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Abstract

Microelectronic circuits usually contain small voids or cracks, and if those defects are large enough to
sever the line, they cause an open circuit. We present a numerical method for investigating the migration
of voids in the presence of both surface diffusion and electric loading. Our mathematical model involves
a bulk-interface coupled system, with a moving interface governed by a fourth-order geometric evolution
equation and a bulk where the electric potential is computed. Thanks to a novel approximation of the
interface, equidistribution of its vertices is guaranteed, and no remeshing is necessary. In addition, the
used curvature approximation means that our method is unconditionally stable for the evolution by
surface diffusion only. Various examples are performed to demonstrate the accuracy of the method.

1. Introduction

Microelectronic circuits contain thin lines of aluminium alloy, that make electric contact between
neighbouring devices possible. As producers try to reduce the dimensions of microchips further and
further, and since interconnects always contain small voids or cracks, it is of great interest to investigate
the physical mechanisms that impede such a reduction, due to mechanical failures in the lines induced by
the motion of the cracks. The problem considered in this paper involves the evolution over time of voids
in a conducting metal line where two different effects contribute to the drift of the voids: the surface
tension and the electric field. This phenomenon is known as electromigration; for further details see, e.g.,
[29, 16], and the references therein.

As the height of interconnect lines is extremely thin compared to the dimensions of the base, voids
generally fully penetrate in this vertical direction. Hence in this paper we restrict ourselves to a two
dimensional model of void electromigration. In addition, we idealise the interconnect line as a rectangular
solid, which conducts electric current. The electric field is induced in the line by prescribing the voltage
on its vertical boundaries; we assume that the electric field in the line is invariant in the direction that is
normal to the plane of the figure. The initial shape of the void is assumed to be known. Surface diffusion
may cause voids to change their shape. When there is no electric loading, the void will approach the
shape that minimises the total surface free energy, i.e. a circle. When an electric field is present, on the
other hand, it too is responsible for driving diffusion on the void surface, and this may lead the void to
drift through the conductor as well as changing its shape. Overall, a complicated free boundary problem
is obtained.

In this paper, we will introduce a novel front-tracking finite element method for the approximation of
void electromigration. Our approximation uses two totally independent meshes, one for the parametric
approximation of the moving boundary and one for the finite element approximation of the bulk quantities.
An advantage of this unfitted finite element approach, compared to other direct front-tracking methods,
is that costly remeshings of the bulk grid are avoided. A typical mesh for the unfitted approach is shown
in Figure 1. Moreover, our novel discretisation of the moving boundary means that the vertices on
the discrete interface equidistribute asymptotically. In particular, no reparameterisation of the discrete
interface is necessary.
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The paper is organised as follows: in Section 2 we give a mathematical description of the problem of
void electromigration that we are interested in. We also give a brief overview of the different numerical
methods applicable to this problem. Section 3 contains a detailed description of our proposed finite
element approximation. In Section 4 we discuss possible solution methods of the algebraic system of
equations arising at each time level. In addition, we present details on the mesh adaptation strategy
used, as well as on the algorithm that defines the discrete approximation to the conductor regions.
Finally, in Section 5 we perform a convergence experiment for a situation in which an exact solution is
known, and we present various other examples of the applications of our numerical method.

Figure 1: Example of an unfitted interface mesh.

2. Problem formulation

For the formulation of the governing equations we closely follow the presentation in [8]. Let Ω =
(−L1, L1) × (−L2, L2), where L1, L2 > 0, be the domain that contains the conductor. We denote the
boundary of Ω with ∂Ω. At any time t ∈ [0, T ], let Γ(t) ⊂ Ω be the boundary of the void Ω−(t) inside
the conductor Ω. Then Γ(t) = ∂Ω−(t) and Ω+(t) := Ω \Ω−(t) denotes the conducting region (see Figure
2). Now the evolution of the interface Γ(t), which represents the void boundary, is given by

