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Abstract

We consider an evolutionary quasi-variational inequality arising in a simplified model of a
network of lakes and rivers forming upon a given relief of the Earth. We regularize this model
and derive its finite element approximation, in which the water flow is confined to the mesh
edges. The primal and mixed formulations of the discretized quasi-variational inequality are
used in the numerical simulations. The corresponding steady state problems are also analyzed.
Finally, we compare this approach to the lattice algorithms employed in geographic information
systems for the automatic extraction of river networks from digital elevation data, and derive
similar algorithms for our approximation.

2010 Mathematics Subject ClassificatioB5K86; 35R35; 65K15; 86-08.
Keywords: Quasi-variational inequality; primal and mixed formulations; numerical approxima-
tion; augmented Lagrangian method; digital elevation model; river networks.

1 Introduction

During the last three decades a variety of methods have been proposed for the automatic extraction
of drainage networks from digital elevation datasets called digital elevation models or DEMs (see,
e.g., thereviews in [21, 30, 31, 18, 15, 27] and the references therein). Usually, although not always,
the employed DEM carries relief elevations at the points of a regular equidistant grid (the raster
format) and at the core of most routing methods is the basic D8 (deterministic eight-neighbor)

1



2 John W. Barrett and Leonid Prigozhin

algorithm. In this algorithm, the flow direction from each cell (grid point) is determined by the
comparison between the cell’s elevation and the elevations of its eight adjacent neighbors: the flow
direction is the direction of the neighbor with the maximal rate of the elevation descent. The flow
direction is, however, not determined by D8 in pits (the local minima of the relief) and also in flat
horizontal areas. These features of DEM-represented reliefs are the main obstacle to flow-routing
and extracting the realistic drainage (river channel) networks.

Typically, pits are considered spurious and, indeed, it is often the case for low resolution DEMs.
Unless a depression is assumed to represent a real closed lake, its elevations are most often raised
to the level of the lowest outflow. This, however, leads to the appearance of a flat area. Furthermore,
although exactly flat earth surfaces are not typical, the raster DEMs of territories without well-
developed topographic features, interpolated from low-vertical-resolution digitized level contours
(vector format), do contain many such areas. Heuristic iterative algorithms for drainage enforce-
ment in flat regions include creating small artificial gradients, directing the flow towards the lowest
watershed cell, etc. (see, e.g., [21, 30, 18, 16, 13]). These algorithms have been realized as efficient
computational procedures in various well-developed geographic information systems (GIS) and, de-
spite the admitted difficulty of flow routing in low-relief regions, are usually able to extract useful
information about the drainage network from a DEM.

In this work we consider a continuous analogue of flow routing models, the evolutionary quasi-
variational inequality (QVI) model [23], whose primal and mixed formulations determine, respec-
tively, the lakes and the net of drainage channels forming upon a given relief. Our aim is to inves-
tigate the relation of this continuous model to the basic cellular models successfully employed for
river network delineation, and the subsequent analysis, in various geographic information systems:
we arrive at such a model in several approximation/discretization steps. We also study and compute
the arising discrete problems.

Physically, our continuous model is very simple. Rain water is discharged from a distributed,
usually uniform, source, flows downhill, and is collected into lakes at local depressions of the relief.
As a lake overflows, it passes additional water along a one-dimensional river, possibly, to another
lake below. The water can also leave the system through the open boundary.

Mathematically, however, the arising variational problem is complicated. First, the model [23] is
a singular limit of the QVI describing sandpile surface evolution and, in transition to this limit, the
material (water) flux becomes undetermined in the lakes. Second, the set of admissible functions in
this QVI is determined by a discontinuous equilibrium constraint. Third, over the hill slopes the flux
is singular: water, flowing towards the steepest descent, gathers into rivers, so the flux is a vectorial
measure with a partially one-dimensional support. Finally, the problem can be ill-posed: in some
cases, a slight local change of the relief can, in this model, lead to a significant change of the river
network. An avulsion, a sudden abandonment of a river channel and forming a new watercourse,
can sometimes be caused by a small reconstruction of a real landscape too. In practice, however,
this only means the DEM resolution must be sufficiently high to make the river valleys noticeable.

To deal with the first complication, we replace the limiting continuous model for water by the
sand model with a positive, but very small, material angle of repose. In such a model the flux is
expected to be uniquely determined, while the lakes are represented by sandpiles whose slopes, al-
though not exactly horizontal, are only slightly inclined. This also leads to a natural small-artificial-
gradient solution to flow-routing in flat areas, automatically enforcing flows towards the outlets and
away from higher elevation areas, which is the aim of [13] and some other lattice algorithms.

Following [5], we approximate the discontinuous equilibrium constraint by a continuous one;
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and we refer to [5] also for a proof of existence of a solution to the mixed formulation of this
regularized QVI problem. However, numerical approximation of the flux variable based in that
work on the lowest order Raviart—Thomas finite element is inconvenient for the representation of
river networks, because the singular one-dimensional measures (rivers) become smeared. It would
be impractical to overcome smearing by adapting the finite element mesh to a dense river network
as, e.g., in a somewhat similar optimal transportation problem, where only a few transport rays have
had to be approximated, see Figure 2 in [4]. To represent river networks better, here we concurrently
approximate the free surface by continuous piecewise linear finite elements; and the water flux by
vectorial measures having support on the union of all element edges, with the vector measure being
constant on each element edge and in a direction parallel to that edge. Such a flux approximation
prevents numerical smearing of singular fluxes.

Numerically, the regularized and discretized QVI problem is solved first using an augmented
Lagrangian method with splitting. Then, completing our reduction to a basic lattice model, we
employ efficient lake filling, flow routing and flux accumulation algorithms, typical of the models
used in GIS, for our discretization. This allows one to solve large scale steady state problems of
practical interest using high resolution DEMs.

Finally, we note that a related continuous lake-and-river model, obtained as a singular limit of a
nonlinear diffusion equation, was studied in [7].

The outline of this paper is as follows. As stated above, in this paper we employ a lake-and-river
model derived as a limit of the QVI model for sand surface evolution [23, 22, 24]. In the next section,
we briefly recall this sand evolution model, and its regularized version [5]. In Section 3, we introduce
our lake-and-river evolution model, and its finite element approximation. The corresponding steady
state problem is considered in Section 4. In Section 5, we state our numerical algorithms for solving
the QVI and illustrate properties of the discretization employed by two numerical examples with
artificial landscapes. Finally, in Section 6 we introduce, for our approximation, lake filling, flow
routing and flux accumulation algorithms and solve the steady state lake-and-river problem for a
real DEM of the FReunion island using a cellular-model-like approach.

2 A model for sand surface evolution

Let the initial support surface, be defined in a bounded domdinc R? with a Lipschitz boundary
0Q2. We assume that, belongs toW(}"’O(Q). Suppose sand is discharged onto this surface from a
distributed source with a given non-negative dengity, t) € L?(Qr), whereQr := Q x (0, 7).

The evolving surface of the growing pile(z, ) satisfies the material balance equation

with the initial conditionw(-, 0) = wy(-). Hereg(z, t) is the horizontal projection of the flux of sand
pouring down the pile surface. -

The surfacav can partly coincide with the suppart,, and should be above the support other-
wise. Wherevetv(z, t) > wo(z) the equilibrium condition i$Vw(z, t)| < ko, wherek, = tan ¢ €
R.o and( is the material angle of repose. In the coincidenceg 6ett) € Qr : w(z,t) = wo(x)}
this equilibrium condition is not applied, as the rigid support can be steeper. Therefore the equilib-
rium condition for a growing sandpile in this model is

V| < M(w)  inQp, (2.2a)
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where for anyp € C(Q)

. ko (@) > w0(£)7
M(p)(z) = { max{ ko, |Vwo(z)|} gtherwise. (2.2b)

The surface flow of sand is forbidden wherever the surface is not steep enough~.é. if
|IVw| < k. In addition, flow is allowed only in the steepest descent directidw, so we have
that—Vw.q = |Vw||q|. As ¢ can be nonzero only if the slope is critical, i.&Vw| = M (w), it
follows that -

—YVw.q= M(w)|q| in Qp. (2.3)

Finally, we assume that material can leave the system freely through the domain boundary, so we
setw = 0 on9f). Our sand model consists of the mass balance equation (2.1) supplemented by the
conditions (2.2a,b), (2.3) and the stated boundary and initial conditions.

