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Abstract 
 
Since viscoelastic attenuation effects are ubiquitous in subsurface media, the seismic source 
wavelet rapidly evolves as the wave travels through the subsurface. Eliminating the source 
wavelet and compensating the attenuation effect together may improve seismic resolution. 
Gabor deconvolution can achieve these two processes simultaneously, by removing the 
propagating wavelet which is the combination of the source wavelet and the attenuation 
effect. The Gabor deconvolution operator is determined based on the Gabor spectrum of a 
nonstationary seismic trace. By assuming white reflectivity, the Gabor amplitude spectrum 
can be smoothed to produce the required amplitude spectrum of the propagating wavelet. In 
this paper, smoothing is set as a least-squares inverse problem, and is referred to as 
regularized smoothing. By assuming that the source wavelet and the attenuation process are 
both minimum phased, the phase spectrum of the propagating wavelet can be defined by the 
Hilbert transform of the natural logarithm of the smoothed amplitude spectrum. The inverse 
of the complex spectrum of the propagating wavelet is the Gabor deconvolution operator. 
Applying it to the original time–frequency spectrum of the nonstationary trace produces an 
estimated time–frequency spectrum of reflectivity series. The final time-domain high-
resolution trace, obtained by an inverse Gabor transform, is close to a band-pass filtered 
version of the reflectivity series. 
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Introduction 
 
High-resolution seismic data are prerequisite for reservoir characterization. However, the 
earth’s Q filtering effect inevitably induces the energy dissipation of high-frequency wave 
components, and distorts the seismic wavelets, simultaneously (Futterman 1962, Anderson et 
al 1977, Kjartansson 1979, Wang and Guo 2004). Inverse Q filtering and deconvolution are 
two common methods for seismic resolution enhancement. Typically, the former is used to 
compensate for viscoelastic attenuation (Hargreaves and Calvert 1991, Wang 2002, 2006, 
2008), while the latter is used to eliminate the wavelet and broaden the bandwidth (Robinson 
1967, Yilmaz 2001). 

To remove the attenuation effect, inverse Q filtering has been designed as a type of 
deconvolution in the plane-wave domain (Bickel and Natarajan 1985) or a type of migration 
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akin to Stolt frequency-wavenumber migration (Hargreaves and Calvert 1991). A stable and 
efficient approach proposed byWang (2002, 2006, 2008) is based on the theory ofwavefield 
downward continuation and implemented in a layered manner or in Gabor domain. 
Subsequently, a stationary deconvolution can be applied to remove the seismicwavelet. As an 
alternative, Margrave (1998) presented a nonstationary convolution model which addresses 
the earth’s attenuation. Then Margrave and Lamoureux (2002) developed a nonstationary 
deconvolution using a Gabor transform. Margrave et al (2003a) presented a computational 
scheme for a Gabor transform based on a set of windows that form a partition of unity. The 
Gabor transform approximately factorizes a nonstationary trace into the product of the Fourier 
transform of the source wavelet, the complexvalued time–frequency attenuation function, and 
the forward Gabor transform of the reflectivity. The Gabor deconvolution algorithm derived 
from this spectral factorization attempts to estimate and remove both the source signature and 
the earth’s attenuation effect. The latter two items are combined and is called the propagating 
wavelet. 

The magnitude spectrum of the propagating wavelet is estimated by performing a 
smoothing process to the Gabor magnitude spectrum of the nonstationary seismic trace. The 
phase function is then calculated as in the stationary case by assuming minimum phase. When 
the original Gabor spectrum is divided by this time–frequency spectrum of the propagating 
wavelet, the result is an estimate of the Gabor spectrum of the reflectivity. An inverse Gabor 
transform recovers the timedomain reflectivity (Margrave et al 2011). 

The Gabor deconvolution algorithm combines the essential ideas of the traditional Wiener 
deconvolution and inverse Q filtering. Consequently, the seismic resolution is remarkably 
improved by the Gabor deconvolution, which corrects both wavelet shape and viscoelastic 
attenuation simultaneously. Ahadi and Riahi (2013) applied the Gabor deconvolution to zero-
offset VSP data. The Gabor deconvolution operator was designed using the downgoing 
wavefield and was applied to the upgoing wavefield, and the hyperbolic smoothing was used 
to estimate the propagating wavelet. 

