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Abstract. We prove uniqueness in the class of integrable and bounded non-
negative solutions in the energy sense to the Keller-Segel (KS) chemotaxis

system. Our proof works for the fully parabolic KS model, it includes the

classical parabolic-elliptic KS equation as a particular case, and it can be gen-
eralized to nonlinear diffusions in the particle density equation as long as the

diffusion satisfies the classical McCann displacement convexity condition. The

strategy uses Quasi-Lipschitz estimates for the chemoattractant equation and
the above-the-tangent characterizations of displacement convexity. As a con-

sequence, the displacement convexity of the free energy functional associated
to the KS system is obtained from its evolution for bounded integrable initial

data.

1. Introduction. The classical Keller-Segel (KS) model for chemotaxis is the sys-
tem {

∂tn = κ∆n− χdiv (n∇c),
∂tc = η∆c+ θn− γc.

Here, n is the number/mass density of a bacteria/cell population and c represents
the concentration of a chemical attractant that can suffer chemical degradation
and that is produced by the cells themselves due to chemotactic interaction. The
parameters κ, χ, η, θ, γ might be suitable functions, assumed to be constant in this
simplified model. We can perform a time scaling and a suitable change of variables,
that is τ = κt, ρ(x, τ) = θχ

ηκn(x, τ/κ), v(x, τ) = χ
κ c(x, τ/κ). The system is therefore

reduced to {
∂tρ = ∆ρ− div (ρ∇v),

ε∂tv = ∆v + ρ− αv,
(1.1)
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where α ≥ 0 and ε ≥ 0 are constants (α = γ/η, ε = κ/η). In case ε = 0, it restricts
to the classical parabolic-elliptic Patlak-KS model{

∂tρ = ∆ρ− div (ρ∇v),

−∆v + αv = ρ.
(1.2)

For ε > 0, the natural free energy functional associated to the dynamics of the
system (1.1) is

Fε,α(ρ, v) :=

∫
Rd

(ρ log ρ− vρ) dx+
1

2

∫
Rd

(|∇v|2 + αv2) dx . (1.3)

In the case ε = 0, corresponding to (1.2), this Liapunov functional is at least
formally equivalent to

F0,α(ρ) :=

∫
Rd

(ρ log ρ− 1

2
vρ) dx (1.4)

with the convention that v is obtained from the density ρ by v = Bα,d ∗ ρ. Here,
Bα,d denotes the Bessel kernel for α > 0 or the Newtonian kernel for α = 0, for
any dimension d. Therefore the role of the parameter ε is to discriminate between
parabolic-parabolic and parabolic-elliptic system. Note that the Liapunov function-
als (1.3) and (1.4) are just formally equivalent since the L2-integrability of ∇Bα,d∗ρ
fails if d = 1, 2 and α = 0. Thus, even if the classical free energy writing and valid
for all cases when ε = 0 is the one in (1.4), we will prefer to work with the functional
as in (1.3) even if ε = 0, with a suitable renormalization for the cases d = 1, 2 and
α = 0 discussed in Section 3.

Our main objective is the uniqueness of certain solutions, for both systems (1.1)
and (1.2). Let us introduce the notion of solution for the Cauchy problems associ-
ated to (1.1) and (1.2) that we will consider in this work. We denote by M2(Rd;m)
the set of nonnegative densities over Rd with mass m and finite second moment,
i.e.,

M2(Rd;m) :=

{
ρ ∈ L1(Rd) : ρ ≥ 0,

∫
Rd
ρ(x) dx = m,

∫
Rd
|x|2ρ(x) dx < +∞

}
.

Definition 1.1. We say that a weakly continuous map ρ ∈ Cw([0, T ]; M2(Rd;m))
is a bounded solution to the Cauchy problem for (1.2), with initial datum ρ0 ∈
M2(Rd;m) ∩ L∞(Rd), if

i) ρ ∈ L∞((0, T )× Rd) and |x|2ρt(x) ∈ L∞((0, T ), L1(Rd)),
ii) ρ0 = ρ0 and the first equation of (1.2) holds in the sense of distributions on

(0, T )× Rd, where vt = Bα,d ∗ ρt for all t ∈ [0, T ],
iii) ρt ∈W 1,1(Rd) for L1-a.e. t ∈ (0, T ) and∫ T

0

∫
Rd

|∇ρt(x)|2

ρt(x)
dx dt < +∞. (1.5)

Definition 1.2. We say that the couple (ρ, v), satisfying ρ ∈ Cw([0, T ]; M2(Rd;m))
and v ∈ L2((0, T );W 1, 2(Rd)), is a bounded solution to (1.1) with initial datum
(ρ0, v0) ∈ (M2(Rd;m) ∩ L∞(Rd))×W 1,2(Rd), if

I) ρ ∈ L∞((0, T )× Rd) and |x|2ρt(x) ∈ L∞((0, T ), L1(Rd)),
II) ρ0 = ρ0, the first equation of (1.1) holds in the sense of distributions on

(0, T )×Rd, and v is the unique solution to the Cauchy problem for the forced
parabolic equation ε∂tv−∆v+αv = ρ over (0, T )×Rd in the standard sense,
with initial datum v0,
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III) the property iii) of Definition 1.1 holds.

Let us emphasize that the main properties we need to get uniqueness of solution
are the boundedness of the densities and the Fisher information (1.5). They to-
gether imply that the velocity field of the continuity equation for the density ρ is a
well defined object belonging to the right functional space, as we will see later on.
Moreover, the boundedness of the density implies that we have a uniform in bounded
time intervals estimate on the quasi-Lipschitz constant of part of the velocity field.
These are the basic properties that imply the uniqueness for bounded solutions. Let
us finally mention that part of the strategy is related to the uniqueness of solutions
to fluid and aggregation equations developed in [35, 28, 5, 29, 19, 7, 30]. The main
novelty here is the interplay between the diffusive and the aggregation parts. The
main results of this work are:

Theorem 1.3. Let T > 0 and let ρ0 ∈ M2(Rd;m) ∩ L∞(Rd). Let ρ1, ρ2 be two
bounded solutions on [0, T ] × Rd to the Cauchy problem associated to (1.2), with
initial datum ρ0. Then ρ1 = ρ2.

Theorem 1.4. Let T > 0 and let ρ0 ∈ M2(Rd;m) ∩ L∞(Rd), v0 ∈ W 1,2(Rd) ∩
W 2,∞(Rd). Let (ρ1, v1) and (ρ2, v2) be two bounded solutions on [0, T ]× Rd of the
Cauchy problem associated to (1.1), with initial datum (ρ0, v0). Then (ρ1, v1) =
(ρ2, v2).

The proof of uniqueness as stated in Theorems 1.3 and 1.4 will be a consequence
of a more general property: we will show that bounded solutions satisfy a strong
gradient flow formulation by means of a family of evolution variational inequalities.
This formulation is similar to the one for semi-convex functionals and implies a non-
expansivity property of the distance between two solutions. This non-expansivity
property yields uniqueness. All these results will be stated in Theorems 3.1 and 5.1.
Theorem 1.4 is stated under the assumption v0 ∈W 2,∞(Rd), but it still holds true
assuming that v0 belongs to suitable Zygmund spaces, which will be introduced in
the next sections. Moreover the evolution variational inequality formulation leads
to a relaxed convexity property of the energy functional as stated in Theorem 4.1.

