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On Testing for Impropriety of Complex-Valued
Gaussian Vectors

A. T. Walden⇤ (Member IEEE) and P. Rubin-Delanchy

Abstract— We consider the problem of testing whether a
complex-valued random vector is proper, i.e., is uncorre-
lated with its complex conjugate. We formulate the testing
problem in terms of real-valued Gaussian random vectors,
so we can make use of some useful existing results which
enable us to study the null distributions of two test statis-
tics. The tests depend only on the sample-size, n, and the
dimensionality of the vector, p. The basic behaviours of the
distributions of the test statistics are derived and critical
values (thresholds) are calculated and presented for certain
(n, p) values. For one of these tests we derive a distributional
approximation for a transform of the statistic, potentially
very useful in practice for rapid and simple testing. We also
study the power (detection probability) of the tests. Our
results mean that testing for propriety can be a practical
and undaunting procedure.

Keywords— Detection probability, hypothesis test, im-
proper complex random vector, invariant statistic, threshold

I. Introduction

A complex-valued random vector may be categorized
as proper/improper, according to whether it is uncorre-
lated/correlated with its complex conjugate. A proper ran-
dom vector has second-order statistics which are invariant
to circular rotation, and the simpler statistical properties
have led to the assumption of propriety being made simply
for mathematical convenience.

Complex-valued signals occur naturally in areas such as
quadrature Doppler ultrasound [9], seismic signal analysis
[19], magnetic resonance imaging [14], and communications
(where improper signals arise in binary phase shift keying
and Gaussian minimum shift keying [18]).

Let Z = [Z1, . . . , Zp]T denote a complex-valued random
column vector with mean zero. The covariance matrix of
the complex-valued vector Z is defined as � = E{ZZH},
and is a Hermitian positive definite matrix. Additionally,
Z has a relation matrix [11] or complementary covariance
matrix [16] given by R = E{ZZT }, which is complex and
symmetric.

These two matrices both appear in the so-called aug-
mented covariance matrix G, [16], [20]. Suppose we form
the augmented vector Ž by adjoining Z and Z⇤, i.e.,

Ž = [ZT ,ZH ]T = [Z1, . . . , Zp, Z
⇤
1 , . . . , Z⇤

p ]T ,
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then letting G = E{ŽŽH}, we obtain

G = E

⇢
Z
Z⇤

� ⇥
ZH ZT

⇤�
=


� R
R⇤ �⇤

�
. (1)

G captures all the second-order structure of Z. A complex-
valued random vector for which R = 0, is called a proper
complex-valued random vector, [8]. When R 6= 0 it is called
an improper complex-valued random vector [16].

A test for propriety was developed independently by
Ollila and Koivunen [10] and by Schreier, Scharf and
Hanssen [17], [18], the hypothesis test being H0 : R = 0
versus H1 : R 6= 0, and was based on n independent and
identically distributed samples, Z1, . . . ,Zn, of the random
vector. In this paper we shall instead study propriety test-
ing via a real-valued representation of the problem, (Sec-
tion II). While one of our two test statistics is identical to
the one found in the references above, our approach links
readily to several important statistical inferential results
already available in the statistical literature, enabling us
to study the null distributions of the two test statistics,
and calculate critical values, (testing thresholds), for cer-
tain combinations of sample size n and dimensionality p.
For one of these tests we derive a Box approximation, po-
tentially very useful in practice for the rapid and simple
calculation of critical values. We study the power of the
tests (detection probabilities) to compare the two statis-
tics. Our results make testing for impropriety a practical
procedure.

Section III develops the ideas underlying the testing
problem in the real-valued Gaussian formulation, and
shows that the key components, the canonical correlations,
are the same as obtained in [18]. A test statistic T1, which
emerges from our formulation, is also seen to provide a gen-
eralized likelihood ratio test. Another statistic, T2, gives
a locally most powerful test, but it is pointed out in Sec-
tion IV that no uniformly most powerful test exists for
the problem for p � 2, answering a query posed in [18].
Section V shows that under the null hypothesis we can as-
sume the covariance matrix is the identity, thus enabling
the computation of quantiles of the distributions of the
test statistics. The basic behaviours of the distributions
of the test statistics as functions of (n, p) are derived in
Section VI. Critical values are calculated and presented in
Section VII for certain (n, p) values, and Box’s approxima-
tion method is used to derive a distribution for a trans-
formation of T1. It is shown that Box’s approximation de-
livers an acceptable level of accuracy for much smaller n
than Wilk’s asymptotic approximation. The powers of the
two tests are examined in Section VIII, where the distance
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of hypothesis alternatives from the null are measured in
terms of the norm of a certain eigenvalue vector. Our re-
sulting recommendations for practical testing are given in
Section IX.

II. The real-valued formulation

We can also write Z = X +iY , where X = Re{Z},Y =
Im{Z}. Defining

X̌ = [XT ,Y T ]T = [X1, . . . ,Xp, Y1, . . . , Yp]T ,

we have [11], X̌ = MŽ, where

M = 1
2


Ip Ip

�iIp iIp

�
and M�1 =


Ip iIp

Ip �iIp

�
.