Gabor deconvolution is a fully data-driven processing technology without the need of an 
explicit Q model. In this paper, there are a number of aspects that should be highlighted in 
various implementation stages. First, for the Gabor transform, we use a pair of Gabor 
transforms considering the discrete effect (Wang 2006), which can perfectly reconstruct the 
original signal in numerical form. Second, for smoothing process, we investigate a regularized 
smoothing method as an alternative to the hyperbolic smoothing method, for the magnitude 
spectrum of the propagating wavelet. Finally, synthetic and field seismic data examples 
demonstrate that Gabor deconvolution is able to produce a seismic image with remarkably 
high resolution. 
 
A nonstationary trace model 
 
The stationary convolution model of a seismic trace, stats (t), is expressed in the time domain 
as 

     stats t w t r d  




  ,                                            (1) 

where w  is a seismic wavelet, and r  is a time-domain reflectivity series. Its numerical 
implementation may be illustrated in Figure 1: a seismic trace is a superposition of a source 
wavelet scaled by reflectivity samples, and the superposition process is a matrix-vector 
multiplication, in which the vector is the reflectivity series, and the matrix in this case is made 
of a stationary wavelet at different time.  
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Figure 1. A depiction of stationary convolution: a Toeplitz matrix formed from a source wavelet 
multiplying a vector of reflectivity series. The resultant trace is a stationary superposition of a source 
wavelet scaled by reflectivity samples at different times. 
 
 

When the “wavelet” put in the matrix is nonstationary, it is referred to as an nonstationary 
trace model. The nonstationary wavelet is a propagating wavelet, which includes the source 
signature and the nonstationary effect of dissipation described by a Q model. The impulsive 
effect of the attenuation can be modeled by 

       2, if t
Qs t f r e df d    

 


 

   .                                   (2) 

If denoting the inner integral over the frequency as 

     2, , if ta t f e df    






   ,                                      (3) 

equation (2) can be written as 

     ,Qs t a t r d   




  .                                            (4) 

In matrix-vector form, it is 

Ars Q .                                                          (5) 

where A  is a non-Toeplitz matrix representing  ,a t  , and r  is a vector containing the 
normal-incidence reflection coefficients at two-way traveltimes. This is a nonstationary 
convolution model of an impulse series (Margrave, 1998). 

When applying a general source signature with a stationary convolution to Qs , it generates 
a seismic trace, as 

WArs  ,                                                           (6) 

where W is a Toeplitz matrix formed with w(t), and s is the vector of  seismic samples. If set  
WAW Q  a seismic trace is the product of this nonstationary matrix QW  with the 

reflectivity vector r :  

rWs Q                                                                   (7) 

In the non-absorptive limit ,Q  A  may be reduced to an identity matrix and .WAW Q  
The numerical computation of equation (7) for a nonstationary seismogram is depicted in 

Figure 2. The essential distinction between Figure 1 and Figure 2 is that the matrix in the 
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latter shows a wavelet that is continually evolving according to the attenuation model, instead 
of an unchanging wavelet. 

 
 

 
Figure 2. A depiction of nonstationary convolution. In the matrix-vector product, the matrix does not 
possess Toeplitz symmetry. Each column of the matrix contains the source waveform modified by the 
attenuation process for a traveltime equal to the column time. 
 
 

The constant-Q attenuation function (Kjartansson, 1979) is 
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where Q is a variable of time  , and H (.) denotes the Hilbert transform over frequency f at 
any constant  . For a layered medium, where Q takes a different value in each layer, the average Q 

is defined (Wang 2004) by 
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where k  and kQ  are the interval traveltime and interval Q, respectively, at the kth layer, and τ is the 

total traveltime. 
 
Gabor deconvolution 
 
Performing Gabor transform to the nonstationary trace model (equation 6) produces Gabor 
spectrum as 

       , , ,g gS f W f A f R f   ,                                       (10) 

where  W f  is the Fourier transform of the source wavelet,  ,A f is the attenuation 
function, and  ,gR f  is the forward Gabor transform of the reflectivity series. For fixed  , 
since Gabor transform is just a Fourier transform (Appendix), equation (10) is a temporally 
localized version of the stationary convolution model. Gabor deconvolution in the Gabor 
(time-frequency) domain is written as 

     , , ,g gR f S f D f   ,                                           (11) 

where  ,D f  is the Gabor deconvolution operator presented in time-frequency domain. 
Comparing (10) and (11), we see that D(τ, f) = [W( f )A(τ, f )]−1. 

