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Abstract

The Monster group M acts on a real vector space VM of dimension 196,884 which
is the sum of a trivial 1-dimensional module and a minimal faithful M -module. There
is an M -invariant scalar product ( , ) on VM , an M -invariant bilinear commutative
non-associative algebra product ∙ on VM (commonly known as the Conway–Griess–
Norton algebra), and a subset A of VM \ {0} indexed by the 2A-involutions in M .
Certain properties of the quintet

M = (M,VM , A, ( , ), ∙ )

have been axiomatized in Chapter 8 of [Iv09] under the name of Majorana represen-
tation of M . The axiomatization enables one to study Majorana representations of
an arbitrary group G (generated by its involutions). A representation might or might
not exist, but it always exists whenever G is a subgroup in M generated by the 2A-
involutions contained in G. We say that thus obtained representation is based on an
embedding of G in the Monster. The essential motivation for introducing the Majo-
rana terminology was the most remarkable result by S. Sakuma [Sak07] which gave a
classification of the Majorana representations of the dihedral groups. There are nine
such representations and every single one is based on an embedding in the Monster of
the relevant dihedral group. It is a well known fundamental property of the Monster
that its 2A-involutions form a class of 6-transpositions and that there are precisely
nine M -orbits on the pairs of 2A-involutions (and also on the set of 2A-generated di-
hedral subgroups inM). In the present paper we are making a further step in building
up the Majorana theory by classifying the Majorana representations of the symmetric
group S4 of degree 4. We prove that S4 possesses precisely four Majorana represen-
tations. The Monster is known to contain four classes of 2A-generated S4-subgroups,
so each of the four representations is based on an embedding of S4 in the Monster.
The classification of 2A-generated S4-subgroups in the Monster relies on calculations
with the character table of the Monster. Our elementary treatment shows that there
are (at most) four isomorphism types of subalgebras in the Conway–Griess-Norton
algebra of the Monster generated by six Majorana axial vectors canonically indexed
by the transpositions of S4. Two of these subalgebras are 13-dimensional, the other
two have dimensions 9 and 6. These dimensions, not to mention the isomorphism
type of the subalgebras, were not known before.



1 Internal Majorana representations

We start with a version of the definition introduced in Section 8.6 in [Iv09]. Let V
be a real vector space equipped with a positive definite symmetric bilinear form ( , )
and a bilinear commutative non-associative algebra product ∙. Suppose that

(M1) ( , ) associates with ∙ in the sense that

(u, v ∙ w) = (u ∙ v, w)

for all u, v, w ∈ V ;

(M2) the Norton inequality holds, so that

(u ∙ u, v ∙ v) ≥ (u ∙ v, u ∙ v)

for all u, v ∈ V .

Let A be a subset of V \{0} and suppose that for every a ∈ A the following conditions
(M3) to (M7) hold.

(M3) (a, a) = 1 and a ∙ a = a, so that the elements of A are idempotents of length 1;

(M4) V = V
(a)
1 ⊕ V

(a)
0 ⊕ V

(a)
1
22
⊕ V (a)1

25
, where V

(a)
μ = {v | v ∈ V, a ∙ v = μv} is the set of

μ-eigenvectors of (the adjoint action of) a on V ;

(M5) V
(a)
1 = {λa | λ ∈ R};

(M6) the linear transformation τ(a) of V defined via

τ(a) : u 7→ (−1)2
5μu

for u ∈ V (a)μ with μ = 1, 0, 122 ,
1
25
, preserves the algebra product (i.e. uτ(a)∙vτ(a) =

(u ∙ v)τ(a) for all u, v ∈ V );

(M7) if V
(a)
+ is the centralizer of τ(a) in V , so that V

(a)
+ = V

(a)
1 ⊕ V (a)0 ⊕ V (a)1

22
, then

the linear transformation σ(a) of V
(a)
+ defined via

σ(a) : u 7→ (−1)2
2μu

for u ∈ V (a)μ with μ = 1, 0, 1
22
preserves the restriction of the algebra product to

V
(a)
+ (i.e. uσ(a) ∙ vσ(a) = (u ∙ v)σ(a) for all u, v ∈ V (a)+ ).
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The elements of A are called Majorana axes while the automorphisms τ(a) are
called Majorana involutions.

Let B be a set of Majorana axes, let G be the subgroup in GL(V ) generated by
the Majorana involutions τ(a) taken for all a ∈ B, let U be the subalgebra in (V, ∙ )
generated by B, let ( , )|U and ∙|U be the restrictions to U of ( , ) and ∙ , respectively.
Then the quintet

(G,U,B, ( , )|U , ∙|U)

is said to be an internal Majorana representation of G. When studying Majorana
representations of a group G, the whole of V and A are rather irrelevant, although G
might act unfaithfully, or even trivially on U , thus V is needed mostly implicitly to
make certain which group we are representing.

The major result of this paper is the following.

Theorem 1.1. The group G = S4 has exactly four Majorana representations. All
four representations are based on an embedding of G in the Monster.

In the next few lemmas we state some frequently used consequences of the above
definitions (where a is a Majorana axis). The first two are the standard consequences
of (M1).

Lemma 1.2. The decomposition in (M3) is ( , )-orthogonal so that (u, v) = 0 when-

ever u ∈ V (a)μ , v ∈ V
(a)
λ and μ 6= λ.

Lemma 1.3. Whenever u, v ∈ V (a)0 , the equality (u ∙ v, a) = 0 holds.

The next lemma is a consequence of (M3), (M5), and Lemma 1.2.

Lemma 1.4. For every v ∈ V and a ∈ A the vector (a, v) a is the projection of v to
V
(a)
1 .

Let Sp = {1, 0, 1
22
, 1
25
} be the spectrum of the adjoint action on a on V , so that

V =
⊕

ν∈Sp

V (a)ν .

Lemma 1.5. The eigenspaces of a Majorana axis satisfy the fusion rules described
by Table 1 (whose rows and columns are indexed by the elements of Sp and whose
entries are subsets of Sp)
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Table 1

1 0 1
22

1
25

1 1 0 1
22

1
25

0 0 0 1
22

1
25

1
22

1
22

1
22

1, 0 1
25

1
25

1
25

1
25

1
25

1, 0, 1
22

which means that
V
(a)
λ ∙ V

(a)
μ ⊆

⊕

ν∈S(λ,μ)

V (a)ν

where λ, μ ∈ Sp and S(μ, λ) is the (λ, μ)-entry in Table 1.

Proof. Table 1 follows directly from (M6) and (M7) together with Lemma 1.3 (the
latter excludes the possibility for the eigenvalue 1 to appear in the (0, 0)-th entry).

The assertion in the above lemma is easily seen to be equivalent to (M6) and
(M7) (provided that (M2) holds). A few specific features of the fusion rules deserve
a special attention.

Lemma 1.6. If α1, α2 ∈ V
(a)
0 and β1, β2 ∈ V

(a)
1
22
for a Majorana axis a then

a ∙ (α1 ∙ α2) = 0, a ∙ (β1 ∙ β2 − (β1 ∙ β2, a) a) = 0

and

a ∙ (α1 ∙ β1) =
1

22
(α1 ∙ β1).

The following lemma whose rudiments can already be found in [Sak07] has ma-
tured under the name of the resurrection principle.

Lemma 1.7. Let (G,U,B, ( , )|U , ∙|U) be a Majorana representation of a group G,
let W be a subspace of U , and let

S = {a, s, x, wα, wβ}
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be a subset of W , where a is a Majorana axis. Suppose that W contains the products
ζ ∙ η and a ∙ (ζ ∙ η) for all ζ, η ∈ S except possibly

s ∙ s, a ∙ (s ∙ s), and a ∙ (x ∙ x).

Then the latter three products are also contained in W whenever there is a 0-
eigenvector

αs = s+ μx+ wα

and a 1
22
-eigenvector

βs = s+ νx+ wβ

of a for some μ, ν ∈ R, where μ2 and ν2 are distinct and non-zero.

Proof. By Lemma 1.6,

ϕ := αs ∙ αs − βs ∙ βs + (βs ∙ βs, a) a

is a 0-eigenvector of a and by the hypothesis ϕ is expressible as a quadratic polynomial
of vectors from S. This polynomial does not involve s ∙ s. Furthermore, the product
of a with all terms in ϕ is in W , with the possible exception of (x ∙ x) ∙ a. Since x ∙ x
appears with the non-zero coefficient μ2 − ν2 in ϕ, (x ∙ x) ∙ a can be expressed as an
element of W from the equation a ∙ ϕ = 0.
Similarly,

ψ := αs ∙ αs − αs ∙ βs

does not involve s ∙ s, and by the previous paragraph ψ ∙ a ∈ W . On the other hand,
by Lemma 1.6 we have

a ∙ ψ = a ∙ (αs ∙ αs)− a ∙ (αs ∙ βs) = 0−
1

22
(αs ∙ βs).

Since s∙s appears in αs ∙βs as a linear term with a non-zero coefficient, it is expressible
as a linear combination of vectors in W . Finally, from (αs ∙αs) ∙ a = 0 we can express
(s ∙ s) ∙ a as an element of W .

Although s ∙s has been eliminated in αs ∙αs−αs ∙βs, it resurrects (only quartered)
after multiplying the expression by a (hence the name of the principle). Note that the
proof of Lemma 1.7 also shows that if expressions for the products ζ ∙ η and a ∙ (ζ ∙ η)
are known as linear combinations of some generating set B ofW then we can compute
s ∙ s, a ∙ (s ∙ s), and a ∙ (x ∙ x) as linear combinations of B as well.

The following junior version of the resurrection principle will be commonly used.
A subspace W of U will be said to be a-stable if it contains the product a ∙w for every
w ∈ W .
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Lemma 1.8. Let (G,U,B, ( , )|U , ∙|U) be a Majorana representation of a group G.
Let a be a Majorana axis, and let W be an a-stable subspace of U . For s ∈ U suppose
that

αs = s+ wα and βs = s+ wβ

are 0- and 1
22
-eigenvectors of a, respectively, for some wα, wβ ∈ W . Then

s = − [4a ∙ (wα − wβ) + wβ] ,

in particular s ∈ W .

Proof. We have

a ∙ (wα − wβ) = a ∙ (αs − βs) = 0−
1

22
βs = −

1

22
s−
1

22
wβ

and the assertion is immediate.

The following result is well known and crucial both in the Vertex Operator Algebra
(Lemma 9.1 in [Miy04]) and the Monster (Section 13 in [C84]) contexts.

Lemma 1.9. If a and b are distinct Majorana axes then

0 ≤ (a, b) ≤ 1/3.

The following pretty lemma proved to be very useful. It expands a lemma on
p. 532 in [C84] and Proposition 6.9 in [Miy96]) (both heavily based on the Norton
inequality) from the Monster algebra to an arbitrary Majorana representation. Recall
that v and u from V are said to associate if

v ∙ (w ∙ u) = (v ∙ w) ∙ u

for every w ∈ V .

Lemma 1.10. A Majorana axis associates with every element of its 0-eigenspace.

Proof. Let a be a Majorana axis, and let α be a 0-eigenvector for a. Then for a
μ-eigenvector v of a, on one hand we have

(a ∙ v) ∙ α = (μv) ∙ α = μ(v ∙ α).

