Downloaded 12/09/14 to 155.198.12.107. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. APPL. MATH. (© 2010 Society for Industrial and Applied Mathematics
Vol. 70, No. 7, pp. 2582-2603

SELF-SIMILAR BLOWUP SOLUTIONS TO AN AGGREGATION
EQUATION IN R™*

YANGHONG HUANG! AND ANDREA L. BERTOZZIf

Abstract. We present numerical simulations of radially symmetric finite time blowup for the
aggregation equation uy = V - (uVK * u), where the kernel K(z) = |z|. The dynamics of the
blowup exhibits self-similar behavior in which zero mass concentrates at the core at the blowup time.
Computations are performed in R™ for n between 2 and 10 using a method based on characteristics.
In all cases studied, the self-similarity exhibits second-kind (anomalous) scaling.
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1. Introduction. In this paper, we consider the self-similar blowup of radially
symmetric solutions to the aggregation equation

(1.1) up =V - (uVK *u) in[0,T)x R"™,

subject to initial condition «(0,z) = uo(z) on some time interval of existence [0, 7).
Here K * u is the convolution of u with a radially symmetric kernel potential K.
This equation arises in a number of continuum models for interacting particles via
pairwise potentials. It appears in the description of self-assembly of nanoparticles by
Holm and Putkaradze [32, 33] as an alternative to the Debye—Huckel or Keller—Segel
model. It is also used as a popular model for aggregation in animal behavior, e.g.,
the schools or swarms formed by fish and birds, where everyone senses the presence
of other individuals [12, 19, 20, 44, 49, 48]. In these applications the most common
potential in the literature is K (x) = 1 — e~*|, which behaves like |x| near the origin.
These are examples of Lipschitz continuous potentials for which the lack of higher
regularity at x = 0 is known to be responsible for the finite time blowup.

The basic properties of (1.1), with a “pointy” potential as described above, have
been addressed recently in a series of papers. Bodnar and Velazquez [12] study the
problem of existence and uniqueness, along with blowup and steady states in one
dimension for different potentials with smooth initial data. The local existence and
uniqueness of this equation in higher dimensions is proved by Laurent [38]. An alter-
native local existence and finite time blowup proof is given by Bertozzi and Laurent
in [8]. The blowup problem is revisited in [7] and the review article [9] with a more
general class of potentials, for which it is determined that an Osgood condition on
the regularity of the potential at the origin is necessary and sufficient for finite time
blowup. Moreover, it is shown that there is no mass-concentrating, smooth self-similar
finite time blowup solution in odd dimension larger than one for the homogeneous,
radially symmetric kernel K (z) = |z|. This fact is the primary motivation for the
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study here—mamely, that the most common multidimensional models in the litera-
ture are known to produce finite time singularities, and in some higher dimensions, no
smooth similarity solutions exist that concentrate mass. The paper [7] has a simple
example in one dimension of a mass-conserving similarity solution. In higher dimen-
sions they show some interesting similarity solutions that concentrate mass, but all of
these involve collapsing delta-rings and thus cannot result from smooth initial data.
By performing numerical calculations with a high degree of spatial and temporal pre-
cision, we are able to resolve the dynamics of blowup for this problem in multiple
space dimensions. Our assumption of radial symmetry allows us to obtain a degree of
precision that would be much more difficult in the case of solutions lacking symmetry.

Finite time blowup phenomena appear in many equations for physical models,
including semilinear heat equations [29, 28], nonlinear Schrodinger equations [30, 42,
27], gravitational collapse [14], and pinchoff in surface diffusion [5]. For a general
review article, see [26]. Near the blowup time, it often happens that, because of the
absence of any external scales, the solution collapses to the singularity in a self-similar
way. Probably the most extensively studied one is the semilinear heat equation

(1.2) ur = Au + f(u), flw) =P or f(u) =e"

However, it has been well known since the 1970s that there is no exact self-similar
solution of the form (for f(u) = uP)

(1.3) u(z,t) = (T — )" YDy (z/(T — t)Y/?).

A refined analysis or center manifold theory close to the blowup time gives the
following asymptotic behavior with a logarithm correction [25, 28, 29, 43]:
(1.4)

(Y u) N z _
u(zx,t) (T—t) <1+ 4p77 , Wheen_\/[(T—t)|1n(T—t)|’B_p—f

In contrast, quasi-linear problems [47, 16]

(1.5) up = (Jug|%ug)e + €% or u = (uug)e +uP, o >0,

or higher order parabolic equations [17]

(1.6) ug = (=)™ DIy 4 |uP "y, or wp = (1) DIy + et

do possess exact self-similar blowup solutions, where D?™ is the 2mth derivative with
respect to x.

For those solutions with nontrivial blowup profiles, it is possible that the profiles
match the exact analytical ones only near the core of the blowup point (or set), with
deviation (though very small in magnitude) away from the core, sometimes called
quasi-self-similar solutions. This is observed in the collapse of the cubic nonlinear
Schrodinger equation, either for the Townes profile [24, 42, 45] or for the ring profile
[27].

In finite blowup problems for density distributions, the dynamics could concen-
trate a finite amount of mass or zero mass in the core, even for different types of
blowup solutions of the same equation, which conserves the total mass. One exam-
ple is the Keller—Segel system of equations, which models overdamped gravitational
interaction of a cloud of particles and chemotaxis in bacteria [37]:

dp=Ap—V-(pVe),
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(17) —AC = p’

where p is the density of the cloud or the bacteria and ¢ represents the gravitational
potential or the density of the chemo-attractant. In spatial dimension greater than
two, there are at least two types of blowup solutions. One is exactly self-similar,
concentrating zero mass, and the other is like a Burgers shock, with finite mass in a
ring converging to the origin [13].