V = −α1 κss + α2 φss, (1)

where V represents the velocity of Γ(t) in the direction ~ν (the unit normal to Γ(t) pointing into ∂Ω−(t)),
s is the arc-length of the curve, κ is the curvature of Γ(t) (positive when Ω−(t) is convex). In particular,
it holds that

~xss = κ ~ν , (2)

where ~x is a suitable parameterisation of Γ(t), i.e. Γ(t) = ~x (I, t), with I = R /Z denoting the “periodic”
interval [0, 1]. Moreover, φ(t) is the electric potential that satisfies a Laplace equation in Ω+(t), i.e.:

4φ = 0 in Ω+(t) ,
∂φ

∂~ν
= 0 on Γ(t) , (3a)

∂φ

∂~ν∂Ω
= 0 on ∂1Ω , φ = g± on ∂±2 Ω . (3b)

In the above, g± := ±L1 denotes the Dirichlet boundary condition on parts of ∂Ω, where ∂Ω = ∂1Ω∪∂2Ω,
with ∂1Ω ∩ ∂2Ω = ∅ and

∂2Ω = ∂−2 Ω ∪ ∂+
2 Ω with ∂±2 Ω := {±L1} × [−L2, L2].
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Figure 2: The domain Ω and the void with its boundary Γ(t).

The Dirichlet boundary conditions in (3b) model a uniform parallel electric field, φ ≈ x1 as L1 → ∞.
Finally, α1 ∈ R>0 and, without loss of generality (see, e.g., [16, p. 101]), α2 ∈ R≥0 are given parameters
depending on the conductor and on the strength of the electric field. The first term on the right-hand side
of (1) is surface diffusion due to interfacial tension, which models atoms moving around the boundary of
the void to positions of large curvature, whereas the second term is surface diffusion due to the electric
field. The void electromigration model is then the coupled system of equations (1), (3a) and (3b). In the
case α2 = 0, the evolution (1) is called surface diffusion, which is an example of a geometric evolution
equation. A local existence result for the motion by surface diffusion can be found in [19]. Moreover, it
was shown that a global solution exists if the initial curve, Γ(0), is close to a circle and that it converges
to a circle. Numerical approximations of surface diffusion have been proposed in [2, 4, 6], and we refer to
[18] for a review of possible numerical approaches for the approximation of geometric evolution equations
in general. For α2 ≥ 0, the motion (1) preserves the area enclosed by the closed curve Γ(t) since

d
dt |Ω−(t)| = −

∫
Γ(t)

V ds = 0 , (4)

where |D| is the measure of a domain D. In addition, for α2 = 0 this motion decreases the length of the
interface since

d
dt |Γ(t)| = −

∫
Γ(t)

V κ ds = −α1

∫
Γ(t)

(κs)2 ds ≤ 0 . (5)

For later use we recall the following true solution of a circular void, moving at constant speed through
an infinite conductor. That is, for any αi ∈ R≥0, R ∈ R>0, and z = (z1, z2) ∈ R2,

Γ(t) := {x ∈ R2 : (x1 − z1(t))2 + (x2 − z2)2 = R2}, z1(t) := z1 + 2α2

R t, (6a)

where the corresponding electric potential

φ(x, t) = [x1 − z1(t)]
(

1 + R2

(x1−z1(t))2+(x2−z2)2

)
(6b)

solves (1) and (3) with

Ω+(t) in (3a) replaced by R2 \ Ω−(t) and (3b) replaced by ∇φ→ (1, 0)T as |x| → ∞. (6c)
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Observe that (1) reduces to V = − 2α2

R2 [x1−z1(t)] on Γ(t). The explicit solution (6a), (6b) was first noted
in [20].