Let ⌥ denote the covariance matrix of the real-valued ran-
dom vector X̌ and suppose we partition up the 2p ⇥ 2p
covariance matrix ⌥ = cov{X̌} = E{X̌X̌T } into the four
constituent p⇥ p matrices,

⌥ =

⌥XX ⌥XY

⌥Y X ⌥Y Y

�
. (2)

Now let H+ denote the set of real 2p⇥2p positive definite
symmetric matrices of “complex” form


A1 �A2

A2 A1

�
, (3)

where A1 is symmetric, A2 is antisymmetric (A2 = �AT
2 ),

and therefore A1 + iA2 is Hermitian. Let us define R to
be the set of matrices of the form

E F
F �E

�
, (4)

where E and F are real p ⇥ p symmetric matrices. Then
⌥ in (2) can be written as

⌥ = ⌥̇ + ⌥̈, (5)

where

⌥̇ = 1
2


⌥XX + ⌥Y Y ⌥XY �⌥Y X

⌥Y X �⌥XY ⌥XX + ⌥Y Y

�
2 H+,

and

⌥̈ = 1
2


⌥XX �⌥Y Y ⌥XY + ⌥Y X

⌥Y X + ⌥XY ⌥Y Y �⌥XX

�
2 R.

Now

� = E{ZZH} = (⌥XX + ⌥Y Y ) + i(⌥Y X �⌥XY ),

and

R = E{ZZT } = (⌥XX �⌥Y Y ) + i(⌥Y X + ⌥XY ).

If R = 0, then ⌥XX = ⌥Y Y = Re{�}/2, and ⌥XY =
�⌥Y X = �Im{�}/2. So a test for propriety could be

based on the hypothesis test H0 : ⌥̈ = 0 versus H1 : ⌥̈ 6=
0.

Under propriety, ⌥ takes the special form

⌥ = 1
2

2
4Re{�} �Im{�}

Im{�} Re{�}

3
5 =


⌥1 �⌥2

⌥2 ⌥1

�
2 H+. (6)

If we let S+ denote the set of real 2p⇥ 2p positive definite
symmetric matrices the test can be written in the alterna-
tive form

H0 : ⌥ 2 H+ versus H1 : ⌥ 2 S+\H+, (7)

exactly as studied in two technical papers by Andersson,
Brøns and Jensen [1] and Andersson and Perlman [2] where
the problem was called “testing the hypothesis that a co-
variance matrix has complex structure”.

III. Invariant statistics

A. Transformation Groups

Let C denote the group of all nonsingular real 2p ⇥ 2p
matrices of the form

C =

C1 �C2

C2 C1

�
, (8)

where C1 and C2 are p⇥ p. Note that H+ = S+ \ C.
Now if H 2 H+ and C 2 C then we can define a group

action

gC(H) = CHCT 2 H+. (9)

The group {gC : C 2 C} has identity gI . Likewise R and
S+ are closed under the action of the group, so that if
R 2 R then

gC(R) = CRCT 2 R. (10)

and if S 2 S+ then

gC(S) = CSCT 2 S+. (11)

Equations (9) and (11) imply [6, p. 213] that the test (7)
is invariant under the group action gC(·). The principle of
invariance [6, p. 11] then suggests restricting attention to
test statistics T which satisfy

T (S) = T (gC(S)).

Such a statistic is said to be invariant to the action of the
group: its value does not depend on whether S or gC(S)
is observed. A statistic T is maximal invariant if every
other invariant statistic is a function of it, or equivalently
[6, p. 11], [21, p. 86]

T (S1) = T (S2)) S2 = gC(S1) for some C 2 C. (12)
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B. Invariant Parameter

It is proved in [2] that every matrix ⌥ 2 S+ can be
represented in the form

⌥ = CDCT where D =

Ip + ⇤ 0

0 Ip �⇤

�
; (13)

where C 2 C, Ip is the p ⇥ p identity matrix, ⇤ =
diag(�1, . . . , �p), 1 > �1 � · · · � �p � 0, and ±�1, . . . ,±�p

are the eigenvalues of ⌥̇�1⌥̈. Now

D =

Ip 0
0 Ip

�
+


⇤ 0
0 �⇤

�
,

where 
Ip 0
0 Ip

�
2 H+ and


⇤ 0
0 �⇤

�
2 R. (14)

Using (9) and (10) we see that if ⇤ is null then ⌥ =
CCT 2 H+ since CCT 2 C and CCT is positive definite;
if ⇤ is non-null then ⌥ 62 H+. The testing problem can
therefore be restated as

H0 : all �k = 0 versus H1 : not all �k = 0. (15)

The invariance of the test to the group action is to be
expected since gC(⌥) = C⌥CT is equivalent to trans-
forming X̌ to CX̌ which in turn is equivalent [8, p. 1296]
to transforming Z to (C1 + iC2)Z, which is just a linear
transform of Z, and proper complex random vectors are
still proper after such a transformation [8, p. 1295].

