ v2, f ⊗ v2, . . . , e⊗ vn, f ⊗ vn}

of V , and in fact V is the orthogonal sum of the n non-degenerate 2-spaces
〈e⊗ vi, f ⊗ vi〉Fq , i = 1, . . . , n. Thus S acts on V via the embeddings

Sp2(q) ↪→ Sp2(q)× Sp2(q) . . .× Sp2(q) ↪→ Sp2n(q),

where the first embedding is the diagonal embedding. It follows by [48]
that ωn|S = (ω1)n. The character table of S is well known, see e.g. [11, p.
228]. We use the same labelling for the irreducible characters: 1S , St (of
degree q), χi (of degree q + 1), θj (of degree q − 1), Weil characters ξ1 and
ξ2 (of degree (q+1)/2), and Weil characters η1 and η2 (of degree (q− 1)/2),
where ω1 = ξ1+η1 (a total of q+4 characters in all). It is straightforward to
compute Dα(1) = (ωn|S , α)S . In particular, Dα(1) > q+1 and so D◦α(1) > 0
for all α ∈ Irr(S). Hence the D◦α are all irreducible and distinct. It remains
to prove that lα = kα, where the integers kα are defined in the statement.

The degrees of Dα and the integers kα are listed in Table I for n = 2m+1,
and in Table II for n = 2m. Observe that |Dα(1)−Dβ(1)| ≥ q + 1 if α and
β belong to different rows of the Tables. Also, notice that ωn|G contains
the rank 3 permutation character of G = Ωεn(q) (on singular 1-spaces of W ).
The degrees of the irreducible constituents of the latter are well known (see
e.g. [42]). It follows in particular that, when n = 2m + 1, some D◦α have
degrees Dξi(1) − 1 for each i = 1, 2. Thus |Dα(1) − Dξi(1)| = |lα − 1| ≤ q

and so α = ξi. We have shown that lξ1 = lξ2 = 1. Since lβ ≥ 0 for all β and∑
β β(1)lβ = q + 1, we must have lβ = 0 for all β 6= ξ1, ξ2.
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Next we assume that n = 2m. Then some D◦α have degrees Dξ(1)−1 for
each ξ ∈ {1S , St}. Thus |Dα(1) −Dξ(1)| = |lα − 1| ≤ q and so α = ξ. We
have shown that l1S = lSt = 1. Since lβ ≥ 0 for all β and

∑
β β(1)lβ = q+1,

we must have lβ = 0 for all β 6= 1S , St.

Table I. Degrees of Dα, n = 2m+ 1

α α(1) Dα(1) kα

1S 1 (q2m − 1)/(q2 − 1) 0

St q (q2m+1 − q)/(q2 − 1) 0

χi q + 1 (q2m − 1)/(q − 1) 0

θj q − 1 (q2m − 1)/(q + 1) 0

ξ1 (q + 1)/2 (qm − δm+1)(qm + δm+1q)/2(q − 1) + 1 1

ξ2 (q + 1)/2 (qm + δm+1)(qm − δm+1q)/2(q − 1) + 1 1

η1 (q − 1)/2 (qm + δm+1)(qm + δm+1q)/2(q + 1) 0

η2 (q − 1)/2 (qm − δm+1)(qm − δm+1q)/2(q + 1) 0

Table II. Degrees of Dα, n = 2m
α α(1) Dα(1) kα

1S 1 (qm − ε)(qm−1 + εq)/(q2 − 1) + 1 1

St q (q2m − q2)/(q2 − 1) + 1 1

χi q + 1 (qm − ε)(qm−1 + ε)/(q − 1) 0

θj q − 1 (qm − ε)(qm−1 − ε)/(q + 1) 0

ξ1, ξ2 (q + 1)/2 (qm − ε)(qm−1 + ε)/2(q − 1) 0

η1, η2 (q − 1)/2 (qm − ε)(qm−1 − ε)/2(q + 1) 0

3) Next we consider the case where n is even but ε = −δn/2. In the
above construction we can choose γ to be any non-square in F×q . If s ∈ S
is represented by the matrix B in the basis (e, f) of U , then it has matrix
diag(B,B, . . . , B,CBC−1) in the basis
{
e⊗ v1, f ⊗ v1, e⊗ v2, f ⊗ v2, . . . , e⊗ vn−1, f ⊗ vn−1, e⊗ vn, γ

−1f ⊗ vn
}

of V , where C = diag(1, γ) and so it induces a non-inner diagonal auto-
morphism of S which interchanges ξ1 and ξ2, and also η1 and η2. Also, V
is the orthogonal sum of the n non-degenerate 2-spaces 〈e ⊗ vi, f ⊗ vi〉Fq
(i = 1, . . . , n − 1), and 〈e ⊗ vn, γ−1f ⊗ vn〉Fq . Thus S acts on V via the
embeddings

Sp2(q) ↪→ Sp2(q)× Sp2(q) . . .× Sp2(q) ↪→ Sp2n(q),

where the first embedding is the diagonal embedding composed with a non-
inner diagonal automorphism on the last Sp2(q) factor. It follows by [48] that
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ωn|S = (ξ1+ η1)n−1(ξ2+ η2). Direct computations yield Dα(1) = (ωn|S , α)S
as listed in Table II. In particular, Dα(1) > q + 1 and so D◦α(1) > 0 for all
α ∈ Irr(S). Hence D◦α are all irreducible and distinct. Arguing as in 2), we
obtain lα = kα.

4) Finally, the extendibility of D◦α to GOn(q) follows from the fact that
(ωn|G, ωn|G)G are the same for both G = Ωn(q) and G = GOn(q).

Note that |Irr(S)| = q + 4 (see [11, p. 228]). Propositions 5.2, 5.3, and
5.7 immediately imply:

Corollary 5.8 Let G = Spinεn(q), where n ≥ 11 and q is an odd prime
power. Assume χ ∈ Irr(G) with 1 < χ(1) ≤ q2n−10. Then χ is one of the
q + 4 characters D◦α listed in Theorem 5.7.

To estimate the character values for D◦α, we need the following well
known fact (see [24, Lemma 2.4]).

Lemma 5.9 Let ωn be a reducible Weil character of Γ := Sp2n(q). For
g ∈ Γ, let d(g) denote the dimension of the g-fixed point subspace on the
natural module V = F2nq of Γ. Then |ωn(g)| ≤ q

d(g)/2.

Next we consider the dual pair S × G inside Γ and estimate Dα(g) for
an unbreakable g ∈ G.

Lemma 5.10 Let G := Ωεn(q) with natural module W = Fnq and q an odd
prime power. Assume n ≥ 10 if q ≥ 5 and n ≥ 12 if q = 3. For g ∈ G and
λ ∈ F

×
q , let e(g, λ) denote the dimension of the eigenspace of g on W ⊗Fq Fq

corresponding to λ. If g is unbreakable, then e(g, λ) ≤ n/2 if λ 6= −1 and
e(g,−1) ≤ n− 3.

Proof 1) If λ is an eigenvalue for g then so is λ−1, and moreover e(g, λ) =
e(g, λ−1). Hence the statement is obvious if λ 6= ±1.

Next, let Wλ denote the eigenspace for g on W corresponding to λ; in
particular, e(g, λ) = dimWλ if λ ∈ F×q . Assume e(g, 1) > n/2. Then the
subspace W1 cannot be totally singular, whence it contains a vector v with
(v, v) 6= 0. Thus g ∈ StabG(v) = 1〈v〉 × Ω(〈v〉

⊥) ' Ωn−1(q) and so g is
breakable, a contradiction. In general, the unbreakability of g implies that
g cannot fix any nonsingular vector v ∈W .

2) Now we assume that e(g,−1) ≥ n − 2. First we consider the case
e(g,−1) = n, i.e. g = −1W ; in particular, 2|n and ε = (−1)n(q−1)/4. We
claim that g is breakable in this situation. Indeed, if q ≥ 5, then g ∈
Ω+4 (q)×Ω

ε
n−4(q) and hence g is breakable. If q = 3, then g ∈ Ω

−
6 (q)×Ω

−ε
n−6(q)

and so g is breakable.
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Thus we may assume g 6= −1W . Let s be the semisimple part of g.
Then e(s,−1) ≥ e(g,−1) ≥ n − 2 and so e(s, 1) ≤ 2. Let W+, resp. W−,
denote the eigenspace of s on W corresponding to the eigenvalue 1, resp.
−1; in particular, W+ ⊇ W1 and W− ⊇ W−1. Assume e(s, 1) = 1. Then
W+ = 〈v〉Fq and v is nonsingular. Clearly, g fixes v and so g is breakable as
in 1). Assume e(s, 1) = 2. Then dimW+ = 2 and so W = W+ ⊕W−. In
particular, W+ is non-degenerate and is stabilized by g. In fact, g acts on
W+ as a unipotent transformation. If this action is trivial, then g fixes some
nonsingular vector of W+ and so it is breakable. If this action is nontrivial,
then g(u) = u and g(v) = u + v for some basis {u, v} of W+. In this case,
(u, u) = (u, v) = 0, i.e. W+ is degenerate, a contradiction.

We have shown that e(s, 1) = 0. Notice that the eigenvalues other than
±1 of s come in pairs, so either W = W− ⊕ A, where dimA = 2 and s
has no eigenvalue ±1 on A ⊗Fq Fq, or s = −1W . Consider the former case.
Then W− has dimension n − 2 ≥ 8 and is non-degenerate; also g|W− =
−1W− . Hence, we can find a 6-dimensional non-degenerate subspace B of
type δ = (−1)6(q−1)/4 = (−1)(q−1)/2, inside W− and fixed by g; in fact,
g|B = −1B ∈ Ω(B). Now

g ∈ Ω(B)× Ω(B⊥) ' Ωδ6(q)× Ω
εδ
n−6(q)

is breakable, since n− 6 ≥ 4 if q ≥ 5 and n− 6 ≥ 6 if q = 3.

Finally, we consider the case s = −1W , i.e. −1 is the only eigenvalue of
g. Observe that n is even, as g ∈ SO(W ). Since n − 1 ≥ e(g,−1) ≥ n − 2,
we have the orthogonal decomposition W = C ⊕D, where g|C = −1C , and
−g acts on D as a unipotent transformation with matrix J3, J22 , or J2. In
any case, dim(C) ≥ n− 4. Now if q ≥ 5, then dim(C) ≥ 6, and we can find
a 4-dimensional non-degenerate subspace B of type +, inside C and fixed
by g; in fact, g|B = −1B ∈ Ω(B) and it is a commutator in B. It follows
that

g ∈ Ω(B)× Ω(B⊥) ' Ω+4 (q)× Ω
ε
n−4(q)

and so g is breakable. If q = 3, then dim(C) ≥ 8, and we can find a 6-
dimensional non-degenerate subspace B of type −, inside C and fixed by g;
in fact, g|B = −1B ∈ Ω(B). In this case,

g ∈ Ω(B)× Ω(B⊥) ' Ω−6 (q)× Ω
−ε
n−6(q)

and so g is breakable.

Proposition 5.11 Consider the dual pair S × G inside Γ := Sp2n(q) (q
odd), where S = Sp2(q) and G = Ω

ε
n(q). Assume n ≥ 10 if q ≥ 5 and

n ≥ 12 if q = 3. For any unbreakable g ∈ G and any α ∈ Irr(S),

|Dα(g)| ≤
α(1)

q(q2 − 1)
∙
{(
q(q2 − 1)− 1

)
qn/2 + qn−3

}
.
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If q = 3, then |Dα(g)| < 4qn−5α(1)/(q2 − 1)− 1.

Proof We apply Lemma 5.5 to this dual pair and obtain Dα(g) =∑
x∈S α(x)ω(xg)/|S|, where ω = ωn. Next we use Lemmas 5.9 and 5.10

to estimate ω(xg).

1) If x = 1U , then d(xg) = 2e(g, 1) ≤ n. If x is conjugate (in Sp2(Fq))

to diag(λ, λ−1) for some ±1 6= λ ∈ F
×
q , then d(xg) ≤ e(g, λ)+ e(g, λ

−1) ≤ n.

Next assume that x is conjugate in S to a

(
1 b

0 1

)

for some a = ±1 and

b ∈ F×q . Direct computation shows that |Ker(xg − 1V )| equals the number
of pairs (u, v) ∈ W 2, where W = Fnq is the natural module for G, v ∈
Ker(g − a ∙ 1W ) ∩ Im(g − a ∙ 1W ), and (g − a ∙ 1W )u = abv, which is at most
|Im(g− a ∙ 1W )| ∙ |Ker(g− a ∙ 1W )| = |W | = qn. Hence d(xg) ≤ n in this case
as well. Finally, if x = −1U , then d(xg) = 2e(g,−1) ≤ 2(n − 3), and the
first claim of the proposition follows since |α(x)| ≤ α(1).

2) Now consider the case q = 3; in particular, n ≥ 12. Recall that
e(g,−1) ≤ n − 3 by Lemma 5.10. Also, the calculations in 1) show that
d(xg) ≤ n if x 6= −1U . Hence, if e(g,−1) ≤ n− 4, then

|Dα(g)| ≤
(
qn−4 + 23qn/2

)
α(1)/q(q2 − 1) < 4qn−5α(1)/(q2 − 1)− 1.

Assume e(g,−1) = n − 3. For any λ 6= −1, e(g, λ) ≤ 3. It follows that
d(xg) ≤ 6 if x = 1U (one element), or if x ∈ S has order 4 (6 elements). If
x is one of the 8 elements of order 3, then the calculations in 1) show that
|Ker(xg − 1V )| ≤ |Ker(g − 1W )|2 ≤ q6 and so d(xg) ≤ 6 again. Thus

|Dα(g)| ≤
(
qn−3 + 8qn/2 + (1 + 6 + 8)q3

)
α(1)/q(q2 − 1)

< 4qn−5α(1)/(q2 − 1)− 1.

Proposition 5.12 Let χ be any irreducible character of G = Ωεn(q), where
q is an odd prime power, n ≥ 10 if q ≥ 5 and n ≥ 12 if q = 3. Assume
that 1 < χ(1) ≤ q2n−10 if n > 10, or χ is one of the characters D◦α listed in
Proposition 5.7 if n = 10. For unbreakable g ∈ G,

|χ(g)/χ(1)| ≤

{
(q + 1)/q3, if q ≥ 5,
1/20, if q = 3.

Proof Consider the dual pair S×G inside Γ := Sp2n(q), where S = Sp2(q).
By Corollary 5.8, if n > 10 then χ = D◦α for some α ∈ Irr(S). Thus in any
case, χ = D◦α for some α. The degrees of D

◦
α are given in Theorem 5.7 and

Tables I, II. Direct calculations show that

D◦α(1)

qn−1α(1)/(q2 − 1)
> 1−

1

qm−2
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where m := bn/2c. Assume q ≥ 5. Now n ≥ 10, whence n/2 ≤ n − 5.
Proposition 5.11 implies

|D◦α(g)| ≤ |Dα(g)|+ 1 ≤
α(1)

(
q(q2 − 1)qn−5 + qn−3

)

q(q2 − 1)

=
qn−4(q + 1)α(1)

q2 − 1
∙

(

1−
1

q2 + q

)

,

and so |D◦α(g)/D
◦
α(1)| < (q + 1)/q

3.

Next, assume that q = 3; in particular n ≥ 12 and m ≥ 6. Hence

D◦α(1)

qn−1α(1)/(q2 − 1)
>
80

81
.

On the other hand, by Proposition 5.11,

|D◦α(g)| ≤ |Dα(g)|+ 1 ≤ 4q
n−5α(1)/(q2 − 1),

whence |D◦α(g)/D
◦
α(1)| < 1/20.

Now we estimate the character values for the three small irreducible
characters δ1, δ2 and γ of K := Ω±2n(2) (n ≥ 7) given by Proposition 5.4,
where δ1(1) = (2n − ε)(2n−1 + 2ε)/3, δ2(1) = (2n − ε)(2n−1 − ε)/3, and
γ(1) = (22n−4)/3. To do this, we consider the three unitary-Weil characters
of H := Sp2n(2) as described in [24]: αn of degree (2

n − 1)(2n−1 − 1)/3, βn
of degree (2n + 1)(2n−1 + 1)/3, and ζ1n of degree (2

2n − 1)/3.

Lemma 5.13 Assume n ≥ 5 and consider the natural embedding of K :=
Ωε2n(2) in H := Sp2n(2). If ε = +, then

αn|K = δ
2, βn|K = 1K + δ

1, ζ1n|K = 1K + γ.

If ε = −, then

αn|K = 1K + δ
1, βn|K = δ

2, ζ1n|K = 1K + γ.

Proof When n = 5 the statements can be verified directly using [8], so
we assume n ≥ 6. Recall that the reducible Weil character ζn of SU2n(q)
restricts to H as αn+βn+2 ∙ ζ1n (see [24, §3]). We consider the permutation
character τn of H on the point set of the natural module V = F2n2 . By [24,
Lemma 5.8], the restrictions of τn and ζn to K are equal. All the nontrivial
irreducible constituents of τn|K = ζn|K have degree less than 22n ≤ 24n−10

and so they must be among the characters δ1, δ2, and γ listed in Proposition
5.4. Notice that τn|K − 1K contains the rank 3 permutation character of
K on the singular 1-spaces of V . Reading off the degrees of the nontrivial
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irreducible constituents of the latter from [42, Table I], we see that they are
δ1 and γ. Further, (τn|K , 1K)K equals the number of K-orbits on V , which
is 3. Thus

αn|K + βn|K + 2 ∙ ζ
1
n|K = ζn|K = τn|K

contains 3 ∙ 1K + δ1 + γ. But γ(1) = ζ1n(1) − 1 > βn(1) > αn(1). It follows
that ζ1n|K = 1K + γ.

First we assume that ε = +. Here δ2(1) = αn(1) is the smallest degree
of nontrivial irreducible characters of K (see [47]). Hence αn|K = δ2. This
forces βn|K = 1K + δ1.

Now we assume that ε = −. Clearly, δ1 must be a constituent of αn|K or
βn|K . Assume that δ1 is a constituent of βn|K . Now βn(1)− δ1(1) = 2n + 1
is less than the smallest degree of nontrivial irreducible characters of K (see
[47]). It follows that βn|K − δ1 = (2n + 1) ∙ 1K and so τn|K contains 1K
with multiplicity at least 2n + 1, a contradiction. Thus δ1 is a constituent
of αn|K . Since αn(1) − δ1(1) = 1, we must have αn|K = 1K + δ1. In this
situation, (βn|K , 1K) = 0 and βn(1) is less than twice the smallest degree
of nontrivial irreducible characters of K. Hence βn|K is irreducible and so
βn|K = δ2.

Proposition 5.14 Let K := Ωε2n(2) with n ≥ 6. For unbreakable g ∈ K,

∑

χ∈ Irr(K), 1<χ(1)≤24n−10

|
χ(g)

χ(1)
| ≤

7

2n−2
.

Proof Recall that χ is one of the characters δ1, δ2, or γ. For any λ ∈
F
×
2 , let e(g, λ) denote the dimension of the eigenspace of g on V ⊗F2 F2
corresponding to the eigenvalue λ, where V = F2n2 is the natural module for
H := Sp2n(2) > K, with an H-invariant symplectic form (∙, ∙). We claim
that the unbreakability of g implies that e(g, 1) ≤ n. Assume instead that
e(g, 1) > n. Then the fixed point subspace U of g on V has dimension
greater than n and so it cannot be totally isotropic. Hence we can find
u, v ∈ U such that (u, v) 6= 0. Now g ∈ Ω(〈u, v〉⊥) ' Ω±2n−2(2) and so g is
breakable.