The void electromigration problem (1) and (3) represents a complicated free boundary problem. In
general, the numerical solution of partial differential equations for systems with moving boundaries can be
approached in different ways. The most direct choice is an explicit tracking of the interface. In these front
tracking methods the interface is either triangulated or represented by a connected set of particles, which
carry forces. The interface is then transported using the given normal velocity of the interface. Since the
interface is tracked directly, these methods are also called sharp interface approximations. Examples of
such methods for the approximation of void electromigration can be found in [13, 22, 29]. In this paper
we propose a new front tracking method for void electromigration that will be based on a parametric
description of the moving interface.

Also in the level set method, see [26], the interface is assumed to be sharp. But here the interface
is represented as the zero level set of a smooth function, which means that topological changes are
handled naturally. We refer to [23, 28, 1] for examples of the application of the level set method to the
approximation of void electromigration.

Finally, in phase field methods, the sharp interface is replaced by a diffusive interfacial layer, in which
a phase field variable rapidly changes between two different constant values that represent the void and
the conductor, respectively. It can often be formally shown that if the interfacial thickness goes to zero,
then the original sharp interface problem is recovered. Since the interface is only captured implicitly in
the phase field method, changes of topology occur naturally. We refer to [24, 25, 12, 8, 5] for different
phase field approximations of void electromigration.

In what follows, we will group the types of methods described above into either implicit or explicit
methods, depending on how they represent the free boundary. Of course, implicit and explicit methods
differ in the way they handle topological changes, such as pinching-off and merging. The fact that such
topological changes occur naturally within the framework of implicit methods is often perceived as their
main advantage over explicit methods. However, with modern tools available to incorporate topological
changes into explicit methods, see e.g. [14], this advantage is diminishing. In fact, within explicit methods
it is possible to draw up a list of heuristic criteria which trigger a topological change. In contrast to
implicit methods, where topological changes take place automatically, this gives some active control over
the topological changes, see also [21]. In addition, explicit methods have the advantage that the partial
differential equation that governs the evolution of the interface can be solved with numerical methods in
one dimension lower than is the case for implicit methods, where the interface is usually captured as the
zero level set of an auxiliary function. Finally, in applications where geometric quantities of the interface
are of interest, implicit methods face the difficulty of having to extract an explicit representation of the
interface from the implicit definition, which in general is a nontrivial operation, especially in higher space
dimensions.

The approach proposed in this paper belongs to the explicit front tracking category. The main
difference to existing methods, see [13, 22, 29], is that our approach is based on a variational formulation
of (1) and (3), that includes a novel treatment of curvature, which was first introduced in [4]. Moreover,
in contrast to existing methods, we use an unfitted finite element grid for the approximation of (3). The
main drawback of existing front tracking methods for the approximation of void electromigration is that
a new grid for the approximation of Ω+(t) has to be created at each time step. We avoid this remeshing,
and the associated numerical effort, by maintaining a triangulation of the whole domain Ω throughout.
Altogether, the main advantages of our approach can be briefly summarised as follows.

• the method is unfitted : the bulk grid and the interface grid are totally independent. This fea-
ture means that there is no need to re-mesh or deform the bulk mesh in order to preserve the
correspondence with the interface;

• the method shows good properties for the interface mesh: the parametric approximation of the
interface motion leads to an asymptotic equidistribution of vertices, without any necessity of refining
or re-meshing the interface grid;

• a novel approximation of curvature means that the method for integrating the surface diffusion
equation is unconditionally stable;
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• the area enclosed by the curve is preserved for a semidiscrete variant of our scheme;

• the method can handle initial geometries, where more than one void is present, as well as topological
changes that occur during the evolution.

3. Finite element approximation

As already pointed out earlier, our approach is based on a coupled bulk-interface algorithm. We begin
with the finite element spaces needed for the approximation of the moving boundary Γ(t). To this end, let

I := R /Z =
⋃N
j=1 Ij , N ≥ 3, be a decomposition of I into intervals given by the nodes qj , Ij = [qj−1, qj ].

