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ONE DIMENSIONAL FOKKER-PLANCK REDUCED DYNAMICS
OF DECISION MAKING MODELS IN COMPUTATIONAL

NEUROSCIENCE †

JOSÉ ANTONIO CARRILLO ‡ , STÉPHANE CORDIER § , AND SIMONA MANCINI ¶

Abstract. We study a Fokker-Planck equation modelling the firing rates of two interacting
populations of neurons. This model arises in computational neuroscience when considering, for
example, bistable visual perception problems and is based on a stochastic Wilson-Cowan system
of differential equations. In a previous work [10], the slow-fast behavior of the solution of the two
dimensional Fokker-Planck equation has been highlighted. Our aim is to demonstrate that the
complexity of the model can be drastically reduced using this slow-fast structure. In fact, we can
derive a one-dimensional Fokker-Planck equation that describes the evolution of the solution along
the so-called slow manifold. This permits to have a direct efficient determination of the equilibrium
state and its effective potential, and thus to investigate its dependencies with respect to various
parameters of the model. It also allows to obtain information about the time escaping behavior. The
results obtained for the reduced 1D equation are validated with those of the original 2D equation
both for equilibrium and transient behavior.
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1. Introduction
In this work, we will propose a procedure to reduce rate models for neuron dynam-

ics to effective one dimensional Fokker-Planck equations. These simplified descriptions
will be obtained using the structure of the underlying stochastic dynamical system.
We will emphasize the numerical and practical performance of this procedure coming
from ideas used in the probability community [1] for a particular model widely studied
in the computational neuroscience literature.

We will consider a simple model [20, 18, 12] formed by two interacting families
of neurons. We assume that there is a recurrent excitation with a higher correlation
to the activity of those neurons of the same family than those of the other while a
global inhibition on the whole ensemble is due to the background activity. These
families of neurons are modelled through the dynamics of their firing rate equations
as in the classical Wilson-Cowan equations [23]. The synaptic connection coefficients
wij , representing the strength of the interaction between population i and j, are the
elements of a 2×2 symmetric matrix W given by

W =

[
w+−wI w−−wI
w−−wI w+−wI

]
,
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2 1D slow-fast reduced decision making models

Here, w+ is the self-excitation of each family, w− the excitation produced on the
other family, and wI the strength of the global inhibition. The typical synaptic values
considered in these works are such that w−<wI <w+ leading to cross-inhibition since
w−<wI and self-excitation since wI <w+. Let us comment that these rate models
are very simplified descriptions of interacting neuron pools, more accurate microscopic
models introducing neuron descriptions at the level of voltage and/or conductances
probability distribution can be derived [4, 5, 6, 7, 8, 9].

The time evolution for the firing rates νi(t) of the neuronal populations i= 1,2 as
given in [12] follows the following Stochastic Differential Equations (SDE):

τ
dνi(t)

dt
=−νi(t)+ϕ

λi+ ∑
j=1,2

wijνj(t)

+βiξi(t), i= 1,2, (1.1)

where τ = 10−2s is a time relaxation coefficient, which will be chosen equal to 1 in
the sequel except for the numerical results, and ξi(t) represents a white noise of
normalized standard deviation βi>0. In (1.1) the function ϕ(x) is a sigmoid function
determining the response function of the neuron population to a mean excitation
x(t) =λi+

∑
jwijνj :

ϕ(x) =
νc

1+exp(−α(x/νc−1))
,

where λi are the external stimuli applied to each neuron population.
We will recall in the next section that the study of the decision making process

for the previous network can be alternatively studied by means of the evolution of
a Fokker-Planck equation in two dimensions i.e. the plane (ν1,ν2). The theoretical
study of such problem (existence and uniqueness of positive solutions) was done in
[10]. However, we will emphasize that due to slow-fast character of the underlying
dynamical system the convergence towards the stationary state for the corresponding
two-dimensional Fokker-Planck problem is very slow leading to a kind of metastable
behavior for the transients. This stiffness in the computation of stationary states for
the Fokker-Planck dynamics is the main motivation of this work.