A more convenient form is a variational formulation of this model, which we now derive. The
flux ¢ can be excluded, if only the free surfaceis required to be found. Let us define, for any

n € C(2), the closed convex non-empty set
K(n):={pc Wy (Q) : V| < M(n) ae. inQ} . (2.4)

SinceM (w) |q| + V@ .q > 0 foranyy € K(w), we deduce from (2.3) thal (¢ — w).q > 0 a.e.
in Q. Furthermore, on noting (2.2a) and that= 0 on 952, we have thatv € K(w). Hence, for a.a.
t e (0,7)

LZ-g(w—w)dzzo Ve K(w)

and, making use of equation (2.1), we arrive at an evolutionary QVI:
Findw(z, t) such thatw(-,0) = wy(-) and for a.at € (0,7) w € K(w) solves

/Q G- flo—w)dz >0 Vg e K(w), (2.5)

This formulation, written solely for the pile surface, we will call the primal problen\ii,| <
ko a.e. in(, then problem (2.5) becomes a variational inequality(«)) = K) and existence of
a unigue solutionw € L>(0,T; K) N W2(0,T; L*(Q)), has been shown in [24, 2]. The dual
variable, the surface flux, can in this case be sought in the space of vector-valued bounded Radon
measures with ah? divergence. Numerical schemes based upon dual variational formulations writ-
ten solely in terms of this variable, [3, 8], enable one to compute approximations both to the evolving
surfacew and the fluxg.

The QVI case is much more complicated. In this case it is less convenient to use a dual for-
mulation of the QVI (2.5) in terms of the surface flux alone. To derive a variational formulation
written for both variablesyw and ¢, in the QVI case, we note that (2.2a) holds if and only if
M(w)|| + Yw .4 > 0 a.e. inQy for any test fieldy. Replacing for a.at € (0,T) the relations
(2.2a) and (2.3) by the equivalent variational inequality,

[ et el - 1) - 0T (0 - g dr > 0 2.5

for any sufficiently smooth test field, we obtain the mixed variational formulation (2.1) and (2.6).
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Existence of a solution for a weak formulation of a regularized version of this problem has
recently been proved (under some additional assumptions on the domain and support) in [5]. Here
we also use such a regularization, and consider the sand surface evolution model with a continuous

operatorM, : C(Q) — C(Q), replacing the operata¥/ in the equilibrium constraint (2.2a). For
a smalle > 0, we approximate the initial data, € W,>(Q) by wy. € W,°(Q) N C*(Q), and

define for anyp € C(£2)

ko p(x) = woe(z) +e,
M(p)(a) = ¢ kae) + (ko = k(@) (2222 (o) € (@) wo(e) +),  (27)
ky(z) := max{ko, |[Vwo(z)|} p(z) < woe(z)

in order to replace the jump df/ atp = wy in (2.2b) by a continuous transition over an interval
of the lengths. Omitting the details, see [5], we only note that there exists a weak sol{ution}
to the regularized variational problem (2.1) and (2.6), withreplaced by)., such thatw is a
weak solution to the corresponding regularized version of the primal QVI (2.5). We note that the
regularization ofV/ is useful also for the numerical solution of these problems. We remark also that
existence ofw, a weak solution to this regularized version of (2.5), follows also from the recent
work of Rodrigues and Santos [26].

Finally, as is noted in [5], to prevent an uncontrollable material influx into the dofadémough
its boundaryos?, in the QVI case we should assume thatVw, < kq (or n.Vwy. < ko) on
012, wheren is the outward unit normal t0€). The boundary conditiom = 0 on 92 and that
solutions to (2.5) are non-decreasing in time, see [24, 5], then ensure that there is no influx through
the boundary also far > 0.

3 Lakes and rivers: a model and its approximation

Now let f € L?*(Q27) be the precipitation rate, and rainwater, regarded as sand with zero repose angle
(ko = 0), be flowing downhill in the steepest descent directions and accumulating into lakes at local
depressions of the earth’s relief. We assume that water neither penetrates the soil nor evaporates.
Then both the equilibrium condition (2.2a,b) and the balance equation (2.1) remain valid.

Contrary to sandpilest{ > 0), the flow in the lakes is not confined to a thin surface layer and
its direction is not determined as the steepest descent direction. Nevertheless, lake hydrodynamics
does not affect the free surface, which is either the horizontal lake suNace; 0 for w > wy,
or coincides with the earth’s reliefy = w,. Although the fluxg in the lakes is not determined
by our model uniquely, the degeneratg  0) primal QVI (2.5) still describes the free surface
evolution, see [23]. This inequality (or its regularized version) can be used to find the lake areas. It
is, however, the water flux in the coincidence get w,, which is usually the main interest. The
drainage (river) network is defined as the subseoh which |¢| > ¢, whereq, is the desired
resolution of a hydrological map. -

Since the water flux in the lakes is not unique, it is convenient to regularize the problem further
and replacé, = 0 by a smallk, > 0. Lakes in this case become piles with a negligibly small slope
incline. This regularization induces small artificial gradients also in flat surface areas and, therefore,
leads there to a natural way of flux routing.

To calculate the water flux one could approximate the regularized mixed formulation (2.1) and
(2.6), with M replaced by)., using the divergence conforming Raviart—Thomas elements of the
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lowest order for the flux; and piecewise constants for the free surfacésee [5]). Such an ap-
proach, however, would lead to a “smeared” representation of the singular water flux in the rivers,
inhibiting the delineation of rivers, and hence the derivation of hydrological maps. This makes this
representation inconvenient also for the analysis of river basins and for computing hydrological
characteristics of drainage networks. In this work we present a hydrology-oriented alternative: a
discrete approximation of the regularized model (2.1) and (2.6) in which rainwater flows through a
network of drainage channels.

Let Q" be a polygonal approximation 6f, and7" be a regular partitioning d®” into triangles
o So that

Q"= )7 with  h:=maxdiam(o).

oeTh
o€Th

We assume that the vertices Bf* lying on 99", the boundary of2", also lie ondf2. Let V" and
E" be the sets of vertices and oriented edge® ‘ofrespectively. The edge. ; € £" is determined
by two neighbouring vertices, , v, € V" and is oriented from,, to v;. In addition,i, denotes the
unit vector in the direction of edgec £". We defineVy := V" \ Vi and&r .= £\ ER, where the
subscriptsB and denote “boundary” and “internal”, respectively. So an edge&?. is such that

e C 00", Let Cy(Q2") denote continuous functions éM', which vanish on the boundary. We then
set

Ul = {p e Co(Q") : ¢|, is linearvo € T"}
and V"= {y e M@ : ¢ =D vei dH(e)}, (3.1)

ecEh

wherey, € R, dH!(e) is the one-dimensional Hausdorff measure supported onedge M (Q")
is the Banach space of bounded Radon measures; thet(iQ!') := [C'(Q")]*, the dual ofC(Q").
The duality pairing betweetM (Q") and C'(Q") is denoted by-, -), and is naturally extended to
vectors so that

(W, ¢) = > ei,. /Qde Yy e VI, ¢ € [C(QM)2 (3.2)

ecEh ¢

We denote by, -) the standard inner product étt. We introduce also for alp, n € U}

3

(e =Y (em)k,  where (g% :=110]> o) n@) (3.3)

oeTh Jj=1

with |o]| and{gg.")}ﬁzl being the area and vertices of

Let W° € U} be such that?°(v,) = wo(v,) for all v, € V", wherew, € W, () is the
earth’s relief on(). Below, in some cases it will be convenient to allow for some water initially
upon the support surfadé’®, so we assume the initial conditiofi* € U} is given and satisfies
wt>wo.