C. Canonical Correlations

The idea of a test for impropriety being invariant under
linear (but not widely linear) transformations underpinned
the approach in Schreier et al. [18] based on complex-
valued representations. They showed that the canonical
correlations between Z and Z⇤ are the nonnegative square-
roots of the eigenvalues of ��1R��⇤R⇤; the corresponding
empirical or sample canonical correlations are maximal in-
variant and any test statistic must be a function of them.

It is straightforward to show that �1, . . . , �p are canon-
ical correlations. ⌥ 2 S+ can be represented in the form
CDCT for some C 2 C, where D is given in (13). By [2,
p. 36] this can be rewritten as

⌥ = cov{X̌} = B


Ip ⇤
⇤ Ip

�
BT ,

where
B =

1p
2
C


Ip Ip

�Ip Ip

�
2 C.

So,

cov{B�1X̌} =

Ip ⇤
⇤ Ip

�
= P ,

say, so that P = B�1⌥B�H . Let T = M�1. A straight-
forward matrix manipulation then shows that

cov{TB�1T�1Ž} = TPT H = 2


Ip i⇤
�i⇤ Ip

�
.

Let Bij be the (i, j)th p⇥ p block of B�1 2 C. Then

TB�1T�1 =

B11 + iB21 0

0 B11 � iB21

�
=


B0 0
0 B⇤

0

�
,

say. Hence TB�1T�1 is block diagonal and we see that

cov
⇢

2�1/2 e�i⇡/4B0Z
2�1/2 ei⇡/4B⇤

0Z⇤

��
=


Ip ⇤
⇤ Ip

�
,

which means that �1, . . . , �p are the canonical correlations
between Z and Z⇤, (e.g., [4, p. 371]).

We note that,

det(D) =
pY

k=1

(1� �2
k) = det


Ip ⇤
⇤ Ip

�
,

so, interestingly, the determinant of the representation ma-
trix D is identical to the determinant of the covariance ma-
trix of the variables in canonical form. The sample version
of this determinant will later provide a test statistic.

We now verify that the canonical correlations, �1, . . . , �p,
are identical to those in [18], by writing them in the same
form. The eigenvalues of ⌥̇�1⌥̈ are the solutions of the
generalized eigenproblem

det(⌥̈� �⌥̇) = 0. (16)

Then the roots of

det(T ⌥̈T H � �T ⌥̇T H) = 0 (17)

are the same as those of (16) since

det(T ⌥̈T H � �T ⌥̇T H) = det(T [⌥̈� �⌥̇]T H)
= det(T ) · det(⌥̈� �⌥̇) · det(T H),

and det(T ),det(T H) 6= 0.
Hence the eigenvalues of ⌥̇�1⌥̈ are also the eigenvalues

of (T ⌥̇T H)�1T ⌥̈T H . Now,

(T ⌥̇T H)�1 =

��1 0
0 ��⇤

�
and T ⌥̈T H =


0 R

R⇤ 0

�
.

The non-negative eigenvalues of
0 ��1R

��⇤R⇤ 0

�
,

are the non-negative square-roots of the eigenvalues of
��1R��⇤R⇤, and so are identical to the canonical cor-
relations derived in [18].

D. Test Statistics

Let X̌1, . . . , X̌n be n independent 2p-dimensional ran-
dom vectors from a normal distribution with mean 0 and
covariance matrix ⌥. If n � 2p the maximum likelihood
estimator of ⌥ is given by

⌥̂ = (1/n)
n�1X
k=0

X̌kX̌T
k
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and W = n⌥̂ has the real Wishart distribution on S+ and
using (5) can be written W = Ẇ +Ẅ with Ẇ 2 H+, Ẅ 2
R.

Note we require n � 2p. This should not be a problem
in practice as we expect the dimension of the vector, p, to
be small, and the sample size, n, could range from at least
2p up to very large, in which case results are ‘asymptotic’
in nature; see Sections VI–VIII.

Every matrix W 2 S+ can be represented in the form

W = CD̂CT where D̂ =

Ip + L 0

0 Ip �L

�
; (18)

where C 2 C, L = diag(`1, . . . , `p), 1 > `1 � · · · � `p �
0, and ±`1, . . . ,±`p are the eigenvalues of Ẇ�1Ẅ . The
statistic T (W ) ⌘ (`1, . . . , `p) is comprised of empirical or
sample canonical correlations and is thus maximal invari-
ant.

From (13) and (15) we see that, under H0, det(D) = 1.
An invariant test follows as: accept H0 i↵

T1(n, p) ⌘ det(D̂) =
pY

k=1

(1� `2k) � c1, (19)

where c1 is a constant. So if det(D̂) does not depart ‘too
much’ from unity, we accept H0; note that T1(n, p) is a
function of the maximal invariant.

The size of the test (false alarm probability), ↵, finds c1

such that Pr
hQp

k=1(1� `2k) � c1|⌥̇
i

= 1� ↵.

