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Abstract

We consider the aggregation equation p; — V - (pVK * p) = 0 in R™, where the interaction
potential K models short-range repulsion and long-range attraction. We study a family of
interaction potentials for which the equilibria are of finite density and compact support. We show
global well-posedness of solutions and investigate analytically and numerically the equilibria
and their global stability. In particular, we consider a potential for which the corresponding
equilibrium solutions are of uniform density inside a ball of R™ and zero outside. For such a
potential, various explicit calculations can be carried out in detail. In one dimension we fully
solve the temporal dynamics, and in two or higher dimensions we show the global stability of
this steady state within the class of radially symmetric solutions. Finally, we solve the following
restricted inverse problem: given a radially symmetric density p that is zero outside some ball
of radius R and is polynomial inside the ball, construct an interaction potential K for which p
is the steady state solution of the corresponding aggregation equation. Throughout the paper,
numerical simulations are used to motivate and validate the analytical results.
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1 Introduction
This article concerns the study of the following integro-differential aggregation equation in R™:

pt+V-(pv) =0 (1a)
v=—-VK xp. (1b)

Here, p represents the density of the aggregation, K is the interaction potential and * denotes
convolution. The equation appears in various contexts related to mathematical models for biological
aggregations; we refer to [I 2] and references therein for an extensive background and review of
the biology literature on this topic. It also arises in a number of other applications such as material
science and granular media [3], 4] 5] [6], self-assembly of nanoparticles 7, [§] and molecular dynamics
simulations of matter [9]. In this work we are only interested in biological applications, where
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equation () can be used to model aggregations such as insect swarms, fish schools, bacterial
colonies, etc [1]. The convolution kernel —V K incorporates the endogenous forces arising from the
interindividual (attraction and repulsion) interactions [10].

The study of solutions to aggregation models of type (I]) has been a very active area of research
over the past decade. A significant component of this research has dealt with the well-posedness of
the initial-value problem for () [IT} 12} [13] 14} [15]. Another aspect, which is very important due to
the biological relevance of the model, is the long time behaviour of solutions to (Il). This issue has
been addressed in various works. Most of this research deals with solutions that blow-up (either
in finite or infinite time) by mass concentration into one or several Dirac distributions. The one-
dimensional case was investigated in [12] 16] [I7] and blow-up in the multidimensional aggregation
equation with radially symmetric kernels was studied in [I8, [19]. The common feature of these
studies in that attraction is the dominating social interaction and repulsion is either absent or too
weak to prevent Dirac mass concentrations.

It is essential for an aggregation model to be able to capture solutions with biologically relevant
features. As indicated by Mogilner and Keshet in their seminal work [I] on the class of models
discussed here, such desired characteristics include: finite densities, sharp boundaries, relatively
constant internal population and long lifetimes. There is only a handful of works that investigate
solutions to (]} which exhibit these realistic features. Topaz and collaborators [16] 10] derived
explicit swarm equilibria that arise in the one-dimensional model with Morse-type potentials. Nu-
merical simulations [10] indicate that these equilibria are globally stable, but analytical results
supporting this claim are lacking. Furthermore, the explicit calculations from [16] [10] do not ex-
tend to higher dimensions. Other works illustrate asymptotic vortex states in 2D [20] and clumps
(aggregations with compact support) in a nonlocal model that includes density-dependent diffusion
12].

The main motivation of the present research is to provide a more systematic study of solutions
to the aggregation model (Il) which have the biologically realistic features discussed above. To
this purpose we design interaction potentials K for which equilibrium solutions to the aggregation
model () have these desired characteristics and we investigate analytically and numerically the
well-posedness and long time behaviour of solutions. In the rest of this introductory section we give
a brief account of the potentials used in this article and describe the equilibria that they generate.

The analytical and numerical techniques used in this work are rooted in the individual-based
description of the model equation ({l). More specifically, the PDE model (] can be regarded
as the continuum limit of the following particle (individual-based) model describing the pairwise
interaction of N particles in R™ [10] 21]:

dX; 1 .
=% K(Xi — Xj), =1...N, 2
Y VK- X)), 2
j=1...N
J#

where X (t) represents the spatial location of the i-th individual at time ¢. In the PDE context, the
density p(z,t) represents a continuum approximation to the distribution of individuals as N — cc.
Throughout the paper we assume that social interactions depend only on the relative distance
between the individuals and not on their actual locations and hence, consider only radially sym-

metric potentials,
K(z) = K(ja)). (3)
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Figure 1: Numerical simulation of (B]) in two dimensions and with F(r) = 1/r —r. Random initial
conditions inside a unit square were used. (a) Evolution of N = 200 particles with ¢ = 0...10.
(b,c,d) Snapshot of the system at ¢t = 5000 with N as indicated in the title.

Introducing the notation

F(r) = —K(r), (4)
we can write the particle system (2]) as
dX; 1 Xi —Xj
L= F(X; — X))o , =1...N.
]:.;':N
VE)

Note that F'(|X; — X;|) represents the magnitude of the force that the individual X; exerts on the
individual Xj;, along the direction from X; to X;. Therefore, the force F(r) must be negative (i.e.
attractive) at sufficiently large distances r (otherwise all particles disperse indefinitely), whereas
F(r) must be positive (i.e. repulsive) for sufficiently small r to avoid particle collisions. A force that
satisfies these conditions is the Morse function [10, 16} 2 22], where the attraction and repulsion
terms are both in the form of decaying exponentials, but of different signs, strengths and length
scales. The forces studied in this article also satisfy the conditions, but are of different form.
Consider the following repulsive-attractive force in the entire space R™(n > 1):
a

F(r)= s Sl a>0. (6)

The constant a entering the expression of the repulsion component could have been scaled to unity
but we leave it in for convenience. Figure [I(a) shows the evolution of the particle model (Bl in
two dimensions (n = 2) with F(r) given by (@) with a = 1. The remarkable property of this force
function is that solutions approach a steady state for which the density p is uniform inside a unit
ball, and zero outside. Increasing the number of particles (see Figure [[(b)-(d)) does not alter the
shape or the radius of the swarm. In a biological setting, such a configuration can be considered
“optimal”, in the sense that no individual within a swarm is favoured over any others, as all are
roughly equidistant from their neighbours.

For convenience of calculations we use in the subsequent sections a = ﬁ, where w,, = #2/11)
is the volume of the unit ball in R™. The force (@) for this choice of the constant a corresponds to
the potential K (see ([B) and (#)):

K(z) = g(a) + 5ol
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where ¢(x) is the free-space Green’s function for the negative Laplace operator —A:

1

_§|$|7 n=1
$(x) = { —5= Inz|, n=2 (7)
1 1 n>3

n(n—2)wy, |z|*=2> =

We also consider an extension of this potential, where the repulsion component remains in the form
of the Newtonian potential ¢, but attraction is given by a general power law with exponent g > 2:

K(@) = () +[alt,  g22 ®)

Newtonian (attractive) potentials for model (Il) were considered by Du and Zhang [23] in the
context of vortex motions in two-dimensional superfluids. Bertozzi et al. [15] studied the multidi-
mensional aggregation equation () with potentials whose singularity at the origin is just ”better”
than that of a Newtonian potential (i.e., K(z) ~ |z|%, a > 2—n). A more recent work [24] includes
also the critical case a = 2 — n. These studies concern however concentration and singularity
formation in measure-valued solutions. The purpose of our work is very different: we want to
consider attractive-repulsive potentials that yield equilibrium states of finite densities and compact
support. The attraction component %|x|q of the potential is specifically designed to counter-balance
the singular Newtonian repulsion.

Let us summarize the main results of this paper. In Section [2] we study the distinguished case
g = 2 of (), corresponding to the force (6) with a = Wln We first show that in this case the
equilibrium density of (I]) is uniform inside the ball of radius R = (nw,)~"/" and zero outside the
ball. Furthermore, we use the method of characteristics to explicitly solve the full dynamics in
one dimension, as well as the dynamics corresponding to radially symmetric initial conditions in
any dimension. This shows directly the global stability of the equilibrium in one dimension, as
well as the global stability within the class of radially symmetric solutions for any dimension. We
also prove global well-posedness of solutions to (II) by borrowing techniques used in the analysis
of incompressible fluid flow equations. In Section [l we consider general potentials (8) with ¢ > 2.
The explicit calculations from ¢ = 2 do not extend to ¢ > 2. We first prove global well-posedness
of solutions. By reformulating the equilibrium problem as an eigenvalue problem for an integral
operator and applying the Perron-Frobenius theorem, we show the existence of a unique radially
symmetric equilibrium of compact support. We also derive some more explicit results for the special
subcase when ¢ is even. Finally in Section [ we solve the following restricted inverse problem: given
a radially symmetric density p that is zero outside some ball of radius R and is polynomial inside
such a ball, construct a corresponding force F'(r) for which p is the equilibrium state. Throughout
the paper, numerics are utilized to motivate and validate the analytical results.