The continuous piecewise linear representation of the relief, employed in our approximation, is
called a “triangulated irregular network” format (TIN) in the geographic literature, see, e.g., [17].
TIN DEMs can use different resolution in different parts of the domain, and so ensure accurate
surface representation using less sampling points than the raster DEMs. The disadvantage of using
such a format though is the need for less efficient and more complicated flow routing algorithms.
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However, since, as in landscape evolution models [6, 25], the flow in our maaekisri confined
to the mesh edges, simple but efficient algorithms for lake filling, flow routing and flux accumulation
can be proposed, see Section 6 for details.

On partitioning[0, 7] into possibly variable time steps, := ¢, — t,_ 1, n = 2,..., N, and
definingr := max,—»__n 7, and

.....

1 [t
=—/ fe)dte L*(Q) n=2,...,N;
Tn tn—1

we then consider, as an approximation to (2.1) and (2.6) fer £y < 1, the finite-dimensional
problem:
(Q Forn=2,...,N,findW" € Ul andQ" € V" such that

wnr — Wn—l h _
(T—>90) —(Q", V) = (f”,go) Vo € UL, (3.4a)
(0] =1Q", ME(W™)) + (¥ — Q", VIW™) > 0 vip e VI, (3.4b)

where f* € L*(Q") is a nonnegative extension ¢f from  to O, if Q" ¢ Q. In addition, the
approximationM” of the operatorM,, which is a constant> k) on any edge, will be defined
below. AlthoughV ¢ does not belong tiC'(Q2")]2, (v, V) is well-defined for any) € V" and any
¢ € U, because the scalar produgt V¢ is continuous across any edge £7.

Let x; € U} be the standard hat basis function associated with vertexV}'; thatis, x;(v,) =
&, for all v, € V. Then for anyp € U, we can write

= > gixil@),  where ¢; =o(u,). (3.5)

h
v, €VY

For anyy € V", it follows from (3.2) that
’QD VX] - Z 'lvbe - Z ¢6 = Z ¢ek’j - Z @Z)ej’k- (36)
e= ekJGg e:ejykEE}L Ek,]'ES;L ejykEE;L
On setting
1
55 1= (Xj,xj)h = / x;dz >0 and F=— f" x;jdz >0 Vu, € Vi (3.7)
Qh Si Jah

and noting (3.5) and (3.6), we can rewrite (3.4a) as

Wn
+ Z Qezk Z Qek] =9j ]n vﬂj € V;L (3.83)

e;, kegh @k,gegh

Choosingy in (3.4b) such that). = Q7 for all edgese except one edge; ; € &M we obtain, on
noting (3.2) and (3.6), that

(0] =1Q2, ) lexy| MEW™)|ep, + (W = Q2 )W) = W) >0 YV eR, Ve, €&
(3.8b)
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wherele| is the length of edge. Choosing) = 0 andy) = 2 Qe ,in(3.8b)yields thatitis equivalent
to

|ng,j’ ’ekuj’ ME}L(WTL”@]C,] + ng,j (W]n - W]?) = 0
0

and 0] Jen | MEW™)e,, + o (W] = W) > Vi € R, Vey; € E".

(3.9)

It remains to define our edge approximatimjlyek’j, er; € E", of the operatod//..

In the regularized continuous QVI problem the inequalfw| < M. (w) holds a.e.; and flow
is only allowed whereVw| = M. (w), and is in the direction of steepest descent. We would like a
similar behaviour for our network approximation (3.8a,b). However, in the network case the steepest
slope of surface descent along the edges generally differs from the steepest slope of ascent along
the edges from the same vertex. Only the slope of descent is important, and we will allow a nonzero
edge fluxQ”, e € £, only if all of the following conditions hold:

(i) from the vertex of edge with a higherl/™ value;
(i) if for this vertex the edge is the edge of steepest descent; (3.10)
(iii) if the surface slope along this edge is “critical”, i.€2; W"| = M (W™) one,

whered, W™ := i, . VW™ andM!|. is still to be defined.
If a solution exists to (Q), (3.4a, (3.8a,b), then, on noting (3.9), it follows that

0, W"| < MMNW™) one Vee&"  n=2,..N.

Furthermore, the flux)” can be nonzero only if9;, W"| = M"(W™)|. and, in this caseQ)? is
positive (negative) if the flow is in the directiap (—:,.). Taking this into account, we define our
approximation)/”|. for all edges: € £" in two steps.

First, we define for any € U/ the steepest edge descent at each vertex )" as

8fg0(yk) ‘= max { ]'Zk(k_j;]l ce(k,j) =ep; € EM or e(k,j) =ejr € Eh} ) (3.11)

Then similarly to (2.7), but using’® instead ofw, . and replacingVwq . (v;,)| by 0} W°(v,,), we
compute, for alb, € V", thevertexvalue

ko Vi = Wko + &,
MM ) = ki) + o —kiw) (225)  eee L WE+e,  (312)
k1<yk> = max{ko,afwo(yk)} Pk < W]g

Second, for each edgg ; € £", we set theedgevalue

M () (vy) Ok = Py
h _
M (P)er,; = { MA@ o) otherwise. (3.13)

We note that for any, n € U and anyv, € V" that
0 < ko < M) (vx) < ME() () i me < 1 (3.14)
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Our discrete network model (Q), (3.4a:b)3.8a,b), is now fully defined and satisfies the desired
conditions (3.10) above. It follows from the equation in (3.9)1% € U?, (3.13) and (3.14) that

Q=0 Vee&p, n=2,...,N. (3.15)

Associated with (Q) is the following discrete analogue of the primal QVI (2.5):
(P)Forn=2,..., N, findW" € K"(Wn) such that

n __ n—1 h .
(u, © — W”) > (f": ¢ - W") Vo e KMW"), (3.16)
where for any; € Ul
E"n) == {p €Uy : O'ply;) < M(n)(v;) Vu; € V") (3.17)

is a closed convex set, and is non-emptyds= 0 € K"(n). We note that?V’ ¢ K"(W?0).
Adopting the notation (3.5) and (3.7), we can rewrite (3.16) as

Wn 1
Z s; <— — F]n) (p; — W) >0 Yo € Khwm). (3.18)
v; evh Tn

For future developments, we note that the inequality constraiht$v,) < M (n)(v,) for all
v; € V" appearing in the definition (3.17) are equivalent to the edge set of inequality pairs:

o — o < lewe M) (v,)  and  op —@p < lewd ME(n)(v,)  Vere €EF. (3.19)

We note that the constraints in (3.19) are automatically satisfied,.foe £%, asp € UL.
In the following theorems and lemmas we prove existence of a solution to the primal QVI (P)
and the mixed formulation (Q), and show their equivalence. First we prove a useful lemma.

Lemma 3.1. (i) For anyn € U we note that
K'n) CB" :={pc U} : |p| <D" inQ"}, (3.20a)
whereD" € Ul is such that
D! = d"(v;) max {ko, [VIW°o 0 0n } Vo, € V" (3.20b)
with d"(v;) belng the length of the shortest edge path frgne V" to 90"
(i) Let n € K"(n™),i = 1, 2. Thenn* € U} such that
n; = max{n](l),n](z)} Vu, € Vi = pre KM C K'gW) i=1, 2. (3.21)
Proof. (i) The desired result (3.20a,b) follows immediately from (3.17), (3.11) and (3.12).
(ii) Similarly, on noting (3.11) and (3.12), we have for anye V" andi = 1 or 2 that
=0 = () <o) < M) (y) = M ()(y).  (3:22)

Hencen* € K"(n*). Then noting thaty* > 1%, i = 1, 2, (3.14) and (3.17) yield the desired result
(3.21). O
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Theorem 3.2.Let W° < W' € K"(W1). Then there exists a solutidiv"}_, to (P), (3.16)=
(3.18), and¥V! < W2 < ... < W¥H,

Proof. To prove existence of a solution to (P), we will apply the Brouwer fixed point theorem. We
introduce the mappind : U} — Ul such that givem € U, Tn € K"(n) is the unique solution
of the convex minimization problem

min G"(p), 3.23
uin G () (3.23)
where the quadratic functional
1 1 _ n
G"(p) =5 ()" = — (W 0)" = (", )
Tn Tn
1 1 n— n
= Z Sj (E(%‘)z - [EWJ L Fj] %) : (3.24)
v, eV}

It follows from (3.20a) thafl’ : B* — B". Therefore to apply the Brouwer fixed point theorem we
just need to show thaf is continuous, ag” is a bounded finite dimensional convex set.