There is a huge literature about the KS system and their variations, so we just
restrict here to discuss the main results concerning bounded solutions. In the clas-
sical parabolic-elliptic KS equation ε = α = 0 and d = 2, global in time bounded
solutions in the subcritical case m < 8π have been obtained joining the results in
[12, 25, 14]. Actually, the global existence of weak solutions satisfying all proper-
ties in Definition 1.1 except the L∞ bound was obtained in [12] while L∞-bounds
in bounded time intervals can be obtained from the results in [25, 14]. The same
techniques could eventually be used to get local in time bounded solutions for all
masses, although such a result is not present in the literature. Let us also mention
the recent paper [17] in which the authors actually show that the L∞-norm of the
solution decays in time like for the heat equation in the subcritical case m < 8π
for more restricted initial data. L∞-apriori estimates were obtained in the classical
parabolic-elliptic KS equation ε = 0 with d ≥ 2 and α ≥ 0 for small Ld/2 initial
data in [20, 21]. These results together with similar arguments as in [12] to get
the free energy dissipation property and thus the Fisher information bounds, could
lead to the existence of bounded solutions in these cases. We emphasize that these
L∞ estimates show that the solution in bounded time intervals is bounded by a
constant that depends only on the L∞-norm of the initial data, the initial free en-
ergy, and the final time. In particular, existence of bounded solutions is expected if
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ρ0 ∈ L∞(Rd), and this explains the presence of such an assumption in the previous
definitions.

Concerning the fully parabolic KS system, we find global in time solutions satis-
fying all properties stated in Definition 1.2 except the L∞ bounds in [15] for d = 2
and the subcritical mass case m < 8π. L∞-apriori estimates were obtained in [26]
for the fully parabolic case but in bounded domains. It is reasonable to expect that
this strategy should work for the whole space case, although it is not written as
such in the literature. Results in higher dimensions concerning solutions with L∞

estimates for small initial data can be found in [8] but estimates on the free energy
dissipation are missing there. We finally refer to [11, 13, 14, 23] for different results
concerning the existence of solutions satisfying the boundedness of the Fisher infor-
mation and/or the uniform bounds of the solutions for particular choices of ε ≥ 0,
α ≥ 0, and nonlinear diffusions.

As mentioned before, Theorems 1.3 and 1.4 are based on the derivation of quasi-
Lipschitz estimates for the chemoattractant v (this is the reason behind the addi-
tional assumption on the initial datum v0). We will clarify the use of quasi-Lipschitz
estimates of the chemoattractant in Section 2 together with a quick summary of the
main properties of optimal transport that we need in this work. Section 3 is devoted
to show that bounded solutions for the Keller-Segel model satisfy suitable evolution
variational inequalities that imply, among the other properties, the main uniqueness
results. In Section 4 we show that the same evolution variational inequalities lead
to certain convexity of the associated free energy functional. In Section 5 we give
the derivation of the quasi-Lipschitz estimates of the parabolic equations for v. In
the same section, we will also prove a strengthening of Theorems 1.4 and 3.1, with
more general initial data. Finally, Section 6 is devoted to show how to adapt these
arguments to Keller-Segel models with nonlinear diffusion.

2. Preliminary notions.

2.1. Some elliptic and parabolic regularity estimates. The proofs of our
results are based on the technique used by Yudovich [35] for treating uniqueness
in the case of incompressible Euler equations for fluidodynamics. In particular, we
exploit a quasi-Lipschitz property for the velocity field of the continuity equation
for ρ in (1.1) and (1.2). This property comes from the regularity that v gains being
solution to the second equation in (1.1) and (1.2).

Suppose first that v = B0,d ∗ρ. If ρ ∈ L1∩L∞(Rd), by exploiting some estimates
of the Newtonian potential, ∇v satisfies the following log-Lipschitz property (see
[6] and [31, Chapter 8], [33] and also [35]),

|∇v(x)−∇v(y)| ≤ C|x− y|(1 + log− |x− y|),

where C is a suitable positive constant, depending only on ‖ρ‖L1 and ‖ρ‖L∞ and
log− denotes the negative part of the natural logarithm function. As a consequence,
we get the estimate

|∇v(x)−∇v(y)|2 ≤ C2ϕ(|x− y|2) (2.1)

for some new positive constant C, where ϕ is the concave function on [0,∞) defined
as

ϕ(x) :=

{
x log2 x if x ≤ e−1−

√
2,

x+ 2(1 +
√

2)e−1−
√

2 if x > e−1−
√

2.
(2.2)
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Indeed, for large values of |x − y| the estimate (2.1) is quite obvious, since it is
immediate to show that ∇B0,d ∗ ρ is a bounded function in the whole space with a
direct estimate using the fact that ρ ∈ L1 ∩ L∞(Rd).

Analogous facts hold if we consider the equation −∆v + αv = ρ, appearing in
(1.2), or more general uniformly elliptic operators, so that we have the following

Proposition 2.1. Suppose that ρ ∈ L1 ∩ L∞(Rd) and α ≥ 0. Then v = Bα,d ∗ ρ
satisfies the estimate (2.1), where C is a suitable positive constant, depending only
on α, d, ‖ρ‖L1(Rd), and ‖ρ‖L∞(Rd).

The log-Lipschitz property in general can be justified through standard elliptic
regularity, requiring the introduction of Zygmund spaces. These classes of functions
were introduced in [36], and they belong to the more general framework of Besov
spaces. The basic Zygmund class Λ1(Rd) is the set of continuous bounded functions
f over Rd such that

[f ]Λ1(Rd) := sup
x,y∈Rd,x 6=y

|f(x)− 2f((x+ y)/2) + f(y)|
|x− y|

< +∞.

It is well known that functions in the Zygmund class Λ1(Rd) are in general not
Lipschitz, possibly nowhere differentiable, but enjoy a log-Lipschitz modulus of
continuity. Indeed, for any f ∈ Λ1(Rd) there exists a positive constant C such that

|f(x)− f(y)| ≤ C|x− y|(1 + log− |x− y|) ∀x, y ∈ Rd.
we refer for instance to [37, Chapter 2, §3]. We say that f ∈ Λ2(Rd) if f ∈W 1,∞(Rd)
and all the partial derivatives of f belong to Λ1(Rd) (see for instance [34, Chapter
5]). In the usual notation of Besov spaces, Λ2 corresponds to B2

∞,∞. The vector
spaces Λ1 and Λ2 can be endowed with the norms

‖f‖Λ1(Rd) = ‖f‖L∞(Rd) + [f ]Λ1(Rd),

‖f‖Λ2(Rd) = ‖f‖L∞(Rd) + ‖∇f‖Λ1(Rd)

and they become complete.

Proof of Proposition 2.1. If α > 0, from the general theory on Bessel potentials
(see for instance [34, Chapter 5, §3-6]) we learn that by convolution with the Bessel
kernel Bα,d we indeed get two indices of regularity in Zygmund spaces. Therefore,
if ρ ∈ L∞(Rd), we indeed get that v = Bα,d ∗ ρ belongs to Λ2(Rd), and thus
∇v ∈ Λ1(Rd) and, since ∇v is bounded, (2.1) follows. For the case α = 0 we address
to the references mentioned at the beginning of this section (it is also possible to
directly check that ∇v ∈ L∞(Rd), and then the Newtonian potential behaves like
the Bessel potential near the origin so that ∇v is also log-Lipschitz). �

About the parabolic equation for v in (1.1), the quasi-Lipschitz property also
carries over, since formally inequality (2.1) translates in terms of the parabolic
metric to

|∇v(t, x)−∇v(s, y)|2 ≤ C2ϕ((|x−y|+ |s− t|1/2)2) ∀x, y ∈ Rd, s, t ∈ [0, T ]. (2.3)

Indeed, we have the following

Proposition 2.2. Suppose that ρ ∈ L∞((0, T ) × Rd), v0 ∈ Λ2(Rd) and α ≥ 0.
If v is the unique solution to the Cauchy problem for the parabolic equation ∂tv =
∆v−αv+ ρ (in the standard sense of convolution with fundamental solution), then
v satisfies (2.3), where C is a suitable positive constant, depending only on α, d,
‖v0‖Λ2(Rd), and ‖ρ‖L∞((0,T )×Rd).
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In order not to introduce some not really necessary notation before the proof
of our main results, we prefer to postpone the proof of Proposition 2.2 to Section
5. Indeed, in Section 5 we will develop a discussion about log-Lipschitz estimates
for parabolic equations, and we will also prove a strengthening of Theorem 1.4,
considering the initial datum v0 in Λ1(Rd) instead of W 2,∞(Rd).

