
Iterative Reclassification in Agglomerative Clustering

Nicholas A. HEARD∗

In model-based clustering of complex data a probability model, typically a finite mixture

probability model, forms the basis of the distance measure between any pair of clusters. The

idea of model-based clustering was popularized by the framework and accompanying software

of Fraley and Raftery (2002). In particular, model-based agglomerative hierarchical clustering

is now a frequently used approach for probabilistic grouping of data, due to the speed and

simplicity of implementation. This paper investigates deficiencies in the clusterings proposed

from this popular approach, and presents a review of small refinements and extensions to the

procedure with differing performance gains and computational costs. The improvements are

illustrated through application to simulated and real data examples, including the clustering of

gene expression time profiles. Some of the proposed improvements to agglomerative clustering

are, like the procedure itself in its usual form, deterministic; perhaps surprisingly though,

the best overall results here are obtained via a stochasticized version of the entire procedure.

Whilst the focus of this paper is probability model-based clustering, many of the schemes

presented are equally applicable to agglomerative clustering under any distance measure.

The simulated data from this paper along with the C++ code used for implementing the

algorithms for all of the examples can be obtained online from the Supplemental Material.

KEY WORDS: Model-based clustering; Agglomerative clustering; Iterative reclassification;
Stochastic search.

1. INTRODUCTION

Due to its speed and simplicity of implementation, agglomerative clustering is widely regarded
as the default method in applied science for splitting a set of data into homogeneous groups. Here,

∗Nicholas A. Heard is Lecturer in Statistics, Department of Mathematics, South Kensington Campus, Imperial
College London, SW7 2RH (Email: n.heard@imperial.ac.uk).

1



for a collection of n data points {yi ∈ Rp : i = 1, . . . , n}, this paper examines some simple
extensions of model-based agglomerative clustering for finding improved locally optimal parti-
tions. Importantly, these extensions will retain much of the simplicity of the basic agglomerative
algorithm.

Agglomerative clustering (Johnson, 1967) is an iterative clustering strategy which begins with
each datum yi in its own cluster and successively merges cluster pairs chosen to maximize an
objective function. The term “model-based” refers to the case where a probability model π(C) acts
as the clustering objective function measuring the quality of rival partitions C.

The performance of the model-based agglomerative clustering algorithm, which is fully defined
in Section 2, in finding a good partition will depend both on the structure of the assumed probability
model and the nature of the data; in particular, the number of data points n and the dimension p of
each datum yi can be important.

In practice it can be observed that model-based agglomerative clustering will often be biased
towards building up one large cluster before moving onto the next. Sections 3 and 4 of this paper
present schemes which seek to negate this bias and build up clusters in a more balanced way, with
the aim of obtaining higher scores for the objective function π. When these schemes are applied
to several simulated and real data clustering problems in Section 5, the best performance of all is
achieved by a stochastic variety of agglomerative clustering where the choice of clusters to merge
is made at random.

2. AGGLOMERATIVE HIERARCHICAL CLUSTERING

A fully probabilistic approach to cluster analysis such as that of Bayesian inference would for-
mally require full exploration of a probability model π over the entire partition space for accurate
inference to be performed. However, for n data points the number of possible partitions is given
by the nth Bell number, which for the smallest example here of 82 points corresponds to an order
of 1089 possible models, and so a full exploration of the space is not possible. Instead, stochas-
tic search methods such as reversible jump MCMC (Richardson and Green, 1997) with elaborate
transition kernels (Jasra et al., 2007) can be used in these circumstances to explore a small but
potentially high probability subset of this discrete space.

Hierarchical clustering methods provide a more straightforward, deterministic approach to the
search for a high probability clustering. Agglomerative hierarchical clustering is very popular

2



for two reasons. Firstly, the agglomerative algorithm is very quick, evaluating just (n − 1)2 + 1

highly related partitions for n data points in the contexts presented here. Secondly, it provides
a much richer output than flat clustering techniques, such as the k-means procedure (MacQueen,
1967); a binary tree T of nested partitions is obtained from the hierarchy of models visited, of
which the proposed optimal clustering C is just one cut. The number of data groupings to report is
often unclear, particularly so in distance-based clustering, and the tree suggests a range of possible
clusterings at different levels of granularity. Diagrammatically, the hierarchy is best presented as a
dendrogram indicating the order in which the agglomerations took place (see Figures 1 and 2).

2.1 AGGLOMERATIVE CLUSTERING ALGORITHM

Model-based agglomerative clustering is routinely applied in many applied science contexts,
including biology, medicine and psychology. Motivating this paper is the frequent use of agglom-
erative clustering in the biologically interesting context of clustering of gene expression; similarity
measure-based examples can be found in the regularly cited papers of Eisen et al. (1998) and Spell-
man et al. (1998), and model-based examples appear in Yeung et al. (2001), Ramoni et al. (2002)
and Heard et al. (2006).

The basic model-based agglomerative clustering algorithm is fully written out in Algorithm 1
in fairly general terms so that later modifications can be easily explained. In words, each data point
starts off in its own singleton cluster and then at successive iterations two clusters are merged so
that the resulting change in the objective function π is optimized; this is repeated until all of the
data reside in a single cluster. The best partition visited is then reported as the optimal cluster-
ing, with the objective score a measure of partition quality which can be compared for different
algorithms. Additionally, the average objective score of models visited within the dendrogram
similarly provides a measure of quality of the full tree hierarchy, which may also be reported. This
agglomerative clustering algorithm will be referred to later simply as AC.