Nevertheless, the 2D Fokker-Planck equation allows us to compute real transients
of the network showing this metastable behavior. Moreover, we can derive a simplified
one dimensional SDE in Section 3 by scaling conveniently the variables. Here, we
use the spectral decomposition and the linearized slow manifold associated to some
stable/unstable fixed point of the deterministic dynamical system. The obtained 1D
Fokker-Planck equation leads to a simple problem to solve both theoretically for the
stationary states and numerically for the transients. In this manner, we can reduce
the dynamics on the slow manifold to the movement of a particle in an effective 1D
potential with noise. We recover the slow-fast behavior in this 1D reduction but,
due to dimension, we can efficiently compute its numerical solution for much larger
times than in the 2D case. We can also directly compute an approximation to the
2D equilibrium state for the Fokker-Planck dynamics by the 1D equilibrium of the
Fokker-Planck equation onto the slow manifold since in 1D, every drift derives from
a potential. Our objective is to analyse the accuracy of such reduction for a model
problem by comparison of quantities of interest.

We find in the literature other approaches to this one dimensional reduction.
The first works are based on the idea of linearizing around the unstable fixed point
leading to a 1D Fokker-Planck equation with a quadratic repulsive potential valid
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around the unstable fixed point. In fact, the unstable eigenvalue of the linearisation
quantifies the repulsive strength of the potential. This approach was introduced in
[3, Section 3], and proposed for more general rate models with more complicated
bifurcation diagrams in [24]. They find a good agreement between linearized 1D and
2D dynamics close to the unstable stationary state and even for reaction times and
performances. Related works making use of the these 1D reductions in decision making
are [2, 19, 22]. In fact, we build on this approach to compute a better approximation of
the one dimensional effective potential of the Fokker-Planck dynamics. Our approach
simply uses the linearisation at the unstable point to compute suitable coordinates to
parameterize the slow manifold as a nonlinear graph. In this way, the potential we
propose for the reduced FP-equation is nonlinear in comparison to [3, 24] containing
further information than the one locally at the unstable point, see the illustrative idea
in [24, Figure 4D]. We also find a correction to the noise term due to the projection,
see subsection 3.2.

On the other hand, another approach to get an approximation of the 2D Fokker-
Planck equation by 1D Fokker-Planck reduced dynamics has been proposed in [21].
This approach is purely local via Taylor expansion around the bifurcation point lead-
ing to a cubic 1D effective potential. Moreover, an assumption about the scaling of
the noise term is performed to be able to close the expansion around the bifurcation
point. Our approach is valid no matter how far we are from the bifurcation point as
in [3, 24] as long as the system has the slow-fast character and that we can express the
fast variable in terms of the slow one over the approximated slow manifold. Moreover,
we do not assume any knowledge of the noise term scaling and we can reconstruct the
full potential not only locally at the bifurcation point. We point out that the results
of the 1D Fokker-Planck reduction in [21] are compared to experimental data in [21]
with excellent results near the bifurcation point. A similar applied analysis of our re-
duced Fokker-Planck dynamics in a system of interest in computational neuroscience
is underway [11].

Section 4 is devoted to show comparisons between the 2D and the reduced 1D
Fokker-Planck equations both for the stationary states and the transients. We demon-
strate the good performance of this 1D reduction in the comparison between projected
marginals on each firing rate variable and on the slow linearized manifold even far
from the bifurcation point. Finally, section 5 is devoted to obtain information of the
simulation in terms of escaping times from a decision state and performance in the
decision taken.

2. The two dimensional model We will illustrate all our results by numerical
simulations performed with the physiological values introduced in [12]: α= 4 and
νc= 20Hz, λ1 = 15Hz and λ2 =λ1 +∆λ, with ∆λ= 0 for the unbiased case and ∆λ=
0.01,0.05,0.1 for the biased case. The noise parameter is chosen as β= 0.1, and the
connection coefficients are given by w+ = 2.35, wI = 1.9 and w−= 1−r(w+−1)/(1−r)
with r= 0.3.

It is well known [12] that the deterministic dynamical system associated with (1.1)
is characterized by a supercritical pitchfork bifurcation in terms of the parameter w+

from a single stable asymptotic state to a two stable and one unstable equilibrium
points. We recall that the unstable point is usually called spontaneous state while
the two asymptotically stable points are called decision states. The behavior of the
bifurcation diagram for the deterministic dynamical system defining the equilibrium
points in terms of the w+ parameter and with respect to ∆λ is shown in Figure 2.1.
Observe that in the nonsymmetric (∆λ 6= 0) bifurcations, the pair of stable/unstable
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equilibrium points detaches from the branch of stable points.
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Fig. 2.1. Bifurcation diagram: ν1-component of the equilibrium states with respect to w+. Top
Figure: bifurcation diagram for the unbiased case ∆λ= 0. Bottom Figure: bifurcation diagram for
the biased case ∆λ= 0.1.