Let {7 };cn be such thay® ¢ B* andn® — n € B" asi — oo. Then for alli € N,
Tn® ¢ K"(n®) is the unique solution of the convex minimization problem (3.23) witeplaced
by ), and so is the unique solution of the corresponding variational inequality

; - D\ n i i
(Tn® =W o =) > 7, (f 0 = TH®) Ve K"(n®). (3.25)

As T € B" Vi € N, there existg* € B" and a subsequend@ ()}, .y such thafrn(m) —
&* asi,, — oo. On noting thatM"(-)(v,,) for all v, € V" is continuous, recall (3.12), we have that
if o € K"(n)thenforalli € N

=140 pe K'nY),

] MP — M ()
where ¢ .= max M (n) () h LUARICTY 0 as i— oo. (3.26)
v, €V 0

Hence, on replacing in (3.25) by, we can pass to the limit, — oo for the subsequence in
(3.25) to obtain thag* € K" (n) satisfies

(5* - Wn_17 ¥ — é*)h Z Tn (fn’ Y — £*> VSO S Kh(n) (327)

Hence¢* = Ty, and as this is the unique solution of (3.27) the whole sequénté — YTn as
i — oo. Therefore the mappiny : B" — B" is continuous, and so the Brouwer fixed point theorem
yields that it has a fixed point’™. Hence there exists a solutighi’"}"_, to (P), (3.16)= (3.18).

We now show thatV™ > W' n = 2 ... N. Let¢* € Ul be such thatp; = W +
Wt — W = max{Wp, W'} for all v, € V", where[a], := max{a,0} forall « € R. As
wnt e Kh(Wn=l)y andWn™ € K"(Wn), it follows from (3.21) thatp* € K"(1W™). Choosing
¢ = ¢*in (3.18), and noting (3.7), yields that

Dos Wi =W < Y s B WP - WL <0,

h h
Qjegl Ejegj

and hencév” > w1, O
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For the next result, we introduce

A= {0 (Ui ey With v € R}, (3.28a)
ALy :={p e A" : ¢y €Rso Vere €EL}. (3.28D)

Existence of a solution to the mixed formulation (Q) is a consequence of Theorem 3.2 and the
following equivalence result.

Theorem 3.3.1f {IW"}]_, solves (P), then there exis{§)"}._, such that{IW", Q"}"_, solves
(Q). Hence there exists a soluti¢i’”, Q” _, 10 (Q), (3.4a,b)= (3.8a,b).

Proof. Let {IW"}_, solve (P), (3.16) (3.18). Theny = W™ is the unique solution to the follow-
ing convex minimization problem
min  G"(p), (3.29)

pEKM (W)

whereG™(-) is defined by (3.24).

In the regularized modél, > 0, the Slater constraint qualification hypothesis (see e.g. (5.34) on
p. 69 in [9]) is obviously satisfied with® = 0; that is,d¢"(v,) < M!(W")(v,) for all v, € V".
On recalling (3.19), we now introduce the Lagrangian

L'(p,a, ) == G"(p)+ Z Q0 [W — 0 — |ery| Mf(Wn)(Qe)]

eNeS}L

+ Y Bre [on — 00— lewd MEW™) ()],

8k7265}l

wherea, 3 € A". It follows from the Kuhn—Tucker theorem (see e.g. Theorem 5.2 in [9]) that there
exist Lagrange multipliers*, g* € A’go such thaf W™, a*, 5*} is a saddle point of the Lagrangian,
i.e.

L"(W", a,B) < L"(W",o*, 8%) < L"(p,0*,8*) Vo e Uy, Va,pe AL, (3.30)
The first inequality in (3.30) yields that

ag g (Wi — Wi — lex MW
and ﬁl:,ﬁ [W]? |6k g| Mh

v)]
} V@/@g € 5}1 (331)

Hencen;, , can be positive only itV — W' = [e, | Mf(W”)(ye). In this caséV; > W}, sof;, =
0and, on noting (3.13)(W")l,, , = MI(W™")(v,). SettingQy, , = i, — aj, = —aj, < 0, we
obtain from (3.31) that

€k,¢

@z, | lewel ME(W™)e,,, + Q2 , (W7 = W) = 0. (3.32)

Similarly, if 35, > 0 thenW — W} = |ex | M!(W™)(v,), and hencéV;! > W}, aj, = 0 and
MrW™)e,, = MIHW™)(v,). Once again we seb;, , = Giy — aye = B, > 0, and obtain
from (3.31) the same relation (3.32) again. If both Lagrange multipligrs,and 35 ,, related to
the edges;, € EF are zero we sy, , = B, — o, = 0,50 (3.32) holds. Therefore, on setting
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Qe,, = Bro—aj foralleg, € Er,andQy , = 0 forall e, € £, we obtain that (3.32) holds for
all e, € E; that is, the equation in (3.9) holds forall, € £".

We now prove that the inequality in (3.9) holds for all, € £". It follows from (3.13) and as
Wn e KhMWn) thatif W > Wp theth(W")|eu = Mh(W”)(ve) (W — W) /|ex.|, and so
] exel ME(W™) ey, + 80 (Wi = W) > (|9 + ) (Wp — W) > 0forall ¢ € R. Similarly, if
Wy Wit then M (W), , = Mh<wn><_ ) > (W= W) [exl, and s [eg,e| M (w™)], , +
(W =W > (|| —¢) (W —Wp) > 0forall ¢ € R. Hence (3.9), and so (3.8b), holds.

To show that (3.8a) holds We use the second inequality in (3.30), which yields that

Wn Wnl
(T— >+Z B Y Bu—ag) =0 Yy eV

ek, EER e; i €EN

and then note tha@y, | = 3, — oy, forall ey, € Er. Therefore{W, Q" }._, satisfy (3.8a,b), and
hence (Q), (3.4a,b).

As we have already proved existence of a solufidi’}V_, to (P) for anyiV'! € K"(W1) such
thatW?! > W9 in Theorem 3.2, the above establishes the existence, for the same initial condition
W, of a solution{iw", Q" }_, to (Q). O

If {w"}_, solves (P), an alternative way of findiqg)"}/_, such that{iw'", Q"}.", solves
(Q) is given in the following lemma.

Lemma 3.4. Let {IW"}Y_, solve (P), (3.16% (3.18). Let

yho e {ye V' (g, V) = (u¢> —(Fr) Woe Ué“‘}  m=2...N.
’ (3.33)
Then there exist§" € Y"" such that
(1Q", MEW™) < (Jof, ME(W™) Yy eY™, — n=2..,N. (3.34)

It follows that{1V", Q"}’_, solves (Q), (3.4a,b)- (3.8a,b).

Proof. If {IW"})_, solves (P), then we showed in Theorem 3.3 that there ekigtg)", such
that{W”,Q"}ﬁ)f:2 solves (Q), (3.4a,b). AQ" € Y"", the affine manifoldy™", n = 2,..., N, is
non-empty. Moreover, (3.4b) yields th@t' € Y™ is such that

(1Q, MEW™) +(Q", X W™) < (|9, MEW™) + (&, YW") Yy eV' n=2... N
(3.35)

Asy € Y"" yields that

(¥, YW

n> B (Wn _ Wn—l

Tn

h
,W") — (f", W), n=2,...,N,

the desired result (3.34) follows immediately from (3.35). O
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Next, we prove the other half of the equivalence result in Theorem 3.3.

Theorem 3.5.1f {IV", Q"}_, solves (Q), (3.4a,b¥ (3.8a,b), thed W}, solves (P), (3.16)=
(3.18).

