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[1] In seismic waveform tomography, if using reflection data with limited source-receiver
offsets, it is difficult to reconstruct the deep part of the subsurface velocity model. We
present two approaches to tackle this problem: layer stripping and weighted updating. In a
layer-stripping procedure, we replace the top portion of seismic data with synthetics
generated from the previous-layer inversion and make the current inversion focus on the
minimization of the data misfit corresponding to the deep part of the model. To improve
efficiency, we use only sparsely sampled frequency data in the deeper-layer inversions,
unlike the first-layer inversion where we use densely sampled frequency data as usual.
The sparsely sampled frequencies together have the full wave number coverage for
effective imaging. Combined use of dense and sparse sampling in frequency is a
compromise between resolution and efficiency, as it reduces the number of iterations
needed in layer-stripping inversion while still producing a good image. In the second
scheme, we apply depth-dependent weights to model updates in order to improve the
convergence in an iterative solution. The weighting is inversely proportional to the ray
density variation along the depth and is mathematically equivalent to the application of an
inverse Hessian matrix which sharpens the gradient vector for model updating. For real
seismic data, we transfer point source shot records to line source records, by partial
amplitude compensation and phase adjusting, before inputting it to the waveform
tomography. We perform traveltime inversion to generate a reliable layered velocity model
and then waveform tomography to produce a high-resolution image of the subsurface
model through frequency domain iteration.
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1. Introduction

[2] This paper presents strategies and procedures for
seismic waveform tomography with reflection geometry,
where reflection seismic data are recorded at the earth’s
surface with limited source-receiver offsets. Waveform
tomography has been used successfully on transmission
data, such as crosshole seismic data [Pratt and Worthington,
1990; Song et al., 1995; Pratt and Shipp, 1999; Zhou and
Greenhalgh, 2003; Pratt et al., 2004; Wang and Rao, 2006;
Rao et al., 2006]. It also has been applied to wide-angle
reflection/refraction seismic data with a certain degree of
success [Bunks et al., 1995; Pratt et al., 1996; Ravaut et al.,
2004; Operto et al., 2006; Bleibinhaus et al., 2007; Brenders
and Pratt, 2007a, 2007b]. In addition, waveform tomography
has been used for regional-scale studies on the crustal and
upper mantle velocity structure, using scattering waves,
surface waves and SHwaves from either exploration seismics
or broadband teleseismograms [Helmberger et al., 2001;
Pollitz and Fletcher, 2005; Priestley et al., 2006]. However,
there is little progress on its application to reflection seismic

data with limited source-receiver offsets [Pratt et al., 1998;
Hicks and Pratt, 2001; Shin and Min, 2006]. On the other
hand, the seismic reflection method is a routine practice in
the hydrocarbon exploration, as the data dominated by the
precritical reflection energy, reflected back from subsurface
contrasts in physical parameters, are well suited for seismic
migration for the structural image. Therefore, it would be
desirable if we are able to use these seismic reflection data to
quantitatively extract the earth’s physical parameters, which
are essential for identifying different lithologies, different
fracture characteristics, and even for indicating the hydro-
carbon distribution directly.
[3] However, when applying waveform tomography to

offset-limited reflection seismic data, it is difficult to recover
long-wavelength variations in velocity, since reflection
waveforms are highly sensitive to the contrasts in velocity
(or impedance), and are not so sensitive to long-wavelength
variations in velocity [Mora, 1988]. Snieder et al. [1989]
explored the possibility of decoupling the smooth reference
velocity and the short-wavelength variations by performing
waveform fit in an alternating fashion. Hicks and Pratt
[2001] suggested first to invert for the short-wavelength
variation in velocity and then for long-wavelength variation
with a suitable reparameterization to much fewer model
parameters. In any case, it is common to use traveltime
tomography to recover the long-wavelength velocity variation,
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and serve as a good starting model for the iterative wave-
form inversion [Wang and Rao, 2006].
[4] Another difficulty, when using reflection seismic data

in waveform tomography, is to recover the velocity variation
in the deep part of the model. There are number of causes.
First, because seismic reflection amplitudes decrease along
with increased depth, near-surface waveforms dominate the
data fitting in the inversion. In other words, near-surface
velocity updates have much more influence on the data
fitting than the deep-part updates. Second, ray density in the
shallow part is much higher than that in the deep part of the
model. Tomography is an integral along raypaths, on which