2 Constant, compactly supported steady states

We start by making a general observation that the model equation (II) has two important conser-
vation properties. Denote the initial density by pg:

p(z,0) =po(z),  z€R"

The aggregation model (1) satisfies:



(i) Conservation of mass:
/p(x,t)da: =M, forallt>0, 9)

where the constant M denotes the initial mass M = [ po(x)dz.

(ii) Conservation of centre of mass:
/:L'p(:z:,t)dx =0, forallt>0, (10)

where we assumed that without loss of generality, the centre of mass of the initial density is at the
origin: [ zpo(x)dz = 0.

Both properties follow directly from (). Property (ii) uses the radial symmetry of the potential.
The two conservation properties apply to all potentials considered in this article and will be used
frequently.

In this section we study the distinguished case ¢ = 2 of (§),

K(z) = olla) + 5 lof?. (1)

The equilibria of () for this case correspond to constant densities supported on a ball. We use the
method of characteristics to solve explicitly the equation in 1D. The explicit calculations extend
to radially symmetric solutions in any dimension and yield results regarding global stability of the
equilibria. We also investigate the well-posedness of solutions. Only the one and two-dimensional
cases are discussed in detail. The higher (n > 3) dimensional cases can be treated similarly and
only the key differences to case n = 2 will be highlighted.

We introduce the notation:

f(z) =-VK(z)
x
= F(|z|)—,
() o
and write the aggregation model as
pt+ V- (pv) =0 (12a)
v=_fxp (12b)
1 1 T

flz) = <n—wnW - ’ﬂ) R (12¢)

2.1 One dimension (n =1)

We will show that the following constant, compactly supported steady state is a global attractor
for solutions of (I2) when n =1

_ M if 2| < 3
T) = 13
Plr) {0 otherwise . (13)



It is easy to check that p defined above is a steady state. Indeed, calculation of v = f * p, with f
given by ([I2d) (for n =1, wy = 2), yields:

1
o(xz) =0, forall [z < 3

Note that p = 0 for |z| > %, which implies pv = 0 a.e. in R. It is then easy to check that p is
indeed a (steady) weak solution of the conservation law (I2).

We show that p is a global attractor by calculating an explicit solution to (I2]) when n = 1.
Indeed, compute v, with f given by ([I2c). We find

oz, 1) = /_OO oy, )y — M (x + %) , (14)

where we used conservation of mass (J)) and conservation of centre of mass (I0).
Using (I4]), the one-dimensional model equation [[2] can be written as

Pt T VPpg = —Vgp
= —p(p— M).

Define the characteristics X (o, t) that originate from a at ¢ = 0:

d

aX(Oé,t) = U(X(Oé,t),t), X(OZ,O) = o (15)
Along characteristics, p(X(a,t),t) satisfies:

D
—p=— — M).
Dt olo )

This ODE has a solution that asymptotically approaches the value M as ¢ — co. In fact, p along
characteristics can be computed explicitly:

p(X(a, t),t) =

1 (A = 1) et

We solve now for the characteristic paths. Denote
xX
wat) = [ plotydy
—o0

Use (I4) and (I3) to get

p 1
EX(OZ,t) _ w(X(OZ,t)at) - M <X(Oé,t) + 5) .

Integrate the one-dimensional version of the model equation (I2al) from —oo to x to find that w

satisfies )
wy + <w—M<x+§>>wx:0.



Infer from the last two equations that w is constant along the characteristic paths:
w(X (o, t),t) = w(a,0).
The characteristic equation can now be written as

d 1
%X(a,t) =w(a,0) — M <X(a,t) + 5) .

This ODE (with initial condition X (c,0) = «) can be solved exactly. The solution is given by

X(a,t) =e Mo+ % (1—e M) <w(a, 0) — %) .

Ast — 00, X(a,t) = f7w(,0) — 5. Therefore, the real line (—oo, 00) is mapped into

(Fw(—00,0) — 3, Lw(c0,0) — 3). From the definition of w, w(—00,0) = 0 and w(co,0) = M,
hence the characteristics asymptotically approach the interval (—%, %) As p along any character-
istic path approaches the value M as t — oo, we conclude that p given by (I3) is a global attractor

for the 1D model equation.

2.2 Two dimensions (n = 2)

In this subsection we investigate the solutions to the model equation ([I2]), for n = 2. We derive
a priori estimates and establish local and global existence and uniqueness of solutions. Finally,
assuming radial symmetry, we prove that solutions approach asymptotically a steady state given
by a constant density supported on a disk:

2M if |z < L
o(z) = 2 16
z v
pe) {0 otherwise . (16)

To show that p is a steady state of (I2), note first that with K as given by (),

A, ( - K(z - y)p(y)dy> =0  infz < \/%—ﬁ

Using radial symmetry we conclude that

1
K(x —y)p(y)dy = const. in 2] < —.

R2 V2T

Hence, by differentiation, v = —V K * p vanishes inside the disk:

o@) =0 infr| < —
(z) = in |z] < —.
V2T
Since p = 0 for |x| > \/%—W, pv =0 a.e. in R Hence, p is a (steady) weak solution of (2.
We prove at the end of this subsection that p is a global attractor for radially symmetric
solutions. Numerical results (see for example Figure [I)) indicate however that p is also a global
attractor for solutions that are not radially symmetric.



Properties of solutions to (I2). Bounds on the density. Calculate v from (I2h) and (I2d)
(n =2, wy = m) using conservation of mass (@) and conservation of centre of mass (I0]):

/ <217r = : g y|> ,x_y, (y)d@IZ% o ﬁp(y)dy—w/Rzp(y)dyﬂL/]Rzy,o(y)dy
=M =0
Hence,
v(z) = /RQ k(z —y)p(y) dy — M, (17)
where

k(z) = % (,ﬁ_‘g %“2) . (18)

The convolution kernel & is singular, homogeneous of degree —1. A kernel with similar properties
appears in the Biot-Savart law for incompressible fluids, which provides a nonlocal expression for
velocity in terms of vorticity. The analogy with the Biot-Savart law will be heavily used below to
show existence and uniqueness of solutions to our aggregation model.

Using

1
= Vg —1 )
ko) = V. (- loglel
one can derive from (I7):
V.-v=p—2M. (19)

Expand V - (pv) =v-Vp+ pV - v, and write the aggregation equation ([2al) as
pt+v-Vp=—p(p—2M).

Along characteristics,

%X(a,t) =v(X(o,t),t),  X(a,0)=aq, (20)

p(X(a,t),t) satisfies:
D
TP = —Plp —2M). (21)

This ODE has a solution that approaches the value 2M as t — oo, along all characteristic paths
that transport non-zero densities. In fact, a solution of (2I]) can be computed explicitly. Along
characteristics, p is given by

p(X (0 1),1) = 2M (22)

oM —oMt’
1+ <Po(06) 1) ¢

where pg is the initial density.
There are two important conclusions that can be inferred from (22I).

(i) (bounds on density) Equation ([22) provides an upper bound on the density p, for as long as

the particle map exists:
2M

M) g-2Mit
poll oo

)L <
loC D)z +<
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We can also derive a uniform bound in time:

()l < max{|lpoflz, 20}, for all ¢ (23)

(ii) (bounds on Jacobian) The continuity equation (I2al) expresses the fact that
p(X(Oé,t),t)J(Oé,t) = ,00(0[), (24)

where
J(a,t) = det Vo X
is the Jacobian of the particle map o — X («,t). Using (22]), we compute
po(e) po(a)\ _on
t) = ——= 1———= . 2
o) = 284 (1 i) (25)

Note that
J(a,t) >0 for all ¢,

guaranteeing that the particle map o — X (v, t) is invertible for as long as it exists.

