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Abstract 

The role of the professional engineer has shifted over time from the application of narrowly defined 

technical expertise to a more holistic contribution to the betterment of society.  However as the 

profession has sought to develop these ‘habits of mind’ in engineering students, it has become 

apparent that both students and faculty find it difficult to transition from traditional technical subjects 

to the often nebulous realm of sustainability.  This paper introduces a simple mathematical model 

based on a Cobb-Douglas production function to show how key principles of sustainable development 

can be introduced to students in a familiar setting.  Examples are provided of how the model might be 

incorporated into an overall sustainability curriculum, emphasising the model’s role not as a predictive 

calculating tool but as a conceptual framework through which sustainability can be explored and better 

understood. 

Notation 

D level of development 

E environmental capital 

S social capital 

K economic capital 

t time 
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1 Introduction 

In a survey of the history of civil engineering, Jowitt (2004) remarked upon the discipline’s transition 

from one that thrived on local problems tackled with “technical rationality” to one which is 

increasingly asked to deal with systemic ‘wicked’ problems.  These large-scale multi-disciplinary 

challenges, like climate change or urbanization, defy narrow technical solutions and consequently 

require engineers “to be more fully aware of the economic, social and environmental dimensions of 

their activities and more skilled in meeting their objectives” (p. 87).   The article emphasised the need 

to reform engineering education so that the concept of sustainable development was integrated into 

mainstream training in order to develop “an appropriate habit of mind, attitudes, systems skills and 

domains of knowledge to enable the engineers of the future to better contribute to society”.  These 

recommendations, arising from an Institution of Civil Engineers Task Group, have since been widely 

adopted by the engineering profession, both in the UK and overseas (e.g. RAE 2005; Engineering 

Council 2013; JBM 2013). 

However it remains an open question how best to translate these ambitions into practice.  The Joint 

Board of Moderators, responsible for accrediting engineering education in the UK, has provided a 

number of recommendations in this regard, for example, asking that an explicit sustainability thread 

run through degree programmes with an increased focus on related coursework and the economic and 

social aspects of sustainability (JBM 2011).  Furthermore, the JBM and Royal Academy of 

Engineering have initiated an exercise to produce guidance for lecturers on embedding sustainability 

in undergraduate engineering courses.  This has led to a brief report that outlines nine core principles 

that lecturers can incorporate into their own teaching, along with examples of best practice (Broadbent 

2012).  Alongside these changes in the undergraduate curriculum, a number of universities also offer 

specialized sustainable development programmes for engineers particularly at the post-graduate level 

(Kamp 2006; Fenner et al. 2005; Perdan et al. 2000; Fisk & Ahearn 2006).   

Arguably the biggest challenge for those seeking to teach engineers about sustainable development is 

to persuade both students and faculty that it belongs alongside more traditional curriculum.  As Jowitt 
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(2004, p.79) says, “Engineers are not comfortable—and rightly so—with the idea of a profession 

which eschews rigour.” Having been trained in this way, how are engineers supposed to respond when 

presented with “sustainable development”, a concept which – with apologies to the Brundtland 

Commission – is widely critiqued for lacking a clear definition (Hopwood et al. 2005)?  A worldwide 

survey of engineering students indeed confirms that they have difficulty making links between general 

sustainability theory and the detail of engineering practice (Azapagic et al. 2005). Even textbooks that 

emphasise the softer sides of sustainability seem to struggle with clearly communicating the practice 

of sustainable development (Fisk 2011), and those with an engineering focus rely primarily on text-

based narratives to develop key concepts, which are arguably off-putting for those more at home with 

equations (Allenby 2011). 

This paper therefore explores one potential strategy to ease the transition from core engineering 

disciplines to the messy world of sustainable development: the use of a simple mathematical model 

that captures core concepts.  While engineers may tend to think of mathematical models as 

codifications of immutable natural laws, other disciplines – in particular, economics – use 

mathematical models extensively as conceptual models, as ways of thinking about problems that are 

significantly messier than a neat equation might initially suggest.  As a starting point, I assume that the 

students of interest here are upper year undergraduates or graduate students; that is, engineers with a 

good grounding in the basic technical subjects of the discipline and beginning to encounter 

sustainability either through dedicated taught modules, problem-based learning, or their own reading 

and experience. 

