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In this work, we derive the equations of motion governing the dynamics of spin-F spinor conden-
sates. We pursue a description based on standard physical variables (total density and superfluid
velocity), alongside 2F ‘spin-nodes’: unit vectors that describe the spin F state, and also exhibit
the point-group symmetry of a spinor condensate’s mean-field ground state. In the first part of
our analysis, we derive the hydrodynamic equations of motion, which consist of a mass continu-
ity equation, 2F Landau-Lifshitz equations for the spin-nodes, and a modified Euler equation. In
particular, we provide a generalization of the Mermin-Ho relation to spin-one, and find an analytic
solution for the skyrmion texture in the incompressible regime of a spin-half condensate. In the
second part, we study the linearized dynamics of spinor condensates. We provide a general method
to linearize the equations of motion based on the symmetry of the mean-field ground state using
the local stereographic projection of the spin nodes. We also provide a simple construction to ex-
tract the collective modes from symmetry considerations alone akin to the analysis of vibrational
excitations of polyatomic molecules. Finally, we present a mapping between the spin-wave modes,
and the wave functions of electrons in atoms, where the spherical symmetry is degraded by a crystal
field. These results demonstrate the beautiful geometrical structure that underlies the dynamics of
spinor condensates.

I. INTRODUCTION

A central theme of contemporary atomic physics exper-
iment is the dynamics of Bose-Einstein condensates and
other correlated atomic gases. Of particular interest are
mixtures of several species such as Fermi-Bose mixtures
[1–3], and bosonic gases with an internal spin degrees of
freedom, i.e., spinor condensates. Spin-one and spin-two
spinor condensates have been realized as particular hy-
perfine states of alkali atoms [4–6]. In addition the trap-
ping and cooling of 52Cr atoms has led to the realization
of a spin-three condensate [7]. On the theoretical front,
since the initial work of Ohmi and Machida [8] and Ho
[9] numerous interesting works have followed that discuss
ground states, dynamics, and topological excitations of
such systems (see, for instance, a review in [10]).

Recent theoretical interests in spinor condensates have
focused on topics such as dynamics near the insulating
transition [11], metastable decay of currents [12], spin
knots [13], and the anomalous Hall effect [14]. One
particularly important aspect of spinor condensates is
their free dynamics under a time-dependent Hamilto-
nian, about ground or metastable states. This aspect
was the center of several experimental [15–20] and theo-
retical [21–27] studies. These investigations, so far, were
mostly confined to the simplest case of spin-one conden-
sates. On the other hand, the wealth and intricacy of
spinor condensates increases dramatically with increasing
spins. For instance, the phase diagram of spin-two and
spin-three condensates consists of four, and ten possible
mean-field phases, respectively [8, 9, 28–31]. A feature
which makes these systems even more interesting, is that
the ground states exhibit a high degree of symmetry in

its spin state, which is isomorphic to lattice point groups
[32–34]. In this paper we seek to utilize this symmetry
in the study of the free dynamics of spinor condensates.

Recently, it was shown within mean-field theory that
the ground states of spinor condensates exhibit a high
degree of symmetry. This symmetry is opaque in the
standard spinor description of the condensate. On the
other hand, the symmetry is transparent in the so-called
reciprocal state representation. Here, one uses the fact
that the mean field ground state of a spin-F condensate
can be described by 2F coherent spin states orthogonal
to it. Each one of these so-called reciprocal states is
fully spin-polarized, pointing along some direction on the
unit sphere. Since there are 2F such reciprocal states,
the ground state is uniquely described (up to an overall
phase) in terms of the 2F points on the unit sphere [32].
For typical spinor condensate Hamiltonians, these points
(or antipodes which we denote “spin nodes”, see Sec. III),
form highly symmetric configurations. For instance, an
F = 2 condensate has a cyclic phase, where the spin
nodes are arranged in a tetrahedron, as well as a square
phase.

The spin-node description of the ground states of
spinor condensates provides an intuitive geometrical de-
scription of the state of the condensate. In addition,
it provides a parametrization which readily exhibits the
hidden point-group symmetries of the state. Despite its
appeal, however, this parametrization has not been used
to describe the dynamics of spinor condensates. Our goal
in this paper is to provide a complete description of the
hydrodynamics of spinor condensates in terms of such
spin-nodes.

The first aspect we consider is the continuum hydrody-
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namics of spinor condensates (Sections III-VI). Our de-
scription is hydrodynamic in the sense that it focuses on
the low energy dynamics of the system associated with lo-
cally conserved quantities, or with the slow elastic defor-
mation of spontaneously broken degrees of freedom. Here
we derive such a description using the density, superfluid
velocity, and the spin-nodes (the 2F vectors on the unit
sphere) as our basic degrees of freedom. In addition to
the Euler equations, which describe mass, momentum,
and energy conservation, we obtain 2F Landau-Lifshitz
equations for the dynamics of the spin-nodes. Further-
more, our derivation gives a natural generalization of the
Mermin-Ho relation which connects the vorticity in a fer-
romagnetic spinor condensate with the Pontryagin den-
sity of the order parameter.

The treatment of the spin degrees of freedom in this
part is exact, and it accounts for the full geometrical
structure of the hydrodynamics of spinor condensates.
But the precision of the hydrodynamic description here
comes at a price: this formalism becomes increasingly
complex as the spin F grows, and, for large F , the anal-
ysis of its exact form becomes impractical. Nevertheless,
the equations derived here even for large F become quite
useful in their linearized form.

In the remainder of the paper we show how linearizing
the equations of motion about mean-field solutions eluci-
date the low energy properties of spinor condensates with
arbitrary spin in a powerful and elegant way. We consider
the general 2F spin-node description of the low lying
spin-wave excitations near the mean-field ground state
(Sections VII and VIII). We derive the linearized equa-
tions of motion for the spin-node locations, which allows
us to extract the small oscillation spectrum from symme-
try alone, in a fashion resembling the vibrational-mode
calculation for polyatomic molecules [35, 36], though
slightly more complicated. Using this method we are
able to give simple expressions for the vibration eigen-
modes and energy spectrum. In addition, we derive a
correspondence between the low lying excitations of the
spinor-condensates, and atomic orbitals subject to rota-
tional symmetry due to crystal-fields, which reflect the
symmetry of the spinor-condensate ground state.

The paper is organized as follows. Sec. II provides
general background on spinor condensates, and reviews
recent progress on the hydrodynamic description of fer-
romagnetic condensates [37]. In Sec. III we present the
spin node representation of spinor-condensate degrees of
freedom, and derive several useful identities within this
formalism. In Sec. IV we proceed to obtain hydrody-
namic equations for the spin-half condensate, using the
spin-node formalism, and find an analytic solution for a
skyrmion configuration. In Secs. V and VI, we derive the
general hydrodynamic equations of motion for the spin-
one condensate, and then for an arbitrary spin-F conden-
sate, which includes a generalization of the Mermin-Ho
relation [38]. In the second part of the paper we con-
centrate on small deviations from the mean-field ground
states. In Sec. VII we derive the linearized equations

of motion about the mean-field configuration in terms of
the spin-node formalism. Finally, in Sec. VIII we demon-
strate how to use symmetry arguments to compute the
spin-wave excitations, and give a prescription to obtain
closed form expressions for both eigenmodes and eigenen-
ergies of the low-lying spin-waves.

II. BACKGROUND

A. Hydrodynamics of spinless BECs

For a single component BEC, it is natural to expect
a simple hydrodynamic description in terms of density
and flow velocity. We take the time-dependent Gross-
Pitaevskii equation (GPE) as our starting point:

i∂tψ = −1

2
∇2ψ + gρψ (1)

where ψ =
√
ρeiθ is the macroscopic wave function, and

ρ = |ψ|2 is the density (here and after for notational
simplicity we will use scaled units). This equation can
be recast into a the form of local momentum and mass
conservation laws; with the superfluid velocity v = ∇θ,
one obtains [39]:

∂tρ = −∇(ρv) ; Dtv = −∇
(

gρ− ∇2√ρ
2
√
ρ

)

(2)

where Dt = ∂t + v · ∇ is the material derivative. The
first of these is the mass continuity equation, while the
second is the Euler equation for a fluid, where a quantum
pressure term appears.

B. The hydrodynamics of ferromagnetic BECs and

the Mermin-Ho relation

In a series of recent experiments, the quench dynam-
ics of a ferromagnetic spin-one condensate was explored
[17–20]. These experiments motivated Lamacraft to de-
velop a hydrodynamic framework for the ferromagnetic
BEC in terms of the superfluid velocity, and the direc-
tor of its ferromagnetic order n [37]. This description is
particularly illuminating when considering the instabili-
ties of the system. This problem was also theoretically
considered in Refs. [21–27].
The GP Lagrangian density describing such a ferro-

magnetic spinor condensate is given by

L = iψ∗
a∂tψa −

1

2
∇ψ∗

a · ∇ψa −
1

2
gρ2 − 1

2
c2ρ

2m2 (3)

where a = −F, . . . , F is summed over all Fz eigenstates,
and

ρ =
∑

a

ψ∗
aψa m =

1

ρ

∑

ab

ψ∗
aFabψb (4)
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where Fab is the spin-F matrix. Lamacraft’s approach
assumed an incompressible liquid with a wavefunction
restricted to the ferromagnetic phase (assuming large g
and c2)

ψa = eiθΦa(n) (5)

where Φa(n) is the highest eigenstate of n ·F. Note that
for the ferromagnetic state we have m = n (while for the
polar state |m| = 0). A substitution of this wavefunction
into Eq. (3) yielded the following set of hydrodynamic
equations [37]:

∇ · v = 0 (6)

Dtn =
1

2
n×∇2

n.

Once the density is eliminated, we notice that the spin
dynamics are given by a Landau-Lifshitz equation with
the material derivative Dt = ∂t + v · ∇. In addition, the
vorticity is related to the Pontryagin density by

∇× v =
F

2
εαβγnα (∇nβ ×∇nγ) . (7)

This identity is widely-known as the Mermin-Ho rela-
tion [9, 38]. Among other things, such a relation has
important consequences for the topological defects in fer-
romagnetic condensates [9, 40–42]. Such hydrodynamic
equations were also derived in [43] to describe magnetic
properties of quantum hall systems.
Making use of this simple description, Lamacraft

showed that the helical configuration of the ferromag-
netic condensate [19] is unstable. In general, it is clear
that such a geometric description simplifies, at least con-
ceptually, the analysis of spinor-condensate dynamics.

C. General magnetic ground state of spinor

condensates, and the reciprocal state representation

A general spin-F spinor-condensate is described by a
macroscopic wave-function with 2F + 1 complex compo-
nents ψa (a = −F, . . . , F ). When quantum fluctuations
are unimportant, the condensate dynamics is described
by the time-dependent Gross-Pitaevskii equation

i∂tψa = −1

2
∇2ψa +

∂Vint
∂ψ∗

a

(8)

where Vint is the spin-dependent interaction energy. The
interaction energy is given by the set of parameters gS,
with S = 0, 2, . . . , 2F describing the two-particle interac-
tion strength in the S total angular momentum channel:

Vint =
1

2

∑

S,m

gSψ
∗
aψ

∗
b 〈ab|Sm〉 〈Sm|a′b′〉ψa′ψb′ . (9)

In the above, 〈ab|Sm〉 are Clebsch-Gordan coefficients.
Note that this expression can also be written as the ex-
pectation value of an operator:

Vint =
1

2
〈
1
ψ| 〈

2
ψ|Vint|ψ 〉

2
|ψ 〉

1
(10)

where

Vint =
∑

S,m

gS |Sm〉 〈Sm| =
∑

S

gSPS . (11)

In this expression, PS projects into the total spin S scat-
tering channel.
The classical (mean-field) ground states occur for uni-

form condensates which minimize Eq. (9) for fixed den-
sity ρ. This minimization was carried out for F = 1 [8, 9],
F = 2 [28], and F = 3 [30, 31] yielding a multitude of
magnetic phases, which minimize Vint in different regions
of {gS} parameter space, only one of which (for every F )
is ferromagnetic.
Indeed, quite generally, a spin-F spinor condensate

may exhibit several flavors of paramagnetic rather than
ferromagnetic behavior in its ground state. For example,
a spin-one condensate may exhibit the so-called nematic
phase, where ψ1 = ψ−1 = 0, and ψ0 = 1. The expecta-
tion value of the magnetization for such a state is clearly
zero along any direction, 〈F · n〉 = 0. But in the ab-
sence of a ferromagnetic director, n, can we still describe
a spinor condensate’s magnetic state geometrically?
Such a geometrical method was put forward in Ref.