2.2. Elementary notions of optimal transport. Given ρ0, ρ1 ∈M2(Rd;m), we
define the Wasserstein distance between ρ0 and ρ1 as

W2(ρ0, ρ1) =

(∫
Rd
|x− T (x)|2 ρ0(x) dx

) 1
2

,

where T is the unique optimal transport map between ρ0 and ρ1, that is, the
map T : Rd → Rd which minimizes

∫
Rd |x − S(x)|2 ρ0(x) dx among all the Borel

maps S : Rd → Rd satisfying S#ρ0 = ρ1. We recall that S#ρ0 = ρ1 means that∫
Rd ϕ(x)ρ1(x) dx =

∫
Rd ϕ(S(x))ρ0(x) dx for every continuous and bounded function

ϕ : Rd → Rd.
The Wasserstein geodesic between ρ0 and ρ1 is the curve s ∈ [0, 1] 7→ ρs ∈

M2(Rd;m) defined by the so-called displacement interpolation along the optimal
transport map T between ρ0 and ρ1, that is, ρs := ((1−s)i+sT )#ρ0. In particular,
for any s, Ts := (1− s)i+ sT is the optimal map between ρ0 and ρs and there holds
W2(ρr, ρs) = |s− r|W2(ρ0, ρ1).

We recall a formula for the differentiation of the squared Wasserstein distance
along solutions of the continuity equation. Let t ∈ [0, T ] 7→ ρt ∈ M2(Rd;m) be a
weakly continuous curve which is distributional solution of

∂tρt + div (ξtρt) = 0,

for some Borel velocity field ξt such that
∫ T

0
‖ξt‖2L2(Rd,ρt;Rd) dt < +∞. Then the

curve is absolutely continuous with respect to the Wasserstein distance, [3, Theorem
8.3.1]. Then, for any ρ̄ ∈M2(Rd;m), it holds

1

2

d

dt
W 2

2 (ρt, ρ̄) =

∫
Rd
〈ξt(x), x− Tt(x)〉 ρt(x) dx, for L1-a.e. t ∈ (0, T ), (2.4)

where Tt is the optimal map between ρt and ρ̄ (see [3, Theorem 8.4.7, Remark
8.4.8]).

Finally, let us recall an estimate relating the 2-Wasserstein distance and the H−1

norm proved in [28, Proposition 2.8]. Given two nonnegative densities with the same
mass ρ1, ρ2 ∈M2(Rd;m) ∩ L∞(Rd), there holds

‖ρ1 − ρ2‖Ḣ−1(Rd) ≤ max{‖ρ1‖∞, ‖ρ2‖∞}1/2W2(ρ1, ρ2). (2.5)

Here Ḣ1(Rd) denotes the space of Lebesgue measurable functions v : Rd → R
such that ‖∇v‖L2(Rd) < +∞, so that Ḣ−1(Rd) is defined by duality with functions

having finite L2(Rd) norm of the gradient only. By the way, we can also consider
the space H1(Rd) = W 1,2(Rd). In fact, from the proof in [28, Proposition 2.8] it
is not difficult to see that the same estimate holds considering the H−1(Rd) space
given by duality with the full norm (‖∇v‖2L2(Rd) + ‖v‖2L2(Rd))

1/2.
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3. Bounded solutions as gradient flows: EVI and uniqueness. The unique-
ness Theorems 1.3 and 1.4 are consequences of a general result interpreting bounded
solutions to (1.1) (resp. (1.2)) as the trajectory of the gradient flow of the functional
(1.3) (resp. (1.4)) in the appropriate metric setting. We prove that bounded solu-
tions satisfy a family of evolution variational inequalities (EVI). Among different
notions of gradient flow in metric sense, the EVI formulation is stronger than other
formulations and typically corresponding to a convex structure, as in [3, Theorem
11.2.1] for the theory in the Wasserstein setting.

Notation for the energy functional. Before giving the proof, we intro-
duce some uniform notation for working with the full functional (1.3) even in the
parabolic-elliptic case. Let ρ ∈ M2(Rd;m) ∩ L∞(Rd). We are considering the free
energy functional

Fε,α(ρ, v) :=

∫
Rd

(ρ log ρ− vρ) dx+
1

2

∫
Rd

(|∇v|2 + αv2) dx ,

defined for v being any W 1,2(Rd) function if ε > 0. On the other hand, if ε = 0 it is
understood that v is given by Bα,d∗ρ. Therefore the parameter ε only indicates if we
are considering problem (1.1) or (1.2). In particular, this writing of the functional
as in (1.3) is valid in general, even for ε = 0, except for two particular cases:
ε = α = 0 and d = 1, 2, as discussed in the introduction. In these two cases, we
need to renormalize the free energy functional. Given ρ∗ ∈ M2(Rd;m) a smooth
and compactly supported density and v∗ = B0,d ∗ρ∗, we redefine (1.3) for ε = α = 0
and d = 1, 2 as

F0,0(ρ, v) :=

∫
Rd

[ρ log ρ− v(ρ− ρ∗)] dx+
1

2

∫
Rd
|∇(v − v∗)|2 dx− 1

2

∫
Rd
ρ∗v∗ dx .

(3.1)
Notice that ∇(v−v∗) ∈ L2(Rd), as ρ−ρ∗ has zero mean, see [4, 33] for more details.

In the rest of this work, when referring to the free energy functional Fε,α(ρ, v),
we will be using (1.3) for any ε ≥ 0, α ≥ 0, except for ε = α = 0 and d = 1, 2 where
the free energy functional is given by (3.1).

Let us observe that now all the integrals involved in the definition of Fε,α are
well defined and finite for ε ≥ 0, α ≥ 0 and ρ, v as above. The negative part of
the entropy term can be classically treated by the Carleman inequality, see for
instance [9, Lemma 2.2] where the second moment bound on the density is used.
The boundedness of the density controls the positive contribution of the entropy
term together with the integrability of vρ in case ε > 0 since v ∈ W 1,2(Rd). For
ε = 0 the integrability of vρ in case α > 0 is implied by the Newtonian potential
case α = 0 since the singularity of the Bessel potential at the origin is the same. The
integrability for α = ε = 0 and d ≥ 3 results directly from the Hardy-Littlewood-
Sobolev inequality for the Newtonian potential. For α = ε = 0 and d = 1, 2 we use
the behavior at infinity of the density ρ. Actually, α = ε = 0 and d = 1 is a trivial
case since the Newtonian potential is given by B0,1(x) = |x|. For α = ε = 0 and
d = 2 since log(e + |x|2)ρ ∈ L1(Rd) then vρ ∈ L1(Rd) using the logarithmic HLS
inequality, see for instance [10].