On the other hand, by the fusion rules, v ∙ α is also a μ-eigenvector for a and so

a ∙ (v ∙ α) = μ(v ∙ α).

So, by distributivity, a and α associate.

If a0 and a1 are two Majorana axis generating a 2B-algebra (cf. Table 3), then
applying Lemma 1.10 for a = a0 and α = a1, we conclude that a0 and a1 associate.
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2 An explicit version of Sakuma’s theorem

In this section we revisit Sakuma’s classification of the Majorana representations of
the dihedral groups aiming

(a) to extract the classification from the Vertex Operator Algebra context it was
originally placed in;

(b) to make the computational core of the proof more transparent by using the
resurrection principle explicitly;

(c) to carry on the classification beyond the upper bound on the number of repre-
sentations in order to make the existence part Monster-independent;

(d) to present the proof with inner and algebra products scaled suitably for our
future purposes.

A further aim has emerged within the process of revising the proof:

(e) to show that (in the case of algebras generated by a pair of Majorana axes) the
Norton inequality is a consequence of the remaining conditions.

We give a short version of Sakuma’s result as follows. For a more detailed de-
scription, see Subsection 2.6.

Theorem 2.1. Dihedral groups have exactly nine Majorana representations. All nine
representations are based on an embedding in the Monster.

The scaling in [Sak07] was dictated by the Vertex Operator Algebra environment,
particularly the Majorana axes correspond to conformal vectors of central charge 1

2
(so

that they are doubled idempotents). In the Monster context [C84], [N96], [ATLAS]
the scaling is inherited from the construction of the Monster in terms of the Leech
vectors.

Suppose that (V,A, ( , ), ∙ ) is a quadruple satisfying (M1) to (M7). Let a0, a1 ∈ A
be a pair of Majorana axes, let τ0 = τ(a0), τ1 = τ(a1) be the corresponding Majorana
involutions, let D be the subgroup in GL(V ) generated by τ0 and τ1, and let U be
the subalgebra in (V, ∙ ) generated by a0 and a1, so that

(D,U, {a0, a1}, ( , )|U , ∙|U )

is a Majorana representation of D. Our exposition is divided into a number of steps
dealt with in individual subsections.
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2.1 Symmetric generating set

We start by producing a D-invariant generating set B of U . Let ρ = τ0τ1 be the
generator of the rotation group of D. For an integer i and ε ∈ {0, 1} let a2i+ε denote
the images of aε under the i-th power of ρ. Notice that a−1 is the image of a1 under
τ0. Let

Bε = {a2i+ε | i ∈ Z} and B = B0 ∪B1.

Then a2i+ε is a Majorana axis and the corresponding Majorana involution

τ(a2i+ε) = ρ
−iτερ

i

will be denoted by τ2i+ε.

Lemma 2.2. The set B is D-invariant and B is contained in the subalgebra U .

Proof. The D-invariance is rather obvious. By (M4) the vector a1 possesses a unique
presentation of the form

a1 = λ1a0 + α1 + β1 + γ1,

where λ1 = (a0, a1), a0 ∙ α1 = 0, a0 ∙ β1 = 1
22
β1 and a0 ∙ γ1 = 1

25
γ1. Considering the

relevant Vandermode matrix one can express the eigenvectors α1, β1 and γ1 as linear
combinations of the vectors

a0, a1, a0 ∙ a1, and a0 ∙ (a0 ∙ a1).

Thus U contains α1, β1 and γ1. Since a−1 is the image of a1 under τ0, by (M6) we
have

a−1 = λ1a0 + α1 + β1 − γ1,

so that

γ1 =
1

2
(a1 − a−1).

Since U is already known to contain a1 and γ1, it also contains a−1 and the proof is
easy to accomplish arguing by induction.

2.2 Multiplying two symmetric generators

A particular vector denoted by σ1 plays the most important role in the subsequent
development.

Lemma 2.3. The vector

σ1 = a0 ∙ a1 −
1

25
(a0 + a1)

is D-invariant.
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Proof. Since

a0 ∙ a1 = λ1a0 +
1

22
β1 +

1

25
γ1

while
a1 = λ1a0 + α1 + β1 + γ1,

the difference a0 ∙ a1 − 1
25
a1 is contained in V

(a0)
+ = CV (τ0) and hence it is centralized

by τ0. Since a0 is also centralized by τ0, and in view of the symmetry between a0 and
a1, the vector σ1 is contained in V

(a0)
+ ∩ V (a1)+ ≤ CV (D).

Lemma 2.4. The following equalities hold:

α1 = −4σ1 +

(

3λ1 −
1

23

)

a0 +
7

24
(a1 + a−1), (1)

β1 = 4σ1 −

(

4λ1 −
1

23

)

a0 +
1

24
(a1 + a−1), (2)

aj ∙ σ1 =
7

25
σ1 +

(
3λ1
22
−
25

210

)

aj +
7

211
(aj−1 + aj+1), (3)

σ1 =

(
31λ1
25
−
1

25

)

a0 −
1

25
α1 +

7

25
β1. (4)

Proof. The first two equalities are obtained by expressing α1 and β1 from

a1 = λ1a0 + α1 + β1 +
1

2
(a1 − a−1)

and

a0 ∙ a1 = λ1a0 +
1

22
β1 +

1

26
(a1 − a−1)

followed by substituting σ1 +
1
25
(a0 + a1) in the place of a0 ∙ a1. For the case j = 0

the third equality can be deduced by multiplying the second one by a0, and using
Lemma 2.3 to express a0 ∙ a1 and a0 ∙ a−1 as linear combinations of σ1, a0, a1, and a−1.
If j = 1 then the equality holds because of the symmetry between a0 and a1. The
generic case follows from the D-invariance of σ1.

By analogy, one can introduce the product of ai and aj shifted by − 125 (ai+ aj) to
obtain a vector invariant under the subgroup in D generated by τi and τj. We will
deal with two such vectors attaining the full D-invariance.

Lemma 2.5. Each of the vectors

σ2,1 = a1 ∙ a−1 −
1

25
(a1 + a−1) and σ2,0 = a0 ∙ a2 −

1

25
(a0 + a2)

is D-invariant.
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Proof. Arguing as in the proof of Lemma 2.3, we obtain the τ1-invariance of σ2,1 and
the τ0-invariance of σ2,0. Since τ0 permutes a1 with a−1 while τ1 permutes a0 with a2,
the full invariance follows.

2.3 Angles between symmetric generators

For ε ∈ {0, 1} we define λ(ε)j = (aε, aj+ε). Then we have the following lemma, which
is Proposition 3.1 in [Sak07].

Lemma 2.6. For any two integers k and j the inner product (ak, ak+j) is uniquely

determined by j. In particular, λ
(ε)
j does not depend on ε.

Proof. Since D acts transitively both on B0 and on B1 preserving the inner products,
all we need is to show that λ

(0)
j = λ

(1)
j for all j. Also by the D-transitivity λ

(0)
j = λ

(1)
j

whenever j is odd. Since τ0 permutes aj and a−j, we can assume without loss that j

is positive and argue by induction, since we already know that λ
(0)
1 = λ

(1)
1 = λ1 and

that λ
(0)
0 = λ

(1)
0 = 1 by (M3). Thus we assume that for all 0 ≤ k ≤ j the value of λ

(0)
k

equals to that of λ
(1)
k and is denoted by λk. Equation (3) in Lemma 2.4 for j = 0 and

j = 1 can be rewritten as follows:

7

211
(a1 + a−1) = a0 ∙ σ1 −

7

25
σ1 −

(
3λ1
22
−
25

210

)

a0,

7

211
(a0 + a2) = a1 ∙ σ1 −

7

25
σ1 −

(
3λ1
22
−
25

210

)

a1.

Evaluating the inner product of both sides of the former equality with aj and of the
latter one with aj+1 we obtain

7

211
(λj−1 + λ

(1)
j+1) = (aj, a0 ∙ σ1)−

7

25
(aj, σ1)−

(
3λ1
22
−
25

210

)

λj,

7

211
(λ
(0)
j+1 + λj−1) = (aj+1, a1 ∙ σ1)−

7

25
(aj+1, σ1)−

(
3λ1
22
−
25

210

)

λj.

By (M1), (aj, a0 ∙σ1) = (aj ∙a0, σ1) and (aj+1, a1 ∙σ1) = (aj+1 ∙a1, σ1). Since λ
(0)
j+1 = λ

(1)
j+1

whenever j + 1 is odd, we may assume without loss that j is odd, in which case D
contains an element which maps the pair {a0, aj} onto the pair {a1, aj+1}. Thus
all four inner products in the penultimate sentence are equal. Similarly, there is an
element of D which maps {aj, aj+1} onto {a0, a1}, and (a0, σ1) = (a1, σ1) because of
the symmetry between a0 and a1 in the defining formula of σ1. Hence the inductive
step follows.
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Since ak = aj if and only if (ak, aj) = 1, from the above lemma we obtain directly
the following important consequence.

Lemma 2.7. The sets B0 and B1 contain the same number of vectors.

We conclude this subsection by the following.

Lemma 2.8. The following equalities hold:

a2i ∙ σ2,0 =
7

25
σ2,0 +

(
3λ2
22
−
25

210

)

a2i +
7

211
(a2i−2 + a2i+2), (5)

a2i+1 ∙ σ2,1 =
7

25
σ2,1 +

(
3λ2
22
−
25

210

)

a2i+1 +
7

211
(a2i−1 + a2i+3). (6)

Proof. A proof can be achieved as a minor generalization of that for equation (3)
in Lemma 2.4, making use of the D-invariance established in Lemma 2.5 and the
equality λ

(0)
2 = λ

(1)
2 proved in Lemma 2.6.

The following useful lemma did not appear explicitly in [Sak07], but it clearly
belongs to this subsection.

Lemma 2.9. If B0 = B1 then for any two non-zero integers j and k we have λj = λk.

Proof. The form ( , ) associates with the algebra product, which gives

(a0 ∙ aj, ak) = (aj, a0 ∙ ak).

Since B0 = B1, we have ai ∙ ai+j = σj + 1
25
(ai+ ai+j). Taking the inner product of the

two sides of this equation with ai gives (ai, σj) =
31λj
25
− 1
25
for all values of i. Thus

(multiplying by 32 to eliminate the fractions) we obtain

31λj + λk + λj−k = 31λk + λj + λj−k

and the claim follows.

2.4 Bounding the dimension

Let W be the subspace in U spanned by the set

X = {a0, a1, a−1, a2, a−2, σ1, σ2,0, σ2,1},

so that the dimension of W is at most eight. We are going to show that W is in fact
the whole of U and start with the following.
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Lemma 2.10. The subspace W contains σ1 ∙ σ1, a0 ∙ (σ1 ∙ σ1) and a0 ∙ σ2,1.

Proof. We apply the resurrection principle Lemma 1.7 with

s = σ1, x = a1 + a−1, αs = −
1

22
α1, βs =

1

22
β1,

in which case wα and wβ are multiples of a0, while

x ∙ x = 2σ2,1 +
17

24
(a1 + a−1).

Then the hypothesis of Lemma 1.7 holds by Lemmas 2.4 and 2.5.