For example, with w+ = 2.35 in the unbiased case, if ∆λ= 0, the stable points
are in S1 = (1.32,5.97) and its symmetric S3 = (5.97,1.32), and the unstable one is
in S2 = (3.19,3.19); whereas, in the biased case ∆λ= 0.1 the stable points are in
S1 = (1.09,6.59) and S3 = (5.57,1.53), and the unstable one in S2 = (3.49,3.08). These
parameters operate at the linearized (at the unstable point) dynamical system level
in a regime that gives close agreement between theory and full 2-D numerics as also
identified in [2] (high inhibition and recurrence).

Furthermore, it can be shown by means of direct simulations of system (1.1),
that there is a slow-fast behavior of the solutions toward the equilibrium points. This
behavior is illustrated in Figure 2.2, where the straight lines show the behavior of
several realizations for the deterministic system (i.e. when βi= 0), and the wiggled
line represent one realization for the full stochastic system (1.1). Figure 2.2 highlights
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also the so called slow manifold: a curves in which the three equilibrium points of the
system lie and where the dynamics are reduced to rather quickly.
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Fig. 2.2. Dynamics of a firing rate towards stable equilibrium, fast convergence towards the
slow manifold and slow convergence towards one of the stable equilibrium points along the slow
manifold hesitating between the left and the right one.

Applying standard methods of Ito calculus, see [14], we can prove that the proba-
bility density p=p(t,ν), with t>0 and ν= (ν1,ν2), satisfies a Fokker-Planck equation
(known also as the progressive Kolmogorov equation). Hence, p(t,ν) must satisfy:

∂tp+∇·((−ν+Φ(Λ+W ·ν))p)− β
2

2
∆p= 0, (2.1)

where ν ∈Ω = [0,νm]× [0,νm], Λ = (λ1,λ2), Φ(x1,x2) = (ϕ(x1),ϕ(x2)), ∇= (∂ν1 ,∂ν2)
and ∆ = ∆ν . We complete equation (2.1) by the following Robin boundary condi-
tions or no flux conditions: (

(−ν+Φ)p− β
2

2
∇p
)
·n= 0, (2.2)

where n is the outward unit normal to the domain.
Physically, this kind of boundary conditions means that we have no particles

incoming in the domain. From the biological point of view, it means that the evolution
of the firing rate cannot exceed the imposed values. This is naturally relevant for
the boundaries [0,νm]×{0} and {0}× [0,νm] since firing rates should be positive by
definition. For the two others boundaries, [0,νm]×{νm} and {νm}× [0,νm], it relies
on the choice of νm large enough in such a way that the evolution of our system
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without noise is isolated since the characteristics given by the drift part are pointing
inwards the domain of interest. In practice, for the parameters of our model, νm= 10
is a good choice. We refer for a longer discussion to [10] related to the existence of
global stationary states of the 2D model.

In order to simplify notations, let us consider, from now on, the vector field
F = (F1,F2) representing the flux in the Fokker-Planck equation:

F (ν)
def
= −ν+Φ(Λ+W ·ν) =

(
−ν1 +ϕ(λ1 +w11ν1 +w12ν2)
−ν2 +ϕ(λ2 +w21ν1 +w22ν2)

)
, (2.3)

then, equation (2.1) and boundary conditions (2.2) read:

∂tp+∇·
(
F p− β

2

2
∇p
)

= 0, (2.4)

(
F p− β

2

2
∇p
)
·n= 0. (2.5)

We refer to [10] for numerical results and a detailed mathematical analysis of the
Fokker-Planck model (2.4)-(2.5): proof of the existence, uniqueness, and positivity of
the solution, and its exponential convergence towards the equilibrium, or stationary
state. Let us just recall that the equilibrium state cannot be analytically given because
the flux does not derive from a potential, i.e. it is not in gradient form.

Moreover, we remark that the slow-fast structure leads to stiff terms and thus, to
small time steps and large computational time. In fact, the slow exponential decay
to equilibrium makes impossible to wait for time evolving computations to reach the
real equilibrium. Hence, it is difficult to numerically analyze the effect of the various
parameters of the model on the equilibrium state, and then the importance of deriving
a simplified model capable of explaining the main dynamics of the original one is
justified. Nevertheless, one could find the equilibrium state directly by numerical
methods to find eigenfunctions of elliptic equations. The discussed slow-fast behavior
will serve us, in the sequel, to reduce the dynamics of the system to a one dimensional
Fokker-Planck equation.