The power of a test is generally considered the gold-
standard by which the quality of a test is assessed. In our
notation it is defined as the probability that H0 is rejected
given the true matrix parameter ⌥. Ideally a power func-
tion would be zero for those ⌥ corresponding to the null hy-
pothesis (⌥ = ⌥̇), and unity for the alternative. The power
of the test (19) could be written Pr

⇥Qp
k=1(1� `2k) < c1|⌥

⇤
,

and was shown in [2] to increase with non-zero values of
the �k. Given a small enough value of ↵ (and consequently
small c1) for the power of the test to approach the ideal
value of unity it is su�cient (and necessary) that the largest
eigenvalue approaches unity, i.e., �1 ! 1.

A second invariant test statistic, T2(n, p), derived from
the maximal invariant provides another invariant test. We
accept H0 if

T2(n, p) ⌘ 1
2 tr(Ẇ�1ẄẆ�1Ẅ ) =

pX
k=1

`2k  c2, (20)

where c2 is a constant; this is the locally most powerful
(LMP) invariant test for (7) [2, Theorem 9.1]. Simply put
this means that the test has as high a power as possible for
alternatives H1 that are close to the null hypothesis, i.e.,
those for which all the �k are small. For the LMP test of
(20), the power function is Pr

⇥Pp
k=1 `2k > c2,

��⌥], and for
small enough ↵ (large c2) this need not approach 1 as �1 !
1; it may need more than one eigenvalue close to 1. As an
LMP test, it may perform poorly for alternatives far from
the null. These questions are examined in Section VIII.

Since the geometric mean of (1� `21), . . . , (1� `2p) is less
than or equal to the arithmetic mean of the same, then, in
terms of the test statistics,

T p
1 (n, p)  1� 1

pT2(n, p).

Often we shall abbreviate T1(n, p) and T2(n, p) to just
T1 and T2, respectively.

E. Generalized Likelihood Ratio

Now W = n⌥̂ has the real Wishart distribution on S+

and hence has probability density function,

f(W ;n,⌥) = 1
C (det{⌥})�n/2(det{W })(n�2p�1)/2

⇥ exp(�tr{⌥�1W }/2), (21)

with

C = 2np⇡p(2p�1)/2
2pY

i=1

�((n + 1� i)/2),

where �(·) denotes the gamma function, tr{·} denotes the
trace of a matrix, and n � 2p. Direct calculation shows
that tr{⌥�1W } = tr{⌥�1Ẇ }, [1, p. 396], so also,

f(W ;n,⌥) = 1
C (det{⌥})�n/2(det{W })(n�2p�1)/2

⇥ exp(�tr{⌥�1Ẇ }/2). (22)

The maximum likelihood estimator of ⌥ is W /n, so from
(21),

sup
⌥

f(W ;n,⌥) = 1
C (det{W /n})�n/2(det{W })(n�2p�1)/2

⇥ exp(�tr{nI2p}/2),

Under H0 the maximum likelihood estimator of ⌥̇ is Ẇ /n,
[2, p. 38], so from (22)

sup
⌥̇

f(W ;n,⌥) = 1
C (det{Ẇ /n})�n/2(det{W })(n�2p�1)/2

⇥ exp(�tr{nI2p}/2).

So the generalized likelihood ratio (e.g., [7, p. 419]), LG

say, is

LG =
sup⌥̇ f(W ;n,⌥)
sup⌥ f(W ;n,⌥)

=

det{W }
det{Ẇ }

�n/2

.

Then

L2/n
G =

det{W }
det{Ẇ }

(23)

= det{Ẇ�1}det{W }
= det{Ẇ�1}det{Ẇ + Ẅ }
= det{I2p + Ẇ�1Ẅ }

=
pY

k=1

(1� `k)
pY

k=1

(1 + `k)

=
pY

k=1

(1� `2k), (24)
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Fig. 1. The mean of the null distribution of T1 for p = 2, 4, 6 in
plots (a) – (c), respectively, and the standard deviation of the same
in plots (d) – (f), respectively. The x-axis is on a log10 scale and
2p < n  1000.

since ±`1, . . . ,±`p are the eigenvalues of Ẇ�1Ẅ and if
�1, . . . , �2p are eigenvalues of V then det{I2p + V } =Q2p

i=1(1 + �i).
So we see that the test (19) — which arose via the repre-

sentation in (13) and (14) — is also a GLR test (the power
2/n is merely a monotone transformation). The statistic
(24) was also derived in [18] via a complex-valued GLR
approach.

IV. Uniformly most powerful test?

The question of the uniformly most powerful (UMP) in-
variant test for impropriety was raised in [18]. In fact no
UMP invariant test exists for the problem for p � 2 [2].
The test (20) is the LMP invariant test, hence is admissi-
ble among invariant tests. But for n > 2p it can be shown
that (19) is admissible among all tests. Since these tests
are di↵erent when p � 2, no UMP invariant test exists in
this case.