For all of the similarity solutions considered above, the similarity variables and
exponents characterizing the dynamics, especially those related to the spatial spread,
can be determined a priori, either from a dimensional analysis of the problem or from
the basic invariant scales of the equation, called self-similar solutions of the first kind
or complete similarity solutions. However, other problems exist in which self-similar
scaling exponents cannot be determined from dimensional analysis; these are the so-
called similarity solutions of the second kind or incomplete similarity solutions [3].
Among the first few problems studied are the nonlinear filtration by Barenblatt and
Sivashinskii [4], Vazquez and collaborators [36, 2], and Peletier [46] and the focusing
problem of the porous medium equation [35, 1]. In physics, those exponents are said
to be anomalous. Sometimes renormalization group theory originated from quantum
field theory is applied to the above-mentioned problems to find self-similar solutions
of the second kind [31].

The goal of this paper is to show numerical evidence that the aggregation equation
(1.1) has a family of radially symmetric, smooth self-similar blowup solutions. Those
solutions appear to be exactly self-similar, concentrating zero mass in the core and
of the second kind. The rest of the paper is organized as follows. The equation for
the blowup profiles is derived in section 2, together with numerical observations of
the profiles and anomalous exponents in different space dimensions. In section 3 we
present the numerical methods used to simulate the blowup dynamics and a numerical
renormalization group method to find the exponents iteratively. Additional numerical
results about the postprocessing of the data from the blowup dynamics and the blowup
in different LP norms are given in section 4. We end this paper with some further
directions and open questions in section 5.

2. Self-similar solutions of the blowup dynamics.

2.1. General theory for the self-similar blowup profiles. We introduce
the similarity variables y and 7,

(2.1) y=a(T—t)"? 71=—In(T-1t),
and define a new function U (y, 7) such that
(2.2) Uly,m) = (T = t)*uly(T = t)°, T —e™7),

where T is the blowup time, and « and § are exponents characterizing the singularity
when the blowup time is approached. We call the blowup dynamics self-similar if the
transformed function U converges to some steady state as ¢ — T, or equivalently
7 — oo for some appropriate constants « and . When (2.2) is substituted into the
original evolution equation for u, a routine calculation gives

(T —t)" 1 (0,U + U + By - VU)
(2.3) = (T —t)(n~2b-22y, . <U(y,T)Vy/

R"

K ((y—2)(T - t)B) U(z,7’)dz) .
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Therefore, a self-similar solution exists only if we can take the factor (T —t)? out of
the kernel K. Thus K must be homogeneous, i.e., K (\z) = AYK (z) for some constant
d and any A. If the function u is concentrated on a small region in space, say the
origin, then the kernel K can often be approximated by the leading nonconstant part
(K is determined up to a constant), which is homogeneous. For this reason, in the
rest of this paper, we will concentrate on the case with

(2-4) K(:E) = |CC|,

which is an approximation to the popular kernel K(z) =1 — e~ 17l and it is exactly
the leading order |z| in an even more general kernel that leads to finite time blowup
[8, 7]. Given this, the matching of the exponents of (T' — t) in (2.3) gives

(2.5) a=Mmn-1)p+1,
and the equation for U is
(2.6) 0, U=V -(UVK «U)—aU — By - VU.

Any exact self-similar profile U, if it exists, must satisfy the steady equation of (2.6),
ie.,

(2.7) V- (UVK xU) —aU — By - VU =0, VU|y=0 =0, lim U(y) =0,

|

ly|—o0

where U has no explicit dependence on 7. To completely characterize the self-similar
blowup dynamics, we need one extra condition to find the exponent 5. Very often
this kind of information can be readily obtained from a dimensional analysis or scale
invariance of the underlying equation, such as the parabolic scaling 8 = 1/2 for
the semilinear heat equation and nonlinear Schrédinger equation, or 8 = 1/(2m) for
higher order parabolic equations as those in (1.6). Here, if the similarity solution
concentrates mass in the core of the blowup, then o = nf from mass conservation,
and consequently 8 = 1. However, numerical simulation of the blowup dynamics
shows that no mass is concentrated. In fact, it is proved analytically in [7] that there
is no such radially symmetric, self-similar solution in odd dimension larger than one
that concentrates mass. The argument is straightforward so we review it here. Taking
a=mn, =11in (2.7), we can integrate the equation in radial coordinate r = |y|:

nU +rU, = O [r" U0, (K * U)).

Tn—l
Multiplying both sides by "~ ! and integrating once again, we get
r"U = r"U0,(K * U).

Assuming U is nonzero, we divide by y” U and integrate up again to get the final
result,

1
(2.8) 57“2 +C=KxU.