The explicit formulas related to Lemma 2.10, as calculated in [GAP4], are the
following:
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α1 ∙ α1 = 16 σ1 ∙ σ1 −
49

25
σ1 +

49

27
σ2,1 +

(

−9λ21 +
3

22
λ1 −

81

211

)

a0 +

(

−
21

23
λ1 +

1183

212

)

(a1 + a−1)−
49

212
(a2 + a−2) (7)

β1 ∙ β1 = 16 σ1 ∙ σ1 +

(

−8λ1 +
15

25

)

σ1 +
1

27
σ2,1 +

(

−8λ21 +
1

2
λ1 −

9

211

)

a0 +

(
1

22
λ1 −

17

212

)

(a1 + a−1) +
7

212
(a2 + a−2) (8)

α1 ∙ β1 = −16 σ1 ∙ σ1 +

(

3λ1 +
17

25

)

σ1 +
7

27
σ2,1 +

(

9λ21 −
21

25
λ1 +

45

211

)

a0 +

(
75

26
λ1 −

39

212

)

(a1 + a−1) +
21

212
(a2 + a−2) (9)

α1 ∙ α1 − β1 ∙ β1 + (β1 ∙ β1, a0) a0 = (8λ1 − 2)σ1 +
3

23
σ2,1 +

(

−2λ21 +
5

22
λ1 +

1

26
λ2 −

13

28

)

a0 +

(

−
23

23
λ1 +

75

28

)

(a1 + a−1)−
7

29
(a2 + a−2)(10)

a0 ∙ σ2,1 = −
1

3

[(

−32λ1 +
19

24

)

σ1 −
7

25
σ2,0+

(

32λ21 − 5λ1 +
1

23
λ2 +

127

210

)

a0 +

(

−
1

2
λ1 +

19

210

)

(a1 + a−1)−
7

211
(a2 + a−2)

]

(11)

α1 ∙ β1 + β1 ∙ β1 − (β1 ∙ β1, a0) a0 = (−5λ1 + 1)σ1 +
1

24
σ2,1 +

(

2λ21 −
37

25
λ1 −

1

26
λ2 +

17

29

)

a0 +

(
91

26
λ1 −

7

29

)

(a1 + a−1) +
7

210
(a2 + a−2)(12)

σ1 ∙ σ1 =
1

3

[(

−
5

22
λ1 −

13

29

)

σ1 −
7

29
σ2,0 +

21

211
σ2,1

]

+

7

3

[(
1

2
λ21 −

1

27
λ1 +

1

29
λ2 −

1

215

)

a0 +

(
7

28
λ1 −

35

216

)

(a1 + a−1) +
7

216
(a2 + a−2)

]

(13)

Up to a rescaling, the last of the above formulas appeared in Proposition 3.2 of
[Sak07].

Lemma 2.11. For every integer j and ε ≡ j mod 2 the following equality holds:

σ1 ∙ σ1 =
1

3

[(

−
5

22
λ1 −

13

29

)

σ1 −
7

29
σ2,ε +

21

211
σ2,ε+1

]

+

12



7

3

[(
1

2
λ21 −

1

27
λ1 +

1

29
λ2 −

1

215

)

aj +

(
7

28
λ1 −

35

216

)

(aj+1 + aj−1) +
7

216
(aj+2 + aj−2)

]

.

Proof. If j = 1 then we take equation (13) and apply the complete symmetry
between a0 and a1 in the definition of σ1. Now the generic case follows from the
D-invariance of σ1, σ2,0, and σ2,1.

Lemma 2.12. The subspace W contains the generating set B of U consisting of
Majorana axes. Furthermore, the subspace W is D-invariant.

Proof. We have to show that W contains aj for every integer j. Equalizing the right
hand sides of the equalities in Lemma 2.11 for j = 0 and j = 1, we can express a3
as a linear combination of vectors in X and then proceed by induction making use of
Lemma 2.11. Thus the image of X under every element of D is contained in W and
the D-invariance follows.

Lemma 2.13. The subspace W is a-stable for every a ∈ B.

Proof. We have to show that a ∙ w ∈ W for every a ∈ B and w ∈ W . Suppose first
that a = a0. We can assume without loss that w ∈ X in which case the claim follows
from the definitions of σ1 and σ2,0, equation (3) for j = 0, equation (5) for i = 0, and
(11). The case a = a1 now follows from the symmetry between a0 and a1 while the
generic case is by the D-invariance of W established in Lemma 2.12.

The next proposition is Lemma 3.5 in [Sak07].

Proposition 2.14. The algebra product ∙ is closed on W .

Proof. We claim that W is spanned by B together with σ1 and σ2,0. This can be
seen by equalizing the right hand sides of the equations in Lemma 2.11 for j = 0 and
j = 1, and expressing σ2,1 as a linear combination of σ1, σ2,0, and some axes from B
(this is possible since the σ2,1-coefficients in the two equations are distinct constants).
Thus, in view of Lemmas 2.10 and 2.13 it only remains to show that W contains
σ2,0 ∙ σ2,0 and σ1 ∙ σ2,0.
Consider the projections of a2 onto the 0- and

1
22
-eigenspaces of a0 (compare to

Lemma 2.4):

α2 = −4σ2,0 +

(

3λ2 −
1

23

)

a0 +
7

24
(a2 + a−2),

β2 = 4σ2,0 −

(

4λ2 −
1

23

)

a0 +
1

24
(a2 + a−2).

In view of Lemma 2.13, we achieve the goal applying Lemma 1.8 first for

s = σ2,0 ∙ σ2,0, αs =
1

24
α2 ∙ α2, βs = −

1

24
α2 ∙ β2

13



and next for

s = σ1 ∙ σ2,0, αs =
1

24
α1 ∙ α2, βs = −

1

24
α1 ∙ β2.

This appears to be a good place to put the inner product values (calculated in
[GAP4]) required to recover the form ( , ) on the whole of W .

Lemma 2.15. The following equalities hold for every ε:

λ3 =
1

7
[−215λ31 + 2

12 ∙ 32λ21 − 2
7 ∙ 3 ∙ 5λ1λ2 − 3

2 ∙ 241λ1 − 3 ∙ 11λ2 + 3 ∙ 11];

λ4 =
1

7
[223λ41−2

15∙293λ31+2
16∙7λ21λ2+2

12∙33∙7λ21−2
7∙5λ1λ2−2

7λ22−2
7∙5∙31λ1−3∙7λ2+2

2∙3∙13];

(σ1, σ1) =
3

22
λ21 +

65

29
λ1 +

7

211
λ2 −

3

211
;

(σ1, σ2,ε) = −16λ
3
1 + 18λ

2
1 −
3

24
λ1λ2 −

463

29
λ1 −

83

211
λ2 +

23

211
;

(σ2,ε, σ2,ε) = 2
12λ41−2

4∙293λ31+2
5∙7λ21λ2+2∙3

3∙7λ21−
5

24
λ1λ2+

11

24
λ22−
5 ∙ 31
24

λ1+
239

211
λ2+
32 ∙ 17
211

;

(σ2,ε, σ2,ε+1) = 2
12λ41 −

24 ∙ 11 ∙ 181
7

λ31 +
25 ∙ 19
7

λ21λ2 +
2 ∙ 3 ∙ 421
7

λ21 +
5 ∙ 389
24 ∙ 7

λ1λ2 +
17

24 ∙ 7
λ22

−
5 ∙ 17 ∙ 197
28 ∙ 7

λ1 −
17 ∙ 191
211 ∙ 7

λ2 +
32 ∙ 17
211

.

Proof. These inner product values follow from the orthogonality of eigenvectors and
the associative rule (M1). For example, the value (σ1, σ1) can be computed from the
orthogonality of α1 and β1 given in (1) and (2). Knowing this value and using (13),
we can solve (σ1 ∙ σ1, a0 − a1) = (σ1, σ1 ∙ (a0 − a1)) for λ3, etc.

2.5 Bounding the gonality

In this subsection (which corresponds to Section 4 of [Sak07]) we show that B =
B0 ∪B1 contains at most six Majorana axes.

Lemma 2.16. If |B| ≥ 7 then the vectors a1−a−1, a2−a−2 and a3−a−3 are linearly
independent.

14



Proof. Under the hypothesis of the lemma, by Lemma 2.5 the axes aj for −3 ≤ j ≤ 3
are pairwise distinct. Furthermore, in terms introduced in Subsection 2.3 we have

(ai − a−i, ak − a−k) = 2 ∙ (λi−k − λi+k).

for 1 ≤ i, k ≤ 3. Since λ0 = 1 and λj = λ−j for all j, the halved Gram matrix
M = ‖μik‖3×3 of the considered three vectors is the following:




1− λ2 λ1 − λ3 λ2 − λ4
λ1 − λ3 1− λ4 λ1 − λ5
λ2 − λ4 λ1 − λ5 1− λ6



 .

We claim that M is non-singular. By the school textbook formula

det (M) = μ11μ22μ33 + μ21μ32μ13 + μ31μ12μ23

− μ31μ22μ13 − μ11μ32μ23 − μ33μ21μ12.

By Lemma 1.9, the first summand is at least 8
27
, the next two are at least − 1

27
each,

and the latter three are at least − 2
27
each. Since 8−1−1−2−2−2 = 0, in order for

M to be singular, each summand must attain its lower bound. This is not possible,
since the equality 2

3
= 1 − λ2 = 1 − λ4 holds only when λ2 = λ4 =

1
3
, in which case

μ13 = λ2 − λ4 = 0. Thus the third summand is zero, which is above the required
lower bound.

Lemma 2.17. |B| ≤ 6.

Proof. Subtracting the equalities in Lemma 2.11 for j = 1 and j = −1, we observe
that a non-trivial linear combination of a1 − a−1, a2 − a−2, and a3 − a−3 equals to
zero. Hence Lemma 2.16 applies.

2.6 Sakuma’s theorem

We state Sakuma’s theorem.

Theorem 2.18. Let (V,A, ( , ), ∙ ) be a quadruple satisfying (M1) to (M7) in Sec-
tion 1. Let a0, a1 ∈ A be a pair of Majorana axes, let τ0 = τ(a0), τ1 = τ(a1) be the
corresponding Majorana involutions, let D be the subgroup in GL(V ) generated by τ0
and τ1, and let U be the subalgebra in (V, ∙) generated by a0 and a1, so that

(D,U, {a0, a1}, ( , )|U , ∙|U)

is a Majorana representation of D. Then

15



(i) dim (U) ≤ 8;

(ii) the isomorphism type of (U, ( , )|U , ∙|U) is uniquely determined by the pair
(λ1, λ2), where λ1 = (a0, a1) and λ2 = (a0, a

τ1
0 );

(iii) the existing representations have parameters given in Table 2.

Table 2

1A 2A 2B 3A 3C 4A 4B 5A 6A

|B| 1 2 2 3 3 4 4 5 6

λ1 1 1
23

0 13
28

1
26

1
25

1
26

3
27

5
28

λ2 1 1 1 13
28

1
26

0 1
23

3
27

13
28

dim (U) 1 3 2 4 3 5 5 6 8

Proof. The assertion (i) follows from Lemma 2.14 while (ii) is by the proofs of
Lemmas 2.10 and 2.14. By Lemma 2.16 we know that |B| ≤ 6 and the six possible
values for |B| will be considered separately. If |B| is odd then all non-zero indexed
λj are equal by Lemma 2.9, otherwise λ2 is known by induction (through considering
the subalgebra generated by a0 and a2). As soon as λ1 and λ2 are known, the value
of n := |B| can be computed as the smallest positive integer such that λn = 1. Of
course dim (U) is the rank of the Gram matrix of X computable by Lemma 2.15.