When p = 1 the tests are the same and can be simplified:
accept H0 if `1  c3; this is the UMP invariant test for
testing for bivariate sphericity, i.e., ⌥ / I2, a problem
with a long history of research [13].

V. A Key Result for Null Distributions of Test
Statistics

If the distributions of T1 and T2 under the null hypoth-
esis, (for which ⌥ = ⌥̇), were di↵erent for each known
parameter pair (n, p) and unknown covariance matrix ⌥̇,
then a lack of knowledge of the latter would be a major
stumbling block for construction of significance levels via
simulation.

A very important and useful result when considering the
null distribution of both test statistics T1 and T2 is [1] that
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Fig. 2. Empirical histograms for the null distribution of T1 when
p = 4 for (a) n = 10, (b) n = 25, (c) n = 50, and (d) n = 400.

there exists a C 2 C such that CHCT = I2p for H 2 H+.
Under the null hypothesis (7), ⌥ = ⌥̇ 2 H+, and so there
exists a C 2 C such that C⌥̇CT = I2p, and thus we can
take ⌥̇ = I2p when studying the properties of the test
statistics under the null hypothesis. This means that we
can calculate quantiles of the null distributions of T1 and
T2 by simulation using ⌥̇ = I2p, and the calculated values
will be invariant for all other ⌥̇ for the same (n, p).

VI. Distributional properties of statistics

A. Statistic T1

Under the null hypothesis the statistic T1 in (19) has
known moments [2]. After some reduction the rth moment
E{T r

1 } may be written as

22rp

Qp
j=1 �(n� j + 1)

Q2p
j=1 �((2r + n� j + 1)/2)Q2p

j=1 �((n� j + 1)/2)
Qp

j=1 �(2r + n� j + 1)
, (25)

where �(·) is the gamma function. We notice that the rth
moment depends only on (n, p), as would follow from the
discussion in Section V.

Fig. 1 shows the mean and standard deviation of T1 for
p = 2, 4, 6 and 2p  n  1000. We see that for all p val-
ues the mean monotonically increases with n from 0 to
1, but the standard deviation firstly increases with n and
then decreases. This suggests that the probability density
function of T1 is firstly squashed tightly close to zero for
small values of n, spreads out and moves along the axis
as n increases, and then finally is squashed tightly close
to 1 for large values of n. This can be readily verified by
simulation. With ⌥ = ⌥̇ = I2p, 1000 independent values
of T1 were generated for p = 4 for n values of 10, 25, 50
and 400. The resulting empirical histograms are given in
Fig. 2, verifying the postulated behaviour.
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Fig. 3. Empirical histograms for the null distribution of T2 when
p = 4 for (a) n = 10, (b) n = 25, (c) n = 50, and (d) n = 100.

B. Statistic T2

An analytic form for the moments of T2 is not known.
1000 independent values of T2 were generated for p = 4
for n values of 10, 25, 50 and 100. The resulting empirical
histograms are given in Fig. 3, which shows that the proba-
bility density function of T2 is firstly spread out away from
zero, and moves along the axis towards zero, with decreas-
ing spread, as n increases, finally being squashed tightly
close to 0 for large values of n. (T2 is upper-bounded by
p since each contributing eigenvalue is upper-bounded by
unity.) So T2 behaves in a more traditional way, having a
decreasing variance with increasing number of samples n.
This was verified for p = 2 and 6 also.

VII. Critical regions for tests

A. Simulation

Given a specified size of the test ↵ we need to find critical
regions [0, c1,n,p,↵] for T1(n, p) and [c2,n,p,↵, p] for T2(n, p)
such that the null hypothesis is rejected if the sample value
of the statistic falls in the critical region. So we need to
find the critical values c1,n,p,↵ and c2,n,p,↵.

The critical values were found as follows. For a given
(n, p) combination, n independent 2p-dimensional random
vectors from a normal distribution with mean 0 and co-
variance matrix ⌥ = I2p, were generated. Then W ,
Ẇ and Ẅ = W � Ẇ were calculated, and T1(n, p) =Qp

k=1(1�`2k) calculated from det{W }/det{Ẇ } as in (23),
and T2(n, p) =

Pp
k=1 `2k from 1

2 tr(Ẇ�1ẄẆ�1Ẅ ) as in
(20). This was repeated 30 000 times to produce smooth
empirical cumulative distribution functions, Pr(T1  t1),
for T1, and Pr(T2  t2), for T2. From these, the critical
values c1,n,p,↵ and c2,n,p,↵, respectively, were “looked-up.”
Results for some (n, p) combinations are given in Table 1.