Abusing notation, we use ω to denote a primitive cube root of unity in
both C and F2. By the formulae (4) and (6) of [24],

ζ1n(G) =
2∑

i=0

ωi(−2)e(g,ω
i)/3, αn(g) + βn(g) =

2∑

i=0

(−2)e(g,ω
i)/3.

We have shown above that a := e(g, 1) ≤ n. Also, e(g, ω) = e(g, ω−1) =: b,
hence b ≤ n. Since a + 2b ≤ 2n and 0 ≤ a, b ≤ n, it is easy to check that
2a + 2 ∙ 2b ≤ 2n+1 + 1. Hence

|ζ1n(g)| ≤ (2
n+1 + 1)/3, |αn(g) + βn(g)| ≤ (2

n+1 + 1)/3.
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By Lemma 5.13,

|γ(g)| = |ζ1n(g)− 1| ≤ |ζ
1
n(g)|+ 1 ≤ (2

n+1 + 4)/3.

Also, if ρ denotes the rank 3 permutation character of K on the singular
1-spaces of V , then 0 ≤ ρ(g)− 1 ≤ 2e(g,1) − 1 ≤ 2n − 1, whence

|δ1(g) + γ(g)| = |ρ(g)− 1| ≤ 2n − 1.

It follows that

|δ1(g)| ≤ (2n − 1) + |γ(g)| ≤ (5 ∙ 2n + 1)/3.

Again, by Lemma 5.13, δ1(g) + δ2(g) + 1 = αn(g) + β(g), and so

|δ2(g)| ≤ 1 + |δ1(g)|+ |αn(g) + βn(g)| ≤ (7 ∙ 2
n + 5)/3.

The degrees of δ1, δ2, and γ are listed before Lemma 5.13, and the conclusion
now follows.

5.2 Centralizer bounds

In this section we obtain centralizer bounds for unbreakable elements of
orthogonal groups.

Proposition 5.15 Let G = Ω(V ) = Ωε2n(q) (q < 7) or Ω2n+1(q) (q = 3, 5).
Assume that dimV ≥ 9, and also that dimV ≥ 13 if q ≤ 3.

If x ∈ G is unbreakable, then |CG(x)| ≤ N , where N is listed in the
following table.

G q N

Ωε2n(q) 2 22n+6 ∙ 3
3 32n+4 ∙ 210

4 42n−3 ∙ 60
5 52n ∙ 288

Ω2n+1(q) 3 3
2n+3 ∙ 16

5 5n+1

Proof (1) The case q = 2. Here we assume that G = Ωε2n(2) with n ≥ 7.

Let x ∈ G be unbreakable, and assume first that x is unipotent. We use
the classification of unipotent elements of orthogonal groups in characteristic
2 given by [25] (see also [30]). According to this, V |x is a perpendicular sum
of non-degenerate subspaces of the following types:

V (2k) : a single Jordan block J2k ∈ Oε2k(2)\Ω
ε
2k(2)

W (k) : two Jordan blocks J2k ∈ Ω
+
2k(2).
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(These are not unique up to conjugacy, but that does not concern us.) More-
over, the only non-perfect groups Ωε2k(2) are Ω

ε
2(2) and Ω

+
4 (2). Hence for the

unbreakable element x, V |x is listed in the following table. The table also
gives dim C̄ and C̄/Ru(C̄), where C̄ is the centralizer of x in the algebraic
group O2k(F̄2). The formula for dim C̄ is given in [25, 4.4]: if u = (Jni)i
with n1 ≥ n2 ≥ ∙ ∙ ∙, then dim C̄ =

∑
ini − χ(ni), where χ(ni) = ni/2 + 1

for a summand V (ni) and χ(ni) = [(ni + 1)/2] for a summand W (ni). The
groups C̄/Ru(C̄) are given in [30].

V |x dim C̄ C̄/Ru(C̄)

W (n) 2n− 2 + (n, 2) Sp2 (n even), O2 (n odd)
W (2) +W (n− 2) 2n+ 6 (n even) Sp2 × Sp2 (n even)

2n+ 5 (n odd) Sp2 ×O2 (n odd)
W (2) + V (2n− 2k − 4) + V (2k) ≤ 2n+ 4 Sp2 × 2a, a ≤ 2
V (2)2 +W (n− 2) 2n+ 6 (n even) Sp2 × 2 (n even)

2n+ 5 (n odd) O2 × 2 (n odd)
V (2n− 2k) + V (2k) ≤ 2n− 2 2a, a ≤ 2

Applying Lang’s Theorem (see [43, I, 3.4]) to the corresponding possibili-
ties for |CG(x)|, we see that the maximum possible value of this occurs for
V (2)2 +W (n− 2) with n odd, so that

|CG(x)| ≤ 2
2n+4 ∙ |O−2 (2)× 2| = 2

2n+6 ∙ 3, (13)

the claimed bound.

Now assume that x is non-unipotent, and write x = su with semisimple
part s 6= 1 and unipotent part u. We have

CG(s) = Ω
δ
2k(2)×

∏

i

GLεiai(2
bi),

where k+
∑
aibi = n. As each GL

εi
ai
(2bi) ≤ Ω2aibi(2) and x is unbreakable,

it must be the case that either 2k ≥ 2n− 4, or 2aibi ≥ 2n− 4 for some i.

Let V2k = CV (s), of dimension 2k. If 2k ≥ 2n − 4, then V2k|u must be
W (k) (otherwise x is breakable), so dim C̄ ≤ 2k + 1 and the bound (13)
holds.

Assume now that 2aibi ≥ 2n − 4 for some i. Each Jordan block Jr of
u in GLεiai(2

bi) fixes a non-degenerate subspace of dimension 2rbi, so for all
such r, either 2rbi ≥ 2n−4 or 2rbi ≤ 4. It follows that the possibilities with
the largest centralizers are:

(a) k = 0, CG(s) = GUn(2), u = (Jn−2, J
2
1 ) ∈ GUn(2)

(b) k = 1, CG(s) = Ω
−
2 (2)×GUn−1(2), u = (Jn−2, J1) ∈ GUn−1(2).

In case (a), |CG(x)| = 2n+1.(GU2(2)×GU1(2)), which is much smaller than
the bound in (13), and in case (b), |CG(x)| is even smaller.
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This completes the proof for q = 2.

(2) The case q = 4. Here we assume that G = Ωε2n(4) with n ≥ 5. This
case is similar to the previous one, except that Ω+4 (q) is perfect, so unbreak-
able elements cannot lie in a subgroup Ω(W ) × Ω(W⊥) where dimW ≥
dimW⊥ and dimW > 2.

For x unipotent, V |x must be either W (n) or V (2n− 2k) + V (2k). The
formula for dim C̄ is as in the q = 2 case. For W (n) we have dim C̄ = 2n,
C̄/Ru(C̄) = Sp2 if n is even, and dim C̄ = 2n − 1, C̄/Ru(C̄) = O2 if n is
odd. Thus the largest possibility for |CG(x)| is 42n−3 ∙ |Sp2(4)|.

For x non-unipotent write x = su again, and

CG(s) = Ω
δ
2k(4)×

∏

i

GLεiai(4
bi),

where k +
∑
aibi = n. As x is unbreakable, either 2k ≥ 2n − 4, or 2aibi ≥

2n− 4 for some i, and arguing as for the q = 2 case, we see that |CG(x)| ≤
42n−3 ∙ 60.

(3) The case q = 3. Here we assume that G = Ωε2n(3) with n ≥ 7, or
Ω2n+1(3) with n ≥ 6. The non-perfect groups Ω(W ) are Ω1(3), Ω

±
2 (3), Ω3(3)

and Ω+4 (3).

By [25], if x is unipotent, then V |x is a perpendicular sum of non-
degenerate subspaces of the following types:

W (2k) : J22k ∈ Ω
+
4k(q)

V (2k + 1) : J2k+1 ∈ Ω2k+1(q).

The possibilities for V |x are listed in the following table. The formula for
dim C̄ is given in [25, 4.4]: if x = (Jni)i where n1 ≥ n2 ≥ ∙ ∙ ∙, then

dim C̄ =
∑

ini − χ(ni)

where χ(ni) = (ni + 1)/2 for a summand V (ni) and χ(ni) = ni/2 for a
summand W (ni).

V |x dim C̄ C̄/Ru(C̄)

W (n) 2n Sp2
W (2) +W (n− 2) 2n+ 8 Sp2 × Sp2
V (3) + V (2n− 3) n+ 2 22

V (3) +W (n− 1) 2n+ 5 Sp2 × 2

(Here we used the assumption that dim V ≥ 13 to avoid the configurations
W (2)3 ∈ Ω+12(q) and V (3) +W (2)

2 ∈ Ω11(q).) Hence, if G = Ωε2n(3), then
|CG(x)| ≤ 32n+2∙|Sp2(3)2|; if G = Ω2n+1(3), then |CG(x)| ≤ 32n+2∙2|Sp2(3)|.
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Now assume x is non-unipotent and write x = su as usual. We have

CG(s) = (Oa(3)×Ob(3)×
∏

GLεiai(3
bi)) ∩G,

where a = dimCV (s) and b = dimCV (−s). Since GLεr(q) ≤ SO2r(q) in
general, it follows that b is even since det(s) = 1.

Write U = CV (−s). Consider U |u. This is a sum of spaces of typeW (2k)
and V (2k + 1). Since −1 ∈ Ω+4k(3) (see [26, 2.5.13]), if u0 is a unipotent
element of type W (2k), then

−u0 = −(J
2
2k) ∈ Ω

+
4k(3).

Moreover, for a unipotent element of type
∑m
i=1 V (2ri+1) withm ≥ 4, there

exist i, j such that the discriminant of the space V (2ri + 1) + V (2rj + 1)
is a square; so if u1 is the corresponding unipotent element, then −u1 =
−(J2ri+1, J2rj+1) ∈ Ω2ri+2rj+2(3) (again by [26, 2.5.13]).

It follows from these observations that for dim V = 2n, the largest pos-
sibility for |CG(x)| arises when U = V (i.e. s = −1) and V |u is V (1)4 +
W (n−2), in which case dim C̄ = 2n+10 and C̄/Ru(C̄) = Sp2×O4, so that
|CG(x)| ≤ 32n+1 ∙|Sp2(3)×SO

+
4 (3)| = 3

2n+4 ∙210, as in the conclusion. When
dimV = 2n+1, the maximum is achieved when a = 3, dimU = b = 2n− 2,
U⊥|u = V (3) and U |u =W (n− 1), in which case dim C̄ = 2n− 1, giving an
upper bound for |CG(x)| which is smaller than that for the unipotent case.

(4) The case q = 5. Here we assume that G = Ωε2n(q) or Ω2n+1(5) with
n ≥ 4. The only non-perfect groups Ω(W ) are Ω1(q) and Ω

±
2 (q).

Assume that dimV = 2n. For unipotent x, the indecomposables are
W (2k) and V (2k + 1) as in the q = 3 case, and the only possibility for V |x
with x unbreakable isW (n), in which case dim C̄ = 2n, C̄/Ru(C̄) = Sp2 and
|CG(x)| ≤ q2n−3 ∙ |Sp2(q)|. For x = su non-unipotent, the maximum value
of |CG(x)| occurs when s = −1 and V |u = V (1)2 +W (n− 1), in which case
|CG(x)| ≤ q2n−1 ∙ |Sp2(q)×O

−
2 (q)|, which is the bound in the conclusion.

For dimV = 2n + 1 the only unbreakable unipotent class is the regular
class (corresponding to the indecomposable V (2n + 1)), which has central-
izer of order 5n. For x = su non-unipotent and unbreakable, CV (s) is a
non-degenerate subspace of odd dimension on which x acts as a unipotent
element. Hence the unbreakability of x forces dimCV (s) = 2n − 1 and
CV (s)|x = V (2n− 1), whence |CG(x)| ≤ 5n−1 ∙O

−
2 (5) < 5

n+1, as required.

This completes the proof of the proposition.

We also need a version of Proposition 5.15 for the 12-dimensional or-
thogonal groups over F3.

33



Lemma 5.16 Let G = Ωε12(3) and let x ∈ G be unbreakable. Then one of
the following holds:

(i) |CG(x)| ≤ 316.26;

(ii) ε = +, x = (J62 ) or −(J
6
2 ), and x is a commutator in G.

Proof The proof runs along similar lines to that of 5.15: the bound
in (i) is achieved by unipotent u ∈ Ω+12(3) with V |u = W (2) +W (4) and
centralizer 314.(Sp2(3)

2); and the exceptional elements in (ii) come from the
decomposition W (2)3. (Note that x = −(I4, J24 ) with ε = +, arising from
the decomposition −(V (1)4 +W (4)), has larger centralizer than the bound
in (i); but this element is in fact breakable, since −I4 is a commutator in
Ω+4 (3).) Finally, the elements in (ii) are commutators since they lie in a
subgroup Ω+4 (3

3) ∼= SL2(27) ◦ SL2(27), and every element in SL2(27) is a
commutator.

5.3 Proof of Theorem 5.1

The main step in the proof of Theorem 5.1 is the following.

Lemma 5.17 Let G be one of the orthogonal groups Ω2n+1(q) (n ≥ 1, q odd,
q < 7), Ω+2n(q) (n ≥ 2, q < 5) or Ω

−
2n(q) (n ≥ 2, q < 7), excluding the groups

Ω3(3),Ω
+
4 (2),Ω

+
4 (3). Every unbreakable element of G is a commutator.

Proof We first sketch the structure of our proof, which is similar to that
of Section 4 for symplectic groups.

Let G = Ωεn(q) and let g ∈ G be unbreakable. By Lemma 3.1(iv), we
may assume that n ≥ 14 if q = 2, n ≥ 12 if q = 3, and n ≥ 9 if q = 4, 5, 7.

We want to show that

|
∑

χ∈ Irr(G), χ(1)>1

χ(g)

χ(1)
| < 1,

which implies that
∑
χ∈ Irr(G) χ(g)/χ(1) 6= 0 and so g is a commutator in G

by Lemma 2.5. We usually break this sum into two sub-sums:

E1(g) =
∑
χ∈ Irr(G), 1<χ(1)≤d(G)

χ(g)
χ(1) , E2(g) =

∑
χ∈ Irr(G), χ(1)>d(G)

χ(g)
χ(1) ,

where d(G) is chosen suitably. We use the results of Section 5.1 to show
that |E1(g)| is small. We frequently use the bound

|E2(g)| <

√
k(G) ∙ |CG(g)|

d(G)
, (14)

which follows from Lemma 2.6. In applying (14), we use the bound on
|CG(g)| from Section 5.2; we also use the crude bound k(G) ≤ 4k(GOεn(q)),
where k(GOεn(q)) is bounded by Proposition 2.7.
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Case 1: G = Ω−2n(5), and n ≥ 5.

First we assume that n ≥ 6. Then k(G) ≤ 116 ∙5n by 2.7, and |CG(g)| ≤
52n ∙288 ≤ (2.304)52n+3 by 5.15, whence k(G)∙|CG(g)| < 268∙53n+3 < 53n+7.
We choose d(G) = 54n−10. It follows using (14) that

|E2(g)| < 5(3n+7)/2−(4n−10) = 5(27−5n)/2 ≤ 5−3/2 < 0.09.

By Proposition 5.3, E1(g) involves q + 4 = 9 terms, and each has absolute
value at most (q + 1)/q3 by Proposition 5.12. Hence

|E1(g)| ≤ (q + 1)(q + 4)/q3 ≤ 0.432,

and so |E1(g) + E2(g)| < 0.522.

Next we consider the case n = 5 so G = Ω−10(5). The degrees of the
irreducible complex characters of SO−10(q) are available in [33]. Specializing
to q = 5, we obtain that k(SO−10(5)) = 5266, whence k(G) = 2633 as
SO−10(5) = C2×Ω

−
10(5). By 5.15, |CG(g)| ≤ 5

10 ∙288. Choosing d(G) = 4 ∙59,
we get

|E2(g)| <
√
510 ∙ 288 ∙ 2633/(4 ∙ 59) < 0.35.

By Propositions 5.3 and 5.12, E1(g) involves 9 terms, and each has absolute
value at most 6/125, whence |E1(g)| < 54/125 and so |E1(g)| + |E2(g)| <
0.79.

Case 2: G = Ω2n+1(5), and n ≥ 4.

Here k(G) ≤ 2k(SO2n+1(5)) ≤ 5n ∙ (14.76) by 2.7, and |CG(g)| ≤ 5n+1

by 5.15. First suppose that n ≥ 5 and choose d(G) = 54n−8. It follows that

|E2(g)| < 5(2n+1)/2−(4n−8) ∙
√
(14.76) < 0.01.

By Theorem 5.3, E1(g) involves 9 terms, and each has absolute value at most
6/125 by Theorem 5.12. Hence |E1(g)| ≤ 54/125 and so |E1(g) + E2(g)| <
0.5.

Next we assume that n = 4 and choose d(G) = 410. By 5.15, |CG(g)| ≤
55. It follows that

|E2(g)| <
√
55 ∙ 54 ∙ (14.76)/410 < 0.01.

The degrees of the irreducible complex characters of Spin9(5) are available
in [33]. Using this list, it is straightforward to check that G has at most 13
nontrivial irreducible characters of degree at most 410, and all have degree
at least 16276. Hence |E1(g)| ≤

√
55 ∙ 13/16276 < 0.02, and so |E1(g) +

E2(g)| < 0.03.

Case 3: G = Ω2n+1(3), and n ≥ 6.
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Here k(G) ≤ 2k(SO2n+1(3)) ≤ 3n∙(14.76) by 2.7, and |CG(g)| ≤ 32n+3∙16
by 5.15, whence k(G) ∙ |CG(g)| < 33n+3 ∙ 237 < q3n+8. We choose d(G) =
q4n−8. It follows that

|E2(g)| < q(3n+8)/2−(4n−8) = q(24−5n)/2 ≤ q−3 < 0.04.

By Proposition 5.3, E1(g) involves 7 terms, and each has absolute value
at most 1/20 by Proposition 5.12. Hence |E1(g)| ≤ 7/20 and so |E1(g) +
E2(g)| < 0.39.

Case 4a: G = Ω±2n(3), and n ≥ 7.

We choose d(G) = 34n−10. By Proposition 5.3, E1(g) involves 7 terms,
and each has absolute value at most 1/20 by Proposition 5.12. Hence
|E1(g)| ≤ 7/20.

Assume n ≥ 8. Then k(G) ≤ 3n ∙ 116 by 2.7, and |CG(g)| ≤ 32n+4 ∙ 210

by 5.15, whence k(G) ∙ |CG(g)| < 33n+4 ∙ 210 ∙ 116 < q3n+15. It follows that

|E2(g)| < q(3n+15)/2−(4n−10) = q(35−5n)/2 ≤ q−5/2 < 0.07,

and so |E1(g) + E2(g)| < 0.42.

Assume n = 7. Then k(GO±2n(3)) < 3
n ∙ 7 by Lemma 2.8, and so k(G) <

3n ∙ 28. Thus
|E2(g)| <

√
33n+4∙210∙28
34n−10

< 0.41,

whence |E1(g) + E2(g)| < 0.76.

Case 4b: G = Ω±12(3).

We choose d(G) = 314. As in Case 4a, E1(g) involves 7 terms, and each
has absolute value at most 1/20 by Proposition 5.12. Hence |E1(g)| ≤ 7/20.