2 The pedagogical value of mathematical models  

An important feature of an undergraduate engineering degree is an increased maturity and confidence 

with mathematical modelling.  Whereas a final year school student might be expected to memorize an 

equation like F = ma, undergraduates are gradually taught to derive such models from first principles, 

experimental data, and a growing body of experience.  For example, this might mean writing and 
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solving the balance of forces in a static structure, where the geometry of the particular system will 

vary from problem to problem.  However the theory underlying such models is still presented 

essentially as a fact to be memorized; it is only much later in post-graduate education that a student is 

expected to derive equations based on new theoretical understandings of a physical system. 

While this serves the “technical rationality” of basic engineering practice well, it does stand in stark 

contrast to the mathematical models used in other disciplines, notably economics. As Gilboa et al. 

(2011) note, economic models are often highly stylised representations of a system that draw heavily 

on theoretical innovation.  In other words, the heavy lifting of economic models is not in the 

mathematics per se but in the framing of the problem, formalised by mathematical equations (see 

Arrow et al. 2011 for a selection of such models).  This tradition has of course led to substantial 

critiques of economic models: that they yield poor predictions, that they are just as likely to reflect the 

modeller’s political and other interests rather than any ‘objective’ description of the problem, that they 

adopt assumptions that have been empirically shown to be false.  But Gilboa et al. argue that this is 

largely a misunderstanding, that good economists recognize these limitations but use mathematical 

models in a perfectly valid manner as “ ‘theoretical cases’, which help understand economic problems 

by drawing analogies between the model and the problem....[E]conomic models, empirical data, 

experimental results and other sources of knowledge are all on equal footing, that is, they all provide 

cases to which a given problem can be compared.” (p. 1). 

This kind of mathematical modelling is not uncommon in the wider sustainability literature.  Consider 

the IPAT framework, which decomposes environmental impact I into the product of three drivers: 

population P, affluence A, and the level of technology T (Ehrlich & Holdren 1972; Commoner 1972). 

The Kaya identity is a similar well-known expression for decomposing global carbon dioxide 

emissions into the product of population, affluence, energy intensity, and carbon intensity.  

These particular equations are restricted to environmental impacts, and therefore they lack generality 

when dealing with sustainable development overall. In contrast, Phillips (2009) offers a more 

elaborate model of sustainability grounded in earth systems science: 
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𝑆 𝑡 = 𝐸 𝑡 − 𝐻!"(𝑡) 

where S(t) is sustainable development at time t, E is the environment, and HNI 
 represents human needs.  

Each term of the model is duly expanded and differential equations are used to examine the dynamic 

relationships between human society and the environment.  The model offers insight on potential 

sustainable ‘operating’ strategies for the global environment, as well as being applied in a detailed 

analysis of Bangalore Metro System. However the model is strongly linked with the notion of 

environmental carrying capacity, and does not include social or economic influences. 

3 The model  

The above literature suggests that a simple mathematical model could be a valuable tool for providing 

a theoretical understanding of sustainable development using a rigorous language familiar to 

undergraduate engineers.  The model that follows therefore emphasises pedagogy over calculation and 

to that end, three specific sustainable development concepts are prioritised: 

• What is development and how can it be measured?   

• The three capitals, i.e. social, economic, and environmental, and their role in development 

• Choosing system boundaries and the role of innovation, as illustrated by efficient resource use  

3.1 What is development? 

We start with a basic equation and a question: 

 𝐷 = 𝑓 𝑿  (1)  

where D is development and X is a vector of factors that affect development through some unknown 

function, f(.).  The question is simple: what is development?  This can be used to stimulate a 

discussion which, in my teaching experience, tends to elicit widely differing views about what should 

be prioritised.  For example, those from a developed country background may emphasise the 

importance of environmental protection, whereas those from a developing country often stress the 
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need for basic human and economic development.  This approach introduces two of Broadbent’s 

(2012) nine principles of sustainable development:  an emphasis on learning from other stakeholders 

and understanding different perspectives.  The conversation can also be steered to engage with 

Principle Eight “Emphasise a Commitment to Professional Values”, as students can be presented with 

alternative definitions of the engineering profession and asked to decide how their definitions of 

development fit with that professional duty.   

A related question prompted by the mathematical formulation is how to measure development.  This 

can stimulate a review of existing development metrics, such as the UN’s Human Development Index 

or the Stiglitz report on the efficacy of GDP as a measure of social progress (Stiglitz et al. 2009). 