Here I is the “periodic” interval [0, 1], which we obtain by identifying points q ∈ R and q + k for k ∈ Z.
Let hj = |Ij | and h = maxj=1,...,N hj be the maximal length of a grid element. Then the necessary finite
element spaces are defined as follows:

V h := {~χ ∈ C(I,R2) : ~χ |Ij is linear ∀ j = 1, . . . , N} =: [Wh ]2 ⊂ H1(I,R2),

where Wh ⊂ H1(I,R) is the space of scalar continuous (periodic) piecewise linear functions, with {φl}Nl=1

denoting the standard basis of Wh. Throughout this paper, we make use of the periodicity of I, i.e.
qN ≡ q0, qN+1 ≡ q1 and so on.

In addition, let 0 = t0 < t1 < . . . < tM−1 < tM = T be a partitioning of [0, T ] into possibly variable

time steps τm := tm+1 − tm, m = 0, . . . ,M − 1. We set τ := maxm=0,...,M−1 τm. Let ~Xm ∈ V h be an
approximation to ~x (·, tm), and similarly κm ∈Wh to κ (·, tm).

For scalar and vector functions f, g ∈ L2(I,R2) we introduce the L2 inner product 〈·, ·〉Γm over the

current polygonal curve Γm, which is described by the vector function ~Xm ∈ V h, as follows:

〈f, g〉Γm :=

∫
Γm

f · g ds =

∫
I

f · g | ~Xm
ρ | dρ ; (7)

where ρ ∈ [0, 1] is the parameterisation variable. In addition, if f, g are piecewise continuous, with
possible jumps at the nodes {qj}Nj=1, we define the mass lumped inner product 〈·, ·〉hΓm as

〈f, g〉hΓm :=
1

2

N∑
j=1

| ~Xm(qj)− ~Xm(qj−1)|
[
(f · g)(q−j ) + (f · g)(q+

j−1)
]
, (8)

where we define f(q±j ) := lim
ε↘0

f (qj ± ε). Furthermore, we note that

fs · gs =
fρ · gρ
| ~Xm

ρ |2
and ~νm = −

( ~Xm
ρ )⊥

| ~Xm
ρ |

,

where ·⊥ acting on R2 denotes clockwise rotation by π
2 .

We introduce now the finite element approximation for quantities defined over the bulk mesh. Let
T m be a partitioning of Ω into disjoint open triangles o with ho := diam (o) and h := max o∈Tm ho so
that Ω = ∪o∈T mo. Moreover, let Ωm− and Ωm+ be the interior and the exterior of Γm, respectively. We
can then define

T m+ := {o ∈ T m : o ∩ Ωm+ 6= ∅} and Ωm,h+ :=
⋃

o∈Tm+

o . (9)

Ωm,h+ is hence given by a union of bulk elements and represents a suitable approximation of Ωm+ , on which
the electric potential is going to be computed. Associated with T m+ we can define the standard finite
element space of piecewise linear functions

Sm := {χ ∈ C(Ωm,h+ ) : χ |o is linear ∀o ∈ T m+ } ,

as well as
Smg := {χ ∈ Sm : χ |∂±2 Ω = g±} and Sm0 := {χ ∈ Sm : χ |∂±2 Ω = 0} .
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We then propose the following finite element approximation of (1) and (3). Given Γ0, a polygonal

approximation of Γ0, for m = 0, . . . ,M − 1 find functions (φm+1 , ~Xm+1 , κm+1) ∈ Smg × V
h ×Wh such

that ∫
Ωm,h+

∇φm+1 · ∇ψ dx = 0 ∀ψ ∈ Sm0 , (10a)

〈
~Xm+1 − ~Xm

τm
, χ ~νm

〉h
Γm

− α1 〈κm+1
s , χs〉Γm = −α2 〈(πh φm+1)s, χs〉Γm ∀χ ∈Wh , (10b)

〈κm+1 ~νm, ~η〉hΓm + 〈 ~Xm+1
s , ~ηs〉Γm = 0 ∀~η ∈ V h, (10c)

where πh : C(I) → Wh is the standard interpolation operator at the nodes {qj}Nj=1. We note that the
weak formulation of (1) and (3), on which (10) is based, can be derived from (1), (2) and (3a), respectively,
by multiplying with a suitable test function and then performing integration by parts. Then (10a) is a
standard finite element approximation of (3), while (10b), (10c) for the case α2 = 0 collapse to the scheme
introduced in [4] for (1) with α2 = 0, i.e. for the geometric evolution law of surface diffusion.