We break E2(g) into two sub-sums:

E3(g) =
∑
χ∈ Irr(G), 314<χ(1)≤315

χ(g)
χ(1) , E4(g) =

∑
χ∈ Irr(G), χ(1)>315

χ(g)
χ(1) .

By (14), |E4(g)| <
√
k(G) ∙ |CG(g)|/315. By Lemma 2.8, k(GO

±
12(3)) <

36 ∙ (6.4), and so k(G) < 36 ∙ (25.6). By Lemma 5.16 we may assume that
|CG(g)| ≤ 316 ∙ 26. It follows that

|E4(g)| <
√
322∙26∙(25.6)
315

< 0.5.

On the other hand, by Proposition 5.3 there are at most 15 terms in E3(g).
The Cauchy-Schwarz inequality yields |E3(g)| <

√
15 ∙ |CG(g)|/314 < 0.05.

Consequently,

|E1(g) + E2(g)| ≤ |E1(g)|+ |E3(g)|+ |E4(g)| < 0.9.
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Case 5: G = Ω±2n(4), and n ≥ 5.

Here k(G) ≤ 2k(GO±2n(4)) ≤ 4
n ∙ 35 by 2.7, and |CG(g)| ≤ 42n−3 ∙ 60 by

5.15, whence k(G) ∙ |CG(g)| < 43n−3 ∙ 2100. We choose d(G) = 24n−10. It
follows that

|E2(g)| < 4(3n−3)/2−(4n−10) ∙
√
2100 = q(17−5n)/2 ∙

√
2100 < 0.18.

By Proposition 5.4, E1(g) involves at most 10 characters, and each has
degree > 42n−3. The Cauchy-Schwarz inequality yields

|E1(g)| <
√
10 ∙ |CG(g)|/42n−3 =

√
600/22n−3 < 0.2.

Consequently |E1(g) + E2(g)| < 0.38.

Case 6: G = Ω±2n(2), and n ≥ 7.

Here k(G) ≤ 2k(GO±2n(2)) ≤ 2
n ∙ 35 by 2.7, and |CG(g)| ≤ 22n+6 ∙ 3 by

5.15, whence k(G) ∙ |CG(g)| < 23n+6 ∙ 105. We choose d(G) = 24n−10. It
follows that

|E2(g)| < 2(3n+6)/2−(4n−10) ∙
√
105 = 2(26−5n)/2 ∙

√
105 < 0.46.

By Proposition 5.14, |E1(g)| ≤ 7/25 < 0.22, whence |E1(g) +E2(g)| < 0.68.

In all cases, we have shown that |
∑
χ∈ Irr(G)\{1G}

χ(g)/χ(1)| < 1, and
hence that g is a commutator.

Theorem 5.1 now follows from Lemmas 5.17 and 2.9.

6 Unitary groups

In this section we prove the following result, which together with Lemma
2.4, implies Ore’s conjecture for the unitary groups.

Theorem 6.1 Let G = SUn(q) with n ≥ 3, excluding SU3(2). Then every
element of G is a commutator.

Our proof differs from that for the symplectic and orthogonal groups:
the bounds for centralizers of unbreakable elements in unitary groups are
much weaker than for the other types, making the character theoretic part
of that approach unworkable.

Instead, we use a more direct approach. Given X ∈ G = SUn(q), we
find B,C ∈ G such that XB = C and B,C are conjugate. This obviously
implies that X is a commutator. Here is a rough sketch of our approach to

37



solving the equation XB = C. We write X = diag(X1, . . . , Xk) in diagonal
block form, where the blocks Xi are indecomposable matrices in GUni(q)
(indecomposable meaning that each Xi does not fix a proper non-degenerate
subspace of the unitary ni-space). We then attempt to solve equations of
the form XiBi = Ci, where Bi and Ci are both matrices in GUni(q) with
diagonal block form diag(b, Jni−1) with b a scalar (and of course we require
det(Ci) = det(Xi)det(Bi)). If we can solve such an equation, we say that
Xi has the (b, J)-property. Taking B,C to be the block diagonal sum of
the resulting matrices Bi, Ci, we obtain a solution to our original equation
XB = C.

The approach hinges on establishing both the (b, J)-property for in-
decomposable matrices in GUn(q), and also a variant called the (a, b, J)-
property which ensures that the determinants of the final matrices B,C are
1. We prove these properties for n ≥ 7 in Section 6.2, and some variants
for q = 2 and 3 in Sections 6.3 and 6.4. The proofs are character theoretic,
based on a substantial amount of new information about characters of uni-
tary groups of low degree obtained in Section 6.1. For dimensions n < 7 we
study the (b, J)- and (a, b, J)-properties using computational methods. This
is a manageable task, since we can assume that q ≤ 7 by Lemma 2.4. To
complicate matters, however, it turns out that for small n, q, there are many
elements of GUn(q) which do not have the (b, J)- or (a, b, J)-properties. This
leads to several technical complications in the proof of Theorem 6.1, which
is finally completed in Section 6.5.

6.1 Characters of small degree

In this section, we study irreducible complex characters of relatively small
degrees of the unitary groups GUn(q), n ≥ 7. The main result is Proposition
6.6.

Our approach uses the theory of dual pairs in similar fashion to the proofs
for orthogonal groups in Section 5.1. We consider the dual pair S×G inside
Γ := GU2n(q), where S = GU2(q) and G ∈ {SUn(q), GUn(q)}, and

ω(g) = ζ2n,q(g) = (−q)
dimKerF

q2
(g−1)

(15)

is a reducible Weil character of GU2n(q), of degree q
2n (see [48]). More

precisely, we view S as GU(U), where U = 〈e, f〉Fq2 is endowed with the
Hermitian form (∙, ∙), and Gram matrix diag(1, 1) in the basis {e, f}. Next,
GUn(q) means GU(W ), whereW = 〈v1, . . . , vn〉Fq2 is endowed with the Her-
mitian form (∙, ∙), and Gram matrix diag(1, 1, . . . , 1) in the basis {v1, . . . , vn}.
Now we consider V = U ⊗ W with the Hermitian form (∙, ∙) defined via
(u⊗w, u′⊗w′) = (u, u′) ∙ (w,w′) for u ∈ U and w ∈W . The action of S×G
on V induces a homomorphism S ×G→ Γ := GU(V ).
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Lemma 6.2 Let n ≥ 4 if G = GUn(q) and n ≥ 5 if G = SUn(q). Under
the above assumptions,

(ω|G, ω|G)G = (q + 1)(q
3 + 1).

Further, (ω|G, 1G)G = q + 1.

Proof Let A be the matrix of g ∈ G in the basis {v1, . . . , vn} ofW . Then g
has matrix diag(A,A) in the basis {e⊗vi, f⊗vi} of V . It follows that ω(g) is
the number of g-fixed points onW , and ω2(g) is the number of g-fixed points
on the setW ×W . Hence (ω|G, 1G)G is the number of G-orbits onW , which
is q+1. Next, (ω|G, ω|G)G equals the number of G-orbits on W ×W . Using
Witt’s theorem and the assumptions on n, one can show that G has exactly
(q + 1)(q3 + 1) orbits on W ×W , with the following representatives: (0, 0),
(v, λv) where λ ∈ Fq2 , 0 6= v ∈ V and (v, v) = μ ∈ Fq, (0, v) where 0 6= v ∈ V
and (v, v) = μ ∈ Fq, and (u, v) where u, v ∈ V are linearly independent and

(∙, ∙) has Gram matrix

(
a b

bq c

)

with a, c ∈ Fq and b ∈ Fq2 .

Proposition 6.3 Assume that S = GU2(q), q any prime power, and G =
GUn(q) with n ≥ 4 or G = SU5(q) with n ≥ 5. Then the restriction ζ2n,q|S×G
of the reducible Weil character ζ2n,q of degree q

2n of GU2n(q) decomposes as∑
α∈ Irr(S) α⊗Dα, where the characters D

◦
α := Dα−kα ∙1G are all irreducible

and distinct, for some kα ∈ {0, 1}. Further, kα = 1 precisely when α = 1S
or α is the Steinberg character St of S.

Proof 1) Apply Lemma 5.5 to the character ω = ζ2n,q, and define lα :=
(Dα, 1G)G and D

◦
α := Dα− lα ∙1G. By Lemma 6.2,

∑
α∈ Irr(S) α(1)lα = q+1,

ω|G = (q + 1) ∙ 1G +
∑

α∈ Irr(S)

α(1)D◦α,

and (D◦α, 1G)G = 0 for all α. Again by Lemma 6.2,

∑

α∈ Irr(S)

α(1)2 = |S| = (q+1)(q3−q) =




∑

α∈ Irr(S)

α(1)D◦α,
∑

α∈ Irr(S)

α(1)D◦α





G

.

It follows that all D◦α, α ∈ Irr(S), must be irreducible and distinct, if all of
them have positive degrees.

2) The character table of S is well known, see e.g. [13]. We use the same

labelling for the irreducible characters: χ
(t)
1 of degree 1 (where 1 ≤ t ≤ q+1;

in particular, χ
(q+1)
1 = 1S), χ

(t)
q of degree q (where 1 ≤ t ≤ q + 1; in

particular, χ
(q+1)
q is the Steinberg character), χ

(t,u)
q−1 of degree q − 1 (where
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1 ≤ t 6= u ≤ q + 1 and χ
(t,u)
q−1 = χ

(u,t)
q−1 ), and χ

(t)
q+1 of degree q + 1 (where

1 ≤ t 6= u ≤ q2 − 2 and t /∈ (q − 1)Z). It is straightforward to compute
Dα(1) = (ω|S , α)S . In particular, Dα(1) > q + 1 and so D◦α(1) > 0 for all
α ∈ Irr(S). Hence the D◦α are all irreducible and distinct. It remains to
prove that lα = kα, where the integers kα are defined in the statement.

The degrees of Dα and the integers kα are listed in Table III. Observe
that ω|G contains the rank 3 permutation character of G (on singular 1-
spaces of W ). The degrees of the irreducible constituents of the latter are
well known (see e.g. [42]). It follows in particular that for each β ∈ {1S , St}
there is some α such that D◦α has degree Dβ(1)−1. Thus |Dα(1)−Dβ(1)| =
|lα − 1| ≤ q. First we assume that β = St. It is easy now to check that
|Dα(1) − Dβ(1)| > q + 1 for α 6= St, whence α = St. Next we assume
that β = 1S . Since lSt = 1 and

∑
γ∈ Irr(S) lγγ(1) = q + 1, we conclude that

α(1) = 1. A short computation reveals that α = 1S .

Table III. Degrees of Dα for G = SUn(q)

α α(1) Dα(1) kα

1S 1 (qn − (−1)n)(qn−1 + (−1)nq2)/(q + 1)(q2 − 1) + 1 1

χ
(t)
1 , t 6= q + 1 1 (qn − (−1)n)(qn−1 + (−1)n)/(q + 1)(q2 − 1) 0

St q (qn + (−1)nq)(qn − (−1)nq2)/(q + 1)(q2 − 1) + 1 1

χ
(t)
q , t 6= q + 1 q (qn − (−1)n)(qn + (−1)nq)/(q + 1)(q2 − 1) 0

χ
(q+1,u)
q−1 , u 6= q + 1 q − 1 (qn − (−1)n)(qn−1 + (−1)nq)/(q + 1)2 0

χ
(t,u)
q−1 , t, u 6= q + 1 q − 1 (qn − (−1)n)(qn−1 + (−1)n)/(q + 1)2 0

χ
(t)
q+1 q + 1 (qn − (−1)n)(qn−1 + (−1)n)/(q2 − 1) 0

Direct computation yields the following.

Lemma 6.4 In the notation of Proposition 6.3, for any α ∈ Irr(GU2(q)),

D◦α(1) > κ ∙
q2n−1α(1)

(q + 1)(q2 − 1)

where κ > 1− 1/qn−3.

For completeness and future reference, we prove (in the notation of the
proof of Proposition 6.3):

Proposition 6.5 Let q be any prime power and consider the subgroup K =
SU4(q) of G = GU4(q). Consider the irreducible constituents D

◦
α of ζ8,q|G

as in Proposition 5.8. The following statements hold.
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(i) (ζ8,q|K , ζ8,q|K)K = (q + 1)(q3 + 1) + q.

(ii) D◦α|K = D◦β |K if and only if {α, β} = {χ
(t)
1 , χ

(q+1−t)
1 } for some t ∈

{1, . . . q} \ {(q + 1)/2}.

(iii) All D◦α restrict irreducibly to K, except when q is odd and α =

χ
((q+1)/2)
1 . In the exceptional case, D◦α|K is the sum of two distinct irre-
ducible characters of degree (q + 1)(q2 + 1)/2.

Proof 1) The proof of Lemma 6.2 yields that (ω|K , 1K)K = q+1. However
the number of K-orbits on W ×W , and so (ω|K , ω|K)K , equals (q+1)(q3+
1)+q, since the single G-orbit on the pairs (u, v), where 〈u, v〉Fq2 is a totally
singular 2-space, splits into q + 1 K-orbits. Thus (i) is proved.

Since ω is real-valued, the formula for Dα in Lemma 5.5 implies that

Dα = Dα. Notice that Dα = D
◦
α has degree (q

2+1)(q2− q+1) for α = χ(t)1
with 1 ≤ t ≤ q. Assume in addition that q = 2. Then (iii) obviously holds,
as G = K × Z3. Further, for the aforementioned α, Dα(1) = 15 and so it
is real-valued by [8], whence Dα = Dα. Together with (i), this implies (ii).
Henceforth we assume q > 2.

2) Again we focus on Dα = D◦α, where α = χ
(t)
1 with 1 ≤ t ≤ q. Since

Dα(1) = (q
2 + 1)(q2 − q + 1) and q > 2, Dα must be one of the irreducible

characters χ22(k, l) of G = GU4(q), 1 ≤ k 6= l ≤ q + 1, listed in [39]. Hence

Dα = Dα = χ22(k, l) = χ22(q + 1− k, q + 1− l).

But, in the notation of [39], χ22(k, l) = χ22(q + 1− k, q + 1− l) ∙ χ1(k + l),
where χ1(k + l) has degree 1 and so it is trivial on K. We have shown that
Dα|K = Dα|K when α(1) = 1 but α 6= 1S . Let ρ1, . . . , ρs be all the distinct
characters among Dα|K with α 6= α and α(1) = 1, each appearing with
multiplicity m1, . . . ,ms, respectively. In particular, mi ≥ 2 for all i.

3) Assume q is even and > 2. Then
∑s
i=1mi = q, while (i) implies that

(
s∑

i=1

miρi,

s∑

i=1

ρi

)

K

≤ 2q.

Hence s ≤ q/2, and

2q ≥
s∑

i=1

m2i ≥ (
s∑

i=1

mi)
2/s ≥ q2/(q/2)

by the Cauchy-Schwarz inequality. It follows that s = q/2, mi = 2 for all i,
and so (ii) and (iii) follow.

4) Now assume that q is odd. Then
∑s
i=1mi = q − 1, while (i) implies
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(
∑s
i=1miρi,

∑s
i=1 ρi)K ≤ 2q − 1. Hence s ≤ (q − 1)/2, and

2q − 1 ≥
s∑

i=1

m2i ≥ (
s∑

i=1

mi)
2/s ≥ (q − 1)2/((q − 1)/2) = 2q − 2

by the Cauchy-Schwarz inequality. It follows that s = (q−1)/2, and mi = 2
for all i. If some ρi is reducible, then

(
s∑

i=1

miρi,

s∑

i=1

miρi

)

K

≥ 4 ∙
q − 3
2
+ 4 ∙ 2 = 2q + 2,

violating (i). The same happens if (ρi, ρj)K 6= 0 for some i 6= j. Thus all the
characters ρi, 1 ≤ i ≤ (q − 1)/2, are distinct and irreducible. Together with
(i), this also implies that D◦α|K is irreducible for all α with α(1) > 1. Recall
that D◦1S , one of the two nontrivial irreducible constituents of the rank 3
permutation character of G, restricts irreducibly to K.

Let γ = χ
((q+1)/2)
1 . We claim that Dγ |K is the sum of two distinct

irreducible characters of degree (q+1)(q2+1)/2 (and so (ii) and (iii) follow).
It suffices to show that Dγ |K is reducible. Assume the contrary. If Dγ |K =
D◦β |K for some β 6= γ, then (ω|K , ω|K) > (q+1)(q

3+1)+q, which contradicts

(i). If Dγ |K 6= D◦β |K for any β 6= γ, then (ω|K , ω|K) 6= (q + 1)(q3 + 1) + q,
which also contradicts (i).

Recall (see [48]) that, for n ≥ 3, GUn(q) has (q + 1)2 irreducible Weil
characters, each of which is a product of a character of degree 1 of GUn(q)
and one of the following characters

ζin,q(g) =
(−1)n

q + 1

q∑

j=0

ξ̃ij(−q)
dimF

q2
Ker(g−ξj)

, (16)

with 0 ≤ i ≤ q. We fix a primitive (q + 1)th-root ξ̃ of unity in C and a
primitive (q + 1)th-root ξ of unity in Fq2 , and take the dimension of the
ξj-eigenspace of g acting on the natural module Fn

q2
for GUn(q).

The main result of this section is the following:

Proposition 6.6 Let n ≥ 7, q = pf , G := GUn(q), and let

D :=

{
(qn−(−1)n)(qn−1−(−1)n−1)(qn−2−(−1)n−2)

(q+1)(q2−1)(q3+1) , n even,
(qn−(−1)n)(qn−1−(−1)n−1)(qn−2+(−1)nq3)

(q+1)(q2−1)(q3+1) , n odd.

Assume that χ ∈ Irr(G) and χ(1) < D. Then one of the following holds.

(i) χ is one of q + 1 irreducible characters of degree 1 of G;
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(ii) χ is one of (q + 1)2 irreducible Weil characters of G;

(iii) χ = λτ , where λ ∈ Irr(G) has degree 1, and τ is one of the irre-
ducible characters D◦α defined in Proposition 6.3 for G.

Proof This goes a little beyond [47, Theorem 4.1] and is proved by the same
method, using Lusztig’s classification of irreducible characters of GUn(q) (see
[10]). We omit the details. Comparing with Proposition 6.3, we see that
the characters χ ∈ Irr(G) with χ(1) < D are precisely those listed in (i)
and (ii), plus q + 1 characters of degree D◦α(1) for each α ∈ Irr(GU2(q)).
On the other hand, since n ≥ 7, Proposition 6.3 also implies that the re-
strictions of D◦α to SUn(q), where α ∈ Irr(GU2(q)), are all distinct and
irreducible. By Clifford theory for cyclic extensions, the characters τD◦α,
where τ ∈ Irr(GUn(q)/SUn(q)) and α ∈ Irr(GU2(q)), are all distinct and
irreducible. The result follows.

6.2 The (b, J)- and (a, b, J)-properties for GUn(q) with large n

Define X ∈ GUn(q) = GU(V ) to be indecomposable if X cannot be embed-
ded in any natural subgroup GUm(q) × GUn−m(q) with 1 ≤ m ≤ n − 1;
namely, X is indecomposable if it does not fix a proper non-degenerate sub-
space of V .

Write F0 = {a ∈ Fq2 : a
q+1 = 1}.

Definition (1) For A ∈ GUn(q) and b ∈ F0, we say that A has the (b, J)-
property if there are matrices B,C ∈ GUn(q) such that AB = C, B is
conjugate (in GUn(q)) to the block diagonal matrix diag(b, Jn−1), and C is
conjugate to diag(b|A|, Jn−1).

