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Abstract

We consider an evolutionary quasi-variational inequality arising in a simplified model of a
network of lakes and rivers forming upon a given relief of the Earth. We regularize this model
and derive its finite element approximation, in which the water flow is confined to the mesh
edges. The primal and mixed formulations of the discretized quasi-variational inequality are
used in the numerical simulations. The corresponding steady state problems are also analyzed.
Finally, we compare this approach to the lattice algorithms employed in geographic information
systems for the automatic extraction of river networks from digital elevation data, and derive
similar algorithms for our approximation.
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Keywords: Quasi-variational inequality; primal and mixed formulations; numerical approxima-
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1 Introduction

During the last three decades a variety of methods have been proposed for the automatic extraction
of drainage networks from digital elevation datasets called digital elevation models or DEMs (see,
e.g., the reviews in [21, 30, 31, 18, 15, 27] and the references therein). Usually, although not always,
the employed DEM carries relief elevations at the points of a regular equidistant grid (the raster
format) and at the core of most routing methods is the basic D8 (deterministic eight-neighbor)
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algorithm. In this algorithm, the flow direction from each cell (grid point) is determined by the
comparison between the cell’s elevation and the elevations of its eight adjacent neighbors: the flow
direction is the direction of the neighbor with the maximal rate of the elevation descent. The flow
direction is, however, not determined by D8 in pits (the local minima of the relief) and also in flat
horizontal areas. These features of DEM-represented reliefs are the main obstacle to flow-routing
and extracting the realistic drainage (river channel) networks.

Typically, pits are considered spurious and, indeed, it is often the case for low resolution DEMs.
Unless a depression is assumed to represent a real closed lake, its elevations are most often raised
to the level of the lowest outflow. This, however, leads to the appearance of a flat area. Furthermore,
although exactly flat earth surfaces are not typical, the raster DEMs of territories without well-
developed topographic features, interpolated from low-vertical-resolution digitized level contours
(vector format), do contain many such areas. Heuristic iterative algorithms for drainage enforce-
ment in flat regions include creating small artificial gradients, directing the flow towards the lowest
watershed cell, etc. (see, e.g., [21, 30, 18, 16, 13]). These algorithms have been realized as efficient
computational procedures in various well-developed geographic information systems (GIS) and, de-
spite the admitted difficulty of flow routing in low-relief regions, are usually able to extract useful
information about the drainage network from a DEM.

In this work we consider a continuous analogue of flow routing models, the evolutionary quasi-
variational inequality (QVI) model [23], whose primal and mixed formulations determine, respec-
tively, the lakes and the net of drainage channels forming upon a given relief. Our aim is to inves-
tigate the relation of this continuous model to the basic cellular models successfully employed for
river network delineation, and the subsequent analysis, in various geographic information systems:
we arrive at such a model in several approximation/discretization steps. We also study and compute
the arising discrete problems.

Physically, our continuous model is very simple. Rain water is discharged from a distributed,
usually uniform, source, flows downhill, and is collected into lakes at local depressions of the relief.
As a lake overflows, it passes additional water along a one-dimensional river, possibly, to another
lake below. The water can also leave the system through the open boundary.

Mathematically, however, the arising variational problem is complicated. First, the model [23] is
a singular limit of the QVI describing sandpile surface evolution and, in transition to this limit, the
material (water) flux becomes undetermined in the lakes. Second, the set of admissible functions in
this QVI is determined by a discontinuous equilibrium constraint. Third, over the hill slopes the flux
is singular: water, flowing towards the steepest descent, gathers into rivers, so the flux is a vectorial
measure with a partially one-dimensional support. Finally, the problem can be ill-posed: in some
cases, a slight local change of the relief can, in this model, lead to a significant change of the river
network. An avulsion, a sudden abandonment of a river channel and forming a new watercourse,
can sometimes be caused by a small reconstruction of a real landscape too. In practice, however,
this only means the DEM resolution must be sufficiently high to make the river valleys noticeable.

To deal with the first complication, we replace the limiting continuous model for water by the
sand model with a positive, but very small, material angle of repose. In such a model the flux is
expected to be uniquely determined, while the lakes are represented by sandpiles whose slopes, al-
though not exactly horizontal, are only slightly inclined. This also leads to a natural small-artificial-
gradient solution to flow-routing in flat areas, automatically enforcing flows towards the outlets and
away from higher elevation areas, which is the aim of [13] and some other lattice algorithms.

Following [5], we approximate the discontinuous equilibrium constraint by a continuous one;
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and we refer to [5] also for a proof of existence of a solution to the mixed formulation of this
regularized QVI problem. However, numerical approximation of the flux variable based in that
work on the lowest order Raviart–Thomas finite element is inconvenient for the representation of
river networks, because the singular one-dimensional measures (rivers) become smeared. It would
be impractical to overcome smearing by adapting the finite element mesh to a dense river network
as, e.g., in a somewhat similar optimal transportation problem, where only a few transport rays have
had to be approximated, see Figure 2 in [4]. To represent river networks better, here we concurrently
approximate the free surface by continuous piecewise linear finite elements; and the water flux by
vectorial measures having support on the union of all element edges, with the vector measure being
constant on each element edge and in a direction parallel to that edge. Such a flux approximation
prevents numerical smearing of singular fluxes.

Numerically, the regularized and discretized QVI problem is solved first using an augmented
Lagrangian method with splitting. Then, completing our reduction to a basic lattice model, we
employ efficient lake filling, flow routing and flux accumulation algorithms, typical of the models
used in GIS, for our discretization. This allows one to solve large scale steady state problems of
practical interest using high resolution DEMs.

Finally, we note that a related continuous lake-and-river model, obtained as a singular limit of a
nonlinear diffusion equation, was studied in [7].

The outline of this paper is as follows. As stated above, in this paper we employ a lake-and-river
model derived as a limit of the QVI model for sand surface evolution [23, 22, 24]. In the next section,
we briefly recall this sand evolution model, and its regularized version [5]. In Section 3, we introduce
our lake-and-river evolution model, and its finite element approximation. The corresponding steady
state problem is considered in Section 4. In Section 5, we state our numerical algorithms for solving
the QVI and illustrate properties of the discretization employed by two numerical examples with
artificial landscapes. Finally, in Section 6 we introduce, for our approximation, lake filling, flow
routing and flux accumulation algorithms and solve the steady state lake-and-river problem for a
real DEM of the Ŕeunion island using a cellular-model-like approach.

2 A model for sand surface evolution

Let the initial support surfacew0 be defined in a bounded domainΩ ⊂ R2 with a Lipschitz boundary
∂Ω. We assume thatw0 belongs toW 1,∞

0 (Ω). Suppose sand is discharged onto this surface from a
distributed source with a given non-negative densityf(x, t) ∈ L2(ΩT ), whereΩT := Ω × (0, T ).
The evolving surface of the growing pilew(x, t) satisfies the material balance equation

∂tw + ∇ . q = f in ΩT (2.1)

with the initial conditionw(∙, 0) = w0(∙). Hereq(x, t) is the horizontal projection of the flux of sand
pouring down the pile surface.

The surfacew can partly coincide with the supportw0, and should be above the support other-
wise. Whereverw(x, t) > w0(x) the equilibrium condition is|∇w(x, t)| ≤ k0, wherek0 = tan ζ ∈
R>0 andζ is the material angle of repose. In the coincidence set{(x, t) ∈ ΩT : w(x, t) = w0(x)}
this equilibrium condition is not applied, as the rigid support can be steeper. Therefore the equilib-
rium condition for a growing sandpile in this model is

|∇w| ≤ M(w) in ΩT , (2.2a)
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where for anyϕ ∈ C(Ω)

M(ϕ)(x) :=

{
k0 ϕ(x) > w0(x),
max{k0, |∇w0(x)|} otherwise.

(2.2b)

The surface flow of sand is forbidden wherever the surface is not steep enough, i.e.,q = 0 if
|∇w| < k0. In addition, flow is allowed only in the steepest descent direction,−∇w, so we have
that−∇w . q = |∇w| |q|. As q can be nonzero only if the slope is critical, i.e.,|∇w| = M(w), it
follows that

−∇w . q = M(w) |q| in ΩT . (2.3)

Finally, we assume that material can leave the system freely through the domain boundary, so we
setw = 0 on∂Ω. Our sand model consists of the mass balance equation (2.1) supplemented by the
conditions (2.2a,b), (2.3) and the stated boundary and initial conditions.

A more convenient form is a variational formulation of this model, which we now derive. The
flux q can be excluded, if only the free surfacew is required to be found. Let us define, for any
η ∈ C(Ω), the closed convex non-empty set

K(η) :=
{
ϕ ∈ W 1,∞

0 (Ω) : |∇ϕ| ≤ M(η) a.e. inΩ
}

. (2.4)

SinceM(w) |q| + ∇ϕ . q ≥ 0 for anyϕ ∈ K(w), we deduce from (2.3) that∇(ϕ − w) . q ≥ 0 a.e.
in Ω. Furthermore, on noting (2.2a) and thatw = 0 on∂Ω, we have thatw ∈ K(w). Hence, for a.a.
t ∈ (0, T ) ∫

Ω

∇ . q (w − ϕ) dx ≥ 0 ∀ ϕ ∈ K(w)

and, making use of equation (2.1), we arrive at an evolutionary QVI:
Findw(x, t) such thatw(∙, 0) = w0(∙) and for a.a.t ∈ (0, T ) w ∈ K(w) solves

∫

Ω

(∂tw − f)(ϕ − w) dx ≥ 0 ∀ϕ ∈ K(w). (2.5)

This formulation, written solely for the pile surface, we will call the primal problem. If|∇w0| ≤
k0 a.e. inΩ, then problem (2.5) becomes a variational inequality (K(w) ≡ K) and existence of
a unique solution,w ∈ L∞(0, T ; K) ∩ W 1,2(0, T ; L2(Ω)), has been shown in [24, 2]. The dual
variable, the surface fluxq, can in this case be sought in the space of vector-valued bounded Radon
measures with anL2 divergence. Numerical schemes based upon dual variational formulations writ-
ten solely in terms of this variable, [3, 8], enable one to compute approximations both to the evolving
surfacew and the fluxq.