Now we recognize that in odd dimension n larger than one, for the special case of
K = |z|, applying repeated Laplacians to the right-hand side of (2.8) gives A= «
U = ¢, U, whereas the left-hand side gives A"~ (y2 + C) = 0. Hence we do not have
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a nontrivial exact similarity solution of the first kind (conserving mass) in odd space
dimension larger than one. A more rigorous analysis and derivation of this is discussed
in Lagrangian coordinates in [7]. In particular, that paper considers more general
measure-valued similarity solutions due to the fact that there are easily constructed
examples that concentrate mass in finite time in general space dimensions, starting
with initial data of the form of a delta-ring (support of the solution concentrated on
the boundary of a sphere). However, here we consider solutions with U, a bounded
function of space. Thus it is reasonable to look for similarity solutions of the second
kind, for which « and 3 satisfy (2.5), which comes from the dimensional analysis of
the dynamics, but may violate conservation of mass.

The nonlocal nature of the kernel K x U presents a much more difficult problem,
both analytically and numerically, compared to local problems such as those from
nonlinear diffusion equations and nonlinear Schrédinger equations. The usual tech-
niques used to tackle the equation for the self-similar profiles, like phase plane analysis
and shooting methods, do not work here. Smooth self-similar blowup solutions in one
dimension are considered by Bodnar and Velazquez [12] for different kernel potentials
K. The technique used there is to introduce an auxiliary function

T
(2.9) P(z,t) :/ u(z,t)dz.

— 00
Moreover, for the special kernel K = |z| considered here, the transformation (2.9)
turns (1.1) in one dimension into 1y = ¥, (2¢) — ¢) with ¢ = (o0, t) = [°_uo(2)dz,
which is a constant. Another change of variable ¢ = ¢ — 2¢ gives exactly the well-
known inviscid Burgers equation ¢; + ¢¢, = 0. For general initial condition, the finite
time blowup of u is equivalent to the onset of shock of ¢, with mass concentration and
thus @ = 8 =1 as considered in [7]. However, for positive, even initial condition (the
analogue for the radially symmetric case in higher dimension), the blowup exhibits a
different scaling. Let the self-similar blowup solution of ¢ be

(2.10) $(a,t) = (T — )"~ f(a(T - t)~").

Here the exponents are chosen such that u = —¢;/2 has the same form as (2.2).
Similarly, we have o = 1 and the equation for the profile

(2.11) ff+Byf —(B-1)f=0.

Because of the L°°-contraction of the solutions to the Burgers equation, 8 must be
equal to or greater than one. If 8 = 1, the only nontrivial solution is f(y) = —y,

corresponding to the previous case. Otherwise if 8 > 1, we are looking for a power
series expansion of f near the origin, i.e.,

(2.12) fly) = ary +asy’ + asy® + -+ .

The system of equations the coefficients must satisfy is

al +a; =0, O(y)
4ayaz + (28 + 1)az = 0, O(y?)
oY)

6aias + 3a3 + (48 + 1)as = 0,
(2.13) :

If a1 = 0, we have the trivial solution f = 0. Therefore a; must be —1. For generic
odd initial data, a3 is nonzero, giving the exponent 5 = 3/2, and the coefficients of
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higher order terms are determined uniquely by as. Otherwise, 8 is decided from the
next nonvanishing term in the series.

Actually, we can directly integrate (2.11) to get an implicit algebraic equation for
f. Multiplying both sides of the differential equation (2.11) by f(y)~#=1/(8=1) and
taking the integration once, we get

(2.14) 7 (14 ) =a

for some finite constant ¢;. Since the above equation holds in the limit when y — 0,
f(y) must be —y + o(y) such that 1+ y/f(y) vanishes at the origin. Applying the

condition that the limit exist once more, we find that the next higher order term of
f(y) must be of the form

(2.15) f) =~y + ea(—y) 7T +0((—y)%)-

Therefore, the exponent [ is determined by the second nonvanishing term of the
profile, which is ultimately determined by the initial condition. For generic even
initial condition ug, f(y) is odd and the next nonvanishing term is cubic, giving
B/(B—1) =3, or § =3/2. This anomalous exponent is consistent with the lower
bound from numerical simulation in the next section.

However, this special trick and these special solutions do not seem to carry over
to higher dimensions. Unlike the nonlinear filtration problem, the exponents cannot
be derived using perturbation [2] or renormalization group methods [31] from known
solutions in special cases or for some “unperturbed” problems. For this reason, high
resolution numerical simulations are an important tool for uncovering the detailed
dynamics of the blowup in higher dimensions. We summarize our results from such
simulations in the next subsection.

2.2. Numerical observations of the blowup dynamics. Here we use the
same U to denote the blowup profile at different times and its final steady state, and
later even the radially symmetric profile, when no confusion could arise. Moreover, it
is easy to check that if U(y) is a solution of (2.7), so is

(2.16) Ux(y) = A" U(Ny), X>0,

and we have a family of profiles. Without loss of generality, any blowup profile shown
below is normalized according to the above scaling such that U(0) = 1.