For efficient implementation of Algorithm 1, the upper triangle of the symmetric cluster simi-
larity matrix S, which at its largest is of dimension n×n, is always stored; then following a merger
only the (k − 1) affected entries of S are updated (lines 18-22), with its dimension also reducing
by one. Furthermore, various sufficient statistics can be stored for each cluster, according to the
precise nature of the probability model.

Important early methodological citations for model-based agglomerative clustering are Ward

3



(1963) (in the more general context of π being some objective function to maximize, not necessarily
a probability model) and Fraley and Raftery (2002). Motivated by building better tree hierarchies
rather than just optimal output partitions, Heller and Ghahramani (2005) extended model-based
hierarchical clustering to use a recursive objective score for clusters made up of a mixture of the
usual model probability for a cluster combined with the product of the objective scores of the first
two sub-clusters in the preceding hierarchy. This method, referred to as Bayesian Hierarchical
Clustering (BHC), has an interpretation as an approximate inference model for Dirichlet Process
mixtures (Escobar, 1994), and is implemented later on in this paper in the numerical comparisons.

Related to these methods are other approaches which place a probability distribution on the
entire binary tree hierarchy rather than on a particular cut (see, for example, Teh et al., 2008).
This is a much more computationally challenging framework and so is not considered further here,
although there is scope for generalizing the methods presented here to that setting.

2.2 LIMITATIONS OF AGGLOMERATIVE CLUSTERING

Whether being used to provide a final clustering solution or simply to give a starting model
for more complicated search procedures, the aim of agglomerative clustering remains the same:
to find ‘good’ partitions of the data with respect to the objective function. However, the potential
quality of these partitions is limited by the algorithm.

First, it should be noted that in agglomerative clustering mergers are irreversible, so that once
two clusters are chosen to merge, their elements will remain together throughout the remainder of
the hierarchy. So in particular there will be data points which have merged into clusters early on in
the algorithm which later on, when other “rival” clusters have been formed, might have been better
placed elsewhere.

Second, if one observes Algorithm 1 in practice, it commonly happens that one large cluster
quickly starts to form with the rest of the data points remaining as singleton clusters. Examples
of this can be seen in the dendrograms in Figures 1 and 2 later on. This phenomenon seems
particularly prone to occurring in Bayesian probability model-based clustering when informative
priors are being used. The large, early clusters that form typically contain data points which
are somewhat outlying relative to the prior specification and so marginally have low predictive
probability, but actually can be separated under the same model using alternative search techniques.

Some of these issues can be alleviated by selecting different prior parameters for a Bayesian

4



probability model. However, this would go against the Bayesian paradigm, where all proper sub-
jective prior distributions should be admissible. It is undesirable to constrain the range of allowable
parameter choices of a probability model because of contrasting difficulty of inference.

The objective of this paper is to present simple varieties of the agglomerative clustering Al-
gorithm 1 which can be easily deployed to avoid the hierarchy from deviating towards paths con-
taining such highly sub-optimal partitions and to identify the circumstances in which each method
is appropriate. Some varieties will have comparable run-times with Algorithm 1 and none are
prohibitively slow. So the intention here is to suggest complementing the use of Algorithm 1 by
additionally running a selection of other suitable methods in parallel. The best clustering found
across these methods and its surrounding hierarchy can be reported.

3. ITERATIVE RECLASSIFICATION

The variations to AC Algorithm 1 considered here look to reclassify data points to different
clusters once mergers have taken place. For an output partition C, it is desirable that any shift of
a data point yi to a different cluster in C, or into a singleton cluster, should cause a decrease in
the objective function π. In practice, after performing agglomerative clustering Algorithm 1 on
moderately large data sets a substantial proportion of data points are not in their optimal cluster,
so when reclassified as belonging to a different cluster cause an increase in π. For example, for
the Anopheles gene expression data in Section 5.3 with 2,771 genes to cluster, 377 are initially
sub-optimally classified in this sense after applying Algorithm 1.

To address this issue, a reclassification step is introduced to reallocate subjects to their optimal
clusters. The following reclassification algorithm can be embedded within the agglomerative clus-
tering Algorithm 1 to improve the final output partition from this method. The reclassification can
simply take place once at the end of agglomerative clustering immediately after line 24 of Algo-
rithm 1, a strategy to be known as ACIR; or reclassification can be performed after each merger in
the agglomerative scheme so immediately after line 15 of Algorithm 1, a strategy to be known as
AIRC.

5



3.1 ITERATIVE RECLASSIFICATION ALGORITHM

Algorithm 2 gives details of a simple sequential reclassification algorithm for a given partition
C. In words, at each iteration of this algorithm the subject whose reallocation to a different, optimal
cluster will cause the biggest increase in π is selected to move. This is repeated until no subjects are
suboptimally classified. For efficient implementation of Algorithm 2, an additional n× k subject-
cluster similarity matrix R is stored; then following any reclassifications (or mergers if applied
during, say, AC) only the affected columns of R are updated (lines 6-10). With these efficiencies
the algorithm has a level of complexity which is O(n) at each iteration.