data residuals are evenly distributed, therefore, high ray
density leads to a large model update, and low ray density
to a small velocity update in the iterative solution. To tackle
the problem, we present two schemes in this paper. The first
scheme is a layer-stripping procedure which makes the
inversion focus on the reconstruction of the deep part of
the model, by removing the top portion of the data from the
inversion and keeping the top part of the model unchanged.
The second scheme scales the velocity updates with weights
according to the depth in the model.
[5] For real seismic data, we need to transform point

source shot records to line source shot records, before input
to waveform tomography. This is a partial compensation
involving amplitude correction and phase adjusting, imple-
mented in the time domain and frequency domain, respec-
tively. For typical reflection seismic data in hydrocarbon
exploration, we have no information less than 6 Hz. Thus
we perform reflection traveltime inversion to build a layered
velocity model, and use it in turn as an initial model for
waveform tomography. In waveform tomography, we use
different frequency components of data from low to high
frequencies in sequence, to gradually improve the resolution
of the subsurface velocity model.

2. Difficulty in Reflection Tomography

[6] Seismic waveform tomography is implemented in the
frequency domain [Pratt and Worthington, 1990; Pratt et al.,
1998]. The objective function for the inverse problem is
defined by data misfit as

J mð Þ ¼ P mð Þ � Pobs½ �HC�1
D P mð Þ � Pobs½ �; ð1Þ

where vector m is the velocity model to be inverted for,
P(m) is a synthetic seismic response based on the estimated
velocity modelm, Pobs is an observed seismic data set in the
frequency domain, and CD is the data covariance matrix
with units of (data)2, describing the uncertainties in the
observed data set. The superscript H in equation (1) denotes
the complex conjugate transpose. The frequency domain
waveform tomography is performed iteratively. For each
iteration, the inversion procedure may be divided into four
steps [Song et al., 1995; Operto et al., 2006; Wang and
Rao, 2006]: (1) for a given model estimate, calculating
the synthetic wavefield P0 (r;rs) at space position r corre-
sponding to a source point at rs; (2) using the weighted

data residual dP̂ = CD
�1 dP as virtual sources to generate a

so-called back-propagation wavefield Pb (r;rs); (3) cross
correlation of the original wavefield P0 (r;rs) and the back-
propagation wavefield Pb (r;rs) to get the gradient direction
g = CM ĝ, where CM is the model covariance matrix with
units of (model parameter)2; and (4) estimating the model
update dm = � ag, where a is the optimal step length that
can be found by using the linear approximation or simply
line search for a minimum of the objective function.
[7] For a detailed theoretical background about waveform

tomography, readers may refer to Tarantola [1984, 1987,
2005]. The frequency domain treatment can be found from
Pratt and Worthington [1990] and Pratt et al. [1998].
[8] Figure 1a shows the Marmousi velocity model of size

4550 � 2800 m. We set up such a model with relatively
narrow spatial extent for the purpose of testing the capacity

Figure 1. (a) The Marmousi velocity model. (b) The initial
velocity model used in waveform tomography. (c) Waveform
inversion image, in which only the top portion of the model
is well reconstructed.
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of seismic waveform tomography using reflection data with
limited source-receiver offsets as in exploration seismology.
In the frequency domain forward modeling and tomographic
inversion, the velocity model is discretized into 12.5 m cells,
and the wave equation is solved using a finite difference
scheme [Alford et al., 1974; Kelly et al., 1976; Virieux, 1986;
Levander, 1988; Pratt, 1990; Song et al., 1995; Štekl and
Pratt, 1998; Pratt, 1999; Min et al., 2000].

[9] Figure 1b shows the initial model used in the iterative
waveform tomography. It is a smooth version of the true
velocity model and is obtained by low-pass filtering with
cutoff wave number of 5 km�1. As a reference, the discre-
tized velocity model with cell size of 12.5 m has the Nyquist
wave number kNyq = 40 km�1. Thus the initial model
presents the long-wavelength background variation in the
velocity model, removing one of the possible causes of
problems in inversion convergence.
[10] Figure 1c shows the velocity image obtained from

waveform tomography. The frequencies used in inversion are
within the range from 2.7 to 30.0 Hz with 0.3 Hz sample
interval. The maximum frequency fmax = 30 Hz is due to the
limitation of our frequency domain finite difference modeling:

fmax ¼
cmin

4Dx
; ð2Þ

where the minimum velocity cmin = 1500 m/s, and cell size
Dx = 12.5 m. Because the data used are seismic reflection
data recorded with limited source-receiver offsets, we can
only obtain a well-constructed image of the topmost portion
of the model. In the following two sections, we will present
two schemes to overcome this problem in reflection seismic
waveform tomography.