Details of the numerical methods are presented later in this manuscript. The
overall results show exact self-similar scaling in all dimensions studied. The normal-
ized profiles (U(0) = 1) obtained from our simulations of the PDE, in different spatial
dimensions, are shown in Figure 1. Near the origin, the profiles are not ordered ac-
cording to the dimension. But far away from the origin, due to different algebraic
decay rates in different dimensions, these profiles are ordered. The algebraic tails
(appearing as straight lines in the right log-log plot) will extend to infinity at the
blowup time. The plot on the right shows a drop-off due to the matching of the
numerical solution onto an integral order solution in the far field. Once we have the
profiles, we can numerically check the validity of (2.7), which is shown in Figure 2 for
dimension three. We observe that the part aU + By - VU coming from the spatial-
temporal scaling converges faster to a limit than the part associated with the kernel
V- (UVK xU).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



2588 YANGHONG HUANG AND ANDREA L. BERTOZZI

1 T T T T T T T
3
[}
09f v\ 4
v\ (a)
1\
osfl t \* R
[\
\ A
v\
o7l % A\ 4
VoY =
\ n=:
0.6 LA Y B
o\
P LR WY n=3
S 3
£ o5 1 1 B
=] g
‘\ v ‘\
04 ' A\ n=6 B
1 AY
\ \ \ n=5
’, AY
03f \ \ 4
von=7 3\
\ A NQY
02f|n=8 ©N 4
' ~ NG
v .,
L A ~ 4
0.1 N S
~ ~o S S
~ DI~
o S - PR Ty
0 1 3 4 5 6 7 8
T
10° 3
107+ b
1070 b
Bl J
510
107 1
107"°F R
1077

Fic. 1. Similarity solution profiles show in the similarity variables U and r = |y| as defined in
(2.1)-(2.2), in different space dimensions, obtained by numerical integration of the PDE. All profiles
are rescaled so that U(0) =1 according to (2.16).

Paiak u(0,t)=1.23e+05 scaling |
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Fic. 2. Comparison of the two contributions V- (UVK*U) (kernel) and aU + By-VU (scaling)
in (2.7) for different u(0,t) in dimension three. The term aU + By - VU (dashed line) at smaller
values of u(0,t) is almost indistinguishable from both terms at larger values of u(0,t).
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F1G. 3. The exponents 8 and o characterizing the blowup in different spatial dimensions. In
(a), because of the singularity of VK and AK, the exponent B can be computed accurately only
for dimensions not less than three in the direct simulation. In (b) the relation (2.5) is verified
numerically for direct simulation of the blowup dynamics.

Both of the exponents o and S (Figure 3) are estimated by fitting the simula-
tion data. For radially symmetric solutions considered here, the computation can be
extended to fractional dimension, giving more insight into the dependence of the pa-
rameters on the spatial dimension. In particular, the parameter $ appears to increase
with dimension.

We can have a closer look at the detailed blowup scenario in Figures 4 and 5
for the rescaled profile U and the original function u. Even though the results are
presented only in dimension three, it is generic for all dimensions. In Figure 4, the
rescaled profiles U(r, 7) converge to the steady state quickly near the origin and the
dynamics adjusts only the algebraic decay of the tails. In Figure 5, the original
variable u is plotted at a different stage during the blowup. Since the blowup takes
place in such a short time, away from the core w barely changes. Near the blowup
point, the solution fills an envelope when approaching the blowup time. Moreover,
the algebraic decay rates of v and U are intimately related through the self-similar
relation (2.2). In fact any fixed |z| > 0, u(z,t) = (T—t)~*U(x(T—t)~", 7) approaches
a constant as ¢ — T'~. This gives the rate of algebraic decay for the steady profile
U, Uy) ~ |y|=*/# = |y|~(»=1+1/B) making the part aU + By - VU in (2.7) vanish at
leading order.
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F1G. 4. The convergence of the normalized profiles in dimension three. (a) Near the origin, all
the profiles are indistinguishable. (b) Far away from the origin, the blowup dynamics adjusts the
algebraic decay of the tail.

3. Numerical methods. The computation of blowup solutions is usually quite
challenging, due to the small scale of the blowup set, which cannot be resolved as well
by conventional numerical schemes. One of the most popular schemes is the moving
mesh method [18, 15, 34], using an equipartition principle to give a separate equation
for the mesh, to concentrate the computation on those regions where high resolution
is desired. Another one is dynamic rescaling used in nonlinear Schrodinger equations
(see [42] and [27]). However, most of these schemes require a knowledge of those
exponents characterizing the blowup to capture the dynamics accurately. Therefore
they tend to work more successfully for self-similar solutions of the first kind.

Here we take advantage of the fact that our problem is a first order transport
equation with a nonlocal velocity, and thus we can use the method of characteristics
to solve two coupled ODEs, one for the radial position r and the other for the solution
u. In radial coordinates, the original equation can be written as

ou 0
(3.1) up = EEK*U—I—U,ATK * U,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/09/14 to 155.198.12.107. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SELF-SIMILAR BLOWUP SOLUTION 2591

1000
,t)=1.23e+05
900F ,t)=1.22e+14 1
,t)=1.54e+26
800} ,t)=1.56e+38 J
,t)=1.95e+47
700F ,
6001 1
n
g 500F ]
e
400t 1
300f ]
200t 1
100f 1
0
0.2 0.25
1050
(b)
(0,t)=
n u(0,t)=1.56e38
o 10°

H [ u(0,t)=1.54e26

u(0,t)=1.22el4

u(0,t)=1.23e5

50 I I I
-20 -10 0

10 10 10

10"

Fic. 5. The convergence of the original function u in dimension three. (a) Away from the
blowup point, the solution barely changes because the blowup happens in such a short time scale. (b)
Close to the blowup point, the solution fills an envelope which becomes infinity at the origin.

where A, = 0y + "T—lar. The system of ODEs along the characteristics is thus

(3.2) % = —%K * U, Z—TZ = ul,. K *u.