The QVI case is much more complicated. In this case it is less convenient to use a dual for-
mulation of the QVI (2.5) in terms of the surface flux alone. To derive a variational formulation
written for both variables,w and q, in the QVI case, we note that (2.2a) holds if and only if
M(w)|ψ| + ∇w .ψ ≥ 0 a.e. inΩT for any test fieldψ. Replacing for a.a.t ∈ (0, T ) the relations
(2.2a) and (2.3) by the equivalent variational inequality,

∫

Ω

[
M(w) (|ψ| − |q|) − w∇ . (ψ − q)

]
dx ≥ 0 (2.6)

for any sufficiently smooth test fieldψ, we obtain the mixed variational formulation (2.1) and (2.6).
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Existence of a solution for a weak formulation of a regularized version of this problem has
recently been proved (under some additional assumptions on the domain and support) in [5]. Here
we also use such a regularization, and consider the sand surface evolution model with a continuous
operatorMε : C(Ω) → C(Ω), replacing the operatorM in the equilibrium constraint (2.2a). For
a smallε > 0, we approximate the initial dataw0 ∈ W 1,∞

0 (Ω) by w0,ε ∈ W 1,∞
0 (Ω)

⋂
C1(Ω), and

define for anyϕ ∈ C(Ω)

Mε(ϕ)(x) :=






k0 ϕ(x) ≥ w0,ε(x) + ε,

k1(x) + (k0 − k1(x))
(

ϕ(x)−w0,ε(x)

ε

)
ϕ(x) ∈ [w0,ε(x), w0,ε(x) + ε],

k1(x) := max{k0, |∇w0,ε(x)|} ϕ(x) ≤ w0,ε(x)

(2.7)

in order to replace the jump ofM at ϕ = w0 in (2.2b) by a continuous transition over an interval
of the lengthε. Omitting the details, see [5], we only note that there exists a weak solution{w, q}
to the regularized variational problem (2.1) and (2.6), withM replaced byMε, such thatw is a
weak solution to the corresponding regularized version of the primal QVI (2.5). We note that the
regularization ofM is useful also for the numerical solution of these problems. We remark also that
existence ofw, a weak solution to this regularized version of (2.5), follows also from the recent
work of Rodrigues and Santos [26].

Finally, as is noted in [5], to prevent an uncontrollable material influx into the domainΩ through
its boundary∂Ω, in the QVI case we should assume thatn .∇w0 < k0 (or n .∇w0,ε < k0) on
∂Ω, wheren is the outward unit normal to∂Ω. The boundary conditionw = 0 on ∂Ω and that
solutions to (2.5) are non-decreasing in time, see [24, 5], then ensure that there is no influx through
the boundary also fort > 0.

3 Lakes and rivers: a model and its approximation

Now letf ∈ L2(ΩT ) be the precipitation rate, and rainwater, regarded as sand with zero repose angle
(k0 = 0), be flowing downhill in the steepest descent directions and accumulating into lakes at local
depressions of the earth’s relief. We assume that water neither penetrates the soil nor evaporates.
Then both the equilibrium condition (2.2a,b) and the balance equation (2.1) remain valid.

Contrary to sandpiles (k0 > 0), the flow in the lakes is not confined to a thin surface layer and
its direction is not determined as the steepest descent direction. Nevertheless, lake hydrodynamics
does not affect the free surface, which is either the horizontal lake surface,∇w = 0 for w > w0,
or coincides with the earth’s relief,w = w0. Although the fluxq in the lakes is not determined
by our model uniquely, the degenerate (k0 = 0) primal QVI (2.5) still describes the free surface
evolution, see [23]. This inequality (or its regularized version) can be used to find the lake areas. It
is, however, the water flux in the coincidence setw = w0, which is usually the main interest. The
drainage (river) network is defined as the subset ofΩ in which |q| ≥ q0, whereq0 is the desired
resolution of a hydrological map.

Since the water flux in the lakes is not unique, it is convenient to regularize the problem further
and replacek0 = 0 by a smallk0 > 0. Lakes in this case become piles with a negligibly small slope
incline. This regularization induces small artificial gradients also in flat surface areas and, therefore,
leads there to a natural way of flux routing.

To calculate the water flux one could approximate the regularized mixed formulation (2.1) and
(2.6), withM replaced byMε, using the divergence conforming Raviart–Thomas elements of the
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lowest order for the fluxq and piecewise constants for the free surfacew (see [5]). Such an ap-
proach, however, would lead to a “smeared” representation of the singular water flux in the rivers,
inhibiting the delineation of rivers, and hence the derivation of hydrological maps. This makes this
representation inconvenient also for the analysis of river basins and for computing hydrological
characteristics of drainage networks. In this work we present a hydrology-oriented alternative: a
discrete approximation of the regularized model (2.1) and (2.6) in which rainwater flows through a
network of drainage channels.

Let Ωh be a polygonal approximation ofΩ, andT h be a regular partitioning ofΩh into triangles
σ so that

Ωh =
⋃

σ∈T h

σ with h := max
σ∈T h

diam(σ).

We assume that the vertices ofT h lying on ∂Ωh, the boundary ofΩh, also lie on∂Ω. Let Vh and
Eh be the sets of vertices and oriented edges ofT h, respectively. The edgeek,j ∈ Eh is determined
by two neighbouring vertices,vk, vj ∈ Vh and is oriented fromvk to vj. In addition,ie denotes the
unit vector in the direction of edgee ∈ Eh. We defineVh

I := Vh \ Vh
B andEh

I := Eh \ Eh
B, where the

subscriptsB andI denote “boundary” and “internal”, respectively. So an edgee ∈ Eh
B is such that

e ⊂ ∂Ωh. Let C0(Ω
h) denote continuous functions onΩh, which vanish on the boundary. We then

set

Uh
0 :=

{
ϕ ∈ C0(Ω

h) : ϕ|σ is linear∀σ ∈ T h
}

,

and V h := {ψ ∈ [M(Ωh)]2 : ψ =
∑

e∈Eh

ψe ie dH1(e)}, (3.1)

whereψe ∈ R, dH1(e) is the one-dimensional Hausdorff measure supported on edgee, andM(Ωh)
is the Banach space of bounded Radon measures; that is,M(Ωh) := [C(Ωh)]∗, the dual ofC(Ωh).
The duality pairing betweenM(Ωh) andC(Ωh) is denoted by〈∙, ∙〉, and is naturally extended to
vectors so that

〈ψ, φ〉 =
∑

e∈Eh

ψe ie .

∫

e

φ de ∀ψ ∈ V h, φ ∈ [C(Ωh)]2. (3.2)

We denote by(∙, ∙) the standard inner product onΩh. We introduce also for allϕ, η ∈ Uh
0

(ϕ, η)h :=
∑

σ∈T h

(ϕ, η)h
σ, where (ϕ, η)h

σ := 1
3
|σ|

3∑

j=1

ϕ(v
(σ)
j ) η(v

(σ)
j ) (3.3)

with |σ| and{v(σ)
j }3

j=1 being the area and vertices ofσ.
Let W 0 ∈ Uh

0 be such thatW 0(vk) = w0(vk) for all vk ∈ Vh, wherew0 ∈ W 1,∞
0 (Ω) is the

earth’s relief onΩ. Below, in some cases it will be convenient to allow for some water initially
upon the support surfaceW 0, so we assume the initial conditionW 1 ∈ Uh

0 is given and satisfies
W 1 ≥ W 0.

The continuous piecewise linear representation of the relief, employed in our approximation, is
called a “triangulated irregular network” format (TIN) in the geographic literature, see, e.g., [17].
TIN DEMs can use different resolution in different parts of the domain, and so ensure accurate
surface representation using less sampling points than the raster DEMs. The disadvantage of using
such a format though is the need for less efficient and more complicated flow routing algorithms.
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However, since, as in landscape evolution models [6, 25], the flow in our model isa priori confined
to the mesh edges, simple but efficient algorithms for lake filling, flow routing and flux accumulation
can be proposed, see Section 6 for details.

On partitioning[0, T ] into possibly variable time stepsτn := tn − tn−1, n = 2, . . . , N , and
definingτ := maxn=2,...,N τn and

fn(∙) :=
1

τn

∫ tn

tn−1

f(∙, t) dt ∈ L2(Ω) n = 2, . . . , N ;

we then consider, as an approximation to (2.1) and (2.6) for0 < k0 � 1, the finite-dimensional
problem:

(Q) Forn = 2, . . . , N , find W n ∈ Uh
0 andQn ∈ V h such that

(
W n − W n−1

τn

, ϕ

)h

− 〈Qn,∇ϕ〉 =
(
f̃n, ϕ

)
∀ϕ ∈ Uh

0 , (3.4a)

〈|ψ| − |Qn|,Mh
ε (W n)〉 + 〈ψ − Qn,∇W n〉 ≥ 0 ∀ψ ∈ V h, (3.4b)

wheref̃n ∈ L2(Ωh) is a nonnegative extension offn from Ω to Ωh, if Ωh 6⊆ Ω. In addition, the
approximationMh

ε of the operatorMε, which is a constant(≥ k0) on any edge, will be defined
below. Although∇ϕ does not belong to[C(Ωh)]2, 〈ψ,∇ϕ〉 is well-defined for anyψ ∈ V h and any
ϕ ∈ Uh

0 , because the scalar productie .∇ϕ is continuous across any edgee ∈ Eh
I .

Let χj ∈ Uh
0 be the standard hat basis function associated with vertexvj ∈ Vh

I ; that is,χj(vk) =
δjk for all vk ∈ Vh

I . Then for anyϕ ∈ Uh
0 , we can write

ϕ(x) =
∑

vj∈V
h
I

ϕj χj(x), where ϕj = ϕ(vj). (3.5)

For anyψ ∈ V h, it follows from (3.2) that

〈ψ,∇χj〉 =
∑

e=ek,j∈Eh
I

ψe −
∑

e=ej,k∈Eh
I

ψe =
∑

ek,j∈Eh
I

ψek,j
−
∑

ej,k∈Eh
I

ψej,k
. (3.6)

On setting

sj := (χj , χj)
h =

∫

Ωh

χj dx > 0 and F n
j :=

1

sj

∫

Ωh

f̃n χj dx ≥ 0 ∀vj ∈ Vh
I , (3.7)

and noting (3.5) and (3.6), we can rewrite (3.4a) as

sj

W n
j − W n−1

j

τn

+
∑

ej,k∈Eh
I

Qn
ej,k

−
∑

ek,j∈Eh
I

Qn
ek,j

= sj F n
j ∀vj ∈ Vh

I . (3.8a)

Choosingψ in (3.4b) such thatψe = Qn
e for all edgese except one edgeek,j ∈ Eh we obtain, on

noting (3.2) and (3.6), that

(|ψ| − |Qn
ek,j

|) |ek,j |M
h
ε (W n)|ek,j

+ (ψ − Qn
ek,j

) (W n
j − W n

k ) ≥ 0 ∀ψ ∈ R, ∀ek,j ∈ Eh,
(3.8b)
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where|e| is the length of edgee. Choosingψ = 0 andψ = 2 Qn
ek,j

in (3.8b) yields that it is equivalent
to

|Qn
ek,j

| |ek,j |M
h
ε (W n)|ek,j

+ Qn
ek,j

(W n
j − W n

k ) = 0

and |ψ| |ek,j |M
h
ε (W n)|ek,j

+ ψ (W n
j − W n

k ) ≥ 0 ∀ψ ∈ R, ∀ek,j ∈ Eh.