The operator  ,D f  is generated as the following.  
First, preforming a smoothing process over the Gabor spectrum of the nonstationary 
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seismic trace to estimate the magnitude spectrum, est|| QW , of the propagating wavelet. Then, 
assuming both the source wavelet and the attenuation process be minimum phased, the phase 
spectrum  , f   can be determined by the Hilbert transform of the natural logarithm of the 
amplitude spectrum over frequency f  at constant   as 
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where max|| QW  is the maximum of est|| QW .  
The Gabor deconvolution operator is given as (Margrave et al., 2011) 
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where   is a small, dimensionless stabilization constant, which is related to the noise level as 
well. To set a smaller value for the stabilization constant, random noise attenuation may be 
performed prior to Gabor deconvolution. 

Finally, an inverse Gabor transform to  ,gR f  recovers the time-domain reflectivity 
series. For an accurate inverse Gabor transform, please refer to the Appendix. 

The major steps of the Gabor deconvolution algorithm are graphically displayed in Figure 
3. In the Gabor magnitude spectrum ( , )gS f  of an attenuated trace, the progressive decay of 
spectral content is clearly visible (Figure 3a). Rapid fluctuation in the spectrum is due to the 
white reflectivity. A smoothing process to ( , )gS f  makes an approximation to a spectrum of 
the propagating wavelet (Figure 3b). Finally, the estimated Gabor magnitude spectrum of the 
reflectivity series (Figure 3c) is comparable to the true spectrum (Figure 3d). 

 

 
Figure 3. A depiction of the Gabor deconvolution algorithm. In each part, the image is a Gabor 
magnitude spectrum: (a) An attenuated seismic trace. (b) The propagating wavelet estimated by 
smoothing the spectrum (a). (c) Estimated spectrum of the reflectivity series and obtained from Gabor 
deconvolution. (d) The actual spectrum of the reflectivity series. 
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Figure 4. A comparison between the real wavelet spectrum (red curve) and the smoothed spectrum 
(blue curve) at time 1 s, which is marked as a dashed yellow line in figure 3(b). 
 

Figure 4 compares the real wavelet spectrum and the estimated wavelet spectrum at 
traveltime 1 s. This comparison indicates the feasibility of estimating the propagating wavelet 
by smoothing the spectrum. As a field seismic trace is band-limited, Gabor deconvolution is 
not able to recover the low-frequency components (<5 Hz), as shown in figures 3(c) and (d). 
 
Smoothing 
 
In the Gabor transform domain, the spectrum of the reflectivity series is much more rapidly 
varying than that of a propagating wavelet. Hence, the spectrum of the propagating wavelet 
can be estimated by smoothing over the spectrum of a seismic trace. 

Hyperbolic smoothing (Iliescu and Margrave, 2002) is a robust smoothing method. The 
idea is originated from the constant-Q operator in equation (8) that the magnitude is constant 
along hyperbolic curves of f = constant. Taking averages of the Gabor magnitude spectrum 
along such hyperbolic curves, the attenuation effect can be estimated (Wang, 2004). Once the 
attenuation is estimated, the source wavelet can be estimated subsequently by a 2-D boxcar 
smoothing of the spectrum after removing the attenuation (Margrave et al., 2003b, 2011).  

The Gabor deconvolution operator can be determined alternatively by a regularized 
smoothing method. That is, smoothing is implemented as Tikhonov’s regularization. The 
forward operator is set simply to be the identity matrix. The least-squares solution has the 
form (Fomel, 2007) 

  12 T -
m I D D d  ,                                                  (14) 

where d is a “data” vector of time-frequency spectrum of the seismic trace, D is a 
regularization operator, and m denotes the required smooth “model” estimated from the data 
d. Smoothness is controlled by the scaling parameter , and the regularization operator D, 
which can be chosen as a differential operator.  

 
Application examples 
 

We apply the Gabor deconvolution algorithm on both synthetic and field data to improve 
seismic resolution. 