(2) For A ∈ GUn(q) and a, b ∈ F0, we say that A has the (a, b, J)-property
if there are matrices B,C ∈ GUn(q) such that AB = C, B is conjugate to
diag(a, b, Jn−2), and C is conjugate to diag(a|A|, b, Jn−2).

We now use the results of Section 6.1 to establish the (b, J)- and (a, b, J)-
properties for indecomposable elements of GUn(q).

A. Preliminaries

Let V = Fn
q2
denote the natural module for G = GUn(q). For α ∈ F

×
q2
,

let e(g, α) denote dimFq2 Ker(g−α), the dimension of the α-eigenspace of g

acting on V ⊗Fq2 Fq.

We begin with the following observation.

Lemma 6.7 If g ∈ G := GUn(q) is indecomposable, then |CG(g)| ≤ (q +
1)qn−1. For α ∈ F×

q2
, exactly one of the following holds.
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(i) e(g, α) = 0, except possibly for one value of α: in this exceptional
case α ∈ F0 and e(g, α) = 1.

(ii) e(g, α) = 0, except possibly for two values α ∈ {λ, λ−q} with λ /∈ F0,
for which e(g, α) = 1.

Proof Write g = su with s the semisimple part and u the unipotent part.
For irreducible polynomial f(t) ∈ Fq2 [t] with nonzero root λ, denote by f̌
the unique irreducible polynomial with root λ−q. The indecomposability of
g implies that one of the following two cases must occur.

(a) s has characteristic polynomial fk on V , for some irreducible poly-
nomial f ∈ Fq2 [t] of odd degree r, with f(0) 6= 0 and f = f̌ . In this case,
CG(s) = GUk(q

r). Further, considered as an element of GUk(q
r), u has only

one Jordan block Jk of size k. It follows that

CG(g) = CCG(s)(u) = CGUk(qr)(Jk)

has order qr(k−1)(qr + 1) ≤ (q + 1)qn−1 (since n = kr). Let λ be a root of
f . Then all the eigenvalues of g on V are λq

2i
with i ≥ 0. Since deg(f) = r

and f = f̌ , λq
r+1 = 1 but λ /∈ Fq2j for any 1 ≤ j < r. Therefore e(g, α) can

be nonzero only when r = 1 and α = λ, in which case it equals 1.

(b) s has characteristic polynomial fkf̌k on V , for some irreducible poly-
nomial f ∈ Fq2 [t] of degree r, with f(0) 6= 0 and f 6= f̌ . In this case,
CG(s) = GLk(q

2r). Further, considered as an element of GLk(q
2r), u has

only one Jordan block Jk of size k. It follows that

CG(g) = CCG(s)(u) = CGLk(q2r)(Jk)

has order q2r(k−1)(q2r − 1) < qn (since n = 2kr). Let λ be a root of f .
Then all the eigenvalues of g on V are λ(−q)

i
with i ≥ 0. Since deg(f) = r,

λ /∈ Fq2j for any 1 ≤ j < r. Therefore e(g, α) can be nonzero only when
r = 1 and α ∈ {λ, λ−q}, in which case it equals 1. In the exceptional case,
λq+1 6= 1 since f 6= f̌ .

We aim to show that, for any indecomposable X ∈ G = GUn(q), one can
find B1 and C1, such that XB1 = C1 where B1, resp. C1, is G-conjugate to
a fixed element B, resp. to a fixed element C. It is well known that this is
equivalent to showing that

∑

χ∈ Irr(G)

χ(X)χ(B)χ(C)

χ(1)
6= 0. (17)

If n ≥ 7, then Proposition 6.6 implies that we can break the sum on the left
hand side of (17) into 4 sub-sums:
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•
∑1 involving only χ with χ(1) = 1 (case (i) of Proposition 6.6),

•
∑2 involving the (q+1)2 irreducible Weil characters of G (case (ii) of
Proposition 6.6),

•
∑3 involving precisely the characters χ belonging to case (iii) of Propo-
sition 6.6, and

•
∑4 involving only χ with χ(1) ≥ D, where D is defined in Proposition
6.6.

Since B and C are chosen so that det(X) det(B) = det(C), we have
χ(X)χ(B)χ(C) = 1 whenever χ(1) = 1, and so

∑1 = q+1. Thus it suffices
to show

|
∑2|+ |

∑3|+ |
∑4| < q + 1 . (18)

Observe that |χ(X)| ≤
√
|CG(X)|; on the other hand, by the Cauchy-

Schwarz inequality,

∑

χ∈ Irr(G)

|χ(B)| ∙ |χ(C)| ≤
√∑

χ

|χ(B)|2 ∙
∑

χ

|χ(C)|2 =
√
|CG(B)| ∙ |CG(C)|.

Hence we deduce that

|
∑4| ≤ |CG(X)|∙|CG(B)|∙|CG(C)|)1/2

D . (19)

B. Character estimates

Throughout the rest of this section, the elements B,C are chosen to be
G-conjugate to elements of the form

diag(a, Jn−1) (a ∈ F0) or diag(a, b, Jn−2) (a, b ∈ F0, (a, b) 6= (1, 1)).

For brevity, we refer to all such conjugates (including diag(a, Jn−1)) as
(a, b, J)-elements.

Lemma 6.8 Let n ≥ 4 and let g ∈ G := GUn(q) be an (a, b, J)-element.
Then |CG(g)| ≤ (q + 1)3qn−1. If α ∈ F

×
q2
, then e(g, α) > 0 for at most three

values of α. In fact, if e(g, α) > 0 for some α ∈ F×
q2
, then α ∈ F0 and one

of the following holds.

(i) e(g, α) = 2 for at most one value of α (which may depend on g).
Further, dimFq2 (Im(g − α) ∩Ker(g − α)) ≤ 1.

(ii) e(g, α) ≤ 1.
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Proof It is obvious that e(g, α) = 0 if α /∈ F0, since all eigenvalues of g
belong to F0. In what follows we assume that α ∈ F0.

First we consider the case where g is conjugate to diag(a, Jn−1) with
a ∈ F0. Then |CG(g)| is (q + 1)2qn if a = 1 and (q + 1)2qn−2 if a 6= 1.
Next, e(g, α) equals 2 if α = a = 1, and is at most 1 otherwise. Further,
dimFq2 (Im(g − α) ∩Ker(g − α)) = 1 in the former case.

Now we consider the case where g is conjugate to diag(a, b, Jn−2) with
a, b ∈ F0 but (a, b) 6= (1, 1). Then |CG(g)| is (q+1)2qn−2(q2−1) if a = b 6= 1,
(q + 1)3qn−1 if 1 ∈ {a, b}, and (q + 1)3qn−3 if 1 6= a 6= b 6= 1. Next, e(g, α)
equals 2 if α = a = b 6= 1 or if α = 1 ∈ {a, b}, and is at most 1 otherwise.
Further, dimFq2 (Im(g − α) ∩Ker(g − α)) ≤ 1 in the two former cases.

We now estimate the characters D◦α introduced in Proposition 6.3 and
the Weil characters at g ∈ {X,B,C}. Set

Q := (q + 1)(q2 − 1).

Proposition 6.9 Let n ≥ 5, let g ∈ G := GUn(q) be indecomposable, and
let χ ∈ Irr(G).

(i) If χ is a Weil character, then |χ(g)| ≤ 2q/(q + 1).

(ii) If χ = D◦α for some α ∈ Irr(GU2(q)), then

|D◦α(g)|
α(1)

≤

{
f(q)/Q, α 6= 1S ,
1 + f(q)/Q, α = 1S ,

where f(q) := 3q3 − q2 − q.

Proof If χ = ζin,q (see (16)), then e(g, ξ
j) ≤ 1, and it can equal 1 for at

most one ξj by Lemma 6.7. Hence |χ(g)| ≤ 2q/(q + 1).

Now we may assume that χ = D◦α for some α ∈ Irr(GU2(q)). We begin
by estimating ω(xg) for x ∈ S := GU2(q), where ω is defined by (15). We
distinguish the following cases.

1) x = aI2 for some a ∈ F0. Then |ω(xg)| = q2e(g,a
−1), and so by Lemma

6.7 it is 1 except possibly for one element x for which |ω(xg)| = q2.

2) x is conjugate to

(
a 1
0 a

)

for some a ∈ F0. Arguing as in part 1) of

the proof of Proposition 5.11, we see that

|ω(xg)| = q
dimF

q2
Ker(g−a−1)+dimF

q2
(Im(g−a−1)∩Ker(g−a−1))

.

Lemma 6.7 implies that |ω(xg)| equals 1 except possibly for one value of a
(giving q2 − 1 elements x of S) for which |ω(xg)| ≤ q2.
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3) x is conjugate to diag(a, b) for some a 6= b ∈ F0. Then |ω(xg)| =
qe(g,a

−1)+e(g,b−1), and so by Lemma 6.7 it is 1 except possibly for q pairs
(a, b) (giving q2(q − 1) elements x) for which |ω(xg)| = q.

4) x is conjugate to diag(a, a−q) for some a ∈ F×
q2
\ F0. Again |ω(xg)| =

qe(g,a
−1)+e(g,aq), and so by Lemma 6.7 it is 1 except possibly for one pair

(a, a−q) (giving q(q + 1) elements x) for which |ω(xg)| = q2.

First assume that the exception in 4) does not occur. Lemma 5.5 and
the obvious estimate |α(x)| ≤ α(1) imply that

|Dα(g)| ≤
α(1) ∙

(
q2 ∙ q2 + q ∙ q2(q − 1) + (|S| − q3)

)

|S|
≤
α(1)(3q3 − q2 − q)
(q + 1)(q2 − 1)

.

Next assume the exception in 4) occurs. Notice that the cases (i) and (ii) in
Lemma 6.7 are mutually exclusive. In particular, the exception in 4) cannot
occur in conjunction with any of the exceptions in 1) – 3). Now we can use
the same arguments as before and arrive at a better estimate for |Dα(g)|.

Thus we have finished if α 6= 1S or St, since in these cases D◦α = Dα.
We have also finished if α = 1S , since |D◦α(g)| ≤ |Dα(g)| + 1. Finally, we
consider the case α = St: now |α(x)| ≤ 1 unless x ∈ Z(S). Since in the
above estimates we used the crude bound |α(g)| ≤ α(1) = q, we can easily
improve the upper bound for |Dα(g)| by 1 to get the stated bound.

Proposition 6.10 Let n ≥ 5, let g ∈ G := GUn(q) be an (a, b, J)-element,
and let χ ∈ Irr(G).

(i) If χ is a Weil character, then |χ(g)| ≤ (q2 + 3q − 2)/(q + 1).

(ii) If χ = D◦α for some α ∈ Irr(GU2(q)), then

|D◦α(g)|
α(1)

≤

{
g(q)/Q, α 6= 1S ,
1 + g(q)/Q, α = 1S ,

where g(q) := (7q4 + q3 − q2 − 5q − 2)/2.

Proof If χ = ζin,q (see (16)), then e(g, ξ
j) ≤ 2; in fact it can equal 2 for

at most one ξj and it can be positive for at most two ξj ’s by Lemma 6.8.
Hence |χ(g)| ≤ (q2 + 3q − 2)/(q + 1).

Now we may assume that χ = D◦α for some α ∈ Irr(GU2(q)). We begin
by estimating ω(xg) for x ∈ S := GU2(q), where ω is defined by (15). We
distinguish the following cases.

1) x = aI2 for some a ∈ F0. Then |ω(xg)| = q2e(g,a
−1), and so by Lemma

6.8 it is ≤ q4 for one value of a, ≤ q2 for two others, and 1 for the remaining
q − 2 values of a.
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2) x is conjugate to

(
a 1
0 a

)

for some a ∈ F0. As in the proof of

Proposition 6.9,

|ω(xg)| = q
dimF

q2
Ker(g−a−1)+dimF

q2
(Im(g−a−1)∩Ker(g−a−1)

.

Hence, by Lemma 6.8, |ω(xg)| ≤ q3 for one value of a, ≤ q2 for two others,
and is 1 for the remaining q − 2 values of a. Each value of a gives rise to
q2 − 1 elements x of S.

3) x is conjugate to diag(a, b) for some a 6= b ∈ F0. Then |ω(xg)| =
qe(g,a

−1)+e(g,b−1). Following the proof of Lemma 6.8, we can check that
|ω(xg)| ≤ q3 for one (unordered) pair (a, b), ≤ q2 for q others, and ≤ q

for the remaining (q + 1)(q − 2)/2 pairs (a, b). Each unordered pair (a, b)
gives rise to q(q − 1) elements x of S.

4) x is conjugate to diag(a, a−q) for some a ∈ F×
q2
\ F0. Again |ω(xg)| =

qe(g,a
−1)+e(g,aq), and so by Lemma 6.8 it is 1.

Thus we have shown that |ω(xg)| ≤ q4 for one element x, ≤ q3 for
2q2−q−1 elements x, ≤ q2 for q3+q2 elements x, ≤ q for q(q2−1)(q−2)/2
elements x, and is 1 for q(q2 − 2) + q(q + 1)2(q − 2)/2 elements x, when
x varies over S. Lemma 5.5 and the obvious estimate |α(x)| ≤ α(1) imply
that

|Dα(g)/α(1)| ≤
7q4 + q3 − q2 − 5q − 2
2(q + 1)(q2 − 1)

.

In particular, we have finished if α 6= 1S or St, since in these cases D◦α = Dα.
We have also finished if α = 1S , since |D◦α(g)| ≤ |Dα(g)| + 1. Finally, we
consider the case α = St: now |α(x)| ≤ 1 unless x ∈ Z(S). Since in the
above estimates we used the crude bound |α(g)| ≤ α(1) = q, we can easily
improve the upper bound for |Dα(g)| by 1 to get the stated bound.

C. The (b, J)- and the (a, b, J)-properties

Assume now that n ≥ 7. We use Propositions 6.9 and 6.10 and Lemmas
6.7 and 6.8 to estimate

∑2,
∑3, and

∑4, defined after (17), where B,C are
(a, b, J)-elements.

Clearly, the degree of any of the (q+1)2 (irreducible) Weil characters of
G is at least (qn − q)/(q + 1). Hence, by Propositions 6.9 and 6.10,

|
∑2| ≤ (2q(q2 + 3q − 2)2)/(qn − q)

<






0.503, if q = 2 and n ≥ 9,
0.235, if q = 3 and n ≥ 8,
0.083, if q = 4 and n ≥ 8,
0.185, if q = 5 and n ≥ 7,
0.079, if q = 7 and n ≥ 7.
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Recall that for any α ∈ Irr(S) with S = GU2(q), D◦α(1) > κq2n−1α(1)/Q
by Lemma 6.4, where κ > 1 − 1/qn−3. Also, |D◦α(X)| and |D

◦
α(B,C)| are

bounded in Propositions 6.9 and 6.10. Hence

|
3∑
|/(q + 1) ≤

∑

α∈ Irr(S)

|D◦α(B)| ∙ |D
◦
α(C)| ∙ |D

◦
α(X)|

|D◦α(1)|

≤
f(q)g(q)2

∑
α∈ Irr(S), α 6=1S

α(1)2 + (f(q) +Q)(g(Q) + q)2

κQ2q2n−1

=
f(q)g(q)2(qQ− 1) + (f(q) +Q)(g(q) +Q)2

κQ2q2n−1
,

as
∑
α∈ Irr(S) α(1)

2 = |S| = qQ. It follows that

|
∑3| <






0.267, if q = 2 and n ≥ 9,
0.148, if q = 3 and n ≥ 8,
0.036, if q = 4 and n ≥ 8,
0.292, if q = 5 and n ≥ 7,
0.107, if q = 7 and n ≥ 7.

Note that D > qn+3(qn−1−1)(qn−5−1)/(q+1)(q2−1)(q3+1). Applying
(19) and Lemmas 6.7 and 6.8, we get

|
∑4| ≤ (qn−1(q + 1))1/2qn−1(q + 1)3/D

<
(q+1)9/2q(n−9)/2(q2−1)(q3+1)

(qn−1−1)(qn−5−1)

<






0.991, if q = 2 and n ≥ 9,
1.166, if q = 3 and n ≥ 8,
0.661, if q = 4 and n ≥ 8,
5.121, if q = 5 and n ≥ 7,
4.840, if q = 7 and n ≥ 7.

Altogether, these estimates yield

|
∑2|+ |

∑3|+ |
∑4| <






1.761, if q = 2 and n ≥ 9,
1.549, if q = 3 and n ≥ 8,
0.780, if q = 4 and n ≥ 8,
5.598, if q = 5 and n ≥ 7,
5.026, if q = 7 and n ≥ 7.

Thus (see (18)) we have proved:

Proposition 6.11 Let X ∈ GUn(q) be indecomposable, and assume q ≤ 7.
Assume that n ≥ 9 if q = 2, n ≥ 8 if q = 3, 4, and n ≥ 7 if q = 5, 7. Then
X has the (b, J)-property for all b ∈ F0, and X has the (a, b, J)-property for
all a, b ∈ F0 with (a, b) 6= (1, 1), (|X|−1, 1).
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The condition (a, b) 6= (1, 1), (|X|−1, 1) is imposed so that neither of the
matrices B,C is of the form (1, 1, Jn−2), as required for the above calcula-
tions.

6.3 Variations of the (a, b, J)-property for GUn(2)

In this section, q = 2, G = GUn(2) and F0 = 〈ω〉. Define an (a, b, J)2-
element of G to be a conjugate of one of the following matrices or its inverse:

diag(ω2, ωJ2, Jn−3), diag(ω
2J2, Jn−2), diag(ω, ω, ω

2, Jn−3),

diag(ω, ω, Jn−2), diag(ω, ω
2, Jn−2).

We prove an analogue of Proposition 6.11 for (a, b, J)2-elements. The main
result is Proposition 6.14.

Following the proof of Lemma 6.8, one obtains:

Lemma 6.12 Let n ≥ 4, q = 2, and let g ∈ G := GUn(q) be an (a, b, J)2-
element. Then |CG(g)| ≤ (q+1)4qn−3. If α ∈ F

×
q2
, then one of the following

holds.

(i) e(g, α) = 2 for at most one value of α (which may depend on g).

(ii) e(g, α) ≤ 1.
In either case, dimFq2 (Ker(g − α)) + dimFq2 (Im(g − α) ∩Ker(g − α)) ≤ 2.

Proposition 6.13 Let n ≥ 5, let g ∈ G := GUn(2) be an (a, b, J)2-element,
and let χ ∈ Irr(G).

(i) If χ is a Weil character, then |χ(g)| ≤ 8/3.

(ii) If χ = D◦α for some α ∈ Irr(GU2(q)), then

|D◦α(g)/α(1)| ≤

{
50/9, α 6= 1S ,
59/9, α = 1S .

Proof For (i) we use the same arguments as in the proof of Proposition
6.10(i). We may assume that χ = D◦α for some α ∈ Irr(GU2(2)). We begin
by estimating ω(xg) for x ∈ S := GU2(2), where ω is defined by (15). We
distinguish the following cases.

1) x = aI2 for some a ∈ F0. Then |ω(xg)| = q2e(g,a
−1), and so by Lemma

6.12 it is ≤ q4 for one value of a, and ≤ q2 for the two others.