Before we can proceed to prove existence and uniqueness of a solution to the system (10), we have to
make the following very mild assumption, first introduced in [4].

(A) Let | ~Xm
ρ | > 0 for almost all ρ ∈ I. For j = 1→ N , let ~νm

j− 1
2

:= − ( ~Xmρ )⊥

| ~Xmρ |
|Ij , and set

~ωmj :=
| ~Xm(qj)− ~Xm(qj−1)|~νm

j− 1
2

+ | ~Xm(qj+1)− ~Xm(qj)|~νmj+ 1
2

| ~Xm(qj)− ~Xm(qj−1)|+ | ~Xm(qj+1)− ~Xm(qj)|

=
−[ ~Xm(qj+1)− ~Xm(qj−1)]⊥

| ~Xm(qj)− ~Xm(qj−1)|+ | ~Xm(qj+1)− ~Xm(qj)|
. (11)

Then we further assume that dim span {~ωmj }Nj=1 = 2.

We note that the assumption (A) is always satisfied if N is odd. We are now ready to prove existence
and uniqueness of the discrete solution.

Theorem. 3.1. Let the assumption (A) hold. Then there exists a unique solution

(φm+1 , ~Xm+1 , κm+1) ∈ Smg × V
h ×Wh to the system (10). Moreover, if α2 = 0 then it holds that

|Γm+1|+ α1 τm 〈κm+1
s , κm+1

s 〉Γm ≤ |Γm|. (12)

Proof. We first notice that the equations for φm+1 and ( ~Xm+1 , κm+1) decouple. The existence of a

unique solution for (10a) is trivial. The existence of a solution ( ~Xm+1 , κm+1) for (10b), (10c) follows
from uniqueness. To prove the latter we need to show that the only solution to the homogeneous system
is the zero solution, and this has been shown in [4, Theorem 2.1]. We do not repeat the simple proof
here, but we observe that it relies on the assumption (A).

The stability result (12) can be obtained by choosing χ = κm+1 in (10b) and ~η = ~Xm+1 − ~Xm in
(10c), on noting that

〈 ~Xm+1
s , ~Xm+1

s − ~Xm
s 〉Γm = |Γm+1| − |Γm| ;

see [4, Theorem 2.3] for details.

We note that the stability result (12) for α2 = 0 is the direct discrete analogue of (5).

3.1. Semidiscrete continuous-in-time approximation

It is worthwhile to consider a continuous-in-time semidiscrete version of our fully discrete scheme
(10). To this end, we introduce the following definitions, where we assume that Γh(t) is a polygonal
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approximation of Γ(t). Let Ωh−(t) and Ωh+(t) be the interior and the exterior of Γh(t), respectively. We

can then define T h+ (t) := {o ∈ T h : o ∩ Ωh+(t) 6= ∅}, and Ωh, h+ (t) :=
⋃
o∈T h+ (t) o. In addition, we define

Shg (t) := {χ ∈ C(Ωh, h+ (t)) : χ |o is linear ∀o ∈ T h+ (t), χ |∂±2 Ω = g±} ,

Sh0 (t) := {χ ∈ C(Ωh, h+ (t)) : χ |o is linear ∀o ∈ T h+ (t), χ |∂±2 Ω = 0} ,

as well as the inner products 〈·, ·〉Γh(t) and 〈·, ·〉hΓh(t) on Γh(t); analogously to (7) and (8).