A useful property of Algorithm 2 is that convergence is guaranteed; every iteration causes an
increase in π, and the search space is finite. In contrast, a batch reallocation strategy where all
misallocated subjects are reallocated at each iteration has no such guarantees, as single iterations
of the algorithm can cause π to decrease. This lack of convergence can be seen in practice, as the
algorithm can often find itself cycling indefinitely between a small number of partitions. Compu-
tationally there is little difference between sequential and batch reclassification, so the latter holds
no real advantages.

3.2 PAIRWISE RECLASSIFICATIONS

It is a natural extension to consider reclassification moves involving subsets of data points, or
at least pairwise shifts of data points, with perhaps say one subject joining a cluster whilst another
moves out. For example, there can be a slight outlier in a cluster which has no preferred alternative
cluster, that once forced to move out will allow other, better fitting subjects to then join this cluster.

Suppose an iterative reclassification clustering algorithm has been performed until conver-
gence, so that no possible subject move directly increases the objective function. It is then proposed
that pairwise moves can be considered. To implement this in practice, in turn each data subject i
is proposed to move from its existing cluster c = c(i) into a new singleton cluster (as is possible
in Algorithm 2, and note that at this stage there is no preferable move to an existing cluster). But
then rather than accepting or rejecting based on change in objective score, the shift is temporarily
accepted. Then, Algorithm 2 is run, concentrating on proposals to move more subjects out of the
affected cluster c to any other cluster, or to move the any of the remaining subjects into the affected
cluster c. If no overall gain in objective score is yielded once convergence is reached, all of the

6



changes are undone. This is repeated across subjects until a move is made permanent, and the en-
tire process can be repeated until convergence. Computationally, this is clearly a more demanding
strategy, adding a level of complexity which is O(n2) at every iteration.

Searching for pairwise shifts after the convergence of strategy ACIR or AIRC is to be referred
to as ACIR2 and AIRC2 respectively.

3.3 REBUILDING THE DENDROGRAM

As mentioned in Section 2, in many contexts an important output of agglomerative clustering
is the hierarchy itself. On first glance, reclassification strategies like ACIR and AIRC might appear
to carry the disadvantage of breaking this hierarchical structure. However, any agglomerative
clustering scheme involving reclassification can be followed with a run of a constrained version of
AC, Algorithm 3, forced to pass through the optimized clustering and create a new hierarchy. That
is, more generally the agglomerative clustering Algorithm 1 can be constrained to pass through an
arbitrary partition C∗ by Algorithm 3, which at lower levels of the hierarchy simply disallows the
merger of two clusters if their union is not a subset of a cluster in C∗.

Of course, running Algorithm 3 may lead to finding a new optimal partition again with a differ-
ent number of clusters, in which case the reclassification procedure can be repeated if so desired;
at each stage until final convergence, only improved partitions according to π are being discovered.

4. STOCHASTIC AGGLOMERATIVE CLUSTERING

A stochastic version of agglomerative clustering is now considered. Stochastic optimization
methods, such as simulated annealing or shotgun stochastic search (Hans et al., 2007) are often
favored in complex high or variable dimensional settings to avoid local maxima and provide a
wider search of the model space. A natural implementation of stochastic agglomerative clustering
is given in Algorithm 4.

In stochastic agglomerative clustering, a cluster is chosen for merger with probability propor-
tional to the gain in objective function π which will be caused by merging with its nearest neighbor.
So the agglomeration causing the highest increase in π goes from being the automatic next merger
to simply being the most likely one. Without further refinement, this would be unlikely to outper-

7



form the usual deterministic agglomerative algorithm, as too many suboptimal mergers are being
purposefully introduced. However, when combined with the reclassification methods of Section
3, stochastic agglomerative clustering becomes a very competitive method; in fact, through the
numerical analysis of several data sets presented in the next section a stochastic method will be
seen to be the most robustly performing algorithm considered in this paper. Some explanations for
this high level of performance are given in the discussion at the end of the paper.

Notationally, stochastic agglomerative clustering (SAC) with iterative reclassification at the
end will be referred to as SACIR, whilst SAC with iterative reclassification at each merger will
be referred to as SAIRC. Following these two strategies with pairwise reclassifications will be
referred to as SACIR2 and SAIRC2 respectively.

5. EXAMPLES

The following methods are now compared for performance over a variety of data sets: AC of
section 2; ACIR, ARIC, ACIR2 and AIRC2 of section 3; SACIR, SAIRC, SACIR2 and SAIRC2
of section 4; the BHC method of Heller and Ghahramani (2005) and also BHC followed by flat
model-based iterative reclassification (BHCIR) and then, for the first example, pairwise iterative
reclassification (BHCIR2). To implement BHC, following Heller and Ghahramani (2005) the free
parameter of their approximate Dirichlet Process formulation is chosen to maximize the root node
posterior probability; whilst this leads to an increase in computation time which will not be in-
cluded in the results presented here, the expense is worthwhile as the extra effort causes the BHC
schemes to be very competitive for some data sets.