2) x is conjugate to

(
a 1
0 a

)

for some a ∈ F0. Here,

|ω(xg)| = q
dimF

q2
Ker(g−a−1)+dimF

q2
(Im(g−a−1)∩Ker(g−a−1))

≤ q2

by Lemma 6.12. Each value of a gives rise to 3 elements x of S.
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3) x is conjugate to diag(a, b) for some a 6= b ∈ F0. Then |ω(xg)| =
qe(g,a

−1)+e(g,b−1). By Lemma 6.12, |ω(xg)| ≤ q3 for two (unordered) pairs
(a, b), and ≤ q2 for the remaining one. Each unordered pair (a, b) gives rise
to 2 elements x.

Thus we have shown that |ω(xg)| ≤ 16 for one element x, ≤ 8 for 4
elements x, and ≤ 4 for 13 elements x, when x varies over S. Lemma 5.5
and the obvious estimate |α(x)| ≤ α(1) imply that

|Dα(g)/α(1)| ≤
16 + 8 ∙ 4 + 4 ∙ 13

18
= 50/9.

In particular, we have finished if α 6= St. If α = St then |α(x)| ≤ 1
unless x ∈ Z(S). Since in the above estimates we used the crude bound
|α(g)| ≤ α(1) = q, we can easily improve the upper bound for |Dα(g)| by 1
to get the stated bound.

Now take B and C to be (a, b, J)2-elements of G. We use Propositions
6.9 and 6.13 and Lemmas 6.7 and 6.12 to estimate

∑2,
∑3, and

∑4 (defined
after (17)). We assume that n ≥ 9.

Clearly, the degree of any of the 9 (irreducible) Weil characters of G is at
least (2n−2)/3. Propositions 6.9 and 6.13 imply that |

∑2| ≤ 256/(2n−2) <
0.503.

For any α ∈ Irr(S) with S = GU2(q), D◦α(1) > 2
2n−1κα(1)/9 by Lemma

6.4, where κ > 1 − 1/2n−3. Next, |D◦α(X)| and |D
◦
α(B,C)| are bounded in

Propositions 6.9 and 6.13. Hence

|
3∑
|/3 ≤

∑

α∈ Irr(S)

|D◦α(B)| ∙ |D
◦
α(C)| ∙ |D

◦
α(X)|

|D◦α(1)|

≤
2 ∙ (50/9)2

∑
α∈ Irr(S), α 6=1S

α(1)2 + 3 ∙ (59/9)2

22n−1κ/9

< 10605/22n−1κ,

and so |
∑3| < 0.247.

By (19) and Lemmas 6.7 and 6.12,

|
∑4| ≤ (3 ∙ 2n−1)1/22n−3 ∙ 34/D < 317/22(n−13)/2

(2n−1−1)(2n−5−1) < 0.743.

Altogether, these estimates yield

|
∑2|+ |

∑3|+ |
∑4| < 0.503 + 0.247 + 0.743 = 1.493.

Thus (see (18)) we have proved:

Proposition 6.14 Let X ∈ G := GUn(2) be indecomposable and n ≥ 9.
For any two (a, b, J)2-elements B,C with det(X) det(B) = det(C), there
exist B1 ∈ BG and C1 ∈ CG such that XB1 = C1.
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6.4 Variations of the (a, b, J)-property for GUn(3)

In this section, q = 3, G = GUn(3) and ϑ ∈ F0 is an element of order 4. An
element of G is an (a, b, J)3-element if it is conjugate to one of the following
matrices:

diag(ϑJ2, Jn−2), or diag(ϑ, ϑ
j , Jn−2) (j ∈ {1, 2, 3}).

Our critical result about these elements is Proposition 6.17.

Following the proof of Lemma 6.8, one obtains:

Lemma 6.15 Let n ≥ 4, q = 3, and let g ∈ G := GUn(q) be an (a, b, J)3-
element. Then |CG(g)| ≤ 2(q + 1)3qn−2. Further, if α ∈ F

×
q2
, then one of

the following holds.

(i) e(g, α) equals 2 for one value of α ∈ F0, 1 for one more value of
α ∈ F0, and 0 for all the other values of α.

(ii) e(g, α) = 1 for at most three values of α ∈ F0 and 0 for all the others.

In either case, dimFq2 (Ker(g − α)) + dimFq2 (Im(g − α) ∩Ker(g − α)) ≤ 2.

Proposition 6.16 Let n ≥ 5, let g ∈ G := GUn(3) be an (a, b, J)3-element,
and let χ ∈ Irr(G).

(i) If χ is a Weil character, then |χ(g)| ≤ 7/2.

(ii) If χ = D◦α for some α ∈ Irr(GU2(q)), then

|D◦α(g)/α(1)| ≤

{
9, α 6= 1S ,
10, α = 1S .

Proof For (i) we use the same arguments as in the proof of Proposition
6.10(i). We may assume that χ = D◦α for some α ∈ Irr(GU2(3)). To
estimate ω(xg) for x ∈ S := GU2(3), we distinguish the following cases.

1) x = aI2 for some a ∈ F0. Then |ω(xg)| = q2e(g,a
−1), and so by Lemma

6.15 it is ≤ q4 for one value of a, and ≤ q2 for the others.

2) x is conjugate to

(
a 1
0 a

)

for some a ∈ F0. Lemma 6.15 implies that

|ω(xg)| = q
dimF

q2
Ker(g−a−1)+dimF

q2
(Im(g−a−1)∩Ker(g−a−1))

≤ q2.

Each value of a gives rise to 8 elements x of S.

3) x is conjugate to diag(a, b) for some a 6= b ∈ F0. Then |ω(xg)| =
qe(g,a

−1)+e(g,b−1). By Lemma 6.15, |ω(xg)| ≤ q3 for at most one unordered
pair (a, b), and ≤ q2 for the remaining one. Each unordered pair (a, b) gives
rise to 6 elements x.
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4) x is conjugate to diag(a, a−q) for some a ∈ F×
q2
\ F0. Again |ω(xg)| =

qe(g,a
−1)+e(g,aq), and so by Lemma 6.8 it is 1. There are 24 elements x of

this kind.

Thus we have shown that |ω(xg)| ≤ 81 for one element x, ≤ 27 for 6
elements x, ≤ 9 for 65 elements x, and ≤ 1 for 24 elements x, when x varies
over S. Lemma 5.5 and the obvious estimate |α(x)| ≤ α(1) imply that

|Dα(g)/α(1)| ≤
81 + 27 ∙ 6 + 9 ∙ 65 + 1 ∙ 24

96
< 9.

In particular, we have finished if α 6= St. If α = St, then |α(x)| ≤ 1
unless x ∈ Z(S). Since in the above estimates we used the crude bound
|α(g)| ≤ α(1) = q, we can easily improve the upper bound for |Dα(g)| by 1
to get the stated bound.

Now take B and C to be (a, b, J)3-elements of G. We use Propositions
6.9 and 6.16 and Lemmas 6.7 and 6.15 to estimate

∑2,
∑3, and

∑4 (defined
after (17)). We assume that n ≥ 8.

Clearly, the degree of any of the 16 (irreducible) Weil characters of G is
at least (3n−3)/4. Propositions 6.9 and 6.16 imply that |

∑2| ≤ 392/(3n−1−
1) < 0.180.

For any α ∈ Irr(S) with S = GU2(q), D
◦
α(1) > 3

2n−1κα(1)/32 by
Lemma 6.4. Next, |D◦α(X)| and |D

◦
α(B,C)| are bounded in Propositions 6.9

and 6.16. Hence

|
3∑
|/4 ≤

∑

α∈ Irr(S)

|D◦α(B)| ∙ |D
◦
α(C)| ∙ |D

◦
α(X)|

|D◦α(1)|

≤
(69/32) ∙ 92

∑
α∈ Irr(S), α 6=1S

α(1)2 + (101/32) ∙ 102

32n−1κ/32

< 541055/32n−1κ,

and so |
∑3| < 0.152.

By (19) and Lemmas 6.7 and 6.15,

|
∑4| ≤ (4 ∙ 3n−1)1/227 ∙ 3n−2/D < 2153(n−11)/2∙7

(3n−1−1)(3n−5−1) < 0.778.

Altogether, these estimates yield

|
∑2|+ |

∑3|+ |
∑4| < 0.180 + 0.152 + 0.778 = 1.11.

Thus (see (18)) we have proved:

Proposition 6.17 Let X ∈ G := GUn(3) be indecomposable and n ≥ 8.
For any two (a, b, J)3-elements B,C with det(X) det(B) = det(C), there
exist B1 ∈ BG and C1 ∈ CG such that XB1 = C1.
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6.5 Proof of Theorem 6.1

In this section we prove Theorem 6.1. Throughout, let G = SUn(q) and,
following Lemma 2.4, we may assume that q ≤ 7. As a preliminary step,
we obtain further results on the (b, J)- and (a, b, J)-properties, mainly for
small dimensions.

A. More on the (a, b, J)-property

Our proof of Theorem 6.1 is based on the results of the previous sections,
together with detailed information on the (b, J)- and (a, b, J)-properties of
unitary matrices in low dimensions, which are mostly proved computation-
ally.

First we extend the results from the previous sections. A pair (a, b) of
elements of F0 is relevant for X ∈ GUn(q) if (a, b) 6= (1, 1) nor (|X|−1, 1).

Proposition 6.18 Assume n ≥ 4, and let X ∈ GUn(q) be indecomposable.
If n = 4, assume that |X| 6= 1. Then

(i) X has the (b, J)-property for all b ∈ F0;

(ii) X has the (a, b, J)-property for all relevant (a, b) ∈ F 20 , with the
following exception:

q = 2, X = ωJ4 (ω
3 = 1), (a, b) = (ω, 1).

Proof For n ≥ 7 (n ≥ 9 if q = 2, n ≥ 8 if q = 3, 4), this is Proposition
6.11. For the remaining values of n it was established computationally.

For q = 2 and 3, we must extend the variations of the (a, b, J)-property
developed in Sections 6.3 and 6.4 to smaller dimensions.

Proposition 6.19 Let n ≥ 4, q = 2, let 1 6= ω ∈ F4, and let X be an
indecomposable matrix in GUn(2). There exist B,C ∈ GUn(2) such that
XB = C, with the following properties:

|X| B conjugate to C conjugate to

1 diag(ω2, ωJ2, Jn−3) diag(ω, ω, ω
2, Jn−3)

ω diag(ω2, ωJ2, Jn−3) diag(ω, ω
2, ω2, Jn−3)

ω diag(ω2J2, Jn−2) diag(ω, ω, Jn−2)
ω diag(ωJ2, Jn−2) diag(ω, ω2, Jn−2)

Proof This follows from Proposition 6.14 for n ≥ 9 and was proved
computationally for n ≤ 8.
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Proposition 6.20 Let n ≥ 4, q = 3, let ω ∈ F9 have order 4, and let X be
an indecomposable matrix in GUn(3). There exist B,C ∈ GUn(3) such that
XB = C, with the following properties:

|X| B conjugate to C conjugate to

1 diag(ωJ2, Jn−2) diag(ω, ω, Jn−2)
ω diag(ωJ2, Jn−2) diag(−1, ω, Jn−2)
−1 diag(ωJ2, Jn−2) diag(−ω, ω, , Jn−2)

Proof This is Proposition 6.17 for n ≥ 9, and was proved computationally
for n ≤ 8.

We also need the (b, J)- or (a, b, J)-properties for various types of non-
indecomposable matrices in low dimensions. These are recorded in the next
ten lemmas, all established computationally.

In the statements, Ai and A
′
i denote indecomposable elements of GUi(q),

and we use the notation (M1, . . . ,Mk) to denote the block diagonal matrix
diag(M1, . . . ,Mk) lying in a natural subgroup GUm1(q) ⊥ ∙ ∙ ∙ ⊥ GUmk(q)
of GUn(q), where each Mi ∈ GUmi(q) and n =

∑
mi. Also |λ| denotes the

order of λ ∈ Fq2 .

Lemma 6.21 Let X be an element of GU5(q) or GU6(q) of the form (A2, A3)
or (A3, A

′
3). If q ≥ 4 (resp. q = 3), assume further that none of the inde-

composable blocks of X has determinant 1 (resp. |A3|, |A′3| 6= 1). Then X
has the (a, b, J)-property for all relevant a, b ∈ F0.

Lemma 6.22 (i) Let X be an element of GU8(2) of the form (A2, A
′
2, ωJ4),

(ωJ4, ωJ4) or (ωJ4, ω
2J4), where 1 6= ω ∈ F4. Then X has the (a, b, J)-

property for all relevant a, b ∈ F0.

(ii) Let X ∈ GU7(2) be of the form (A2, A′2, A3) or (A3, A4). Then X
has the (a, b, J)-property for all relevant a, b ∈ F0.

(iii) Let X ∈ GU6(2), and assume X is not diagonal of order 3, has no
Jordan block J1, and is not conjugate to (J2, J2, J2) or (ωI4, ωJ2) (1 6= ω ∈
F0). Then X has the (a, b, J)-property for all relevant a, b ∈ F0.

(iv) Let X ∈ GU5(2), and assume X is not diagonal of order 3, has no
Jordan block J1, and is not conjugate to (J2, J3) or (ωI3, ωJ2) (1 6= ω ∈ F0).
Then X has the (b, J)-property for all b ∈ F0.

Lemma 6.23 Let X = (A3, λ1, λ2) or (A2, A
′
2, λ1) ∈ GU5(3), where 1 6=

λi ∈ F0. Then X has the (a, b, J)-property for all relevant a, b ∈ F0, with
the exception of X = λ(J2, J2, 1), where |λ| = 4.
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Lemma 6.24 Let X be an element of GU4(q) of the form (A2, A
′
2). Assume

|X| 6= 1, and if q ≥ 4 assume further that |A2|, |A′2| 6= 1. Then

(i) X has the (b, J)-property for all b ∈ F0, with the following exceptions:

q = 5 : X = λ(J2, J2) (λ
3 = 1, λ 6= 1), b = λ2

q = 2 : X = λ(J2, J2) (λ
3 = 1, λ 6= 1), b = 1, λ2

(ii) if A2 6= A′2, then X has the (a, b, J)-property for all relevant a, b ∈ F0,
with the following exceptions:

q = 3 : X = (J2, λJ2) (|λ| = 4)
q = 2 : X = (J2, λJ2) (|λ| = 3)

(iii) if q = 5 and A2 = A′2, then X has the (a, b, J)-property for all
relevant a, b ∈ F0, with the following exceptions:

A2 = λJ2 : (a, b) = (1, α) (α 6= −1, λ5), (λ2, β) (β 6= −1, λ),
(|λ| = 6) (−1, 1), (λ, 1), (λ4, λ4), (λ4, λ2), (λ5, 1)

A2 = λ
2J2 : (a, b) = (1, α) (α 6= λ2), (λ4, β) (β 6= λ4),

(|λ| = 6) (−1, 1), (−1,−1), (−1, λ5), (λ5, 1), (λ5, λ5), (λ5, λ),
(λ2, λ2), (λ2, λ4), (λ, 1), (λ,−1), (λ, λ)

A2 = diag(ω, ω
−5) : (a, b) = (α, 1) (α 6= ω4), (1, ω16), (1, ω20),

(|ω| = 24) (ω4, ω4), (ω4, ω20), (ω8, ω4), (ω8, ω8)

A2 = diag(ω
2, ω−10) : (a, b) = (α, 1) (α 6= ω8), (1, ω8), (1, ω16),

(|ω| = 24) (ω8, ω8), (ω8, ω16), (ω16, ω8), (ω16, ω16)

Let X be a block diagonal matrix of the form (X1, X2, X3, . . .); a sub-
blockmatrix ofX is a block diagonal matrix of the form (Xi1 , Xi2 , . . .), where
i1 < i2 < ∙ ∙ ∙; it is a proper sub-block matrix if it is not equal to X.

Lemma 6.25 Let X be an element of GU6(q) of the form (A2, A
′
2, A

′′
2).

(i) If q ≤ 3 then X has the (a, b, J)-property for all relevant a, b ∈ F0,
except for X = (J2, J2, J2) and q = 2.

(ii) If q ≥ 4, assume further that no proper sub-block matrix of X has
determinant 1. Then either X, or one of the sub-block matrices (A2, A

′
2),

(A2, A
′′
2), (A

′
2, A

′′
2), has the (a, b, J)-property for all relevant a, b ∈ F0.

Lemma 6.26 Let X = (A3, λ) ∈ GU4(q), where 1 6= λ ∈ F0. Assume that
|X| 6= 1, and also, if q ≥ 3, that |A3| 6= 1. Then

(i) X has the (b, J)-property for all b ∈ F0;
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(ii) if q 6= 2, then X has the (a, b, J)-property for all relevant a, b ∈ F0,
except when X = (λJ3, λ) with |λ| = q + 1;

(iii) if q = 5 and X = (λJ3, λ) with |λ| = q+1, then X has the (a, b, J)-
property for (a, b) = (λ, 1).

Lemma 6.27 Let X = (A2, λ1, λ2) ∈ GU4(q), where 1 6= λi ∈ F0. Assume
that |X| 6= 1, and also, if q ≥ 4, that no sub-block matrix of X has deter-
minant 1. Then X has the (b, J)-property for all b ∈ F0, with the following
exceptions:

q = 7 : X = (λJ2, λ, λ) (|λ| = 8), b = ±1, λ5, λ7

q = 5 : X = (λJ2, λ, λ) (|λ| = 6), b = ±1, λ2, λ5

q = 4 : X = (λJ2, λ, λ) (|λ| = 5), b = 1, λ, λ2, λ4

Lemma 6.28 Let X ∈ GU3(q) be indecomposable, and if q 6= 2 assume
|X| 6= 1. Then X has the (b, J)-property for all b ∈ F0, with the following
exceptions:

q = 3, 5, 7 : X = −J3, b = ±1
q = 2 : X = λJ3 (λ ∈ F0), b = 1

Lemma 6.29 Let q = 2 or 3, and let X = (A2, λ) ∈ GU3(q), where 1 6=
λ ∈ F0.

(i) X has the (b, J)-property for all b ∈ F0, with the following exceptions:

q = 2 : X = (μJ2, λ) (μ, λ ∈ F0)
q = 3 : X = (±λJ2, λ) (|λ| = 4).

Moreover, for q = 2: (λJ2, λ) is a commutator in SU3(2); (J2, λ) has the
(b, J)-property for b = λ; and (λ2J2, λ) has the (b, J)-property for b = λ

2.

(ii) Suppose q = 3 and X = (±λJ2, λ) (|λ| = 4). Then X has the
(a, b, J)-property for the following (a, b):

(λJ2, λ) : (a, b) = (±1, λ), (±λ,−λ)
(−λJ2, λ) : (a, b) = (±1,−λ), (±λ, λ).

Lemma 6.30 Let X ∈ GU2(q), and assume that q 6= 2, that X is not a
scalar matrix, and, if q ≥ 4, that |X| 6= 1. If b ∈ F0 and b /∈ {1, |X|−1},
then X has the (b, J)-property, with the following exceptions:

q ≥ 4 : X = λJ2 (λ ∈ F0), b = λ−1

q = 3 : X = λJ2 (|λ| = 4), b = λ−1

X = −J2, b = −1
X = J2, all b
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B. The proof of Theorem 6.1

Let G = SUn(q) with q ≤ 7 and let V = Vn(q
2) be the natural module

for G. In view of Lemma 3.1, we assume that n ≥ 5, and also that n ≥ 7 if
q = 3 and n ≥ 8 if q = 2.