If |B| = 1 then a0=a1 and the algebra is 1-dimensional, spanned by a0 with a0 ∙a0 = a0
and (a0, a0) = 1.

If |B| = 2 then aτ10 = a0, a
τ0
1 = a1, so that λ2 = 1 and λ3 = λ1. Since λ3 is a

polynomial in λ1 and λ2 as in Lemma 2.15, the equality λ1 = λ3 provides us with a
cubic equation on λ1. This equation has three roots, which are 0,

1
23
and 1. Since

a0 6= a1, the latter root has to be excluded and we obtain the listed pair of values for
λ1.

To deal with higher values of |B|, we shall use the following equality implied by
Lemma 2.11. For j even,

3σ1∙σ1+b0(λ1)σ1+b1σ2,0+b2σ2,1 = c0(λ1)aj+c1(λ1)(aj−1+aj+1)+c2(aj−2+aj+2), (14)
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where

b0(λ1) =

(
5

22
λ1 +

13

29

)

, b1 =
7

29
, b2 = −

21

211
,

c0(λ1) =
7

2
λ21 −

7

27
λ1 +

7

29
λ2 −

7

215
, c1(λ1) =

49

28
λ1 −

245

216
, and c2 =

49

216
.

If |B| = 3 then we write (14) for j = 0 and j = 2, and take the difference. Using that
a4 = a1 = a−2, a3 = a0, and a−1 = a2, we obtain (c0(λ1)− c1(λ1)− c2)(a2 − a0) = 0.
Since a0 6= a2, it follows that c0(λ1)− c1(λ1)− c2 = 0. Since λ1 = λ2 by Lemma 2.9,
c0(λ1)− c1(λ1)− c2 = 0 is equivalent to the quadratic equation

λ21 −
17

28
λ1 +

13

215
= 0

with the two roots 13
28
and 1

26
.

If |B| = 4 then |B0| = 2 and λ2 is either 0 or 123 by induction. Again, we write (14)
for j = 0 and j = 2, and take the difference. Using that a4 = a0, a3 = a−1, and
a−2 = a2, we obtain (c0(λ1) − 2c2)(a2 − a0) = 0 and c0(λ1) − 2c2 = 0. The latter
equation is equivalent to

λ21 −
1

26
λ1 − c = 0, (15)

where c is 1
211
or 0 depending on whether λ2 is 0 or

1
23
. Since λ1 ≥ 0 by Lemma 1.9

and because the pair λ1 = 0, λ2 =
1
23
would give λ4 =

173
8
6= 1 in Lemma 2.15, we

conclude that λ1 must be the positive root of (15) and so λ1 =
1
25
or 1
26
, as claimed.

If |B| = 5 then writing (14) for j = 0 and j = 2, taking the difference, and using
a3 = a−2, a4 = a−1 we obtain

(c0(λ1)− c2)(a0 − a2) + (c1(λ1)− c2)(a−1 − a−2) = 0. (16)

Taking the inner product of (16) with a0 gives (c0(λ1)−c2)(1−λ2)+(c1(λ1)−c2)(λ1−
λ2) = 0. Here λ1 = λ2 by Lemma 2.9 and 1 6= λ2, so c0(λ1) = c2. Substituting back
to (16) we get (c1(λ1)− c2)(a−1− a−2) = 0 and then c1(λ1) = c2. The latter equation
gives λ1 =

3
27
.

If |B| = 6 then writing (14) for j = 0 and j = 2, taking the difference, and using
a4 = a−2 we obtain

(c0(λ1)− c2)(a0 − a2) + c1(λ1)(a−1 − a3) = 0. (17)

Taking the inner product of (17) with a0 gives

(c0(λ1)− c2)(1− λ2) + c1(λ1)(λ1 − λ3) = 0. (18)

17



There are four possibilities for the pair (λ2, λ3) by induction, and each of them re-
duces (18) to a quadratic equation for λ1. Substituting the solutions (λ1, λ2) of these
equations into the formula for λ3 in Lemma 2.15, we see that only one pair gives the
correct λ3 value: λ1 =

5
28
and λ2 =

13
28
. (In this case, λ3 =

1
23
.)

This completes the proof of Sakuma’s theorem.

2.7 A novelty

Viewing λ1 and λ2 as real parameters, we have a two-parameter family S(λ1, λ2) of
the algebras with bilinear form on the vector space W spanned by

X = {a−2, a−1, a0, a1, a2, σ1, σ2,0, σ2,1}.

By Theorem 3.7 in [Sak07], both the inner and the algebra products are uniquely
determined by λ1 and λ2. This statement can be given an explicit form. Indeed, for
the inner products we have (aj , aj) = λ|i−j| where λ0 = 1, λ1 and λ2 are the given
variables, while λ3 and λ4 are stated in Lemma 2.15. Lemma 2.15 also gives the
inner products between the three σ’s. Finally by Lemmas 2.4 and 2.5, and by the
associativity between the inner and algebra products we have

(ai, σ1) =
31λ1
25
−
1

25
, (a2i+ε, σ2,ε) =

31λ2
25
−
1

25
, (a2i+ε, σ2,ε+1) =

15λ1
24
+
λ2

25
−
1

25
.

In order to express all products of the elements of X as linear combinations of the
vectors in X, we have computed in [GAP4] the explicit formulas involved in the proofs
of Lemmas 2.10, 2.13, and 2.14. For Lemma 2.10, the explicit formulas are described
in equations (7)–(13). For the latter two lemmas, the expressions are too lengthy
to be given here. The algebras corresponding to the nine cases are specifications of
the algebra S(λ1, λ2) obtained by assigning to λ1 and λ2 the values from Sakuma’s
Theorem 2.18(iii). When this procedure was implemented during the preparation of
this paper, the story has experienced a dramatic twist, which has totally changed our
perception of Sakuma’s theorem.

The point is, that some (but not all) fusion rules of Lemma 1.5 were exploited
in Subsections 2.1–2.4. Imposing the missing fusion rules (by requesting that certain
inner products vanish) brings the possibilities for (λ1, λ2) down to the nine values in
Theorem 2.18(iii) and the arguments in Subsections 2.5 and 2.6 can be eliminated.
More specifically, the situation is as follows.

Let

α̂1 = σ1 +

(

−
3λ1
22
+
1

25

)

a0 −
7

26
(a1 + a−1),
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α̂2 = σ2,0 +

(

−
3λ2
22
+
1

25

)

a0 −
7

26
(a2 + a−2)

be the projections of a1 and a2 into the 0-eigenspace V
(a0)
0 of a0 divided by −4 (to

make the σ1-coefficient equal to 1), and let

β̂1 = σ1 +

(

−λ1 +
1

25

)

a0 +
1

26
(a1 + a−1),

β̂2 = σ2,0 +

(

−λ2 +
1

25

)

a0 +
1

26
(a2 + a−2)

be the projections of a1 and a2 into V
(a0)
1
22
divided by 4. Then, because of the fusion

rules, the product β̂1 ∙ β̂2 belongs to V
(a0)
1 ⊕ V (a0)0 . Furthermore, by Lemma 1.4 the

projection to the 1-eigenspace is simply (β̂1 ∙ β̂2, a0) a0. Thus

α̂0 := β̂1 ∙ β̂2 − (β̂1 ∙ β̂2, a0) a0

is a 0-eigenvector of a0. By the fusion rules, α̂2 ∙ α̂2 is also a 0-eigenvector of a0.
By Lemma 1.2, eigenvectors with different eigenvalues are perpendicular. Making
use of the explicit form of the algebra S(λ1, λ2) and of the inner product values, the
following was obtained using the [GAP4] package:

(α̂0, β̂1) = −
276480

49
λ51 +

313344

49
λ41 −

9720

49
λ31λ2 −

27936

49
λ31 −

495

784
λ21λ2 −

135

196
λ1λ

2
2

+
2025

112
λ21 −

4653

12544
λ1λ2 −

531

50176
λ22 −

405

1792
λ1 +

3897

401408
λ2 +

351

401408
= 0; (19)

(α̂1 ∙ α̂1, β̂2) = 96λ
4
1 −
213

2
λ31 +

15

8
λ21λ2 +

135

16
λ21 +

417

1024
λ1λ2 +

3

512
λ22 −

225

1024
λ1

−
501

65536
λ2 +

117

65536
= 0. (20)

Proposition 2.19. The system of equations (19), (20) in variables (λ1, λ2) has pre-
cisely nine solutions as in Theorem 2.18(iii).

Proof. The computations described below were carried out in [GAP4]. Taking the
resultant of the two equations with respect to the variable λ2 gives a polynomial of
degree 9 in the variable λ1, with exactly 8 different solutions. Substituting these
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solutions back into the equations, we obtain quadratic polynomials in λ2, each with
two distinct solutions. The result is a set of sixteen pairs (λ1, λ2) from (19) and
sixteen pairs from (20); exactly nine pairs occur on both lists.

The important conclusion is that, since the arguments in Subsections 2.5 and 2.6
can be eliminated, Lemma 2.17 can be bypassed in the proof of Sakuma’s theorem.
Meanwhile Lemma 2.17 is the only place in that proof, where the Norton inequality
(M2) has been used (through application of Lemma 2.16, based on Lemma 1.9).

2.8 Norton–Sakuma algebras

By Sakuma’s theorem 2.18 there are at most nine possibilities for the isomorphism
type of an algebra with scalar product generated by a pair (of non-necessarily distinct)
Majorana axes. Of the other hand it is known that the Monster algebra contains nine
different 2-generated subalgebras. Thus the upper and lower bounds meet to produce
the explicit version of Sakuma’s theorem which is Theorem 2.18 with (iii) upgraded
to ‘the existing representations with a0 6= a1 are given in Table 3.’
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Table 3

Type Basis Products and angles

2A a0, a1, aρ a0 ∙ a1 = 1
23
(a0 + a1 − aρ), a0 ∙ aρ = 1

23
(a0 + aρ − a1)

(a0, a1) = (a0, aρ) = (a1, aρ) =
1
23

2B a0, a1 a0 ∙ a1 = 0, (a0, a1) = 0

a0 ∙ a1 = 1
25
(2a0 + 2a1 + a−1)− 33.5

211
uρ

3A a−1, a0, a1, a0 ∙ uρ = 1
32
(2a0 − a1 − a−1) + 5

25
uρ

uρ uρ ∙ uρ = uρ
(a0, a1) =

13
28
, (a0, uρ) =

1
22
, (uρ, uρ) =

23

5

3C a−1, a0, a1 a0 ∙ a1 = 1
26
(a0 + a1 − a−1), (a0, a1) = 1

26

a0 ∙ a1 = 1
26
(3a0 + 3a1 + a2 + a−1 − 3vρ)

4A a−1, a0, a1, a0 ∙ vρ = 1
24
(5a0 − 2a1 − a2 − 2a−1 + 3vρ)

a2, vρ vρ ∙ vρ = vρ, a0 ∙ a2 = 0
(a0, a1) =

1
25
, (a0, a2) = 0, (a0, vρ) =

3
23
, (vρ, vρ) = 2

4B a−1, a0, a1, a0 ∙ a1 = 1
26
(a0 + a1 − a−1 − a2 + aρ2)

a2, aρ2 a0 ∙ a2 = 1
23
(a0 + a2 − aρ2)