(3.9)

It remains to define our edge approximationMh
ε |ek,j

, ek,j ∈ Eh, of the operatorMε.
In the regularized continuous QVI problem the inequality|∇w| ≤ Mε(w) holds a.e.; and flow

is only allowed where|∇w| = Mε(w), and is in the direction of steepest descent. We would like a
similar behaviour for our network approximation (3.8a,b). However, in the network case the steepest
slope of surface descent along the edges generally differs from the steepest slope of ascent along
the edges from the same vertex. Only the slope of descent is important, and we will allow a nonzero
edge fluxQn

e , e ∈ Eh, only if all of the following conditions hold:

(i) from the vertex of edgee with a higherW n value;

(ii) if for this vertex the edgee is the edge of steepest descent; (3.10)

(iii) if the surface slope along this edge is “critical”, i.e.,|∂ie
W n| = Mh

ε (W n) on e,

where∂ie
W n := ie .∇W n andMh

ε |e is still to be defined.
If a solution exists to (Q), (3.4a,b)≡ (3.8a,b), then, on noting (3.9), it follows that

|∂ie
W n| ≤ Mh

ε (W n) on e ∀e ∈ Eh, n = 2, . . . , N.

Furthermore, the fluxQn
e can be nonzero only if|∂ie

W n| = Mh
ε (W n)|e and, in this case,Qn

e is
positive (negative) if the flow is in the directionie (−ie). Taking this into account, we define our
approximationMh

ε |e for all edgese ∈ Eh in two steps.
First, we define for anyϕ ∈ Uh

0 the steepest edge descent at each vertexvk ∈ Vh as

∂h
↓ϕ(vk) := max

{
ϕk − ϕj

|e(k, j)|
: e(k, j) = ek,j ∈ Eh or e(k, j) = ej,k ∈ Eh

}

. (3.11)

Then similarly to (2.7), but usingW 0 instead ofw0,ε and replacing|∇w0,ε(vk)| by ∂h
↓W 0(vk), we

compute, for allvk ∈ Vh, thevertexvalue

Mh
ε (ϕ)(vk) =






k0 ϕk ≥ W 0
k + ε,

k1(vk) + (k0 − k1(vk))
(

ϕk−W 0
k

ε

)
ϕk ∈ [W 0

k ,W 0
k + ε],

k1(vk) := max{k0, ∂
h
↓W 0(vk)} ϕk ≤ W 0

k .

(3.12)

Second, for each edgeek,j ∈ Eh, we set theedgevalue

Mh
ε (ϕ)|ek,j

=

{
Mh

ε (ϕ)(vk) ϕk ≥ ϕj ,

Mh
ε (ϕ)(vj) otherwise.

(3.13)

We note that for anyϕ, η ∈ Uh
0 and anyvk ∈ Vh that

0 < k0 ≤ Mh
ε (ϕ)(vk) ≤ Mh

ε (η)(vk) if ηk ≤ ϕk. (3.14)
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Our discrete network model (Q), (3.4a,b)≡ (3.8a,b), is now fully defined and satisfies the desired
conditions (3.10) above. It follows from the equation in (3.9) asW n ∈ Uh

0 , (3.13) and (3.14) that

Qn

e
= 0 ∀e ∈ Eh

B, n = 2, . . . , N. (3.15)

Associated with (Q) is the following discrete analogue of the primal QVI (2.5):
(P) Forn = 2, . . . , N , find W n ∈ Kh(W n) such that

(
W n − W n−1

τn

, ϕ − W n

)h

≥
(
f̃n, ϕ − W n

)
∀ϕ ∈ Kh(W n), (3.16)

where for anyη ∈ Uh
0

Kh(η) :=
{
ϕ ∈ Uh

0 : ∂h
↓ϕ(vj) ≤ Mh

ε (η)(vj) ∀vj ∈ Vh
}

(3.17)

is a closed convex set, and is non-empty asϕ0 ≡ 0 ∈ Kh(η). We note thatW 0 ∈ Kh(W 0).
Adopting the notation (3.5) and (3.7), we can rewrite (3.16) as

∑

vj∈V
h
I

sj

(
W n

j − W n−1
j

τn

− F n
j

)

(ϕj − W n
j ) ≥ 0 ∀ϕ ∈ Kh(W n). (3.18)

For future developments, we note that the inequality constraints∂h
↓ϕ(vj) ≤ Mh

ε (η)(vj) for all
vj ∈ Vh appearing in the definition (3.17) are equivalent to the edge set of inequality pairs:

ϕ` − ϕk ≤ |ek,`|M
h
ε (η)(v`) and ϕk − ϕ` ≤ |ek,`|M

h
ε (η)(vk) ∀ek,` ∈ Eh

I . (3.19)

We note that the constraints in (3.19) are automatically satisfied forek,` ∈ Eh
B, asϕ ∈ Uh

0 .
In the following theorems and lemmas we prove existence of a solution to the primal QVI (P)

and the mixed formulation (Q), and show their equivalence. First we prove a useful lemma.

Lemma 3.1. (i) For anyη ∈ Uh
0 we note that

Kh(η) ⊆ Bh := {ϕ ∈ Uh
0 : |ϕ| ≤ Dh in Ωh}, (3.20a)

whereDh ∈ Uh
0 is such that

Dh
j = dh(vj) max

{
k0, |∇W 0|0,∞,Ωh

}
∀vj ∈ Vh (3.20b)

with dh(vj) being the length of the shortest edge path fromvj ∈ Vh to ∂Ωh.

(ii) Let η(i) ∈ Kh(η(i)), i = 1, 2. Thenη? ∈ Uh
0 such that

η?
j = max{η(1)

j , η
(2)
j } ∀vj ∈ Vh ⇒ η? ∈ Kh(η?) ⊆ Kh(η(i)) i = 1, 2. (3.21)

Proof. (i) The desired result (3.20a,b) follows immediately from (3.17), (3.11) and (3.12).

(ii) Similarly, on noting (3.11) and (3.12), we have for anyvj ∈ Vh andi = 1 or 2 that

η?
j = η

(i)
j ⇒ ∂h

↓ η?(vj) ≤ ∂h
↓ η(i)(vj) ≤ Mh

ε (η(i))(vj) = Mh
ε (η?)(vj). (3.22)

Henceη? ∈ Kh(η?). Then noting thatη∗ ≥ η(i), i = 1, 2, (3.14) and (3.17) yield the desired result
(3.21).
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Theorem 3.2. Let W 0 ≤ W 1 ∈ Kh(W 1). Then there exists a solution{W n}N
n=2 to (P), (3.16)≡

(3.18), andW 1 ≤ W 2 ≤ ... ≤ WN .

Proof. To prove existence of a solution to (P), we will apply the Brouwer fixed point theorem. We
introduce the mappingΥ : Uh

0 → Uh
0 such that givenη ∈ Uh

0 , Υη ∈ Kh(η) is the unique solution
of the convex minimization problem

min
ϕ∈Kh(η)

Gn(ϕ), (3.23)

where the quadratic functional

Gn(ϕ) :=
1

2τn

(ϕ, ϕ)h −
1

τn

(W n−1, ϕ)h − (f̃n, ϕ)

=
∑

vj∈V
h
I

sj

(
1

2τn

(ϕj)
2 −

[
1

τn

W n−1
j + F n

j

]

ϕj

)

. (3.24)

It follows from (3.20a) thatΥ : Bh → Bh. Therefore to apply the Brouwer fixed point theorem we
just need to show thatΥ is continuous, asBh is a bounded finite dimensional convex set.

Let {η(i)}i∈N be such thatη(i) ∈ Bh and η(i) → η ∈ Bh as i → ∞. Then for all i ∈ N,
Υη(i) ∈ Kh(η(i)) is the unique solution of the convex minimization problem (3.23) withη replaced
by η(i), and so is the unique solution of the corresponding variational inequality

(
Υη(i) − W n−1, ϕ − Υη(i)

)h
≥ τn (f̃n, ϕ − Υη(i)) ∀ϕ ∈ Kh(η(i)). (3.25)

As Υη(i) ∈ Bh, ∀i ∈ N, there existsξ? ∈ Bh and a subsequence{Υη(im)}im∈N such thatΥη(im) →
ξ? asim → ∞. On noting thatMh

ε (∙)(vk) for all vk ∈ Vh is continuous, recall (3.12), we have that
if ϕ ∈ Kh(η) then for alli ∈ N

ϕ(i) := (1 + δ(i))−1 ϕ ∈ Kh(η(i)),

where δ(i) := max
vk∈V

h

|Mh
ε (η)(vk) − Mh

ε (η(i))(vk)|
k0

→ 0 as i → ∞. (3.26)

Hence, on replacingϕ in (3.25) byϕ(i), we can pass to the limitim → ∞ for the subsequence in
(3.25) to obtain thatξ? ∈ Kh(η) satisfies

(
ξ? − W n−1, ϕ − ξ?

)h
≥ τn (f̃n, ϕ − ξ?) ∀ϕ ∈ Kh(η). (3.27)

Henceξ? = Υη, and as this is the unique solution of (3.27) the whole sequenceΥη(i) → Υη as
i → ∞. Therefore the mappingΥ : Bh → Bh is continuous, and so the Brouwer fixed point theorem
yields that it has a fixed pointW n. Hence there exists a solution{W n}N

n=2 to (P), (3.16)≡ (3.18).
We now show thatW n ≥ W n−1, n = 2, . . . , N . Let ϕ? ∈ Uh

0 be such thatϕ?
k = W n

k +
[W n−1

k − W n
k ]+ = max{W n

k ,W n−1
k } for all vk ∈ Vh, where[a]+ := max{a, 0} for all a ∈ R. As

W n−1 ∈ Kh(W n−1) andW n ∈ Kh(W n), it follows from (3.21) thatϕ? ∈ Kh(W n). Choosing
ϕ = ϕ? in (3.18), and noting (3.7), yields that

∑

vj∈E
h
I

sj [W n−1
j − W n

j ]2+ ≤ −τn

∑

vj∈E
h
I

sj F n
j [W n−1

j − W n
j ]+ ≤ 0;

and henceW n ≥ W n−1.
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For the next result, we introduce

Ah :=
{

ψ : {ψk,`}ek,`∈Eh
I

with ψk,` ∈ R
}

, (3.28a)

Ah
≥0 :=

{
ψ ∈ Ah : ψk,` ∈ R≥0 ∀ek,` ∈ Eh

I

}
. (3.28b)

Existence of a solution to the mixed formulation (Q) is a consequence of Theorem 3.2 and the
following equivalence result.