The data sets considered are: a simulated data set, generated from a mixture of four bivariate
normals, so as to match the simulations described in Heller and Ghahramani (2005); the Galaxy,
Acidity and Enzyme data sets used for assessing Bayesian methods for mixtures of normals in
Richardson and Green (1997); and gene expression time profile data from Dimopoulos et al.
(2002), modeled as a piecewise linear regression clustering model as in Heard et al. (2006).

Four criteria will be used to assess the performance of each algorithm. Firstly, the maximal
(log) model probability found by the algorithm; secondly, the (log) average model probability
across the output hierarchy; thirdly, the (log) probability of the data given the entire hierarchy,
using the formula of Heller and Ghahramani (2005); fourthly, in the case of simulated data where
true class memberships are known, the purity of the hierarchy (Heller and Ghahramani, 2005). To

8



define purity, for any two subjects with the same class label let the purity of their clustering within
the hierarchy be the proportion of data points sharing their class label in the smallest cluster that
contains the two subjects; the purity of a hierarchy is the mean value of this quantity across all
such pairs.

Computational run times for the algorithms are given for each data set. All computations were
carried out using a single processor of a 2.13GHz Intel Core 2 Duo MacBook Air. C++ source
code used for implementing all of the algorithms for all of the data sets analyzed here is available
from the Supplemental Material.

5.1 SYNTHETIC BIVARIATE GAUSSIAN DATA

Following Heller and Ghahramani (2005), 50 data points were simulated from each of four
bivariate normal distributions. Here the normals were chosen to be spherical, had means located
on the vertices of a square and had differing variances. The data obtained from simulation are
shown in Figure 1, and are available as supplementary material to this paper. For a Bayesian
analysis of these data, the mean and variances for the four normals were treated as unknown and
following respective conjugate priors of standard normal and inverse gamma with unit shape and
scale parameters.

The remaining plots in Figure 1 show the dendrogram outputs from a selection of the algo-
rithms. The “greediness” of the dendrogram for standard agglomerative clustering (AC) is visible
here, with increasingly large clusters being built up in isolation. Recalling that each true cluster
should be of size 50, even a casual inspection of this dendrogram reveals that it cannot be right.
The dendrogram for BHC in Figure 1 is at the other extreme, building up many small clusters
before eventually uniting them into larger clusters. Finally in Figure 1, the dendrogram for AIRC
represents something of a compromise between these two extremes; and encouragingly, there are
obvious boundaries in the dendrogram after approximately 50, 100 and 150 data points.

Table 1 provides a quantitative comparison. Against the plain agglomerative clustering and
Bayesian Hierarchical Clustering algorithms, all of the iterative reclassification strategies lead to
large performance gains. Interestingly, ACIR and outperforms BHC and BHCIR outperforms AC,
even on their own metrics. There is little to choose between the various IR strategies, all are
performing well with purity scores above 95% which suggest the methods are able to successfully
classify most points somewhere within the hierarchy.

9



●●

●●●
●

●
●
● ●

●
●

●
●
●●

●
● ●

●

●

●
●●
●

●
●

●
●

●

●
●●
●

●
●
●

● ●● ●
●

●
●

●
●

●

●
●●

−4 −2 0 2 4

−
4

−
2

0
2

4

y1

y 2

0 50 100 150 200

0
50

10
0

15
0

20
0

Data point

M
er

ge
r

0 50 100 150 200

0
50

10
0

15
0

20
0

Data point

M
er

ge
r

0 50 100 150 200

0
50

10
0

15
0

20
0

Data point

M
er

ge
r

Figure 1: Synthetic data simulated from four bivariate normals (top left); dendrogram output for
these data from the clustering algorithms AC (top right), BHC (bottom left) and AIRC (bottom
right).

10



Running the additional pairwise search for reclassifications leads to very modest gains in per-
formance in each case, particularly when compared against the gains made by the initial strategies
of moving just one subject at a time. However, computation time is still sufficiently low here that
there seems little to lose in extending the search in this way.

5.2 GALAXY, ACIDITY AND ENZYME DATA

Richardson and Green (1997) used three real univariate data sets to illustrate the benefits of
reversible jump Metropolis-Hastings samplers, referred to there as the Galaxy, Acidity and Enzyme

data sets. Respectively these concern distributions of galaxy velocities, lake acidity indices and
enzyme activity levels in the blood; further description of these data (along with details of how to
obtain them) can be found in their paper, but for the purposes of this investigation simply note that
the aim in Richardson and Green (1997) was to fit these data with an unknown mixture of normals.
Since mixture density estimation can be viewed as a clustering problem, these data sets provide a
good benchmark for performance of the agglomerative clustering methods considered here.

Table 2 shows summary results from applying different agglomerative clustering schemes to
the Galaxy, Acidity and Enzyme data, using a simple conjugate mixture of normals probability
model as in Section 5.1. The three data sets have n = 82, n = 155 and n = 245 data points
respectively, and so are presented in increasing order.

Immediately apparent from the table is that as n becomes larger, standard agglomerative clus-
tering methods (either AC or BHC) fare increasingly badly; for the larger Enzyme data set, any of
the suggested modifications to the algorithm lead to massive gains in objective function score; for
the smaller Galaxy data set a less marked improvement is still achieved in all cases. The computa-
tional times are sufficiently low not to merit discussion.