3. Layer-Stripping Scheme for Reflection
Tomography

3.1. Layer-Stripping Implementation

[11] In a shot gather recorded at the earth surface, shallow
reflections are stronger than deep reflections and have more
contribution to the data misfit in the inversion’s objective
function. Deep reflections with weak energy cannot be
properly used in a waveform inversion to reconstruct a
subsurface image. Thus, a layer-stripping scheme seems
appropriate to deal with shallow and deep reflections in
sequence. We start the waveform inversion for the whole
model, as shown in Figure 1c. After that, we assume that the
topmost part of the model is well imaged and concentrate on
the reconstruction of the rest of the model. Then, we assume
the second layer of the model is also well imaged and focus
on the improvement of further deeper portions.
[12] Therefore, in each inversion of the layer-stripping

implementation, we divide the velocity model into basically
two parts: The top part is well reconstructed, and the bottom
part needs further update by waveform tomography. Accord-
ingly, the input to waveform tomography is a combination
of the original shot record and a synthetic record: the top
part is the synthetic generated from the well-reconstructed
top portion of the model, and the rest is the original seismic
data. In waveform tomography, where we update the model
parameters on the basis of the data residual back propagation,
we also keep the top portion of the model unchanged, and
restrict our model update to the bottom part of the model.
[13] The Marmousi model (Figure 1) is used again to

demonstrate the layer-stripping scheme for the reflection
waveform tomography. There are 362 source/receiver points
spreading along the surface from 0 to 4550 m, with interval
12.5 m. A seismic trace is sampled to 2001 points with time
interval of 2 ms, and the total length of a trace is 4 s. Figure 2a

Figure 2. (a) A shot record generated from the true model.
(b) A shot record in which the bottom portion (below the
dashed curve) is the original data and the top portion (above
the dashed curve) is generated from the first tomographic
model. (c) A shot record combining the original data (below
the dashed curve) and the synthetic (above the dashed curve)
generated from the second tomographic model. The dashed
curves in Figures 2b and 2c are the reflection traveltime
curves from the auxiliary plane interfaces at depths 1000 and
2000 m, respectively.
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is an example shot record generated from the true velocity
model of Figure 1a, and is one of the shot records input to the
first-time waveform inversion.
[14] In layer stripping to improve the model image in the

deep part, we set up an auxiliary plane boundary at depth
1000 m. Figure 2b is a shot record in which the top portion
of the original data is replaced with the synthetic generated
from the first waveform tomography model (Figure 1c). The
dashed curve is the reflection traveltime curve from the

auxiliary boundary at depth 1000 m, calculated using a
bending ray-tracing method [Wang and Houseman, 1995;
Wang, 2003]. We use the combined shot gathers such as
Figure 2b for the second waveform inversion. Similarly,
Figure 2c is a combined shot gather showing a dashed curve
of reflection traveltimes from the auxiliary plane boundary
at depth 2000 m in the model. We use this combined shot
record as the input to the third waveform inversion.
[15] Figure 3 demonstrates successive improvements in

the model image. After the first waveform tomography
(Figure 3a), we assume that the top portion of the model
is well imaged and focus on improving the part below the
auxiliary plane boundary at 1000 m. After the second
inversion (Figure 3b), the model above depth 2000 m is
well imaged. Then we focus on improving the bottom part
of the model below the depth 2000 m. Figure 3c shows the
final image from our layer-stripping waveform tomography.
[16] In each inversion, we keep the velocities unchanged

above an auxiliary boundary, and implement the model
update only to the part below either 1000 or 2000 m depth.
This is equivalent to giving a zero weight to the velocity
update above the boundary and a nonzero weight to the
velocity update below. As the data residual in an inversion
is spread to the model updates averagely along a raypath,
when a zero weight is given to some updates, a nonzero
weight for the rest should be larger than the unity. For the
second-time inversion to update a 2/3 portion of the model,
the nonzero weight is 1.5. For the third-time inversion to
update a 1/3 portion of the model, the nonzero weight is 3.0.
[17] Figure 4a displays a synthetic shot record, generated

from the first inversion model (Figure 3a). Figure 4b plots
the difference between the synthetic records generated from
the first inversion model (Figure 3a) and the second
inversion model (Figure 3b). Figure 4c is the difference
between the synthetic records generated from the second
inversion model (Figure 3b) and the third inversion model
(Figure 3c). Note that different amplitude scales are used in
the latter two plots, to reveal the very weak change in
waveform amplitudes.