Theorem 3.3. If {W n}N
n=2 solves (P), then there exists{Qn}N

n=2 such that{W n, Qn}N
n=2 solves

(Q). Hence there exists a solution{W n, Qn}N
n=2 to (Q), (3.4a,b)≡ (3.8a,b).

Proof. Let {W n}N
n=2 solve (P), (3.16)≡ (3.18). Thenϕ = W n is the unique solution to the follow-

ing convex minimization problem
min

ϕ∈Kh(W n)
Gn(ϕ), (3.29)

whereGn(∙) is defined by (3.24).
In the regularized modelk0 > 0, the Slater constraint qualification hypothesis (see e.g. (5.34) on

p. 69 in [9]) is obviously satisfied withϕ0 ≡ 0; that is,∂h
↓ϕ0(vj) < Mh

ε (W n)(vj) for all vj ∈ Vh.
On recalling (3.19), we now introduce the Lagrangian

Ln(ϕ, α, β) := Gn(ϕ)+
∑

ek,`∈Eh
I

αk,`

[
ϕ` − ϕk − |ek,`|M

h
ε (W n)(v`)

]

+
∑

ek,`∈Eh
I

βk,`

[
ϕk − ϕ` − |ek,`|M

h
ε (W n)(vk)

]
,

whereα, β ∈ Ah. It follows from the Kuhn–Tucker theorem (see e.g. Theorem 5.2 in [9]) that there
exist Lagrange multipliersα?, β? ∈ Ah

≥0 such that{W n, α?, β?} is a saddle point of the Lagrangian,
i.e.

Ln(W n, α, β) ≤ Ln(W n, α?, β?) ≤ Ln(ϕ, α?, β?) ∀ϕ ∈ Uh
0 , ∀α, β ∈ Ah

≥0. (3.30)

The first inequality in (3.30) yields that

α?
k,`

[
W n

` − W n
k − |ek,`|M

h
ε (W n)(v`)

]
= 0

and β?
k,`

[
W n

k − W n
` − |ek,`|M

h
ε (W n)(vk)

]
= 0 ∀ek,` ∈ Eh

I . (3.31)

Henceα?
k,` can be positive only ifW n

` −W n
k = |ek,`|Mh

ε (W n)(v`). In this caseW n
` > W n

k , soβ?
k,` =

0 and, on noting (3.13),Mh
ε (W n)|ek,`

= Mh
ε (W n)(v`). SettingQn

ek,`
= β?

k,` −α?
k,` = −α?

k,` < 0, we
obtain from (3.31) that

|Qn
ek,`

| |ek,`|M
h
ε (W n)|ek,`

+ Qn
ek,`

(W n
` − W n

k ) = 0. (3.32)

Similarly, if β?
k,` > 0 thenW n

k − W n
` = |ek,`|Mh

ε (W n)(vk), and henceW n
k > W n

` , α?
k,` = 0 and

Mh
ε (W n)|ek,`

= Mh
ε (W n)(vk). Once again we setQn

ek,`
= β?

k,` − α?
k,` = β?

k,` > 0, and obtain
from (3.31) the same relation (3.32) again. If both Lagrange multipliers,α?

k,` andβ?
k,`, related to

the edgeek,` ∈ Eh
I are zero we setQn

ek,`
= β?

k,` − α?
k,` = 0, so (3.32) holds. Therefore, on setting
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Qn
ek,`

= β?
k,` − α?

k,` for all ek,` ∈ Eh
I , andQn

ek,`
= 0 for all ek,` ∈ Eh

B, we obtain that (3.32) holds for
all ek,` ∈ Eh; that is, the equation in (3.9) holds for allek,` ∈ Eh.

We now prove that the inequality in (3.9) holds for allek,` ∈ Eh. It follows from (3.13) and as
W n ∈ Kh(W n) that if W n

` ≥ W n
k thenMh

ε (W n)|ek,`
= Mh

ε (W n)(v`) ≥ (W n
` −W n

k )/|ek,`|, and so
|ψ| |ek,`|Mh

ε (W n)|ek,`
+ ψ (W n

` − W n
k ) ≥ (|ψ| + ψ) (W n

` − W n
k ) ≥ 0 for all ψ ∈ R. Similarly, if

W n
` ≤ W n

k thenMh
ε (W n)|ek,`

= Mh
ε (W n)(vk) ≥ (W n

k −W n
` )/|ek,`|, and so|ψ| |ek,`|Mh

ε (wn)|ek,`
+

ψ (W n
` − W n

k ) ≥ (|ψ| − ψ) (W n
k − W n

` ) ≥ 0 for all ψ ∈ R. Hence (3.9), and so (3.8b), holds.
To show that (3.8a) holds we use the second inequality in (3.30), which yields that

sj

(
W n

j − W n−1
j

τn

− F n
j

)

+
∑

ek,j∈Eh
I

(α?
k,j − β?

k,j) +
∑

ej,`∈Eh
I

(β?
j,` − α?

j,`) = 0 ∀vj ∈ Vh
I ;

and then note thatQn
ek,`

= β?
k,` −α?

k,` for all ek,l ∈ Eh
I . Therefore{W n, Qn}N

n=2 satisfy (3.8a,b), and
hence (Q), (3.4a,b).

As we have already proved existence of a solution{W n}N
n=2 to (P) for anyW 1 ∈ Kh(W 1) such

thatW 1 ≥ W 0 in Theorem 3.2, the above establishes the existence, for the same initial condition
W 1, of a solution{W n, Qn}N

n=2 to (Q).

If {W n}N
n=2 solves (P), an alternative way of finding{Qn}N

n=2 such that{W n, Qn}N
n=2 solves

(Q) is given in the following lemma.

Lemma 3.4. Let {W n}N
n=2 solve (P), (3.16)≡ (3.18). Let

Y h,n :=

{

ψ ∈ V h : 〈ψ,∇ϕ〉 =

(
W n − W n−1

τn

, ϕ

)h

− (f̃n, ϕ) ∀ϕ ∈ Uh
0

}

, n = 2, . . . , N.

(3.33)

Then there existsQn ∈ Y h,n such that

〈|Qn|,Mh
ε (W n)〉 ≤ 〈|ψ|,Mh

ε (W n)〉 ∀ψ ∈ Y h,n, n = 2, . . . , N. (3.34)

It follows that{W n, Qn}N
n=2 solves (Q), (3.4a,b)≡ (3.8a,b).

Proof. If {W n}N
n=2 solves (P), then we showed in Theorem 3.3 that there exists{Qn}N

n=2 such
that{W n, Qn}N

n=2 solves (Q), (3.4a,b). AsQn ∈ Y h,n, the affine manifoldY h,n, n = 2, . . . , N , is
non-empty. Moreover, (3.4b) yields thatQn ∈ Y h,n is such that

〈|Qn|,Mh
ε (W n)〉 + 〈Qn,∇W n〉 ≤ 〈|ψ|,Mh

ε (W n)〉 + 〈ψ,∇W n〉 ∀ψ ∈ V h, n = 2, . . . , N.

(3.35)

As ψ ∈ Y h,n yields that

〈ψ,∇W n〉 =

(
W n − W n−1

τn

,W n

)h

− (f̃n,W n), n = 2, . . . , N,

the desired result (3.34) follows immediately from (3.35).
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Next, we prove the other half of the equivalence result in Theorem 3.3.

Theorem 3.5. If {W n, Qn}N
n=2 solves (Q), (3.4a,b)≡ (3.8a,b), then{W n}N

n=2 solves (P), (3.16)≡
(3.18).

Proof. Let {W n, Qn}N
n=2 solve (Q), (3.8a,b). Suppose that∂h

↓W n(vk) > Mh
ε (W n)(vk) at a vertex

vk ∈ Vh. Then there exists an edgee ∈ Eh, e = ek,j or e = ej,k, such thatW n
k > W n

j and
(W n

k − W n
j )/|e| > Mh

ε (W n)(vk) = Mh
ε (W n)|e, on noting (3.13). However, then the inequality

(3.9), and hence (3.8b), cannot be true. Therefore, it follows that∂h
↓W n(vk) ≤ Mh

ε (W n)(vk) at
every vertexvk ∈ Vh, and soW n ∈ Kh(W n).

It follows from (3.8a) that for anyϕ ∈ Kh(W n)

∑

vj∈V
h
I

sj

(
W n

j − W n−1
j

τn

− F n
j

)

(ϕj−W n
j ) =

∑

vj∈V
h
I




∑

ek,j∈Eh
I

Qn
ek,j

−
∑

ej,k∈Eh
I

Qn
ej,k



 (ϕj−W n
j ) =: S.

(3.36)
Sinceϕ = W n = 0 at the boundary vertices, one can assume each edgee ∈ Eh

I appears twice on
the right-hand side of (3.36) and, using (3.9), we obtain that

S =
∑

ek,j∈Eh
I

Qn
ek,j

[
(W n

k − W n
j ) − (ϕk − ϕj)

]

=
∑

ek,j∈Eh
I

[
|Qn

ek,j
| |ek,j |M

h
ε (W n)|ek,j

− Qn
ek,j

(ϕk − ϕj)
]
.

The latter sum is nonnegative. Indeed,∂h
↓ϕ(v`) ≤ Mh

ε (W n)(v`) for all v` ∈ Vh. Hence, ifW n
k ≥

W n
j then the equation in (3.9) yields thatQn

ek,j
≥ 0, and (3.13) that(ϕk−ϕj)/|ek,j | ≤ Mh

ε (W n)(vk)

= Mh
ε (W n)|ek,j

. Similarly, if W n
k < W n

j thenQn
ek,j

≤ 0 and(ϕj − ϕk)/|ek,j | ≤ Mh
ε (W n)(vj) =

Mh
ε (W n)|ek,j

. This proves thatS ≥ 0, and hence, on recalling (3.36), thatW n solves (3.18). There-
fore{W n}N

n=2 solves (P).

4 Steady state problem

Theorem 4.1. Let {W n}∞n=2 be a solution to (P) forW 1 ∈ Kh(W 1) with W 1 ≥ W 0 andf̃n ≥ 0
for all n ≥ 2. Then there existsW ∈ Uh

0 such that

lim
n→∞

W n = W ∈ Kh(W ) and W 0 ≤ W 1 ≤ W n−1 ≤ W n ≤ W ∀n ≥ 2.