To see the cause of the improved performance, one can look to the dendrograms of the agglom-
erative clustering schemes. Figure 2 shows the dendrograms for the Enzyme data under standard
AC and the best performing method here, AIRC2. The AC dendrogram exhibits the problematic
behavior of building up one particularly large cluster without interruption, resulting in discovery of
low probability partitions. In contrast the rebuilt dendrogram of AIRC2 has a much more balanced
structure and contains much higher probability partitions.

Whilst it is interesting to note that the optimal partitions found in each case vary considerably,
it should be remembered that any questions of model choice and overfitting are irrelevant to this

11



study; model-based clustering is concerned solely with finding configurations with high values for
the objective function π, whose structure should be considered a fixed quantity here. However, to
see an illustration of the realized change in the fitted models, the predictive distributions for the
Enzyme data implied by the optimal partitions proposed by some of the schemes are shown in
Figure 3. At least in this case, the refined methods all explore local modes which are ignored by
AC. Even between the revised methods the fitted models differ considerably, suggesting the value
of these methods can come from implementing each in parallel to obtain a much richer output.

5.3 GENE EXPRESSION DATA

The motivating problem for this investigation of agglomerative clustering was the grouping of
gene expression time profiles from microarray experiments with the aim of generating hypothe-
ses for gene function (see, for example, Eisen et al., 1998). In this context the data will not be
univariate, but rather have dimension p > 1 corresponding to the number of time points at which
gene activity has been measured. Typically the number of genes on the array, n, will be several
thousands, and so n >> p.

A typical example is the Anopheles gambiae mosquito gene expression data of Dimopoulos
et al. (2002). Using loosely the same probability model of Heard et al. (2006) based on piecewise
linear regressions on the time domain with normal errors, these data are now reanalyzed using the
different agglomerative clustering schemes. The data comprise n = 2771 genes measured after
infection with a bacterial agent at p = 6 unequally spaced time points and the aim is to find groups
of genes within the data which are approximately co-regulating over time as measured by the prob-
ability model π. The summary of results of agglomerative clustering with these gene expression
data are shown in Table 3. The time taken to progress through iterations of each clustering algo-
rithm is shown in Figure 4. In this respect, the schemes which have IR at each iteration are seen to
diverge from the plain clustering schemes at an increasing rate; as agglomeration reaches comple-
tion and a smaller number of large clusters remains, there is much more reclassification work to be
done.

All of the simple iterative reclassification methods again cause very substantial gains in per-
formance, the very best coming from the stochastic methods SAIRC. Note from Table 3 that the
clustering arrived upon from this method has been subjected to the greatest number of reclassifica-
tions. In contrast, the performance of BHC deteriorates here, as even with an optimized parameter

12



the algorithm immediately builds up a meaningless cluster containing 84% of the data points with-
out interruption.

For this larger data set, AIRC and SAIRC are now revealed to have a much higher computation
cost than ACIR and SACIR. But equally, their performance is also revealed to be far superior;
too many suboptimal merges have been performed by the plain clustering methods so that itera-
tive reclassification afterwards is insufficient, too much bad cluster structure has been established.
Nonetheless, as demonstrated in Figure 5 which shows a section of the hierarchy of model prob-
abilities obtained under these schemes, a large proportion of the available improvement in the
cluster hierarchy is realized by the simple deterministic ACIR strategy, and so for huge data sets
where computation becomes critical this could be important. Interestingly though, the hierarchies
of AC and ACIR differ almost as much as those of ACIR and SAIRC; if the ACIR optimal clusters
were considered the truth, the AC tree has a purity of 65%, whilst if SAIRC optimal clusters were
true, the ACIR tree has 69% purity.

The pairwise reclassification method SAIRC2 leads to only the slightest of gains in perfor-
mance from SAIRC, while AIRC2 is unable to improve on AIRC at all. Against this, the pairwise
methods are causing a considerable increase in computation time.

6. DISCUSSION

This paper has demonstrated how iterative reclassification schemes which are simple to code
can substantially improve the performance of commonly used agglomerative clustering algorithms
such as AC or BHC. This gain in performance has been two-fold. First looking from a flat per-
spective, applying these simple strategies has led to discovery of cluster configurations with much
higher objective score in all of the examples. At the very least this signifies tighter, truer clusters
according to the assumed probability model, although the final significance of this will depend on
how well the probability model has been specified; the latter is considered a fixed quantity here
and not a subject for discussion in this paper, although unsatisfactory clusters obtained from these
methods might well suggest that the probability model should be revised. Second, when review-
ing the entire hierarchy produced by agglomerative clustering, these gains in objective score were
observed in configurations throughout the dendrogram; furthermore, in the case of simulated data
where the true clusters are known, substantial increases in the purity of the tree were achieved by
virtue of early misallocations of subjects being rectified by the reclassification.

13



Extending the reclassification strategies to allow pairwise moves of subjects led to only small
improvements in performance. Furthermore, the computing time required to realize these small
gains is relatively high. In summary, these pairwise methods are hard to justify unless there is no
urgency for results and the very best performance is sought.

As noted earlier, more sophisticated, tailored MCMC or SMC schemes would be preferred for
a more thorough investigation of the partition distribution. But even then, either as provision of an
initial value or as a high probability reference point for comparative assessment of convergence,
the output of an ‘off the shelf’ algorithm requiring no tuning still has great value.