3.2. Frequency Selection Strategy

[18] As the number of inversions in a layer-stripping
scheme is proportional to the number of layers to be
stripped, the computation time is linearly proportional to
the number of layers and also the total number of temporal
frequencies used in the inversion. We try now to use a
frequency selection strategy to reduce the number of fre-
quencies needed in waveform tomography. In reflection
geometry, source-receiver pairs vary with different offsets
and move along the surface. Sirgue and Pratt [2004] sug-
gested make an optimal use of different offsets in the
reflection experiment to create a variety of plane wave
imaging directions, and proposed a strategy for the frequency
discretization as

fnþ1 ¼
fn

a
; ð3Þ

where fn is the frequency previously used, fn + 1 is a new
frequency for inversion, and a = z/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2max þ z2

p
is the cosine

of the reflection angle, corresponding to the maximum value

Figure 3. (a) The first tomographic image, in which only
the top portion of the model is well imaged. (b) Tomographic
inversion focusing on the model part below depth 1000 m,
in which the model above depth 2000 m is well imaged.
(c) Tomographic inversion focusing on the model part below
depth 2000 m.
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of the half source-receiver offset hmax and the target depth z.
This strategy has been used recently by Brenders and Pratt
[2007b].
[19] For the Marmousi model here with hmax = 2275 m,

z = 2800 m and a 	 0.776, we may select the following
11 frequencies: 2.7, 3.4, 4.4, 5.7, 7.3, 9.4, 12.0, 15.5, 20.0,
25.7, 30.0 Hz. In this list, we include the dominant
frequency 20 Hz in the inversion, and set the last frequency
as fmax = 30 Hz, because of the limitation of finite difference

modeling as shown in equation (2), which is less than the
predicted value of 33.1 Hz. This strategy eliminates some
frequencies but has a continuous coverage on vertical wave
number kz, as

kzmin
fnþ1ð Þ ¼ kzmax

fnð Þ; ð4Þ

where

kzmax
¼ f

1
2
c0

; kzmin
¼ af

1
2
c0

ð5Þ

and c0/2 is half of the background velocity [Wu and Toksöz,
1987]. Figure 5 illustrates the wave number coverage
corresponding to the selected frequencies in waveform
tomography.
[20] On the other hand, if we assume there is no source-

receiver offset coverage to be exploited, we need to have
adequate wave number samples in order to obtain a suffi-
ciently good image in the model space. In this case the
sampling rate should satisfy the antialiasing condition,Dkz

1/zmax, where zmax is the maximum depth to be imaged, and
Dkz is the sampling rate of the vertical wave number. Given
the minimum value of the vertical wave number at frequency
f by equation (5), we have the difference between two
neighboring wave number samples as

Dkz � kzmin
f þDfð Þ � kzmin

fð Þ ¼ 2aDf

c0

 1

zmax

: ð6Þ

Figure 4. (a) A synthetic shot record generated from the
first inversion model (Figure 3a). (b) Difference between the
shot records generated from the second and first inversion
models (Figures 3b and 3a). (c) Difference between the shot
records generated from the third and second inversion
models (Figures 3c and 3b). Note that different scales are
used to plot the wave amplitudes in these three plots to
reveal weak amplitude changes in deeper-layer inversions.