The method of characteristics is used in many of the analytical arguments to prove
the existence and other important properties of the aggregation equation (1); see [12]
and [6]. This method provides a natural adaptive grid scheme to concentrate spatial
resolution near the blowup point or set, and was employed to investigate gravitational
collapse by Brenner and Witelski [14]. Moreover, for nonnegative initial data, we have
the monotonicity condition %K xu > 0,A K xu > 0; i.e., the points always move
towards the origin and the magnitude is always increasing along the path. Thus our
scheme preserves the positivity of the solution. The numerical results indicate that
this simple scheme resolves the profiles quite well, both near the core and far away
from it. If the self-similarity were of the first kind, then the characteristics would
exactly preserve the spatial resolution going into the blowup. Since it is a second-
kind similarity solution with anomalous scaling (i.e., the characteristics do not scale
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in time as the similarity variable) we lose resolution over time, but at a relatively slow
rate compared with the dynamics of blowup.

The system (3.2) is solved using the conventional fourth order Runge-Kutta
method, with the size of the time step At adapted according to the following two
criteria: (a) The relative increase of the solution at all points is bounded by a thresh-
old at each time step. (b) The nodes cannot cross each other during each time step.
Finally, we need to compute the convolution of the kernel. We first give a general for-
mulation for any dimension greater than two and then a special one in odd dimensions
three and higher to reduce computational effort by one order of magnitude.

3.1. General dimension. Instead of calculating K * u once and taking the
numerical derivatives to solve (3.2), we find %K xu and A, K xu directly by computing
the derivatives of the kernel, i.e.,

0 _ )l r—r'cosf neo ,
(3.3) EK kU = cn/ / N sin™ ™= 6dfdr’,

+ 72 — 27“7" cos

ALK xu=(n—1)c, / u(r’')yr’™= 1/ sin" 2 0dfdr’,
0 0o Vr2+ 7“’2 — 2rr! cosf

where ¢, is the volume of the unit sphere in R*~!. The computation can still be
expensive, because at each point we have to perform a double integration. The expense
can be reduced by observing the homogeneity of the kernel, which gives the following
formulation:

m (1—pcosf)sin® =20

bis / . et
/ r—1r'cosf sin"72 0d0 — f() vV 14+p%2—2pcos b
- son—2
Vr2 412 = 2rr' cos T lp—cosO)sin'T 0 g if gt > )

0 \/14p>—2pcosb

do if ' <r,

n20 1 s n20

(3.4) / a6 =
72 +7“’2 — 971’ cos @ max(r,r") 1+p - 2pcos

where p = min(r,r’)/ max(r,7’). In this way, the integrations of the kernel with
respect to the angular variable have to be calculated only once at the very beginning
as functions of p € [0, 1]; i.e., we only need to perform numerical integrations once for
the auxiliary functions

(1= pcosf)sin® 26 T (p—cosf)sin" 20
0 0

v/ 1+ p%2—2pcosb v/ 1+ p%2—2pcosb

™ n20

\/1—|—p —2pcos

The auxiliary variable p is chosen such that those integrations are computed only
at discrete points and the interpolations of I1, I, and I3 are restricted on the bounded
interval [0, 1]. Therefore functions I, I, and Is can be computed as accurately as
needed without increasing the computational effort during the time evolution. In this
way the total computational expense is reduced to O(IN?) at each time step, where N is
the number of spatial points used to represent the solution. These auxiliary functions
(Figure 6) are relatively smooth inside the interval [0, 1] for dimension greater than or
equal to three. It is easy to see that I3(1) actually becomes divergent for dimensions
n less than or equal to two. For these reasons, the computations are performed only
for n > 2.

(3.6) I3(p) =
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F1G. 6. Auziliary functions in different spatial dimensions: (a) It (upper branch) and I (lower
branch), (b) I3

3.2. Further reduction in odd dimensions. In odd dimensions, using the
fact that the successive Laplacians of the kernel K(x) = |z| is proportional to the
fundamental solution of the Laplace equation, we can further reduce the computation
to O(N) per time step. This is exactly the fact used to prove the nonexistence of
mass-concentrating self-similar solutions in [7]. First, we start with dimension three
to give the basic idea and then generalize it to any odd dimension greater than three.
Let vg = u, and define v; and vs to be the solutions of the equations

(3.7) —Avy = vy, Ave =8mv; in R3,

with v; and ve decaying to zero at infinity. Using the explicit formula for the solution
of the Poisson equation, we obtain

- vo(y)
o) = /Re, 47r|x—y|dy’
2’U1 / /
vo(x) = ——  dzd
)= [ 5= [

(3.8) = /R3 |z — z|vo(2)dz = K * vg(x).
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In the radial symmetric case, we only need to solve

1d [ 5dun 1d
(39) _T_Qg <’f’ E) = o, ——Qd—(r ’Ugr) = 87TU1,
with the boundary condition
ov1(0
(3.10) m(oo) =0, 240 o 0 =0,
or
Then the right-hand sides of the equations in (3.2) are replaced by
(3.11) gK*U— —vor, ApK *xu = 8wy,
r

with the time scaled by 87. Note that we only need to find the derivative 9,vy of
vg, instead of vy itself. In actual implementation, the infinity boundary condition
v1(00) = 0 is transformed into a condition at r = 0, i.e., the value of v1(0),

312)  0(0) = — /O ‘9“1 / . / vo(s)s2dsdr — / w(r)rdr.