Related indicator techniques, such as multi-criteria decision analysis, can also be introduced at this 

point.   

Note that we have not yet said anything about sustainable development.  However, with the further 

assumption that D is a function of time, we can write a simple zero-order differential equation to 

define sustainable development, which of course is reminiscent of the Brundtland definition: 

 𝑑𝐷
𝑑𝑡

≥ 0 (2)  

Hopefully by now the brighter students in the class should be asking whether D is a per capita quantity 

or an aggregate measure. This is an excellent opportunity to reflect on classical sustainability concepts 

such as inter-generational (or even inter-species) equity (Haughton 1999) since we should be 

interested in neither the sum, nor the mean level of development, but its distribution.  For simplicity, 

the model adopts the assumption that D is an aggregate metric although exercises can be introduced to 

illustrate how the properties of a distributed variable might be summarized (e.g. calculating the Gini 

coefficient). 
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3.2 The three capitals 

With the left-hand side of (1) sorted out, the next question is the mystery function f.  The goal here is 

to choose a functional form that is both plausible and instructive.  To this end, the Cobb-Douglas 

production function is an ideal solution such that: 

 𝐷 = 𝑎𝑆!𝐾!𝐸! (3)  

where a is a constant (equation (3) could be written a proportional statement omitting this constant to 

avoid confusion), α, β, and γ are model-fit parameters (ignored at present), and S, K, and E represent 

social, economic, and environmental capital stocks respectively (these can also be treated as functions 

of time, like D).  This particular formulation satisfies the plausibility criteria as it has been 

experimentally validated in a range of economic applications and the simple multiplicative 

relationship is easy to understand.   

The instructive value of the Cobb-Douglas formulation primarily comes by allowing one to explicitly 

highlight the potential roles of social, economic, and environmental capital in delivering development.  

For example, one can introduce general notions of a capital stock as a pool of resource from which 

flows can be added or subtracted, flows which facilitate desired outcomes.  Starting with a simple one-

capital stock model for example, one could again differentiate with respect to time to see how 

satisfying the sustainable development condition (2) requires increasing or maintaining the level of 

these capital stocks.  Furthermore by introducing multiple forms of capital, one can begin to discuss 

the complex trade-offs and substitution effects that exist between capital stocks.  For example, one can 

explore notions of ‘strong’ versus ‘weak’ sustainability (Neumayer 2003). These trade-offs encourage 

students to assess their own values and beliefs about what is truly important and worth sustaining and 

if illustrated with practical examples (for example, contrasting the UK and Norwegian allocation of 

North Sea oil revenues) enables students to practice Broadbent’s Principle Seven “Apply Judgement to 

Real Problems.” 
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3.3 System boundaries and innovation 

Sustainable development is largely about taking a systems view of an engineering problem and trying 

to anticipate how an initially attractive technical solution might be undermined by liabilities displaced 

beyond in the original temporal or spatial boundaries of the analysis.  Using the model, this can be 

illustrated with the example of resource depletion. 

Using a simplified version of (3), we could write that development depends solely on the consumption 

of an environmental capital stock ∆𝐸, rather than the total stock E: 

𝐷 = 𝑎∆𝐸! 

E might therefore represent fossil fuel energy resources or land area.  If we assume that there exists 

some finite amount of this resource E0 available at time t = 0, then the following constraint can be 

written: 

∆𝐸 𝑡 𝑑𝑡

!!"#

!!!

≤ 𝐸! 

Students can be prompted to ask what is an appropriate choice for the system boundary, in this case 

the maximum time Tmax. Historical examples can help to illustrate the consequences of such 

constraints, such as the way in which the depletion of the England’s forests in the seventeenth century 

led to a spatial expansion of the system boundary through increased timber trade with the Baltic region 

and the Americas, and the substitution of charcoal by newly discovered fossil fuel reserves. The role 

of engineers can be developed further by exploring how they might intervene in this stylised system to 

ensure continued performance for  t > Tmax.  With a few additional manipulations, the importance of 

continual innovation can be highlighted.  This is often one of the most difficult things for students to 

appreciate, although recent examples like the shale gas revolution in the United States help to illustrate 

the point that, while resource depletion looks unavoidable under current circumstances, the real 

question is whether rates of innovation and the flexibility of system boundaries will be sufficient to 
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avoid these constraints.  Similar points are made with a simple mathematical model by Bettencourt et 

al. (2007) and in Tainter’s well-known studies of collapse in complex civilizations (Tainter 1988). 