Beyond these methods, making further ground in optimization with standard split/merge/shift
Metropolis-Hastings proposal samplers is unlikely. These three moves essentially duplicate the
agglomerative and iterative reclassification steps in, say, ACIR, and so typically lead to no fur-
ther increases in the objective function. Pairwise reclassifications can similarly be thought of as
analogous to delayed rejection in MCMC (Green and Mira, 1999).

The strong performance of a stochasticized version of this deterministic algorithm is slightly
unintuitive, as there is nothing inherently intelligent in randomly making sub-optimal choices.
However, this randomness certainly breaks up the bias of AC towards building up big clusters be-
fore moving on. Additionally the compensation for making suboptimal moves is that by visiting
this small neighborhood of locally suboptimal partitions it can become necessary that more itera-
tive reclassifications are performed and so, importantly, more partitions are visited; and crucially,
any locally suboptimal move that does not lead directly to improvement in objective score is imme-
diately undone by reclassification in SAIRC. The tabulated results for the stochastic methods were
obtained when applying a default seed value of 0 for the GNU Scientific Library random number
generator. Varying this seed can lead to the same or different (better or worse) results; thus running
the stochastic schemes in parallel from a multitude of seeds gives a further method for exploring a
slightly increased neighborhood of models if desired.

7. SUPPLEMENTAL MATERIALS

Bivariate Gaussian mixture data Plain text file containing the bivariate data analyzed in Section
5.1, simulated from a four-component mixture of Gaussians. Each line of the file is a data
point in 2-D space appended with a class label from {1, 2, 3, 4}. (synthetic data.txt.tar.gz,
GNU zipped tar file)

14



C++ code Directory containing the C++ source code and makefile for compiling the clustering
program used in all of the examples. An example shell script for running the code on the
bivariate Gaussian mixture data is included which illustrates how to select the different al-
gorithms from the paper. Instructions for compilation and guidance for running the code are
given in the included README file. (splinecluster jcgs.tar.gz, GNU zipped tar file)

REFERENCES

Dimopoulos, G., Christophides, G. K., Meister, S., Schultz, J., White, K. P. and Barillas-Mury,
C andKafatos, F. C. (2002) Genome expression analysis of Anopheles gambiae: Responses to
injury, bacterial challenge and malaria infection. Proc. Nat. Acad. Sci. USA, 99, 8814–8819.

Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. (1998) Cluster analysis and display of
genome-wide expression patterns. Proc. Nat. Acad. Sci. USA, 95, 14863–14868.

Escobar, M. D. (1994) Estimating normal means with a dirichlet process prior. Journal of the

American Statistical Association, 89, 268–277.

Fraley, C. and Raftery, A. E. (2002) Model-based clustering, discriminant analysis, and density
estimation. J. Amer. Statist. Assoc., 97, 611–631.

Green, P. J. and Mira, A. (1999) Delayed rejection in reversible jump Metropolis-Hastings.
Biometrika, 88, 1035–1053.

Hans, C., Dobra, A. and West, M. (2007) Shotgun stochastic search in regression with many pre-
dictors. Journal of the American Statistical Association, 102, 507–516.

Heard, N. A., Holmes, C. C. and Stephens, D. A. (2006) A quantitative study of gene regula-
tion involved in the immune response of anopheline mosquitoes: An application of Bayesian
hierarchical clustering of curves. J. Amer. Statist. Assoc., 101, 18–29.

Heller, K. A. and Ghahramani, Z. (2005) Bayesian hierarchical clustering. In ICML ’05: Proceed-

ings of the 22nd international conference on Machine learning, 297–304. New York, NY, USA:
ACM.

15



Jasra, A., Stephens, D. A. and Holmes, C. C. (2007) Population-Based Reversible Jump Markov
Chain Monte Carlo. Biometrika, 94, 787–807.

Johnson, S. C. (1967) Hierarchical clustering schemes. Psychometrika, 32, 241–254.

MacQueen, J. (1967) Some methods for classification and analysis of multivariate observations.
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1967, 1,
281–297.

Ramoni, M., Sebastiani, P. and Kohane, P. R. (2002) Cluster analysis of gene expression dynamics.
Proc. Nat. Acad. Sci. USA, 99, 9121–9126.

Richardson, S. and Green, P. J. (1997) On Bayesian analysis of mixtures with an unknown number
of components (with discussion). J. Roy. Statist. Soc. B, 59, 731–792.

Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P., Botstein, D.
and Futcher, B. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast
saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9, 3273–
3297.

Teh, Y. W., Daumé, III, H. and Roy, D. (2008) Bayesian agglomerative clustering with coalescents.
Advances in Neural Information Processing Systems, 20, 1473–1480.

Ward, J. H. (1963) Hierarchical grouping to optimize an objective function. J. Amer. Statist. Assoc.,
58, 236–244.

Yeung, K. Y., Fraley, C., Murua, A., Raftery, A. E. and Ruzzo, W. L. (2001) Model-based clustering
and data transformations for gene expression data. Bioinformatics, 17, 977–987.

16



Data: A collection of n ≥ 2 data points y1, . . . , yn.
Result: A partition C of the n data points and a binary tree T which passes through C.