Figure 5. The coverage of the vertical wave numbers
corresponding to 11 selected frequencies for waveform
tomography.
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We finally obtain the following antialiasing condition for
frequency sampling:

Df 
 c0

2azmax

: ð7Þ

In this example, we set up Df = 0.3 Hz.
[21] Figure 6a compares these two frequency selection

schemes, where the left side is the inversion result obtained
from the sparsely selected 11 frequencies, and the right side
is a (mirror) image of waveform tomography with the full
frequency range with a sampling interval of 0.3 Hz. For
each frequency, we perform 10 iterations of the inversion.
The comparison shows that waveform tomography using
11 selected frequencies has produced a faint image. This
comparison actually suggests that the total number of iter-
ations plays an important role in the inversion. Although 11
selected frequencies have full wave number coverage, the

total number of iterations in the inversion is 110 (= 10� 11).
With densely sampled frequencies, the wave number cover-
age was not increased at all, but the total number of iterations
(10 � 92 = 920) has been increased significantly in the
inversion. For this synthetic example, computation time
needed for the inversion of a single iteration and a single
frequency is about 5.2 min, running with a single CPU.
Therefore, 920 iterations needs about 80 h, and 110 iterations
needs about 9 h. Hence, time saving is significant with this
frequency selection scheme.
[22] Assuming we have used densely sampled frequencies

in the first inversion and produced a better constructed image
at the topmost portion of the model and a reasonable image
for the deeper part of the model, Figure 6b compares two
frequency sampling strategies for the second inversion
(below the red dashed line). The left-hand side is the
inversion result using 11 selected frequencies, and the right-
hand side is the (mirror) image generated by using densely
sampled frequencies. We can see that the two results are
quite similar from the auxiliary plane interface of 1000 m
downward.
[23] Therefore, to afford efficiency in a layer-stripping

procedure, we make a compromise by using densely sampled
frequencies with a constant sampling rate for the first time
of waveform tomography, and then using selective frequen-
cies with much sparse sampling for subsequent inversions
to improve the image of deeper portion of the model. The
computational time is no longer strictly proportional to the
number of layers in stripping. For all subsequent inversions
other than the first inversion, the computational time is just
fractional. Thus, the efficiency of such a compromised
layer-stripping scheme is affordable.

4. Weighted Updating Scheme for Reflection
Tomography

[24] In this section, instead of using a layer-stripping
approach, we present another scheme that can invert for
the entire velocity model at once, in which we apply depth-
dependent weighting factors to velocity updating in the
inversion.
[25] By definition, tomography is an integral along the

raypath; that is, data residuals are spread evenly along the
raypath. The residual projected to a cell is then linearly
related to the model update of the cell, and thus the model
update depends upon the total length of ray segments within
the cell, i.e., the ray density. Since the ray density in the
shallow depth is much higher than that in deeper parts of
the model, the model update in the shallow depth is much
higher than that in the deep portion of the model. This is a
underlying rationale for using depth-dependent weights in
model updating.
[26] In the gradient inversion method, the objective

function is minimized by updating the model vector along
the opposite direction to the gradient:

m ‘þ1ð Þ ¼ m ‘ð Þ � ag: ð8Þ

Pratt et al. [1998] pointed out that the application of an
inverse Hessian matrix would sharpen or focus the gradient

Figure 6. (a) Comparison of two frequency selection
schemes: on the left is the inversion result of 11 sparsely
selected frequencies, and on the right is the mirror image of
the waveform tomography result with the full frequency
range between 2.7 and 30 Hz with a sampling interval of
0.3 Hz. (b) Comparison of two frequency selection schemes
in a layer-stripping procedure. On the left, the first inversion
uses the full frequency range, but the rest uses 11 sparsely
sampled frequencies. On the right, each time inversion uses
the full frequency range.
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vector g and could improve the convergence rate in an
iterative solution:

m ‘þ1ð Þ ¼ m ‘ð Þ � aH�1g; ð9Þ

where H is the Hessian matrix,

H 	 Re JTJ�
� �

; ð10Þ

given in terms of matrix J, the Fréchet derivatives of
seismic wavefield with respect to the model elements: Jij =
@Pi /@mj, for i = 0, 1, . . ., N � 1, j = 0, 1, . . ., M � 1. The
Hessian matrix H in (10) is an approximation. An accurate
Hessian matrix of second derivative of the objective
function with respect to the model parameters involves not
only the multiplication of Fréchet matrix and its transpose but
also the derivative of the Fréchet matrix. The latter is
generally expensive to compute but is small if the residual is
small or the forward equation is quasi-linear, and is often
dropped off in practical application [Tarantola, 1987]. Pratt
et al. [1998] showed that the diagonal of the approximate
Hessian matrix H is dominant compared to other compo-
nents, and that its inverse matrix could be used to scale the
images. Shin et al. [2001] also addressed the issue whereby

the Hessian matrix in the Gauss-Newton method plays a
scaling role in the steepest-descent direction.
[27] By definition, the wavefield is given by