[32], based on the use of spin-coherent states. A spin-
coherent state |Φn〉 is the eigenvector of the opera-
tor F · n with the largest eigenvalue. The method of
Refs. [32] relies on finding the set of 2F spin-coherent
states, {|Φni

〉}2Fi=1, which annihilate the ground state of
a uniform condensate:

〈Φni
|ψGS〉 = 0. (12)

The 2F states |Φni
〉 provide (up to an overall phase) a

unique description of the magnetic spin-state of the con-
densate at each point in space. Such reciprocal spinors
give a natural generalization of the ferromagnetic direc-
tor to the case of paramagnetic condensates. Instead of
the geometrically opaque 2F +1 complex numbers ψa, it
allows a description of the magnetic state in terms of 2F
unit vectors, ni, or points on the unit sphere.
In addition to its geometrical transparency, such a de-

scription also reveals the highly symmetric nature of the
mean-field ground states. All the paramagnetic phases
found so far correspond to a spin node configuration
which is invariant under point symmetry group opera-
tions, and sometimes under a larger symmetry. The ne-
matic phase of the F = 1 condensate, for instance, is
described by two antipodal spin nodes. F = 2 conden-
sates can exhibit a nematic phase as well, but also a phase
in which the spin-nodes are the vertices of a square, and
a phase with the spin nodes at the vertices of a tetrahe-
dron. Such phases are illustrated in Fig. 1 [53].
The reciprocal-spinor description was so far only uti-

lized to discuss equilibrium properties of spinor conden-
sates. The remarkable geometrical properties and hidden
symmetries of the mean-field ground state, however, pro-
vide ample motivation for employing the spin nodes to
obtain a complete description of the dynamics of spinor
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FIG. 1: Possible phases for the spin-one and spin-two conden-
sates. The red dots on the unit sphere correspond to the unit
vectors ni (reciprocal spinors) defined in Eq. 12. Spin-one
condensates have ferromagnetic (1a) and nematic phases (1b)
while spin-two condensates have ferromagnetic (2a), uniaxial
nematic (2b), square biaxial nematic (2c), and a tetrahedral
(2d) phases.

condensates. In the following sections we will develop the
tools necessary for such a description, and use them to
derive both a hydrodynamic description, as well as small
oscillation dynamics near mean-field ground states.

III. SPIN NODE DESCRIPTION OF SPIN-F

MAGNETIC STATES

The reciprocal-spinor states so far define the spinor
condensate’s state only implicitly through Eq. (12). In
order to be able to use these variables directly, we must
invert the relationship, expressing the spinor condensate
Lagrangian directly in terms of these variables. In order
to find this direct representation, we first separate the
wave function into a piece corresponding to the overall
density and phase, and a piece describing the local spin
state. We write

ψa = ψχa (13)

where χa is a normalized spin-F spinor

∑

a

χ∗
aχa = 〈χ|χ〉 = 1 (14)

and the superfluid density is

ρ = |ψ|2. (15)

A. Symmetrized spin-node representation

As discussed above, a spin-F spinor |χ〉 can be de-
scribed by 2F reciprocal states. On the other hand, such
a state can also be described by a fully symmetrized col-
lection of 2F spin-half states. Each spin-half state can

be parametrized in terms of two coordinates Ω = (θ, φ)
on the unit sphere,

|Ω〉 = cos

(

θ

2

)

eiφ/2 |↑〉+ sin

(

θ

2

)

e−iφ/2 |↓〉 . (16)

In this representation,

|χ〉 = 1

N
∑

{σ}

(

2F
∏

i=1

⊗ |Ωσi
〉
)

=

√

(2F )!

N |Ω〉 (17)

where N is a normalization constant, and the sum over σ
runs over the (2F )! permutations of the 2F labels for the
spin-half parts [44]. In Eq. (17) we also defined |Ω〉 as
the (unnormalized) sum over permutations of the tensor
product.
The properties of the above formulation are most easily

understood using the Schwinger Boson construction [45]
(for review, see [46]). Schwinger Bosons provide an easy
way to construct the Hilbert space of a spin-F spinor
state. We define two Schwinger boson creation operators:

â†, b̂†. An â† boson adds 1/2 to both the total spin, and

to Fz , whereas a b̂
† boson adds 1/2 to the total spin, but

lowers Fz by half. In this notation

Ftot =
1

2
(â†â+ b̂†b̂);

Fx =
1

2
(â†b̂+ b̂†â);

Fy =
1

2i
(â†b̂− b̂†â); (18)

Fz =
1

2
(â†â− b̂†b̂).

A spin-half spinor is written as:

|Ω〉 = u |↑〉+ v |↓〉 = (uâ† + vb̂†) |0〉
with |0〉 the Schwinger-boson vacuum. Here, u and v can
be written in terms of the coordinates on the unit sphere
as u = cos(θ/2)eiφ/2 and v = sin(θ/2)e−iφ/2.
A symmetrized tensor product of 2F spins within the

SB formalism is simply written as:

|Ω〉 = |Ω1 . . .Ω2F 〉 =
2F
∏

i=1

(

uiâ
† + vib̂

†
)

|0〉 . (19)

with ui and vi parametrized in terms of θi, φi as shown
above. We refer to this collection of the 2F spin-half
states which construct |Ω〉 as “spin nodes”.
If we wish to calculate wavefunction overlaps using the

Schwinger Boson formalism, we can use Wick’s theorem
to obtain

〈Ω(a)
∣

∣Ω
(b)
〉

=

= 〈0|∏2F
i=1

(

u
(a)∗
i â+ v

(a)∗
i b̂

)

∏2F
j=1

(

u
(b)
j â† + v

(b)
j b̂†

)

|0〉

=
∑

{σ}

2F
∏

i=1

〈0|
(

u
(a)∗
i â+ v

(a)∗
i b̂

)(

u
(b)
σi â

† + v
(b)
σi b̂

†
)

|0〉

=
∑

{σ}

2F
∏

i=1

〈Ω(a)
i

∣

∣

∣
Ω

(b)
σi

〉

.

(20)
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where σ is a permutation of the 2F indices that mark
the spin-half parts. This result could have also been ob-
tained directly from Eq. (17). Nevertheless, we find it
instructive to demonstrate the simple Schwinger Boson
construction to obtain the symmetrized states.

B. Connection between spin nodes and reciprocal

spinors

Since the symmetrized spin-node representation can
be used to express any spin state directly, it makes a
grossly overcomplete basis. Nevertheless, its usefulness
arises since it perfectly reflects the spin-nodes formalism
of the spinor-condensates ground states [32, 47]. In the
following we will introduce the necessary new notation for
the spin-node formalism; we summarize the new notation
in Appendix A
It is simple to see that a spin-coherent state can be

written in terms of Schwinger boson states as

∣

∣(Ω)2F
〉

=
(

uâ† + vb̂†
)2F

|0〉 (21)

= |Ω . . .Ω〉 .

Thus a coherent state can be thought of as 2F spin-nodes
pointing in the same direction. (For a summary of the
notation see Appendix A.)
As described in Sec. II C, a reciprocal spinor is a

coherent state
∣

∣(Ωr)
2F
〉

= |Ωr . . .Ωr〉 orthogonal to a
given spinor |Ω〉. Using the construction in terms of
symmetrized spin nodes, we can write an equation to
determine the reciprocal spinors for a particular state
|Ω〉 = |Ω1 . . .Ω2F 〉:

〈

(Ωr)
2F
∣

∣Ω〉 = (2F )!
2F
∏

i=1

〈Ωr|Ωi〉 = 0. (22)

This equation has 2F solutions, each corresponding to a
different term in the product vanishing. That is, the ith
solution of Eq. (22) is

∣

∣(Ωr)
2F
〉

=
∣

∣(Ωt
i)

2F
〉

=
∣

∣Ωt
i . . .Ω

t
i

〉

, (23)

where
∣

∣Ωt
i

〉

= (−v∗i â† + u∗i b̂
†) |0〉 (24)

is the time-reversed spinor of |Ωi〉 with θti = π− θi, φ
t
i =

φi + π. Here we use the fact that a spin-half spinor is
orthogonal to its time-reversed counterpart.
Finally, we note that the direction of the spin-half

spinor |Ωt
i〉 is opposite to that of |Ωi〉. Explicitly, we

have
〈

Ωt
i

∣

∣F
∣

∣Ωt
i

〉

= −〈Ωi|F |Ωi〉 . (25)

One therefore sees that the set of reciprocal spinors is
nothing more than the spin nodes pointing in the oppo-
site direction. For example, given the spin-node repre-
sentation of a particular spinor: {ni}2F1 , the reciprocal

spinor representation is simply {−ni}2F1 . From this
point on we reserve the symbol ni for spin nodes (and
not reciprocal spinors). Furthermore, our analysis will
be in terms of spin nodes alone.

C. Time derivatives of spinors and spin-nodes

As stated above, our goal in this paper is to extract
the dynamics in terms of individual spin nodes |Ωi〉. In
order to do so, we must be able to isolate the dynamics of
each spin node within |Ω〉. Consider the time derivative
of |Ω〉 which will appear in the GPE. We can express it
as a sum of terms in which the time derivative operates
on individual spin nodes:

∂t |Ω〉 = |∂tΩ1Ω2 . . .〉+ |Ω1∂tΩ2 . . .〉+ . . . . (26)

The trick that allows us to isolate individual spin nodes
consists of taking the inner product of ∂t |Ω〉 with the
ith reciprocal-state of |Ω〉, which is

∣

∣(Ωt
i)

2F
〉

. All terms
which do not involve a time derivative of |Ωi〉 identically
vanish and we are left with the single term

〈

(Ωt
i)

2F
∣

∣ ∂t |Ω〉 = (2F )!
〈

Ωt
i

∣

∣∂tΩi〉
2F
∏

j = 1
j 6= i

〈

Ωt
i

∣

∣Ωj〉 . (27)

We will make extensive use of this method for isolating
the dynamics of individual spin nodes in the following
sections.