The semidiscrete variant of (10) can then be formulated as follows. Let Γh(0) be given. Then for

t ∈ (0, T ) find Γh(t), with Γh(t) = ~Xh(I, t) for ~Xh(t) ∈ V h, and φh(t) ∈ Shg (t), κh(t) ∈Wh such that for
almost all times t ∈ (0, T ) it holds that∫

Ωh,h+ (t)

∇φh · ∇ψ dx = 0 ∀ψ ∈ Sh0 (t) , (13a)

〈 ~Xh
t , χ ~ν

h〉hΓh(t) − α1〈κhs , χs〉Γh(t) = −α2 〈(πh φh)s, χs〉Γh(t) ∀χ ∈Wh , (13b)

〈κh ~νh, ~η〉hΓh(t) + 〈 ~Xh
s , ~ηs〉Γh(t) = 0 ∀ ~η ∈ V h , (13c)

where ~νh(t) = − ( ~Xhρ )⊥(t)

| ~Xhρ (t)|
is the unit normal to Γh(t).

Let us define ~hj(t) = ~Xh(qj , t)− ~Xh(qj−1, t) for j = 1, . . . , N . We are now in a position to prove an
exact area conservation property for (13), as well as an equidistribution property.

Theorem. 3.2. Let (φh, ~Xh, κh)(t) ∈ Shg (t)× V h ×Wh be a solution of (13). Then it holds that

d

dt
|Ωh−(t)| = 0 , (14)

and, if α2 = 0, then we also have that
d

dt
|Γh(t)| ≤ 0 . (15)

Moreover, it holds that

|~hj(t)| = |~hj−1(t)| if ~hj(t) ∦ ~hj−1(t) j = 1, . . . , N . (16)

Proof. The exact conservation of the enclosed area can be shown by choosing χ = 1 in (13b) and taking
into account (8). Then it holds that

0 = 〈 ~Xt, ~ν
h〉hΓh(t) =

∫
Γh(t)

~Xt · ~νh ds =
d

dt
|Ωh−(t)| , (17)

which is the desired result (14). Furthermore, choosing χ = κh in (13b) and ~η = ~Xh
t in (13c) yields that

d

dt
|Γh(t)| = 〈 ~Xh

s , ( ~X
h
t )s〉Γh(t) = −α1 〈κhs , κhs 〉Γh(t) ≤ 0 , (18)

and so the length of the curve Γh(t) decreases over time, i.e. (15) holds. A proof of (16) can be found
in [4, Remark 2.4]. We repeat a modified version here for the benefit of the reader. Choosing ~η =

(~hj+1 +~hj)φj ∈ V h in (13c), where we recall that {φl}Nl=1 denote the basis functions of Wh, and noting
the analogues of (8) and (11) for Γh(t), yields that

0 = 〈 ~Xh
s , [(

~hj+1 + ~hj)φj ]s〉Γh(t) =

[
~hj+1

|~hj+1|
−

~hj

|~hj |

]
· (~hj+1 + ~hj) . (19)

It immediately follows from (19) that (|~hj+1| − ~hj |) (|~hj+1| |~hj | − ~hj+1 · ~hj) = 0, which means that the
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desired result (16) follows directly from the Cauchy–Schwarz inequality.

Clearly, (14) is the natural discrete analogue to the continuous area preservation property (4), while
(15) is the discrete analogue of (5). Finally, (16) proves that the vertices of Γh(t) equidistribute except
for regions where the elements of Γh(t) are locally parallel. The proof of Theorem 3.2 shows that this
property, which is also called weak equidistribution property, immediately follows from (13c), which is
the novel approximation of (2) first introduced in [4]. While it does not seem possible to prove the
weak equidistribution property for the fully discrete scheme (10), in practice we observe that the vertices
on Γm asymptotically equidistribute. In particular, the vertices always remain well distributed and no
remeshings need to be performed.