By Lemma 2.9 it suffices to prove that unbreakable elements are com-
mutators. Thus we assume that

X is an unbreakable element of G = SUn(q) = SU(V )

and show that X is a commutator in G.

Recall that (M1, . . . ,Mk) denotes the block diagonal matrix diag(M1, . . . ,Mk)
lying in a natural subgroup GUm1(q) ⊥ ∙ ∙ ∙ ⊥ GUmk(q) of GUn(q), where
each Mi ∈ GUmi(q) and

∑
mi = n.

Lemma 6.31 If X ∈ SUn(q) is unbreakable, then

X = (Z, Y1, . . . , Yk, λ1, . . . , λl),

where k ≥ 0, l ≥ 0, and the following hold:

(1) Z = ∅, A2, A3, (A2, A′2) or ωJ4 (q = 2, 1 6= ω ∈ F0), where Ai, A′i
denote indecomposable i× i matrices in GUi(q);

(2) each Yi ∈ GUni(q) with ni ≥ 4, and Yi has the (a, b, J)-property for
all a, b ∈ F0 which are relevant for Yi;

(3) 1 6= λi ∈ F0 for all i.

Proof Write

X = (A
(1)
2 , . . . , A

(a2)
2 , A

(1)
3 , . . . , A

(a3)
3 , . . . , A

(1)
k , . . . , A

(ak)
k , λ1, . . . , λl),

where each A
(j)
i ∈ GUi(q) is indecomposable, each aj ≥ 0, and λi ∈ F0; note

that λi 6= 1 as Z is unbreakable.

By 6.18 and 6.21, each sub-matrix A
(i)
m with m ≥ 4 (except for ωJ4

with q = 2), and each sub-matrix (A
(i)
2 , A

(j)
3 ) or (A

(i)
3 , A

(j)
3 ) has the (a, b, J)-

property for all relevant a, b ∈ F0 (these sub-matrices satisfy the relevant
determinant conditions by the unbreakability assumption on X).

By 6.25, for any i, j, k, either (A
(i)
2 , A

(j)
2 ) or (A

(i)
2 , A

(j)
2 , A

(k)
2 ) has the

(a, b, J)-property.

By 6.22, sub-matrices (A2, ωJ4) in GU6(2), (A3, ωJ4) in GU7(2), and
(ωJ4, ωJ4) or (ωJ4, ω

2J4) in GU8(2), have the (a, b, J)-property for all rele-
vant a, b.

Relabelling the sub-matrices of X as as Yi, we obtain the statement.
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Lemma 6.32 Let X = (Z, Y1, . . . , Yk, λ1, . . . , λl) as in Lemma 6.31. Sup-
pose that k ≥ 1, and also that either Z = ∅, or Z 6= ∅ and Z has the
(b, J)-property for some b ∈ F0. Write z = |Z| (if Z 6= ∅) and yi = |Yi| for
each i.

For any ai ∈ F0\{1} (1 ≤ i ≤ k), there exist B,C ∈ GUn(q) with the
following properties:

(i) XB = C;

(ii) B and C are G-conjugate;

(iii) |B| = |C| = a1 ∙ ∙ ∙ ak f , where f is a polynomial in z, b, yi, λi (just
in yi, λi if Z = ∅).

Proof Let Acon denote a conjugate of A ∈ GUd(q). First assume Z 6= ∅.
By assumption Z has the (b, J)-property; and as ai 6= 1, each Yi has the
(λ, ai, J)-property for all λ ∈ F0. Hence we may write

Z (b, J)con = (zb, J)con,
Y1 (zb, a1, J)

con = (y1zb, a1, J)
con,

Y2 (y1zb, a2, J)
con = (y2y1zb, a2, J)

con,

∙ ∙ ∙
Yk (yk−1 ∙ ∙ ∙ y1zb, ak, J)con = (yk ∙ ∙ ∙ y1zb, ak, J)con,
λ1 (yk ∙ ∙ ∙ y1zb) = (λ1yk ∙ ∙ ∙ y1zb),
λ2 (λ1yk ∙ ∙ ∙ y1zb) = (λ2λ1yk ∙ ∙ ∙ y1zb),
∙ ∙ ∙
λl (λl−1 ∙ ∙ ∙λ1yk ∙ ∙ ∙ y1zb) = (λl ∙ ∙ ∙λ1yk ∙ ∙ ∙ y1zb) = (b)

where each J denotes a Jordan block of the appropriate size. Hence XB =
C, where B,C ∈ GUn(q) are both conjugates of the block diagonal matrix

(b, zb, y1zb, . . . , yk ∙ ∙ ∙ y1zb, λ1yk ∙ ∙ ∙ y1zb, . . . , λl−1 ∙ ∙ ∙λ1yk ∙ ∙ ∙ y1zb,

a1, . . . , ak, J, . . . , J).

Since B is centralized by elements of arbitrary determinant, it is conjugate
to C in G = SUn(q). This proves (i) and (ii), and (iii) is clear.

Finally, when Z = ∅ we argue as above, but omit the line Z (b, J)con =
(zb, J)con and take z = 1.

Lemma 6.33 Let X = (Z, Y1, . . . , Yk, λ1, . . . , λl) as in Lemma 6.31. As-
sume that k ≥ 2 and that either Z = ∅, or Z 6= ∅ and Z has the (b, J)-
property for some b ∈ F0. Then X is a commutator in G = SUn(q).

Proof Choose any a3, . . . , ak ∈ F0\{1} and write λ = a3 ∙ ∙ ∙ akf , where f
is as in 6.32(iii). Then there exist a1, a2 ∈ F0\{1} such that a1a2 = λ−1.
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Thus, if B,C are as in 6.32, then |B| = |C| = 1, and so B,C ∈ G. As B,C
are G-conjugate, say C = Bg with g ∈ G, it follows that

X = CB−1 = BgB−1 = [g,B−1],

a commutator in G.

Lemma 6.34 Let X = (Z, Y1, . . . , Yk, λ1, . . . , λl) as in Lemma 6.31. As-
sume that k ≥ 2, Z 6= ∅, and Z does not have the (b, J)-property for any
b ∈ F0. Then X is a commutator in G = SUn(q).

Proof Now Z is as in 6.31(i). By assumption Z does not have the (b, J)-
property for any b ∈ F0, and so by 6.30, 6.28, 6.24(i) and 6.18(i), one of the
following holds:

q = 2 : Z = λJ2 (λ ∈ F0)
q = 3 : Z = J2

If l ≥ 1 then by 6.29(i), either (Z, λ1) has the (b, J)-property for some
b ∈ F0, or q = 2 and (Z, λ1) = (λ1J2, λ1). In the former case the conclusion
follows from 6.33 if we replace Z by (Z, λ1); and in the latter case (Z, λ1) =
(λ1J2, λ1) is a commutator in SU3(2) by 6.29(i), and X is conjugate to
(Z, λ1, Y1, . . . , Yk, λ2, . . . , λl) ∈ SU3(2) × SUn−3(2) < G, so X is breakable,
a contradiction. Hence we may assume that l = 0.

Consider now the case where q = 2, so that Z = λJ2. Since X is
unbreakable, one of the following must hold, where ω ∈ F0 and ω 6= 1:

(a) X = (J2, Y1, Y2) (|Y1| = ω, |Y2| = ω2)

(b) X = (J2, Y1, Y2, Y3) (|Y1| = |Y2| = |Y3| = ω)

(c) X = (ω2J2, Y1, Y2) (|Y1| = |Y2| = ω).

Assume first that every Yi is indecomposable. We argue in similar fashion to
the proof of 6.32, but using the special properties of Y1 given by 6.19 instead
of the (a, b, J)-property. Let Acon denote a conjugate of A ∈ GUd(q).

First consider case (a). Using 6.19 for Y1 and the (a, b, J)-property for
Y2, write

J2 (ω, ω) = ωJ2,
Y1 (ωJ2, ω

2, J)con = (ω2, ω2, ω, J)con,
Y2 (ω, ω

2, J)con = (ω, ω, J)con.

Then XB = C where B,C ∈ GUn(2) are both conjugate to

(ω, ω, ω, ω2, ω2, ωJ2, J, J).

This has determinant 1, so B,C ∈ G = SUn(2), and hence, writing C = Bg

with g ∈ G, we have X = BgB−1 = [g,B−1], a commutator in G.
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For case (b), we argue similarly: write

J2 (ω, ω) = ωJ2,
Y1 (ωJ2, ω

2, J)con = (ω2, ω2, ω, J)con,
Y2 (ω

2, ω2, J)con = (1, ω2, J)con,
Y3 (1, ω

2, J)con = (ω, ω2, J)con.

Then XB = C where B,C ∈ GUn(2) are both conjugate to

(ω, ω, ω2, ω2, ω2, ω2, 1, ωJ2, J, J, J).

This has determinant 1, so again B,C ∈ G and X is a commutator in G.

For case (c), write

ω2J2 (ω
2, ω2) = ωJ2,

Y1 (ωJ2, J)
con = (ω, ω2, J)con,

Y2 (ω, ω
2, J)con = (ω2, ω2, J)con.

Then XB = C where B,C ∈ GUn(2) are both conjugate to

(ω, ω2, ω2, ω2, ωJ2, J, J).

Again this has determinant 1, so X is a commutator in G.

This completes the argument for q = 2, assuming that all the Yi are in-
decomposable. Finally, suppose one of the Yi, say Y1, is not indecomposable.
Then from the proof of 6.31, we see that Y1 is of the form (A2, A

′
2), (A2, A3),

(A2, A4), (A3, A
′
3), (A3, A4), (A2, A

′
2, A

′′
2) or (A4, A

′
4), where A4 = ωiJ4,

A′4 = ω
jJ4.

In the first three cases, we replace Y1 by (Z, Y1) ∈ GU6(2), GU7(2) or
GU8(2); then X = (Y1, Y2) or (Y1, Y2, Y3), and Y1 has the (a, b, J)-property
for all relevant a, b by 6.22, so the conclusion follows from 6.33. In the fourth
and fifth cases, we replace Z by A3 and Y1 by (Z,A

′
3) or (Z,A4) (which has

the (a, b, J)-property by 6.21, 6.22(iii)), and apply 6.33. In the sixth case,
X is breakable. Finally, in the last case, we replace Z by ωiJ4 and Y1 by
(Z, ωjJ4) and apply 6.33.

Now consider the case where q = 3, so that Z = J2. Since X is unbreak-
able, one of the following must hold, where λ ∈ F0 has order 4:

(a) X = (J2, Y1, Y2) (|Y1| = μ, |Y2| = μ−1, 1 6= μ ∈ F0)

(b) X = (J2, Y1, Y2, Y3) (|Y1| = |Y2| = λ, |Y3| = −1)

(c) X = (J2, Y1, Y2, Y3, Y4) (|Yi| = λ for all i).

Assume first that every Yi is indecomposable. First consider case (a). If
|μ| = 4, then using 6.20 for Y1 and the (a, b, J)-property for Y2, we write

J2 (μ, μ) = μJ2,
Y1 (μJ2, J)

con = (−1, μ, J)con,
Y2 (−1,−1, J)con = (−1, μ, J)con.
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Then XB = C where B,C ∈ GUn(3) are both conjugate to

(μ, μ,−1,−1, μJ2, J, J).

This has determinant 1, so B,C ∈ G = SUn(3), and we see that X is a
commutator in G as above. If μ = −1, write instead

J2 (λ, λ) = λJ2,
Y1 (λJ2, J)

con = (−λ, λ, J)con,
Y2 (−λ, λ, J)con = (λ, λ, J)con.

Then XB = C where B,C are both conjugate to (λ, λ, λ,−λ, λJ2, J, J), of
determinant 1, so again X is a commutator in G.

Now consider (b). Write

J2 (λ, λ) = λJ2,
Y1 (λJ2, J)

con = (−1, λ, J)con,
Y2 (−1,−1, J)con = (−1,−λ, J)con

Y3 (−λ, λ, J)con = (λ, λ, J)con.

Then XB = C where B,C are both conjugate to

(λ, λ, λ,−λ,−1,−1, λJ2, J, J, J),

of determinant 1, so again X is a commutator in G.

For case (c), write

J2 (λ, λ) = λJ2,
Y1 (λJ2, J)

con = (−1, λ, J)con,
Y2 (−1, λ, J)con = (−λ, λ, J)con

Y3 (−λ, λ, J)con = (1, λ, J)con

Y4 (1, λ, J)
con = (λ, λ, J)con.

Then XB = C where B,C are both conjugate to

(λ, λ, λ, λ, λ,−λ, 1,−1, λJ2, J, J, J, J).

This has determinant 1, so once again X is a commutator in G.

This completes the argument for q = 3, assuming that all the Yi are
indecomposable. Finally, suppose one of the Yi, say Y1, is not indecompos-
able. The proof of 6.31 implies that Y1 is of the form (A2, A

′
2), (A2, A3),

(A3, A
′
3) or (A2, A

′
2, A

′′
2). In the first case we replace Y1 by (Z, Y1) ∈ GU6(3),

as this has the (a, b, J)-property by 6.25(i); then the conclusion follows from
6.33. In the second case, (Z, Y1) = (J2, A2, A3). If (J2, A2) has the (a, b, J)-
property for all relevant a, b then replace Z by A3, Y1 by (J2, A2) and apply
6.33; otherwise, by 6.24 A2 = λJ2 with |λ| = 4, and we replace Z by λJ2,
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Y1 by (J2, A3) (which has the (a, b, J)-property by 6.21), and apply 6.33.
Similarly in the third case we replace Z by A3 and Y1 by (J2, A

′
3). In the

last case, A2 6= J2 (otherwise X would be breakable), and we replace Z by
A2 and Y1 by (J2, A

′
2, A

′′
2), which has the (a, b, J)-property by 6.25.

This completes the proof of the lemma.

The last two lemmas give the following:

Corollary 6.35 If X = (Z, Y1, . . . , Yk, λ1, . . . , λl) as in Lemma 6.31, and
k ≥ 2, then X is a commutator in G = SUn(q).

Hence we may now assume that X is as in Lemma 6.31 with k ≤ 1.

Lemma 6.36 Let X = (Z, Y1, λ1, . . . , λl) as in Lemma 6.31 (so with k = 1).
If either Z = ∅, or Z has the (b, J)-property for at least three values of b ∈ F0,
then X is a commutator in G.

Proof We argue as in the proof of 6.32. Write z = |Z| if Z 6= ∅, and
z = 1 otherwise; and let y1 = |Y1|. By hypothesis, if Z 6= ∅ then we can
find b ∈ F0 such that Z has the (b, J)-property and also bz, y1bz 6= 1. Then
Y1 has the (zb, a, J)-property for any a ∈ F0. Hence we can write (omitting
the first line and choosing any b 6= 1, y−11 if Z = ∅):

Z (b, J)con = (zb, J)con,
Y1 (zb, a, J)

con = (y1zb, a, J)
con,

λ1 (y1zb) = (λ1y1zb),
∙ ∙ ∙
λl (λl−1 ∙ ∙ ∙λ1y1zb) = (b).

Hence XB = C, where B,C ∈ GUn(q) are both conjugates of

(a, b, zb, y1zb, λ1y1zb, . . . , λl−1 ∙ ∙ ∙λ1y1zb, J, J).

We can choose a ∈ F0 such that |B| = 1. Then B,C ∈ G and are G-
conjugate, so X is a commutator in G.

Lemma 6.37 Let X = (Z, Y1, λ1, . . . , λl) as in Lemma 6.31, and suppose
that q ≥ 4. Then X is a commutator in G.

Proof If Z = ∅ then this statement follows from the previous lemma, so
assume Z 6= ∅. Recall from 6.31 that Z = A2, A3 or (A2, A′2). If q ≥ 5 then
by 6.30, 6.28 and 6.24, Z has the (b, J)-property for at least three values of
b ∈ F0, and the conclusion again follows from 6.36.
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Now assume that q = 4. We may also assume that Z has the (b, J)-
property for fewer than three values of b, whence by 6.30, 6.28 and 6.24 we
have Z = λJ2 with |λ| = 5. By 6.30, Z has the (b, J)-property for b = λ or
λ2. Since |Z| = z = λ2, bz 6= 1 for both possible values of b, and hence we
can choose b ∈ {λ, λ2} such that bz, y1bz 6= 1. Now the proof of 6.36 gives
the conclusion.

Lemma 6.38 Let X = (Z, Y1, λ1, . . . , λl) as in Lemma 6.31, and suppose
that q = 3. Then X is a commutator in G.

Proof As in the previous proof, we can assume that Z has the (b, J)-
property for fewer than three values of b, whence by 6.30, 6.28 and 6.24 we
have Z = A2 or −J3.

If l ≥ 2 then, by 6.27 and 6.26, either (Z, λ1) or (Z, λ1, λ2) has the
(b, J)-property for all b ∈ F0, so we replace Z by this matrix and apply 6.36.

Now suppose that l = 1. If (Z, λ1) has the (b, J)-property for all b, then
we have finished as before. Otherwise, 6.29 implies that (Z, λ1) = (λJ2,±λ)
for some λ ∈ F0 with |λ| = 4. If (Z, λ1) = (λJ2, λ) then this has the
(a, b, J)-property for (a, b) = (−1, λ) by 6.29, so for any a ∈ F0 we write

(Z, λ1) (−1, λ, 1)con = (λ, λ, 1)con

Y1 (λ, a, J)
con = (−1, a, J)con

and hence XB = C where B,C are conjugate to (−1, 1, λ, λ, a, J). Taking
a = 1 we have |B| = 1, so X is a commutator in G. For (Z, λ1) = (λJ2,−λ)
we argue in the same way, this time using the (a, b)-property for (a, b) =
(1, λ).

Now assume that l = 0, so that X = (Z, Y1) with Z = A2 or −J3. If
Z 6= J2 then, by 6.30 and 6.28, Z has the (λ, J)-property for some λ of order
4 with λ 6= z−1 (where z = |Z|). We write

Z (λ, 1)con = (zλ, 1)con

Y1 (zλ, a, J)
con = (λ, a, J)con

so that XB = C with B,C conjugate to (λ, zλ, a, 1, J), and taking a = −z−1

we have |B| = 1, so X is a commutator in G.

Finally, assume that Z = J2, so X = (J2, Y1). Using 6.20, we choose
λ ∈ F0 of order 4 and write

J2 (λ, λ)
con = λJcon2

Y1 (λJ2, J)
con = (λ, λ, J)con

so that XB = C with B,C conjugate to (λ, λ, λJ2, J), of determinant 1, so
X is a commutator in G.
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Lemma 6.39 Let X = (Z, Y1, λ1, . . . , λl) as in Lemma 6.31, and suppose
that q = 2. Then X is a commutator in G.

Proof If Z has the (b, J)-property for all b ∈ F0, then the conclusion
follows from 6.36, so assume this is not the case. Then 6.28 and 6.24 imply
that Z = λJ2, λJ3 or λ(J2, J2) for some λ ∈ F0 (with λ 6= 1 in the last case).

Suppose Z = λJ3 or λ(J2, J2). If l ≥ 1 then (Z, λ1) has the (b, J)-
property for all b by 6.22(iv) and 6.26, so we replace Z by this and apply
6.36. If l = 0 we argue in the usual way: Z = λJ3 has the (b, J)-property
for some b 6= 1 by 6.28, and we write

Z (b, J)con = (b, J)con

Y1 (b, b, J)
con = (b, b, J)con;

Z = λ(J2, J2) has the (λ, J)-property by 6.24, and we write

Z (λ, J)con = (λ2, J)con

Y1 (λ
2, 1, J)con = (λ, 1, J)con.