D. Geometrical parametrization of the spin-half

components: Moving from |Ωi〉 to ni

All results above were concerned with breaking a spin-
F spinor into its 2F spin-half parts, |Ωi〉, and with the
correspondence between these spin-half parts and the re-
ciprocal coherent states. We would like, however, to un-
derstand the dynamics of spinor condensates not only in
terms of the spinors, |Ωi〉, but also in terms of the unit
vectors that describe them, ni, where |Ωi〉 is highest value
eigenvector of F · ni.
The first step in finding the equations of motion in

terms of the spin-directors ni, is to establish an orthonor-
mal triad (ex, ey,n) that parameterizes the space on S2

in the vicinity of ni. In the following we will only con-
sider a single spin-half part, and therefore we drop the
index i.
The first element of the triad is n itself:

n = 2 〈Ω|F |Ω〉 (28)

where F is the spin operator, acting in the spin-half
Hilbert space. To complete the triad, we again use the
time-reversed spin-half ket, |Ωt〉 where 〈Ωt|Ω〉 = 0. With
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this, we can construct states pointing in the “x” and “y”
directions with respect to n as

|Ωx〉 =
1√
2
(|Ω〉+

∣

∣Ωt
〉

) (29)

|Ωy〉 =
1√
2
(|Ω〉+ i

∣

∣Ωt
〉

). (30)

These states allow us to complete the orthonormal triad
by defining

ex = 2 〈Ωx|F |Ωx〉 , ey = 2 〈Ωy|F |Ωy〉 . (31)

From these we can construct

e± = ex ± iey. (32)

It is useful to note that F ·e± act as raising and lowering
operators. That is,

F · e+ |Ω〉 = 0 ; F · e+
∣

∣Ωt
〉

= |Ω〉 , (33)

with similar relations holding for lowering operators.
Note that there is an ambiguity in such coordinate sys-

tems since ex and ey can together be rotated about n

which corresponds to the gauge choice for the spinors.
That is, the gauge of a spinor can be changed by |Ω〉 →
eiλ |Ω〉 without changing its direction n. In general,
quantities which are gauge invariant cannot depend on
the parameterization of the spin and will only involve the
unit vectors ni. We will adhere to convention of the spin
half state introduced in Eq. 16. Here the gauge is fixed by
requiring that the product of the spin up and spin down
components of the spinor is real. In this gauge-choice it
is easy to see that:

ex = θ̂ ey = ϕ̂ (34)

where θ̂ and ϕ̂ are unit vectors from the spherical coor-
dinate system.
To complete the discussion, we make two observations

that will simplify the following analysis. First, we express
F in the basis of our triad as

F = (F · n)n+ (F · ex)ex + (F · ey)ey
= (F · n)n+

1

2
(F · e+)e− +

1

2
(F · e−)e+ (35)

In addition we note that we can use the spin operator
F as a projection onto |Ω〉 and its time-reversed partner
|Ωt〉 by

|Ω〉 〈Ω| = 1

2
+ n · F (36)

and

∣

∣Ωt
〉 〈

Ωt
∣

∣ =
1

2
− n · F. (37)

E. Derivatives of spin-half spinors in terms of the

triad ( ex, ey,n)

The relations derived and recalled in the previous sec-
tions allow us to also write derivatives of spinors in terms
of vector quantities and their derivatives. The terms that
we will encounter arise from terms such as the isolated
time derivatives in Eq. (27). Let us now find this decom-
position in terms of the triad (ex, ey,n) and its differen-
tial forms.
Our goal is thus to find:

aα = i 〈Ω|∂αΩ〉 and
〈

Ωt
∣

∣∂αΩ〉 (38)

in terms of (ex, ey,n) and their derivatives. We define
aα in this form for reasons that will become clear later.
The first object in Eq. (38) can be found by considering
the quantity

∂α(
〈

Ωt
∣

∣ e− ·F |Ω〉) = ∂α1 = 0. (39)

Allowing the derivative to operate on the bra, the ket,
and the vector e−, we find

〈

∂αΩ
t
∣

∣Ωt
〉

+ 〈Ω|∂αΩ〉 = −1

2
e+ · ∂αe− (40)

On the left-hand side we used the facts that F · e− |Ω〉 =
|Ωt〉 and 〈Ωt|F · e− = 〈Ω|. On the right-hand side we
used the fact that 〈Ωt|F |Ω〉 = 1

2e+ which can be verified
from Eq. (35). It is easy to verify that

〈∂αΩt|Ωt〉 = 〈Ω|∂αΩ〉 ,
ex · ∂αey = −ey · ∂αex

from which we find

aα =
1

2
ey · ∂αex (41)

which is the desired result.
To obtain 〈Ωt|∂αΩ〉 we use a similar trick. Starting

with

0 =
〈

Ωt
∣

∣Ωt
〉 〈

Ωt
∣

∣Ω〉 =
〈

Ωt
∣

∣

1

2
− n ·F |Ω〉 (42)

we find

∂α(
〈

Ωt
∣

∣

1

2
− n ·F |Ω〉) = 0. (43)

As before, allowing the differentiation to act on the bra,
the ket, and n results in

〈

Ωt
∣

∣∂αΩ〉 =
〈

Ωt
∣

∣ (∂αn) ·F |Ω〉 (44)

where the term with 〈∂αΩt| vanishes since (12−n·F) |Ω〉 =
0. Now, using again the decomposition in Eq. (35), we
readily find

〈

Ωt
∣

∣∂αΩ〉 =
1

2
e+ · ∂αn. (45)
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This concludes all the tools we will need for our analy-
sis below. We have found how to directly write a spin-F
spinor in terms of its spin-nodes, and extract terms hav-
ing to do with individual spin nodes out of sums arising,
e.g., from differentiation. Furthermore we translated the
spin-half representation of |Ωi〉 to a set of 2F triad bases
(eix, eiy,ni) which will allow us to parametrize the spin
state geometrically. Appendix A summarizes the various
notation introduced throughout this section.

IV. HYDRODYNAMICS OF SPIN-HALF

CONDENSATES

One of our main goals is to write the exact (mean-field)
equations of motion for a spinor condensate in terms of
the spin nodes and the superfluid velocity and density. In
this section we achieve this goal for spin-half condensates.
The equations of motion can be trivially generalized to
general spin-F condensates restricted to the ferromag-
netic state, when the spinor |χ〉 is restricted to be a co-
herent spin-state. In this case the equations of motion
for the condensate reduce to those we find below.

A. Gross-Pitaevskii Lagrangian

In this section we consider the Gross-Pitaevskii La-
grangian. We begin by writing the Lagrangian in a re-
vealing form, using the representation of the bosonic field
which separates the spinor order parameter into a prod-
uct of a density piece and a spin piece, ψa = ψχa. The
GP Lagrangian is then:

L = iψ∗
a∂tψa −

1

2
∇ψ∗

a · ∇ψa − Vint.

= iψ∗∂tψ + ρat −
1

2
|(−i∇− a)ψ|2 − 1

2
ρΥ− Vint.

(46)

where Vint is the spin-related interaction and ρ = |ψ|2
with ψ a complex field. Eq. (46) defines the spin vector
potential:

at ≡ i 〈χ|∂tχ〉 ; a ≡ i 〈χ|∇χ〉 , (47)

and the quantity

Υ ≡ 〈∂αχ|∂αχ〉 − 〈χ|∂αχ〉 〈∂αχ|χ〉 . (48)

An interesting observation is that the quantity Υ for a
general spin F = N/2 can be identified with the CPN

model from quantum field theory [48]. Notice that there
is a U(1) gauge freedom in the density-spin decomposi-
tion:

ψ → eiλψ, |χ〉 → e−iλ |χ〉

where α is implicitly summed over. The quantity Υ,
however, is gauge independent. We make a gauge choice

when we write the normalized |χ〉 as in Eq. (17), with
|Ω〉 written as Eq. (19). This U(1) gauge freedom is
also reflected in an ambiguity in the choice of the triad
arising from the spin-half parts of |χ〉 ∝ |Ω〉, since for
each spin-part ex and ey can together be rotated about
n. The choice of a particular triad is set by the gauge
choice. In general, quantities which are gauge invariant
cannot depend on the parametrization of the spin, and
will only involve the unit vectors ni. The vector potential
can be related to the superfluid velocity by

v =
1

ρ2i
(ψ∗

a∇ψa − ψa∇ψ∗
a) = ∇θ − a (49)

where θ is the argument of ψ. So far we have not used
the fact that the spin is F = 1/2.

B. Geometric representation of hydrodynamic

quantities

Now that we know the quantities of interest in the
spinor description of the GP Lagrangian, we can trans-
late them to the hydrodynamic variables of density and
magnetization direction. The most important quantity
appearing above is the vector potential as defined in
Eq. (47). Following the discussion in Sec. III D we see
that for a spin-half condensate the vector potential is

aα = i 〈Ω|∂αΩ〉 =
1

2
ey · ∂αex. (50)

The analogy between a and the vector potential appear-
ing in the Maxwell equations compels us to consider the
antisymmetric field tensor fαβ = ∂αaβ − ∂βaα. Through
a series of manipulations this can be written purely in
terms of n

fαβ =
1

2
∂αey · ∂βex − 1

2
∂βey · ∂αex (51)

=
1

2
(∂αey · n)(∂βex · n)− 1

2
(∂βey · n)(∂αex · n)

=
1

2
(ey · ∂αn)(ex · ∂βn)−

1

2
(ey · ∂βn)(ex · ∂αn)

=
1

2
(ey × ex) · (∂αn× ∂βn)

= −1

2
n · (∂αn× ∂βn).

Note that in the above we have repeatedly used the fact
that v · ∂v = 0 for any unit vector v. The result is
the Pontryagin topological density, which is the object of
the celebrated Mermin-Ho relation for spin-half spinors
[38, 49].

The only remaining term is the gauge invariant quan-
tity Υ, defined in Eq. (48). For a spin-half state, we



8

find:

Υ = 〈∂αΩ|∂αΩ〉 − 〈∂αΩ|Ω〉 〈Ω|∂αΩ〉 (52)

= 〈∂αΩ|Ωt
〉 〈

Ωt
∣

∣∂αΩ〉 =
1

4
(e− · ∂αn)(e+ · ∂αn)

=
1

4
(∂αn) · (∂αn).

Thus the Υ term signifies the stiffness of the superfluid
with respect to magnetic gradients (as opposed to simply
U(1) phase gradients). Also, since we identified Υ with
the Lagrangian density of a CP 1 model, we now reaffirm
its equivalence with the nonlinear sigma model [48].

C. Equations of motion for spin-half condensates

Now that we clarified how the hydrodynamic variables
arise in the GP Lagrangian density, we are ready to ap-
proach the GP equations of motion. In terms of the orig-
inal variables, the time-dependent GPE for a spin half
condensate is

i∂tψa = −1

2
∇2ψa + gρψa (53)

where we note that the interaction energy for this case is

Vint =
1

2
gρ2. (54)

Following the substitution ψa = ψχa, with χa the entries
of the spin-half spinor |χ〉, and contraction with 〈χ| we
find

i∂tψ + ψat =
1

2
(−i∇− a)2ψ +

1

2
Υψ + gρψ

where aα = (at, a) is the vector potential introduced pre-
viously. Substituting ψ = feiθ and multiplying both
sides of the equation by e−iθ gives

i∂tf − ∂tθf + fat =
1

2
(−∇2f − if∇ · v − 2iv · ∇f + fv2)

+
1

2
Υf + gρf (55)

where v = ∇θ − a. The imaginary part of this gives

∂tρ = −∇ · (ρv) (56)

which is a mass conservation equation. On the other
hand, taking the real part gives

∂tθ +
1

2
v2 − at =

1

2

∇2f

f
− 1

2
Υ− gρ. (57)

We take the gradient of both sides of this equation (using
the identity ∇(v2) = 2(v · ∇)v + 2v× (∇× v)) to get

Dtv = e+ (v × b)−∇
(

gρ+
1

2
Υ− ∇2√ρ

2
√
ρ

)

. (58)

In this we have defined the “electric” and “magnetic”
fields e and b in the usual way from the vector potential.
That is, eα = fαt and bα = (∇ × a)α = 1

2ǫαβγfβγ , with
α, β and γ indicating space directions, and the f tensor
defined below. Also, note that we have used the material
derivative Dt = ∂t + v · ∇. The “electromagnetic force”
appearing in the right-hand-side of the Euler equation
is a new feature that is not present in single component
condensates. This new type of quantum pressure arises
from non-uniform spin textures in spinor condensates.
Now we move on to find the equations describing the

spin dynamics. To do this, we contract the GPE with
the time reversed spinor 〈χt|. This gives

i 〈χt|Dtχ〉 = −1

2
(2ia · 〈χt|∇χ〉+ 2

∇f
f

· 〈χt|∇χ〉

+ 〈χt|∇2χ
〉

)). (59)

Using the spin identities developed in Sec. III the follow-
ing relations can be derived 〈χt|∇2χ

〉

= 1
2∂α(e+ · ∂αn)

and 〈∂αχ|χ〉 〈χt|∂αχ〉 = − 1
4∂αe+ · ∂αn. In terms of vec-

tors, the above equation is then

i

2
e+ ·Dtn = −1

2

(

1

2
e+ · ∇2

n+
∂αf

f
e+ · ∂αn

)

(60)

which can be rewritten as

ρDtn =
1

2
(n× ∂α(ρ∂αn)) (61)

which is a Landau-Lifshitz equation.
Thus, collecting everything, we can write down a com-

plete set of equations describing the dynamics of a spin
half condensate:

−∂tρ = ∇ · (ρv)
∇× v = −b

Dtv = e+ (v × b)−∇
(

gρ+
1

8
(∂αn)

2 − ∇2√ρ
2
√
ρ

)

ρDtn =
1

2
(n× ∂α(ρ∂αn))

where e and b are related to the spin direction through
the field tensor

fαβ =







0 −ex −ey −ez
ex 0 bz −by
ey −bz 0 bx
ez by −bx 0






= −1

2
n · (∂αn× ∂βn).