Bounds on the support. We show that solutions of (I2]) are compactly supported provided the
initial density po is. The density is transported along characteristics according to (24)), so it is
enough to show that the trajectories X («,t) that carry non-zero densities remain within some
compact set.

Calculate using (7)) and (I8)):
1 T—y 2
voole) = a5 [ =towdy - Mol (26)

We isolate the singularity at the origin of the convolution kernel and estimate

/| |2,0 Y, )dy—/ | IMP(% )dy+/ ﬁp(% t)dy
y—x|<

|l‘ - y|2 ly—z|>1
< o5 O)llzee || T dy + || p(y,t)dy
ly—z|<1 | - y| ly—z|>1
< @rllpC )z + [[pC, ) 1) |2l. (27)

Suppose that the solution p has remained compactly supported in a disk of radius R up to time
t (equivalently, the particle trajectories X(a,s), s < t, that carried non-zero densities have been
contained in the disk of radius R). Assume ¢ large enough such that ||p(-,t)||p~ < 4M (see comment
(i) above regarding bounds on density). Hence, the previous inequality (also use ||p(-,t)||,1 = M)
yields:

v [ E= oty < (57 + )M,

Use (26]) for x = X (a, t) and infer

d 1

Hence, provided

1
44+ — < R,
2

the trajectories that carry non-zero densities will remain inside the disk of radius R.



Existence and uniqueness of solutions. Make the change of variable y = X (3,t) and use (24))
to write the characteristic equation (20) as

GX0 = o [ e m(3) 5~ MX ) (28a)

dt 2
X(,0) = a. (28b)

We regard (28]) as an ODE on a certain Banach space and show the local existence and uniqueness
by invoking the standard Picard theorem. The choice of the Banach space and the setup of the ODE
framework is the same as that presented in Chapter 4 of [25] in the context of incompressible flow.
In [25], the particle-trajectory method is used to show existence and uniqueness of incompressible
Euler equations in 2 and 3 dimensions. The Biot-Savart law for incompressible fluids expresses
the velocity v as a space convolution of a kernel K with vorticity w. The convolution kernel K is
singular, homogeneous of degree 1 —n (n is the number of dimensions), i.e., K(Az) = A\! ™" K (z), for
all A > 0, z # 0. This property of the kernel plays a central role in the analysis and the ODE setup
from [25]. Another important aspect of the analysis presented in [25] is how the global existence of
solutions is linked to the accumulation of vorticity fg lw(-, 8)||Leds (Beale-Kato-Majda condition
[26]). In particular, global existence can be inferred in 2 dimensions, since vorticity is preserved
along particle paths.

We describe below how the incompressible fluid framework extends to the particle system (28]).
In ([I2D) the velocity is expressed as a convolution, where the role of vorticity is played now by
the density p. The first main observation is that the convolution kernel in (28]) is homogeneous
of degree —1 (1 — n in n dimensions), as is the kernel in the Biot-Savart law. The second main
observation relates to the Beale-Kato-Majda condition. Due to previous considerations, the density
p is uniformly bounded in time (the result holds in any dimension as well), guaranteeing global
existence of solutions. To avoid an unnecessarily long presentation of the existence and uniqueness
results, we will make reference to [25] for all technical lemmas and theorems. There are a few
key aspects that are different from incompressible fluids (the fact that the flow of (28] is not
divergence-free for instance) which will be highlighted appropriately.

Write ([28) as
%X(a, t) = F(X(a,t)) (29a)
X(a,0) = a, (29b)
where the map F(X) is defined by
FO(an) = o [ e = m(8)d5 - M (o). (30)

Following [25], we consider the Banach space
B ={X :R? = R? such that ||X||;, < oo},
where || - ||1,, is the norm defined by

X1y = X O) + IVaX]lzee +[VaX]y. (31)

10



Here, | - | is the Holder seminorm

[VaX(a) = VaX(d)]

|VoX|y = sup ool

a#a

Consider an open subset Oy, of B defined by
O, = {X € B | infdet VoX(a) > 1/L and || X |1 < L} .

The local existence and uniqueness is stated by the following theorem.

Theorem 2.1. (local existence and uniqueness) Consider a compactly supported initial density
po € L°°(R?), with |po|, < 0o, for some v € (0,1). Then for any L > 0, there exists T(L) > 0 and
a unique solution X € C*((=T(L),T(L)); Or) to 9)-@0).

Proof. The proof follows from Picard’s theorem, provided F is shown to be bounded and locally
Lipschitz continuous on Q. The expression for F from (B0]) contains a linear term (which presents
no difficulties) and a convolution of a singular kernel of degree —1 with the initial density pg. To
show that F is bounded and Lipschitz continuous one can follow the same steps as in the proof
of Proposition 4.2, Chapter 4.1 in [25]. The key ingredients used in that proof are the degrees of
homogeneity of the kernel and its gradient; the specific form of the kernel is not used in fact. The
gradient of the kernel is homogeneous of degree —2 and defines a singular integral operator (SIO).
It is specifically the limited properties of these singular kernels that bring the need for the Holder
v-seminorm used in (31]). O

We now use a continuation result of solutions to autonomous ODE’s on Banach spaces (Theorem
4.4 in [25]) to upgrade the result to global existence. Inspecting the set O, we infer that we cease
to have a solution at a finite time T} provided either inf, det V, X («) becomes 0 or || X |1, becomes
unbounded as t — T,.

The first scenario is ruled out by the following proposition.

Proposition 2.2. At any fized time t < co, solutions of 29)-@B0) satisfy

inf det Vo X (a, t) > e 2Mt,

Proof. The proof is a direct consequence of the explicit calculation of the Jacobian J. From (25])
we derive, at any time t:
J(a,t) > e M for all a.

The conclusion of the proposition then follows. O

The second scenario for the break-up of the solution (finite-time blow-up of ||X||; ) will be
treated as in Chapter 4.2 of [25].

Proposition 2.3. Provided fg IVu(:,8)||Le has an a priori bound, ||Vo X (-,t)|| L and [Vo X (-, t)]y
are a priori bounded.

Proof. See the Appendix. O
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For incompressible fluids, global existence of solutions is linked to the Beale-Kato-Majda con-
dition [26]. More specifically, a sufficient condition for global existence is an a priori control on the
time-integral of the supremum norm of vorticity. In the context of our aggregation model (29))-(30),
this condition will be replaced by an a priori bound on fg lo(s )|l oo ds.

Lemma 2.4. A sufficient condition for fot |Vu(-, s)||Leeds to be a priori bounded is an a apriori
bound on fot llp(+, $)||Leeds. More specifically,

t
/ IV0(-, )| e ds < eC®0) o lpCs)llzocds
0

where C(po) is a constant that depends on the initial density only.

Proof. In the context of incompressible fluids, the corresponding statement, i.e., fg lw(-, 8)||Leeds

controls fg IVu(-, s)||Le=ds, is the key ingredient for linking the global existence with the Beale-
Kato-Majda condition (see [26] or Theorem 4.3 in [25]). Its proof can be trivially adapted to our
problem, with density p now replacing vorticity w. We omit the details. O

Finally, we have all the ingredients to prove global existence of solutions. The result is given
by the following theorem.

Theorem 2.5. (global existence) Consider an initial density po as in Theorem [21]. Then, for
every T, there exists L > 0 and a unique solution X € C1([0,T);Or) to @9)-@B0) (the solution
exists globally in time).