In addition, we observe that the fully discrete scheme (10) approximately preserves the area of Ωm− .
In fact, when the maximal time step size τ converges to zero, we observe that the relative area loss for
simulations with (10) tends to zero. In all of the numerical simulations presented in this paper, the
observed relative area loss was always less than 0.01%.

4. Solution method

Due to the special structure of the system (10), the equations for φm+1 and ( ~Xm+1 , κm+1) decouple.
In practice, we can find the unique solution to (10) as follows. First we find φm+1 ∈ Smg such that

Θm φ
m+1 = 0 , (20)

where Θm ∈ RK×K is the standard stiffness matrix for the Laplacian on Ωm,h+ , i.e.

[Θm]kl :=

∫
Ωm,h+

∇ψmk · ∇ψml dx ,

where {ψmk }Kk=1 are the basis functions of the unconstrained finite element space Sm. In the above we have
ignored the effect of the Dirichlet boundary conditions. Hence, in practice, Θm and the corresponding
right-hand side in (20) need to be adjusted appropriately in order to include the Dirichlet boundary
conditions. For the solution of (20) we use the sparse factorisation package UMFPACK (see [17]) in
practice.

Having obtained φm+1 from (20), we proceed with solving the equations (10b), (10c), which give rise

to the following linear system of equations, where we define δ ~Xm+1 = ~Xm+1 − ~Xm. Find δ ~Xm+1 ∈ V h
and κm+1 ∈Wh such that(

α1Am − 1
τm

~NT
m

~Nm ~Am

)(
κm+1

δ ~Xm+1

)
=

(
α2Am φ̂

m+1

− ~Am ~Xm

)
, (21)

where φ̂m+1 ∈Wh denotes the trace on Γm of φm+1 ∈ Smg , i.e.

φ̂m+1(qj) = φm+1( ~Xm(qj)) j = 1, . . . , N .

In the above, we have introduced the matrices ~Nm ∈ (R2)N×N , Am ∈ RN×N and ~Am ∈ (R2×2)N×N ,
with entries [

~Nm

]
kl

:= 〈φk, φl ~νm〉hΓm , [Am]kl := 〈(φk)s, (φl)s〉Γm ,

where we recall that {φk}Nk=1 are the basis functions of our finite element space of piecewise linear

continuous functions Wh. In addition, [ ~Am]kl := [Am]kl ~Id, where ~Id ∈ R2×2 is the identity matrix.
In order to solve (21) a Schur complement approach as introduced in [4] can be used. However, in our

experience a Krylov subspace iterative solver, coupled with an efficient preconditioner, directly applied
to (21) performs better in practice. Hence we solve (21) with a BiCGSTAB solver, see e.g. [9]. Since the
matrix of the system is not very well conditioned, a good preconditioner is required. We make use of the
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following operator as preconditioner, which has also been considered in [15]:

Pc =

(
α1Am − 1

τm
~NT
m

~Nm diag ( ~Am)

)−1

. (22)

Here diag ( ~Am) denotes the diagonal part of the matrix ~Am. In order to apply the preconditioner Pc, we
need to solve systems of the form(

α1Am − 1
τm

~NT
m

~Nm diag ( ~Am)

)(
κ

δ ~X

)
=

(
c

~g

)
. (23)

Now (23) can be solved with a Schur complement approach, leading to

(α1Am + 1
τm

~NT
m [ diag ( ~Am) ]−1 ~Nm)κ = c+ 1

τm
~NT
m [ diag ( ~Am) ]−1 ~g (24a)

and
δ ~X = [ diag ( ~Am) ]−1 (~g − ~Nm κ) . (24b)

We note that (24a) is a symmetric, positive definite system, where we observe that the second matrix on
the left hand side of (24a) is a positive diagonal matrix. In practice we first solve (24a) with the direct
solver UMFPACK, and then substitute in (24b). Here we note that the system matrix of (24a) only
needs to be factorised once before the BiCGSTAB iteration starts, which means that the application of
the preconditioner (22) during the iteration is cheap. We also stress that the dimension of the matrix
in (24a) is much smaller than the matrix for the block (21). In particular, in our experience solving the
block (21) with a sparse factorisation package such as UMFPACK is less efficient than the preconditioned
BiCGSTAB iteration proposed above.