(62)
It is interesting to compare these results with those ob-

tained in the incompressible regime Eqns. (6) which were
first derived in Ref. [37]. The above equations of motion
show that lifting the incompressibility constraint leads to
the interesting appearance of a Lorentz force in the Euler
equation where the effective electric and magnetic fields
are given by the Mermin-Ho relation. In addition, the
superfluid density now enters the Landau-Lifshitz equa-
tion.
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D. Application: skyrmion texture

As an example of the efficiency of the above hydro-
dynamic equations of motion, let us consider a specific
calculation: skyrmion textures in ferromagnetic conden-
sates. For a standard U(1) vortex, the superfluid ve-
locity close to the vortex core diverges as 1/r. For a
scalar condensate, this causes the superfluid density to
be depleted in a small region of order of the coherence
length around the core. This can be energetically costly
if the condensate is near the incompressible regime. On
the other hand, this situation can be circumvented for a
spinor condensate. Consider for example, a two compo-
nent (spin-half) condensate (ψ↑, ψ↓), and take the ↓ com-
ponent to have a U(1) vortex. Then around the vortex
core, the density of ψ↓ can be transferred to the vortex-
free ψ↑ keeping the total density across the vortex core
finite. This is known as the skyrmion configuration which
has been argued to be the relevant topological defect for
ferromagnetic condensates [9, 41, 50].
Let us now derive the analytic time-independent so-

lution of the equations of motion in the incompressible
regime having the skyrmion texture shown in Fig. 2. To
this end, we take the incompressible limit [37] of the equa-
tions of motion for the spin-half condensate obtained in
Sec. IVC. Neglecting z-dependence, these are:

∇ · v = 0 (63)

∂xvy − ∂yvx =
1

2
n · (∂xn× ∂yn) (64)

Dtn =
1

2
(n×∇2

n). (65)

With small modifications, these equations can also be
shown to describe the dynamics of condensates confined
to the ferromagnetic phase of arbitrary spin in the incom-
pressible regime. Our aim is to find stationary solutions
of these equations having a skyrmion texture given by
[9, 41]

n = (sin(β) cos(ϕ), sin(β) sin(ϕ), cos(β)) (66)

where ϕ is the azimuthal angle and β is a function of r
which is subject to the boundary conditions β(r = 0) = 0
and β(r = R) = π where R is a distance far from the
skyrmion center. Such a spin configuration is shown in
Fig. 2.
Given the form n in Eq. (66), Eqns. (63,64) can be

solved to obtain the velocity profile. One finds

v =
sin2(β/2)

r
ϕ̂. (67)

Note that the boundary condition β(0) = 0 suppresses
the velocity at the origin which diverges as 1/r for the
standard U(1) vortex. With the assumption of a static
configuration, Eq. (65) reduces to

v · ∇n =
1

2
(n×∇2

n). (68)

FIG. 2: A skyrmion configuration corresponding to Eq. (66).

With the expression for v in Eq. (67), Eq. (68) leads to
the following second order differential equation for β

r

(

r
d2β

dr
+
dβ

dr

)

= sin(β). (69)

With the boundary conditions, the solution of this dif-
ferential equation is

β(r) = 4 tan−1 (r/R) . (70)

This expression, along with the velocity in Eq. (67) and
the spin direction in Eq. (66) constitute an analytic
stationary solution to the equations of motion for the
skyrmion configuration.

V. HYDRODYNAMICS OF SPIN-ONE

CONDENSATES

A. Geometrical representation of spin one

hydrodynamic quantities

Now we move on to considering the more complicated
case of the spin-one condensate. The spin-one spinor can
be broken down into its two spin-half components and
be written as |χ〉 = |Ω〉 /

√

〈Ω|Ω〉 where |Ω〉 = |Ω1Ω2〉,
where we again make use of the large-spin notation de-
fined in Eq. (19). The normalization factor for this case
is found to be

〈Ω|Ω〉 = 〈Ω1|Ω1〉 〈Ω2|Ω2〉+ 〈Ω1|Ω2〉 〈Ω2|Ω1〉

=
3

2
+

1

2
n1 · n2. (71)

It is also instructive to calculate the spin operator’s
expectation value. To start we can expand into products
of spin-half expectation values

〈Ω|F |Ω〉 = 〈Ω1|F |Ω1〉+ 〈Ω2|F |Ω2〉 (72)

+ 〈Ω1|Ω2〉 〈Ω2|F |Ω1〉+ 〈Ω2|Ω1〉 〈Ω1|F |Ω2〉 .
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Then using the identity in Eq. (36), and the fact that
in the factored expression, F is only acting on spin-half
states, we obtain 〈Ω|F |Ω〉 = n1 + n2. Dividing this by
the normalization, we get the spin-one expectation value
of the magnetization:

m = 〈χ|F |χ〉 = 2
n1 + n2

3 + n1 · n2
. (73)

By similar techniques, the vector potential for the spin-
one case, with some work, can be written as

aα = i 〈χ|∂χ〉 = 1

2
e1y · ∂αe1x +

1

2
e2y · ∂αe2x (74)

+
1

2

(n2 × n1) · ∂αn1 + (n1 × n2) · ∂αn2

3 + n1 · n2
.

One sees that the first two terms in this expression are
the vector potentials from the individual spin-half com-
ponents while the final term, which is gauge invariant,
describes their coupling. This expression was previously
obtained in Refs. [51] and [52], where a geometrical rela-
tion for the Berry phase of a spin-one spinor was given.
The field tensor corresponding to this vector potential
can also be similarly computed. The most simplified form
we find is

fαβ =
−2

(3 + n1 · n2)2
× (75)

(2n1 · (∂αn1 × ∂βn1) + 2n2 · (∂αn2 × ∂βn2)

+ (n1 + n2) · (∂αn1 × ∂βn2 + ∂αn2 × ∂βn1)).

This is a generalization of the Mermin-Ho relation to
the spin-one case. To our knowledge such an expression
has not been previously derived. While its geometrical
interpretation is not as immediate as the spin-half case
(which is the Pontryagin density), this expression might
be of use in computing topological invariant quantities
for spin-one fields. This formula has a simplified form
when locally restricted to mean-field ground states. For
instance for the ferromagnetic sate (n ≡ n1 = n2) the
above expression reduces to

fαβ = −n · (∂αn× ∂βn). (76)

It is also useful to note that for the nematic state (n ≡
n1 = −n2) the field tensor identically vanishes, fαβ = 0.
Finally, the gauge invariant quantity Υ can be worked

out to be

Υ =
2

(3 + n1 · n2)2
(∂αn1 · ∂αn1 + ∂αn2 · ∂αn2 + ∂αn1 · ∂αn2

+ n1 · n2 ∂αn1 · ∂αn2 − n1 · ∂αn2 n2 · ∂αn1). (77)

This is an explicit representation of the CP2 model which
can be viewed as a generalization of the nonlinear sigma
model. Here, too, it is instructive to consider what this
expression reduces to when locally restricting to mean-
field ground states. For the ferromagnetic state, one finds

Υ =
1

2
∂αn · ∂αn. (78)

On the other hand, for the nematic state Υ reduces to

Υ =
1

4
∂αn · ∂αn. (79)

B. Spin-one condensate equations of motion

We now proceed to do a similar analysis for the spin
one problem. For this we note that the spin one GP
energy functional has the form

Vint =
1

2
gρ2 +

1

2
c2ρ

2
m

2 (80)

where m is the expectation value of the spin-one op-
erator. The first two hydrodynamic equations – the
mass continuity equation and the modified Euler equa-
tion – are obtained, as before, by contracting the Gross
Pitaevskii equation with 〈χ|. The analysis proceeds along
similar lines as the spin half case. However, for this case
we need the generalization of the Mermin-Ho relation for
spin one given in Eq. (75) to give the field tensor and
thus the effective electric and magnetic fields, in addi-
tion to the spin one expressions for Υ Eq. (77) and the
magnetization m, in Eq. (73). With these quantities, the
first two equations of motion are

∂tρ = −∇ · (ρv) (81)

and

Dtv = e+ (v × b)−∇
(

gρ+ c2ρm
2 +

1

2
Υ− ∇2√ρ

2
√
ρ

)

.

(82)

Next, let us discuss the spin dynamical equations.
These are obtained by contracting the GPE with 〈Ωt

1Ω
t
1|

and 〈Ωt
2Ω

t
2|. As before, this causes several terms to van-

ish since these spinors are orthogonal to |χ〉. Contracting
with 〈Ωt

1Ω
t
1| gives the following equation which gives the

time derivative of the first node

ie1+ ·Dtn1 = −1

2
Γ12
α e1+ ·∂αn1−

1

2
e1+ ·∇2

n1+c2ρe1+ ·m.

(83)
A similar equation for the time derivative of n2 is ob-
tained by contracting with 〈Ωt

2Ω
t
2|. In the above, we

have collected the following terms into the Γij
α parameter

Γij
α = 2

∂a
√
ρ

√
ρ

− ∂α(ni · nj)

3 + ni · nj
(84)

− ni · ∂αnj − ini · (nj × ∂αnj)

1− ni · nj

+ i
(nj × ni) · ∂αni + (ni × nj) · ∂αnj

3 + ni · nj
. (85)

Finally, separating the real and imaginary parts as Γij
α =

(Γij
α )

′ + i(Γij
α )

′′, we obtain the Landau-Lifshitz equations

(Dt+
1

2
(Γ12

α )′′∂α)n1 =
1

2
n1×((Γ12

α )′∂αn1+∇2
n1)−c2ρn1×m

(86)
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(Dt+
1

2
(Γ21

α )′′∂α)n2 =
1

2
n2×((Γ21

α )′∂αn2+∇2
n2)−c2ρn2×m

(87)
This provides a complete set of equations describing the
dynamics of the spin-one condensate.

VI. HYDRODYNAMICS FOR GENERAL

SPIN-F CONDENSATES.