In addition, if limn→∞ f̃n = f̃ andlimn→∞ τn = τ > 0 thenW is a solution to the problem

(PS) FindW ∈ Kh(W ) such that

0 ≥
(
f̃ , ϕ − W

)
∀ϕ ∈ Kh(W ). (4.1)
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Proof. By Theorem 3.2,W n−1 ≤ W n for any n ≥ 2. SinceW n ∈ Kh(W n), we have also that
W n ≤ Dh on recalling (3.20a). Therefore the monotonic increasing sequence{W n}n≥2 is bounded
above. Hence, there existsW ∈ Uh

0 such that

lim
n→∞

W n = W and W 0 ≤ W 1 ≤ W n−1 ≤ W n ≤ W ∀n ≥ 2.

To show thatW ∈ Kh(W ), we note thatMh
ε is continuous and so

∂h
↓W (vj) = lim

n→∞
∂h
↓W n(vj) ≤ lim

n→∞
Mh

ε (W n)(vj) = Mh
ε (W )(vj) ∀vj ∈ Vh.

Furthermore, sinceW ≥ W n, for anyn ≥ 2, it follows from (3.14) and (3.17) thatKh(W ) ⊂
Kh(W n). Let ϕ ∈ Kh(W ), so thatϕ ∈ Kh(W n) for all n ≥ 2. If f̃n → f̃ andτn → τ > 0 as
n → ∞, then passing to the limitn → ∞ in (3.16) yields the desired inequality (4.1).

Associated with the steady state QVI problem (PS) is the following stationary version of problem
(Q):

(QS) FindW ∈ Uh
0 andQ ∈ V h such that

−〈Q,∇ϕ〉 =
(
f̃ , ϕ

)
∀ϕ ∈ Uh

0 , (4.2a)

〈|ψ| − |Q|,Mh
ε (W )〉 + 〈ψ − Q,∇W 〉 ≥ 0 ∀ψ ∈ V h. (4.2b)

We have the following analogues of Theorems 3.3 and 3.5, and Lemma 3.4.

Theorem 4.2. If W solves (PS), (4.1), then there existsQ such that{W,Q} solves (QS). Hence
there exists a solution{W,Q} to (QS), (4.2a,b).

Proof. The proof is the direct analogue of that for the evolution case given in the proof of Theorem
3.3.

Lemma 4.3. Let W solve (PS), (4.1). Let

Y h :=
{

ψ ∈ V h : 〈ψ,∇ϕ〉 = −(f̃ , ϕ) ∀ϕ ∈ Uh
0

}
. (4.3)

Then there existsQ ∈ Y h such that

〈|Q|,Mh
ε (W )〉 ≤ 〈|ψ|,Mh

ε (W )〉 ∀ψ ∈ Y h. (4.4)

It follows that{W,Q} solves (QS), (4.2a,b).

Proof. The proof is the direct analogue of that for the evolution case given in the proof of Lemma
3.4.

Theorem 4.4. If {W,Q} solves (QS),(4.2a,b), thenW solves (PS), (4.1).

Proof. The proof is the direct analogue of that for the evolution case given in the proof of Theorem
3.5.
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In general, with different sources̃fn, n ≥ 2, and starting from different initial statesW 1 in
Theorem 4.1, one arrives at different solutions to the steady state problem (PS). However, we show
below that if the source is strictly positive then the stationary solutionW is unique.

Theorem 4.5. If f̃ > 0, then (PS), (4.1), has a unique solutionW . This solution is the same for
every positive sourcẽf and satisfies

W ≥ W 0, ∂h
↓W (vk) ≥ k0 ∀vk ∈ Vh

I and W ≥ η ∀η ∈ Kh(η). (4.5)

In addition,W is the maximal steady state solution to (PS); that is, ifW ′ is any solution to (PS) with
a sourcef̃ ′ ≥ 0, thenW ≥ W ′ is also a solution to this problem. Furthermore,Wj = W ′

j for every

vj ∈ Vh
I such that

∫
Ωh f̃ ′ χj dx > 0.

Proof. Existence of a solutionW ≥ W 0 to (PS) follows from Theorem 4.1. If there exist two
solutionsW (i) ∈ Kh(W (i)), i = 1, 2, let W ? ∈ Uh

0 be such thatW ?
k = max{W (1)

k ,W
(2)
k } for all

vk ∈ Vh. It follows from (3.21) thatW ? ∈ Kh(W (i)), i = 1, 2, and, asf̃ > 0, (f̃ ,W ? − W (j)) > 0
for either j = 1 or 2, which contradictsW (j) solving (PS), (4.1). Therefore, the solutionW ∈
Kh(W ) to (PS) is unique.

We now show that this unique solution is independent of the particular choice off̃ > 0. For
i = 1, 2, let W (i) ∈ Kh(W (i)) be the unique solution of (PS), (4.1), withf̃ = f̃ (i). If W (1) 6= W (2),
on definingW ? ∈ Uh

0 as above it follows thatW ? ∈ Kh(W (i)), i = 1, 2, and, asf̃ (j) > 0,
(f̃ (j),W ? − W (j)) > 0 for either j = 1 or 2 which contradictsW (j) solving (PS), (4.1), with
f̃ = f̃ (j). Therefore,W (1) = W (2) and so the unique solutionW to (PS) is independent of the
particular choice of̃f > 0.

We now show that∂h
↓W (vk) ≥ k0 for all vk ∈ Vh

I . If not, let ∂h
↓W (vj) < k0 for somevj ∈ Vh

I

and then chooseW ? ∈ Uh
0 such that

W ?
k = Wk, k 6= j, and W ?

j > Wj with ∂h
↓W ?(vj) = k0. (4.6)

It follows from (3.11) that

∂h
↓W ?(vk) ≤ ∂h

↓W (vk) ≤ Mh
ε (W )(vk), k 6= j, and ∂h

↓W ?(vj) = k0 ≤ Mh
ε (W )(vj). (4.7)

Hence,W ? ∈ Kh(W ), and, asf̃ > 0, (f̃ ,W ? − W ) > 0, which contradictsW solving (PS), (4.1).
Therefore, the unique solutionW ∈ Kh(W ) to (PS) is such that∂h

↓W (vk) ≥ k0 for all vk ∈ Vh
I .

If η ∈ Kh(η) andW 6≥ η, letη? ∈ Uh
0 be such thatη?

k = max{Wk, ηk} for all vk ∈ Vh. It follows
from (3.21) thatη? ∈ Kh(W ), and, asf̃ > 0, (f̃ , η? − W ) > 0, which contradictsW solving (PS).
Therefore, we have thatW ≥ η.

Finally, if W ′ solves (PS) with a sourcef̃ ′ ≥ 0 then (4.5) yields thatW ≥ W ′, and so(f̃ ′,W −
W ′) ≥ 0. It follows from (3.14) and (3.17) thatW ∈ Kh(W ) ⊆ Kh(W ′). SinceW ′ is a solution to
(PS) with f̃ ′, only equality(f̃ ′,W − W ′) = 0 is possible. In addition,W is also a solution to (PS )
with f̃ ′. Moreover,W = W ′ in the “support” off̃ ′ or, more precisely,Wj = W ′

j for everyvj ∈ Vh
I

such that
∫

Ωh f̃ ′ χj dx > 0.
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5 Numerical solution

5.1 The augmented Lagrangian method

In order to find a solution{W n, Qn}N
n=2 to (Q), (3.4a,b), we first find a solution{W n}N

n=2 to (P),
(3.16), recall Lemma 3.4. Forn = 2, . . . , N , we also note thatW n ∈ Kh(W n) is the unique solution
to (3.29). We propose to solve this iteratively. SettingW n,0 = W n−1, then form ≥ 1 find

W n,m := arg min
W∈Kh(W n,m−1)

Gn(W ) (5.1)

until the sequence{W n,m}m∈N converges up to a given tolerance. Then setW n = W n,m.
In view of (3.19), the minimization problem (5.1) can be written as

min
W∈Kh(W n,m−1)

Gn(W )

≡ min
W∈Uh

0

{

Gn(W ) :
Wk − W`

|ek,`|
∈
[
−Mn,m−1

` ,Mn,m−1
k

]
∀ek,` ∈ Eh

I

}

≡ min
W∈Uh

0 , p∈Ah

{

Gn(W ) +
∑

ek,`∈Eh
I

I[−Mn,m−1
` ,Mn,m−1

k ](pk,`) :
Wk − W`

|ek,`|
= pk,` ∀ek,` ∈ Eh

I

}

,

(5.2)

whereMn,m−1
j = Mh

ε (W n,m−1)(vj) for all vj ∈ Vh, and for[a, b] ⊂ R,

I[a,b](ζ) :=

{
0 ζ ∈ [a, b],

∞ ζ 6∈ [a, b]
(5.3)

is its indicator function.
We now extend the augmented Lagrangian method with splitting, see algorithm ALG2 on p. 170

in [14]. For allW ∈ Uh
0 andp, μ ∈ Ah, let

Ln,m−1
ρ (W, p, μ) :=

Gn(W ) +
∑

ek,`∈Eh
I

[

I[−Mn,m−1
` ,Mn,m−1

k ](pk,`) + μk,`

(
Wk − W`

|ek,`|
− pk,`

)

+
ρ

2

(
Wk − W`

|ek,`|
− pk,`

)2
]

(5.4)

be the augmented Lagrangian, whereρ ∈ R>0 is a parameter. The splitting method is then:
GivenW n,0 ∈ Uh

0 andpn,0, μn,0 ∈ Ah, for m ≥ 1

W n,m := arg min
W∈Uh

0

Ln,m−1
ρ (W, pn,m−1, μn,m−1), (5.5a)

pn,m := argmin
p∈Ah

Ln,m
ρ (W n,m, p, μn,m−1), (5.5b)

μn,m
k,` = μn,m−1

k,` + ρ

(
W n,m

k − W n,m
`

|ek,`|
− pn,m

k,`

)

∀ek,` ∈ Eh
I . (5.5c)
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The minimization problem (5.5a) leads to the following well-posed linear system forW n,m ∈ Uh
0

sj

W n,m
j − W n−1

j

τn

+
∑

ej,k∈Eh
I

[
μn,m−1

j,k

|ej,k|
+

ρ

|ej,k|

(
W n,m

j − W n,m
k

|ej,k|
− pn,m−1

j,k

)]

−
∑

ek,j∈Eh
I

[
μn,m−1

k,j

|ek,j |
+

ρ

|ek,j |

(
W n,m

k − W n,m
j

|ek,j |
− pn,m−1

k,j

)]

= sj F n
j

∀vj ∈ Vh
I . (5.6)

The unique solution of (5.5b) is

pn,m
k,` = max

{

−Mn,m
` , min

{

Mn,m
k ,

μn,m−1
k,`

ρ
+

W n,m
k − W n,m

`

|ek,`|

}}

∀ek,` ∈ Eh
I . (5.7)

The above is an extension of algorithm ALG2 in [14] from the variational inequality case to
the QVI case. In the variational inequality case, e.g.Mh

ε (ϕ) ≡ k0 > 0 or more generally a given
positiveκ ∈ C(Ωh), thenMn,m

j ≡ Mj ≡ κ(vj) for all vj ∈ Vh and the algorithm (5.5a–c) is
guaranteed to converge for any choice of positiveρ; that is,

W n,m → W n ∈ Uh
0 , pn,m → pn ∈ Ah, μn,m → μn ∈ Ah as m → ∞, (5.8)

see [14]. Although we have no convergence proof of (5.5a–c) in the QVI case, in practice it was
possible to obtain convergence even for reasonably small values ofε in (3.12), see the numerical
examples below, by adjusting the parameterρ and, if necessary, decreasing the time stepτn. We
note that we have used a similar approach for the QVI problem arising in the modelling of growing
sandpiles, see [5]. An alternative iterative numerical method for the QVI problem (Q), (3.4a,b),
similar to that in [4], is based on the approximation of the non-differentiable nonlinearity| ∙ | by
1
r
| ∙ |r with 0 < r − 1 � 1.