Figure 5 is a constant-Q synthetic data example. Convolving a reflectivity series (figure 
5(a)) with a wavelet generates a synthetic trace, on which a forward Q filter has been applied 
(figure 5(b)). In this example, the wavelet is minimum-phased, with a dominant frequency of 
15 Hz, and Q = 30 in forward Q filtering. Compared with the stationary trace (figure 5(c)), 
the viscoelastic attenuation is more serious, as the time increases. 
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Figure 5. Constant-Q synthetic data example. (a) Band-limited reflectivity and a minimum phase 
source wavelet (red) overlapped. (b) Nonstationary trace generated by convolving the reflectivity with 
the source wavelet, and then applying a forward Q filter (Q = 30). (c) Stationary trace generated by 
only convolving the reflectivity with the source wavelet. (d) The result of inverse Q filtering by Gabor 
transform. (e) The result of Gabor deconvolution using hyperbolic smoothing. ( f ) The result of Gabor 
deconvolution using regularized smoothing. 

 
Figure 6. A comparison between the results of hyperbolic smoothing (a) and regularized smoothing 
(b), applied to the Gabor magnitude spectrum of the nonstationary trace shown in figure 5(b). 

 
 
We perform both inverse Q filtering and Gabor deconvolution to the attenuated trace. The 

result of inverse Q filtering with the exact Q value (figure 5(d)) is comparable to the 
unattenuated trace (figure 5(c)). Two results of Gabor deconvolution using hyperbolic 
smoothing and regularized smoothing, shown in figures 5(e) and ( f ) respectively, have very 
little difference in between. This is because smoothed spectra of hyperbolic smoothing and 
regularized smoothing are comparable (figure 6). However, the result of regularized 
smoothing is more reasonable than that of hyperbolic smoothing, as there are no hyperbolic 
trails and it seems more physical in the very early time. 

The displays in figures 6(a) and (b) also show different scale, corresponding to different 
smoothing methods. Therefore, an energy balancing between the input trace and the Gabor 
deconvolution result is needed. 
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Figure 7. Variable-Q synthetic data example. (a) Band-limited reflectivity and a minimum phase 
source wavelet (red) overlapped shown the same as in figure 5(b). (b) Nonstationary trace generated by 
convolving the reflectivity with the source wavelet, and then applying a forward Q filter determined by 
the variable-Q model in table 1. (c) Stationary trace generated by only convolving the reflectivity with 
the source wavelet shown the same as in figures 5(c). (d) The result of inverse Q filtering by Gabor 
transform. (e) The result of Gabor deconvolution using hyperbolic smoothing. ( f ) The result of Gabor 
deconvolution using regularized smoothing. 

 

 
Figure 8. A comparison between the results of hyperbolic smoothing (a) and regularized smoothing (b), 
applying to the Gabor magnitude spectrum of the nonstationary trace shown in figure 7(b). 

 
 
Figure 7 is a variable-Q synthetic data example. The forward Q filter is designed by a 

variable-Q model listed in table 1. The average-Q could be continuous as its definition 
(equation (9)) possesses cumulative effect. We perform the same processing procedure to the 
attenuated trace (figure 7(b)), and get similar results to the constant-Q example. The result of 
inverse Q filtering with the interval-Q values (figure 7(d)) only removes the attenuation. The 
two results of Gabor deconvolution using hyperbolic smoothing (figure 7(e)) and regularized 
smoothing (figure 7( f )) are also comparable, due to the similar smoothed spectra (figure 8). 
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Figure 9. Gabor deconvolution applied to prestack seismic data. (a) Prestack record before Gabor 
deconvolution. (b) The result of Gabor deconvolution using hyperbolic smoothing. (c) The result of 
Gabor deconvolution using regularized smoothing. All the parameters in b and c are the same except 
for the smoothing method. 
 

 
Figure 10. A comparison among the amplitude spectra of the same trace shown yellow in Figure 9 
before (red) and after applying Gabor deconvolution using hyperbolic smoothing (green) and 
regularized smoothing (blue). 

 
 
Figure 9(a) is a prestack field seismic record. It is original without muting the direct wave. 