Proof. The solution X is in the set O, provided
infdet Vo X (o) >1/L  and || X154 < L. (32)
o

Using Proposition 2] the first condition is satisfied provided we choose L > e*M7. We now

investigate the second condition in ([B2). Start by inspecting the first term in (BII), |X(0,t)|.
Integrate (20) to get

X(0,4) = /O (X (0, 5), 5)ds. (33)

Recall that the expression for velocity v(z) in (I7) has two components: the convolution of the
singular kernel k of degree —1 with p, and —Mx. To estimate the first component of v, we use
Lemma 4.5 in Chapter 4 [25] and find:

[k pll oo < eVR|pl|Loe,

where c is a constant and R is the radius of the ball that contains the support of p — the existence
of such a ball was shown above, in the paragraph that discusses the uniform, compact support of
the density. Hence, from (B3]), we find

t t
X(0,1)] < C\/E/ Hp(-,s)HLoods—FM/ 1X(0, 5)|ds.
0 0
Gronwall’s lemma yields

t
X(0.0) < VR / (- 8 o M) ds. (34)
0
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The control of || X|;, now follows from (B4)), (@0), ([@4) and Lemma 24 More precisely, by
redefining the constants appropriately, one can derive

C3 & Np(,9)ll oo ds

IX ()]l < Cerfec2e (35)

Using the uniform bound 23]) on ||p(-, s)||z we observe that we can choose the constant L large
enough such that || X (-, ¢)||1,, < L, for all t € [0,T). O

Asymptotic behaviour of solutions. We study the asymptotic behaviour of radially symmetric
solutions and prove the following result:

Theorem 2.6. Consider a radially symmetric initial density pg satisfying the hypotheses of Theo-
rem 20 Then, the global solution p of the 2D aggregation model ([I2)) remains radially symmetric
for all times and approaches asymptotically, ast — oo, the steady state (I6l).

Proof. 1t is easy to show that, due to the radial symmetry of the interaction kernel, the density
remains radially symmetric for all times. For radially symmetric solutions, the velocity at a point
x has magnitude that depends on |z| and direction % Consequently, the trajectory that emanates
from a particle « is a straight line in the direction «:

X(a,t) = MN|af, t)a, (36)

where X is a function that has to be determined. Using (B6), we compute the Jacobian J = det V,X:

J(a,t) = Al ) (Alel, t) + Ar(lal B)lal),

where the subindex r indicates the derivative with respect to the first (radial) coordinate. The
initial density is radially symmetric, pg(a) = po(r), where r = |a|. Using the exact formula (25])
for J we arrive at an ODE for A:

2 _ po(r) _ po(r)\ —omre
AN+ A\ r = 2M+<1 Wi e .

Multiply by the integrating factor 2r to get:

dii (r*A%) =2r ('020—](\2) + <1 - '020—](\;)> e—2Mt> :

Integrate from 0 to r to find
22\ = € /T spo(s)ds + 2e2M? /T s{1— pols) ds. (37)
M Jy 0 2M

Ro = lim | X(,1)]. (38)

Denote

Pass t — oo in ([B7) and use (36]) to get
) 1 [lel
R: = M/o spo(s)ds.

13



Note however that the mass M can be written in polar coordinates as
o
M = 277/ spo(s)ds.
0

Therefore, R, < \/Lz? for all a and clearly, for a large, outside the support of pg, Ry = \/% This

shows that the disk of radius 1/4/27 is a global attractor for trajectories. From 22)), p — 2M as
t — o0, along any particle path. Combining the two results we infer that radial solutions to the 2D
aggregation model (I2)) approach asymptotically the compactly supported steady state ([I6). O

2.3  Higher dimensions (n > 3)

All calculations and results from the previous subsection extend to general n dimensions. We
mention briefly the key differences. The velocity v reads

v(z) = / k(z —y)p(y) dy — Mz, (39)
where 1 o
k(z) = P (40)

The convolution kernel k is singular, homogeneous of degree 1 —n. Existence and uniqueness results
follow as in 2D, via the analogy with incompressible fluid equations. Using

V.-v=p—nhM.
we can write the model equation (I2al) along characteristics as

D

= p=—p(p—nM).
piP = —Plp —nM)

This ODE has a solution that approaches the value nM as t — oo, along all characteristic paths
that carry non-zero density values. A solution can be computed exactly:
nM
nM —th7
1+ <Po(06) 1) ¢

p(X(a, t),t) =

where pg is the initial density. The density is uniformly bounded in time:
lo(- )|l zoe < max {||po||zee,nM},  for all t.

The Jacobian of the particle map o — X («,t) can also be computed:

J(a,t) = % + <1 — %) e ML (41)

For radially symmetric solutions, using (36, one finds:

J(avt) = )‘n_l(‘alvt)()‘(’a‘7t) + )‘r(‘alvt)‘a’)’

14



Use the exact formula for J to arrive at an ODE for \:

n n—1 o pO(T) . pO(T) —nMt
A"+ A )\rr——nM—i-(l YA e .

Solve by integrating factor nr"~! to get:

nyn __ i " n—1 —th/T n—1 N pO(S)
A" = M/o s""po(s)ds + ne ; s 1 i ds (42)

Hence, we compute the asymptotic radius R, (see (35)):

1 [l
R! = M/o s" " Lpo(s)ds.

Since M = nwy [;° s" 'po(s)ds, we find that R, < ( 1) + for all a. Particles at infinity are
Nwn ) 1
1

1 .
(nwn )™
We conclude that radial solutions to the n-dimensional aggregation model (I2) approach asymp-
totically the compactly supported steady state given by

mapped on the n-sphere of radius R, =

nM if |z) < —1—
pla) = () (43)
0 otherwise .

3 Non-constant, compactly supported steady states

In this section we study the aggregation model (), (8), with ¢ given by (@), for exponents ¢ > 2.
Note that most of the explicit calculations from Section [2] do not apply for general ¢’s. We are
able to show that, for exponents ¢ > 2, the amplitude and support of solutions to the aggregation
model remain uniformly bounded in time. As a consequence, existence and uniqueness results from
the previous section extend to ¢ > 2. We also compute the radially symmetric steady states. For
even g > 2, a unique radially symmetric, compactly supported steady state can be shown to exist
analytically. We describe a procedure to calculate numerically the radially symmetric steady states
for general ¢ > 2 and provide numerical evidence that these steady states are global attractors for
the dynamics of ().

3.1 Properties of solutions

For convenience, we restate the aggregation model for general exponent g:

pt+V-(pv) =0 (44a)
v=fxp (44b)

) = L r rle1 . c
) = (o — ol ) (140)
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Bounds on the density and its support. Calculate from (44h) and (d4d):

Vivo=p—(n+q- 2)/ |z —yl7p(y)dy. (45)

n

Hence, along characteristics, the density p(X(a,t),t) satisfies:

Do p <p ~nta—2) [ X - X(ﬁ,t>|q—2po<ﬁ>dﬁ) . (46)

Note that this is no longer a local equation, as for ¢ = 2 (see (2I]) for instance). The ODE ({46])
now depends explicitly on the particle trajectories and in particular, on the support of the density.
Nevertheless, we can still show that, provided the density and its support are bounded initially,
they remain uniformly bounded for all times.

At time ¢, define the maximum density pmax(t) and the maximum radius of support R(t) as

prax(t) = max plat),  R(t) = max |X(a1)). (47)
o azpo(a)#0
From (46)), an inequality for ppax can be easily obtained:
d max —
PR < (0 +q = 2)2R() M = prna) - (48)

Regarding estimates on the support radius R(t) we proceed similarly to the case ¢ = 2 and

calculate using (44D) and (@4d):

z-v(z,t) = /R Mp(y,t)dy - /R z-(x—y)lz—y"%p(y, t)dy. (49)

n NWp|T — y|™

The first term in the right-hand-side of ([49) can be bounded similarly to (27). For any fixed
ry > 0, we have

- (z—y) _ - (@—-y) @y
/R p(y,t)dy —/ p(y,t)dy +/ p(y,t)dy

" nwn‘x - y‘n lz—y|<rs nwn’x - y’n T—yY|>Tx nwn‘x - y’n
P t)|x 1 T
< Pumax ()] —dy + | ‘n_l / p(y,t)dy
Nn lz—y|<re 1L — y’ NWn T+ |z—y|>rx
M
< | Pmax(t)rie + ——= | |2
nwpTy
n+1 (M\Y" -1
—TE () (50)
n Wn,

where we chose 7, = (M/(wnpmax))/™ in the last step.

The second term in the right-hand-side of (49]) can be bounded by restricting to those trajec-
tories X (v, t) on the boundary of the support, i.e. |X (o, t)| = R(t) > |X(8,t)| for any 8 such that
po(B) > 0. We need the following lemma.