Proof. Let {IW", Q"}, solve (Q), (3.8a,b). Suppose thfti"(v,) > M (W")(v,) at a vertex
v, € V". Then there exists an edgec £", ¢ = ¢,; ore = e, such thatWy > W and
(Wp —wnm/lel > MW™)(v,) = M!W™)|., on noting (3.13). However, then the inequality
(3.9), and hence (3.8b), cannot be true. Therefore, it followsahBt™ (v,) < M!(W")(v,) at
every vertexy, € V", and soV™ € K"(Wn).

It follows from (3.8a) that for any € K"(W™)

an — an_l n n n n n
Z Sj T—n — Fj (QOj—I/Vj ) = Z Z Qek,]’ - Z er’k (@j_wj ) = 5.

v, EV? ijV}L ek,jeé?}l ejykGS}L
(3.36)

Sincep = W™ = 0 at the boundary vertices, one can assume each €dgé!" appears twice on
the right-hand side of (3.36) and, using (3.9), we obtain that

S= > Qn, (W =W = (o= )]

ek,ng?
= 30 10k Hewsl MEOW™) ey, — Q2 (1= 25)]
ekijtS}L

The latter sum is nonnegative. Indeédy(v,) < M(W")(y,) for all v, € V". Hence, ifiV;} >
W} then the equation in (3.9) yields th@f, . > 0, and (3.13) thaty, — »;)/lex,;| < MMYW™)(vy,)
= MMW™)le, . Similarly, if W < W7 then@y, . < 0and(p; — wi)/ler;l < MIW™)(v;) =
ME’L(W”)]%. This proves that > 0, and hence, on recalling (3.36), th&t* solves (3.18). There-
fore {W"}N_, solves (P). O

n=2

4 Steady state problem

Theorem 4.1. Let {IW"}>, be a solution to (P) fobV! € K"(W') with W' > W and f* > 0
for all n > 2. Then there existd’ € U} such that

lim Wr=W e K"(W) and W'<W!'<W"!<W"<W Vn>2.

n—oo

In addition, iflim,, . f“ = fandlim,ﬁoo 7, = 7 > 0 thenlW is a solution to the problem
(Ps) Find W e K"(W) such that

0> (;% - W) Vo € Kh(W). (4.1)
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Proof. By Theorem 3.2y~ < W™ for anyn > 2. SinceW" € K"(W"), we have also that
Wn < D" on recalling (3.20a). Therefore the monotonic increasing sequgéiég .~ is bounded
above. Hence, there exidt§ € Ul such that

lim W" =W and W<W!l<wrl<wr<W Vn>2.

n—oo

To show that¥ € K"(W), we note that\/" is continuous and so

W (v,) = lim OfW"(v;) < lim MFW™)(v;) = ME(W)(v;) Yy, € V™

n—oo n—oo

Furthermore, sincé/” > W™, for anyn > 2, it follows from (3.14) and (3.17) thak (W) c
K"Wm). Letp € K"(W), so thatp € K"(W™) foralln > 2.If f* — fandr, — 7 > 0as
n — oo, then passing to the limit — oo in (3.16) yields the desired inequality (4.1). O

Associated with the steady state QVI problem)(RB the following stationary version of problem
(Q):
(Qs) FindW € Ul and@ € V" such that

—(Q,Yy) = (f, 90> Vo € Uy, (4.23)
0 vy e V. (4.2b)

We have the following analogues of Theorems 3.3 and 3.5, and Lemma 3.4.

Theorem 4.2.If W solves (R), (4.1), then there exist§ such that{W/, @} solves (Q). Hence
there exists a solutiofilV, Q} to (Qs), (4.2a,b).

Proof. The proof is the direct analogue of that for the evolution case given in the proof of Theorem
3.3. =

Lemma 4.3. Let IV solve (R), (4.1). Let
vhi={y eVt (v, Ye) = ~(Tv) veell}. (4.3)
Then there exist§) € Y" such that
(QI MIW)) < (Juf, MX(W)) Vi eY™ (4.4)

It follows that{IV, Q} solves (Q), (4.2a,b).

Proof. The proof is the direct analogue of that for the evolution case given in the proof of Lemma
3.4. O

Theorem 4.4.1f {WV, Q} solves (Q),(4.2a,b), theV solves (R), (4.1).

Proof. The proof is the direct analogue of that for the evolution case given in the proof of Theorem
3.5. =
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In general, with different sourceﬁ", n > 2, and starting from different initial statd$’* in
Theorem 4.1, one arrives at different solutions to the steady state probi¢nH®@vever, we show
below that if the source is strictly positive then the stationary solutiors unique.

Theorem 4.5. If f > 0, then (R), (4.1), has a unigue solutioiy. This solution is the same for
every positive sourc¢ and satisfies

W>=W°  OW(y)>ke Yy, eVy and W=>=n VnpeK'(n). (4.5)

In addition, 1V is the maximal steady state solution tgJRhat is, ifI¥" is any solution to (F) with
a sourcef’ > 0, thenW > W' is also a solution to this problem. Furthermadrg; = 1 for every

v; € VI such thatf,, f' x; dz > 0.

Proof. Existence of a solutio® > W° to (Ps) follows from Theorem 4.1. If there exist two
solutionsW® € K*(W®), i = 1, 2, let W* € U be such thatV; = max{W", W *} for all
v, € V", It follows from (3.21) thatV* € K"(W®), i =1, 2, and, asf > 0, (f, W* — W) > 0
for eitherj = 1 or 2, which contradicts? ) solving (R), (4.1). Therefore, the solutioW &
K"(W) to (Ps) is unique.

We now show that this unique solution is independent of the particular choife>of0. For
i=1,2 letW® e K"(W®) be the unique solution of ¢, (4.1), with f = fO_ If WO £ W@,
on definingl* € Ul as above it follows thatV* € K"(W®), i = 1,2, and, asf®) > 0,
(fO, w* — w@) > 0 for eitherj = 1 or 2 which contradicts¥ ) solving (R), (4.1), with
f = . Therefore W™ = W® and so the unique solutioi’ to (Ps) is independent of the
particular choice of> 0.

We now show thad| W (v,) > k for all v, € V7. If not, letd} W (v;) < ko for somew; € Vy
and then choosE’* € Ul such that

Wr=Wy, k#j, and W >W; with 9W*(v;) = k. (4.6)
It follows from (3.11) that
NW*(v,) <OW (vy) < MEW)(vy), k#j, and 9W*(v)) = ko < MIW)(v)). (4.7)

HenceW* € K"(W), and, asf > 0, (f, W* — W) > 0, which contradict$V solving (R,), (4.1).
Therefore, the unique solutidi’ € K" (W) to (Ps) is such thad[!IW (v;) > k for all v, € V}.

If n € K"(n)andW % n, letn* € U0 be such tha; = max{W,,n,} forall v, € V". It follows
from (3.21) that;* € K"(W), and, asf > 0, (f,n* — W) > 0, which contradict$V solving (R;).
Therefore, we have that” > .

Finally, if W' solves (R) with a sourcef’ > 0 then (4.5) yields thatl” > W/, and so(f’, W —
W’) > 0. It follows from (3.14) and (3.17) that” € K"W) C K"(W'). SincelV’ is a solution to
(Ps) with f7, only equallty(f’ W —W’) = 0is possible. In addition}}” is also a solution to ()
with f’ Moreover,W = W' in the “support” off’ or, more preciself}V; = W for everyv, € %

such thatf,,, 7 x; dz > 0. O
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5 Numerical solution

5.1 The augmented Lagrangian method

In order to find a solutio 17", Q"}]_, to (Q), (3.4a,b), we first find a solutiofiv"})_, to (P),
(3.16), recallLemma 3.4. Far=2,..., N, we also note thdl’™ € K"(1W") is the unique solution
to (3.29). We propose to solve this iteratively. Settifig® = W1, then form > 1 find

wm™ .= arg min G" (W) (5.1)

WeKh(Wn,m—l)

until the sequencéW ™™}, .y converges up to a given tolerance. Thenigét= 1™,
In view of (3.19), the minimization problem (5.1) can be written as

min G (W)

WeKh(Wnm—1)