3. One dimensional reduction
In this section we present the one dimensional reduction of system (1.1). We shall

treat first the deterministic part, see 3.1, then the stochastic terms, section 3.2, and
finally we describe the one dimensional Fokker-Planck model, see 3.3.

3.1. Deterministic dynamical system The slow-fast behavior can be char-
acterized by considering the deterministic system of two ordinary differential equa-
tions, i.e. (1.1) with βi= 0. Regardless of the stability character of the fixed point
S2 = (νeq1 ,νeq2 ), the slow-fast behavior is characterized by a large condition number for
the Jacobian of the linearized system at the equilibrium point S2, i.e., a small ratio
between the smallest and largest eigenvalue in amplitude.

More precisely, let us write the deterministic part of the dynamical system (1.1)
as follows:

ν̇=F (ν), (3.1)

where ν is a vector and F (ν) =−ν+Φ(Λ+Wν) is the flux, see (2.3), as described in
section 2. Let us denote νeq the spontaneous equilibrium point, so that F (νeq) = 0.
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By spontaneous state we mean the only equilibrium before the bifurcation point and
the unique unstable equilibrium point after the subcritical pitchfork bifurcation. This
equilibrium point νeq is then parameterized by the bifurcation parameter w+ and
it has a jump discontinuity at the bifurcation point for nonsymmetric cases ∆λ 6= 0.
Hence, by construction:

(νeq1 ,νeq2 ) = Φ(Λ+W (νeq1 ,νeq2 )).

For the system (1.1), the linearized Jacobian matrix is given by:

JF (z1,z2) =

(
−1+w11ϕ

′(z1) w12ϕ
′(z1)

w21ϕ
′(z2) −1+w22ϕ

′(z2)

)
,

where we have denoted by zi the values zi
def
= λi+wi1ν1 +wi2ν2.

We recall that νeq is an hyperbolic fixed point (saddle point) after the bifurcation
while before it is an asymptotically stable equilibrium. Hence the Jacobian JF (νeq)
has two real eigenvalues µ1 and µ2 being both negative before the bifurcation and
of opposite signs after. The bifurcation is characterized by the point in which the
smallest in magnitude eigenvalue becomes zero. Let us denote by µ1 the (large)
negative eigenvalue and by µ2 the (small) negative/positive eigenvalue of JF (νeq).
We remark that, the small parameter ε<<1 which is responsible for the slow-fast
behavior is determined by the ratio of the amplitude of the two eigenvalues:

ε=

∣∣∣∣µ2

µ1

∣∣∣∣ . (3.2)

The values in terms of w+ and for different values of ∆λ are shown in figure 3.1. In
the range of parameters we are interested with, ε is of the order of 10−2. Note the
jump discontinuities at the bifurcation point for ∆λ 6= 0 since the point around which
our analysis can be performed jumps to the new created branch of the bifurcation
diagram at the bifurcation point.
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Fig. 3.1. Eigenvalues ratio with respect to w+ and for ∆λ= 0,0.01,0.05,0.1.

In order to reduce the system we need to introduce a new phase space based
on the linearization of the problem. We will denote by P the matrix containing the
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normalized eigenvectors and by P−1 its inverse matrix. Note that, in the unbiased
case (∆λ= 0), we have:

P =
1√
2

(
1 −1
1 1

)
. (3.3)

with the associated eigenvalues µ1 =−1.55 and µ2 = 0.036, and the eigenvectors are
orthogonal. Orthogonality of the eigenvectors is no longer true for the nonsymmetric
biased problem ∆λ 6= 0. Furthermore, using Hartman-Grobman theorem [16, 15], we
know that the solutions of the dynamical system are topologically conjugate with its
linearization in the neighbourhood of an hyperbolic fixed point, which is valid in our
case for all values of the bifurcation parameter except at the pitchfork bifurcation.
Let us write it as follows:

JF (νeq) =PDP−1, (3.4)

where P is the matrix of eigenvectors and D is the associated diagonal matrix. We
can describe the coordinates ν in the eigenvector basis and centered on the saddle
point νeq as follows:

ν=νeq+PX, (3.5)

which gives the definition for the new variable X= (x,y), see also figure 3.2:

X=P−1(ν−νeq).

0

1

2
S

S

ν

ν

2

1

0S

y

x

Fig. 3.2. Change of variable from the phase space (ν1,ν2) to (x,y).