(a0, a1) =
1
26
, (a0, a2) = (a0, aρ) =

1
23

a0 ∙ a1 = 1
27
(3a0 + 3a1 − a2 − a−1 − a−2) + wρ

5A a−2, a−1, a0, a0 ∙ a2 = 1
27
(3a0 + 3a2 − a1 − a−1 − a−2)− wρ

a1, a2, wρ a0 ∙ wρ = 7
212
(a1 + a−1 − a2 − a−2) + 7

25
wρ

wρ ∙ wρ = 52.7
219
(a−2 + a−1 + a0 + a1 + a2)

(a0, a1) =
3
27
, (a0, wρ) = 0, (wρ, wρ) =

53.7
219

a0 ∙ a1 = 1
26
(a0 + a1 − a−2 − a−1 − a2 − a3 + aρ3) + 32.5

211
uρ2

6A a−2, a−1, a0, a0 ∙ a2 = 1
25
(2a0 + 2a2 + a−2)− 33.5

211
uρ2

a1, a2, a3 a0 ∙ uρ2 = 1
32
(2a0 − a2 − a−2) + 5

25
uρ2

aρ3 , uρ2 a0 ∙ a3 = 1
23
(a0 + a3 − aρ3), aρ3 ∙ uρ2 = 0, (aρ3 , uρ2) = 0

(a0, a1) =
5
28
, (a0, a2) =

13
28
, (a0, a3) =

1
23
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Although Table 3 does not show all pairwise inner and algebra products of the
basis vectors, the missing products can be reconstructed by applying symmetries
of algebras and their mutual inclusions. The necessary information is given in the
following lemma.

Lemma 2.20. Let S = (U, ( , ), ∙ ) be an algebra of type NX in Table 3, generated
by Majorana axes a0 and a1 (where N ∈ {2, 3, 4, 5, 6} and X ∈ {A,B,C}). Then

(i) τ(a0) and τ(a1) generate in GL(V ) a dihedral group D of order 2N which acts
on U with kernel Z(D);

(ii) if N ≥ 3 then Aut (S) contains a subgroup inducing on U the dihedral group of
order 2N on the set {..., a−1, a0, a1, ...} of Majorana axes;

(iii) Aut (2A) contains an S3-subgroup acting naturally on {a0, a1, aρ}, while
Aut (2B) contains an element which swaps a0 and a1;

(iv) a0 and a2 generate a 2B-, 2A- or 3A-subalgebra in the algebra of type 4A, 4B
or 6A, respectively;

(v) a0 and a3 generate a 2A-subalgebra in the algebra of type 6A.

Proof. This lemma is implicit in [N96]. Alternatively, the inclusions can be seen
from the explicit formulas for multiplying algebra elements that we have computed
in the proof of Theorem 2.18. Moreover, the required symmetries are seen from the
action of D = 〈τ0, τ1〉 on the set B of Majorana axes together with the manifestal
symmetry between a0 and a1. The S3-symmetry of the 2A-type algebra is generated
by the automorphisms σ(a0) and σ(a1) as in (M7).

The products in Table 3 are given in the Norton basis inherited from the Monster
algebra. An algebra is said to be of type K if it is isomorphic to the subalgebra of
the Conway–Griess–Norton Monster algebra generated by a pair of Majorana axes
such that the product of the corresponding Majorana involutions is contained in the
conjugacy class K of the Monster. In fact, there is no need to know anything about
the Monster in order to work with these formulas. One can treat the Norton basis
as some basis. The transformation rules towards the original Sakuma basis formed
by a subset of X = {a0, a1, a−1, a2, a−2, σ1, σ2,0, σ2,1} can be easily deduced from the
products of the Majorana axial vectors. For instance, in the 3A-type

σ1 := a0 ∙ a1 −
1

25
(a0 + a1) =

1

25
(a0 + a1 + a−1)−

33 ∙ 5
211

uρ

and hence

uρ =
26

33 ∙ 5

(
a0 + a1 + a−1 − 2

5σ1
)
.
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The Norton basis has to the following important feature. Consider the subalgebra
generated by a0 and a1 in the algebra associated with the Monster group M . Let τ0
and τ1 be the 2A-involutions associated with a0 and a1, respectively, and let ρ = τ0τ1.
If the subalgebra generated by a0 and a1 has type 2A, 3A, 4A or 5A, then the 1-
dimensional subspace spanned by the vectors aρ, uρ, vρ or wρ (in the corresponding
Norton basis) is invariant under the normalizer NM(〈ρ〉) isomorphic to 2 ∙BM , 3 ∙F24,
21+24+ .Co3 or (D10 × F5).2, respectively. Furthermore, in the types 2A, 3A and 4A
the vector itself is stable under NM(〈ρ〉), while in the type 5A it is preserved up to
negation and satisfies the following:

wρ = −wρ2 = −wρ3 = wρ4 .

Thus Aut (5A) contains a Frobenius subgroup of order 20 acting naturally on
{a−2, a−1, a0, a1, a2} with a D10-subgroup centralizing wρ and the remaining elements
negating this vector.

For each of the four classes the subgroup 〈ρ〉 is fully normalized in M , so that
uρ−1 = uρ and vρ−1 = vρ. The vector aρ in the 2A-type algebra is precisely the
Majorana axial vector associated with ρ. The vectors aρ2 , aρ3 , and uρ2 in the 4B-,
6A-, and 6A-algebras can now be understood in terms of their 2A-, 2A-, and 3A-
subalgebras.

It should be emphasized that our scaling of inner and algebra products and our
choice of the vectors aρ, uρ, vρ and wρ differ both from those in [N96]. We have taken
aρ, uρ, vρ to be idempotents with the former one having scalar square equal to 1. The
exact numerology is the following: Norton’s inner product is 16 times ours, and his
t0, u, v, and w are 64, 90, 192, and 8192 times our a0, uρ, vρ, and wρ, respectively.
Our scaling for the vector wρ is somewhat arbitrary, since none of its non-zero scalar
multiples is an idempotent.

In Table 4 we summarise a0-eigenvectors in the Norton–Sakuma algebras (for the
eigenvector with eigenvalue 1 we can always take a0 itself).
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Table 4

Type 0 1
22

1
25

2A a1 + aρ − 1
22
a0 a1 − aρ

2B a1

3A uρ − 2∙533 a0 +
25

33
(a1 + a−1) uρ − 23

32∙5a0 −
25

32∙5(a1 + a−1) a1 − a−1

3C a1 + a−1 − 1
25
a0 a1 − a−1

4A vρ − 12a0 + 2(a1 + a−1) + a2, a2 vρ − 13a0 −
2
3(a1 + a−1)−

1
3a2 a1 − a−1

4B a1 + a−1 − 1
25
a0 − 1

23
(aρ2 − a2), a2 − aρ2 a1 − a−1

a2 + aρ2 −
1
22
a0

5A wρ +
3
29
a0 − 3∙527 (a1 + a−1)−

1
27
(a2 + a−2), wρ +

1
27
(a1 + a−1 − a2 − a−2) a1 − a−1,

wρ − 3
29
a0 +

1
27
(a1 + a−1) +

3∙5
27
(a2 + a−2) a2 − a−2

6A uρ2 +
2
32∙5a0 −

28

32∙5(a1 + a−1) uρ2 −
23

32∙5a0 a1 − a−1,
− 25

32∙5(a2 + a−2 + a3 − aρ3), − 25

32∙5(a2 + a−2 + a3 − aρ3), a2 − a−2

a3 + aρ3 −
1
22
a0, uρ2 −

2∙5
33
a0 +

25

33
(a2 + a−2) a3 − aρ3

3 External Majorana representations

Two-generated subalgebras of type 2A, 4B and 6A contain further Majorana axes besides
the images of the generators under the corresponding dihedral group. We are going to
include this feature in the definition.

Let G be a finite group. Let T be a generating set of involutions in G which is a union of
some conjugacy classes of G. Let V be a real vector space equipped with a positive definite
bilinear form ( , ) and a bilinear commutative non-associative algebra product ∙ satisfying
(M1) and (M2). Let

ϕ : G→ GL(V )
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be a faithful representation and let

ψ : T → V \ {0}

be a mapping, such that ψ(t) is a Majorana axis for every t ∈ T . Suppose further that

(a) if τ(ψ(t)) is the Majorana involution defined as in (M6) then

τ(ψ(t)) = ϕ(t),

and if g ∈ G conjugates t1 ∈ T onto t2 ∈ T then ϕ(g) maps ψ(t1) onto ψ(t2).

Thus we require that ϕ(G) permutes ψ(T ), the same way as the conjugation action of G
permutes T (since ϕ is faithful, (a) implies that ψ is injective).

This gives an external version of a Majorana representation (as the closure of ψ(T ) with
respect to the algebra product). The dimension of this closure is said to be the dimension
of the representation.

In the Monster algebra, any three Majorana axes corresponding to a 2A-pure elemen-
tary abelian subgroup of order four generate a 3-dimensional subalgebra coinciding with
the subalgebra generated by any two of the axes (and having type 2A). It does not appear
easy (if at all possible) to deduce this property from (M1)–(M7). Therefore, we consider
this property as an axiom and include it into the definition of an external Majorana repre-
sentation.

(M8) Let t0, t1, t2 ∈ T and let ai = ψ(ti) for 0 ≤ i ≤ 2. If a0 and a1 generate a 2A-
type subalgebra, then t0t1 ∈ T and ψ(t0t1) = aρ. If t0t1t2 = 1 then the subalgebra
generated by a0 and a1 is of type 2A and a2 = aρ.

By Lemma 2.20(iv),(v), the 4B- and 6A-type algebras contain 2A-subalgebras. Hence
axiom (M8) implies the following:

If a0 and a1 generate a subalgebra of type 2A, 4B, or 6A, then t0t1, (t0t1)
2 or (t0t1)

3 belongs
to T , and ψ(t0t1), ψ((t0t1)

2), or ψ((t0t1)
3) coincides with aρ, aρ2 , or aρ3 , respectively.

For a Majorana representation it is useful to define its shape by specifying the isomor-
phism type of the subalgebra generated by ψ(t0) and ψ(t1) for every pair t0, t1 of involutions
in T . The shape is subject to various constrains imposed by the G-invariance of T , as well
as by inclusions between subgroups in G generated by various pairs of involutions in T (here
(M8) becomes applicable). Effectively, given G and T , in order to produce the shape of a
possible faithful Majorana representation we have to choose between types 2A and 2B for
every G-conjugacy class of pairs of commuting involutions in T , between types 3A and 3C
for every class of pairs giving product of order 3, and between types 4A and 4B for every
class of pairs giving product of order 4, respecting the inclusions between T -generated dihe-
dral subgroups in G. For example, if t0 and t1 are contained in a T -generated dihedral group
of order 12 and t0t1 has order three then ψ(t0) and ψ(t1) must generate a 3A-subalgebra.
The next lemma is an immediate consequence of (M8).
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Lemma 3.1. For distinct commuting involutions t0, t1 ∈ T , the subalgebra generated by
ψ(t0) and ψ(t1) is of type 2A if t0t1 ∈ T , and it is of type 2B otherwise.