Now that we have considered the hydrodynamic equa-
tions for spin-half and spin-one condensates in detail, in
the following we will consider the general case. The first
two equations of motion, the mass continuity equation
and the Euler equation are found, as before, to be

∂tρ = −∇ · (ρv) (88)

and

Dtv = e+ (v × b)−∇
(

2Vint
ρ

+
1

2
Υ− ∇2√ρ

2
√
ρ

)

. (89)

The effective electric and magnetic fields again fol-
low from the field tensor fαβ constructed from aα =
i 〈χ|∂αχ〉. For a general spin, however, such quantities
are cumbersome to express directly in terms of the spin
nodes, and we will refrain from doing so.
To obtain the Landau-Lifshitz equations, we contract

the GPE with
〈

(Ωt
i)

2F
∣

∣

∣
. Doing this gives

i
〈

Ωt
i

∣

∣∂tΩi〉 = −∂α log

(

ψ
√

〈Ω|Ω〉

)

〈

Ωt
i

∣

∣∂αΩi〉

− 1

2

〈

Ωt
i

∣

∣∇2Ωi

〉

−
〈

Ωt
i

∣

∣∂αΩi〉
∑

j 6=i

〈Ωt
i|∂αΩj〉

〈Ωt
i|Ωj〉

+
ρ

λ∗i 〈Ω|Ω〉 〈
1

(

Ωt
i

)2F | 〈
2
Ω|Vint|Ω 〉

2
|Ω 〉

1
.

(90)

In this expression, we have used the notation for interac-
tion energy introduced in Eq. (10). In addition we have
introduced the quantities λi,

λi = (2F )!
∏

j 6=i

〈Ωj |Ωt
i

〉

. (91)

While the first term in Eq. (90),

i
〈

Ωt
i

∣

∣∂tΩi〉 =
i

2
ei+ · ∂tni,

is the inertial term for the spin-node ni, the right hand
side, and the last term of Eq. (90) in particular, should
serve the role of torques, projected onto ei+. As we will
show in the next section, the matrix element of Vint is in-
deed related to a derivative with respect to the spin-node
coordinates of a potential energy function. Specifically:

ρ

λ∗i 〈Ω|Ω〉 〈
1

(

Ωt
i

)2F | 〈
2
Ω|Vint|Ω 〉

2
|Ω 〉

1
=

A−1
ij ρ 〈Ω|Ω〉

[

ej+ · ∇nj
V ({ni})

]

, (92)

where V ({ni}) = 〈Vint〉 is the expectation value of the
energy of a spin configuration with spin nodes {ni}, and
A−1

ij is a matrix which projects the torques due to spin-
node j and the motion of spin-node i. The matrix A and
its inverse are defined below in Eq. (121).
Instead of writing Eq. (90) in terms of vectors as in

the previous sections, we will stop at this point. This
equation provides a natural starting point in the anal-
ysis of the linearized equations of motion which will be
developed in the flowing section.

VII. LINEARIZED EQUATIONS OF MOTION

FOR ARBITRARY SPIN-F CONDENSATES

As suggested from the equations of motion of the spin-
one and higher condensates given in the previous sec-
tions, the geometric representation of the equations of
motion yield rather complicated results. Nevertheless,
this formalism regains its appeal when linearized about
particular mean-field ground states. Then the hidden
point symmetries of the ground state become apparent,
and can be used to describe the linearized dynamics of
a condensate. Below we derive the small oscillation de-
scription of general spinor condensates.

A. Linearized equations of motion from the GPE

Parting ways from the attempt at a general descrip-
tion of spinor condensate dynamics, we now turn to the
vicinity of a uniform mean-field ground state. For the
ensuing discussion, we will denote quantities to be eval-
uated in the mean-field ground state with overhead bars.
For instance, the density can be written by expanding
about the mean-field state as

ρ = ρ̄+ δρ. (93)

We will first concentrate on the equations describing the
density excitations. Linearizing the equations of motion
derived in Sec. VI leads to the following two equations
describing the density fluctuations:

∂tρ = −ρ̄ ∇ · v, (94)

and

∂tv = −∇
(

−2V̄int
ρ̄2

ρ+
∇2ρ

2ρ̄

)

. (95)

Note that terms describing the spin degrees of freedom
(e.g., the effective electric and magnetic fields) have com-
pletely dropped out of these equations from lineariza-
tion. Computing the excitations from these equations is
straightforward and gives the familiar Bogoliubov mode
describing density fluctuations.
Let us now focus our attention on linearizing the

Landau-Lifshitz equations for general spin written in
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Eq. (90). Since the process of linearization separates the
equations for spin and density fluctuations, to simplify
the notation in what follows, we will scale the density of
the uniform state to one, ρ0 → 1. When linearized, the
Landau-Lifshitz equations for general spin become

i
〈

Ω̄t
i

∣

∣∂tΩi〉 = −1

2

〈

Ω̄t
i

∣

∣∇2Ωi

〉

(96)

+
1

λ∗i
〈

Ω̄
∣

∣Ω̄
〉 〈

1

(

Ω̄t
i

)2F | 〈
2
Ω|Vint|Ω 〉

2
|Ω 〉

1
.

In the above, as before, we have used overhead bars to
denote quantities evaluated at their mean-field configu-
ration.
To understand the dynamics of Eq. (96) it is useful

to introduce variables to describe small deviations of the
spin nodes from their mean-field values. To this end, by
using the identities established in Sec. III E, we introduce
the set of 2F complex variables {zi}

zi ≡
〈

Ω̄t
i

∣

∣Ωi〉 =
〈

Ω̄t
i

∣

∣δΩi〉 =
1

2
ēi+ · ni =

1

2
ēi+ · δni, (97)

where ni = n̄i + δni. Note that in the mean-field states
we have z̄i = 0 for each spin node since the vectors ēi+
and n̄i are orthogonal. This set of variables can be seen
to be the local stereographic projection of ni onto the
complex plane for small displacements, and will be very
useful in the following analysis. Moreover, in our gauge
convention, zi is given in terms of displacements along
the zenith and azimuthal directions from the spherical
coordinate system:

zi = δn · θ̂ + iδn · ϕ̂. (98)

Using these variables, the linearized Landau-Lifshitz
equations become

i∂tzi = −1

2
∇2zi +

〈
1

(

Ω̄t
i

)2F | 〈
2
Ω|Vint|Ω 〉

2
|Ω 〉

1

λ∗i
〈

Ω̄
∣

∣Ω̄
〉 . (99)

The kinetic pieces in the GP equations are most natu-
rally described in terms of the original spinor wave func-
tion, ψa, and are not simplified by the symmetry of the
mean-field ground states. Nevertheless, Eq. (99) demon-
strates that near mean-field ground states the kinetic
terms still acquire a simple form. Interestingly, the ki-
netic parts in the spin equations of motion, (99), do not
disclose the fact that the variables {zi} describe spin-half
components of a spin-F state. This fact is reflected only
in the spin interaction term. In the following section,
we will see that this spin interaction can be expressed in
terms of a derivative with respect to the z∗ variables. In
particular, the equations of motion will be shown to be

i∂tzi = −1

2
∇2zi +

〈

Ω̄
∣

∣Ω̄
〉

∑

j

Ā−1
ij

∂

∂z∗j
Vint (100)

where

A−1
ij ≡

〈

(Ωt
i)

2F
∣

∣

∣

(

Ωt
j

)2F
〉

λ∗iλj
. (101)

Thus, the spin interaction derives from a sum over
“torques,”

τj =
∂

∂z∗j
Vint. (102)

B. Perturbative expansion of the spin interaction

An essential element in the behavior of spinor conden-
sates is the spin interaction term Vint. It is the minimiza-
tion of this term that yields the mean-field ground states,
and its curvature that determines the normal excitations.
These curvatures can be easily and directly extracted in
terms of specific matrix elements, as we show below.
To expand the spin interaction energy about a mean-

field ground state (denoted with an overhead bar) we first
need to understand how to perturb a spinor about a fixed
value. The following spin-half identity proves to be quite
helpful:

|δΩ〉 =
∣

∣Ω̄
〉 〈

Ω̄
∣

∣δΩ〉+
∣

∣Ω̄t

〉

z (103)

where we used the resolution of the identity in terms
of
∣

∣Ω̄
〉

and its time reversed partner, and the definition

of z =
〈

Ω̄t

∣

∣δΩ〉 as in Eq. (97). Now, if we apply the

variation to a general spin-F spinor |Ω〉 =
∣

∣Ω̄
〉

+ δ |Ω〉,
we obtain to linear order

δ |Ω〉 =
∣

∣Ω̄
〉

2F
∑

i=1

〈

Ω̄i

∣

∣δΩi〉+
2F
∑

i=1

∣

∣TiΩ̄
〉

zi (104)

where
∣

∣TiΩ̄
〉

is
∣

∣Ω̄
〉

with its ith entry time reversed (see

Appendix A). Since
〈

Ω̄i

∣

∣δΩi〉 is imaginary, the first term,
which does not directly depend on z, must drop off when
considering the variations of real quantities. For instance,
the first order variation of the normalization is:

δ 〈Ω|Ω〉 =
2F
∑

i=1

(〈

Ω̄
∣

∣TiΩ̄
〉

zi +
〈

TiΩ̄
∣

∣Ω̄
〉

z∗i
)

. (105)

Using Eqns. (104,105) one finds

∂

∂zi

|Ω〉
〈Ω|Ω〉 =

P̄
∣

∣TiΩ̄
〉

〈

Ω̄
∣

∣Ω̄
〉 , (106)

where

P̄ = 1−
∣

∣Ω̄
〉 〈

Ω̄
∣

∣

〈

Ω̄
∣

∣Ω̄
〉 . (107)

Such an expression is useful in evaluating derivatives
of the spin interaction energy as in Eq. (100). In gen-
eral, derivatives with respect to z∗i will act on bras while
derivatives with respect to zi will act on kets.
We will now establish the equivalence between

Eqns. (99) and (100). One can use Eq. (106) to eval-
uate the derivative of the interaction energy

∂

∂z∗j
Vint =

〈
1
TjΩ̄|P̄1 〈

2
Ω|Vint|Ω 〉

2
|Ω 〉

1

〈

Ω̄
∣

∣Ω̄
〉2 (108)
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which is correct to linear order. The subscripts of the
bra’s and ket’s denote how the inner product is to be
evaluated: ket 1 (2) is contracted with bra 1 (2), and
signify the state of one of two interacting particles; sim-
ilarly, the projection P̄1 operates only on the degrees of
freedom pertaining to particle ’1’. Then using the ex-
pression for A−1 and the relation (derived in Appendix
B)

P =
∑

i

∣

∣

∣(Ωt
i)

2F
〉

〈TiΩ|
λi

P (109)

one immediately finds for the last term in Eq. (100)

〈

Ω̄
∣

∣Ω̄
〉

∑

j

Ā−1
ij

∂

∂z∗j
Vint =

〈
1

(

Ω̄t
i

)2F | 〈
2
Ω|Vint|Ω 〉

2
|Ω 〉

1

λ∗i
〈

Ω̄
∣

∣Ω̄
〉

(110)
which is the last term in Eq. (99).

1. Second order expansion of the interaction energy

Since we are interested in small oscillations about equi-
librium, we would like to express the interaction energy
expanded about the mean-field state to quadratic order
in the z variables. This can be formally written as

Vint = V̄int +
1

2

∑

ij

∂2Vint
∂zi∂zj

zizj +
∑

ij

∂2Vint
∂z∗i ∂zj

z∗i zj (111)

+
1

2

∑

ij

∂2Vint
∂z∗i ∂z

∗
j

z∗i z
∗
j (112)

where the terms involving derivatives of Vint are to be
evaluated at the mean-field ground state. We can now use
Eq. (106) to evaluate these derivatives of the interaction
energy. Note that terms where two derivatives act on the
same bra or ket will vanish since

P̄1 〈
2
Ω̄|Vint|Ω̄ 〉

2
|Ω̄ 〉

1
= 0, (113)

which happens since τi = 0 at the minimum of the spin
interaction, so that 〈

2
Ω̄|Vint|Ω̄ 〉

2
|Ω̄ 〉

1
∝ |Ω̄ 〉

1
. We then

readily obtain the following quadratic form for the spin
interaction energy (dropping the V̄int term):

Vint =
∑

ij

(

〈
1
Ω̄| 〈

2
Ω̄|VintP̄2|TiΩ̄ 〉

2
P̄1|TjΩ̄ 〉

1

2
〈

Ω̄
∣

∣Ω̄
〉2 zizj

+
〈
1
TiΩ̄|P̄1 〈

2
Ω̄|Vint|Ω̄ 〉

2
P̄1|TjΩ̄ 〉

1

〈

Ω̄
∣

∣Ω̄
〉2 z∗i zj

+
〈
1
TiΩ̄|P̄1 〈

2
TjΩ̄|P̄2Vint|Ω̄ 〉

2
|Ω̄ 〉

1

2
〈

Ω̄
∣

∣Ω̄
〉2 z∗i z

∗
j

)

.