Lemma 3.1. There exists a constant c, depending only on the dimension of the space such that
for any nonnegative, compactly supported measure p on R™ with total mass M and centre of mass
at the origin, we have

/n z - (z —y)|z —yl7 %duly) > clz|IM, (51)

for any x with |x| > R, where R is the radius of the support of p.
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Proof. Suppose there is no constant ¢ with such properties. Then there exists a sequence of points
{z;,} and nonnegative measures {j,,} of total mass M and centre of mass at the origin such that

_ 1
[ o = )l = 317 nla) < M, (52)

where |z,,| > R, and R,, is the radius of the support. Since above inequality (52)) is invari-
ant under the scaling on the space z,, — =p/|Tm|, v = y/|xm| and on the measure p,,(y) —
tm(Y/|Tm|)/|xm|", we can assume that |z,,| = 1 and R,, < 1. By the compactness of the sequence
{zm} and the weak compactness of the measures {j, }, there exist subsequences {z,, } and {pm, }
such that x,,, converges to xo with |zo| = 0 and f,,, converges to po. In particular, ;9 has the
centre of mass at the origin. Passing the limit in (52]) when my goes to infinity,

_ . _ ) 1
/ zo- (zo—y)|wo—y|? *dpo(y) = lim 2o+ (xo—Y)|zo—y|? 2dpm, (y) < lim —|azo|IM =0

This implies that ug is the delta measure concentrated at zy , and therefore has the centre of mass
at zg. This contradicts the fact that pg has centre of mass at the origin. O

Remark. The constant ¢ can be calculated explicitly (though not always optimal) in the special
cases when ¢ is positive and even. For g = 2,

/ - (z—y)ply)dy = |z|*M,
with ¢ = 1. For g = 4,
| ae@=ule = sy = [ (ol + Pl +20 0 = @ plyP)ota)dy = [ol M,

with ¢ = 1 (although not necessary optimal).
Using (B0) and (BI) in @9) for x = X(«,t) on the boundary of the support, we find the

differential inequality

dR _n+1 (M\Y" | .

— < — Tw—cMRIT 53

dt = n <wn> P ‘ (53)

Now inspect (8) and (53). If initially the maximum density pmax(0) and the radius of the
support R(0) are bounded, then there exist p > pmax(0) and R > R(0)) such that

. 1/ MN\Y" .
(n+q—2)2R)TM — 5 <0, n; (w_> pl T~ eMRT <0 (54)

Therefore, the region [0, g] x [0, R] is invariant for the system of differential inequalities (4S)) and (53)
and for any t > 0, the density p and the radius of its support are bounded by p and R respectively.

Existence and uniqueness of the solutions. Reformulate the PDE model (44) in terms of
particle-trajectory equations, i.e., system (29) with F given by

_ 1 X(a7t)_X(57t) _ o _ q—2 o _
Fexan) = [ (e =IO o - x50 (e Xw,t)))po(ﬁ)(c;g
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Existence and uniqueness of the particle-trajectory system can be studied very similarly to the
analysis of the case ¢ = 2 from Section [2 Using the same setup (Banach space B, open subset Op ),
one can show the Lipschitz continuity of the map F and infer local existence and uniqueness. Then,
similar to the case ¢ = 2, one can use the uniform bound on the density and invoke a Beale-Kato-
Majda type argument to extend the result globally in time. The uniform bound on the support
of the density is another key ingredient in the estimates. Also needed for global continuation in
time is a lower bound on the Jacobian J of the particle map X (a,t). For ¢ > 2 we do not have
an explicit calculation of the Jacobian J(a,t) as for case ¢ = 2, but we can use the differential
equation that J satisfies,

d .
Ej(a,t) = J(o, t)div v(X (i, t), 1),

and derive

t
J(a,t) = exp <—/ div v(X(oz,s),s)ds) .
0
Hence, using (43)),

J(ast) = exp (—(lplli + (n+ g — 2)(2R)T2M)1)
> exp <—(ﬁ +(n+q- 2)(2R)q_2M)t) .

We summarize these results in the following theorem:

Theorem 3.2. (global existence and uniqueness for q > 2) Consider the trajectory equations
29), (BA) with the Banach space setup and notations from Section [3, and a compactly supported
initial density po € L>(R™), with |pg|y < 0o, for some v € (0,1). Then, for every T, there exists
L > 0 and a unique solution X € C*([0,T);Or) to @9)- BH) (a unique solution exists globally in
time).

3.2 Radially symmetric steady states

Numerical simulations indicate that the attractors of the dynamics of (44]) are always radially
symmetric and compactly supported. Guided by this observation, assume the model (@) admits
a radially symmetric steady state ﬁ(r supported on the ball B(0, R). The velocity v is zero in
B(0, R), so its divergence also vanishes. Use ([@3]) to find

p-(nta=2) [ Loyt Iy =0 in BOR),
Therefore, the density p satisfies the following homogeneous Fredholm integral equation

R
p(r) = c(q,n)/o (r')"_lﬁ(r')l(r, r)dr, 0<r<R, (56)

where

!By abuse of notation, we write p(r) = p(z).
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and i
I(r,r") = / (7‘2 + (7"/)2 — 2rr' cos 9)‘1/2_1 sin™ 2 0df.
0

In other words, p is an eigenfunction of the linear operator T, where

R
Tri(r) = c(g.n) /O ()" () Y, (57)

that corresponds to eigenvalue one. Here the subscript is used to emphasize the dependence of the
integral operator on the radius R. This eigenvalue problem consists in determining the eigenfunction
p and the radius R of the support. The actual steady density is a constant multiple of this
eigenfunction, where the constant is determined from the initial mass. Indeed, we can prove the
following result.

Theorem 3.3. Given a mass my, there erists a unique radius R (that depends on q and n only)
and a unique bounded, radially symmetric steady state p of mass mqy which is supported on B(0, R).

Proof. First note that we can use a scaling argument and consider the case R = 1 only. Indeed,
consider operator Ty from (57) for R = 1. For ¢ > 2, since the kernel ¢(q,n)(r")"~*I(r, ') is nonneg-
ative, continuous and bounded, the corresponding operator 77 is strongly positive and bounded.
By Krein-Rutman theorem [27], there exists a positive eigen function p; such that T1p; = Apy,
where A\ (depends on ¢ and n too) is the spectral radius of T7. By making the change of variable

p(r) = pi(r/R) (58)

in (51), we get
Trp(r) = R™ 72X p(r).

Now ask that p is an eigenfunction of T corresponding to eigenvalue one and find
1
R =\ n+a—2 (59)

which gives the radius of the support. The uniqueness of R and the steady state p comes from the
uniqueness of such an eigen pair. O

This theorem also suggests a power method [28] to calculate the steady state p. For a given
initial positive density p(?), the iterative scheme

FH = Typm, ) = 1yl 7|
converges, and the spectral radius is given by

— fim |||/ 50
A= lim [p /][

where || - || can be any norm for functions on the unit interval [0, 1]. The steady state then can be
calcuated from above scaling (58]). More details on the discretization of the integral operator Tr
are deferred to that of (67D]) in the next subsection, where we describe the numerical method used
to evolve dynamically the radial solutions to the model equation ().

Using this numerical procedure we first investigate how the radii R of the support of the steady
states depend on the exponent ¢. In Figure 2la) we plot R as a function of ¢ for various values
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Figure 2: (a) Plot of the radius of the support R of the steady states as a function of the exponent
q for various space dimensions n. The plot suggests that the radius R approaches asymptotically
a constant, as ¢ — 0o0. (b) Normalized radially symmetric steady states p(r) in two dimensions for
various values of the exponent ¢. For ¢ = 2 the steady state is the constant solution in a disk. As ¢
increases, the qualitative features of the steady states change, as mass aggregates toward the edge
of the swarm, creating an increasingly void region in the centre. This suggests that, as ¢ — oo, the
steady states in two dimensions approach a ring solution of non-zero radius.

of the space dimension n. The plot suggests that R approaches a constant as ¢ — oo, but careful
asymptotics will have to support this claim. We plan to investigate this issue in future work.

Figure 2I(b) shows the steady state densities p(r) in two dimensions, corresponding to various
values of the exponent ¢q. The plots represent p as function of the radial coordinate r. All steady
states presented in Figure 2(b) are normalized to have unit mass mg = 1. For ¢ = 2 the steady
state is the constant solution in a disk. As ¢ increases, the qualitative features of the steady states
change: mass aggregates toward the edge of the swarm, creating an increasingly void region in its
centre. Combined with the numerical results presented in Figure (2))(a), Figure 2b) suggests that,
as ¢ — 00, the steady states in two dimensions approach a ring solution of non-zero radius, similar
to equilibria investigated in [29].