4 Applying the model in curriculum design 

To reiterate, the goal of this model is not perfect representational accuracy but to provide a framework 

that uses rigorous methods familiar to engineering students as a way of gradually introducing 

sustainable development.  Clearly at some point, trying to shoehorn additional concepts into this 

model will become unwieldy and so this section provides a number of curriculum design 

recommendations for its effective use within a broader course of study. 

4.1 Learning objectives 

Learning objectives are statements of what a student is expected to have accomplished or what skills 

they should have acquired following a learning programme.  It is suggested that the model should be 

introduced as part of the learning objectives, explicitly noting its value as a conceptual framework for 

thinking about sustainability.  For example, an overall module objective might be: “At the end of this 

module, students should be able to apply a simple mathematical model of development to critically 

assess the sustainability of an engineering project.” Equally for a single lesson, “At the end of this 

lecture, students should be able to explain the concept of the “three capitals” in words and 

mathematically.”   

These objectives should of course align with the overall aims of the module which are likely to remain 

high-level, as in the Engineering Council’s guidance that chartered engineers should “undertake 

engineering work in a way that contributes to sustainable development” (Engineering Council 2013). 

4.2 Syllabus and recommended reading 

The JBM (2013) provides a number of specific recommendations for the syllabus of the sustainability 

components of engineering degree programmes including specific topics such as energy, waste, and 

water management, life-cycle assessment methods, carbon accounting, and options assessment.  As 
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illustrated above, the model provides a framework through which many of these concepts and methods 

can be introduced.  Perhaps the most significant change to the syllabus of a sustainability programme 

that is suggested by the model is a greater emphasis on economics, in particular notions of substitution 

and innovation.  There is a wide literature available from which examples can be drawn, including 

William Nordhaus’s work on resource economics and critiques of the limits to growth model 

(Nordhaus 1973; Nordhaus 1992) and Eric Neumayer’s work on indicators of sustainable development 

(Neumayer 2003; Neumayer et al. 2005). Encouraging students to investigate this literature explicitly 

addresses two of Broadbent’s principles: to take learners out of their comfort zones and to learn from 

other disciplines. 

4.3 Learning and teaching methods 

The use of the model is compatible with traditional engineering learning and teaching methods such as 

lecturing, tutorials, and self-study problem sheets.  To aid the transition from traditional analysis to 

sustainability analysis, one might therefore design a series of tutorials in which the learner starts out 

performing fairly standard manipulations of the model (e.g. fitting it to data, making simple 

predictions of future behaviour with a given functional form, etc), but then gradually introducing 

complications (e.g. using the model to perform a calculation based on a case study which is then 

contradicted by some real-life factors not in the model). Ultimately, the students should engage in 

problem-based learning, applying the model as they see fit to understand the problem and assess 

potential solutions. 

4.4 Assessment 

Assessment should reflect the learning objectives and therefore it is suggested that examinations or 

other assessed work focus more on the use of the model as a conceptual model, rather than evaluating 

mathematical skill.  In the sample learning objective provided earlier, it was suggested that students 

use the model to “critically assess” a project’s sustainability.  This is a very open-ended question and 
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gives the student a chance to draw in complementary material which they have explored elsewhere in 

the curriculum. 

5 Conclusion 

Engineering students at both undergraduate and post-graduate level are increasingly being asked to 

learn about sustainable development, both as a guiding principle for professional practice and as an 

umbrella term for a set of specific analytical tools like life-cycle assessment.  However as the 

profession has sought to introduce these changes, it has become apparent that one of the greatest 

challenges is to introduce students trained in rigorous technical disciplines to the rather subjective 

notion of sustainability.   

This paper has sought to overcome this problem by drawing on the use of mathematical models in 

economics, where such models are used primarily as theoretical tools to build understanding of 

complex problems.  Using a standard Cobb-Douglas production function and basic calculus, it was 

demonstrated that a number of core sustainable development principles such as the goal of 

development, three capitals analysis, and system boundaries can all be explored.  Recommendations 

were also provided for how the model can be incorporated into different stages of a curriculum to ease 

the tradition from ‘hard’ engineering to the ‘softer’ science of sustainability.   
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