Notation for the ambient metric space. We let Xε := M2(Rd;m)×L2(Rd)
endowed with the distance

D2(z1, z2) = D2((ρ1, v1), (ρ2, v2)) = W 2
2 (ρ1, ρ2) + ε‖v1 − v2‖2L2(Rd) ,
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with the convention that X0 = M2(Rd;m) and D0(z1, z2) = W2(ρ1, ρ2). Moreover,
for z = ρ ∈ X0 × L∞(Rd), F0,α(z) will be understood to be F0,α(ρ, v) with v =
Bα,d ∗ ρ, as usual when ε = 0.

In the space Xε the metric derivative of an absolutely continuous curve t 7→ zt
is denoted and defined by

|z′|D(t) = lim
h→0

D(zt+h, zt)

h
,

and it exists for L1-a.e. t > 0. The local metric slope of the functional Fε,α is
defined by

|∂Fε,α|D(z) := lim sup
D(ζ,z)→0

(Fε,α(z)−Fε,α(ζ))+

D(ζ, z)
.

These two abstractly defined objects are used to give the notion of curves of maximal
slope in general metric setting, see [2, §3], [3, Chapter 1]. The main consequences
of this gradient flow structure are summarized in the following result.

Before stating the Theorem we define the function ω : [0,+∞)→ [0,+∞) by

ω(x) =
√

mxϕ(m−1x), (3.2)

where ϕ is defined in (2.2). Moreover, given a fixed s0 > 0, we define a strictly
monotone continuous function G : [0,+∞)→ [−∞,+∞) by G(s) :=

∫ s
s0

1
ω(r) dr for

s > 0 and G(0) = −∞ (we observe that G−1 : [−∞,+∞)→ [0,+∞) is surjective).

Theorem 3.1. Let t 7→ zt = (ρt, vt) be a bounded solution of problem (1.1) for
ε > 0, starting from z0 = (ρ0, v0) ∈ Xε∩

(
L∞(Rd)×(W 1,2(Rd)∩Λ2(Rd))

)
, according

to Definition 1.2. If ε = 0, let zt = ρt be a bounded solution to problem (1.2), starting
from z0 = ρ0 ∈ X0 ∩L∞(Rd), according to Definition 1.1. Then the three following
properties hold:

i) The evolution variational inequality (EVI) formulation: for any z̄ = (ρ̄, v̄) ∈
Xε ∩

(
L∞(Rd) × W 1,2(Rd)

)
(reduced to z̄ = ρ̄ ∈ X0 ∩ L∞(Rd) if ε = 0),

the map t 7→ D2(zt, z̄) is absolutely continuous and there exists a constant C
depending on ‖ρ‖L∞((0,T )×Rd), ‖ρ̄‖L∞(Rd) and ‖v0‖Λ2(Rd), such that

1

2

d

dt
D2(zt, z̄) ≤ Fε,α(z̄)−Fε,α(zt) +Cω(D2(zt, z̄)) for L1-a.e. t ∈ (0, T ). (3.3)

ii) The energy dissipation equality (EDE) in metric sense: the map t 7→ Fε,α(zt)
is locally Lipschitz continuous and

d

dt
Fε,α(zt) = −1

2
|∂Fε,α|2D(zt)−

1

2
|z′|2D(t) for L1-a.e. t ∈ (0, T ). (3.4)

iii) The following expansion control property: given another bounded solution t 7→
ζt, with initial datum ζ0 in the same space of z0 above, there exists a constant
C, depending on ‖ρ‖L∞((0,T )×Rd) and ‖v0‖Λ2(Rd) (and the same quantities
associated to ζ), such that there holds

D2(zt, ζt) ≤ G−1(G(D2(z0, ζ0)) + 4Ct) for every t ∈ [0, T ). (3.5)

We explicitly observe that all the constants in Theorem 3.1 clearly depend also on
the parameters of the problem: ε,m, d, α. Often we omit to mention this dependence
and we only stress the more relevant dependence on the norms of the data.
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Proof. We first introduce the auxiliary functional

Φε,α(ρ, v) :=

∫
Rd

(ρ log ρ− vρ) dx,

for ρ and v being as in the definition of Fε,α at the beginning of this section, so
that

Fε,α(ρ, v) = Φε,α(ρ, v) +
1

2

∫
Rd

(|∇v|2 + αv2) dx

and, for d = 1, 2,

Φ0,0(ρ, v) = F0,0(ρ, v)− 1

2

∫
Rd
|∇(v − v∗)|2 dx+

1

2

∫
Rd
ρ∗v∗ dx−

∫
Rd
ρ∗v dx. (3.6)

The proof is organized in four steps.

Step1. Quasi-Lipschitz Estimate implies control of the evolution of the Wasser-
stein distance.- Thanks to the assumption (1.5), we learn that the Fisher informa-

tion
∫
Rd
|∇ρt(x)|2
ρt(x) dx is finite for L1-a.e. t ∈ (0, T ). Let ρ̄ ∈ M2(Rd;m) ∩ L∞(Rd).

Exploiting the differentiability properties of the entropy functional, we can use the
above-the-tangent formulation of displacement convexity to get for L1-a.e. t ∈ (0, T )∫

Rd
ρ̄(x) log ρ̄(x) dx−

∫
Rd
ρt(x) log ρt(x) dx ≥

∫
Rd
〈∇ρt(x), Tt(x)− x〉 dx, (3.7)

where Tt denotes the optimal transport map between ρt and ρ̄. We refer to [2,
§3.3.1] for an intuitive proof of this fact, and to [3, Chapter 10] for the theory in
full generality. In particular, the finiteness of the Fisher information of ρt implies
that the second term is finite, so that this differentiation formula is meaningful. If
ε > 0 (resp. ε = 0), let v̄ ∈W 1,2(Rd) (resp. v̄ = Bα,d ∗ ρ̄). Take

It := Φε,α(ρ̄, v̄)− Φε,α(ρt, vt) +

∫
Rd

(v̄(x)− vt(x))ρ̄(x) dx .

Using the notation xst := (1− s)x+ sTt(x), s ∈ [0, 1], and taking into account that∫
Rd
vt(x)(ρ̄(x)− ρt(x)) dx =

∫
Rd

(vt(Tt(x))− vt(x))ρt(x) dx

=

∫
Rd

(vt(x
1
t )− vt(x0

t ))ρt(x) dx

=

∫ 1

0

d

ds

∫
Rd
vt(x

s
t )ρt(x) dx ds

and (3.7), we obtain for L1-a.e. t ∈ (0, T )

It ≥
∫
Rd
〈∇ρt(x), Tt(x)− x〉 dx−

∫
Rd
vt(x)(ρ̄(x)− ρt(x)) dx

=

∫
Rd
〈∇ρt(x), Tt(x)− x〉 dx−

∫ 1

0

∫
Rd
〈∇vt(xst ), Tt(x)− x〉 ρt(x) dx ds

=

∫
Rd
〈∇ρt(x)− ρt(x)∇vt(x), Tt(x)− x〉 dx

−
∫ 1

0

∫
Rd
〈∇vt(xst )−∇vt(x), Tt(x)− x〉 ρt(x) dx ds.