This integral is usually truncated on a bounded domain if u is compactly supported
or decays fast enough. In theory, this transformed boundary condition at the origin
gives the unique zero boundary condition at infinity, while any inappropriate choice
of v; at the end of the computational domain (an approximation to the condition
v1(00) = 0) could give a different effective kernel K, resulting in some inconsistency
in theory and numerics. Once we have the right boundary condition, we can use an
O(N) numerical quadrature scheme to find the solution of (3.9), i.e

vy (1 / / )s?dsdT = v1(0) — /Oru(s) <s - %) ds,

(3.13) vzr()zi—?/o 01 (s)s2ds.

In odd dimensions greater than three, with n = 2k + 1, similarly we introduce
V1, V2,...,VUg+1 such that

(314) —Al}l = Vo, _AUQ =V1y, «--, —A’Uk = Vk—1, AU}H_l = dkvk in Rn

and finally set in the characteristic ODEs (3.2)

(3.15) %K *u 52’“:1 ALK s u = dyug,
where vg = u and

3.16 dy = 282k + Dkl —"
(310) S T .y

To transform the boundary condition at infinity into the one at the origin, we
need to find an appropriate integration such as (3.12) with the aid of a fundamental
solution of the Laplace equation, which is given by

1 ,n.n/2

(3.17) N(z) = n(n— 2wz 2 " T Tm2+1)
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where w,, is the volume of the unit sphere in R". Using the presentation formula of

the solution to the Poisson equation, we have

(3.18)

Ui(ﬁi) = / e .ZV(!EZ — {Eifl)N({Eifl — {Eifg) e N($1 — $0)u($0)d$0d$1 e d/xi,1

Rn Rn

for any 1 < ¢ < k+1. Translation and rotation invariance of the fundamental solutions

give the identity

(3.19)

/ .ZV(!EZ —$i,1)N($i,1 —$i,2)-'-N({E1 —xo)dxl ---d{Ei,1 = Nl(xz —$0)
" R’n.

for some radially symmetric function N;. Moreover, dimensional analysis indicates

that N; is homogeneous of degree 2i — n, i.e.,

C; .
3.20 N;(z; — — un ;= 2i—n
(3-20) (zi — o) o~ |z; — 0]

n

for some constant ¢; ,. When ¢ = 1, this is just the fundamental solution, giving the
following initial condition:

1
n—2
We can find a recursive relation for ¢;, by taking the negative Laplacian of N; with
respect to z;. Formally, on one hand using (3.20),

(321) Cln =

2(77, — 21)(2 — 1)01'771 |331 o $0|2(i_1)_N.
NWn,
On the other hand, using the definition of IV,

(322) —ALNZ($Z - 330) =

_Awi / s .ZV(!EZ — $i,1)N($i,1 — 1’1’72) s N($1 — xo)d$1 s d/xi,1
n R'n.
= / 5(331 _$i—1)N($i—l —$i_2)"'N($1 —ﬂio)dﬂil "'d$i_1
n RTL
:/ N(xi—xi,g)---N(xl—xo)dxl---dxi,g
n R'n.
Ci—1,n

3.23) = s — zo[20-D-N
(3.23) . |z; — 2ol

Matching the coeflicients of the above two identities, we have the recursive formula
1
and consequently with the initial condition (3.21),
1
n = T — 1)i(n — 20)
where m!! is the double factorial of m. Finally, we get the boundary condition of v;
at the origin in terms of the integral with u, i.e.,

(324) Cin =

(3.25)

o . Gin 2i—n _ 1 % a1
(3.26) v:(0) = /n|x0| u(xo)da:o—2i71(i_1)!(n_2i)!!/0 P2 =Ly (1) dr.

NWy,

With these boundary conditions, we can find all the auxiliary functions v;’s through
a series of O(NN) numerical integrations like (3.13) to find the right-hand side of the
characteristic ODEs (3.2).
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3.3. Numerical renormalization group. Since we are more interested in the
exponents characterizing the intermediate asymptotics of the dynamics than other
quantitative details, we can rescale the solution appropriately to get the profile. This
is the basic principle underlying the renormalization group method, which is employed
successfully to the numerical investigation of nonlinear filtration and porous medium
equations [23, 11].

We start with the solution u(?) (x,t) = u(z, t), which is known on the time interval
[t9,t9]. Without loss of generality, we let u(?)(0,9) = 1, and ¢ is determined implicitly
by u(o)(O, t9) = M for some predetermined constant M > 1. For a given guess of the
exponent 3,,, at the end of the mth iteration, we can renormalize the function as

(3.27)  wHY (gt = MM (e B /e gy = (0= 1) B + 1.

An equation for (3, can be estimated from the spatial-temporal relation of the
blowup dynamics. Near blowup time, we have

(3.28) w(0,t) = (T —t)"*Uo,  11/2(t) = (T — t)’ro,
where 71 /5(t) is the position in which u is half of u at the origin, i.e.,
1
Therefore, on one hand we have
dInu(0,t)  dlnwu(0,%)/dt ! 1
3.30 = = =1—pn— .
( ) dln’l‘l/g(t) dlnTl/g(t)/dt B ﬁ

On the other hand, using the original evolution equation, we can calculate the
time derivatives explicitly, i.e.,

dInu(0,t) _ r1/2(t) du(0,t)/dt _ r1/2(t) V- (uVK *u)|r—o
dln Tl/g(t) U(O, t) dTl/g(t)/dt U(O, t) dTl/g(t)/dt

Finally dry2(t)/dt can be obtained by taking the time derivative of (3.29),

drys(t)
dt

(3.31)