. sz - WZ nm—1 n,m—1 h}
= G"W): —— e |—-M,"""", M," Vepe € €
Vgg&]{ (W) el (-0 P Verp € &
. Wk - WZ h}
= GTL W + I n,m—1 n,m—1 L = v c g 5
WGZI]?{;}EA}L{ W) k@zesh (=M, My, ](PM) ekl Pre  Vert !
€k, I
(5.2)
whereM "~ = MI(Wnm=1)(v;) forall v; € V", and for[a, b] C R,
0 ¢ € [a,b],
Ity (€) == { (5.3)
ol o (¢ lab)

is its indicator function.
We now extend the augmented Lagrangian method with splitting, see algorithm ALG2 on p. 170
in [14]. For allW € Ul andp, i € A", let

Ly (Wop ) =

. Wi, — W, Wi, — W, 2
G"(W) + Z ][—Mg‘*mfl,Mgvmfl](pk,e) + ke <¥ —pk,e) +g <u —Pk,e> ]

ek,gég?

be the augmented Lagrangian, where R- is a parameter. The splitting method is then:
GivenW ™0 ¢ U? andp™?, um° ¢ A" form > 1

W™ = arg min LW, pmt ), (5.5)
Weuh

M. gr in L Wn,m’ 7 n,m—1 7 5.5b

p gmin £, P, ") (5.5b)

n,m n,m— Wmm - Wmm n,m
Hre = Mg Yp (W — Dile ) Ve, € EF. (5.5¢)
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The minimization problem (5.5a) leads to the following well-posed linear systetyfor € U}

3 —1 i B -1 ) ) 7
S‘anm — Wy + ) Hik P (me il —p@vm—l)
’ T o leiel o fesixd €kl Pk
6]"]9651 L -
N | 7 i
Mz,;n P Wl? " an " n,m—1 o Jak
- > ler| + el | ~ Pry A
ek,]eg}l L 5] 5J 5J ]

Vo, € Vi (5.6)

The unique solution of (5.5b) is

n,m—1
’ Wn,m _ Wn,m
ppy = max {—M[“m, min {M,?’m, Pee | L }} Ver €. (5.7)

p ekl

The above is an extension of algorithm ALG2 in [14] from the variational inequality case to
the QVI case. In the variational inequality case, 4J:(¢) = k, > 0 or more generally a given
positive > € C("), thenM;"™ = M; = x(v;) for all v; € V" and the algorithm (5.5a—c) is
guaranteed to converge for any choice of positivéhat is,

wmm W e Ul prm -t e A", utm — ot e A as m — oo, (5.8)

see [14]. Although we have no convergence proof of (5.5a—c) in the QVI case, in practice it was
possible to obtain convergence even for reasonably small valuesqf3.12), see the numerical
examples below, by adjusting the parametend, if necessary, decreasing the time step\Ve
note that we have used a similar approach for the QVI problem arising in the modelling of growing
sandpiles, see [5]. An alternative iterative numerical method for the QVI problem (Q), (3.4a,b),
similar to that in [4], is based on the approximation of the non-differentiable nonlingarjtpy
. mwith0 <r —1 < 1.

If (5.5a—c) converges in the QVI case, i.e. (5.8) holds, then it follows from (5.5¢) that

Wy —we

Ve € 8? (5.9)
]

n o
Pre =

On setting

n
n Mg

€k

|6 | Vek,g c g? and Zkl =0 V6k7g S gg, (510)
k.t ’

it follows from (5.8), (5.6) and (5.9) that (3.8a) holds. In addition, (5.8), (5.7), (5.9) and (5.10) yield
for all e, € EF that

Pry = MIW™)(uy) = Hpe >0 = ., =0,
Py € (=MEW™)(v,), ME(W™)(uy,)) = =0 = Q,=0, (5.11)
Pre = —M(W™) () =  ppe <0 = Q. ,<0.

€k —

Finally, it follows from (5.11), (5.9), (5.10) and (3.13) that (3.9), and hence (3.8b), holds. Therefore
{w,Q"}, solve (Q), (3.8a,b).
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Although the converged” € A" leads toQ" € V", via (5.10), so thaf '™, Q"}1_, solves (Q),
our numerical experiments showed that convergence, as oo, of ™™ is much slower than that
of W™, Even if W™™ converged with a severe tolerance, there still remained nodes from which
the calculated flu)™™ was not directed solely along the edge of steepest descent, but partly along
some other edges too. Visually, this is exhibited in the unnatural river splits, which disappear from
the river plots only after significantly more iterations. It was more efficient todfdising Lemma
3.4 as follows. o

Given {W"}¥_, solving (P), (3.16)= (3.18), we find{ Q" Y, such that{ W™, Q" _, Solves
(Q), (3.4a,b)= (3 8a,b), by recasting the weightéd minimization problem (3.34) as a standard

linear programming problem. On recalling (3.1), we knowsfot 2,. .., N that
Z Qero Loy, d H' (er,e), (5.12)
er€EN

Where{QZH}eHegh, Qe,, € R, are to be determined. As we kndW", the signs of these fluxes
are also known. It follows from (3.10(i),(iii)) tha®y, , > (<)0 if W' > (<)W' and@y, , = 0 if
W = Wp. Therefore, for every,., € £ we set

€k, —

no 1 Wi >Wp,
kO —1 wp<wp

SO thatQM =87,Q¢
ten, on recalling (3.6), as fm@ € ih’n such that

= |Q¢, |- In this notation, the minimization problem (3.34) can be rewrit-

€kt

~ ~ ~ ~hmn
SToap, Q< Y ap,Que VQey " (5.13)
ek,geg?’ ekleg?
whereay , = |eg| MI(W™)], , and

€k,L

~h,n W' — W_n_l
Y= qve Ay Y Shin— ) Siitei =5 (Ff— : ; ) Vy; €V

Tn
€j7k€g}l ek’ng?

The minimization problem (5.13) is a linear programming problem, and can be solved efficiently
using a standard procedure; digprog, see [19]. We note that a different method, applicable to
more general! optimization problems (see, e.g., [10], p. 8), reduces (3.34) to a linear programming
problem of higher dimension which, nevertheless, can also be solved very efficiently.

5.2 Numerical simulations

We precede the presentation of our numerical experiments by the following comment. Convergence,
even in some weak sense, of solutighis”, Q” _, 0f (Q), (3.4a,b), as the mesh parameters —

0 is difficult to expect in general because of two reasons. First, as was noted above, the problem can
be ill-conditioned in that small changes in the relief, can, in some cases, lead to dramatic changes

of the river network. Second, limiting the possible flow direction to the direction of the mesh edges



Lakes and Rivers in the Landscape 19

can, in principle, lead to a non-negligible distortion of the river network. Nevertheless, we expect a
river (or wadi) with a pronounced valley to be well approximated by a nearby zigzag path consisting
of the mesh edges. Traditional lattice D8-algorithm-based methods suffer from the same problems
but, usually, are able to produce realistic hydrological maps. In the numerical simulations presented
in this section we use artificial landscapes to illustrate some typical features of our approximation.
We start with a radially-symmetric non-regularized € 0 andk, = 0) problem having an

analytical solution. We chose the relief in the form of a cone surrounded by a moat, see the left of
Figure 1. In polar coordinates:, 6}

0.3—r 0<r<0.6,
wo(r) =4 r—20.9 0.6 <r<0.9, (5.14)
0 r > 0.9.

Let f = 1 forr < 0.2 and f = 0 outside of this disc. Rain water flows down the cone slopes,
soq(z,t) = q(|z|,t)z, and gradually fills the moat. Hefe is the unit vector in the direction
z. Equating the volumes of the discharged and the collected water, it is a simple matter to find
the height,H (¢), of the water layer above the lowest circle= 0.6, of the moat. This leads to

= 4/t/30 for t < 2.7. The fluxq on the cone slopes above this layer, i.e.rfer 0.6 — H(t),
can be found from the mass balance equatidm ¢q) = r f with the initial conditiong(0,¢) = 0,
yielding

0.57 0<r<0.2,
0.02771 02<r<0.6-—H(t),
g(r,t) = L ' (¥ (5.15)
undetermined 0.6 —H(t) <r<0.6+ H(t),
0 r> 0.6+ H(t).