We can conclude that system (3.1) reads in the X phase space as:

Ẋ=H(X) (3.6)

where H(X) is the two dimensional vector defined by :

H(X) =P−1F (νeq+PX).

We remark that by means of the chain rule, the Jacobian JH(X) is given by:

JH(X) =P−1JF (νeq+PX)P,
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and using (3.4) and that X(νeq) = 0, we obtain that JH(0) =D, which is the diagonal
matrix in the change of variables (3.4).

Let us now make explicit the system (3.6) in terms of its components f(x,y) and
g(x,y): {

ẋ=f(x,y)

ẏ=g(x,y)
,

where considering the definition of the flux F given by (2.3):

f(x,y) =−x−(P−1νeq)1 +(P−1Φ(Λ+W (νeq+PX)))1 (3.7)

g(x,y) =−y−(P−1νeq)2 +(P−1Φ(Λ+W (νeq+PX)))2

Now, let us assume that both dependent variables (x,y) have separated time scales
with scale separation quantified by (3.2). Then, τ is the slow time scale where y varies
while x varies in the fast time scale t= τ/ε. Accordingly, we scale the right-hand side
f by the small parameter, see similar arguments in [1], and the system reads as

ε
dx

dτ
=f(x,y)

dy

dτ
=

1

ε
g(x,y)

.

Our model reduction assumption consists in assuming that the curve defined by equa-
tion f(x,y) = 0 is a good approximation when ε�1 to the slow manifold. This mani-
fold coincides with the unstable manifold that joins the spontaneous point νeq to the
two other stable equilibrium points (S1 and S3) after the bifurcation point while is
part of the stable manifold before the pitchfork bifurcation.

Due to the non-linearity of the function f , see (3.7) and (2.3), we cannot expect
an explicit formula for f(x,y) = 0. Nevertheless, since ∂xf(0,0) 6= 0, the resolution in
the neighborhood of the origin (close to the spontaneous state) is given by the implicit
function theorem. Hence we can define a curve:

x=x∗(y) (3.8)

such that f(x∗(y),y) = 0 in a neighbourhood of the origin. We also note that, by
construction the approximated slow manifold x∗(y), implicitly defined by (3.8), inter-
sects the exact slow manifold at all equilibrium points, i.e. where both f and g vanish
(nullclines). Finally, we can conclude the slow-fast ansatz, replacing the complete
dynamics by the one on the approximated slow manifold, and obtain the reduced one
dimensional differential equation in the fast time scale t:

dy

dt
=ε

dy

dτ
=g(x∗(y),y).

Let us finally remark that such a reduction is only possible when x is a function of y
which will typically cease to be true far from the bifurcation point.
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3.2. Stochastic term
We consider now the stochastic terms of system (1.1). When changing the variable

form ν to X, also the standard deviation of the considered Brownian motion should be
modified. Indeed the new variables x and y are linear combination of ν1 and ν2. For
instance, consider two stochastic differential eqautions: dνi=βidξi, where ξi are two
independent normalized white noises and βi are the two standard deviations, and take
a linear combination of ν1 and ν2 with real constant coefficients a1,a2: x=a1ν1 +a2ν2.
Then x must obey to the following stochastic differential equation:

dx=
√

(a1β1)2 +(a2β2)2dξ.

In our case, X=P−1(ν−νeq), then we have:

y= (P−1)21(ν1−νeq1 )+(P−1)22(ν2−νeq2 )

or developing and considering dνi=βidξi,

dy= (P−1)21β1dξ1 +(P−1)22β2dξ2

Since in our model β1 =β2 =β, and considering the above discussion, we can write for
a white noise dξ:

dy=β

√
((P−1)21)

2
+((P−1)22)

2
dξ.
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Fig. 3.3. Comparison of the ratio of noise strengths βy/β for various values of ∆λ=
0,0.01,0.05,0.1.

Finally, we conclude that the reduced one dimensional model reads:

dy

dt
=g(x∗(y),y)+βydξ, (3.9)

with βy =β

√
((P−1)21)

2
+((P−1)22)

2
. We note that in the unbiased case βy =β, since

P is given by (3.3). Let us comment on the quantitative effect of this correction to the
noise term. With the values at the beginning of Section 2, we compute in Figure 3.3
the ratio βy/β as a function of ω+ for different values of the biasing parameter ∆λ. It
shows larger values of the reduced noise βy near the bifurcation point for larger ∆λ.
More information about the use of slow manifolds in stochastic differential equations
can be found in [13, 17, 1].
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3.3. One dimensional Fokker-Planck model
We can now consider the Fokker-Planck (or progressive Kolmogorov) equation

associated to the one dimensional stochatic differential equation (3.9). This gives
the reduced dynamics on the approximated slow manifold x=x∗(y). Let us remark
that this reduced SDE is obtained except at the bifurcation point and therefore valid
whenever the slow-fast decomposition is verified or in other words whenever ε is small.