In the next paragraph we show that a unique such eigenfunction exists for ¢ even.

Case g even (analytical considerations). When q is an even positive integer, the kernel I(r, 7‘/)
is separable and the density p(r) is a polynomial of even powers of r. Denote by m; the i-th order
moments of the density, defined by

R .
m; = nwn/ 5 dr (60)
0

Note that the zeroth moment mg coincides with the total mass M.
When ¢ = 2, we recover the steady state investigated in Section 2l Indeed,

I(r,7) :/ sin™2 fd,
0
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and, from (B6) and (60),

R
p(r) = nw, / (' (Y
0
= nmy.

Using this in the definition of mg from (60)) yields the identity

R
mo = nwn/ nmor™ tdr
0
= nw,moR".
The last two equations determine the radius of the support R = (nwn)_l/ ™ and the constant density
p = nmyg is determined by the initial mass mg. These are the steady states analyzed in detail in

Section 21
For ¢ =4,

I(r,r") = (r? + ()% / sin"2 0d#,
0
and

R
pr) =l 2 [ () 4 (Dl
0
= (n 4 2)mor?® + (n + 2)ma. (61)
By using (6I) in the definitions of mg and my from (60) we find the linear system

mo \ nwy, R (n+2)w, R" mo 69
mo ) ngln:f)wnR"H nwy, B2 mg |- (62)

The existence of nontrivial solutions for this eigenvalue problem yields a value for the radius R,

B[ (s (22 )y*ﬂ )

n+4

and a relation between moments

1 — nw, R"2

————my.

(n + 2)w, R" 0

Given an initial mass my, the steady state can now be found from (61l), ([63]) and (64]).
Note that system (62]) is equivalent to

myg _ n+2 mo
< m2/R2 ) - TL(TL + 2)wnR A4,n < m2/R2 ) )

mo = (64)

where the matrix

1
A4,n — < ni—2

3

3

|

3
J,-‘»—Azlr—l
[\e]
N—

is independent of R.
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This pattern extends to arbitrary even ¢’s. From the trinomial expansion of I(r,r’), as any
odd power of —rr’ cos 6 vanishes, I(r,r’) is a polynomial of even powers of r and 7’ with positive
coefficients (note that the moments my, - - ,my—o are positive). Therefore p(r) is a polynomial of
even powers of r with positive coefficients (in terms of these moments). Then, the definitions of
the moments mg, ma,- - -, mg—2 yield the system

mo mo
m2/R2 mg/R2

=n(n+q—2)w, R"TI24,, , (65)

mq_Q/Rq_2 mq_g/Rq_Q

where A, ,, is a matrix independent of the radius R that has only positive entries. Apply the Perron-
Frobenius Theorem [30] to the positive matrix A, , to conclude that A, , has an eigenvector will
all components positive and that this eigenvector corresponds to the Perron-Frobenius eigenvalue,
whose eigenspace is one-dimensional. Moreover, all other eigenvectors must have at least one
negative or non-real component. The desired eigenvector in (65]) has only positive entries, so it
has to correspond to the Perron-Frobenius eigenvalue of A, ,. Recall that the matrix A,, does
not depend on R, so neither does its Perron-Frobenius eigenvalue. Hence, from (63]), one can find
R in terms of n and ¢ only. Finally, the steady state density p can be found from its polynomial
expansion, once a mass my is set.

3.3 Dynamic evolution of the aggregation model: numerical results

We compute numerically the solutions to the aggregation model (),(®]), with ¢ given by (). Several
approaches can be taken to discretize the model equation. One is to use its Lagrangian counterpart
and evolve numerically the particle trajectories X;(t), i = 1,..., N according to (B)). This method
is suitable for general initial conditions. However when initial conditions are radially symmetric,
this method is very inefficient in dimension n > 2 as it does not take advantage of the underlying
symmetry. For radially symmetric configurations, we develop below a more suitable method which
does take the radial symmetry into account.

The numerical results of this section are obtained from a discretization of the model equations
written in characteristic form (see (29)), (55) and ({4)):

dx T —y g—
yrin /Rn mp(y)dy - /Rn (z —y)lz — y|"?ply)dy (66a)
% =p [(n +q-2) / |z —y|"2p(y)dy — p} : (66b)
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Assuming radial symmetry of solutions@ we write system (66)) as

dr N 1 =1 Nt
= KT
—w ~ / " — ! 2 2 _ / q/2—1 ;.. n—2 /
n—1 p(r")y [ (r—r"cos@)(r*+r"" —2rr' cos ) sin"™“ 0dfdr (67a)
0 0
% =p [(n +q—2)wp—1 / ,0(7‘/)/ (r? 4+ = 2r1' cos 0)7/>~ L sin™ 2 0dbdr’ — p| . (67b)
0 0

Here the term associated with the singular repulsion in (G7al) is calculated by taking advantage of
the fact that the corresponding kernel is the fundamental solution of the Laplace equation.
By introducing the following auxiliary functions,

Li(s) = / (1 —scosB)(1+ s> —2pcosd)?> 1 sin" 2 0do, (68a)
0

I(s) = / (s — cos0)(1 4 s> — 2pcos 0)7/>~ L sin" 2 9o, (68b)
0

I3(s) = / (14 52 —2pcos§)/> Lsin" 2 9do, (68¢)
0

the angular integrals in 0 in (67al) and (67h]) become products of powers of r, 7', and these auxiliary
functions with s = min(r, ")/ max(r,r’). Hence the double integral in (67]) becomes a single integral
in 7’ and is evaluated by trapezoidal rule. This observation reduces the total complexity in the
computations of the right-hand-sides of the characteristic equations (67) to O(N?) per time step
where N is the number of spatial grids in . Once the characteristic speeds in (67) are found, the
equations are evolved in time by the classical fourth order Runge-Kutta method.

Figures [B(a) and Bi(b) show simulation results in two dimensions, corresponding to ¢ = 2 and
q = 4, respectively. We plot the solution against the radial coordinate r. The initial data used in
Figure [3] is

p(z,0) = (0.1 — 10|z|* 4 100|z|*) exp(—6|z|?)/c,

where c is a constant chosen to normalize the mass to one. Recall that for both ¢ = 2 and ¢ = 4 we
computed analytically the (unique) radially symmetric steady states. For ¢ = 2 the steady density
p is uniform on a disk and zero elsewhere and in Section we proved that p attracts all radially
symmetric solutions. Further numerical investigations with using random initial conditions (see
Figure [I]) indicate that p is a global attractor for the dynamics of (I),(®]), that is, it attracts all
solutions, not only those that are radially symmetric.

Figure Bi(b) shows the time evolution for ¢ = 4. An analytic expression of the steady density
was calculated in Section Notice how the solution approaches this steady state and at ¢ = 16
is barely indistinguishable from it. Similar behaviours are observed for other exponents ¢ > 2 and
higher dimensions n. All numerical experiments we performed suggest that the radially symmetric
steady states discussed in Section are global attractors for solutions of ([),(]). In future work
to plan to address this issue in an analytical study on the asymptotic dynamics of our aggregation
model.

2The method applies only to radially symmetric solutions. However the claim we make, that the steady states
computed in Section are global attractors, was supported by numerical computations with methods which do not
assume radial symmetry, such as the discretization of the ODE particle system ().
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Figure 3: Time evolution of a radially symmetric solution to the aggregation model (), [8) with
(a) ¢ =2 and (b) ¢ =4, in two dimensions. (a) As predicted by the analytical results from Section
2, the solution approaches asymptotically a constant, compactly supported steady state. (b) The
solution approaches asymptotically the steady state computed analytically in Section — see

equations (61l), (63) and (64)).

4 The inverse problem: custom-designed kernels

We have shown in Section [ that for K of the form (8) with ¢ even, it is possible to construct an
explicit procedure for computing the radially symmetric equilibria. It is then natural to consider
the following inverse problem: given a density p(z), can we find a kernel for which p(x) is a steady
state of (I)? In this section we show that if p(x) is radial and is a polynomial in |z|, then the
answer is always yes. Indeed, the construction is a partial generalization of the computations done
for the case of even ¢ in Section Bl The main results are stated in Theorem 1] (for n = 1) and
Theorem (for n > 2). Some examples of the construction are also given.