We shall call the types 2B, 2A, 3C, and 4B closed, and the remaining types 3A, 4A, 5A,
and 6A will be called open. This terminology will become clear from the following lemma.

Lemma 3.2. Let
R = (G,T, V, ( , ), ∙, ϕ, ψ)

be a Majorana representation and let W be the linear span of ψ(T ). Then

(i) if t ∈ T and the shape of R is such that every type involving t is closed, then W is
ψ(t)-stable;

(ii) if the shape of R involves closed types only, then W is closed under the algebra
multiplication.

Proof. The result is immediate from Table 3.

The last lemma in this section is a direct consequence of Lemma 1.10 in view of Tables 2
and 3.

Lemma 3.3. Let
R = (G,T, V, ( , ), ∙, ϕ, ψ)

be a Majorana representation, let t, s ∈ T and suppose that ψ(t) and ψ(s) generate a 2B-type
algebra (this happens precisely when [t, s] = 1 and ts 6∈ T ). Then ψ(t) and ψ(s) associate
in the sense that

ψ(t) ∙ (v ∙ ψ(s)) = (ψ(t) ∙ v) ∙ ψ(s)

for all v ∈ V .

4 Majorana representations of S4

Let S4 be the symmetric group of the set Ω = {i, j, k, l}, let T be a generating union of
conjugacy classes of involutions in S4, so that T is either the set of six transpositions in S4,
or the total set of all nine involutions in S4. Let

S = (S4, T, V, ( , ), ∙, ϕ, ψ)

be a Majorana representation of S4. For t ∈ T put at = ψ(t), so that a(ij) is always
a Majorana axis while a(ij)(kl) is a Majorana axis if and only if |T | = 9. Let F denote
the isomorphism type of the subalgebra generated by a(ij) and a(kl), and let E denote the
isomorphism type of the subalgebra generated by a(ij) and a(ik). We have F ∈ {2A, 2B}
and E ∈ {3A, 3C}.

Lemma 4.1. The pair (F,E) determines the whole shape of S.
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Proof. There are two conjugacy classes of pairs of transpositions: the commuting pairs
and the pairs with products of order 3. By Lemma 3.1, if F = 2B then (ij)(kl) 6∈ T and
the shape is determined by F and E. If F = 2A, then T contains all involutions of S4 and
by Lemma 3.1 the images of any two commuting involutions generate a 2A-subalgebra. In
this case a(ij)(kl) and a(ik) must generate a 4B-subalgebra, since the 4A-algebra contains a
copy of the 2B-algebra.

In what follows the pair (F,E) will be called the shape of S4. In view of Lemma 4.1,
this should not lead to confusion.

A Majorana representation of S4 can be constructed by taking the Majorana repre-
sentation of the Monster group M and restricting it to a 2A-generated S4-subgroup. The
following proposition has been communicated to us by Simon Norton along with a comment
that it can be deduced directly from information in [N98].

Proposition 4.2. Let ζ : S4 →M be a monomorphism such that ζ((ij)) is a 2A-involution
in M . Then,

(i) up to M -conjugation ζ is uniquely determined by the M -conjugacy classes F and E,
containing ζ((ij)(kl)) and ζ((ijk)), respectively;

(ii) ζ exists if and only if F ∈ {2A, 2B} and E ∈ {3A, 3C}. In particular, there are
precisely four choices for ζ (up to M -conjugation);

(iii) CM (ζ(S4)) is isomorphic to

211.M23, Sp8(2),
3D4(2).3, and 2

1+8
+ .A8

for (F,E) being

(2B, 3A), (2A, 3A), (2B, 3C), and (2A, 3C),

respectively.

There is a standard procedure how to classify the S4-subgroups in a given finite group
G. The procedure is based on the following presentation for S4:

S4 = 〈x, y, z | x
2 = y3 = z4 = xyz = 1〉.

The classification is performed separately for every fusion pattern which is the triple
(K2,K3,K4) of conjugacy classes of G containing x, y, and z, respectively. The number
n(K2,K3,K4) of solutions of the equation

xyz = 1

subject to the condition x ∈ K2, y ∈ K3, z ∈ K4 can be calculated from the character table
of G. On the other hand, because of the above presentation for S4, we have

n(K2,K3,K4)

|G|
=
∑

S∈Ξ

1

|CG(S)|
,
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where Ξ is a transversal of the conjugacy classes of S4-subgroups in G with the given fusion
pattern. If there exists an S4-subgroup S with the considered fusion pattern, and with

|CG(S)| =
|G|

n(K2,K3,K4)
,

then all S4-subgroups with this fusion pattern are conjugates of S.

By taking the monomorphism ζ as in Proposition 4.2 with ζ((ij)(kl)) ∈ F and ζ((ijk)) ∈
E, followed by the Majorana representation of the Monster, restricted to the image of ζ,
we obtain a Majorana representation of S4 denoted by S(F,E). It is clear that (F,E) is the
shape of S(F,E).

The central result of the present paper is the following.

Theorem 4.3. Every Majorana representation of S4 is isomorphic to one of the represen-
tations

S(2B,3A), S(2A,3A), S(2B,3C), and S(2A,3C).

Because of Lemma 4.1 and Proposition 4.2, in order to prove Theorem 4.3 it is sufficient
to justify the following.

Proposition 4.4. The isomorphism type of a Majorana representation of S4 is uniquely
determined by its shape.

By proving Proposition 4.4 instead of Theorem 4.3, we save verification that the rep-
resentations indeed satisfy all the Majorana conditions. On the other hand, our explicit
construction of the representations S(F,E) contributes to the knowledge of the Monster al-
gebra structure.

Proposition 4.5. The dimension of the algebra S(F,E) and the scalar square of its identity
element are as given in Table 5.

Table 5

(F,E) (2B, 3A) (2A, 3A) (2B, 3C) (2A, 3C)

dimension 13 13 6 9

scalar square of the identity 22∙47
52

22∙32
5

25∙3
17

25∙137
3∙5∙72

Each of the four feasible shapes will be handled in a separate subsection.
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4.1 Shape (2B, 3A)

We start calculating in the Sakuma basis and will switch to the Norton basis in Section 5.
The products of the six Majorana generators (indexed by the S4-transpositions) are as
follows:

a(ij) ∙ a(ij) = a(ij); a(ij) ∙ a(kl) = 0; a(ij) ∙ a(ik) = σl +
1

25
(
a(ij) + a(ik)

)
; (21)

σl ∙ σl = −
32 ∙ 7
211

σl +
3 ∙ 72

216
(
a(ij) + a(ik) + a(jk)

)
. (22)

The third of the above equalities can be treated as a definition of the vector σl which is
invariant under the S3-subgroup stabilizing l. The fourth equation is the specialization of
(13) for 3A-algebras, with σl = σ1 = σ2,0 = σ2,1, a(ij) = a0, a(ik) = a1 = a−2, a(jk) = a2 =

a−1, and λ1 = λ2 =
13
28
.

It turns out that the linear span of the six a’s and four σ’s is not closed under the
algebra product: three further dimensions are required.

Lemma 4.6. The vector

δ(ij)(kl) := σi ∙ a(ij) −
1

25
σi +

1

210
a(ij) (23)

depends only on the even involution from S4 shown in its index.

Proof. Since a(ij) and a(kl) generate a subalgebra of type 2B, by Lemma 3.3 they associate
with every element of V . In particular

(
a(ij) ∙ a(ik)

)
∙ a(kl) = a(ij) ∙

(
a(ik) ∙ a(kl)

)
.

Making use of the expressions given in (21) and their S4-conjugates, we can express both
sides of the last equality as linear combinations of a’s, σ’s and their products to obtain the
equality

σl ∙ a(kl) +
1

25
σj +

1

210
a(kl) = σj ∙ a(ij) +

1

25
σl +

1

210
a(ij),

which can be rearranged to

σl ∙ a(kl) −
1

25
σl +

1

210
a(kl) = σj ∙ a(ij) −

1

25
σj +

1

210
a(ij). (24)

Having done this, we observe that every summand on the left hand side is stable under the
transposition ϕ((ij)), while applying this transposition to the right hand side gives

σi ∙ a(ij) −
1

25
σi +

1

210
a(ij).

The involution ϕ((ik)(jl)) permutes the left and the right hand sides of (24). Thus δ(ij)(kl)
is invariant under the dihedral subgroup D of order 8 in ϕ(S4) generated by ϕ((ij)) and
ϕ((ik)(jl)). Since D = Cϕ(S4)(ϕ((ij)(kl))), the result follows.
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LetW denote the linear span of the six a’s and four σ’s and let U be the linear span ofW
together with the three δ’s. It is clear that both W and U are ϕ(S4)-invariant submodules.
Our first goal is to show that U is at-stable for every t ∈ T and the ultimate aim is to show
that U is closed for the algebra product.

Lemma 4.7. For all w ∈W and t ∈ T we have at ∙ w ∈ U .

Proof. Because of the product rules given in (21) and by (23), it is enough to show
that a(ij) ∙ σk ∈ U . Since a(ij) and σk are contained in a 3A-subalgebra, equation (3) in

Lemma 2.4, applied with λ1 =
13
28
, aj = a(ij), and σ1 = σk, gives

a(ij) ∙ σk =
7

25

(

σk +
1

24
a(ij) +

1

26
(a(il) + a(jl))

)

. (25)

The next lemma also contributes to the proof of the at-stability of U .

Lemma 4.8. The following equality holds:

a(ij) ∙ δ(ij)(kl) =
7

25

[

δ(ij)(kl) +
1

26
(σi + σj)−

1

29
a(ij)

]

.

Proof. By Lemma 4.6 we have

a(ij) ∙ δ(ij)(kl) = a(ij) ∙
(
σk ∙ a(kl)

)
−
1

25
a(ij) ∙ σk +

1

210
a(ij) ∙ a(kl).

Since a(ij) and a(kl) annihilate each other and associate, the last summand is zero, while
the first one is equal to (

a(ij) ∙ σk
)
∙ a(kl).

Expanding a(ij) ∙σk by (25) and then applying (21) and (23) and simplifying, we obtain the
required expression.

For further analysis we require the knowledge of some eigenvectors of the adjoint action
of a(ij) on U .

Lemma 4.9. The following table shows some 0- and 1
22
-eigenvectors (first and the second

columns, respectively) of a(ij) acting on U , where μ = (βk ∙ βl, a(ij)) = −
32∙13
220
.
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Table 6

0 1
22

αk = σk −
7
210
a(ij) −

7
26
(a(il) + a(jl)) βk = σk −

5
28
a(ij) +

1
26
(a(il) + a(jl))

αl = σl −
7
210
a(ij) −

7
26
(a(ik) + a(jk)) βl = σl −

5
28
a(ij) +

1
26
(a(ik) + a(jk))

a(kl)

αk ∙ αl = σk ∙ σl −
7
25
(δ(ik)(jl) + δ(il)(jk)) mod W αk ∙ βl = σk ∙ σl −

3
25
(δ(ik)(jl) + δ(il)(jk)) mod W

βk ∙ βl − μa(ij) = σk ∙ σl +
1
25
(δ(ik)(jl) + δ(il)(jk)) mod W

α(ij) = δ(ij)(kl) −
7
26
(σi + σj) +

7
215
a(ij) β(ij) = δ(ij)(kl) +

1
26
(σi + σj) +

5
213
a(ij)

Proof. The eigenvectors αk and βk are contained in the 3A-subalgebra generated by a(ij)
and a(il), and they are specializations of (1) and (2) in Lemma 2.4 (divided by −4 and 4,
respectively). Similarly αl and βl are in the 3A-algebra generated by a(ij) and a(ik). Since
a(ij) and a(kl) generate a 2B-subalgebra, a(kl) is a 0-eigenvector of a(ij). Multiplying αl by
a(kl) and subtracting

1

25
αl −

1

27
a(kl)

(which is a 0-eigenvector of a(ij)) we obtain α(ij) as in Table 6. In a similar way, making
use of βl instead of αl, we obtain β(ij).