If (5.5a–c) converges in the QVI case, i.e. (5.8) holds, then it follows from (5.5c) that

pn
k,` =

W n
k − W n

`

|ek,`|
∀ek,` ∈ Eh

I . (5.9)

On setting

Qn
ek,`

=
μn

k,`

|ek,`|
∀ek,` ∈ Eh

I and Qn
ek,`

= 0 ∀ek,` ∈ Eh
B, (5.10)

it follows from (5.8), (5.6) and (5.9) that (3.8a) holds. In addition, (5.8), (5.7), (5.9) and (5.10) yield
for all ek,` ∈ Eh

I that

pn
k,` = Mh

ε (W n)(vk) ⇒ μn
k,` ≥ 0 ⇒ Qn

ek,`
≥ 0,

pn
k,` ∈ (−Mh

ε (W n)(v`),M
h
ε (W n)(vk)) ⇒ μn

k,` = 0 ⇒ Qn
ek,`

= 0, (5.11)

pn
k,` = −Mh

ε (W n)(v`) ⇒ μn
k,` ≤ 0 ⇒ Qn

ek,`
≤ 0.

Finally, it follows from (5.11), (5.9), (5.10) and (3.13) that (3.9), and hence (3.8b), holds. Therefore
{W n, Qn}N

n=2 solve (Q), (3.8a,b).
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Although the convergedμn ∈ Ah leads toQn ∈ V h, via (5.10), so that{W n, Qn}N
n=2 solves (Q),

our numerical experiments showed that convergence, asm → ∞, of μn,m is much slower than that
of W n,m. Even if W n,m converged with a severe tolerance, there still remained nodes from which
the calculated fluxQn,m was not directed solely along the edge of steepest descent, but partly along
some other edges too. Visually, this is exhibited in the unnatural river splits, which disappear from
the river plots only after significantly more iterations. It was more efficient to findQn using Lemma
3.4 as follows.

Given{W n}N
n=2 solving (P), (3.16)≡ (3.18), we find{Qn}N

n=2 such that{W n, Qn}N
n=2 solves

(Q), (3.4a,b)≡ (3.8a,b), by recasting the weightedL1 minimization problem (3.34) as a standard
linear programming problem. On recalling (3.1), we know forn = 2, . . . , N that

Qn =
∑

ek,`∈Eh
I

Qn
ek,`

iek,`
dH1(ek,`), (5.12)

where{Qn
ek,`

}ek,`∈Eh
I
, Qn

ek,`
∈ R, are to be determined. As we knowW n, the signs of these fluxes

are also known. It follows from (3.10(i),(iii)) thatQn
ek,`

≥ (≤)0 if W n
k > (<)W n

` andQn
ek,`

= 0 if
W n

k = W n
` . Therefore, for everyek,` ∈ Eh

I we set

Sn
k,` =

{
1 W n

k > W n
` ,

−1 W n
k ≤ W n

`

so thatQ̃n
k,` := Sn

k,` Qn
ek,`

= |Qn
ek,`

|. In this notation, the minimization problem (3.34) can be rewrit-

ten, on recalling (3.6), as find̃Q
n
∈ Ỹ

h,n
such that

∑

ek,`∈Eh
I

an
k,` Q̃n

k,` ≤
∑

ek,`∈Eh
I

an
k,` Q̃k,` ∀Q̃ ∈ Ỹ

h,n
, (5.13)

wherean
k,` = |ek,`|Mh

ε (W n)|ek,`
and

Ỹ
h,n

:=





ψ ∈ Ah

≥0 :
∑

ej,k∈Eh
I

Sn
j,k ψj,k −

∑

ek,j∈Eh
I

Sn
k,j ψk,j = sj

(

F n
j −

W n
j − W n−1

j

τn

)

∀vj ∈ Vh
I





.

The minimization problem (5.13) is a linear programming problem, and can be solved efficiently
using a standard procedure; e.g.linprog, see [19]. We note that a different method, applicable to
more generalL1 optimization problems (see, e.g., [10], p. 8), reduces (3.34) to a linear programming
problem of higher dimension which, nevertheless, can also be solved very efficiently.

5.2 Numerical simulations

We precede the presentation of our numerical experiments by the following comment. Convergence,
even in some weak sense, of solutions{W n, Qn}N

n=1 of (Q), (3.4a,b), as the mesh parametersh, τ →
0 is difficult to expect in general because of two reasons. First, as was noted above, the problem can
be ill-conditioned in that small changes in the relief,w0, can, in some cases, lead to dramatic changes
of the river network. Second, limiting the possible flow direction to the direction of the mesh edges
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can, in principle, lead to a non-negligible distortion of the river network. Nevertheless, we expect a
river (or wadi) with a pronounced valley to be well approximated by a nearby zigzag path consisting
of the mesh edges. Traditional lattice D8-algorithm-based methods suffer from the same problems
but, usually, are able to produce realistic hydrological maps. In the numerical simulations presented
in this section we use artificial landscapes to illustrate some typical features of our approximation.

We start with a radially-symmetric non-regularized (ε = 0 andk0 = 0) problem having an
analytical solution. We chose the relief in the form of a cone surrounded by a moat, see the left of
Figure 1. In polar coordinates{r, θ}

w0(r) =






0.3 − r 0 ≤ r ≤ 0.6,

r − 0.9 0.6 ≤ r ≤ 0.9,

0 r ≥ 0.9.

(5.14)

Let f = 1 for r ≤ 0.2 andf = 0 outside of this disc. Rain water flows down the cone slopes,
so q(x, t) = q(|x|, t) x̂, and gradually fills the moat. Herêx is the unit vector in the direction
x. Equating the volumes of the discharged and the collected water, it is a simple matter to find
the height,H(t), of the water layer above the lowest circle,r = 0.6, of the moat. This leads to
H(t) =

√
t/30 for t < 2.7. The fluxq on the cone slopes above this layer, i.e. forr < 0.6 − H(t),

can be found from the mass balance equation∂r(r q) = r f with the initial conditionq(0, t) = 0,
yielding

q(r, t) =






0.5 r 0 ≤ r ≤ 0.2,

0.02 r−1 0.2 < r < 0.6 − H(t),

undetermined 0.6 − H(t) < r < 0.6 + H(t),

0 r ≥ 0.6 + H(t).

(5.15)

Numerical solutions have been obtained withε = 0.01 andk0 = 0.005 (the model regulariza-
tion parameters),Ω = (−1, 1)2, W 1 = W 0, τn = 0.01 (the constant time step) andρ = 0.01 (the
augmented Lagrangian parameter), and compared to the analytical solution att = 0.5. For computa-
tional ease, the integral(f̃n, ∙) on the right-hand sides of (3.4a) and (3.16) was replaced by(f̃n, ∙)h,
and hence similarly in the definition ofF n

j in (3.7).
Comparing the approximate surfaceW (∙, tn) ≡ W n(∙) and the exact one,w(∙, tn), is straightfor-

ward; we calculated the relative error in the approximateL1 norm:

∑

σ∈T h

|σ| |w(x(σ), tn) − W n(x(σ))|

∑

σ∈T h

|σ| |w(x(σ), tn)|
, (5.16)

wherex(σ) is the centroid ofσ. The flux comparison is far more complicated, as it requires to
compare the exact flow fieldq(∙, tn) (continuous in this example, but a measure in general) and the
singular vectorial measureQn(∙).

For a very crude check of the flux accuracy in this example we used the continuous radial vector
fieldsφ

ζ
(x) = |x|ζ−1 x, whereζ ∈ R>0, for which the integralsIζ(t) =

∫
Ω(t)

q(x, t) . φ
ζ
(x) dx can

be found analytically. HereΩ(t) is the disc centered at the origin with radiusR(t) = 0.6 − H(t) in
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which the exact flux is known. The integrals were compared, for severalζ values, to the following
approximation of the duality pairing ofQn andφ

ζ
onΩ(t):

∑

|x(e)|≤R(tn)

|e| |Qn| |x(e)|ζ−1 ie . x(e), (5.17)

wherex(e) is the midpoint of edgee ∈ Eh
I .

We used two triangulations having approximately the same number of elements and not in any
way fitted to the reliefw0 or the sourcef . The first mesh was a general Matlab-generated triangu-
lar mesh with the maximal element sizeh = 0.025; and the second was a uniform mesh, which
was obtained by first dividingΩ into squares with side length2/100 = 0.02 and then dividing
each square into two triangles by its SW-NE diagonal. The surfacew(∙, 0.5) was found numerically
(Figure 1, right) with the relativeL1 error not exceeding 0.2% for both meshes, recall (5.16). For
the non-uniform mesh, the approximate edge fluxesQn yield the runoff picture seen in the left of
Figure 2. Here and below, to show the network of river channels we plot the edgese ∈ Eh

I for which
the calculated flux|Qn

e
| exceeds some threshold, with the plotted edges being thicker for a stronger

flux, and the plotting of “rivers” in “lakes” being suppressed. We see that the continuous water flow,
(5.15), is approximated by a set of channels bringing the discharged water towards the lake that
forms in the moat around the cone. Although the position of the channels seem random, their az-
imuthal distribution is sufficiently uniform. Forζ = 0.1, 0.25, 0.5 and1, the integralsIζ(0.5) have
been approximated by (5.17) with relative errors smaller than0.5%.