P r;wð Þ ¼ S rs;wð ÞG r; rs;wð Þ; ð11Þ

where r is the position vector, rs is the source position,
S(rs,w) is the source amplitude at the frequency w, and
G(r,rs,w) is Green’s function in the frequency domain. In a
homogeneous medium, the frequency domain, free space,
two-dimensional (2-D) Green’s function is

G2D r; rs;wð Þ ¼ �ic

8pwR

� �1=2

exp �iw
R

c

� �
; ð12Þ

where R = jr � rsj is the distance from the source, and
c is the acoustic velocity of the medium. Considering
equations (10)–(12), we can find that the main diagonal
elements of the inverse Hessian matrix H�1 have the
following behavior:

H�1
	 


jj
/ Rc ð13Þ

since Jij / (Rc)�1/2. The analysis above leads us to a scaling
scheme for the model updates in reflection waveform
inversion as the following:

m ‘þ1ð Þ ¼ m ‘ð Þ � ab zð Þg; ð14Þ

where b(z) is a depth (z) dependent scaling factor, b(z) /
zc(z). As pointed out by Pratt et al. [1998], this scaling
factor effectively compensates the geometrical spreading
effect of the waveform amplitudes in the inversion.
[28] In the inversion example shown in Figure 7a, we use

the scaling factor as

b zð Þ ¼ 1:0þ 0:2� 10�6zc zð Þ: ð15Þ

For depth z = 0, 1000, 2000, 2500 and 2750 m with
corresponding average velocity c(z) = 1500, 2000, 2500,
3000 and 3600 m/s, we use the scale factor b(z) = 1.0, 1.4,
2.0, 2.5 and 3.0, respectively.
[29] Figure 7b compares tomographic images of the

layer-stripping scheme and depth-dependent scaling
schemes directly. The latter scheme produces a marginally
better image. For example, the low- and high-velocity layers
in depth between 750 and 2000 m are much sharper than
that in the image obtained from the layer-stripping scheme.
Although both schemes are capable of producing a satis-
factory result, the weighting scheme can invert the entire
velocity model at once, and thus greatly reduces the
computation time, in contrast to the layer-stripping scheme.
[30] We have also conducted inversion tests on noisy data.

Using the synthetic data with random noise, both the layer-
stripping and the weighting schemes produce results that are
very close to the inversion results for noise-free synthetic
data. This is because the noise is randomly distributed in the
time domain. In the frequency domain, the noise becomes
ambient with a white spectrum. In other words, the frequency

Figure 7. (a) Tomographic image of waveform inversion
with scaled model updates. (b) Comparison of two inversion
schemes: the left side is the inversion result using the layer-
stripping scheme, and the right side is the (mirror) image of
waveform tomography with scaled model updates.
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domain inversion is not affected by random noise that is
spectrally white.
[31] In practice however, real seismic data contain noise

that is seldom distributed randomly and hardly has a white
spectrum. A group of frequencies is then used as follows
simultaneously in each iterative inversion, to suppress the
noise effect in the frequency domain inversion, following
Pratt and Shipp [1999],Wang and Rao [2006], and Brenders
and Pratt [2007a].

5. Strategies for Real Data Application

[32] We now discuss the strategies for application of
waveform tomography to a real, marine seismic data set.
Figure 8a is a sample shot record, consisting of 120 traces
with a minimum source-receiver offset of 337.5 m and a
maximum source-receiver offset of 1825 m. We investigate
the feasibility of reflection seismic tomography within such
a narrow source-receiver offset range.

5.1. Free Surface Multiple Attenuation

[33] The current waveform tomography code does not
include free surface multiples, as we use an absorbing
boundary condition at the free surface in the forward calcu-
lation. Including seismic multiples bouncing back and
forward within the water layer in the tomographic inversion
will increase the nonlinearity of the problem. As the number
of multiples increases, the errors in model (and in turn in
synthetics) will also increase. We use a narrow-offset shot
record in multiple attenuation, also to avoid the wide-angle
refraction of the water bottom and their multiples, as the
current methodology for free surface multiple prediction
cannot properly model the refraction multiples. As marked
in Figure 8a, the most difficult part of multiple attenuation is
where the refraction wave just starts appearing. Figure 8b
displays the shot record after free surface multiple atten-
uation, using a multiple prediction through the inversion
(MPI) method presented byWang [2004, 2007]. The real shot
record is generated by a point source, but Figure 8c is an

equivalent line source shot gather, after partial compensation
as follows.