Set k = n. Let the current clustering configuration be made up of the singleton sets,1

C = {{y1}, . . . , {yn}}. Let πn be the objective function value for C, πn = π(C).
for 1 ≤ i < n do2

for i < j ≤ n do3

Let C(ij) be the clustering that would result from merging clusters i and j in C.4

Calculate the ij th entry sij of a symmetric n× n similarity matrix S given by5

sij = sji =
π(C(ij))

π(C)
(1)

end6

end7

while k > 1 do8

for 1 ≤ i ≤ k do9

Identify the closest other cluster i∗ in C to cluster i according to the measure (1),10

i∗ = argmax
j

sij. (2)

Let si = sii∗ be the corresponding maximized similarity value for cluster i.11

end12

Set î = argmaxi si.13

Merge cluster î with cluster î∗ to form a new cluster î. Let C now refer to this new14

clustering, relabeling the other clusters accordingly.
Set k = k − 1. Let ∆M = ∅.15

Set ∆ = ∆M ∪ {̂i}.16

Calculate πk = π(C).17

foreach i ∈ ∆ do18

foreach j /∈ ∆ do19

Calculate sij = sji, the similarity of cluster i to cluster j, and hence identify the20

new nearest cluster to i, i∗ and possibly to j, j∗.
end21

end22

end23

Looking back over the partitions visited, find the number of clusters k in the hierarchy24

maximizing the objective function, k = argmaxk πk. Let C be that partition.
Report C as the output clustering.25

Algorithm 1: Agglomerative clustering (AC)

17



Data: A collection of n ≥ 2 data points y1, . . . , yn; a partition C of the n data points.
Result: A new partition C′ of the data points.

Let ∆M be the set of clusters which are affected by this algorithm, initialized so ∆M = ∅.1

Let k be the number of clusters in C. Arbitrarily label the clusters {1, . . . , k}.2

Let M be a set of subjects that are suboptimally located, initialized so M = ∅.3

for 1 ≤ i < n do4

Let c(i) be the index of the cluster in C containing subject i.5

for 1 < j ≤ k + 1 do6

Let C(i→j) be the clustering that would result from moving subject i into cluster j in7

C (where C(i→k+1) is the clustering that would result from moving subject i into its
own singleton cluster.)
Calculate the ij th entry rij of a n× k subject-cluster similarity matrix R given by8

rij = π(C(i→j))9

end10

Set c′(i) = argmaxj rij , and ri = ric′(i).11

If c′(i) 6= c(i), set M = M ∪ {i}.12

end13

Let i∗ = argmaxi∈M ri. Set ∆M = ∆M ∪ {c(i∗), c′(i∗)}. Set c(i∗) = c′(i∗), so i∗ moves to14

its optimal cluster c′(i∗).
Repeat steps 2-14 until M = ∅ so that all subjects are in their optimal cluster. Let C′ be this15

final clustering.

Algorithm 2: Sequential reclassification algorithm

Data: A collection of n ≥ 2 data points y1, . . . , yn; a partition C∗ of the n data points.
Result: A new partition C of the data points and a binary tree T which passes through C.

Perform Algorithm 1 on the data y1, . . . , yn with the following alteration to the similarity1

measure (1): Let sij = −∞ for any clusters i and j when each are subsets of different
clusters in C∗, with at least one a proper subset.

Algorithm 3: Constrained agglomerative clustering algorithm

Identical to Algorithm 1, but with the following alteration:
13 Randomly set î = i with probability si/

∑k
j=1 sj .

Algorithm 4: Stochastic agglomerative clustering algorithm (SAC)

18



Algorithm log(π(C)) log(π̄T(C)) log(π(T)) Purity Time (s) # Models
AC -420.149 -424.909 -669.594 0.761 0.1 39,602

BHC -387.225 -392.081 -628.906 0.878 0.1 39,602
ACIR -339.423 -344.138 -627.846 0.963 0.6 67,548
AIRC -337.476 -342.393 -629.952 0.950 0.2 132,673

SACIR -337.839 -342.649 -628.424 0.960 0.2 49,512
SAIRC -339.010 -343.673 -627.373 0.972 0.2 110,924
BHCIR -338.757 -343.684 -638.151 0.920 0.5 66,390
ACIR2 -339.367 -344.140 -628.492 0.962 2.7 814,251
AIRC2 -337.105 -342.023 -628.906 0.960 1.6 896,229

SACIR2 -337.839 -342.649 -628.424 0.960 1.4 709,275
SAIRC2 -337.105 -342.023 -628.906 0.960 1.6 827,004
BHCIR2 -338.757 -343.684 -638.151 0.920 1.8 700,661

Table 1: Quantitative performance of clustering algorithms on the synthetic normal data. For each
algorithm is shown the log of the highest model probability found (π(C)), the log average model
probability across the agglomerative tree (π̄T(C)), the log BHC score of Heller and Ghahramani
(2005) for the entire tree (π(T)), the purity, the run time to compute and the number of partitions
evaluated by the algorithm.

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

Data point

M
er

ge
r

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

Data point

M
er

ge
r

Figure 2: Dendrogram output for the Enzyme data from the clustering algorithms AC (left) and
AIRC2 (right).