Numerical solutions have been obtained with- 0.01 andk, = 0.005 (the model regulariza-
tion parameters)) = (—1,1)%, W! = W9, 7, = 0.01 (the constant time step) apd= 0.01 (the
augmented Lagrangian j parameter) and compared to the analytical soldtierdat. For computa-
tional ease, the mtegraf” -) on the right-hand sides of (3.4a) and (3.16) was replace(dhy)
and hence similarly in the definition &f in (3.7).

Comparing the approximate surfaldg(-, t,,) = W"(-) and the exact oney(-, ¢,,), is straightfor-
ward; we calculated the relative error in the approximat@orm:

> ol lw(@ ), tn) = W (')
o€7" , (5.16)

> lollw(@, )]

ocTh

wherez(?) is the centroid ofs. The flux comparison is far more complicated, as it requires to
compare the exact flow field -, ¢,,) (continuous in this example, but a measure in general) and the
singular vectorial measu@”(-).

For a very crude check of the flux accuracy in this example we used the continuous radial vector
fields ¢, (z) = |z|*~! 2, where¢ € R, for which the integrald,(¢) = Jou 4( ). ¢ (z)dz can

be found analytically. Her(¢) is the disc centered at the origin with radlﬂst) =0.6— H(t)in
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which the exact flux is known. The integrals were compared, for seyesalues, to the following
approximation of the duality pairing @§" andgC on Q(¢):

ST le1Q 1z i, . 2, (5.17)

|£(e> ‘SR(tn)

wherez(© is the midpoint of edge € £7.

We used two triangulations having approximately the same number of elements and not in any
way fitted to the relietw, or the sourcef. The first mesh was a general Matlab-generated triangu-
lar mesh with the maximal element size= 0.025; and the second was a uniform mesh, which
was obtained by first dividing? into squares with side lengtty100 = 0.02 and then dividing
each square into two triangles by its SW-NE diagonal. The suifédcé.5) was found numerically
(Figure 1, right) with the relativé.! error not exceeding 0.2% for both meshes, recall (5.16). For
the non-uniform mesh, the approximate edge flugésyield the runoff picture seen in the left of
Figure 2. Here and below, to show the network of river channels we plot the edgé&$ for which
the calculated fluxQ" | exceeds some threshold, with the plotted edges being thicker for a stronger
flux, and the plotting of “rivers” in “lakes” being suppressed. We see that the continuous water flow,
(5.15), is approximated by a set of channels bringing the discharged water towards the lake that
forms in the moat around the cone. Although the position of the channels seem random, their az-
imuthal distribution is sufficiently uniform. Far = 0.1, 0.25, 0.5 and1, the integrald(0.5) have
been approximated by (5.17) with relative errors smaller thaft.

Although the errors il (0.5) were only about double those for the non-uniform mesh, the cal-
culated channels in this case are strongly influenced by the anisotropy of the mesh (Figure 2, right).
This effect is especially strong, because the conical surface itself has no pronounced relief features
such as typical river valleys of natural landscapes. D8 algorithms show a similar behavior [11];
another well-known consequence of using a uniform mesh is the abundance of parallel channels
generated, especially, in flat areas [21].

For the “rippled” conical support

ax{—0.95+r, 0.85 —r (1 4+ 0.25 | sin(50 <0.95,
) = { 0D 0 (OB 200 g

see Figure 3; the approximate drainage channels generally follow ten relief valleys, see Figure 4
for the simulation results computedtat 0.06, before the time when the ten separated lakes begin

to merge, with the same non-uniform (left) and uniform (right) meshes as in the previous example.

In addition, the numerical scheme parameters were the same as before, except here the time step
7. = 0.002. Due to the presence of “river valleys”, the influence of the anisotropy of the uniform
mesh is weaker for this relief.

All simulations have been performed in Matlab R2012b (64 bit) on a PC with an Intel Core
i5-2400 3.10Hz processor and 16Gb RAM. The primal QVI was solved using the extended ALG2
algorithm as described in Subsection 5.1 with the stopping criterion based solely on the convergence
of W™™: the iterations were stopped if the relative change of this variable in the approxirhate
norm, the analogue of (5.16), is less thHan". In these examples, computifig”, n = 2, ..., N (all
time levels) took 2—3 minutes of CPU time. Then the approximate@l{ixwas computed (with a
similar tolerance) in a few seconds using the standard Matlab linear programming Eopren,
via the rewritten formulation (5.13) of (3.34).
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Figure 1: Left — initial supporty,, right — the approximate surfad€(-,0.5).

i 3
e
Dy
.

Figure 2: Computed drainage channels and exact lake boundaries (blue lings)}ai.5. Also
shown: level contours df’™ (black) and the source support boundary (red line). Left — results for a
non-uniform mesh; right — results for the uniform mesh.
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Figure 3: Rippled suppotty.
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Figure 4. Computed drainage channelg at 0.06 for the reliefw, shown in Figure 3. Left —

non-uniform mesh, right — uniform mesh.
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6 Lattice model approach

In DEMs it is difficult to distinguish the actual topographic depressions from false ones, caused by
a forest canopy, a bridge, a missed narrow gorge of a river etc. To ensure drainage continuity, it is
common practice to rectify all depressions and flat areas prior to any DEM usage in hydrogeomor-
phic applications. In principle, it is possible to fill all depressions in the initial réliéfby solving

the regularized evolutionary problem (P) until the steady state is reachek,; Bob the resulting
surfacelV is also free of the flat horizontal areas, recall Theorem 4.5. This approach is, however,
too slow for practical applications that need high resolution DEMs of large areas. Typically, modern
GIS work with massive data sets containing arouftito 10® cell elevations, see e.g. [20]; such
DEMs are widely available. Solving problem (P) on a finite element mesh representing the earth’s
relief with such accuracy is not practical.

Efficient drainage network extraction algorithms in GIS do not solve any evolutionary problems.
Most of these lattice algorithms first replace the raster (square-grid) DEM, representing the relief, by
a new one, where all pits (lakes) are filled. Then they treat the flat areas and determine the direction
of flow out of each cell. Finally, the accumulated water flux through every cell is computed. We
now present such algorithms in the context of our finite element model, which uses a TIN relief
representation and directs water fluxes along the mesh edges.

6.1 Lake filling, flow routing and flux accumulation

We now consider the unregularized cases 0, and define, similarly to (3.17) and (3.12), for any
n €Uy

Kg(n):={p e Uy : dpv;) < My(n)(y;) Yu; €V}, (6.1a)
k > WO
where  MI(p)(v,) =1 CASE (6.1b)
max{ko, I W°(v;)} n; < WJ.
It follows from (6.1a,b), (3.12) and (3.17) that for any- 0 and anyy € Ul
My(n)(vy) < MP(p)(v) Vo, €V = Kp(n) € K"(n). (6.2)

For the given earth religf’®, we now construct a new reliefl’?, such that
WO <W°e KW C KMW®)  and  9[W'(v;) > ko Vo, € VP (6.3)
using the following iterative algorithm.
1. Setthe “water levelL; = +ooif v; € V} andL; = 0if v; € V.
2. Setflag=0. For eacle(k, () € £
o Set

L;, = max{W}, min{ Ly, Ly + ko le(k, 0)|} },
L, = max{W min{ Ly, Ly, + ko |e(k, )|} }.
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o If L;c 7£ L, or L/g 7& Ly, Setflag =1.
e Setl, = L;c andL, = le

3. Ifflag=1 go to 2.
4. SetW° = L e U

The second condition in (6.3) yields that we obtain a relief without depressions and flat areas. For
ko > 0 very small, the relief is almost horizontal in the “lake” dom&ifY > W9, asafWO(gj) =k

it WO(v,) > WO(w,).

Theorem 6.1. The above iterative algorithm yield?ii € Ul satisfying (6.3). Moreover, there
exists only one function satisfying (6.3). Furthermdé} < W, whereW is the unique solution
of (Ps) forany f > 0.