Let us denote by IIt the last term in the right hand side above. The crucial point is
to treat such term using the log-Lipschitz property of ∇v. Notice that, if ε = 0, we
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are in the assumptions of Proposition 2.1 and we apply (2.1), where the constant C
depends in principle only on (m, α, d and) the L∞ norm of ρt, which we are assuming
to be uniformly bounded on (0, T ). In the case ε > 0, still by the uniform space-time
L∞ assumption on ρt and the Λ2 assumption on v0, we are in the framework of
Proposition 2.2, so that we can apply the estimate (2.3). In this case the constant
will depend also on (ε and) ‖v0‖Λ2(Rd). Since ϕ is concave, we can also use the
Jensen inequality, and letting ρst = xst#ρt be the Wasserstein geodesic connecting
ρt and ρ̄ we have

|IIt| ≤W2(ρt, ρ̄)

∫ 1

0

(∫
Rd
|∇vt(xst )−∇vt(x)|2ρt(x) dx

)1/2

ds

≤ CW2(ρt, ρ̄)

∫ 1

0

(∫
Rd
ϕ(|xst − x|2)ρt(x) dx

)1/2

ds

≤
√
mCW2(ρt, ρ̄)

∫ 1

0

√
ϕ(m−1W 2

2 (ρt, ρst )) ds

≤
√
mCW2(ρt, ρ̄)

√
ϕ(m−1W 2

2 (ρt, ρ̄)) .

(3.8)

The last inequality holds since geodesic interpolation ensures∫
Rd
|x− xst |2ρt(x) dx = W 2

2 (ρt, ρ
s
t ) = s2W 2

2 (ρt, ρ̄)

for all s ∈ [0, 1] and since ϕ is non decreasing. We recall that the constant C in
(3.8) depends only on (ε, α, d, the mass m and) the L∞((0, T )×Rd) norm of ρ and,
in the case ε > 0, the Λ2(Rd) norm of v0. Inserting this in the estimate for It, we
have for L1-a.e. t ∈ (0, T )

It ≥
∫
Rd
〈∇ρt(x)− ρt(x)∇vt(x), Tt(x)− x〉 dx− Cω(W 2

2 (ρt, ρ̄)) , (3.9)

where ω is the function defined in (3.2). Since ρt satisfies the continuity equation

∂tρt + div (ξtρt) = 0 with ρtξt = −∇ρt + ρt∇vt

and (1.5), the uniform L∞ bound of ρt implies that
∫ T

0
‖ξt‖2L2(Rd,ρt;Rd) dt < +∞.

Therefore t 7→ ρt is absolutely continuous with respect to W2 and by (2.4)

1

2

d

dt
W 2

2 (ρt, ρ̄) =

∫
Rd
〈∇ρt(x)− ρt(x)∇vt(x), Tt(x)− x〉 dx for L1-a.e. t ∈ (0, T ).

Inserting this into (3.9), and recalling the definition of It, we finally obtain

1

2

d

dt
W 2

2 (ρt, ρ̄) ≤ Φε,α(ρ̄, v̄)−Φε,α(ρt, vt) +

∫
Rd

(v̄− vt)ρ̄ dx+Cω(W 2
2 (ρt, ρ̄)) (3.10)

for L1-a.e. t ∈ (0, T ).

Step 2: EVI for the parabolic-parabolic case.- Recalling that v̄ ∈ W 1, 2(Rd),
observing that ∆vt ∈ L2(Rd) for a.e.-t ∈ (0, T ) and using the elementary identity
|a|2−|b|2 = |a− b|2 + 2〈b, a− b〉 for every a, b ∈ Rk, the variation of the second part
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of the functional (1.3) (that is, Fε,α − Φε,α) can be written as

1

2

∫
Rd

[
|∇v̄|2− |∇vt|2 + α(v̄2 − v2

t )
]
dx

=

∫
Rd

(αvt −∆vt)(v̄ − vt) dx+
1

2
‖∇(vt − v̄)‖2L2(Rd) +

α

2
‖vt − v̄‖2L2(Rd)

=

∫
Rd

(ρt − ε∂tvt)(v̄ − vt) dx+
1

2
‖∇(vt − v̄)‖2L2(Rd) +

α

2
‖vt − v̄‖2L2(Rd)

=

∫
Rd
ρt(v̄ − vt) dx+

ε

2

d

dt
‖vt − v̄‖2L2(Rd)

+
1

2
‖∇(vt − v̄)‖2L2(Rd) +

α

2
‖vt − v̄‖2L2(Rd).

(3.11)

Therefore, we deduce

Fε,α(ρ̄, v̄)−Fε,α(ρt, vt) = Φε,α(ρ̄, v̄)− Φε,α(ρt, vt) +

∫
Rd
ρt(v̄ − vt) dx

+
ε

2

d

dt
‖vt − v̄‖2L2(Rd) +

1

2
‖∇(vt − v̄)‖2L2(Rd) +

α

2
‖vt − v̄‖2L2(Rd).

(3.12)

Now, we use again (3.10), leading to

ε

2

d

dt
‖vt − v̄‖2L2(Rd) +

1

2

d

dt
W 2

2 (ρt, ρ̄)

≤ Fε,α(ρ̄, v̄)−Fε,α(ρt, vt) + Cω(W 2
2 (ρt, ρ̄))

+

∫
Rd

(ρ̄− ρt)(v̄ − vt) dx−
1

2
‖∇(vt − v̄)‖2L2(Rd) −

α

2
‖vt − v̄‖2L2(Rd).

(3.13)

By using the duality between Ḣ1 and Ḣ−1, the Young inequality, and (2.5) we have∫
Rd

(ρ̄− ρt)(v̄ − vt) dx ≤ ‖ρ̄− ρt‖Ḣ−1(Rd)‖v̄ − vt‖Ḣ1(Rd)

≤ 1

2
‖ρ̄− ρt‖2Ḣ−1(Rd)

+
1

2
‖∇(v̄ − vt)‖2L2(Rd)

≤ 1

2
QW 2

2 (ρ̄, ρt) +
1

2
‖∇(v̄ − vt)‖2L2(Rd),

(3.14)

where Q is the largest of the L∞ norms of ρ̄ and ρt over the time interval (0, T ).

Taking into account that ω is given by (3.2) and that
√
mϕ(m−1x2) ≥ x for every

x > 0, combining (3.13) and (3.14) we get, up to introducing a new constant C,

ε

2

d

dt
‖vt − v̄‖2L2(Rd) +

1

2

d

dt
W 2

2 (ρt, ρ̄) ≤ Fε,α(ρ̄, v̄)−Fε,α(ρt, vt)

+ Cω(W 2
2 (ρt, ρ̄))− α

2
‖vt − v̄‖2L2(Rd)

(3.15)

for a.e. t ∈ (0, T ). The new constant C depends as usual on (ε α, d, m and)
‖ρ‖L∞((0,T )×Rd), ‖v0‖Λ2(Rd), ‖ρ̄‖L∞(Rd).

Step 3: EVI for the parabolic-elliptic case.- When either d ≥ 3 or α > 0, we can
repeat the proof of the parabolic-parabolic case, letting ε = 0 therein and recalling
that v̄ is no more an arbitrary W 1,2(Rd) function but is given by convolution with
ρ̄. In particular we arrive to the corresponding of (3.13), and the second line therein
can now be estimated as follows. Using the inequality ‖v‖H1

α(Rd) ≤ ‖ρ‖H−1
α (Rd) for
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−∆v+αv = ρ, α > 0, where the notation is ‖v‖2H1
α(Rd) := ‖∇v‖2L2(Rd) +α‖v‖2L2(Rd)

(and using Ḣ1 if α = 0), we get∫
Rd

(v̄ − vt)(ρ̄− ρt) dx ≤ ‖v̄ − vt‖H1
α(Rd)‖ρ̄− ρt‖H−1

α (Rd)

≤ 1

2
‖v̄ − vt‖2H1

α(Rd) +
1

2
‖ρ̄− ρt‖2H−1

α (Rd)
.