Because of the particular form of the moments for T1 we

n
p ↵ 20 50 100 1000
2 .01 c1 0.3892 0.7004 0.8434 0.9833

c2 0.6806 0.3111 0.1596 0.0168
.05 c1 0.4939 0.7664 0.8797 0.9874

c2 0.5477 0.2392 0.1220 0.0125
.1 c1 0.5507 0.7998 0.8968 0.9894

c2 0.4802 0.2048 0.1042 0.0106
4 .01 c1 0.0859 0.4355 0.6737 0.9627

c2 1.5260 0.6891 0.3587 0.0373
.05 c1 0.1282 0.4990 0.7191 0.9689

c2 1.3510 0.5903 0.3046 0.0313
.1 c1 0.1559 0.5339 0.7422 0.9719

c2 1.2546 0.5416 0.2771 0.0284
6 .01 c1 0.0061 0.2135 0.4897 0.9351

c2 2.7021 1.2086 0.6323 0.0659
.05 c1 0.0113 0.2576 0.5342 0.9429

c2 2.4962 1.0893 0.5636 0.0582
.1 c1 0.0154 0.2834 0.5579 0.9469

c2 2.3875 1.0256 0.5263 0.0541

TABLE I

Critical values c1,n,p,↵ and c2,n,p,↵, for T1 and T2,

respectively, for ↵ = 0.01, 0.05 and 0.1.

can use an approximation method due to Box [3, eqn. 70]
to much more easily derive the critical values for a simple
transformation of T1 for (n, p) combinations. In the follow-
ing we derive Box’s approximation for T1 and examine its
accuracy by reference to exact (simulated) critical values.

B. Box’s �2 Approach For T1

Box [3, eqn. 70] considers a statistic which has its rth
moment of the form

C0

"Qk
j=1 y

yj

jQm
i=1 xxi

i

#r Qm
i=1 �(xi[1 + r] + ⇠i)Qk
j=1 �(yj [1 + r] + ⌘j)

, (26)

where
Pm

i=1 xi =
Pk

j=1 yj , and the constant C0 is obtained
by putting r = 0 and taking the reciprocal. We can make
(25) equal to (26) if we set m = 2p, k = p, xi = 1, yj =
2, ⇠i = (n� i� 1)/2, ⌘j = n� j � 1, with

"Qk
j=1 y

yj

jQm
i=1 xxi

i

#r

= 22rp and c0 =
Qp

j=1 �(n� j + 1)Q2p
j=1 �((n� j + 1)/2)

.

We note
Pm

i=1 xi =
Pk

j=1 yj = 2p. The degrees of freedom
f associated with the �2 approximation are given by [3,
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eqn. 73]

f = �2

2
4 mX

i=1

⇠i �
kX

j=1

⌘j � 1
2 (m� k)

3
5

= �2

2
4 2pX

i=1

(n� i� 1)/2�
pX

j=1

(n� j � 1)� 1
2 (2p� p)

3
5

= p(p + 1). (27)

A matrix in S+ is 2p ⇥ 2p symmetric, and therefore has
1
2 (4p2 � 2p) + 2p = 2p2 + p free parameters. A matrix in
H+ of form (3) has 1

2 (p2�p)+p = 1
2p2+ 1

2p free parameters
for the symmetric matrix A1 and 1

2 (p2�p) free parameters
for the skew-symmetric matrix A2 (since the diagonal must
be zeros), a total of p2 free parameters. The di↵erence is
thus 2p2 + p � p2 = p(p + 1). Hence f is the di↵erence
between the number of free parameters under H0 and H1,
as would be expected.

Box approximates T 0
1 = �2 log T1/cB as �2

f , where cB is
a constant determined as follows. We compute a1 = 2!1/f
and a2 = 4!2/f where

!l =
(�1)l+1

l(l + 1)

h 2pX
i=1

Bl+1((n� i� 1)/2)

� 1
2l

pX
j=1

Bl+1(n� j � 1)
i
, (28)

where Bl(x) is the Bernoulli polynomial of degree l and
order unity, with

B2(x) = x2 � x + 1
6 ; B3(x) = x3 � 3

2x2 + 1
2x.

For our problem we find a2 � a2
1 for all combinations of

(n, p) so we set cB = 1/(1 � a1), as determined by [3,
p. 328].

Some tedious algebra shows that !1 in (28) can be rewrit-
ten in the much simpler form

!1 = 1
4 [p3 � (n� 3)p2 � (n� 2)p].

Then with f = p(p + 1), as in (27),

cB =
f

f � 2!1
=

2
n� p

,

so that Box’s �2
f approximation takes the form

T 0
1 = �2 log T1/cB = �(n� p) log T1

d= �2
f , (29)

i.e., �(n � p) log T1 has the distribution of a chi-square
random variable with f degrees of freedom. So the test
may be carried out simply as: accept H0 i↵

�(n� p) log T1 < �2
f (1� ↵), (30)

where �2
f (1�↵) is the 100(1�↵)% point of the chi-square

distribution with f degrees of freedom.
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Fig. 4. Comparison of �2
f approximations for transformed T1, on

a log n versus log 100P scale, where P is either PB (Box), shown as
solid line, or PW (Wilks), shown as dashed line. (a)-(c) are for p = 2
and ↵ = 0.01, 0.05 and 0.1, respectively. (d)-(f) are likewise for p = 4,
and plots (g)-(i) are for p = 6. The horizontal dotted line delineates
a +20% error on the nominal level (the latter corresponding to the
x-axis).