(3.32) ur(ry/2(t),t)
or equivalently

(3.33) dry /o (t) _ %V “(uVK xu)|p=0 — V- (uVK * u)|T:T1/2(t) '
dt Uy (T1/2 (t),1)
At the end of the mth iteration, the exponent 53, is solved by combining (3.30)
and (3.31), i.e.,
(3.34)

1
+ui(riya(t),t) = Eut(ov t),

IR SNV 1G)) u™ (2 (), 60V - (@M VK 5 ul™)],—
B utm(0,47) LV - (uMVE 5 u(m)[,—g — V- (uMVE 5 ul™)],Zp o)

The above relation is preserved under the renormalization transformation (3.27),
in the sense that

(3.35) 1—n— —

m

12 (tngrl) u£m+1)(rl/2 (tgwrl)’ t6n+1)v . (u(m+l)VK % u(m-&—l))|r:0

W0, 0) IV (@ VK % uth )],y =V - (@ VK s a0
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Because the renormalized function decays only algebraically even with a com-
pactly supported initial data, the function (™ is computed on an interval r € [0, L]
and is chosen to be u(L)(L/r)®m/%n for r > L.

The anomalous exponent 3 computed using this numerical renormalization method
is compared with that from direct simulation in Figure 3. The former concentrates
the computation on the profile and the exponents with a fixed spatial domain, while
the latter has to resolve the solution on a large spatial domain and eventually cannot
give a good fit at lower dimensions when the kernel becomes singular. Therefore, the
profile and the exponents can be computed with high accuracy without any formation
of singularity. On the other hand, the direct simulation tells more details about the
blowup dynamics, like various norms of the solution when approaching the blowup
time.

For simulation in general dimensions, the auxiliary functions Iy, Is, and I3 are
computed on 10* equally spaced points on the interval [0,1]. The number of spatial
points is 4000 and the whole simulation takes a few days for one single dimension
on a 3.0 GHz Intel Pentium IV cluster machine compiled with GNU GCC. For the
special formulation in odd dimensions, the number of spatial points is as large as
2 x 10%, and the simulation usually takes a few hours. Initially the grid points {r;} are
placed such that In(1+r;) is equally spaced on [0,In(1+7y)]. The initial condition is
chosen to be Gaussian, even though other smooth, compactly supported functions (not
necessarily radially decreasing) work well too and produce computationally identical
similarity solutions. The special code for simulation in odd dimensions gives exponents
« and f and other parameters consistent with code for general dimensions. The main
difference is computational speed. We reiterate that we do not have to perform
adaptive mesh refinement because the characteristics do a good job of following the
similarity variables, although they are not identical.

4. Additional numerical results. Besides those results already shown in pre-
vious sections, we gather addition numerical results and verifications to validate the
claims made before.

4.1. Estimation of the exponents. Close to the blowup time, U(0, 7) should
approach a constant Uy, and u(0,t) ~ (T' —¢)~*Up. The time derivative u:(0,t) can
be approximated by u(0,t) too, i.e.,

(4.1) i (0,) ~ Uy M *u(0, £) 1/,
On the other hand, from the second characteristic ODE (3.2), u:(0,t) = u(0,t)A, K *
u(0,t), we have

(4.2) In (AK #u(0,t)) = In(aly /*) + élnu(O,t).

Using u(0,t), A, K % u(0,t) at each time step, a simple least squares fitting gives the
pair of parameters («, Up), as in Figure 7(a). To estimate the exponent § for spatial
spread, we need to introduce a spatial scale. The most natural one is the half-width
of the blowup profile, r/5(t), the position at which the magnitude is half of that at
the origin, i.e.,

(4.3) u(ryja(t), ) = u(0,)/2.

The similarity form of the blowup implies

(4.4) r1)2(t) ~ ro(T — £)% ~ roUy “u(0, 1)~/
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(a)
10117 i
m
=)
= 10°} B
3
~
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o s )
= 10 ¢ * Numerical result -
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0.73*u(0,t)
10% g
. . . . .
lOlD 1020 1030 1040 1050
u(0,t)
107
(b)
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i
~ 107
g
—
N
10715
% Numerical result
—0.605*u(0,t) °%®
10719
. . . . .
lolD 1020 1030 1040 1050

FiG. 7. Estimation of o (= 1/0.24 = 4.167) and B (=~ 0.38/0.24 = 1.583) in dimension three by
fitting.

for some constant 9. Using ry/2(f) (from interpolation if there is no function value
that is exactly half of the maximum magnitude) and T — ¢ estimated with parameters
obtained above, we can get 3, as in Figure 7(b). In all the parameter estimations, only
those data close to blowup time (u(0,t) > 10'%) are used, and the profiles should be
radially decreasing such that there is one unique ry /5 (¢). The simulation is terminated
when u(0,t) reaches an upper bound 10°°, provided that the profile near the origin
is well resolved—say, for example, there are at least one hundred node points on the
interval [0, 7y /5(t)].

4.2. Blowup in the LP norm. Since the blowup does not concentrate any
mass, it is possible that the LP norm of the solution could still be finite for some
p > 1 at the blowup time. Using the self-similar form verified in previous sections, we
can give a more quantitative characterization of the blowup in the LP norm. First,
we have

(4.5)

[lullzs =/ uPde = (T —t)~°P+" [ UPdy = (T — t)*azﬂrnﬁc/o Uy

Rn

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/09/14 to 155.198.12.107. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SELF-SIMILAR BLOWUP SOLUTION 2599

Let the critical exponent be defined as p* = nf8/a. To the leading order, U has an
algebraic decay rate of the form r~°/# and this rate of decay is extended to infinity
ast — T. If p > p*, the integrand UPr"~! decays fast enough and the last integral in
(4.5) is uniformly bounded and nonzero; therefore the behavior of ||u||L» is determined
by (T —t)~*(1=P"/P) which becomes infinity.