Moreover, recalling the estimate (2.5) (which works both in Ḣ−1 and H−1
α ) we have

‖ρ̄− ρt‖H−1
α (Rd) ≤ QW

2
2 (ρ̄, ρt),

for all t ∈ [0, T ], where Q is the largest of the L∞ norms of ρ̄ and ρt over the time
interval [0, T ]. Inserting these estimates in (3.13) we obtain

1

2

d

dt
W 2

2 (ρt, ρ̄) ≤ F0,α(ρ̄)−F0,α(ρt) + Cω(W 2
2 (ρt, ρ̄)), (3.16)

for L1-a.e. t ∈ (0, T ), where the constant C depends only on ε, α, d, m, ‖ρ̄‖L∞(Rd),
‖ρ‖L∞((0,T )×Rd).

In the case α = 0, d = 1, 2, we have to consider the functional in (3.1). By using
the identity

1

2
‖∇(v̄ − v∗)‖2L2(Rd) −

1

2
‖∇(vt − v∗)‖2L2(Rd)

=

∫
Rd

(ρt − ρ∗)(v̄ − vt) dx+
1

2
‖∇(vt − v̄)‖2L2(Rd),

with similar computations as in (3.11), this time considering F0,0(ρ, v)−Φ0,0(ρ, v)
as obtained from (3.6), we can still find (3.12) and conclude obtaining again (3.16).

Step 4: Conclusion.- We are ready to prove the three points in the statement
of the theorem. The proof of i) is a consequence of (3.15) for the case ε > 0, and
(3.16) for the case ε = 0, taking into account that α ≥ 0 and that ω(D2(zt, z̄)) ≥
ω(W 2

2 (ρt, ρ̄)) being ω increasing.
It is a standard fact that the gradient flow formulation in EVI sense implies the

one in EDE sense in (3.4). Indeed, the proof of ii) follows from (3.3) and (3.5) and
can be exactly carried out as in [2, Proposition 3.6].

The proof of (3.5) still follows from (3.3). Indeed we can apply [3, Lemma 4.3.4]
(see also the argument of [3, Theorem 11.1.4]) and obtain that for L1-a.e. t ∈ (0, T )

1

2

d

ds
D2(zs, ζs)

∣∣∣
s=t
≤ 1

2

d

ds
D2(zs, ζt)

∣∣∣
s=t

+
1

2

d

ds
D2(zt, ζs)

∣∣∣
s=t

≤ 2Cω(D2(zt, ζt)).
(3.17)

Here, C = max{C1, C2}, where C1 is the supremum on s ∈ (0, T ) of the constant
in (3.3) for zt with z̄ = ζs, which is finite since the first component of ζ belongs to
L∞((0, T )×Rd), and C2 is the same inverting z and ζ. The estimate (3.17) implies

d

dt
D2(zt, ζt) ≤ 4Cω(D2(zt, ζt)), for L1-a.e. t ∈ (0, T ).

Since the inequality

y(t) ≤ y(0) + 4C

∫ t

0

ω(y(s)) ds

entails that y(t) ≤ G−1(G(y(0)) + 4Ct), we conclude.
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Proof of Theorems 1.3 and 1.4. The main theorems in the introduction are
now a straightforward consequence of the expansion control iii) in Theorem 3.1.
Both Theorems follow from the inequality (3.5), observing that G−1(G(0)+4Ct) =
G−1(−∞) = 0, and recalling that W 2,∞(Rd) ⊂ Λ2(Rd). �

4. ω-convexity of the functional. In this section we show another consequence
of the EVI formulation of bounded solutions. For the functional Fε,α a relaxed ω-
convexity along geodesics holds, see [18] for ω-convexity of functionals on measures.
The proof of the geodesic convexity as a consequence of the EVI was introduced in
[22].

We take Zε := Xε ∩
(
L∞(Rd) × (W 1,2(Rd) ∩ Λ2(Rd))

)
if ε > 0 (resp. Z0 :=

X0 ∩ L∞(Rd) if ε = 0) as the set of initial data for the evolution equation (1.1)
(resp. (1.2)), as in theorem 3.1. We remark that such set is geodesically convex in
(Xε, D). This is trivial for the part concerning v while for the density ρ we use the
classical displacement convexity of all the Lp norms [32] (moreover, along a geodesic
the L∞(Rd) norm of ρ and the energy are uniformly bounded in terms of the same
quantities at the endpoints).

Here we also assume that bounded solutions to (1.1) (resp. (1.2) for ε = 0), with
initial data in Zε, verify that for some T > 0

‖ρt‖L∞(Rd) ≤ R(ρ0, v0) for L1-a.e. t ∈(0, T ), (4.1)

where R is a bound only depending (increasingly) on ‖ρ0‖L∞(Rd) and the initial

energy Fε,α(ρ0, v0) (and possibly, if ε > 0, on ‖v0‖Λ2(Rd)). This assumption has
been proved in several cases, see the introduction for more details.

Theorem 4.1. Assume that bounded solutions for the evolutions (1.1) (resp. (1.2)
for ε = 0), with inital data in Zε, exist and verify (4.1). Then, for every z0, z1 ∈ Zε
there exists a constant C (depending only on ‖ρi‖L∞(Rd), Fε,α(zi), i = 0, 1, and, in

the case ε > 0, also on ‖vi‖Λ2(Rd), i = 0, 1) such that for every geodesic s ∈ [0, 1]→
zs of the space (Xε, D) connecting z0 to z1 there holds

Fε,α(zs) ≤ (1− s)Fε,α(z0) + sFε,α(z1)

+ C
[
(1− s)ω(s2D2(z0, z1)) + s ω((1− s)2D2(z0, z1))

]
∀s ∈ [0, 1].

Proof. Let z0, z1 ∈ Zε, let s ∈ [0, 1] → zs = (ρs, vs) be a geodesic of the space
(Xε, D) connecting z0 to z1. Let t 7→ zst be the bounded solution of (1.1) or (1.2)
in [0, T ]×Rd starting from the initial datum zs, T being chosen according to (4.1).

Consider any z̄ = (ρ̄, v̄) ∈ Xε ∩
(
L∞(Rd)×W 1,2(Rd)

)
(reduced to z̄ = ρ̄ ∈

X0 ∩ L∞(Rd) if ε = 0). Taking into account that t 7→ zst is a bounded solution,
t 7→ D2(zst , z̄) is absolutely continuous and t 7→ Fε,α(zst ) is decreasing by (3.4), so
that using (3.3) we obtain

1

2
D2(zst , z̄)−

1

2
D2(zs, z̄) ≤ t(Fε,α(z̄)−Fε,α(zst )) + C

∫ t

0

ω(D2(zsr , z̄)) dr (4.2)

for all t ∈ [0, T ]. We claim that (4.2) holds with a constant C depending only on
the L∞(Rd) norms of ρ0, ρ1, ρ̄, on Fε,α(z0), Fε,α(z1) and, if ε > 0, on the Λ2(Rd)
norms of v0, v1. Indeed, since T is chosen as in (4.1), the constant C in (4.2), coming
from (3.3), depends only on ‖ρ̄‖L∞(Rd), ‖ρs‖L∞(Rd), Fε,α(zs) and ‖vs‖Λ2(Rd). But
the last three quantities are uniformly bounded with respect to s as remarked at the
beginning of this section and the claim follows. Therefore, multiplying by (1−s) the
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inequality (4.2) for z̄ = z0 and by s the inequality (4.2) for z̄ = z1, then summing
up, we may conclude that

1

2
((1− s)D2(zst , z

0) + sD2(zst , z
1))− 1

2
((1− s)D2(zs, z0) + sD2(zs, z1))

≤ t((1− s)Fε,α(z0) + sFε,α(z1)−Fε,α(zst ))

+ C

(
(1− s)

∫ t

0

ω(D2(zsr , z
0)) dr + s

∫ t

0

ω(D2(zsr , z
1)) dr

)
,

where C depends only on ‖ρ0‖L∞(Rd), ‖ρ1‖L∞(Rd), Fε,α(z0), Fε,α(z1) and, in the

case ε > 0, on ‖v0‖Λ2(Rd),‖v1‖Λ2(Rd).
Using the fact that s 7→ zs is a geodesic, the left hand side is nonnegative, thus

Fε,α(zst )− (1− s)Fε,α(z0)− sFε,α(z1)

≤ C
(

(1− s)1

t

∫ t

0

ω(D2(zsr , z
0)) dr + s

1

t

∫ t

0

ω(D2(zsr , z
1)) dr

)
.