Returning to (24) we see that LG = Tn/2
1 so that

�2 log LG = �n log T1. Now Wilk’s theorem [21, p. 132]
says that under H0, as n!1,

�2 log LG = �n log T1
d! �2

f (31)

i.e., �n log T1 tends in distribution to �2
f .

Comparing (29) and (31) we see that both agree as n!
1 with p fixed. However, our derived result (29) should
give better results for smaller n than the purely asymptotic
result (31).

The smooth empirical cumulative distribution function,
Pr(T1  t1), produced as described in Section VII-A, was
used to “look-up” PB = Pr(�(n � p) log T1 > �2

f (1 � ↵)),
for (29) and PW = Pr(�n log T1 > �2

f (1 � ↵)), for (31);
the desired result is of course ↵. The results are given in
Fig. 4. For clarity, all plots are presented on a log n versus
log 100P scale, where P is either PB or PW . Plots (a)-(c)
are for p = 2 and ↵ = 0.01, 0.05 and 0.1, respectively.
Plots (d)-(f) are likewise for p = 4, and plots (g)-(i) are
for p = 6. In each plot PB is the solid line, and PW the
dashed line. While the ideal result is the horizontal x-axis,
the horizontal dotted line in each plot delineates a +20%
error on the nominal level. (For example, if the size of
the test was 1.2% instead of 1%, or 6% instead of 5%, we
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would probably find this quite acceptable for most practical
purposes.)

We can see immediately that an acceptable level of accu-
racy is reached for Box’s approximation (29) for an n about
1/10 as large as required for Wilk’s asymptotic formula
(31). As p increases both approaches need larger samples
for the same accuracy. For Box’s method, for good accu-
racy, the required n increases from about 10 to 50 to 100
as p increases from 2 to 4 to 6. With reference to Fig. 1
we note that the required n seems to be on the “decreasing
with n” side of the standard deviation curves.

Simulations for (n, p) combinations for n � 100, p � 4
were very time consuming, so Box’s approximation would
seem very useful in these cases. It does not work so well for
small n’s as p increases, but, fortunately, for these cases the
critical values can be obtained by simulation in the order
of minutes.

VIII. Power

To address the questions raised at the end of Section III-
D regarding power of the tests, we need to be able to gener-
ate improper complex signals such that the positive eigen-
values �1, . . . , �p of ⌥̇�1⌥̈ can be controlled so that we
can change not only the “distance of alternatives from the
null,” but also the relative sizes of the eigenvalues.

Consider the simulation of a vector [Z1, . . . , Zp]T with
the same second-order structure (covariance and relation
matrix) as a sample of length p from the complex second-
order stationary autoregressive process {Zt} of order p, de-
noted CAR(p),

Zt =
pX

j=1

�jZt�j + ⇣t, (32)

where the {�j} are complex-valued parameters and {⇣t} is
doubly white noise, [12]

�⇣,⌧ = cov{⇣t+⌧ , ⇣t} = E{⇣t+⌧⇣⇤t } = �2
⇣�⌧,0

r⇣,⌧ = rel {⇣t+⌧ , ⇣t} = E{⇣t+⌧⇣t} = r⇣�⌧,0,

�j,k denotes the Kronecker delta, and rel{·} denotes the re-
lation between ⇣t+⌧ and ⇣t. The roots of the z-polynomial
�(z) = 1 � �1z � · · · � �pzp are outside the unit cir-
cle, the minimum-phase case, and values of �2

⇣ and r⇣ ,
must satisfy |r⇣ | < �2

⇣ , [12]. Let �⌧ = cov{Zt+⌧ , Zt} and
r⌧ = rel {Zt+⌧ , Zt}. Given the roots of �(z) we firstly find
[15], �0, . . . , �p�1, proportional to �2

⇣ , and r0, . . . , rp�1, pro-
portional to r⇣ . Then

� =

2
6664

�0 �⇤1 �⇤2 . . . �⇤p�1

�1 �0 �⇤1 . . . �⇤p�2
...

...
...

...
�p�1 �p�2 �p�3 . . . �0

3
7775 ,

and

R =

2
6664

r0 r1 r2 . . . rp�1

r1 r0 r1 . . . rp�2
...

...
...

...
rp�1 rp�2 rp�3 . . . r0

3
7775 ,

so G follows from (1).
The covariance matrix of X̌ is given by ⌥ = MGMH .

We can calculate a Cholesky decomposition of ⌥ such that
⌥ = V V H . If we let U = [U1, . . . , Up]T where the Uk’s
are independent standard normal random variables, then
if Q = V U , we know that the covariance matrix of Q is
given by ⌥ and so to obtain Z1, . . . , Zp with the correct
second-order (covariance and relation) structure we simply
compute M�1Q, and take the first p entries.

With (15) in mind we can measure the “distance of al-
ternatives from the null” by the Euclidean norm k�k2 =
(
Pp

l=1 �2
l )

1/2 of the vector [�1, . . . , �p] of positive eigenval-
ues of ⌥̇�1⌥̈.