For p € (1,p*), the integral in the last expression blows up but the factor (T —
t)~P+n goes to zero. Therefore, we need a more delicate estimate for the integral
using the fact that U has an algebraic decay only up to some large distance R(t).
This upper bound can be estimated from the total mass for U. On one hand, from
the evolution equation for U, we have

d
(4.6) e Uly,7)dy=(B—-1) | Uly,7)dy
T JRn R™
or
(4.7) Uy, 7)dy = e#~H7 [ew”‘“ Uly, —lnT)dy} = (T — )"V My,
R™ R

where M is a constant depending only on the initial condition. On the other hand,
the integral above can be approximated by assuming U(y, 7) has an algebraic decay
of order O(|y|~*/#) exactly up to R(t) and is zero beyond R(t), i.e., for ¢ close to the
blowup time T,

R(t)
/ Uy, 7)dy = / Cr=o/B+n=1gr ~ CLR(t)* /P = CLR(t)' /P,
n RO

Compared with (4.7),
R(t) = Cy(T — )~

and consequently the LP norm is
(4.8)

R(t)
[ully, & C(T — t)=or+n? / P OP/BENL gy = Oy (T — t)=erHnS=flmar/Btn) = ¢
0

In other words, if p € (1,p*), ||u||r» is still uniformly bounded up to blowup time.
At the critical norm p = p*,

. R(t)
49) |7 ~ c/ r=ldr = Oy + Cy n R(t) = C1 — CoBIn(T — 1).
Ro

For all three cases, the above analysis is in perfect agreement with numerical
observation of the norms (Figures 8 and 9). The total mass ||u||z: is still perfectly
conserved even for u(0,t) close to 10°°. In the critical (p = p*) and supercritical (p >
p*) cases, the blowup of the norms fits the expected form of logarithm and power law
blowup very well. This blowup result is also consistent with the LP theory developed
in a companion paper [10], in which the local well-posedness of the equation is proved
for initial data in L? space with p greater than ps = n/(n — 1) > p*. At the time of
blowup, our numerical solution exhibits a pure power law behavior at the origin. In
[10] it is shown that continuation of a solution of this type leads to instantaneous mass
concentration, hence proving that the dynamics is ill-posed in the L? for sufficiently
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Fic. 8. ||lul|zp for p =1 and p = (1 4+ p*)/2 (< p*) in dimension n = 3. Note that the mass
(p = 1) is perfectly conserved in our numerical scheme.
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Fi1c. 9. Logarithmic blowup of ||ullLr for p = p* (a) and power law blowup for p > p* (b) in
dimension n = 3. In the latter case 1/5 is exactly the theoretic predicted value 1 — p* /p.
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small p. Thus the numerical results here, combined with the analysis of that paper,
give a complete picture of the dynamics, from smooth initial data to finite time
blowup with a power law singularity, and then instantaneous mass concentration
after the initial singularity. We note that this is a multidimensional generalization of
how singularities form in the Burgers equation, which we have shown is equivalent to
our problem in one dimension. In the Burgers case, the initial singularity for (2.10)
involves ¢(z,T) ~ z'/3 at the blowup time, which, following the classical theory of
conservation laws, instantaneously leads to shock formation with a jump discontinuity,
corresponding to mass concentration in the corresponding aggregation problem. Thus
we see the same phenomena occurring in multiple dimensions.

5. Conclusions. We have studied the blowup behavior of solutions of the aggre-
gation equation u; = V- (uVK xu) in multiple dimensions for the kernel K (x) = |z|.
The numerical observations give strong evidence that the solutions are self-similar and
of the second kind. Even though the numerical results are consistent with known the-
ory, in particular the lack of first-kind similarity solutions in odd dimensions higher
than one [7], there are still many important questions left unanswered. First, the
solutions are computed only in the radially symmetric case. However, this radial
symmetry could be broken by a nonradially symmetric perturbation. We have not
performed linear stability theory for this problem, as has been done in other examples
of self-similarity [5], and this would be interesting, both for the radially symmetric
and nonradial cases.

Likewise, we have not done a systematic study of solutions of the similarity equa-
tion (2.7)—as has been shown for other problems [26, 50], there may exist unstable
similarity solutions with different shape from the ones found in this paper. Moreover,
the homogeneity of the kernel can be generalized to K (x) = |z|”, which has been pro-
posed for some one-dimensional models of granular flow [21, 41], and the dynamics of
blowup for such kernels is an interesting open problem in multiple dimensions. We
also note that there are recent theoretical results on blowup for this class of problems
with additional linear and nonlinear diffusion [39, 40], and it would be interesting to
understand blowup profiles for these problems as well. Our method of characteristics
does not directly apply to such problems due to the diffusive nature of the dynamics.
One possibility, which we have not discussed here, is to use ideas from optimal trans-
port theory, which applies to this class of equations [7]. A recent numerical scheme
built on this idea, for diffusive and aggregation phenomena, has been introduced in
[22].
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