19



Data set Algorithm log(π(C)) log(π̄T(C)) k Time (s) # Models
AC -92.518 -96.506 9 0.03 6,562

BHC -97.481 -101.564 9 0.02 6,562
ACIR -90.053 -94.113 9 0.04 9,309
AIRC -90.053 -94.113 9 0.05 16,428

SACIR -90.672 -94.507 8 0.04 7,882
Galaxy SAIRC -90.053 -94.113 9 0.05 20,367

(n = 82) BHCIR -90.719 -94.825 9 0.04 8,583
ACIR2 -89.864 -94.000 9 0.16 143,480
AIRC2 -89.864 -94.000 9 0.14 155,411

SACIR2 -90.672 -94.507 8 0.18 156,584
SAIRC2 -89.864 -94.000 9 0.14 158,223

AC 57.851 52.972 7 0.04 23,717
BHC 68.867 63.896 12 0.04 23,717
ACIR 76.234 71.340 7 0.07 32,283
AIRC 81.386 76.693 9 0.11 80,673

SACIR 87.541 83.631 12 0.08 34,660
Acidity SAIRC 87.699 83.611 12 0.12 79,234

(n = 155) BHCIR 88.758 83.937 10 0.08 35,259
ACIR2 80.651 75.743 8 0.64 584,655
AIRC2 89.484 84.585 9 0.66 953,191

SACIR2 87.886 83.974 12 0.61 706,201
SAIRC2 87.710 83.557 11 0.48 722,309

AC 266.975 261.887 6 0.07 59,537
BHC 297.910 292.884 20 0.08 59,537
ACIR 380.345 375.188 10 0.38 192,323
AIRC 390.145 384.790 11 0.32 259,863

SACIR 386.863 381.788 11 0.25 128,631
Enzyme SAIRC 388.034 382.755 11 0.25 187,857

(n = 245) BHCIR 389.140 383.777 11 0.19 115,568
ACIR2 380.345 375.188 10 1.68 1,608,924
AIRC2 390.202 384.841 11 1.68 2,349,733

SACIR2 387.769 382.694 11 3.12 3,435,005
SAIRC2 389.152 383.790 11 1.60 2,121,777

Table 2: Quantitative performance of clustering algorithms on the Galaxy, Acidity and Enzyme
data. For each algorithm is shown the log of both the highest model probability found (π(C))
and the average model probability across the agglomerative tree (π̄T(C)), the estimated number of
clusters k, the run time to compute and the number of partitions evaluated by the algorithm.

20



(a) 0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4

(b) 0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4

(c) 0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4

(d) 0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4

(e) 0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4

(f) 0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4

Figure 3: Histogram for the Enzyme data and predictive densities of optimal models found from
algorithms (a) AC; (b) ACIR; (c) AIRC; (d) SACIR; (e) SAIRC; (f) BHCIR. The dashed lines
represent the weighted conditional predictive densities for each of the clusters found, and the solid
line the overall marginal predictive density.

21



Algorithm log(π(C)) log(π̄T(C)) k Time (s) Reallocations/Subjects # Models
AC -3192.26 -3199.97 24 5 - 7,672,901

BHC -5567.94 -5575.46 7 10 - 7,672,901
ACIR -2757.48 -2764.91 24 23 1,036/628 13,818,776
AIRC -2702.50 -2710.28 24 179 7,110/2,216 100,996,783

SACIR -2750.76 -2758.34 20 23 1,052/600 14,050,474
SAIRC -2686.78 -2694.56 25 231 8,498/2,386 65,240,667
BHCIR -2814.88 -2822.80 18 66 3,142/1,724 27,566,487
ACIR2 -2753.03 -2760.82 25 709 7,259/1,237 412,057,319
AIRC2 -2702.50 -2710.28 24 613 10,387/2,383 346,651,897

SACIR2 -2737.99 -2745.73 22 619 8,765/1,299 336,607,411
SAIRC2 -2686.71 -2694.50 25 722 11,977/2,527 418,788,376

Table 3: MAP model scores and number of clusters k found for the gene expression data (2,771
points). Run times given in seconds. The penultimate column shows the number of reallocations
performed by each algorithm and the number of subjects which were involved in these realloca-
tions. The final column gives the total number of partitions evaluated throughout the course of the
algorithm.

22



2500 2000 1500 1000 500 0

0
1

2
3

Number of Clusters

C
um

ul
at

iv
e 

tim
e 

(m
in

ut
es

)

●

● ACIR
AIRC
SACIR
SAIRC
BHCIR

Figure 4: The cumulative time taken to agglomerate the gene expression data to each level under
the different clustering algorithms.

23



●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

0 50 100 150 200

−
55

00
−

45
00

−
35

00

Number of clusters

Lo
g 

m
ar

gi
na

l l
ik

el
ih

oo
d

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

AC

ACIR

SAIRC

Figure 5: Objective function profile under hierarchical clustering through AC, ACIR and SAIRC.

24


	Introduction
	Agglomerative Hierarchical Clustering
	Agglomerative Clustering Algorithm
	Limitations of Agglomerative Clustering

	Iterative Reclassification
	Iterative Reclassification Algorithm
	Pairwise Reclassifications
	Rebuilding the Dendrogram

	Stochastic Agglomerative Clustering
	Examples
	Synthetic Bivariate Gaussian Data
	Galaxy, Acidity and Enzyme Data
	Gene Expression Data

	Discussion
	Supplemental Materials