It comes from a 3D land field data set, and the line is far from the source so that there is no 
surface wave. The Gabor deconvolution is applied trace by trace, therefore the lateral 
continuity of the events illustrate that the method is obviously effective, especially for the 
deep time, and it adapts to the large amplitude change immediately following the direct 
arrival. If comparing figures 9(b) and (c), it is found that using the regularized smoothing 
method one can get a little higher resolution than hyperbolic smoothing. 

Figure 10 compares the amplitude spectra of the same trace marked by yellow line in 
figure 9. It confirms that the spectrum of a trace after Gabor deconvolution becomes 
reasonably white. 

We also compare the results of Gabor deconvolution using the two different smoothing 
methods in poststack seismic data. Figure 11(a) is a migration section with a high signal-to-
noise ratio. After applying Gabor deconvolution trace by trace, a desirable seismic image with 
high resolution (figures 11(b) and (c)) is produced. Figures 12(a), (b) and (c) are the zoomed-
in sections of the rectangular regions in figure 11, respectively. The fault in this area is 
preserved and the events in the ovals are improved. 
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Figure 11. Gabor deconvolution applied to poststack seismic data. (a) Migration section before Gabor 
deconvolution. (b) The result of Gabor deconvolution using hyperbolic smoothing. (c) The result of 
Gabor deconvolution using regularized smoothing. All the figures are plotted in the same scale. 
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Figure 12. Zoomed-in sections of the rectangular regions in figure 11. (a) Migration section before 
Gabor deconvolution. (b) The result of Gabor deconvolution using hyperbolic smoothing. (c) The result 
of Gabor deconvolution using regularized smoothing. The ovals indicate the areas of comparison. 
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Figure 13. A comparison among the average amplitude spectra of the seismic sections shown in figure 
9 before (red) and after applying Gabor deconvolution using hyperbolic smoothing (green) and 
regularized smoothing (blue). 

 
 
In figure 13, compared the average amplitude spectra of the seismic sections shown in 

figure 11, Gabor deconvolution recovers all the frequency components that are in principle 
recoverable. In this case, the regularized smoothing method can be an alternative of the 
hyperbolic smoothing method to determine the Gabor deconvolution operator. 

It concludes from this field data example that Gabor deconvolution is a promising tool to 
improve seismic resolution in both prestack and poststack data processing, provided the 
ambient and coherent noises are carefully eliminated in the preprocessing stage. 
 
Discussion 
 
The Gabor deconvolution generates a high-resolution reflectivity series, which has a strong 
correlation with the true reflectivity series. Above all, this has been done without knowing or 
estimating the Q values (Wang 2004). Compared with the inverse Q filtering, Gabor 
deconvolution does not suffer from the instability problem (Wang 2002, 2006). It not only 
eliminates the attenuation effect, but also removes the source wavelet. Therefore, the seismic 
resolution is enhanced remarkably by the Gabor deconvolution. 

When seismic waves travel a certain distance, the amplitude of the high-frequencywave 
component is attenuated to a level below the ambient noise level (30–70 dB). Gabor 
deconvolution or stabilized inverse Q filtering (Wang 2006) does not attempt to recover it by 
using a stabilization factor. In the two synthetic data examples, compared with the true 
reflectivity (figure 5(a) or figure 7(a)), the Gabor deconvolution results (figures 5(e), ( f ) or 
figures 7(e), ( f )) display higher resolution in the upper part (0–2 s) than in the deep parts (2–
4 s) due to problems with operator estimation at high attenuations. 

The Gabor deconvolution can be applied to prestack and poststack data to improve seismic 
resolution. The average Q describes a total apparent effect including intrinsic attenuation and 
stratigraphic filtering. The Gabor deconvolution operator (equation (13)) takes advantage of 
the information from a whole seismic trace. Therefore, the Gabor deconvolution can be 
performed trace by trace and there is no need to deal with the lateral attenuation affect in the 
prestack gather.  