Consider the probability distribution function q(t,y), for t≥0 and y∈ [−ym,+ym],
then it must obey to the following one dimensional Fokker-Planck equation:

∂tq+∂y

(
g(x∗(y),y)q−

β2
y

2
∂yq

)
= 0, (3.10)

with no-flux boundary conditions on y=±ym:

g(x∗(y),y)q−
β2
y

2
∂yq= 0.

Since equation (3.10) is one dimensional, it is always possible to find the effective
potential G(y) being the derivative of the flux term g(x∗(y),y). In other words, we
can always define the potential function:

G(y) =

∫ y

0

g(x∗(z),z)dz.
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Fig. 3.4. Comparison of the potential G for various values of ∆λ= 0(top− left),0.01(top−
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Moreover, we can explicitly obtain the stationary solutions of (3.10), i.e. the
solutions qs(y) independent on time t, as follows:

qs(y) =
1

Z
exp(−2G(y)/β2

y) , (3.11)

with Z a suitable normalization constant. As explained also in [10], these stationary
solutions are the asymptotic equilibrium states for the solution of the Fokker-Planck
equation. In other words, letting time to go to infinity, the solution q(t,y) to (3.10)
must converge to qs(y). We have shown in [10] that the decay to equilibrium for the
two dimensional problem was exponential. Nevertheless, this decay is so slow due to
the small positive eigenvalue associated to the spontaneous state that the simulation
shows metastable behavior for large times. Hence it is relevant to have a simple
approximated computation of their asymptotic behavior without need to solve the
whole 2D Fokker-Planck equation which is provided by this effective 1D potential.

4. 1D model vs. 2D model
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Fig. 4.1. Comparison of the marginals in the new variable y, for different values of the biasing
parameter : ∆λ= 0(top− left),0.01(top−right),0.05(bottom− left),0.1(bottom−right). Blue line:
the marginal computed by means of the 1D problem. Black line: marginal computed from the 2D
problem. Red line: the stationary marginal for the 1D. Final time is 400 seconds.

In this section, we numerically compare the solutions obtained for the one di-
mensional reduced Fokker-Planck equation (3.10) to the one of the original two di-
mensional model (2.4). Concerning the numerical scheme for the two dimensional
problem, we refer the reader to the detailed description in [10]. In particular, we are
interested in the solutions at equilibrium. As announced in section 3.3, we have an
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explicit formula for the solution at equilibrium in 1D (3.11) by computing the primi-
tive G(y). On the contrary, in the 2D setting, we cannot have such formulae and the
computational time to approach equilibrium is very large.
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Fig. 4.2. Comparison of the marginals in the variable ν1 for different values of the biasing
parameter: ∆λ= 0(top− left),0.01(top−right),0.05(bottom− left),0.1(bottom−right). Blue line:
the marginal computed for the 1D problem. Black line: marginal computed from the 2D problem.
Red line: the stationary marginal. Final time is T = 400 seconds.

In Figure 4.1, we plot the solution at equilibrium of the 1D problem (the blue
line) and compare it with the projection of the two dimensional solution on the new
variable y (the black line). We remark that the black line is not too smooth since
we are projecting a 2D distribution on a uniform quadrangular mesh onto an inclined
straight line. We can see a good matching in the unbiased case (∆λ= 0). In the
biased cases, the results are different: for ∆λ= 0.01, one clearly sees that even if we
have computed until the final time of 400 seconds, both the 2D and the 1D solutions
have not reached equilibrium and the 2D results are closer to equilibrium; while for
∆λ= 0.05, or 0.1, the difference is smaller since the drift is strong enough to push all
particles toward only one of the equilibrium points and there is only one population
bump at least for the 2D results. The 2D results are closer to equilibrium at ∆λ= 0.05
while at ∆λ= 0.1 the 1D are closer.