Lemma 4.10. The following assertions hold:

(i) a(ij) ∙ (δ(ik)(jl) + δ(il)(jk)) ∈ U ;

(ii) U is a(ij)-stable;

(iii) σk ∙ σl ∈ U .

Proof. We prove (i) and (ii) by applying a modification of the resurrection principle
Lemma 1.7. By Table 6 we have

αk ∙ αl = σk ∙ σl −
7

25
(δ(ik)(jl) + δ(il)(jk)) mod W,

βk ∙ βl = σk ∙ σl +
1

25
(δ(ik)(jl) + δ(il)(jk)) mod W,

αk ∙ βl = σk ∙ σl +
1

25
(δ(ik)(jl) + δ(il)(jk)) mod W.

This shows that

αk ∙ αl − βk ∙ βl + (βk ∙ βl, a(ij))a(ij) = −
1

22
(δ(ik)(jl) + δ(il)(jk)) mod W
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is a 0-eigenvector of a(ij), and so Lemma 4.7 implies (i).
By Lemmas 4.7, 4.8, and the just proven part (i) of this lemma, in order to establish

(ii) it is sufficient to show that U contains a(ij) ∙ (δ(ik)(jl) − δ(il)(jk)). But this is indeed the
case, because (M6) implies that δ(ik)(jl) − δ(il)(jk) is a

1
25
-eigenvector of a(ij), since ϕ((ij))

permutes δ(ik)(jl) and δ(il)(jk).
Finally, by (i) and the above expressions we know that both αk ∙αl and αk ∙βl are equal

to σk ∙ σl modulo U . This fact and (ii) enable us to apply Lemma 1.8 to establish (iii).

Lemma 4.11. The following assertions hold:

(i) σk ∙ δ(ij)(kl) ∈ U ;

(ii) δ(ij)(kl) ∙ δ(ij)(kl) ∈ U ;

(iii) δ(ik)(jl) ∙ δ(il)(jk) ∈ U ;

(iv) the product ∙ is closed on U .

Proof. At each stage we implicitly make use of Lemma 4.10(ii),(iii), as well as of all previous
assertions of the present lemma. We apply Lemma 1.8 to different pairs of eigenvalues. For
(i) we put s = σk ∙δ(ij)(kl), αs = αk ∙α(ij), βs = αk ∙β(ij). For (ii) we put s = δ(ij)(kl) ∙δ(ij)(kl),
αs = α(ij) ∙ α(ij), βs = α(ij) ∙ β(ij). Finally, for (iii) we put

s = δ(ik)(jl) ∙ δ(il)(jk), αs =
29

72
(αk ∙ αl) ∙ (αk ∙ αl), βs =

29

3.7
(αk ∙ αl) ∙ (αk ∙ βl).

Now (iv) holds because of (22), Lemma 4.10(ii),(iii), parts (i)–(iii) of this lemma, and the
S4-invariance of U .

The explicit versions of Lemmas 4.10(i),(iii) and 4.11(i),(ii),(iii)), computed in [GAP4],
are as follows:

a(ij) ∙ δ(ik)(jl) =
1

216
(
a(ik) + a(il) + a(jk) + a(jl)

)
+
1

212
(3σi + 3σj + 4σk + 4σl)

+
1

26
(
3δ(ij)(kl) + δ(ik)(jl) − δ(il)(jk)

)
;

σi ∙ σj =
5

216
a(kl) +

1

216
(
a(ik) + a(il) + a(jk) + a(jl)

)

+
1

212
(14σi + 14σj + 3σk + 3σl)−

1

25
(
2δ(ij)(kl) − 3δ(ik)(jl) − 3δ(il)(jk)

)
;

σi ∙ δ(ij)(kl) =
1

223
(
2 ∙ 61a(ij) + 2

3 ∙ 13a(kl) + 5
2a(ik) + 5

2a(il) + 2 ∙ 3 ∙ 17a(jk) + 2 ∙ 3 ∙ 17a(jl)
)

+
1

217
(
−22 ∙ 17σi − 2 ∙ 3

2σj + 59σk + 59σl
)
−
1

212
(
23 ∙ 3δ(ij)(kl) − 19δ(ik)(jl) − 19δ(il)(jk)

)
;
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δ(ij)(kl) ∙ δ(ij)(kl) =
43

222
(
a(ij) + a(kl)

)
+
32 ∙ 41
227

(
a(ik) + a(il) + a(jk) + a(jl)

)

−
643

223
(σi + σj + σk + σl) +

1

215
(
11δ(ij)(kl) + 3 ∙ 13δ(ik)(jl) + 3 ∙ 13δ(il)(jk)

)
;

δ(ik)(jl) ∙ δ(il)(jk) =
3 ∙ 7 ∙ 13
227

(
a(ik) + a(il) + a(jk) + a(jl)

)
−
73

227
(
a(ij) + a(kl)

)

+
3 ∙ 13
224

(σi + σj + σk + σl) +
5 ∙ 11
216

(
δ(ik)(jl) + δ(il)(jk)

)
−
32

216
δ(ij)(kl).

The above expressions, together with the product rules given in (21), (22), (23), (25), and
in Lemma 4.8, completely describe the products in the algebra S(2B,3A). The Gram matrix
with respect to the scalar product ( , ) in the Sakuma basis was mostly computed by hand,
although also checked in [GAP4]. In Table 7, one row from each of the three S4-orbits on
the basis vectors is shown and δ(ij)(kl) is abbreviated as δj .

Table 7

( , ) a(ij) a(kl) a(ik) a(il) a(jk) a(jl) σi σj σk σl δj δk δl

a(ij) 1 0 13
28

13
28

13
28

13
28

− 13
213

− 13
213

3∙72

213
3∙72

213
− 3∙7

2

218
5
219

5
219

σi - 13
213

3∙72

213
− 13
213

− 13
213

3∙72

213
3∙72

213
32∙7∙59
219

5
219

5
219

5
219

449
223

449
223

449
223

δj − 3∙7
2

218
− 3∙7

2

218
5
219

5
219

5
219

5
219

449
223

449
223

449
223

449
223

5∙3697
229

35∙29
230

35∙29
230

The Gram matrix is non-singular, hence 13 is the dimension of the representation. The
determinant of the Gram matrix, as calculated (on the very early stages of this project) by
Alexander Osipov from the Institute of Information Systems in Novosibirsk, is

316 ∙ 52 ∙ 112 ∙ 239

2152
.

The conceptional meaning of this number is not yet clear for us.

4.2 Shape (2A, 3A)

Here we follow the Norton basis from the very beginning. The products of vectors in ψ(T )
are described by the following rules:

a(ij) ∙ a(ij) = a(ij); a(ij)(kl) ∙ a(ij)(kl) = a(ij)(kl); (26)

a(ij) ∙ a(kl) =
1

23
(
a(ij) + a(kl) − a(ij)(kl)

)
; (27)
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a(ij)(kl) ∙ a(ik)(jl) =
1

23
(
a(ij)(kl) + a(ik)(jl) − a(il)(jk)

)
; (28)

a(ij) ∙ a(ik)(jl) =
1

26
(
a(ij) + a(ik)(jl) − a(kl) − a(il)(jk) + a(ij)(kl)

)
; (29)

a(ij) ∙ a(ij)(kl) =
1

23
(
a(ij) + a(ij)(kl) − a(kl)

)
; (30)

a(ij) ∙ a(ik) =
1

25
(
2a(ij) + 2a(ik) + a(jk)

)
−
33.5

211
ul; (31)

ul ∙ ul = ul; a(ij) ∙ ul =
1

32
(
2a(ij) − a(ik) − a(jk)

)
+
5

25
ul. (32)

Equations (26)–(30) follow from lines 2A and 4B of Table 3 (see also the proof of Lemma 4.1).
Equation (31) can be considered as the definition of ul. The latter vector is invariant under
the ϕ-image of the symmetric group S3 on the letters i, j, k. Finally, (32) follows from line
3A of Table 3.
Let W denote the linear span of ψ(T ) and let U denote the linear span of W together

with ui, uj , uk, and ul. Our goal is to show that U is closed under the algebra multiplication,
which will be achieved in a sequence of lemmas.
The first lemma is an immediate consequence of (26)–(32).

Lemma 4.12. The following assertions hold:

(i) at ∙ w ∈ U for all t ∈ T and all w ∈W ;

(ii) a(ij) ∙ ul ∈ U ;

(iii) a(ij)(kl) ∙ at ∈W for all t ∈ T .

Lemma 4.13. Table 8 shows some 0- and 1
22
-eigenvectors (first and the second columns,

respectively) of a(ij).

Table 8

0 1
22

α(ik)(jl) = a(ik)(jl) + a(il)(jk) −
1
22
a(ij)(kl)

α(kl) = a(kl) + a(ij)(kl) −
1
22
a(ij) β(kl) = a(kl) − a(ij)(kl)

αl = ul − 2.533 a(ij) +
25

33
(a(ik) + a(jk)) βl = ul − 23

32.5
a(ij) −

25

32.5
(a(ik) + a(jk))
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Proof. The result follows from Table 4 in view of the shape of the considered representation.

Lemma 4.14. The following assertions hold:

(i) α(ik)(jl) ∙ ul ∈ U ;

(ii) a(ij)(kl) ∙ ul ∈ U ;

(iii) β(kl) ∙ ul ∈ U ;

(iv) a(kl) ∙ ul ∈ U .

Proof. To prove (i), we apply Lemma 1.8 for s = α(ik)(jl) ∙ ul, αs = α(ik)(jl) ∙ αl, βs =
α(ik)(jl) ∙ βl, making use of Lemmas 4.12 and 4.13.
Since ul is stable under the permutation ϕ((ijk)), while α(ik)(jl) is not, (i) implies that

U contains each of the following three vectors:

α(ik)(jl) ∙ ul, α(jk)(il) ∙ ul, α(ij)(kl) ∙ ul.

Considering a suitable linear combination of the α’s, we obtain (ii).
To prove (iii) we apply a modification of the resurrection principle. By the just proven

part (ii) and Lemma 4.12, the product

αl ∙ (α(kl) − β(kl)) = αl ∙ α(kl) − αl ∙ β(kl)

belongs to the linear span ofW and ul. Since this span is a(ij)-stable under the adjoint action
of a(ij) (see Lemma 4.12(ii)), and since the above product is a difference of a 0-eigenvector

and a 1
22
-eigenvector of a(ij), (iii) follows from the equality

a(ij) ∙ (αl ∙ (α(kl) − β(kl))) = −
1

22
αl ∙ β(kl).

Finally, (iv) is an immediate consequence of (ii) and (iii).