Proof. On the first iteration of all edges(k,/) € £}, L; values become finite at all; € V;
connected by an edge to a boundary node. Then at the next iteration those connected to these nodes
become finite, and so on. Finally tiig values at every; € VI become finite in a finite number of
iterations. Obviously, throughout the iteratiahsis monotonically decreasing add > WJQ for all

v; € V7. Hence we have that’® > wo.

Whenever the value of,, strictly decreases, eithdl, = L; + ko le(k,¢)| or L, = W}
min{ Ly, Ly, + ko |e(k, ()|} for somee(k,¢) € EF. SinceL, > L;, in the first case we get;
L) + ko |e(k, £)| so there is an edge along whi¢hdecreases from, with at least the slopg,. In
the second case, sinég > W}, we obtain thal., > L+ kg |e(k, £)| > L}, +ko |e(k, £)|. Therefore
for anywy, € V} after a strict decrease @f, we have thad|' L(v,) > k.

If at an iteration the level at, remains unchanged,, = L,, edge descents di’ from v, can
only become steeper since thélevels at the neighboring nodes do not increase@?ﬂfs(yg) > ko
from a previous strict decrease In, e.g. becoming finite, we have that this remains true. Hence,
we have thad!'W°(v,) > ko at everyy; € V).

To show thatiV® € K/'(W°), we note that ifiV? = W? thenW? — W2 < W2 — WP for
all e(k,0) € &M Hence@fﬁo(g) < WO (v,) < MJ(WP)(v,), on recalling (6.1b). Otherwise,
if WO(v,) > W9x,), we have thatV®(v,) < WO(v,) + ko |e(k, )| for all e(k, ¢) € E", so that
8fW°(y£) < kg = M} (W°)(»,) also in this case. Hence, on recalling (6.1a) and (6.2), it follows
thatW® € KX(WO) C Kh(W).

Suppose thatV’() and W@ satisfy (6.3) andV" < W/ at some vertex, € V. Choose
an edge path from, to the boundary)Q" such that at each vertex the outflow edge is the steep-
est descent of’ (1), Let v, be the vertex associated with edgé, ¢) of this path. Ther{Wf) —

W ek, 0)] < WP (v,) < ko, sinceW? > W > WP andW® e K}(W®). On the

other hand, at, the edges(k, /) is the steepest descent edge fgf'). From (6.3) it follows that

WD — W/ le(k, 0)] = WD (v,) > ko. HenceW () decreases along the edgé:, () at least

as fast ad¥’?, and so the inequalityy ™ < W holds also at the next vertex,, of the path.
Continuing, we arrive at a contradiction at the last vertex since both functions must be zero at the
boundary nodes.

Finally, it immediately follows fromi® € K"(W°) and (4.5) thatV® < . O

>
>
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Although, the conditions (6.3) satisfied unlquelyw are very similar to those, (4.5), satisfied
by W, the unique solution of (§ for anyf > 0, we only know thati/’ > WO, The following
simple example shows th&t may not belV’°.

Let Q" = [0,4] with nodesy; = j, j = 0,...,4, andW{ = Wy = ko and W) = —2k.

It follows that W0 = W9 = k, and W9 = 2k,. Now consideri¥’! = W for the evolutionary
problem (P), (3.16), Witkf” = f> 0 for all n > 2. We see thatV! is not the steady state solution
W of (Ps), since “water” coming into node, from the source cannot flow out a8} = W7
and soM(W!')(v,) = W (v,) = 3ko > ko = W' (v,). ThereforelV'! increases. A simple
calculation yields that the steady state solufiBns such that?V, = W5 = kg+a andWy = 2ky+a,
wherea = 2kq £/(2ko + ) for anye > 0.

Having constructed a new religf© via the above iterative algorithm, we now consider the flow
routing. This is now trivial asf?f/ﬂv/o(yk) > ko > 0 for everyv, € V. We define the outflow
directionA(k) = j if e(k, j) € £ is the edge of steepest descent frome V7; any one of them
if such an edge is not unique. For the flux accumulation, we first set the initial values \oérties
fluxesQ, = (f, xx) for everyu, € V. Then, noting that water flows down the slopediof, we
arrange the nodes W so that

WOwy) > Woly,) > .. > Wo(y,),
where N = #V" is the number of inner vertices, and setfet 1,..., N

QAky) = Qary) + Q-

Finally, fore, ; € £} we set theedgeflux Q., , = 0 and fore,,; € £ set

Qek,j = _ij A(]) =k,

0 otherwise

It is a simple matter to check, on noting (3.1), (3.6) and the steady state version of (3.8a), that
Q € Y", recall (4.3). Moreover <€ Y" solves (4.4) with\/" (V) replaced b)M(?(WO), on noting

the steady state version of (3.35) and that the fluxgs, by construction, are only non-trivial on
critical edges.

We note that already on the first iteration of the lake filling algorithm, the vertices %

connected by the edge of the steep‘éét descent to the domain boundary get their final level
values,L; = W0 On the second iteration vertices, whosell° steepest descent edge path to the

boundary consists of two edges, are fixed, Lg= W?; and so on. Therefore the total number of
iterations required does not exceed the maximal number of edges W‘ihﬂaeepest descent edge
path from a mesh vertex to the boundary. Our numerical experiments show that this lake filling
algorithm is fast. In addition, the main part, in terms of CPU time, of the flow routing and flux
accumulation algorithm is the sorting of vertices, which needs M}y log \/') operations.

If a real depression is known, the lake filling algorithm can easily be extended to account for a
partially filled closed lake. It requires only to choose a vertexin this depression and set initially
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L; = L, where the desired levél; > W) and is less than the level of a fully filled depression.

The resulting profiIeW0 will then contain an inner lake with an almost horizontal surface at the
heightLj. Then the flow routing algorithm can be modified with a flow direction to a fictitious sink
being assigned to all vertices corresponding to the remaining local minima of the relief and the edge
fluxes in the lake area disregarded.

6.2 Areal relief example

In this example we used a DEM of theeRnion island (France), which is a 63km long and 45km
wide volcanic island in the Indian ocean. The island has a mountainous relief, see Figure 5, with
its highest point about 3000m above sea level. The raster DEM of éua@iBn was derived from

the worldwide elevation public domain database [28] collected in the “Shuttle Radar Topography
Mission” project [12]. The file contained the heights above the sea level in a 72.8km by 66.2km
rectangleR” (Figure 5, bottom) at the points of a regu&® x 736 grid. The horizontal resolution

was thus 90m; the ocean points elevation was zero and the vertical DEM resolution was 1m.

In our numerical experiment we used a general Matlab-generated triangular mesh with
120m. It contained 1,155,917 triangles, 579,118 vertices, and 1,732,717 edges. Elevations of the
initial relief W9 at the mesh verticerQ, v; € V", were bilinearly interpolated from the DEM data
using Matlab’snterp2routine. Unlike the time consuming domain triangulation and preparation of
the necessary mesh structures, the interpolation itself took less than one second.

We usedk, = 1ON—6 in the lake filling algorithm, see Section 6.1. The algorithm produced a
depressionless reli&f° after 98 iterations that took 13 seconds of CPU time. The flux accumulation
was computed for the uniform sourge = 1, so the water fluxes obtained can be regarded as
approximations to river basin areas. Together with flow routing, this computation took about 12
minutes.

In our map of the river network (Figure 6, top) we plotted edgese £7 with the flux (drainage
area)|Q., .| > qo, where the resolutiog, was(1/2000) |, f dz = |Q"]/2000. This resolution was
adjusted to the unknown resolution of the map produced for the same DEM by the Arc Hydro [1]
(Figure 6, bottom), based on the Jenson and Domingue algorithm [16]. The thicker lines in our map
show rivers having basin areas not less th@, and the rivers are not shown in the lakes. Visually,
the two maps are similar.
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Figure 5: Feunion island. The satellite image [29] (top) and a topographic map (bottom) derived
using the SRTM [28] DEM employed in our simulation.
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Figure 6: DEM based hydrological maps of theuRion island: our simulation results (top) and the
Arc Hydro [1] package map (bottom).
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