On the other way round, we can also compare the marginals obtained from the
two dimensional problem with the projections of the solution for the one dimensional
problem on the ν1 and/or ν2 axes. In figure 4.2 we show the comparison for various
∆λ. Note that ∆λ= 0.01 is the most interesting case as discussed in the previous
figure. In fact, for larger ∆λ, at equilibrium, the particles are almost all concentrated
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around one of the two stable points. Thus, no bump is visible around the second
one (even in the one dimensional reduced solution), and for the unbiased case the
matching is excellent. We warn the reader in order to compare Figures 4.1 and 4.2
that increasing values of y correspond to decreasing values of ν1.

The results demonstrate that the 1D reduction is worth to obtain information
about the behavior at equilibrium. In the next section, we shall investigate the time
dependent solution q(y,t) of equation (3.10).

4.1. Time dependent solution
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Fig. 4.3. Evolution in time of the distribution in the y variable, for the biasing parameter
∆λ= 0.01 with snapshot every dt= 20 or 0.2 s (left) and 204 or 200s (right).

We are here interested also on the time behavior of the solution q(y,t) of the 1D
Fokker-Planck equation (3.10). For instance, we may compare the time evolution of
momentum for the 2D and the reduced 1D problem. Thus, we need to compute not
only the stationary solution of equation (3.10), but also its time dependent solution.
We choose to discretize equation (3.10) using implicit in time finite difference method.
The evolution of the 1D reduced model illustrates again the slow-fast character of this
problem. In fact, we observe in Figure 4.3 the evolution in time of the density q(y,t)
for small (left) and for large (right) times respectively. The convergence toward the
final stationary state is quite slow compared to the fast division toward the two bump
distribution at the initial stages.

We describe now how to recover all the moments of the partial distribution func-
tion pε in the (ν1,ν2) plane, using the probability distribution function q(y) solution
of (3.10) and the approximated slow manifold x∗(y).

The function pε is concentrated along the the curve ν= (ν1(y),ν2(y)) given by
νeq+P (x∗(y),y)T , see (3.5). We parametrized this curve by means of a curvilinear
coordinate and define

V (y) =‖P (x′∗(y),1)T ‖ .

Then, for any test function Ψ = Ψ(ν1,ν2), the moment MΨ of the probability distri-
bution function pε=pε(ν1,ν2) is defined by

MΨ =

∫
Ω

Ψpεdν1dν2 ,
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and given by

MΨ :=

∫
Ψ((ν1(y),ν2(y))q(y)dy .

This formulae can be used to compute either classical moments of pε or marginals by
choosing e.g. Ψ = δ{ν1=µ} to get the ν2-marginal as a function of µ. Note that q has
to be normalized in such way that its total mass (along the slow manifold) is equal
to 1 i.e. MΨ≡1 = 1.

Let us illustrate this metastability by the evolution of the first moments of the
distribution in Figure 4.4. The initial data is a Dirac measure located above the
spontaneous point (x= 0, y>0 small). We choose ∆λ= 0, β= 0.3 and ω+ = 2.35. We
use an implicit scheme in order to have no stability constraint on the time step. The
number of discretization point is 200 and the time step is ∆t= 0.01 for the left plot.
It shows the fast dynamics: first the Dirac measure diffuses onto a Gaussian blob
and moves quickly toward the spontaneous (unstable) state, then the Gaussian blob
splits in the two bumps around the two stable equilibrium points. It seems that the
solution has reached an equilibrium but it evolves very slowly. The figure on the right
corresponds to ∆t= 100 and shows this slow evolution toward the real equilibrium
state. We will comment more below.
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Fig. 4.4. Evolution in time of the first order moments for the 1D Fokker-Planck reduction.
Top Figure: final time is 103. Bottom Figure: final time is 107. Time unit is 0.01s
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We can finally compare the marginals in ν1 for the 1D reduced model and the 2D
simulations in Figure 4.5. We can conclude that the transients of the 2D are captured
extremely well by the 1D reduced model.

t= 0
t= 0.55
t= 1.15
t= 1.75
t= 2.35

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 1 2 3 4 5 6 7 8 9 10

t= 0
t= 0.55
t= 1.15
t= 1.75
t= 2.35

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 1 2 3 4 5 6 7 8 9 10

Fig. 4.5. Comparison of the marginals in variable ν1, for the biasing parameter ∆λ= 0.01.
Top Figure: 1D reduced model. Bottom Figure: 2D simulation.