It follows that X is a commutator in both cases in the usual way.

Now suppose Z = λJ2. If l ≥ 2 then (Z, λ1, λ2) has the (b, J)-property
for all b by 6.27, and the conclusion follows using 6.36. If l = 1 then, by 6.29,
writing Z ′ = (Z, λ1), either Z

′ = λ(J2, 1) or |Z ′| = μ and Z ′ has the (μ, J)-
property for some μ 6= 1. In the first case, Z ′ is a commutator in SU3(2) by
6.29(i), and X ∈ SU3(2) × SUn−3(2) is breakable, a contradiction. In the
second case we write

Z ′ (μ, J)con = (μ2, J)con

Y1 (μ
2, 1, J)con = (μ, 1, J)con,

from which it follows that X is a commutator in the usual way.

Finally, assume l = 0, so that X = (λJ2, Y1). If λ = 1, pick 1 6= ω ∈ F0
and use 6.19 to write

J2 (ω, ω) = ωJ2
Y1 (ωJ2, ω

2, J)con = (ω, ω, ω2, J)con;

if λ 6= 1, use 6.19 to write

λJ2 (λ, λ) = λ
2J2

Y1 (λ
2J2, J)

con = (λ, λ, J)con.

In either case it follows as usual that X is a commutator in G.

The last three lemmas imply:
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Corollary 6.40 If X = (Z, Y1, λ1, . . . , λl) as in 6.31 (with k = 1), then X
is a commutator in G = SUn(q).

It remains to deal with the case where k = 0, so

X = (Z, λ1, . . . , λl) (20)

where Z is one of ∅, A2, A3, (A2, A′2) or ωJ4 (q = 2) and 1 6= λi ∈ F0.

Proposition 6.41 If X = (Z, λ1, . . . , λl) as in (20), and q = 2 or 3, then
X is a commutator in G.

Proof First suppose q = 2. If X has a sub-matrix (ω, ω, ω) (1 6= ω ∈ F0),
then this is a commutator in SU3(2), and so X ∈ SU3(2) × SUn−3(2) is
breakable, a contradiction. Thus no three of the λi are equal, and none is
equal to 1. It follows that l ≤ 4. Since n ≥ 8, we deduce that l = 4 and
n = 8, and moreover the λi must be ω, ω, ω

2, ω2 in some order. But these
have product 1, hence |Z| = 1 and X ∈ SU4(2) × SU4(2) is breakable, a
contradiction.

Now assume q = 3 and let λ denote either of the elements in F0 of order
4. As n ≥ 7 by assumption, l ≥ 3. If Z = A3 or (A2, A

′
2) then 6.23 shows

that (Z, λ1, λ2) or (Z, λ1) (resp.) has the (a, b, J)-property for all relevant
a, b, except when (Z, λ1) = (λJ2, λJ2, λ). Excluding this exception, we can
write Y1 for (Z, λ1, λ2) or (Z, λ1) and apply 6.36 to obtain the conclusion.
In the exceptional case we may assume that X = (λJ2, λJ2, λ, λ, λ) (there
cannot be four λ’s as X is unbreakable). But this implies |X| = λ3 6= 1, a
contradiction.

Hence we may assume that Z = ∅ orA2. In the first caseX = (λ1, . . . , λl)
is diagonal, and we can assume it has no sub-matrix (−1,−1) (as this is a
commutator in SU2(3)) or (λ, λ, λ, λ) (as this has determinant 1). The only
possibility with n ≥ 7 and all λi 6= 1 is that X = (−1, λ, λ, λ,−λ,−λ,−λ).
But this has determinant −1, a contradiction.

Assume finally that Z = A2. If |Z| = 1 then we may assume that
X has no sub-matrix (−1,−1) as before, and also no sub-matrix (λ,−λ)
(otherwise (Z, λ,−λ) would have determinant 1). This is impossible if n ≥ 7.
If |Z| = −1 then we can assume that no λi is −1, and there is no sub-matrix
(λ, λ) (since (Z,−1) and (Z, λ, λ) have determinant 1), and again this cannot
happen if n ≥ 7. If |Z| = λ then we may assume that no λi is −λ and there
is no sub-matrix (−1,−1), and once more this is impossible for n ≥ 7. This
completes the proof.

We may now assume that q ≥ 4. Recall the assumption at the begin-
ning of this section that n ≥ 5. If X = λI, a scalar matrix, then X is a
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commutator by Lemma 2.3. Thus we assume also that X is not a scalar
matrix.

Proposition 6.42 If X = (Z, λ1, . . . , λl) as in (20), then X is a commu-
tator in GUn(q). If (n, q + 1) = 1 then X is a commutator in SUn(q).

Proof If Z 6= ∅, then by 6.30, 6.28 and 6.24, Z has the (b, J)-property for
some b ∈ F0. If Z = ∅, then, since X is non-scalar, by 6.30 there exist λj , λk
with λj 6= λk where the diagonal matrix (λj , λk) has the (b, J)-property for
some b. Setting Z = (λj , λk) and relabelling the λi in the latter case, we
may therefore write in the usual way

Z (b, J)con = (zb, J)con,
λ1 (zb) = (λ1zb),
∙ ∙ ∙
λl (λl−1 ∙ ∙ ∙λ1zb) = (b)

(where z = |Z|). Hence XB = C where B,C ∈ GUn(q) are both conjugate
to (b, zb, λ1zb, . . . , λl−1 ∙ ∙ ∙λ1zb, J). Therefore X is a commutator in GUn(q).
If (n, q + 1) = 1 then GUn(q) = SUn(q) × Zq+1, and it follows that X is a
commutator in SUn(q).

Proposition 6.43 If X = (Z, λ1, . . . , λl) as in (20), with q ≥ 4, then X is
a commutator in G.

Proof By the previous proposition, we may assume that (n, q + 1) 6= 1.
Since X is unbreakable, it has no proper sub-matrix of determinant 1. Hence
the total number of indecomposable blocks in X (namely l if Z = ∅, l+ 1 if
Z = A2 or A3, and l + 2 if Z = (A2, A

′
2)) is at most q + 1. In particular

n = dimV ≤ q + 3. (21)

Observe that if X has exactly q+1 indecomposable blocks, then its unbreak-
ability implies that each of these blocks must have the same determinant λ,
an element of F0 of order q + 1.

Consider first q = 4. Here n ≤ 7 and (n, 5) 6= 1, so n = 5 and G =
SU5(4). For this group, the conclusion follows from 3.1.

Next consider q = 5. Here n ≤ 8 and (n, 6) 6= 1, so n = 6 or 8. If Z = ∅
then n = 6, and the above observation implies that all λi are equal, so X
is a scalar, contrary to the remark preceding 6.42. Suppose Z = A2. Again
n = 6 and X = (A2, λ1, λ2, λ3, λ4). Since X has no proper sub-matrix of
determinant 1, there exists λ ∈ F0 of order 6 such that one of the following
holds:

(a) X = (A2, λ, λ, λ, λ), |A2| = λ2
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(b) X = (A2, λ
2, λ, λ, λ), |A2| = λ.

In case (a), 6.30 shows that A2 has the (b, J)-property for b = λ2, and we
write

A2 (λ
2, 1)con = (λ4, 1)con,

λ (λ4) = (λ5),
λ (λ5) = (1),
λ (1) = (λ),
λ (λ) = (λ2),

so XB = C with B,C conjugate to (1, 1, λ, λ2, λ4, λ5), of determinant 1.
In case (b), A2 has the (b, J)-property for b = λ and we similarly see that
XB = C with B,C conjugate to the same matrix. Hence X is a commutator
in G in either case.

Now suppose Z = A3 (still with q = 5). If n = 8 then, since it has no
proper sub-matrix of determinant 1, X = (A3, λ, λ, λ, λ, λ) with |A3| = λ,
where λ ∈ F0 has order 6. Then Z ′ = (A3, λ) has the (b, J)-property for b =
λ2 by 6.26, so we argue as above to see that XB = C with B,C conjugate to
(λ2, λ4, λ5, 1, λ, J), of determinant 1. If n = 6 then X = (A3, λ1, λ2, λ3). If,
for some i, (A3, λi) has the (a, b, J)-property for all relevant a, b, then we can
use 6.40 to obtain the result; otherwise, 6.26 shows that X = (λJ3, λ, λ, λ)
with |λ| = 6. In the latter case X4 = (λJ3, λ) has the (a, b, J)-property for
(a, b) = (λ, 1) by 6.26(iii), so we write

X4 (λ, 1, J)
con = (λ5, 1, J)con,

λ (λ5) = (1),
λ (1) = (λ),

and so XB = C with B,C conjugate to (λ, λ5, 1, 1, J), of determinant 1,
giving the conclusion.

Now suppose Z = (A2, A
′
2) (still with q = 5). If n = 8, then its unbreak-

ability implies that X = (A2, A
′
2, λ, λ, λ, λ) with |A2| = |A

′
2| = λ, where

λ ∈ F0 has order 6. By 6.24, Z has the (b, J)-property for all b ∈ F0 (noting
that A2 6= μJ2 as |A2| = λ has order 6), so taking b = λ2 we get XB = C

with B,C conjugate to (λ2, λ4, λ5, 1, λ, J), of determinant 1. Suppose now
that n = 6, X = (A2, A

′
2, λ1, λ2). Since X is unbreakable, there exists λ ∈ F0

of order 6 such that the values of |A2|, |A′2|, λ1, λ2 are, in some order, one
of the following:

(i) λ, λ, λ, λ3

(ii) λ, λ, λ2, λ2

(iii) λ2, λ2λ3, λ5.

If Z satisfies the (a, b, J)-property for all relevant a, b, then the result follows
from 6.40, so assume this is not the case. Now 6.24 shows that A2 = A′2,
and hence |A2| = |A′2| = λ or λ

2.
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If |A2| = λ of order 6, then by 6.24(iii), A2 = (ω, ω−5) with |ω| = 24, and
λ = ω−4. Also λ1, λ2 = λ, λ3 or λ2, λ2 from (i),(ii),(iii) above. In the first
case note that by 6.24(iii), Z has the (a, b, J)-property for (a, b) = (λ, λ4)
and write

Z (λ, λ4, J)con = (λ3, λ4, J)con,
λ (λ3) = (λ4),
λ3 (λ4) = (λ),

soXB = C with B,C conjugate to (λ, λ4, λ3, λ4, J), of determinant 1; and in
the second case similarly use the (a, b, J)-property for Z with (a, b) = (λ,−1)
to get XB = C with B,C conjugate to (λ,−1, λ3, λ5, J), of determinant 1.
The result follows.

To conclude the proof of the proposition for q = 5, consider finally
the case where |A2| = λ2. Here λ1, λ2 = λ, λ or λ3, λ5 from (i),(ii),(iii)
above. In the first case use the (a, b, J)-property of Z with (a, b) = (λ4,−1),
and in the second use the (a, b, J)-property with (a, b) = (λ, λ4) (given by
6.24(iii)), to see that XB = C with B,C conjugate to (λ2, λ3, λ4,−1, J) or
(λ, λ4, λ5, λ2, J) in the respective cases. These have determinant 1, so X is
a commutator in G. This completes the proof for q = 5.

Suppose finally that q = 7. Now n ≤ 10 by (21), and (n, 8) 6= 1, so
n = 6, 8 or 10. If Z = ∅ then n = 6 or 8. In the latter case X = λI, which
was excluded just before 6.42; and when n = 6, since X is unbreakable, there
exists λ ∈ F0 of order 8 such that X = (λ3, λ, λ, λ, λ, λ) or (λ2, λ, λ, λ, λ, λ2).
In the first case the sub-matrix X2 = (λ

3, λ) has the (b, J)-property for
b = λ2 by 6.30, so we can write

X2 (λ
2, 1)con = (λ6, 1)con,

λ (λ6) = (λ7),
λ (λ7) = (1),
λ (1) = (λ),
λ (λ) = (λ2),

and so XB = C with B,C conjugate to (λ, λ2, λ6, λ7, 1, 1), of determinant
1. In the second case the sub-matrix (λ2, λ) has the (b, J)-property for
b = λ6 by 6.30, and we argue similarly that XB = C with B,C conjugate
to (λ, λ2, λ3, λ4, λ6, 1). Hence X is a commutator in G.

Next suppose Z = A2. Then n = 6 or 8. If X4 = (A2, λi, λj) has the
(b, J)-property for all b ∈ F0 for some i, j (say for i, j = 1, 2), then taking
x4 = |X4| and writing X4 (b, J)con = (x4b, J)con, λ3 (x4b) = (λ3x4b) and
so on, we see that XB = C with B,C conjugate and |B| = bn−3f(x4, λi).
As n − 3 = 3 or 5, coprime to |F0| = 8, we can choose b ∈ F0 such that
|B| = 1, giving the result. Otherwise, no such X4 has the (b, J)-property
for all b, and so by 6.27 X = (λJ2, λ, λ, λ, λ, λ, λ), where |λ| = 8. Here,
the sub-matrix X4 = (λJ2, λ, λ) has the (b, J)-property for b = λ2 by 6.27,
and we write X4 (λ

2, J)con = (λ6, J)con, λ (λ6) = (λ7), and so on, to see
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that XB = C with B,C conjugate to (λ, λ2, λ6, λ7, 1, J), of determinant 1,
giving the conclusion.

Next consider Z = A3. If for some i, (A3, λi) has the (a, b, J)-property
for all relevant a, b ∈ F0, then 6.36 (with Z = ∅, Y1 = (A3, λi)) gives the
result. Otherwise, 6.26 shows that (A3, λi) = (λJ3, λ) (|λ| = 8) for all i,
whence n = 8 and X = (λJ3, λ, λ, λ, λ, λ). Then by 6.26, X4 = (λJ3, λ) has
the (b, J)-property for all b ∈ F0, in particular for b = λ2. Hence, writing
X4 (λ

2, J)con = (λ6, J)con, λ (λ6) = (λ7) and so on, we see that XB = C

with B,C conjugate to (λ, λ2, λ6, λ7, 1, J), of determinant 1.

Finally, consider Z = (A2, A
′
2). By 6.24, Z has the (b, J)-property for

all b ∈ F0, so taking z = |Z| and writing Z (b, J)con = (zb, J)con, λ1 (zb) =
(λ1zb) and so on, we see that XB = C with B,C conjugate and |B| =
bn−3f(z, λi). As n−3 = 3, 5 or 7, coprime to |F0| = 8, we can choose b ∈ F0
such that |B| = 1, giving the result. This completes the proof for q = 7, and
hence the proposition is now proved.

Taken together, 6.31, 6.35, 6.40, 6.41 and 6.43 constitute a complete
proof of Theorem 6.1.

7 Exceptional groups

We now prove Ore’s conjecture for exceptional groups of Lie type. Lemma 2.2
implies that we need only consider the types Eε6 (ε = ±), E7 and E8.

Theorem 7.1 Let G be one of the simple groups E8(q), E7(q) and E
ε
6(q).

Every element of G is a commutator.

Write K = F̄q, the algebraic closure of Fq, let Ḡ be a simple adjoint
algebraic group over K of type E6, E7 or E8, and let σ be a Frobenius
morphism of Ḡ with fixed point group Ḡσ, so that Ḡ

′
σ is one of the simple

groups Eε6(q), E7(q) or E8(q).

Lemma 7.2 Let G be one of the simple groups E8(q), E7(q) or E
ε
6(q) (where

q > 2).

(i) G has an irreducible character χ0 of degree listed in the following table,
and all other nontrivial irreducible characters χ of G have degree greater than
the bound indicated in the table.

G χ0(1) lower bound for χ(1), χ 6= 1, χ0
E8(q)

q(q2+1)2(q4+1)(q6+1)(q12+1)
(q2+1)2(q4+1)

q46

E7(q)
q(q14−1)(q6+1)

q4−1 q26

Eε6(q) q(q4 + 1)(q6 + εq3 + 1) q16/2
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(ii) If 1 6= u ∈ G is unipotent, 1 6= x ∈ G is arbitrary, and 1 6=
χ ∈ Irr(G),

|χ(u)|
χ(1)

≤
3

4
,
|χ(x)|
χ(1)

≤
19

20
.

(iii) The number of conjugacy classes k(G) satisfies the upper bound in
the following table.

G upper bound for k(G)

E8(q) 4.52 q8

E7(q) 531, q = 2
4.18 q7, q ≥ 3

Eε6(q) 1389, q = 3
4.35q6, q ≥ 4

Proof (i) This follows from [32].

(ii) This follows from [21].

(iii) The precise number of conjugacy classes in the adjoint groups is
given by [14, 15]. The conclusion follows for E8(q). To get correct bounds
for the simple groups of type E7 and E6, it suffices to multiply the numbers
in [15] by (2, q − 1) and (3, q − ε) respectively.

Proof of Theorem 7.1 for E8(q)

Let G = E8(q). We give a proof which works for all q, even though
we only need to consider q ≤ 5 by [12]. In the proof we freely use the
information about conjugacy classes of unipotent elements in G given in
[35], and about subsystem subgroups and their centralizers given in [27] and
[28, Section 4].

Case 1: Unipotent elements

Let x ∈ G be a non-identity unipotent element. We show that x is a
commutator. By Lemma 7.2(i),

E(x) =
∑

1 6=χ∈ Irr(G)

χ(x)

χ(1)
≤
3

4
+
∑

χ 6=1,χ0

χ(x)

χ(1)
.

By Lemma 7.2, the characters in the latter sum have degree greater than
q46, and there are less than 4.52 q8 of them. Hence using Lemma 2.6,

E(x) ≤
3

4
+
|CG(x)|1/2

√
4.52 q4

q46
.

Thus |E(x)| < 1 if the second term is less than 1/4. This holds if |CG(x)|1/2 <
q42/(4 ∙

√
4.52), which holds if |CG(x)| < q84/73, hence also if |CG(x)| < q77.
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Therefore by Lemma 2.5, in this case (x unipotent) we may assume that

|CG(x)| > q77.

Referring to [35, Table 10, p. 455], it follows that x lies in one of the Ḡ-classes
with the following labels:

D4, D4(a1), 2A2 + 2A1, 2A2 +A1, A3, 2A2, A2 + 3A1,
A2 + 2A1, A2 +A1, 4A1, A2, 3A1, 2A1, A1.

Hence x is a distinguished unipotent element in a Levi subgroup L̄ of Ḡ
corresponding to the label.

Write C = CḠ(x). By Lang’s Theorem (see [43, I, 3.4]), the number of
G-classes in xḠ∩G is equal to the number of classes in C/C0. When C = C0,
this number is 1, and so we may take L̄ to be σ-stable, and x ∈ L̄′σ = L(q).
For each Levi subgroup in the above list, L(q) is contained in a subsystem
subgroup D4(q) or A4(q)A4(q). By Lemmas 3.2 and 2.1, every element of
each of these groups is a commutator, so the result follows when C = C0.

Now assume that C 6= C0. By [35, Table 10], the possible labels for the
Ḡ-class of x are D4 (p = 2), D4(a1), 2A2, A2 +A1 and A2. In the first case
|C/C0| = 2, so there are 2 G-classes in xḠ∩G. The unipotent element x lies
in a subgroup G2 of L̄

′, centralizing an F4 in Ḡ, and this F4 is the reductive
part of CḠ(x). Thus there are representatives of both G-classes lying in
CG(F4(q)). Hence they lie in CG(F4(q)) = G2(q), and so in a subgroup
D4(q), and the result follows, again by 3.2.