Throughout this section, we use the notation () which relates the force F' with the radially
symmetric potential K. The results below are expressed in terms of F(r).

4.1 One dimension

In one dimension radial symmetry of the steady state is replaced by the requirement that p is an
even function. The result in one dimension is the following.

Theorem 4.1. In one dimension, consider an even density p of the form

(69)

_ b0+b2l‘2—|—b4$4+...—|—b2d$2d |l‘| <R
plz) = :
0 otherwise.

Define the moments m; as in ([©0). Then p(x) is the steady state of ({dl) corresponding to the force
(see equation ([{)))

d
1 a9; i
F(!E) = 5 - Z . 7"2 +1 (70)



where the constants ag, as, ... ,asq, are computed from by, by, ..., bag by solving the following linear

system.:
d 9
b2k = Za2j < 2‘]1 > ma(j—k)» k=0...d. (71)
j=k

Moreover, system ([[1)) has a unique solution.
Proof. From (), we find

||

K(|z|) =— F(s)ds. (72)
Introduce the expression (7Q) of the force F' in the0 equation above to find:
K(|z]) = _|_Z = a2i o[22,
i+1)(2i +2)
Here, ¢ represents the Green’s function of —=5 defined by (7)) (for n = 1). Calculate

K”(x) _ —5(%) + H(‘x‘),

where H is given by
H(r) = ag 4 aor® + ... 4 agqr?. (73)

From (Ih),
v (z)=—-K

//*p
o)~ [ (e~ yptw)dy

We want p given by (69) to be a steady state of (II) corresponding to the force (0. Since p is zero
outside the interval |z| < R, the velocity © has to vanish inside the interval. In particular, v’ = 0
in |z| < R, and the steady state p satisfies the integral equation:

[ HGe-uhpwiy i< (74)

Calculate using the binomial expansion,

oo R J .
- - 2 _
/ |z —y|7 ply)dy = 2/0 > " yPUR) 2 < 22 > p(y)dy

o k=0

Here we also used definition (60]) and the fact that p vanishes outside |z| < R. The integral equation
(@) now becomes:

d d
2% 2j :
= E x E < o >m2(j_k)a2j in |z| < R.
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Figure 4: (a)-(c) Steady state solutions to (II) in one dimension with force F(x) given by (70]).
Filled circles along the x-axis represent the steady state for the corresponding dynamical system
() with N = 50 particles. Empty circles represent the density function as computed from the
filled circles, normalized so that max p = 1. The solid line is the analytical expression for p given
by (73), but normalized so that maxp = 1. In all cases, excellent agreement is observed between
the asymptotic behaviour and the predicted steady states.

By equating the coefficients in p(x) from the equation above with those from the expression (G9) we

find (7T)). This is a linear system to be solved for coefficients ag, ag, . .. , asq in terms of by, be, . . ., bag.
The existence and uniqueness of a solution is immediate since (1]) is a triangular linear system
with non-zeros along the diagonal, since my = M # 0. O

We illustrate Theorem [4.1] with three examples. We take R = 1 and consider:

(@) pa)=1-2% ) pla)=o% (o) pla) = +a>—a, (75)

which represent a convex, a concave, and a two-bumped steady state, respectively. From Theorem
[4.1] the corresponding forces are given by

(a) F(x) = %—%x—kix?’; (b) F(x) = %—F%x—%x?’; (¢) F(z) = %—Fzggi:;x—gg;?ﬁ—k%;ﬂ;
In Figure [l we plot p(r) as given by (7)), as well as the numerically computed equilibria obtained
by evolving in time solutions of the aggregation model corresponding to forces (76)). To evolve
the aggregation model numerically we used a discretization of the ODE particle system (&) with
N = 50 particles, starting from random initial conditions in [—1,1]. The system was integrated
using Euler method with stepsize 0.1 until £ = 5000, by which point the system settled to the
equilibrium state. The approximated continuum density p(z) was computed using the procedure
described in [I0]. Note the excellent agreement observed in all cases.

4.2 Higher dimensions

The construction in higher dimensions is analogous to 1D. We state the result only for n = 2 and
n = 3, but the procedure generalizes easily to any dimension n.
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Theorem 4.2. In dimension n =2 or n = 3, consider a radially symmetric density p(x) = p(|x|)
of the form

b bor? + byrt 4 ...+ bygr?@ R
p(T):{O+ oT” + 047" + + bOogr |:17|< (77)

0 otherwise.

Define the moments m; as in (@) Then p(r) is the steady state of ({dl) corresponding to the force
(see equation ([{)))

d
22041
) = 78

)= nwnT”I ;2z+n (78)
where the constants ag, az, ..., asq, are computed from by, b, ..., bag by solving the following linear
system:

d
b2k - Z a2jC”7j7k mMa(j—k)s k=0... d, (79)

j=k

with

j 2
Cin = </€> 7 "2 , (80)
" 1 2(j +1) ne3
2 +1) \ 2k+1 ) 7

Moreover, system ([T9) has a unique solution.

Proof. The proof follows closely the argument from the one-dimensional case. From (72), we find,
using the expression (78]) for the force F:

d

az; 2142 81
K(lel) = +Z (2i +n) 2z+2)‘x’ ' (81)

Here, ¢ represents the Green’s function of —A in R™, defined by (IE)E Calculate
AK(z) = =6(x) + H(|z]),

where H is given by (Z3]).
Calculate from (ID):

V.-v(z) = -AK x p(x

/er—y\ (y)dy

The steady state p from (77]) must have zero velocity in the ball |z| < R, hence p satisfies the
integral equation:

— [ H(o—vhotw)dy el <R (82)

3The potentials of the form (BI) include the family of potentials &) with ¢ even. To see this, take 2d 4+ 2 = ¢,
a2q 7 0, and az; =0 for all 0 <14 < d.
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From radial symmetry p(y) = p(|y|), we have

/]Rn & — y[* ply)dy = (%)A </0 (s? + 1 2rscos9) sin”~ 29d9> p(r)r™"tdr,

where s = |z|.
Next we simplify as follows:

1 ™ o
m /0 (82 + 1% — 2rs cos H)J sin" "2 0df = Qy,2(s/r)r¥
0

where we define

Qn2i(t) := (t2 + 1 — 2tcos H)j sin™ 2 6de. (83)

1
o sin™ "2 6df /0

From (B3)) it is easy to see that the polynomial @y, 2; of degree 2j contains only even powers, so
that we may write

J
Qn2j(t) = Y Cppjpet™ (84)
k=0

In terms of the coefficients C,, ; ; we then obtain

.y |
/R |3§‘ _ y|2j p—(y)dy — nwn/o Z On,ng s2kr2(]_k)+n_1ﬁ(r)dr

J
=>.C s
n,5,k"2(j—k :

k=0

We therefore obtain from (82)),

j
a2; Z n,j.k"2(j—k

d

2k .
r Z 3 K 2(—k) 02 in |2] < R.
0 =k

M= 1=

B
Il

Now match with the coefficients of p from (7)) to find (79). The linear system (79)) has a unique
solution, since the matrix is triangular and its main diagonal has non-zero entries (mg # 0).
It remains to show (80). In the two dimensional case, we expand

Q2,25(t) = l/ (1+ t2 — 2t cos L

™ Jo
Jj Jj—t

_ 2i+k k[T ok
__Zzz'k:' )t (—2) /0 cos” 0d6.

=0 k=0
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For the integral we have

1™ 0, k is odd
T / cos™ fd6) = —gk! k is even
™o 2[(£)]7 '

Therefore

J! 2i+2k N
—— I t (-2) / cos™" 0db
' 0

J! 2%h+2i
t . 85
AON2G — i — 2k)] (85)

For | < [j/2], the coefficient of %! is

l

2; (1 — z~>!>2‘7& —2+i) G) Zi; @ <‘Z:f> - @2 (86)

1=

In the last step, we used the combinatoric identity

S ()()-()

1=

This proves (80) with n = 2. The case n = 3 is much simpler as )3 2;(t) can be integrated explicitly
for general j:

Q3.2(t) = 1/W(l + % — 2t cos 0) sin 0df = e /(1+t)2 uw!du = N (14+6)% —(1- t)zj]
T T At S T atj+1

which leads to (80) with n = 3 after some algebra. O

Finally, we illustrate Theorem with two examples in n = 2 dimensions:

(@) p(r)=1; (b) plr)=1+7r% (83)
According to Theorem [£.2] density (a) in (88]) corresponds to the force
11 1

a) F(r)=—-— ——=r.
(a) F(r) 2rr  2mR2

Case R = 1//27, corresponding to the potential (8) with ¢ = 2, was considered in Section For
R=1,F(r)= % (% — 7’). Multiplying the force F' by a constant does not effect the equilibrium
solution, as the constant can be removed by rescaling time. The dynamics corresponding to F(r) =
% — r was presented in Figure [ in the Introduction. Indeed, a constant equilibrium on a unit disk
is reached.