5.2. Partial Compensation

[34] Before input to waveform tomography, a shot record
of real seismic data needs to be partially compensated, to
become a gather generated from a line source. Equation (12)
is the 2-D Green’s function. For a three-dimensional (3-D)
case, Green’s function is

G3D r; rs;wð Þ ¼ 1

4pR
exp �iw

R

c

� �
: ð16Þ

Comparing the 2-D and 3-D Green’s functions, we obtain
the partial compensation operator as

W ¼
ffiffiffiffiffiffiffiffiffiffiffi
2pRc
iw

r
: ð17Þ

In the time domain, the operator W shows the following
behavior (in the far field):

W tð Þ ¼ D�1=2 tð Þ
ffiffiffiffiffiffiffiffiffiffiffi
2pRc

p
; ð18Þ

where D�1/2 (t) is a half integrator, defined as the inverse
Fourier transform of (iw)�1/2 [Deregowski and Brown, 1983].
For a narrow-offset, reflection geometry, we assume 2R / ct
and obtain

W tð Þ / D�1=2 tð Þc tð Þ
ffiffi
t

p
: ð19Þ

We implement this partial compensation in two steps:
applying a scale factor c(t)

ffiffi
t

p
in the time domain, and

multiplying the operator (iw)�1/2 in the frequency domain.
[35] Figure 9a is a brute stack of the raw marine seismic

data, Figure 9b is the stack section of the seismic data set
after multiple attenuation, whereas Figure 9c is the same

Figure 8. A marine seismic data example. (a) A sample shot record with 120 traces. (b) The shot record
after multiple attenuation. (c) The same shot record after partial compensation.
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stack section after applying the partial compensation to the
shot records. Figure 10 closely compares a seismic trace
from a point source (solid curve) and a trace after partial
compensation (dash curve). With the application of the
operator (iw)�1/2, wavelets in the trace from an equivalent
line source are broader than those actually generated from a
point source.

[36] Alternatively, one could use a 2.5-D wave modeling
and inversion scheme for waveform tomography. But as it
involves integration along the infinite line source direction
that is perpendicular to the source-receiver profile, a 2.5-D
scheme would take a much longer running time, compared
to the 2-D wave modeling and inversion [Song and
Williamson, 1995].
[37] The frequency w can also be complex valued, to

include an exponential function either for the amplitude
attenuation or compensation. The attenuation used in wave-
field P(t) is for suppressing the wrap-around effect in the
Fourier transform domain. An opposite sign with an expo-
nential increase in P(t) could also be used to boost the
energy of deep reflections. In the latter case, the real data
should be balanced with an automatic gain control.

5.3. Waveform Tomography

[38] In the reflection seismic data, there is no significant
energy recorded at low frequencies less than 6.5 Hz. We
perform a traveltime inversion to generate the initial velocity
model for the iterative waveform tomography. Referring to
the stack section (Figure 9), we pick the traveltimes of two
reflections from the prestack seismic data, and run a
traveltime inversion to generate a layered velocity model
with two interfaces (Figure 11a). The first layer is a water
layer with velocity 1500 m/s. The second layer has a linear
velocity of 2200 m/s at one end and 2000 m/s at distance
23 km.
[39] In the frequency domain waveform tomography, we

use a group of three frequencies simultaneously in each

Figure 9. A marine seismic data example. (a) The stack
section of the marine seismic data set without multiple
attenuation. (b) The stack section of the marine seismic
data set after multiple attenuation. (c) The same stack section
with amplitude and phase compensations applied to the
shot records before stacking. The compensations to the shot
records make the original point sources become the
equivalent line sources before they are used in waveform
tomography.

Figure 10. (a) Comparison between a seismic trace from
a point source (solid curve) and the trace after partial
compensation (dashed curve). Wavelets in a trace from a
line source (i.e., after partial compensation) are broader than
those from a point source. (b) Comparison of amplitude
spectra of seismic traces from a point source and a line
source.