A similar argument works for the class D4(a1): here C/C
0 ∼= S3 acting as

graph automorphisms on both the derived group of the Levi subgroup L̄′ =
D4, and the reductive part D = D4 of CḠ(x). Observe that CḠ(L̄

′) = D

and vice versa. Hence the class representatives in G = Ḡσ lie in a subgroup
CG(Dσ) = L̄′σ, a possibly twisted subgroup D

ε
4(q), and again the result

follows using 3.2.

The same argument works for the class A2+A1: here the reductive part
D = A5 of CḠ(x) has centralizer L̄

′ = A2A1, so the class representatives in
G lie in L̄′σ = A

ε
2(q)A1(q), which lies in a subgroup D4(q)D4(q).

Finally consider the class 2A2. The corresponding class representatives
in G are given in [35, Lemma 109], where they are called z181, z182 (p = 2),
z183 (p 6= 2). The first of these lies in a Levi subgroup L̄′σ = A2(q)

2, giving
the conclusion in the usual way by 2.1. The expressions for z182, z183 are
products of root elements of G involving the roots αi for i = 53, 54, 55, 57,
117, 122, 124. Using [35, Table 11], we have, in the more usual notation for
roots (i.e. c1 . . . c8 denotes the root

∑
ciαi, where αi (1 ≤ i ≤ 8) are the

fundamental roots):

α53 = 12232100, α54 = 11232110, α55 = 11222210, α57 = 11232210,
α117 = 11222111, α122 = 11122221, α124 = 11232211
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These roots span a subsystem A2D4. Hence the representatives z182, z183 lie
in a subgroup A2(q)D4(q), and the result follows as usual. This completes
the unipotent case.

Case 2: Non-unipotent elements Now let x = su ∈ G, where s 6= 1 is
the semisimple part of x and u is the unipotent part. Using Lemma 7.2 as
above,

E(x) =
∑

1 6=χ∈ Irr(G)

χ(x)

χ(1)
≤
19

20
+
∑

χ 6=1,χ0

χ(x)

χ(1)
≤
19

20
+
|CG(x)|1/2

√
4.52 q4

q46
.

(22)
Hence |E(x)| < 1 if the second term is less than 1/20, which holds if
|CG(x)| < q84/1808, hence also if |CG(x)| < q73.

Assume that |CG(x)| > q84/1808. Then CG(s) is a subsystem subgroup
of at least this order, and inspection of such subgroups shows that CG(s)
has a quasisimple normal subgroup C equal to one of the subsystem groups
E7(q), D8(q), A

ε
8(q), E

ε
6(q), D

ε
7(q). Moreover s lies in CG(C), which is A1(q),

Z(2,p−1), Z(3,q−ε), A
ε
2(q), Zq−ε in the respective cases.

Suppose C = D8(q). Here p is odd and s is an involution in Z(C). Thus
|CC(u)| > q73, and inspection of the centralizers of unipotent elements of
orthogonal groups given in [50, p. 34] shows that u has no Jordan blocks
of size greater than 4 on the natural 16-dimensional D8-module, hence it
lies in a subgroup D4(q)D4(q) of C. This subgroup contains Z(C), so it
contains x, and the result follows using 3.2 as usual. A similar argument
handles the case where C = Dε7(q): here s ∈ Zq−ε < Zq−εD

ε
7(q) < D8(q),

|CC(u)| > q73/q − ε, and we need to consider also the case where q is even,
using [50, p. 60]. We again find that x lies in a subgroup D4(q)D4(q).

Now consider C = Aε8(q). Here s is a element of order 3 in Z(C). By [50],
C has no non-identity unipotent element with centralizer order greater than
q73. Hence u = 1 and x = s, which is a commutator in C by Lemma 2.3.

Next suppose C = Eε6(q), so s ∈ CG(C) = Aε2(q)
∼= SLε3(q). Then

|CC(u)| > q73/|Aε2(q)|, which by [34, Section 4] forces the projection of u to
C to be 1. Hence x = su ∈ Aε2(q), which lies in a subgroup A

ε
3(q), giving

the conclusion by Corollary 3.2.

Finally, suppose C = E7(q), so s ∈ CG(C) = A1(q), a fundamental
SL2(q) in G. Then |CC(u)| > q73/|A1(q)|, so from [35, Table 9] we see that
uC̄ is one of the classes 1, A1, 2A1, 3A

′′
1. In the first three cases CC̄(u) is

connected, so x = su lies in a product (A1(q))
3 of 3 fundamental SL2(q)’s,

hence in a subgroup D4(q)D4(q). In the 3A
′′
1 case, CC(u) contains a sub-

group F4(q), which has G-centralizer G2(q), so x ∈ G2(q) < D4(q). The
result follows from 3.2 in the usual way.

This completes the proof of Theorem 7.1 for G = E8(q).
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Proof of Theorem 7.1 for E7(q)

Let G = E7(q). By 2.4, Ore’s conjecture holds for G when q ≥ 5, so we
may assume that q ≤ 4. Let G = Ḡ′σ with Ḡ = E7(K) as before. The proof
follows the same lines as for E8(q).

Let x ∈ G, and suppose first that x is a non-identity unipotent element
of G. Using Lemmas 2.6 and 7.2,

E(x) =
∑

1 6=χ∈ Irr(G)

χ(x)

χ(1)
≤
3

4
+
|CG(x)|1/2k(G)1/2

q26
, (23)

and hence |E(x)| < 1 if |CG(x)| is less than q52/8496 (q = 2) or q45/67 (q ≥
3). Assume now that |CG(x)| is larger than these bounds. From [35, Table
9] we see that xḠ lies in one of the classes D4(a1), (A3 + A1)

′, (A3 + A1)
′′,

A3, 2A2 +A1, 2A2, A2 + 3A1, A2 + 2A1, A2 +A1, A2, 4A1, (3A1)
′, (3A1)

′′,
2A1, A1. Write C = CḠ(x). As in the E8 argument, if C = C0, then x
lies in a Levi subgroup L̄′σ = L(q), where L̄′ is in the above list, and all
such subgroups L(q) can be seen to lie in a subsystem subgroup A2(q)A5(q),
giving the result by Lemma 2.1.

This leaves the classes in the list for which C 6= C0, which are D4(a1),
A2 + A1 and A2. In the first case we argue as for the D4(a1) class in E8
that x lies in a subgroup L′σ = Dε4(q), giving the result by 3.2. For the A2
class, the reductive part of C is D = A5, and Dσ = A

ε
5(q) has Ḡ-centralizer

L̄′ = A2, so again x ∈ L̄′σ = A
ε
2(q) < Aε3(q), giving the result by 3.2. Finally,

for the A2 + A1 class, the reductive part of C is D = T1A3. Hence x lies
in the centralizer of a subgroup Aε2(q) of Dσ, which is A

ε
5(q), giving the

conclusion by 3.1.

Now suppose x is not unipotent, and write x = su with s the semisimple
part and u the unipotent part. Arguing as above for (22), replacing 3/4 in
(23) by 19/20, we see that |E(x)| < 1 if |CG(x)| is less than 234 if q = 2, less
than 338 if q = 3, and less than q39 if q = 4. Assume |CG(x)| is greater than
these bounds. Inspection of semisimple element centralizers of such orders
in [9] shows that CG(s) has a quasisimple normal subgroup C = Aεr(q)
(r = 4, 5, 6 or 7), Dε5(q), D6(q) or E

ε
6(q).

If C = Aε4(q), then the bound on |CG(x)| forces q = 2 and the projection
of u in C to be 1, so that x lies in CG(A

ε
4(2)) ≤ CG(A1(2)) = D6(2), giving

the result by 3.1(vi).

If C = Aε5(q) then s ∈ CG(C) = Aε2(q)Z. The lower bound on |CG(x)|
forces the projection of u in C to have Jordan form 1 or (J2, J

4
1 ). Hence x

centralizes a subgroup Aε2(q) of C, and so x ∈ CG(A
ε
2(q)) = Aε5(q), giving

the result by 3.1(iii).

Now assume C = Aε6(q). Then s has order dividing (q − ε)/(2, q − ε).
If q = 2 then ε = − and 〈s〉 × C = 3 × SU7(2) < SU8(2) < G; however
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an element of order 3 in SU8(2) centralizing SU7(2) is central, contradicting
the fact that C / CG(s). If q = 3 then s has order 2, and again CG(x) must
be Aε7(q). Finally, suppose q = 4. Then CG(s) = (q− ε)×SL

ε
7(4) < SLε8(4).

If ε = +, then the conclusion follows by 2.1; if ε = −, the bound on |CG(x)|
implies that u = 1, so x = diag(ω3, ω, . . . , ω) ∈ SU8(4), where ω

5 = 1.
Hence x lies in a subgroup SU3(4)× SU5(4), giving the result by 3.1.

Next suppose C = Aε7(q). Then |s| = 2, ε = − and q = 3. The bound
forces the Jordan form of u in Aε7(q) to have no blocks of size greater than
3, and at least 2 trivial blocks. Hence x = su ∈ Aε3(q)A

ε
3(q) < Aε7(q), giving

the conclusion by 3.1.

Next consider C = D6(q). Here s ∈ CG(C) = A1(q). If q = 2 then
|s| = 3, and x = su ∈ A1(2)D6(2) with s ∈ A1(2) and u ∈ D6(2). Since s is
a commutator in A1(2), the conclusion now follows by 3.1(vi). Now suppose
q = 3 or 4. Using [50, p. 34], the bound on |CG(x)| forces the Jordan form
of the projection u0 of u in the natural 12-dimensional D6-module to be one
of 1, (J22 , J

8
1 ), (J3, J

9
1 ), (J

4
2 , J

4
1 ), (J

6
2 ), (J3, J

2
2 , J

5
1 ). If q = 4 the projection of

u in C lies in a subgroup Ω8(q)× Ω4(q), and so x ∈ A1(q)× Ω8(q)× Ω4(q),
giving the result by 3.1. Finally let q = 3. If u0 has no J3 blocks, then u0 ∈
Aε5(q) < C, so x ∈ A1(q)Aε5(q) < Aε2(q)A

ε
5(q), and the result follows using

3.1. If u0 = (J3, J
2
2 , J

5
1 ), then the bound on |CG(x)| forces the projection of

u in CG(C) = A1(q) to be 1, and so x = su ∈ Dε4(q) < C, giving the result
by 3.1. If u0 = (J3, J

9
1 ), then x centralizes a subgroup A2(q) of C generated

by root groups, and so x ∈ CG(A2(q)) = A5(q), giving the result by 2.1.

The case where C = Dε5(q) is similar and easier: here, the bound on
|CG(x)| forces the projection u0 of u in C to be 1 if q ≥ 34, and to centralize
a root A2(q) in C if q = 2. Hence in any case x centralizes a root A2(q), so
x ∈ CG(A2(q)) = A5(q), giving the result by 2.1.

Finally, suppose C = Eε6(q). If q = 2 then |s| = 3 and 〈s〉 = Z(C), so x ∈
C = 2E6(2) and the result follows by 3.1. Assume q ≥ 3. By [34], the bound
on |CG(x)| forces u to be in one of the C-classes labelled 1, A1, 2A1, 3A1, A2,
the latter two only if q ≤ 3. Moreover, the centralizer of u in Ē6 is connected,
except for the last class A2, in which case CĒ6(u)/CĒ6(u)

0 ∼= Z2.

If u is in the class 1 or A1, then CC(u) contains a subsystem subgroup
Aε5(q), so x ∈ CG(A

ε
5(q)) = Aε2(q) < Aε3(q), giving the result in the usual

way. If u is in class 2A1 then u ∈ B1(q) < Dε5(q) < C, so CC(u) contains a
subgroup B3(q), which in turn contains an A2(q) generated by root groups,
so x ∈ CG(A2(q)) = A5(q), giving the result by 2.1.

Now suppose that u is in class 3A1 or A2, in which case q ≤ 3. In
the first case u lies in a subgroup Aε5(q) of C, and hence x = su lies in
a subgroup Aε5(q)A

ε
2(q) of G. For q = 3 this gives the result by 3.2; for

q = 2, observe that u centralizes a fundamental SL2 of C, hence x lies in
CG(SL2(2)) = D6(2), again giving the conclusion by 3.2.

75



Finally, suppose u is in class A2, so CĒ6(u)/CĒ6(u)
0 ∼= Z2, and uĒ6 ∩ C

splits into two C-classes. One of these has representative lying in a sub-
system subgroup Aε2(q); if u is in this class, then x = su lies in subsystem
subgroups Aε2(q)A

ε
5(q) and D6(q) of G, giving the result as before. Suppose

u is in the other class. Since CĒ6(u) contains a subsystem A22, which has
fixed point group A2(q

2), u lies in CC(A2(q
2)) = A−ε2 (q) (see [27, Table

5.1]), and hence x = su lies in NG(A
−ε
2 (q)) = A−ε2 (q)A

−ε
5 (q). This yields

the conclusion for q = 3 and also for q = 2, ε = −, by 3.2. However, in the
remaining case ε = +, q = 2, C = E6(2) does not centralize any non-identity
element of G = E7(2), so this does not occur.

This completes the proof of Theorem 7.1 for G = E7(q).

Proof of Theorem 7.1 for Eε6(q)

Let G = Eε6(q). We may assume that q ≥ 3 by 3.1(vi). By 2.4, we may
assume that q ≤ 5 if ε = + and q ≤ 7 if ε = −.

Let x be a non-identity unipotent element of G. Using 2.6 and 7.2 as
before,

E(x) =
∑

1 6=χ∈ Irr(G)

χ(x)

χ(1)
≤
3

4
+
|CG(x)|1/2k(G)1/2

q16/2
,

and hence |E(x)| < 1 if |CG(x)| ≤ q21. Thus assume |CG(x)| > q21. By [34],
xḠ is in one of the classes D4(a1), A3 + A1, 2A2 + A1, A3, A2 + 2A1, 2A2,
A2 + A1, A2, 3A1, 2A1, A1. In the first case x lies in a subgroup D

δ
4(q); in

the second x lies in a subgroup Aε3(q)A1(q) if q > 3 and in a subgroup A
ε
5(q)

if q = 3; and in all other cases x lies in a subgroup Aε2(q)
3 or A±2 (q)A

±
2 (q

2).
The result follows from 3.1.

Now suppose x ∈ G is non-unipotent, say x = su with s the semisimple
part. The above inequality for E(x) holds with 3/4 replaced by 19/20, giving
|E(x)| < 1 if |CG(x)| < q19/2. Thus assume that |CG(x)| > q19/2. Then
CG(s) has a quasisimple normal subgroup C = D

ε
5(q), D

δ
4(q), A

ε
5(q), A

ε
4(q),

Aε3(q), (A
3
2)σ or (A

2
2)σ (the latter two possibilities denoting the fixed points

under σ of subsystem subgroups A2(K)
3 or A2(K)

2 of Ḡ).

Suppose first that C = Dε5(q). Inspection of unipotent centralizer orders
in [50] shows that u ∈ C has one of the following Jordan block structures
on the natural 10-dimensional C-module:

q odd: u = (J23 , J
4
1 ), (J3, J

2
2 , J

3
1 ), (J

4
2 , J

2
1 ), (J3, J

7
1 ), (J

2
2 , J

6
1 ) or (J

10
1 )

q even: u = (J23 , J
4
1 ), (J

4
2 , J

2
1 ) (2 classes), (J

2
2 , J

6
1 ) (2 classes), or (J

10
1 ).

If u = (J23 , J
4
1 ), then u lies in a subgroup A = A±ε2 (q) of C generated by

root subgroups, so x = su ∈ ACG(A) = (Aε2(q))
3 or A−ε2 (q)A2(q

2) (see [27,
Table 5.1]), and the conclusion follows by 3.2.
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We claim that for all the other classes, u is centralized by a fundamental
subgroup A1(q) of C. For q odd this follows from the fact that in dimension
4, an element (J22 ) lies in one of the SL2(q) factors of SL2(q) ⊗ SL2(q) =
Ω+4 (q). For q even, it is clear except for the 2 classes (J

4
2 , J

2
1 ); these are

the classes called a4 and c4 in [1], from which we see that a4 = diag(a2, a2),
c4 = diag(a2, c2), and a2 = (J

2
2 ) lies in a factor SL2(q) of Ω

+
4 (q) as above.

Hence x = su ∈ CG(A1(q)) = Aε5(q) which yields the conclusion for
ε = + by 2.1, and for ε = −, q ≤ 4 by 3.1. Thus assume now that ε = −
and q > 4, so that q = 5 or 7.

If u = (J3, J
7
1 ), (J

2
2 , J

6
1 ) or (J

10
1 ), then u centralizes a subgroup A

ε
2(q) of

C, so x lies in the centralizer of this subgroup, which is (Aε2(q))
2, giving the

conclusion by 3.2.

The remaining cases are u = (J3, J
2
2 , J

3
1 ) or (J

4
2 , J

2
1 ). These have D5-

centralizers of dimensions 21 and 25 respectively. In these cases we place x
in a subgroup A−2 (q)

3 of G. First observe that by [29, 2.1], for the subsystem
subgroup A32 of the algebraic group E6,

L(E6)|A
3
2 = L(A

3
2) + (V3 ⊗ V3 ⊗ V3) + (V

∗
3 ⊗ V

∗
3 ⊗ V

∗
3 ),

where V3 is the natural module for A2 = SL3. For c ∈ Fq2 , let t(c) be
the image in A32 of the element ((c, c, c

−2), (c−1, c−1, c2), (1, 1, 1)); we check
that t(c) has centralizer of dimension 46 in L(E6), and so this centralizer
is D5T1. Hence we may take the semisimple element s to be t(c) for some
c ∈ Fq2 of order dividing q+1. Moreover, let u1 = ((J2, J1), (J2, J1), (J2, J1)),
and u2 = ((J

3
1 ), (J2, J1), (J2, J1)) ∈ A32; we check that su1 and su2 have

centralizers in L(E6) of dimensions 22 and 26 respectively, and hence x = su
is conjugate to one of these elements. It follows that x lies in a subgroup
A−2 (q)

3 of G, as desired, and the conclusion now follows by 3.2.

This completes the argument when C = Dε5(q).

The other possibilities for C are much easier to handle, and we do so
rather briefly. First consider the case where C = Dδ4(q). Here the bound
|CG(x)| > q19/2 forces u to be either 1 or a long root element in C. Hence
u lies in a subgroup A = Aε2(q) of C, whence x = su ∈ ACG(A) = Aε2(q)

3,
giving the conclusion by 3.2.

If C = Aε5(q) then s ∈ CG(C) = A1(q), and the projection u0 of U
in C must be 1, (J2, J

4
1 ), (J

2
2 , J

2
1 ) or (J3, J

3
1 ). For q = 3, observe that u0

centralizes a fundamental A1(q), so x ∈ CG(A1(q)) = Aε5(q), giving the
conclusion by 3.1. For q > 3, observe that u0 lies in a subgroup A

ε
3(q) of C,

and so x = su ∈ A1(q)Aε3(q), giving the conclusion by 3.2.

If C is Aε4(q) or A
ε
3(q), then the projection u0 of u in C must be 1 or a

transvection, which lies in a subgroup Aε2(q), giving the result as before.

Finally, if C is (A32)σ or (A
2
2)σ, the bound forces u = 1 and s lies in a

subgroup (A32)σ, giving the conclusion by 3.2.
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This completes the proof of Theorem 7.1.

The proof of Ore’s conjecture is now complete.
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