The lower semi continuity of t 7→ Fε,α(zst ) and the continuity of r 7→ D2(zsr , z
i),

i = 0, 1 yield

Fε,α(zs) ≤ (1− s)Fε,α(z0) + sFε,α(z1) +C((1− s)ω(D2(zs, z0)) + sω(D2(zs, z1))).

Since s 7→ zs is a geodesic we have D2(zs, z0) = s2D2(z1, z0) and D2(zs, z1) =
(1− s)2D2(z0, z1) and we conclude.

Remark 4.2. In general, geodesical λ-convexity for some λ ∈ R is not expected
for functional Fε,α on Zε (with respect to the distance D), because of the presence
of the term −

∫
Rd vρ dx. For instance in the case ε > 0 we may fix ṽ ∈ Λ2(Rd) \

W 2,∞(Rd) such that −ṽ is not a λ-convex function. With this choice of ṽ, the
functional Fε,α is not λ-convex along geodesics of the form s 7→ zs = (ρs, vs) with
vs ≡ ṽ. We may recover the λ-convexity of Fε,α in the case ε > 0 by restricting to
the set Xε ∩

(
L∞(Rd)× (W 1,2(Rd) ∩W 2,∞(Rd))

)
.

5. A refined result in Zygmund spaces. This section is devoted to give a
rigorous justification of the estimates of Section 2 in the parabolic case. We will
also give a slight improvement of Theorem 3.1 and Theorem 1.4 by guaranteing
a suitable quasi-Lipschitz estimate under a more general condition on the initial
datum v0.

Zygmund estimates and log-Lipschitz regularity in the parabolic case. Let T > 0.
Let us denote QT := (0, T ) × Rd and then Q̄T := [0, T ] × Rd. In the half d + 1
dimensional space, we consider the standard parabolic metric

δ((x, t), (y, s)) := max{|x− y|,
√
|t− s|}.

With respect to the parabolic metric, the definition of Zygmund spaces adapts as
follows. We have Λ0(Q̄T ) := L∞(QT ), and Λ1(Q̄T ) is the space of continuous
bounded functions f over Q̄T such that there hold

sup
x,y∈Rd,x 6=y
t∈[0,T ]

|f(x, t)− 2f((x+ y)/2, t) + f(y, t)|
|x− y|

< +∞,

sup
x∈Rd

0≤s<t≤T

|f(x, t)− 2f(x, (t+ s)/2) + f(x, s)|
|t− s|1/2

< +∞.
(5.1)
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Moreover, we say that f ∈ L∞(QT ) belongs to Λ2(Q̄T ) if

sup
x∈Rd , 0≤s<t≤T

|f(x, t)− 2f(x, (t+ s)/2) + f(x, s)|
|t− s|

< +∞

and ∇f ∈ Λ1(Q̄T ). We see that f ∈ Λ2(Q̄t) implies f ∈ L∞((0, T );W 1,∞(Rd)),
with ∇f satisfying (5.1), so that finally f satisfies also (2.3).

When dealing with parabolic equations, it is suitable to consider spaces of func-
tions defined with respect to the parabolic metric, since it is natural to deal with
functions which have derivative up to order k with respect to time and 2k with
respect to space. For classic results, we refer for instance to [16] or to the mono-
graph [27], where estimates are derived in Sobolev and Hölder spaces of this kind,
see Chapter 4 therein.

In [16] we find that if the forcing term of the heat equation has bounded mean
oscillation (BMO), still with respect to the parabolic metric, than the same holds
true for second order space derivatives and first order time derivatives of the solu-
tion. This would be enough for deducing that first derivatives in space are in the
Zygmund class with respect to the parabolic metric and that therefore they satisfy
a log-Lipschitz estimate. The results in [16] deal only with null initial datum, but
they can be generalized to more general data with suitable regularity requirements.
Some extensions involving initial data in Zygmund classes are found in [1, 24], based
on direct estimates on fundamental solutions. Summing up, we have

Proof of Proposition 2.2. Suppose that v is the solution (convolution with funda-
mental operator) of the forced heat equation ∂tv = ∆v + ρ. Suppose ρ ∈ Λ0(Q̄T )
and v0 ∈ Λ2(Rd). Then we have v ∈ Λ2(Q̄T ). See [16] for the case v0 = 0, see
[24, Theorem 4] for a general result. As already observed, if v ∈ Λ2(Q̄T ) then (2.3)
follows. If we consider the second equation of (1.1) with α > 0, the fundamental
solution is just multiplied by a decaying exponential at infinity and the same result
carries over. �

This gives a rigorous justification of the assumptions on the initial datum of The-
orem 3.1. However a refined analysis shows that this assumption can be weakened,
as we do next.

Initial datum in Λ1(Rd). We have to consider the weighted Zygmund space Λ−1
2 (QT ),

defined as the corresponding space Λ2(Q̄T ), with the addition of a time weight
which is divergent as t → 0. In particular, locally in QT functions in Λ−1

2 (QT )
have the same smoothness as the ones in Λ2(Q̄T ), but this regularity does no more
extend to the closure of QT . More precisely, by definition f ∈ Λ−1

2 (QT ) means that
f ∈ Λ1(Q̄T ),

sup
x,y∈Rd,x6=y
t∈[0,T ]

√
t
|∇f(x, t)− 2∇f((x+ y)/2, t) +∇f(y, t)|

|x− y|
< +∞ (5.2)

and the second finite differences of f and ∇f with respect to time verify the cor-
responding estimates, as in the definition of Λ2(Q̄T ), still with the addition of the
weight t1/2.

Theorem 5.1. Let T > 0. Let ρ0 ∈ M2(Rd;m) ∩ L∞(Rd) and v0 ∈ Λ1(Rd) ∩
W 1,2(Rd). Let zt = (ρt, vt) be a bounded solution on [0, T ] × Rd to the Cauchy
problem for (1.1), according to Definition 1.2, with initial datum z0 = (ρ0, v0). For
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any reference point z̄ = (ρ̄, v̄) ∈ (M2(Rd;m) ∩ L∞(Rd)) ×W 1,2(Rd), the general
EVI holds

1

2

d

dt
D2(zt, z̄) ≤ Fε,α(z̄)−Fε,α(zt) + Ct−1/2ω(D2(zt, z̄)) for L1-a.e. t ∈ (0, T ),

(5.3)
for a constant C depending on ‖ρ‖L∞((0,T )×Rd), ‖v0‖Λ1(Rd), ‖ρ̄‖L∞(Rd).

Moreover the EDE (3.4) holds, and the expansion control property holds in this
form: given another bounded solution t 7→ ζt as above with initial datum ζ0 ∈
(M2(Rd;m) ∩ L∞(Rd))× (Λ1(Rd) ∩W 1,2(Rd)) there is

D2(zt, ζt) ≤ G−1(G(D2(z0, ζ0)) + 8C
√
t) for every t ∈ [0, T ), (5.4)

where C is a constant depending on ‖ρ‖L∞((0,T )×Rd) and ‖v0‖Λ1(Rd) (and the same

quantities associated to ζ). In particular, z = ζ if z0 = ζ0.