Consider the case p = 2. Let �1 and �2 be the roots of
�(z) = 1 � �1z � �2z2. Then �1 = (1/�1) + (1/�2) and
�2 = �1/(�1�2). Let �1 and �2 be �1 = |�1| exp(i⇡✓1),
�2 = |�2| exp(�i⇡✓1), and let r⇣ = |r⇣ | exp(�i⇡✓2). (We
took ✓1 = 1/5 and ✓2 = 1/3.)

We set �2
⇣ = 1 and as |r⇣ | ! �2

⇣ , from zero, the norm
k�k2 increases. Furthermore, if we take |�1| ⇡ |�2| (both
greater than unity), then �1 ⇡ �2, while if we take, say,
|�2| >> |�1|, then �1 >> �2, where as usual �1 is the
largest eigenvalue. So we are able to control not only the
“distance of alternatives from the null” by changing |r⇣ |,
but also examine whether disparately-sized eigenvalues af-
fect the behaviour of the LMP test, by changing |�2|/|�1|.
Model A has |�1| = 1.1 and |�2| = 1.2, so the eigenvalues
are nearly equal, and model B has |�1| = 1.1 and |�2| = 20,
for which �1 ⇡ 6�2. For |r⇣ | = 0 we know the power is sim-
ply ↵, so we looked at |r⇣ | = 0.1, 0.2, . . . , 1.0. n was set to
50.

Each choice of |�1|, |�2|, |r⇣ | corresponds to a dif-
ferent ⌥. We estimated Pr

⇥Qp
k=1(1� `2k) < c1|⌥

⇤
, and

Pr
⇥Pp

k=1 `2k > c2,
��⌥], from 5000 independent repetitions.

The results for p = 2 are shown in Fig. 5, where the
power for T1 is shown by the solid line, and T2 by the
dotted line. Results for model A are given for 100↵ of 1,
and 5, in Figs. 5(a) and (b), respectively, and for model B
likewise in Figs. 5(c) and (d). For model A the LMP test
marginally outperforms the GLR test over all alternatives
(as measured by the norm k�k2 as |r⇣ | ranges from 0 to
1). For model B the LMP test is slightly superior only for
small alternative distances, but for larger ones it is slightly
inferior. We also looked at sample sizes of n = 1000; here
the power plots reach unity for a norm as small as 0.2, but
again the two tests are barely distinguishable in terms of
power.

Finally we considered p = 6. Roots were found for a
model C giving a range of positive eigenvalues with the
smallest two being 1/5th and 1/200th of the magnitude of
the largest. Again the norm k�k2 was found as |r⇣ | ranged
from 0 to 1. Power results are given in Fig. 6 for 100↵ of 1
and 5 in Figs. 6(a) and (b), respectively, when n = 50, and
likewise in Figs. 6(c) and (d), when n = 1000. When n = 50
the LMP test outperforms the GLR test, but the di↵erence
is again small, while when n = 1000 the di↵erence in power
of the two tests is negligible.
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Fig. 5. Power of the test (19) shown as solid line, and (20) shown as
dotted line, for n = 50 and p = 2. (The two are barely distinguish-
able.) (a) and (b) are for ↵ = 0.01 and 0.05, respectively, for model
A. (c) and (d) are likewise for model B.

IX. Concluding Comments

We have carried out a thorough study of two statis-
tics for testing whether a complex vector Z is proper
by using results based on the 2p ⇥ 2p covariance matrix
⌥ = cov{X̌} = E{X̌X̌T } of the real-valued random vec-
tor X̌ = [XT ,Y T ]T = [X1, . . . ,Xp, Y1, . . . , Yp]T , where
X = Re{Z},Y = Im{Z}. The test statistics are functions
of the sample canonical correlations between Z and Z⇤; it
has been shown that the true canonical correlations are the
same as those derived in [18].

We have been able to draw on a number of useful re-
sults in [1] and [2] enabling us to empirically study the null
distributions of the test statistics, and obtain critical val-
ues. Further we were able to derive a Box approximation,
namely that the distribution of �(n�p) log T1 can be taken
to be a �2

f distribution, for many (n, p) combinations.

Evidence provided by a power study leads us to conclude
that T1 and T2 behave very similarly in terms of quality. In
practice a good strategy seems to be to use (19) combined
with the Box approximation, (for suitable (n, p) combina-
tions as discussed in Section VII-B), enabling rapid and
simple calculation of critical values. For combinations of
(n, p) unsuitable for Box’s approximation, the patterns of
critical values in Table I may enable a conclusion to be
drawn, but failing that a simulation study, along the lines
described in Section VII-A will be necessary to determine
critical values. In any event, the results in this paper mean
that testing for propriety can be a practical and undaunt-
ing procedure.
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Fig. 6. Power of the test (19) shown as solid line, and (20) shown
as dotted line, for p = 6 and model C. (a) and (b) are for ↵ = 0.01
and 0.05, respectively, for n = 50 and (c) and (d) are likewise for
n = 1000.
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