5. Reaction time and Performance
In the previous sections, we have numerically studied the accuracy of the reduced

1D model with respect to the 2D original one. We discuss now some other information
we can obtain from the 1D problem, namely: the escaping time, section 5.1, and the
probability density to belong to a sub-domain of the phase space, section 5.2.

5.1. Escaping time Fixed a bias ∆λ and for a variable β we can easily compute
the escaping time. In fact we recall that the Kramers formula [14]:

E(t)∼ exp(HG/β
2),

where HG is the maximum difference of the potential G

HG=Gmax−Gmin, (5.1)
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apply in the one dimensional framework, without needing to compute the solution
q(t,y) of the Fokker-Planck equation (3.10). Recall that Gmax corresponds to the
potential value at the spontaneous state while Gmin corresponds to the minimum of
the potential value at the two decision states. In Figure 5.1, we plot the potential gap
computed by means of (5.1) as a function of the bias ∆λ.

Fig. 5.1. Computed potential gap as a function of ∆λ.

In the 2D problem, since the drift is not the gradient of a potential, Kramer’s
rule does not apply and the escaping times can only be computed for the unbiased
case, ∆λ= 0. In fact, for ∆λ= 0 the problem is symmetric in ν1 and ν2 and thus, we
know that the firing rates will separate in two identical bumps. Then, starting the
computation from an initial data narrowly concentrated around one stable equilibrium
point (say S1), the escaping time T can be defined as the time needed to have half of
the total mass moving to a neighborhood of S3. In particular, the expectation E(T )
has an exponential behavior and its associated potential gap is HG= 0.1. Of course,
this kind of argument cannot be extended to the biased case and thus, the 1D reduced
model is essential.

5.2. Probability densities - Performance
We can compare the value of the probability ρi of the firing rates to be in some

domain Ωi for the 2D Fokker-Plank model and the 1D reduced FP model. In particu-
lar, we shall compare: ρp the probability for the 2D problem that at time t the firing
rates belong to {(x,y) :y>0}; with ρ+ denoting the same probability but computed
from the the 1D solution as the probability that our firing rates lie in the interval
y∈Ω+ = [0,ym], see Figure 3.2. We fix the standard derivation β= 0.1, and let the
bias ∆λ varying from 0 to 0.05, since the values of ρp and ρ+ for ∆λ bigger than 0.03
are already very close (the relative error being of the order of 10−4).

We recall that, in the 2D problem, we have to wait for a very long time in order
to reach equilibrium, since we have a meta-stable situation, see [10]. Nevertheless,
we note that the ρp(t) profile is exponentially increasing converging to an asymptotic
value ρ∞. We can extrapolate this value from the values of ρp(t) for some initial
iterations as follows. Assume that the probability ρp behaves like:

ρ(t) =ρ∞−aexp(−t/τ),
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where ρ∞, a and τ have to be determined by an “exponential regression”. For a
sequence of time ti (of the form ti= t0 +T ∗ i, i= 0·· ·N that corresponds to the com-
puted values of ρp), we define ∆ρi as the difference ρp(ti)−ρp(ti+T ), we get:

∆ρi=aexp(−ti/τ)(1−exp(−T/τ)). (5.2)

Taking the log and the difference between two indexes i and j we obtain the expected
value of τ as:

τ ≈− log(∆ρi)− log(∆ρj)

ti− tj
.

Finally from (5.2), knowing τ (and T ), we recover a, and the asymptotic limit ρ∞ is
uniquely determined by:

ρ∞=ρ(t0)+aexp(−t0/τ). (5.3)

We show in Figure 5.2 the comparison between the values for the one dimensional
computation (red line) and the one extrapolated from the 2D computation, see equa-
tion (5.3), using a final time of 20 seconds (blue line). Note that the non-smoothness
of the blue line (2D extrapolation) may be due to the fact that for computing ρp
we need to compute the inner product for any point ν of the phase space (ν1,ν2) :
< (νeq−ν),P1,j>, and we choose for different values of ∆λ the same equilibrium point
νeq and matrix P : for instance, for ∆λ= 0.016,0.018,0.020,0.022,0.024 we choose the
values of ∆λ= 0.020:

νeq =

(
3.0448158
3.2397474

)
, P =

(
0.7003255 −0.6959201
0.7138236 0.7181192

)
.
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Fig. 5.2. Comparison of the values for ρ+ and ρ∞ with respect to the biasing parameter
∆λ∈ [0,0.05]. Red line: the values computed from the 1D reduced problem. Blue line: the values
extrapolated from the 2D problem.
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