(114)

Here P̄1,2 is the projection operator which only acts on
states denoted with subscripts 1 or 2 respectively. While

the form above is written symmetrically, following Eq.
(113), only one projector in needed in Eq. (114), so P2

can be omitted.
While these results for the spin interaction seem in-

volved, they are directly expressed in terms of easily-
constructed matrix elements evaluated at the mean-field
ground state. Furthermore, these matrix elements obey
the point symmetry of the ground state at hand, and
thus have stringent constraints. Eq. (114) therefore pro-
vides us with direct expressions for the matrix elements
appearing in the linear spin-wave expansion of the spinor
condensate.

C. The Lagrangian of spinor condensates near

equilibrium

The equations of motion can be arrived at by expand-
ing the spinor condensate Lagrangian to quadratic or-
der in the z variables, and computing the corresponding
Euler-Lagrange equations. As we saw before, to this or-
der, the density excitations decouple from the spin ex-
citations. Thus, to simplify the analysis, we will fix the
density and scale it to one, and work in the incompress-
ible regime. The Lagrangian for a spin-F condensate in
the incompressible regime is

L = at −
1

2
(∇θ − a)2 − 1

2
Υ− Vint (115)

where Vint is the spin interaction potential. In expanding
this Lagrangian to second order, we first consider the spin
Berry’s phase contribution

at = i 〈χ|∂tχ〉 =
i

2

〈Ω|∂tΩ〉 − 〈∂tΩ|Ω〉
〈Ω|Ω〉 . (116)

Note that the kets and bras involving time derivatives
are necessarily first order in variation from the mean-field
state. Thus we consider the following quantity expanded
to first order about the ground state

δ
|Ω〉

〈Ω|Ω〉 =
|δΩ〉
〈

Ω̄
∣

∣Ω̄
〉 −

∣

∣Ω̄
〉

〈

Ω̄
∣

∣Ω̄
〉2 δ (〈Ω|Ω〉) (117)

=
P̄ |δΩ〉
〈

Ω̄
∣

∣Ω̄
〉 −

∣

∣Ω̄
〉 〈δΩ|Ω̄

〉

〈

Ω̄
∣

∣Ω̄
〉2 . (118)

Inserting this into the expression for the spin Berry’s
phase (116), and dropping terms that can be written as
total time derivatives (which do not contribute to the
dynamics) one finds

at = i
〈Ω| P̄ |∂tΩ〉
〈

Ω̄
∣

∣Ω̄
〉 (119)

We can then insert into Eq. (119) the expressions for
the expansion of |Ω〉 to linear order in the z variables
given in Eq. (104) to directly obtain

at =
i

〈

Ω̄
∣

∣Ω̄
〉

∑

ij

z∗i Āij∂tzj (120)
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where

Aij ≡ 〈TiΩ| P̄ |TjΩ〉 (121)

which is the sought-after relation. The proof that A de-
fined here is in fact the inverse of the expression given in
Eq. (101) is given in Appendix B. The hermitian matrix
Ā gives the canonical commutation relations between the
z variables. To directly compute the matrix elements of
A is cumbersome because each involves a Wick expansion
of (2F )! terms. On the other hand the expression for A−1

given in Eq. (101) is readily computed since it involves
evaluating overlaps between spin-coherent states. Thus,
in practice, to construct the matrix A it is easiest to first
construct A−1 and then compute its inverse.
Proceeding along very similar lines as above, one can

expand Υ to second order in the z’s. One finds

Υ = 〈∂αχ| P̄ |∂aχ〉 ≈
1

〈

Ω̄
∣

∣Ω̄
〉

∑

ij

∂αz
∗
i Āij∂αzj . (122)

Finally, we note that the term involving the superfluid
velocity v = ∇θ−a in the Lagrangian will not contribute
to the linearized equations of motion. We are now in a
position to vary the Lagrangian Eq. (115) as a function of
the z’s to find the linearized equations of motion. These
read

iĀij∂tzj = −1

2
Āij∇2zj +

〈

Ω̄
∣

∣Ω̄
〉 ∂V

∂z∗i
(123)

(repeated indices are summed over). It is straightforward
to see that this is the same as Eq. (100) which was ob-
tained directly from linearizing the GPE contracted with
time-reversed coherent states.
Since A is a hermitian matrix, it is diagonalized by a

unitary transformation

A = UΛU †, (124)

where Λ is the diagonal matrix consisting of the eigen-
values of A. It is therefore convenient to define a new set
of w-coordinates as

w = Ū †z. (125)

Note that in terms of these coordinates, the Berry’s phase
assumes a simple diagonal form

at =
1

〈

Ω̄
∣

∣Ω̄
〉

∑

i

Λ̄iw
∗
i ∂twi. (126)

Furthermore, the equations of motion have the simple
form in these coordinates:

i∂twi = −1

2
∇2wi +

〈

Ω̄
∣

∣Ω̄
〉

Λ̄i

∂V

∂w∗
i

. (127)

This has the form of a time-dependent Schrodinger equa-
tion for the wi parameters.

VIII. NORMAL EIGENMODES, SYMMETRY,

AND GROUP THEORY

The most appealing application of the linearized equa-
tions of motion developed in the previous section is to ob-
tain the normal excitation modes and energies of spinor
condensates having a hidden ground state symmetry. As
we show, it is nearly sufficient to diagonalize the matrix
A [defined in Eq. (101)] in order to obtain the eigen-
modes of the spinor-condensate. This can be done solely
by using the symmetry of the mean-field state.

Below we first demonstrate the use of the linearized
equations of motion on the cyclic state without fully uti-
lizing the symmetry in Sec. VIII A, and obtain all eigen-
modes and eigenfrequencies using the variables defined
in Sec. VII B 1. Next, in Sec. VIII B, we demonstrate
how from the point group of the hidden symmetry of
the mean-field ground states, we can compute the nor-
mal modes alone (but not energies), using the example
of the spin-three state where the spin-nodes are arranged
at the vertices of a hexagon. Finally, in Sec. VIII C,
we show how to directly construct the vibrational and
rotational eigenmodes from spherical harmonics, by con-
necting the problem at hand to that of degeneracy lifting
of electronic atomic orbitals. This method circumvents
the arduous group-theory foot work, by using the well-
known properties of atomic orbitals under crystal fields
that break rotational invariance.

The general motivation of the discussion below is that
group theory analysis can be applied to obtain the normal
modes in spinor condensates much like the analysis of the
vibrational frequencies of polyatomic molecules [35, 36].
The “atoms” (or spin nodes) in our case, however, are
confined to the surface of the unit sphere, and the dis-
placement of each spin node is a two-dimensional vector
(parameterized by the real and imaginary parts of the z
variables). This constraint slightly complicates the anal-
ysis in comparison with the treatment of the vibrations
of polyatomic molecules. The first step in a symmetry
analysis is to construct the transformation rules of the
2-d displacement vectors under point group symmetries.
These transformation rules are a reducible representation
of the symmetry group, and can then be broken down into
its irreducible representations (irreps). The modes that
transform according to the irreps are the eigenmodes of
the system.

Before we begin the analysis, a note on mode multi-
plicity is in order. Naively, one might expect that the
procedure in the previous paragraph will give (2F ) × 2
normal modes due to the two basis vectors per spin node.
This situation would arise if the transformations we con-
struct transform the 2F × 2 real coordinates, and are
therefore 4F large real reducible representations of the
symmetry group, resulting in 4F modes. While this is
the case for real atoms, where the displacement vectors
are also associated with conjugate momenta, the spin-
nodes displacements do not have independent conjugate
momenta. From Eq. (115) and (116) we see that the
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complex displacement zi is actually canonically conju-
gate to πi =

∂L
∂żi

∝ i
∑

i

Aijz
∗
j : the two-dimensional dis-

placements are both the coordinate and conjugate mo-
menta, and hence there are only 2F eigenmodes in a
spinor condensate. Qualitatively, this is a situation rem-
iniscent of a massless particle in a magnetic field, where
the x and y coordinates are canonically conjugate coor-
dinate and momentum. Indeed, constructing real 4F di-
mensional representations of the symmetry would result
in two duplicates of the spinor-condensate’s eigenmodes.
This duplicity will become evident when the eigenmodes
are written in terms of the complex zi’s: half the normal
modes will differ from the other half through a complex
multiplicative coefficient.

A. Spin-two cyclic state

As our first example, we consider the cyclic state which
is a possible mean-field ground state having the symme-
try of a tetrahedron for the spin-two problem. We will
expand the interaction energy to quadratic order about
this mean-field ground state to compute the energies of
the normal excitations. The spin-two interaction energy
can be written in the simple form [28, 29]

Vint =
1

2
αm2 +

1

2
β| 〈χt|χ〉 |2 (128)

where α and β are functions of the scattering lengths,
and

m = 〈χ|F |χ〉 . (129)

For the mean-field cyclic state, this spin interaction en-
ergy conveniently vanishes V̄int = 0. In the following we
will expand this energy to quadratic order.
We first construct the symmetry matrixA for the cyclic

state. We take the orientation where the spin nodes are
at (in cartesian coordinates)

n̄1 =
1√
3
(1, 1, 1), n̄2 =

1√
3
(−1,−1, 1), (130)

n̄3 =
1√
3
(1,−1,−1), n̄4 =

1√
3
(−1, 1,−1). (131)

With the spin-half spinors corresponding to these spin
nodes the matrix Ā−1 can be directly constructed using
the expression involving overlaps of time-reversed coher-
ent states in Eq. (101). Using our gauge convention, this
is found to be

Ā−1 =
1

64







9 1 −1 −1
1 9 −1 −1
−1 −1 9 1
−1 −1 1 9






. (132)

This then can be inverted to obtain

Ā =
2

3







11 −1 1 1
−1 11 1 1
1 1 11 −1
1 1 −1 11






. (133)

Recall that directly constructing the Ā matrix is cumber-
some since its elements involve Wick expansions having
(2F )! terms. The eigenvalues of this matrix are found to
be Eig(Ā) = (Λ̄1, Λ̄2, Λ̄3, Λ̄4) = (8, 8, 8, 163 ). This matrix
can be written in a revealing form as

Ā = 8I − 8

3
ū4ū

†
4 (134)

where ū4 = 1
2 (1, 1,−1,−1)T is the eigenvector of Ā cor-

responding to eigenvalue Λ̄4 and I is the identity matrix.
An eigenmode will necessarily diagonalize the A matrix
as well as the entire equations of motion, and therefore
we already gleaned one eigenmode: ū4, which will turn
out to be the optical mode.
The three modes orthogonal to ū4 are associated with

SO(3) rotations. With this in mind, we construct these
three eigenmodes as the vectors arising from infinitesimal
rotations of n̄i about the cartesian axes, x̂α. A rotation
by angle δη about the x̂α axis produces the following zi’s:

zi(δη) = δη (x̂α × n̄i) · ēi+ = iδη ēi+ · x̂α. (135)

Thus the eigenvectors ūα are:

ūα =

√

3

8
{ēi+ · x̂α}4i=1. (136)

It is now clear how to write the transformation into the
eigen-coordinates defined generally in Eq. (125):

zi =
∑

α

wα(ūα)i. (137)

Due to the high symmetry of the tetrahedron, these mode
are also degenerate. In general, the set of coordinate
vectors x̂α should be taken to be the principal axes of
the mean-field configuration.
Next we use this matrix to expand the interaction en-

ergy. We first consider the linear order variation of the
spin moment m. Note that since m̄ = 0 in the ground
state we have

〈

Ω̄
∣

∣F |Ω〉 =
〈

Ω̄
∣

∣FP̄ |Ω〉. Then by insert-

ing the identity for P̄ given in Eq. (109) one finds

δm =
1

2
〈

Ω̄
∣

∣Ω̄
〉

∑

ij

(ēi−Āijzj + z∗i Āij ēj+). (138)

We now write the vectors ēi+ in the basis of unit vectors
along the three cartesian coordinates

ēi+ =
3
∑

α=1

(ēi+ · x̂α)x̂α (139)

which immediately reduces them to the complex conju-
gate of the degenerate eigenvectors ūα (with eigenvalue
Λ̄ = 8). The fact that all of the eigenvalues are the same
is due to the high symmetry of the tetrahedral state.
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x

y

(a) (b)

(d)(c)

z

FIG. 3: Normal modes of the cyclic state. Mode (a) is the op-
tical mode corresponding to pure displacements in w4. Modes
(b), (c), and (d) are gapless modes corresponding rotating
about the x, y, or z axes respectively. The axes of rotation
for these modes is shown.