Both Gabor deconvolution and the general wavelet deconvolution assumes that the source 
wavelet is minimum phased and the reflectivity is statistically white. However, the Gabor 
deconvolution extends the stationary deconvolution to nonstationarity which is due to 
attenuation processes. For an attenuated trace, as the wavelet is evolving along the traveltime, 
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the general wavelet deconvolution can be applied after inverse Q filtering or by windowing 
the trace. Nevertheless, it is difficult to estimate the exact Q model from seismic data or the 
windows should be variable in order to accommodate the time-variant seismic wavelet. The 
Gabor deconvolution algorithm combines the stationary deconvolution and inverse Q filtering 
together to eliminate the propagating wavelet. Apparently, the result of Gabor deconvolution 
is superior to that of a general wavelet deconvolution (Margrave et al 2011, Ahadi and Riahi 
2013). 

In Gabor deconvolution, minimum-phase assumption about source wavelet and its 
attenuation process ensure that the phase spectrum of the propagating wavelet can be 
determined by the smoothed amplitude spectrum. For the real seismic data, it does not always 
satisfy the minimum-phase assumption due to the noise influence, but the physical attenuation 
is always minimum phased. We may only estimate the average-Q attenuation by hyperbolic 
smoothing, and design the attenuation compensation operator instead of Gabor deconvolution 
operator, then Gabor deconvolution yields to an attenuation compensation method that deals 
with the minimum-phased attenuation. 

Residual nonstationary phase-rotation remaining after Gabor deconvolution is caused by 
discrete computation of the Hilbert transform (equation 11). This remaining phase-rotation 
can be corrected by simply resampling the trace into a smaller sample rate if the attenuation is 
weak (Montana, 2005), or nonstationary phase estimation using regularized local kurtosis 
maximization (van der Baan and Fomel, 2009) or local similarity with the envelop (Fomel 
and van der Baan, 2010). 
 
Conclusions 
 
This paper demonstrates the following two advantageous aspects: 

(1) The Gabor deconvolution is a fully data-driven method for reflectivity estimation. It yields 
a high-resolution estimate of the reflectivity, even for a strong attenuation, but without 
knowing or estimating the Q values.  

(2) Compared with the hyperbolic smoothing method, the regularized smoothing method can 
be an alternative or even better to determine the Gabor deconvolution operator. 

However, it should be applied to field seismic data with a high signal-to-noise ratio either in 
the prestack or poststack domain. 
 
Appendix A: Gabor transform pair 
 
For the sake of completeness, we summarize the Gabor transform pair we used in this paper. 
The forward Gabor transform of a signal  s t  is defined as (Gabor, 1946) 

      2, ift
gS f s t h t e dt 






  ,                                    (A.1) 

where  h t  is the Gabor analysis window,   is the location f tohe window centre and f  is 
the frequency. The forward Gabor transform can be calculated with a fast Fourier transform 
(FFT) of the Gabor slices      ,s t s t h t   , for all possible   locations. 

The Gabor analysis window at the location   is often chosen to be a Gaussian window 

 
 2

21
t

Th t e
T









  ,                                             (A.2) 

where T  is referred to as the half width of the Gaussian window. The Gaussian window is 
symmetric in time and frequency and uniquely minimizes the quadratic time-frequency 
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moment about a time-frequency point (Janssen, 1991). Furthermore, there are no side lobes in 
a Gaussian function which means that a local maximum in the absolute value of the Gabor 
transform is not an artefact. 

In order to reconstruct the time-domain signal  s t  from the forward Gabor transform 
spectrum  ,gS f , the inverse Gabor transform is defined as (Wang, 2006, 2008) 

      2, ift
gs t t S f e dfd  

 

 

   ,                                   (A.3) 

where  t  is the Gabor synthesis window expressed in terms of Gabor analysis window  h t  
as 

   
1

t h t d  




 
  
 
 .                                       (A.4) 

The inner integral in equation (A.3) is an inverse FFT with respect to frequency, which 
reproduces the Gabor slice. An advantage of this definition is that it can mitigate the potential 
numerical errors caused by digitization on the Gabor analysis window and the edge effect 
when moving the analysis window towards both ends of the signal. 

As a test of this scheme of Gabor transform, the seismic signal after forward and inverse 
Gabor transform is compared to the original signal in Figure A.1. The differences, due to 
discrete implementation and the finite length of Gaussian windows in use, are small enough 
for inverse Q filtering. 
 

 

Figure A.1. The result of a forward and inverse Gabor transform (equation A.1 and A.3) is compared 
with the original signal. The differences are small enough for Gabor deconvolution. 
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