Proof. Since we are in the hypotheses of [24, Theorem 4], v belongs to Λ−1
2 (QT ),

so that (5.2) above holds for v and then, due to the log-Lipschitz regularity in the
Zygmund class, we deduce

|∇vt(x)−∇vt(y)| ≤ Kt−1/2|x− y|(1 + log− |x− y|), (5.5)

for all x, y ∈ Rd, t ∈ (0, T ), where K is a suitable constant depending only on T
and the data. Notice that from the definition of Λ−1

2 (QT ), it does not follow that
∇v ∈ L∞(QT ). Thus we deduce the weighted analogous of (2.3), that is

|∇vt(x)−∇vt(y)|2 ≤ C2

t
ϕ(|x− y|2), (5.6)

where C is a new suitable positive constant depending on the data and ϕ is defined
in (2.2). Following the line of the proof Theorem 3.1 we reach the estimate (3.8)
for IIt, which now has to be changed because we have to use (5.6), obtaining

|IIt| ≤ Ct−1/2W2(ρt, ρ̄)
√

mϕ(m−1W 2
2 (ρt, ρ̄)) = Ct−1/2ω(W 2

2 (ρt, ρ̄)).

We can repeat all the other steps which lead to (3.14), obtaining the corresponding
EVI with the additional weight t−1/2, which directly lead to (5.3). We conclude
as in Step 4 of the proof of Theorem 3.1: from (5.3), the EDE formulation (3.4)
follows, still referring to [2, Proposition 3.6]. Moreover, (5.4) follows by (5.3) by

d

dt
D2(zt, ζt) ≤ 4Ct−1/2ω(D2(zt, ζt)), for L1-a.e. t ∈ (0, T ).

Indeed the inequality

y(t) ≤ y(0) + 4C

∫ t

0

s−1/2ω(y(s)) ds

implies that y(t) ≤ G−1(G(y(0)) + 8C
√
t) as desired. Finally, the uniqueness result

follows since G(0) = −∞ and G−1(−∞) = 0.

6. The case of nonlinear diffusion. We show next how to adapt our techniques
to more general aggregation diffusion equations in a quite straightforward way. Let
us consider the problem{

∂tρ = div (ρ∇P (ρ))− div (ρ∇v),

ε∂tv = ∆v + ρ− αv,
(6.1)
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to which we associate the functional

Gε,α(ρ, v) :=

∫
Rd

(Ψ(ρ)− vρ) dx+
1

2

∫
Rd

(|∇v|2 + αv2) dx, (6.2)

for all ε > 0, α ≥ 0, ρ ∈M2(Rd;m) ∩ L∞(Rd), v ∈W 1,2(Rd), where

Ψ(ρ) :=

∫ ρ

0

P (r) dr.

We give the same restrictions as [3, §9.3], the first one being

lim
r→0

Ψ(r)

rq
> −∞ for some q >

d

d+ 2
,

a property ensuring that
∫
Rd Ψ(ρ) 6= −∞. Moreover, the crucial property to be

satisfied by the new nonlinearity is the displacement convexity, that is the map
r 7→ rdΨ(r−d) is convex and nondecreasing on (0,+∞). This notion, introduced in
[32], is stronger than convexity and corresponds for C2 functions to the inequality

r−1Ψ(r)−Ψ′(r) + rΨ′′(r) ≥ − 1

d− 1
rΨ′′(r) ∀ r ∈ (0,+∞).

The more relevant cases correspond to nonlinear diffusion of power kind. Indeed, if

Ψ(ρ) =
1

m− 1
ρm, m ≥ d− 1

d

the displacement convexity property holds. The case m > 1 (resp. m < 1) corre-
spond to a slow diffusion (resp. fast diffusion) in the equation. On the other hand,
the linear diffusion is recovered taking P (ρ) = log ρ, it is seen that in this case
functional (6.2) is reduced, up to a constant, to (1.3). Finally, let us mention that
the free-energy functional in the parabolic-elliptic case is similar to (1.4) and given
by

G0,α(ρ, v) :=

∫
Rd

(Ψ(ρ)− 1

2
vρ) dx, (6.3)

for ρ ∈ M2(Rd;m) ∩ L∞(Rd) and v = Bα,d ∗ ρ. It can be written as (6.2), taking
into account the same renormalization as in (3.1), to be done in the pathological
cases ε = α = 0 and d = 1, 2.

The notion of bounded solution is completely analogous to Definitions 1.1 and
1.2, both for the parabolic-elliptic and the parabolic-parabolic case. Indeed, the
only point to adapt is the finiteness of the Fisher information, now rewritten into
the generalized version∫ T

0

∫
Rd
|∇P (ρt(x))|2 ρt(x) dx dt < +∞. (6.4)

Corollary 6.1. Theorem 1.3, Theorem 1.4, Theorem 3.1 and Theorem 5.1 hold
for bounded solutions to (6.1).

Proof. The displacement convexity property makes the internal energy functional
ρ ∈ M2(Rd;m) 7→

∫
Rd Ψ(ρ(x)) dx convex along Wasserstein geodesics, as shown in

[3, §9.3]. This in turn gives the possibility to write down a subdifferential inequality
in Wasserstein sense (for a definition see [3, §10.1.1]) as follows. Let ρ ∈M2(Rd;m)∩
L∞(Rd) be such that

∫
Rd |∇P (ρ)|2 ρ dx is finite. Then∫

Rd
Ψ(ρ̄(x)) dx−

∫
Rd

Ψ(ρ(x)) dx ≥
∫
R
〈∇P (ρ(x)), T (x)− x〉 ρ(x) dx, (6.5)



18 JOSÉ ANTONIO CARRILLO, STEFANO LISINI AND EDOARDO MAININI

for any ρ̄ ∈M2(Rd;m), where T is the optimal transport map from ρ to ρ̄. Convex-
ity and differentiability of functionals defined on probability densities, as the internal
energy, are standard elements in the theory of Wasserstein gradient flows. For the
proof of inequality (6.5), which characterizes the vector ∇P (ρ) as the Wasserstein
subdifferential of the internal energy functional, we refer to [2, §3.3.1] or to the
general theory in [3, §10.4.3].

On the other hand, (6.5) can be used to generalize the proof of Theorem 3.1.
Indeed, if (ρt, vt) solves (6.1) according to our notion of solution, thanks to (6.4) ρt
satisfies the identity (6.5) for almost any t. From this inequality, all the rest of the
proof of Theorem 3.1 can be carried out. Indeed, with the same notation therein,
we obtain the L1-a.e. t ∈ (0, T ) inequality

It := Gε,α(ρ̄, v̄)− Gε,α(ρt, vt) +

∫
Rd

(v̄(x)− vt(x))ρ̄(x) dx ≥∫
Rd
〈ρt(x)∇P (ρt(x))− ρt(x)∇v(x), Tt(x)− x〉 dx− Cω(W 2

2 (ρt, ρ̄)),

for any ρ̄ ∈M2(Rd;m) ∩ L∞(Rd) and any v̄ ∈ W 1,2(Rd) if ε > 0 or v̄ = Bα,d ∗ ρ̄ if
ε = 0. This estimate substitutes (3.9) in the proof of Theorem 3.1. The rest of the
proofs is completely analogous.

Notice that the corresponding of Theorem 4.1 also holds in the nonlinear diffusion
case. However, here we have less knowledge about existence of bounded solutions.
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