With this basis one finds for the expansion of magneti-
zation the simple expression

δm =
4

〈

Ω̄
∣

∣Ω̄
〉

∑

i

3
∑

α=1

√

8

3
x̂α((ūα)

∗
i zi + (ūα)iz

∗
i )

=
√
6

3
∑

α=1

x̂α(wα + w∗
α) (140)

where we have expressed the final result in terms of the w-
variables (defined in Eq. (137). In deriving the above ex-
pression, we have explicitly used the values for the eigen-
values of the A matrix and the normalization constant
〈

Ω̄
∣

∣Ω̄
〉

= 8
3 . The three parameters of wi occuring in

Eq. (140) correspond to rotations about the three carte-
sian axes as shown in Fig. 3.
Similar analysis can be performed on the second term

in the spin interaction for the cyclic state. Without show-
ing the details, it is found that

δ 〈χt|χ〉 = 2
√
2w4. (141)

With these expressions we can now write down the spin
interaction energy expanded to quadratic order which
reads

〈

Ω̄
∣

∣Ω̄
〉

Vs = α
3
∑

i=1

Λ̄i(wi + w∗
i )

2 + 2βΛ̄4|w4|2. (142)

With this expansion of the interaction, Eq. (127) can
be directly used to compute the energy of the normal ex-
citations. Four Bogoliubov modes (note we are neglecting

D6h E 2C6 2C3 C2 3C′

2 3C′′

2 i 2S3 2S6 σh 3σd 3σv

A1g 1 1 1 1 1 1 1 1 1 1 1 1

A2g 1 1 1 1 -1 -1 1 1 1 1 -1 -1

B1g 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

B2g 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1

E1g 2 1 -1 -2 0 0 2 1 -1 -2 0 0

E2g 2 -1 -1 2 0 0 2 -1 -1 2 0 0

A1u 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

A2u 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1

B1u 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1

B2u 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1

E1u 2 1 -1 -2 0 0 -2 -1 1 2 0 0

E2u 2 -1 -1 2 0 0 -2 1 1 -2 0 0

Γ 12 0 0 0 -4 0 0 0 0 0 0 0

TABLE I: The character table of the group D6h using the
notation of [35]. The last row gives the characters of the
reducible representation Γ constructed from transforming the
displacement vectors of the hexagon (see text).

the density mode) are readily obtained. One finds three

gapless spin waves of dispersion Es
k =

√

εk(εk + 4α) in
addition to an optical mode having dispersion Eop

k =
εk + 2β (where εk is the free particle dispersion).
Quite generally, the eigenvectors of the matrix Ā yield

the displacements of the z variables corresponding to
each of the eigenmodes (see, e.g., Eq. (135). In case
of degeneracy, it is the interaction terms, discussed in
Sec. VII B 1, that determine the correct diagonalization
of the degenerate subspace in the matrix A. In the case of
the cyclic state, the first three modes have displacements
that correspond to rotations about three orthogonal axes.
The final mode z ∝ ū4 corresponds to the optical excita-
tion discussed above, and its displacements are depicted
in Fig. 3. This procedure simplifies the standard Bo-
goliubov method [39] considerably; we extract the eigen-
modes solely from the A matrix, which, as we show next,
can be obtained from symmetry considerations.

B. Spin-three hexagonal state

Let us now describe how to obtain the normal modes of
a spinor condensate by using symmetry arguments alone
in a more complicated setting. Once having the eigen-
modes, however, we must note that to obtain the ener-
getics and dispersions of these modes, analysis of the mi-
croscopic Hamiltonian is still required. Our analysis uses
group theoretical arguments similar to those used to de-
termine the vibrational modes of polyatomic molecules
[35, 36]. We illustrate the method through the nontrivial
example of the spin-three state having the symmetry of
the hexagon, which is a candidate for the ground state of
52Cr condensates [30, 31].
The hexagon belongs to the point symmetry groupD6h

whose character table is given in Table I. In this table we
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E1g

ν5

E1g

ν6

E1u

ν7

E2g

ν9

E2g

ν10

E1u

ν8

E2u

ν12

E2u

ν11

ν1

A2g

ν2

A2u

ν3
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ν4
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+
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FIG. 4: Normal modes for the hexagonal configuration of
the spin-three condensate. Vectors moving into and out of
the plane are denoted with “-” and “+” respectively. By
multiplying the set of parameters {zi} corresponding to these
displacements by a factor of i, one can identify ν1 = ν2, ν3 =
ν4, ν5 = ν7, ν6 = ν8, ν9 = ν11, and ν10 = ν12. The modes
ν1 = ν2, ν5 = ν7, and ν6 = ν8, correspond to Goldstone
excitations due to the broken spin symmetry, while all other
modes are optical and gapped. The mode ν10 = ν12 has a set
of displacement vectors with lengths differing by a factor of
two.

use the standardized notation for the symmetry operators
and irreducible representations [35]. To every spin node,
we attach two displacement vectors parameterized by the
real and imaginary parts of the zi’s introduced previously.
Such displacement vectors are always parallel to the sur-
face of the sphere. We can construct matrices Mi which
describe how this set of 2 · 2F = 4F vectors transform
under each of the symmetry operations. It is easy to then
see that this set of matrices Γ ≡ {Mi} form a (reducible)
representation of the symmetry group. While these large
4F × 4F matrices are cumbersome to write down, their
characters (traces) can be obtained by inspection. For in-
stance, only spin nodes which are mapped to themselves
by a particular symmetry operation will contribute to the
character of the matrix describing this symmetry opera-
tion. The last row of Tab. I gives the characters of each
of the matrices Mi forming Γ.
One can then invert the character matrix given in

Tab. I to see how Γ can be decomposed into combina-
tions of irreducible representations. The result is

Γ = A2g+B2g+E1g+E2g+A2u+B2u+E1u+E2u. (143)

In the typical notation [35] A’s and B’s denote one-
dimensional irreducible representations while E’s denote
two-dimensional irreducible representations. The normal
modes form the basis of each of these irreducible repre-
sentations [35]. For two-dimensional irreducible repre-
sentations, there is some ambiguity in picking the two

basis functions. For simplicity, we picked the particular
displacements which are all in-plane or all out-of-plane to
form such bases. The 4F modes corresponding to each
of these representations is given in Fig. 4. As usual, the
modes corresponding to two-dimensional representations
are degenerate.
Once we know the irreducible representations involved,

we follow standard group theory, and construct projec-
tion operators for the modes in these irreducible repre-
sentations. A general displacement of the spin nodes Q
can be decomposed into a superposition of modes forming
bases for each irreducible representation as

Q =
∑

i

P(Γi)Q (144)

where the operator P(Γi) projects into the irreducible
representation Γi. Such projection operators can be writ-
ten explicitly as

P(Γi) =
ℓi
h

∑

g

χ(Γi)(g) D(g). (145)

Here, χ(Γi)(g) is the character for the irredicuble rep-
resentation Γi corresponding to group element g, ℓi is
the dimension of the ith irreducible representation, and
h are the number of elements in the symmetry group;
D(g) is the representation of group element g in the spin-
nodes displacement basis. For the hexagonal state of the
spin-three condensate, this projection confirms the eigen-
modes depicted in Fig. 4.
As mentioned above, unlike molecular normal modes

where the atoms oscillate linearly about the equilibrium
positions, the spin nodes will rotate along ellipses about
the equilibrium configuration. This allows us to cut the
number of modes given Fig. 4 in half. Specifically, by
multiplying the displacements {zi} by the phase factor
of i, we identify ν1 = ν2, ν3 = ν4, ν5 = ν7, ν6 = ν8,
ν9 = ν11, and ν10 = ν12. Because of rotational invariance,
the aspect ratio of the ellipses for the three spin rotational
Goldstone modes ν1 = ν2, ν5 = ν7, and ν6 = ν8 will
be zero. Finally, we identify the three remaining modes
ν3 = ν4, ν9 = ν11, and ν10 = ν12 with gapped optical
modes of the hexagonal spin-three condensate.
Thus, for this spin-three problem, by symmetry argu-

ments alone we have identified the 2F = 6 spin modes
(three of which are Goldstone modes). These modes
along with density mode give the complete spectrum of
normal modes for the spin-three hexagonal condensate.

C. Connection to atomic orbital theory and

spherical harmonics

The treatment above makes the construction of low-
energy eigenmodes of spinor condensates geometrically
intuitive, and illustrates how to directly use the machin-
ery of group theory. In addition, however, it is possible
to make use of the close relationship of the symmetry
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group and the underlying full SO(3) rotational symme-
try (such a connection was explored in the context of
equilibrium spinor-condensates in Ref. [33]). Once this
connection is made, we will be able to simply map the
already well-developed theory of crystal-field splittings of
atomic orbitals to the problem of eigenmodes of spinor
condensates.
The connection between the z-representation of small

oscillations as in Sec. VIII A and spherical harmonics can
be deduced from the transformation rules of the vector zi
under the relevant point-group. On the one hand, a sym-
metry operator in the z-representation, Dij(g), will per-
mute the entries zi, as the symmetry operation g would
the spin-nodes. On the other hand, each zi is a two-
dimensional vector written in terms of a complex num-
ber with respect to a particular basis pair, ēx, ēy, which
are functions of the location of the spin-node n on the
unit sphere. Therefore, the operator Dij(g) also contains

phase factors, eiλij(g), which serve to rotate the basis vec-
tors. So, in general, the structure of symmetry operators
in the z-basis is

Dij(g) = A
(2F )
ij (g)eiλij(g), (146)

where A
(2F )
ij (g) is an element of the 2F permutation

group corresponding to a rotational symmetry of the spin
nodes.
By exploiting the above transformation structure, we

can systematically construct bases of the symmetry
group over C

2F from the bases of rotational symme-
try, namely, spherical harmonics, Ylm(θ, φ). Let us mark
the polar coordinates of the spin node ni as θi, φi; from
this set of coordinates, we can produce a 2F -dimensional
complex vector:

{Ylm(θi, φi)}2Fi=1.

It is easy to see that if we apply a rotational symmetry
operator g of the spinor condensate on this vector, we
have:

∑

m′

R
(l)
mm′(g)Ylm′ (θi, φi) =

∑

j

A
(2F )
ij (g)Ylm(θj , φj),

(147)

where A
(2F )
ij (g) is the permutation operator from Eq.