B03304 WANG AND RAO: REFLECTION SEISMIC WAVEFORM TOMOGRAPHY

9 of 12

B03304



iterative inversion [Pratt and Shipp, 1999; Wang and Rao,
2006; Brenders and Pratt, 2007a]. Using a group of
neighboring frequencies in the input can suppress the noise
effect in the real data, and also more data samples used in an
inversion means a much better determined inverse problem.
In this example, there are 26 groups of frequencies in total
in the range of 6.9–30 Hz with an interval of 0.3 Hz. The

first group includes frequencies 6.9, 7.2 and 7.5 Hz, and
the last 29.4, 29.7 and 30 Hz. Figures 11b and 11c are the
velocity models from waveform tomography using frequen-
cies in the ranges of 6.9–7.5 Hz and 6.9–13.8 Hz, respec-
tively, where Figure 11d is the final velocity model obtained
from waveform tomography using all frequencies in the
range.

Figure 11. Waveform tomography. (a) The initial velocity model built from traveltime tomography.
(b) The velocity model of waveform tomography using frequencies in the range of 6.9–7.5 Hz. (c) The
velocity model of waveform tomography using frequencies in the range of 6.9–13.8 Hz. (d) The final
velocity model obtained from the waveform tomography using all frequencies in the range of 6.9–30 Hz.
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[40] In the inversion example shown in Figure 11, we use
the scale factors b(z) = 1.0, 1.14, 1.4, 1.7, and 2.0, for depth
z = 0, 350, 800, 1150, 1500 m, respectively. These are
estimated using equation (15) with corresponding velocity
c(z) = 1500, 2000, 2500, 3000 and 3300 m/s, respectively.
[41] Although the initial model generated by traveltime

tomography generates a smooth boundary for the water
bottom, waveform tomography produces a sharp geometry
with a spatial variation close to that shown in seismic
sections (Figure 9). From the waveform tomography image,
we can see clearly a stratified structure under the water
bottom. In the second layer, at the distance between 0 and
10 km, there is a high-low-high vertical velocity variation
immediately underneath the water bottom, between depth of
350 and 700 m at the left end of the profile, and a high-low-
high-low vertical variation above the second interface. At
the distance between 17 and 23 km, there is also a low-
high-low vertical velocity variation within the second layer.
[42] Most significantly, in the third layer, high-low-high

velocity channels appear immediately underneath the sec-
ond interface and cross the entire section. These thin-layer
separations could not be generated by any conventional
traveltime tomography. Beneath that, the velocity pattern in
the depth between 1.2 and 1.6 km varies laterally between 0
and 5, 5–17, and 17–23 km in distance.
[43] Figure 12 compares a sample frequency slice (at

9.3 Hz) of real data input to waveform tomography and
synthetic data generated from the inversion result. The
vertical axis is the shot position in the surface, and the
horizontal axis is the source-receiver offset. The data dis-
played are the amplitudes of complex-valued samples in the
frequency domain, and are normalized on the basis of their
rms values. For the far-offset seismic traces, there are strong
amplitudes for postcritical angle reflections, which play an
important role in the inversion for the shallow part of model.

There is also a good fit at near-offset traces, which influence
the high-wave number perturbations of the velocity field.

6. Conclusions

[44] Using reflection seismic data in waveform tomog-
raphy, it is difficult to reconstruct the deep part of the
model. A layer-stripping scheme can gradually improve
the resolution of the image of the deep part. After inverting
for the uppermost layer, the top portion of the data is not used
in subsequent data fitting, and the inversion focuses onmodel
updates in deeper parts of the model. A weighted-updating
scheme can also be used to improve the deeper image, and
the weight factor is set to be inversely proportional to the
ray density which depends on depth. The latter scheme is
more efficient in terms of computation time than the layer-
stripping scheme.
[45] When applying waveform tomography to real seismic

data, raw shot records need be amplitude modified and phase
adjusted, to make the data equivalent to those generated
from a line source. As the real data lacks low-frequency
information, reflection traveltime inversion may be used to
provide a reliable initial model for the frequency domain
waveform inversion. Waveform tomography uses a group
of frequencies simultaneously in an iterative inversion, and
proceeds from low to high frequencies. A real data example
demonstrates that waveform tomography can generate a
high-resolution image of subsurface velocities with detailed
spatial variation, in contrast to image derived from conven-
tional traveltime tomographic inversions.
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for Reservoir Geophysics, Imperial College London, for supporting this
research.
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