Corresponding to density (b) in (88)) we have, according to Theorem
11 4 1
(b) F(r)= - ’

= - —7r — —7°
20 r 27w 6m

Example (b) is illustrated in Figure Bl The results show an excellent agreement between the
predicted steady state of (Il) and the asymptotic dynamics of the particle system.
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[42). (a) Evolution of N = 200 particles with ¢ = 0...50, starting with random initial conditions
uniformly distributed inside a unit square. (b) Snapshot of the solution at ¢ = 5000. Dots repre-
sent the particle positions; lines represent the boundaries of the corresponding Voronoi cells. (c)
Estimate of the density p(x). Delaunay triangulation based on the Voronoi diagram is shown. The
density at x; is p(x;) = 1/a; where a; is the area of the Voronoi cell around z;. (d) The scatter
plot of the approximated density p(x;) v.s. |z;| for each particle z;. Dashed line is the analytical
solution p(r) = 1+ r2.

5 Discussion

We have presented several new steady solutions to the aggregation equation (), in particular for
two or higher dimensions. One of the key features of the potential (8) is that the repulsion is
proportional to a Newtonian potential. This property was critical for being able to construct the
steady states explicitly. In [I0] the steady state for the Morse function F(r) = ¢™" — Ge™"/* was
computed analytically in one dimension. It is an open question to generalize this calculation to
higher dimensions. In two dimensions, the Morse potential has a much weaker repulsion at the
origin (F(r) = O(1) as r — 0) than the Newtonian potential (F'(r) = O(1/r) as r — 0). For this
reason, it is unclear whether the ideas presented here or in [10] can be used to determine the steady
states of the Morse function in two dimensions.

For the simple case when the attraction component of the potential is quadratic (K given by
@) with ¢ = 2 or alternatively, force F' given by (@l)), we have proved that the density given by
the characteristic function of a ball is a global attractor for radially symmetric initial conditions.
However, numerics strongly suggests that this is true for all initial conditions (see for example
Figure[I]). It is an open problem to prove this. A related issue is that the characteristic function of
a ball is not the unique radially symmetric equilibrium solution that corresponds to force (). For
example, in two dimensions, there exists an equilibrium solution for which the density concentrates
on a delta ring whose radius r( satisfies (see [29])

w/2
/ F(2rosin(0) sin(0)do = 0.
0
In particular, for F(r) = 1/r — 7 in two dimensions, we obtain rg = 1/v/2 (whereas the global
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attractor is the density that is uniform inside a unit disk). However, as was shown in [29], such
delta-ring solution is ill-posed whenever F(r) ~ 1/r as r — 0, in the sense that it is unstable with
respect to all sufficiently high Fourier modes.

For the more general potential (8) with ¢ > 2, we have shown that there exists a unique,
bounded and compactly supported equilibrium density solution when ¢ is even. This suggests
that the uniqueness remains true for any ¢ > 2 and it is an open problem to show this. Another
interesting question is what happens when g < 2, the regime where the estimates of Section [3] are
no longer valid. Numerical simulations indicate the existence of concave steady states in this case.
This is a subject of future work.

We also solved the restricted inverse problem: given a radially symmetric polynomial density,
we explicitly construct a corresponding force which admits the given density as its equilibrium
state. However, nothing is known about the stability of such steady states and in fact they are
not generally expected to be globally stable. It would be interesting to provide extra conditions to
guarantee the stability of these states.

Uniform swarms are often observed in biology; however the precise mechanisms of their for-
mation are rarely known. Regardless, possible biological advantages of uniform swarms may be
avoidance of overcrowding and uniform resource distribution among the swarm. While it is tempt-
ing to suggest equation () with the force (6l as a model for their formation, such suggestion is
premature in the absence of better understanding of the underlying mechanisms.

6 Appendix
Proof of Proposition 2.3l Take the gradient with respect to « of the characteristic equation
0) to get

d

2 VaX(a,1) = Vo(X(a, ), 1) VaX (1), (89)

From (89]), one can derive using Gronwall’s lemma (also use X (o, 0) = «):
IVaX (1) < o IVCo)lzocds, 0

To bound |V,X(-,t)|, we need the following two results from [25], stated in Lemmas 4.1 and 4.3,
Chapter 4:
(i) Let X, Y : R®™ — R” be smooth, bounded functions. Then, for v € (0, 1],

| XY |, < || X||zee|Y |y + [ XY || oo (91)

(ii) Let X : R® — R™ be an invertible transformation with det VoX(a) > ¢ > 0, and let
f:R®™ — R™ be a smooth function. Then

[fo Xy < IfAIVaX |7
Using these two calculus results one can estimate:
’VU(X('v t)v t)VOCX('v t)"y < ’VU('7 t)”Y”vOlX('7 t)Hito’y + va(7 t)HL"O ‘VOlX('a t)"Y' (92)

The expression ([I7)) for v(x) has two components: the convolution of the singular kernel & with
p, and —Mx. The gradient of the second component yields —M I, where I; denotes the identity
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matrix. The gradient of the first component yields a principal-value singular integral operator
(SIO) that involves the convolution of P = Vk with p:

Plp(z) =PV - P(z —y)p(y)dy.

Use Lemma 4.6 (Chapter 4 [25]) and estimate the y-seminorm of P|p]:
[Plplly < clllpllze= +1pl),

where ¢ is a constant. Note that this result holds for functions of uniform compact support,
condition which the solution p does indeed satisfy. Collect the terms that comprise Vv and use the
uniform bound (23)) on ||p||L~ to find

[Vo( 0)y < O+ |p(,)]y)-
By using this estimate and (90) in ([O2), we derive
Vo(X (1), )VaX (- 1)y < C(1+[p(,1)],)eTD R IToCMeds 4 Gy (. 1)) | Vo X (1),

Below we estimate the term |p(-,t)|, in terms of fg [lv(-, 8)|| L ds and show

t
()], < lpolyeCt exp [7 /0 ||VU(',8)||L°°d8} . (03)
Hence,
t
V(X (1), )VaX (- 1))y < O+ [poly el B ITeCwd5 4 70, 1)) o [Va X (1)

Now integrate (89]) and use Gronwall’s lemma to get:
t
VX (1)), < C/ (14 | pol,e 1)1 +27) Jo IV m)llLsodr o [ IVo(,)lLoodr g (94)
0

The two desired a priori bounds and hence, the conclusion of the proposition follow from (@0]) and
©4). We are left to prove ([@3]). For fluids, an estimate similar to (@3] is shown (with vorticity w
in place of density p) and the result is presented in Lemma 4.8 (Chapter 4 [25]). Below we follow
similar steps to show (O3)).

Write the aggregation equation (I2al) in the form

pt+v-Vp=—pV-u.

Hence, by using the inverse of the particle-trajectory map, we can re-write it as

t

p(z,t) = po( X (z,t)) — /0 pV - o(X " (z,t — s),8)ds.

By estimating the Holder seminorm of p, one can show, as in Lemma 4.8 [25], that
¢ ¢ t ) )
o0 < by exp [ [ 190 limas| + 19l exp |3 [ 19005 eas | ds. 95
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To show the above estimate one has to use the fact that V,X ! satisfies

t
9.5t = 9lem < exp | [ IT0C |
S
From (I9), the calculus inequality (@] and the uniform bound (23]) on ||p||z, one can easily derive

1PV (- 8)|y < Chlp(-s 8)]4- (96)
Denote

60 = It o [ =7 [ 1905w

Multiply ([@5]) by exp [—’y fg |Vu(-, s)||Lee ds} and use estimate (96]) to obtain

t
G(t) < |pol, + Cy / G(s)ds.
0

The desired estimate (@3)) follows from Gronwall’s lemma.
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