(146). The right-hand side of this equation indicates the
rearrangement of the spin-nodes due to the symmetry op-
erator. On the other hand, the left-hand side comes from
our knowledge of the transformation rules for spherical
harmonics, under rotations: namely, l, the total angu-
lar momentum is invariant, and the different azimuthal
angular momentum components mix under the transfor-
mation.
To connect the spherical harmonics with the z-

representation, we need to construct a vector that will
also transform with the phase eiλij(g). This requires
that in addition to evaluating the spherical harmonics
at the points (θi, φi), we need to account for the phase

factor when constructing the derived bases in the z-
representation. This can be achieved by the following
notion: instead of looking at the value of Ylm(θ, φ), let
us look at its derivative, which in our gauge convention
can be written as

∂Ylm(θ, φ)

∂z∗
=

(

∂

∂θ
+ i

1

sin θ

∂

∂φ

)

Ylm(θ, φ). (148)

The denominator of the partial derivative ∂z∗i can be
thought of as a small deviation, δz∗i , from the mean-field
spin node; it obeys the complex conjugate of the trans-
formation rule in Eq. (146), so its inverse transforms in
the correct way, using the phase eiλij(g). Therefore, we
finally have the connection between the symmetry of the
spinor condensate and the representations of SO(3):

∑

m′

R
(l)
mm′(g)

∂Ylm′(θi, φi)

∂z∗i
=
∑

j

Dij(g)
∂Ylm(θj , φj)

∂z∗j
.

(149)
What we achieved by making this connection is a way
of constructing for each l > 1 (l = 0 gives identically
zero) partially reduced (albeit still reducible) represen-
tations of the symmetry group at hand in terms of the
z-parametrization of small deviations from equilibrium.
Let us denote the vectors we construct from Ylm as:

ul,m =

{

∂Ylm(θi, φi)

∂z∗i

}2F

i=1

. (150)

These vectors are the simplest building blocks for the
vibrational and rotational eigenvectors.
As an example, consider the l = 1 states (p-states) ob-

tained for the cyclic state of spin-two condensates. With
the orientation for the cyclic state given in Sec. VIII A,
we obtain for l = 1,m = 0:

u1,0 ∝ {ēi+ · x̂3}4i=1 ∝ (1, 1, 1, 1) (151)

which is the displacement vector for x3 = z-axis rota-
tion, as in Eq. (135). For m = ±1, as in atomic-orbital
physics, it is useful to construct the px and py combina-
tions, which are px,y ∝ Y1,1 ∓ Y1,−1. For px we obtain:

u1,1 − u1,−1 ∝ {ēi+ · x̂1}4i=1 ∝ {1, −1, −1, 1}, (152)

which is the rotation about the x1 = x-axis (up to an
overall complex coefficient). In the same fashion we find
that the py combination is

z1,1 + z1,−1 ∝ {ēi+ · x̂2}4i=1 ∝ {1, −1, 1, −1} (153)

which is corresponds to rotation about the x2 = y-axis.
To obtain the last mode, which is the optical vibration
mode shown in Fig. 3, all we need is to find the vector
of u which is orthogonal to the above three.
The above analogy with atomic p-orbitals is not ac-

cidental. Since we mapped vibrational modes to spher-
ical harmonics, we also mapped the z-representation of
spinor-condensate fluctuations to the lm representation
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of atomic orbitals. In atomic orbital theory, we know
that in the absence of rotational-symmetry breaking all
m-states within the same l are degenerate. But in the
presence of a crystal field, this degeneracy is lifted. The
effect of crystal fields on angular-momentum multiplets
is very well-documented (see, e.g., [35]); we can now use
this resource to directly find the eigenmodes of the spinor
condensates.
Let us demonstrate this principal again using the cyclic

state. We have already shown that the l = 1 vibration
modes correspond to rotations. Let us now consider the
l = 2 states. Under the effect of a tetrahedral crystal
field the electronic states split as:

5d→
{

dxy, dxz, dyz
dz2 , dx2−y2

(154)

Now we can map back these atomic states to spinor-
condensate oscillation modes. Starting with dxy ∝ Y2,2−
Y2,−2 we find

u2,2 − u2,−2 ∝ {1, 1, 1, 1} (155)

which corresponds to uniform rotation about the z-axis.
Similarly dxz ∝ Y2,1 − Y2,−1 and dyz ∝ Y2,1 + Y2,−1

correspond to rotations about the y and x-axis respec-
tively. The two remaining orbitals are dz2 ∝ Y2,0 and
dx2−y2 ∝ Y2,2 + Y2,−2. Since there are only four inde-
pendent vectors, z, dz2 and dx2−y2 translate to the same
zlm-vector:

u2,0 ∝ u2,2 + u2,−2 ∝ {1, 1, −1, −1} (156)

which is exactly the optical mode shown in Fig. 3.

IX. CONCLUSIONS

One of the most striking and surprising features of
spinor condensates is the hidden symmetry of their mean
field ground states. In this work, based on a spin node
description, we have strived to bring this symmetry to
the forefront, and to make it into a tool in the study of
the dynamics of these fascinating systems.
In the first part of this work, we derived the hydro-

dynamic equations of motion for condensates of general
spin, demonstrated their use in the computation of the
skyrmion configuration of a ferromagnetic spin-half gas,
and generalized the Mermin-Ho relation to spin-one con-
densates.
In the second part of this work, we concentrated on

small oscillations of the spinor condensate in the vicin-
ity of the mean field-ground state. It is there that the
hidden point-group symmetry becomes most apparent
and accessible. Using the spin-node formalism, and the
parametrization of the spin-nodes in terms of a stereo-
graphic projection, we reduced the problem of finding
the 2F spin-wave eigenmodes to a simple question of
decomposing a representation of the appropriate point

symmetry group to its irreducible representations. We
also provided a simple recipe that allows the direct ex-
traction of the condensate’s spin-wave eigenmodes using
the derivatives of the spherical harmonics, coupled with
the knowledge of atomic orbital degeneracy lifting under
a crystal field.
More than any specific result, this paper derives a new

formalism to address high-spin many body systems. It is
our impression that, by far, we have not yet explored all
possible applications of this formalism. A simple exam-
ple is the calculation of the spin-wave eigenmodes and
energies of a spinor condensate which is locally at its
ground state, but with its spin-nodes structure rotated
as a function of space. This can be done by combining the
linearization of Sec. VII with the general hydrodynamic
description derived in Sec. VI. Similarly, our method of
expanding about a mean-field ground state in terms of
the z-variables could be readily applied to computing the
leading instabilities in quantum-quench experiments (as
in, for instance, Ref. [17] where spin-one quantum quench
experiments were performed). The linearized Lagrangian
derived in Sec. VII C applies near any extremum of the
spin interaction energy, Vint, even an unstable one. This
can then be used to investigate the dynamics for short
time-scales after a quantum quench.
Another possible direction focuses on the form of the

spin interaction energy Vint(n̂1, n̂2, . . . , n̂2F ), first de-
fined in Eq. (10). In terms of the spin-nodes, the spin in-
teraction energy must be a permutation symmetric func-
tion of the spin nodes. But the number of permutation
symmetric scalars constructed of the spin nodes n̂i is lim-
ited. All such scalars must be constructed from tensors
of the form:

Mα1α2...αn
=

2F
∑

i=1

ni,α1
ni,α2

. . . ni,αn
, (157)

where αk = x, y, z is the space direction. Examples are:

2F
∑

i,j=1

n̂i · n̂j =
2F
∑

i,j=1

ni,αnj,α

2F
∑

i,j=1

ni,αni,β · nj,αnj,β

(158)

and so forth. This structure of the spin-interaction may
be used to construct generic phenomenological theories
for spinor condensates and other high-spin many-body
systems, along the lines of the construction of Landau
free energy.
The most interesting applications of the spin-node for-

malism may arise when considering non-condensed spinor
systems. Lattice insulators, both fermionic and bosonic,
could also be parametrized using spin-nodes, and should
exhibit magnetic mean-field states with hidden point-
group symmetry as well. Similarly, we intend to consider
spinor Fermi liquids using this formalism; such systems
may have interesting magnetic instabilities into states
with the same hidden symmetries as those arising in
spinor condensates.
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In the challenging field of many body quantum sys-
tems, often a new technical perspective on a problem
may simplify it dramatically. In this paper we developed
a formalism that seeks to do exactly that to the dynam-
ics of spinor condensates – a topic of much current ex-
perimental as well as theoretical interest. Our analysis
provides an economical representation, which allows for
a direct, general, and easy calculation of many dynamic
collective properties of spinor condensates. In addition,
we hope that the developments presented here could be
used in other challenging problems involving interacting
quantum systems with high-spin.
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Appendix A: Notation

In this Appendix, for convenience, we collect in one
place the notation used for the representation of the
spinors. Normalized spinors of arbitrary spin are denoted
by |χ〉. Non-normalized symmetric combinations of spin-
half states are denoted as (with bold fonts)

|Ω〉 = |Ω1Ω2 . . .Ω2F 〉 . (A1)

This is then related to |χ〉 by

|χ〉 = |Ω〉
√

〈Ω|Ω〉
. (A2)

Coherent spin states occur when all of the spin-half con-
stituent spins point in the same direction. We denote
these by

∣

∣

∣(Ωi)
2F
〉

= |ΩiΩi . . .Ωi〉 . (A3)

We next define the spin state corresponding to |Ω〉 with
its ith component time-reversed. We denote these by

|TiΩ〉 =
∣

∣Ω1Ω2 . . .Ω
t
i . . .Ω2F

〉

. (A4)

Finally, we define the projection operator P to be

P = 1− |χ〉 〈χ| . (A5)

Appendix B: The spinor basis {|TiΩ〉} and the

matrix A

In this Appendix, we will develop derive identities used
for the projection operator P̄ = 1− |χ〉 〈χ| and the sym-

metry matrix A. Consider a particular spinor

|Ω〉 = |Ω1Ω2 . . .Ω2F 〉 (B1)

where none of the spin nodes are degenerate. Then from
this we can construct a set of 2F states where one of the
elements of |Ω〉 is time-reversed {|TiΩ〉}. Furthermore,
we construct the set of 2F coherent states which are or-

thogonal to |Ω〉 which are
{∣

∣

∣(Ωt
i)

2F
〉}

. We note that

these two sets of states satisfy reciprocal relations:

〈TiΩ|
(

Ωt
j

)2F 〉 = λiδij (B2)

where

λi = (2F )!
∏

j 6=i

〈Ωj |Ωt
i

〉

(B3)

This relation leads to a useful identity for the projec-
tion operator

P =
∑

i

∣

∣

∣(Ωt
i)

2F
〉

〈TiΩ|
λi

P . (B4)

This relation can be immediately proved by expand-
ing any state acting on the right in a basis of states
{∣

∣

∣(Ωt
i)

2F
〉}

, and any state acting on the left in a basis

of states {|TiΩ〉} (both which, in addition to the state
|Ω〉, form a complete basis of spinor states when the spin
nodes are non-degenerate).

Using these states, we will now proceed to derive an ex-
pression for the inverse of the matrixAij = 〈TiΩ| P |TjΩ〉
which exists when none of the spin nodes ni are degen-
erate. We define B to be the matrix of the overlap of
time-reversed coherent states (which will be shown to be
the inverse of A)

Bij =

〈

(Ωt
i)

2F
∣

∣

∣

(

Ωt
j

)2F
〉

λ∗i λj
. (B5)

Consider the product of these matrices

∑

j

BijAjk =
∑

j

〈

(Ωt
i)

2F
∣

∣

∣

(

Ωt
j

)2F
〉

λ∗i λj
〈TjΩ| P |TkΩ〉〉 .

(B6)
We can then use the identity in Eq. (B4) to collapse the
sum over j. This leads to

∑

j

BijAjk =
〈(Ωt

i)
2F |TkΩ〉
λ∗i

= δik. (B7)

and the proof is complete.
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