Although the errors inIζ(0.5) were only about double those for the non-uniform mesh, the cal-
culated channels in this case are strongly influenced by the anisotropy of the mesh (Figure 2, right).
This effect is especially strong, because the conical surface itself has no pronounced relief features
such as typical river valleys of natural landscapes. D8 algorithms show a similar behavior [11];
another well-known consequence of using a uniform mesh is the abundance of parallel channels
generated, especially, in flat areas [21].

For the “rippled” conical support

w0(r, θ) =

{
max{−0.95 + r, 0.85 − r (1 + 0.25 | sin(5θ)| ) } r ≤ 0.95,
0 r > 0.95,

(5.18)

see Figure 3; the approximate drainage channels generally follow ten relief valleys, see Figure 4
for the simulation results computed att = 0.06, before the time when the ten separated lakes begin
to merge, with the same non-uniform (left) and uniform (right) meshes as in the previous example.
In addition, the numerical scheme parameters were the same as before, except here the time step
τn = 0.002. Due to the presence of “river valleys”, the influence of the anisotropy of the uniform
mesh is weaker for this relief.

All simulations have been performed in Matlab R2012b (64 bit) on a PC with an Intel Core
i5-2400 3.10Hz processor and 16Gb RAM. The primal QVI was solved using the extended ALG2
algorithm as described in Subsection 5.1 with the stopping criterion based solely on the convergence
of W n,m: the iterations were stopped if the relative change of this variable in the approximateL1

norm, the analogue of (5.16), is less than10−7. In these examples, computingW n, n = 2, ..., N (all
time levels) took 2–3 minutes of CPU time. Then the approximate fluxQN was computed (with a
similar tolerance) in a few seconds using the standard Matlab linear programming solver,linprog,
via the rewritten formulation (5.13) of (3.34).
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Figure 1: Left – initial supportw0, right – the approximate surfaceW (∙, 0.5).

Figure 2: Computed drainage channels and exact lake boundaries (blue lines) attn = 0.5. Also
shown: level contours ofW n (black) and the source support boundary (red line). Left – results for a
non-uniform mesh; right – results for the uniform mesh.
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Figure 3: Rippled supportw0.

Figure 4: Computed drainage channels att = 0.06 for the reliefw0 shown in Figure 3. Left –
non-uniform mesh, right – uniform mesh.
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6 Lattice model approach

In DEMs it is difficult to distinguish the actual topographic depressions from false ones, caused by
a forest canopy, a bridge, a missed narrow gorge of a river etc. To ensure drainage continuity, it is
common practice to rectify all depressions and flat areas prior to any DEM usage in hydrogeomor-
phic applications. In principle, it is possible to fill all depressions in the initial reliefW 0 by solving
the regularized evolutionary problem (P) until the steady state is reached. Fork0 > 0 the resulting
surfaceW is also free of the flat horizontal areas, recall Theorem 4.5. This approach is, however,
too slow for practical applications that need high resolution DEMs of large areas. Typically, modern
GIS work with massive data sets containing around106 to 108 cell elevations, see e.g. [20]; such
DEMs are widely available. Solving problem (P) on a finite element mesh representing the earth’s
relief with such accuracy is not practical.

Efficient drainage network extraction algorithms in GIS do not solve any evolutionary problems.
Most of these lattice algorithms first replace the raster (square-grid) DEM, representing the relief, by
a new one, where all pits (lakes) are filled. Then they treat the flat areas and determine the direction
of flow out of each cell. Finally, the accumulated water flux through every cell is computed. We
now present such algorithms in the context of our finite element model, which uses a TIN relief
representation and directs water fluxes along the mesh edges.

6.1 Lake filling, flow routing and flux accumulation

We now consider the unregularized case,ε = 0, and define, similarly to (3.17) and (3.12), for any
η ∈ Uh

0

Kh
0 (η) :=

{
ϕ ∈ Uh

0 : ∂h
↓ϕ(vj) ≤ Mh

0 (η)(vj) ∀vj ∈ Vh
}

, (6.1a)

where Mh
0 (η)(vj) =

{
k0 ηj > W 0

j ,

max{k0, ∂
h
↓W 0(vj)} ηj ≤ W 0

j .
(6.1b)

It follows from (6.1a,b), (3.12) and (3.17) that for anyε > 0 and anyη ∈ Uh
0

Mh
0 (η)(vj) ≤ Mh

ε (η)(vj) ∀vj ∈ Vh ⇒ Kh
0 (η) ⊆ Kh(η). (6.2)

For the given earth reliefW 0, we now construct a new relief,̃W 0, such that

W 0 ≤ W̃ 0 ∈ Kh
0 (W̃ 0) ⊆ Kh(W̃ 0) and ∂h

↓ W̃ 0(vj) ≥ k0 ∀vj ∈ Vh
I (6.3)

using the following iterative algorithm.

1. Set the “water level”Lj = +∞ if vj ∈ Vh
I andLj = 0 if vj ∈ Vh

B.

2. Setflag=0. For eache(k, `) ∈ Eh
I :

• Set

L′
k = max{W 0

k , min{Lk, L` + k0 |e(k, `)|} },

L′
` = max{W 0

` , min{L`, Lk + k0 |e(k, `)|} }.
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• If L′
k 6= Lk or L′

` 6= L`, setflag = 1.

• SetLk = L′
k andL` = L′

`.

3. If flag=1 go to 2.

4. SetW̃ 0 = L ∈ Uh
0 .

The second condition in (6.3) yields that we obtain a relief without depressions and flat areas. For
k0 > 0 very small, the relief is almost horizontal in the “lake” domaiñW 0 > W 0, as∂h

↓ W̃ 0(vj) = k0

if W̃ 0(vj) > W 0(vj).

Theorem 6.1. The above iterative algorithm yields̃W 0 ∈ Uh
0 satisfying (6.3). Moreover, there

exists only one function satisfying (6.3). Furthermore,W̃ 0 ≤ W , whereW is the unique solution
of (PS) for any f̃ > 0.

Proof. On the first iteration of all edgese(k, `) ∈ Eh
I , Lj values become finite at allvj ∈ Vh

I

connected by an edge to a boundary node. Then at the next iteration those connected to these nodes
become finite, and so on. Finally theLj values at everyvj ∈ Vh

I become finite in a finite number of
iterations. Obviously, throughout the iterationsLj is monotonically decreasing andLj ≥ W 0

j for all

vj ∈ Vh
I . Hence we have that̃W 0 ≥ W 0.

Whenever the value ofL` strictly decreases, eitherL′
` = Lk + k0 |e(k, `)| or L′

` = W 0
` ≥

min{L`, Lk + k0 |e(k, `)|} for somee(k, `) ∈ Eh
I . SinceLk ≥ L′

k, in the first case we getL′
` ≥

L′
k + k0 |e(k, `)| so there is an edge along whichL′ decreases fromv` with at least the slopek0. In

the second case, sinceL` > W 0
` , we obtain thatL′

` ≥ Lk +k0 |e(k, `)| ≥ L′
k +k0 |e(k, `)|. Therefore

for anyv` ∈ Vh
I after a strict decrease ofL`, we have that∂h

↓L(v`) ≥ k0.
If at an iteration the level atv` remains unchanged,L′

` = L`, edge descents ofL′ from v` can
only become steeper since theL′ levels at the neighboring nodes do not increase. As∂h

↓ L̃(v`) ≥ k0

from a previous strict decrease inL`, e.g. becoming finite, we have that this remains true. Hence,
we have that∂h

↓ W̃ 0(vj) ≥ k0 at everyvj ∈ Vh
I .

To show that̃W 0 ∈ Kh
0 (W̃ 0), we note that ifW̃ 0

` = W 0
` thenW̃ 0

` − W̃ 0
k ≤ W 0

` − W 0
k for

all e(k, `) ∈ Eh. Hence∂h
↓ W̃ 0(v`) ≤ ∂h

↓W 0(v`) ≤ Mh
0 (W 0)(v`), on recalling (6.1b). Otherwise,

if W̃ 0(v`) > W 0(v`), we have that̃W 0(v`) ≤ W̃ 0(vk) + k0 |e(k, `)| for all e(k, `) ∈ Eh, so that
∂h
↓ W̃ 0(v`) ≤ k0 = Mh

0 (W̃ 0)(v`) also in this case. Hence, on recalling (6.1a) and (6.2), it follows

thatW̃ 0 ∈ Kh
0 (W̃ 0) ⊆ Kh(W̃ 0).

Suppose thatW (1) andW (2) satisfy (6.3) andW (1)
` < W

(2)
` at some vertexv` ∈ Vh

I . Choose
an edge path fromv` to the boundary∂Ωh such that at each vertex the outflow edge is the steep-
est descent ofW (1). Let vk be the vertex associated with edgee(k, `) of this path. Then[W (2)

` −
W

(2)
k ]/|e(k, `)| ≤ ∂h

↓W (2)(v`) ≤ k0, sinceW
(2)
` > W

(1)
` ≥ W 0

` andW (2) ∈ Kh
0 (W (2)). On the

other hand, atv` the edgee(k, `) is the steepest descent edge forW (1). From (6.3) it follows that
[W

(1)
` − W

(1)
k ]/|e(k, `)| = ∂h

↓W (1)(v`) ≥ k0. HenceW (1) decreases along the edgee(k, `) at least
as fast asW (2), and so the inequalityW (1) < W (2) holds also at the next vertex,vk, of the path.
Continuing, we arrive at a contradiction at the last vertex since both functions must be zero at the
boundary nodes.

Finally, it immediately follows from̃W 0 ∈ Kh(W̃ 0) and (4.5) that̃W 0 ≤ W .
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Although, the conditions (6.3) satisfied uniquely bỹW 0 are very similar to those, (4.5), satisfied
by W , the unique solution of (PS) for any f̃ > 0, we only know thatW ≥ W̃ 0. The following
simple example shows thatW may not bẽW 0.

Let Ωh ≡ [0, 4] with nodesvj = j, j = 0, . . . , 4, andW 0
1 = W 0

3 = k0 andW 0
2 = −2k0.

It follows that W̃ 0
1 = W̃ 0

3 = k0 andW̃ 0
2 = 2k0. Now considerW 1 ≡ W̃ 0 for the evolutionary

problem (P), (3.16), with̃fn ≡ f̃ > 0 for all n ≥ 2. We see thatW 1 is not the steady state solution
W of (PS), since “water” coming into nodev1 from the source cannot flow out asW 1

1 = W 0
1

and soMh
ε (W 1)(v1) = ∂h

↓W 0(v1) = 3k0 > k0 = ∂h
↓W 1(v1). ThereforeW 1 increases. A simple

calculation yields that the steady state solutionW is such thatW1 = W3 = k0+a andW2 = 2k0+a,
wherea = 2k0 ε/(2k0 + ε) for anyε > 0.