By Lemma 4.12(i),(ii) and Lemma 4.14(iv) we have the following.

Lemma 4.15. The subspace U is at-stable for every t ∈ T .

Proposition 4.16. The product ∙ is closed on U .

Proof. By Lemma 4.15 and since ul is an idempotent, in order to prove the assertion it
is sufficient to show that U contains ul ∙ uk. The latter follows from Lemma 1.8 applied to
s = ul ∙ uk, αs = αl ∙ αk, and βs = αl ∙ βk.

The product formulas, as calculated in [GAP4], are the following:

a(ij)∙ui =
1

32 ∙ 5

(
a(ij) + a(kl) − a(ij)(kl)

)
−

1

2 ∙ 32 ∙ 5

(
a(ik) + a(il) + a(jk) + a(jl)

)
+
1

26
(ui − uj + uk + ul) ;
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a(ij)(kl) ∙ ui =
1

32
a(ij)(kl) +

1

26
(5ui + 3uj − 4uk − 4ul) ;

ui ∙ uj =
1

5
(ui + uj)−

1

2 ∙ 32
(uk + ul) +

26

34 ∙ 52
(
2a(ij)(kl) − 3a(ik)(jl) − 3a(il)(jk)

)
.

The identity element is

ι =
23

3 ∙ 5

∑

t∈T

at +
3

23

∑

x∈Ω

ux, and (ι, ι) =
22 ∙ 32

5
.

The reduced inner product matrix is the following, where a(ij)(kl) is abbreviated as aj .

Table 9

( , ) a(ij) a(kl) a(ik) a(il) a(jk) a(jl) ui uj uk ul aj ak al

a(ij) 1 1
23

13
28

13
28

13
28

13
28

1
22∙32

1
22∙32

1
22

1
22

1
23

1
26

1
26

ui
1

22∙32
1
22

1
22∙32

1
22∙32

1
22

1
22

23

5
23∙17
34∙5

23∙17
34∙5

23∙17
34∙5

1
32

1
32

1
32

aj
1
23

1
23

1
26

1
26

1
26

1
26

1
32

1
32

1
32

1
32

1 1
23

1
23

4.3 Shape (2B, 3C)

In the considered situation T is the set of six S4-transpositions. By Lemma 3.2, the algebra
product is closed on the linear span of ψ(T ):

a(ij) ∙ a(ij) = a(ij); a(ij) ∙ a(kl) = 0; a(ij) ∙ a(ik) =
1

26
(
a(ij) + a(ik) − a(jk)

)
.

The Gram matrix of ψ(T ) is non-singular, so the representation is 6-dimensional. The
identity element is

ι =
16

17

∑

t∈T

at and (ι, ι) =
25 ∙ 3
17

.

4.4 Shape (2A, 3C)

Here T is the set of all nine S4-involutions and, as in the previous subsection, Lemma 3.2
applies:

a(ij) ∙ a(ij) = a(ij); a(ij) ∙ a(kl) =
1

23
(
a(ij) + a(kl) − a(ij)(kl)

)
;

a(ij) ∙ a(ik) =
1

26
(
a(ij) + a(ik) − a(jk)

)
; a(ij) ∙ a(ij)(kl) =

1

23
(
a(ij) + a(ij)(kl) − a(kl)

)
;
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a(ij) ∙ a(ik)(jl) =
1

26
(
a(ij) + a(ik)(jl) − a(kl) − a(il)(jk) + a(ij)(kl)

)
.

The representation is 9-dimensional with identity element

ι =
16

21

∑

t∈T\A4

at +
64

105

∑

t∈T∩A4

at, and (ι, ι) =
25 ∙ 137
3 ∙ 5 ∙ 72

.

5 Norton basis for S(2B,3A)
In this section ζ denotes the monomorphism ζ : S4 →M such that ζ((ij)(kl)) and ζ((ijk))
belong to the conjugacy classes 2B and 3A of the Monster group M , respectively. Then
S(2B,3A) is the subalgebra in the 196,884 dimensional Conway–Griess–Norton algebra gen-
erated by the Majorana axial vectors aζ(t) taken for all transpositions t of S4. Let VM
denote the vector space underlying the Monster algebra. Although S(2B,3A) does not con-
tain subalgebras of 4A-type, the image of ζ contains three cyclic subgroups generated by
4A-elements. It was suggested by Simon Norton that S(2B,3A) might contain vζ(ρ), where
ρ is an element of order 4 in S4. To simplify notation, if ρ is an element of order 4 in S4
and ρ2 maps i onto x then the vector vζ(ρ) will be denoted by vx. The vector vj is invariant
under ζ(NS4(〈(ikjl)〉)) ∼= D8. In order to find the candidates for vj in S(2B,3A), we have
classified all idempotents ϑ in S(2B,3A) that are invariant under the subgroup

D8 = ζ(〈(ik)(jl), (ij)〉) = ζ(NS4(〈(ikjl)〉)).

These idempotents might be of independent interest and are given in Table 10. The entries
of the leading five columns show the coefficients of the relevant idempotent ϑ in the basis
whose members are given in the headings of these columns, where

a = a(ik) + a(jk) + a(il) + a(jl), σ = σi + σj + σk + σl.

The last two columns are reserved for inner products: by Table 3, the scalar square of vj
must be 2 and from the standard description of the Monster algebra in terms of the Leech
lattice one can deduce that (vj , a(ij)) must be

1
24 .
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Table 10

a(ij) + a(kl) a σ δ(ij)(kl) δ(ik)(jl) + δ(il)(jk) (ϑ, ϑ) (ϑ, a(ij))

m2+15
m2+207

m+87
m2+207

64m−1088
m2+207

4096m−4096
m2+207

32768
m2+207

2 m2

m2+207

1
117

5
6 −1216351

16384
351 −204827

46
13

23
624

58
575

433
575 −704115

53248
575 −49152575

88
25 0

31
117

17
26 −2944351

4096
27 −204827

46
13

23
624

344
975

344
975

1024
585

16384
225

16384
225

644
325

23
52

22
39 1 −32039 −409639 0 72

13
29
52

88
75

88
75 −51245

16384
225

16384
225

188
25 1

Table 10 contains only half of the idempotents in question. The other half can be
obtained by the following rule. The vector ι at the very bottom of the table is the identity
of S(2B,3A), and for each D8-invariant idempotent ϑ the vector ι − ϑ is also an invariant
idempotent with scalar square 18825 − (ϑ, ϑ). Otherwise the list is complete (provided that
m runs through the ground field and “m = ∞”: the latter one gives the idempotent with
coefficients (1, 0, 0, 0, 0)).

The vectors in the first row corresponding to m = ±3 satisfy all the requirements,
although we could not conclude with full confidence that either of them is indeed the vector
vj we are after. The reason is the following.

It was checked computationally by Steven Linton from St. Andrews that S(2B,3A) has
codimension 1 in X := CVM (C(2B,3A)), where

C(2B,3A) = CM (ζ(S4)) ∼= 2
11.M23.

Because of the invariance, vj is definitely contained in X, but potentially it could be located
outside S(2B,3A). This matter was settled by Simon Norton who has constructed an explicit
embedding into the Monster algebra of the 7-dimensional subalgebra of S(2B,3A) formed
by the vectors fixed by ζ((ij)(kl)). It follows from his calculations that the vector vj is
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precisely the one corresponding to m = −3 in Table 10. Thus in Sakuma’s basis we have

vj =
1

32
(
a(ij) + a(kl)

)
+
7

2 ∙ 32
(
a(ik) + a(il) + a(jk) + a(jl)

)

−
25 ∙ 5
33
(σi + σj + σk + σl)−

211

33
δ(ij)(kl) +

212

33
(
δ(ik)(jl) + δ(il)(jk)

)
.

The product rules of the algebra S(2B,3A) in the Norton basis

a(ij), a(kl), a(ik), a(il), a(jk), a(jl), ui, uj , uk, ul, vj , vk, vl

were calculated in [GAP4]:

a(ij) ∙ a(ij) = a(ij); a(ij) ∙ a(kl) = 0; a(ij) ∙ a(ik) =
1

25
(
2a(ij) + 2a(ik) + a(jk)

)
−
33 ∙ 5
211

ul;

a(ij) ∙ ul =
1

32
(
2a(ij) − a(ik) − a(jk)

)
+
5

25
ul;

a(ij) ∙ ui =
1

33 ∙ 5

(
11a(ij) − a(kl)

)
+

1

2 ∙ 33 ∙ 5

(
a(ik) + a(il) + a(jk) + a(jl)

)

+
1

26 ∙ 3
(11ui + 5uj − uk − ul) +

1

32 ∙ 5
(vj − 2vk − 2vl) ;

a(ij) ∙ vj =
1

24 ∙ 32
(
5a(ij) − a(kl)

)
−

1

22 ∙ 32
(
a(ik) + a(il) + a(jk) + a(jl)

)

+
5

27
(ui + uj + uk + ul) +

1

24 ∙ 3
(vj − 2vk − 2vl) ;

a(ij) ∙ vk =
1

26 ∙ 32
(
85a(ij) + 7a(kl)

)
−

1

25 ∙ 32
(
a(ik) + a(il) + a(jk) + a(jl)

)

−
1

210
(70ui + 70uj − 5uk − 5ul)−

1

26 ∙ 3
(7vj − 17vk − 11vl) ;

ui ∙ ui = ui;

ui ∙ uj =
28

35 ∙ 52
(
a(ij) + a(kl)

)
−
27

35 ∙ 52
(
a(ik) + a(il) + a(jk) + a(jl)

)

+
7

2 ∙ 33 ∙ 5
(2ui + 2uj − uk − ul) +

26

34 ∙ 52
(2vj − vk − vl) ;

ui ∙ vj =
1

33 ∙ 5

(
6a(ij) − 2a(kl) − 13a(ik) − 13a(il) + a(jk) + a(jl)

)

+
1

26 ∙ 3
(45ui + 11uj − 8uk − 8ul) +

1

32 ∙ 5
(9vj − 2vk − 2vl) ;
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vj ∙ vj = vj ;

vj ∙ vk = −
5

22 ∙ 33
(
a(ij) + a(kl) + a(ik) + a(jl) − 2a(il) − 2a(jk)

)

−
53

29 ∙ 3
(ui + uj + uk + ul) +

1

23 ∙ 32
(19vj + 19vk + vl) .

The reduced Gram matrix in the Norton basis is given in Table 11. Notice that the
disturbing large primes from the similar matrix in the Sakuma basis have disappeared. The
determinant of the Gram matrix is

22 ∙ 112 ∙ 239

320 ∙ 56
.

Table 11

( , ) a(ij) a(kl) a(ik) a(il) a(jk) a(jl) ui uj uk ul vk vj vl

a(ij) 1 0 13
28

13
28

13
28

13
28

13
22∙32∙5

13
22∙32∙5

1
22

1
22

1
23∙3

31
26∙3

31
26∙3

ui
13

22∙32∙5
1
22

13
22∙32∙5

13
22∙32∙5

1
22

1
22

23

5
23∙7
33∙52

23∙7
33∙52

23∙7
33∙52

11
33

11
33

11
33

vj
1
23∙3

1
23∙3

31
26∙3

31
26∙3

31
26∙3

31
26∙3

11
33

11
33

11
33

11
33

2 32

24
32

24
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