Having constructed a new relief̃W 0 via the above iterative algorithm, we now consider the flow
routing. This is now trivial as∂h

↓ W̃ 0(vk) ≥ k0 > 0 for everyvk ∈ Vh
I . We define the outflow

directionΛ(k) = j if e(k, j) ∈ Eh
I is the edge of steepest descent fromvk ∈ Vh

I ; any one of them
if such an edge is not unique. For the flux accumulation, we first set the initial values of thevertex
fluxesQ̃k = (f̃ , χk) for everyvk ∈ Vh

I . Then, noting that water flows down the slopes ofW̃ 0, we
arrange the nodes inVh

I so that

W̃ 0(vk1
) ≥ W̃ 0(vk2

) ≥ . . . ≥ W̃ 0(vkN
),

whereN = #Vh
I is the number of inner vertices, and set fori = 1, . . . ,N

Q̃Λ(ki) = Q̃Λ(ki) + Q̃ki
.

Finally, for ek,j ∈ Eh
B we set theedgeflux Qek,j

= 0 and forek,j ∈ Eh
I set

Qek,j
=






Q̃k Λ(k) = j,

−Q̃j Λ(j) = k,

0 otherwise.

It is a simple matter to check, on noting (3.1), (3.6) and the steady state version of (3.8a), that
Q ∈ Y h, recall (4.3). Moreover,Q ∈ Y h solves (4.4) withMh

ε (W ) replaced byMh
0 (W̃ 0), on noting

the steady state version of (3.35) and that the fluxesQek,j
, by construction, are only non-trivial on

critical edges.

We note that already on the first iteration of the lake filling algorithm, the verticesvj ∈ Vh
I

connected by the edge of the steepestW̃ 0 descent to the domain boundary get their final level
values,Lj = W̃ 0

j . On the second iteration verticesvk, whoseW̃ 0 steepest descent edge path to the

boundary consists of two edges, are fixed, i.e.Lk = W̃ 0
k ; and so on. Therefore the total number of

iterations required does not exceed the maximal number of edges in theW̃ 0 steepest descent edge
path from a mesh vertex to the boundary. Our numerical experiments show that this lake filling
algorithm is fast. In addition, the main part, in terms of CPU time, of the flow routing and flux
accumulation algorithm is the sorting of vertices, which needs onlyO(N logN ) operations.

If a real depression is known, the lake filling algorithm can easily be extended to account for a
partially filled closed lake. It requires only to choose a vertex,vj, in this depression and set initially
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Lj = L?
0, where the desired levelL?

0 ≥ W 0
j and is less than the level of a fully filled depression.

The resulting profilẽW 0 will then contain an inner lake with an almost horizontal surface at the
heightL?

0. Then the flow routing algorithm can be modified with a flow direction to a fictitious sink
being assigned to all vertices corresponding to the remaining local minima of the relief and the edge
fluxes in the lake area disregarded.

6.2 A real relief example

In this example we used a DEM of the Réunion island (France), which is a 63km long and 45km
wide volcanic island in the Indian ocean. The island has a mountainous relief, see Figure 5, with
its highest point about 3000m above sea level. The raster DEM of the Réunion was derived from
the worldwide elevation public domain database [28] collected in the “Shuttle Radar Topography
Mission” project [12]. The file contained the heights above the sea level in a 72.8km by 66.2km
rectangleΩh (Figure 5, bottom) at the points of a regular809 × 736 grid. The horizontal resolution
was thus 90m; the ocean points elevation was zero and the vertical DEM resolution was 1m.

In our numerical experiment we used a general Matlab-generated triangular mesh withh =
120m. It contained 1,155,917 triangles, 579,118 vertices, and 1,732,717 edges. Elevations of the
initial relief W 0 at the mesh vertices,W 0

j , vj ∈ Vh, were bilinearly interpolated from the DEM data
using Matlab’sinterp2routine. Unlike the time consuming domain triangulation and preparation of
the necessary mesh structures, the interpolation itself took less than one second.

We usedk0 = 10−6 in the lake filling algorithm, see Section 6.1. The algorithm produced a
depressionless relief̃W 0 after 98 iterations that took 13 seconds of CPU time. The flux accumulation
was computed for the uniform sourcẽf ≡ 1, so the water fluxes obtained can be regarded as
approximations to river basin areas. Together with flow routing, this computation took about 12
minutes.

In our map of the river network (Figure 6, top) we plotted edgesek,j ∈ Eh
I with the flux (drainage

area)|Qek,j
| ≥ q0, where the resolutionq0 was(1/2000)

∫
Ωh f̃ dx = |Ωh|/2000. This resolution was

adjusted to the unknown resolution of the map produced for the same DEM by the Arc Hydro [1]
(Figure 6, bottom), based on the Jenson and Domingue algorithm [16]. The thicker lines in our map
show rivers having basin areas not less than10q0, and the rivers are not shown in the lakes. Visually,
the two maps are similar.
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Figure 5: Ŕeunion island. The satellite image [29] (top) and a topographic map (bottom) derived
using the SRTM [28] DEM employed in our simulation.
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Figure 6: DEM based hydrological maps of the Réunion island: our simulation results (top) and the
Arc Hydro [1] package map (bottom).



Lakes and Rivers in the Landscape 29

References

[1] Arc Hydro tool of ArcGIS, esric©.

[2] G. Aronsson, L. C. Evans, Y. Wu, Fast/slow diffusion and growing sandpiles.J. Diff. Eqns.

131(1996) 304–335.

[3] J. W. Barrett and L. Prigozhin, Dual formulations in critical state problems.Interfaces and

Free Boundaries8 (2006) 349–370.

[4] J. W. Barrett and L. Prigozhin, A mixed formulation of the Monge-Kantorovich equations.

Mathematical Modelling and Numerical Analysis41 (2007) 1041–1060.

[5] J. W. Barrett and L. Prigozhin, A quasi-variational inequality problem arising in the model-

ing of growing sandpiles.Mathematical Modelling and Numerical Analysis47 (2013) 1133–

1165.

[6] J. Braun and M. Sambridge, Modelling landscape evolution on geological time scales: a new

method based on irregular spatial discretization.Basin Research9 (1997) 27–52.

[7] J. Dorfman and L. C. Evans, A “lakes and rivers” heuristic metaphor for the singular limit of

a nonlinear diffusion PDE.SIAM J. Math. Anal.41 (2009) 1621–1652.

[8] S. Dumont and N. Igbida, On a dual formulation for the growing sandpile problem.Euro. J.

Appl. Math.20 (2009) 169–185.

[9] I. Ekeland and R. Temam,Convex Analysis and Variational Problems(North-Holland, Ams-

terdam, 1976).

[10] M. Elad,Sparse and Redundant Representations. From Theory to Applications in Signal and

Image Processing(Springer, New York, 2010).

[11] T. G. Freeman, Calculating catchment area with divergent flow based on a regular grid.Com-

puters& Geosciences17 (1991) 413–422.

[12] T. G. Farr, P. A. Rosen, E. Caro et al., The Shuttle Radar Topography Mission.Rev. Geophys.

45 (2007) RG2004.

[13] J. Garbrecht and L. W. Martz, The assignment of drainage direction over flat surfaces in raster

digital elevation models.Journal of Hydrology193(1997) 204–213.

[14] R. Glowinski, Numerical Methods for Nonlinear Variational Problems(Springer–Verlag,

New York, 1984).



30 John W. Barrett and Leonid Prigozhin

[15] R. Jana, T. V. Reshmindevi, P. S. Arun, T. I. Eldho, An enhanced technique in construction

of the discrete drainage network from low-resolution spatial database.Computers and Geo-

sciences, 33 (2007) 717–727.

[16] S. K. Jenson and J. O. Domingue, Extracting topographic structure from digital elevation

data for geographic information system analysis.Photogrammetric Eng. Remote Sensing. 54
(1988) 1593–1600

[17] N. L. Jones, S. G. Wright and D. R. Maidment, Watershed delineation with triangle-based

terrain models.J. Hydraul. Eng.116(1990) 1232–1251.

[18] R. Jones, Algorithms for using a DEM for mapping catchment areas of stream sediment sam-

ples.Computers and Geosciences28 (2002) 1051–1060.

[19] Matlab Optimization Toolbox, ver. 6.0, The MathWorks, Inc.

[20] M. Metz, H. Mitasova and R. S. Harmon, Efficient extraction of drainage networks from mas-

sive, radar-based elevation models with least cost path search.Hydrol. Earth Syst. Sci.15
(2011) 667–678.

[21] F. Nardi, S. Grimaldi, M. Santini, A. Petroselli, L. Ubertini, Hydrogeomorphic properties of

simulated drainage patterns using digital elevation models: the flat area issue.Hydrological

Sciences Journal53 (2008) 1176–1193.

[22] L. Prigozhin, Quasivariational inequality describing the shape of a poured pile.Zh. Vychisl.

Mat. Mat. Fiz.(in Russian)26 (1986) 1072–1080.

[23] L. Prigozhin, Sandpiles and river networks: Extended systems with nonlocal interactions.

Phys. Rev. E49 (1994) 1161–1167.

[24] L. Prigozhin, Variational model of sandpile growth.Euro. J. Appl. Math.7 (1996) 225–235.

[25] A. Refice, E. Giachetta and D. Capolongo, SIGNUM: A Matlab, TIN-based landscape evolu-

tion model.Computers & Geosciences45 (2012) 293–303.

[26] J. F. Rodrigues and L. Santos, Quasivariational solutions for first order quasilinear equations

with gradient constraint.Arch. Ration. Mech. Anal.205(2012), 493–514.

[27] I. Rodriguez-Iturbe and A. Rinaldo,Fractal River Basins(Cambridge Univ. Press, 1997).

[28] The Shuttle Radar Topography Mission (SRTM); http://www2.jpl.nasa.gov/srtm/.

[29] Wikipedia, the Free Encyclopedia; http://en.wikipedia.org/wiki/Reunion.



Lakes and Rivers in the Landscape 31

[30] J. P. Wilson, G. Aggett, Y. Deng, C. S. Lam, Water in the landscape: a review of contemporary

flow routing algorithms. In:Advances in Digital Terrain Analysis, Lect. Notes in Geoinfor-

mation and Cartography, 2008,XIV , 213-236 (Eds. Q. Zhou, B. Lees, G. Tang).

[31] J. P. Wilson, C. S. Lam, Y. Deng, Comparison of the performance of flow-routing algorithms

used in GIS-based hydrological analysis.Hydrol. Process.21 (2007) 1026–1044.