4.1. Mesh adaptation

Our unfitted finite element approximation (10) is based on triangulations T m of the whole domain Ω,
which vary in time. Here the aim is to use an adaptive mesh for Ω, where we resolve the regions close
to Γm much finer than far away from the interface. The exact refinement procedure is detailed in this
subsection. The selection of the elements that belong to T m+ , recall (9), will be described in §4.2.

Given a polygonal approximation Γm, m ≥ 0, of the interface, we employ the following mesh adapta-
tion strategy for the bulk mesh triangulation T m. The same strategy has been used in [7] for an unfitted
finite element approximation of anisotropic solidification problems. It results in a fine mesh around Γm

and a coarse mesh further away from it. In particular, given two integer parameters Nf > Nc, we set:

hf =
2L2

Nf
and hc =

2L2

Nc
(25a)

af =
h2
f

2
and ac =

h2
c

2
, (25b)

that is, af denotes the area of a right-angled and isosceles triangle with side length hf , and similarly for
ac.

Now starting with the triangulation T m−1 from the previous time step, where here for convenience
we define T −1 to be a uniform partitioning of mesh size hc, we obtain T m as follows. First any element
om−1 ∈ T m−1 satisfying |om−1| ≥ 2 af and om−1 ∩ Γm 6= ∅ is marked for refinement. In addition, any
element satisfying |om−1| ≥ 2 af , for which a direct neighbour intersects Γm is also marked for refinement.
Similarly, an element that is not marked for refinement is marked for coarsening if it satisfies |om−1| ≤ 1

2 ac
and om−1 ∩ Γm = ∅. Now all the elements marked for refinement are halved into two smaller elements
with the help of a simple bisectioning procedure, see [11, 10]. In order to avoid hanging nodes, this will
in general lead to refinements of elements that were not originally marked for refinement. Similarly, an
element that is marked for coarsening is coarsened only if all of its neighbouring elements are marked for
coarsening as well. For more details on the refining and coarsening itself, we refer to [11, 10, 27].
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This marking and refinement process is repeated until no more elements are required to be refined or
coarsened. In practice, it can be observed that only at the first time step, m = 0, more than one of the
described refinement cycles are needed.

In theory it is possible to use local mesh refinement also for the discrete interface Γm, which is totally
independent from T m. However, the weak equidistribution property (16) means that in practice no
refinement of Γm is necessary. In fact, the vertices of Γm are in general very well distributed, so that
mesh smoothing (redistribution) for the interface mesh is also not necessary in practice.

Figure 3: Portion of the computational domain showing the bulk mesh close to the discrete interface.

4.2. Definition of the bulk region

As already introduced in Section 3, a crucial aspect of our approach is the identification of a suitable
region Ωm,h+ where the approximation φm+1 to the electric potential is to be computed. Our method
is based on an adapted triangulation T m of the whole domain Ω. In order to define the submesh T m+ ,

which defines the computational domain Ωm,h+ , we need to perform two steps. First we need to find
all the elements that are cut by the discrete interface Γm, and then we need to find all the elements
of T m+ , recall (9). For the first step we need to be able to detect intersections between a segment

[ ~Xm(qj), ~X
m(qj−1)] =: [Q1, Q2] of Γm, say, and a triangle 4(P0, P1, P2) of T m. Such intersections can

be detected with the help of the following algorithm.
Once all the “cut” elements have been correctly identified with the help of Algorithm 1, we use the

following algorithm to find the elements of T m+ . Here we adapt the strategy from [3], where an unfitted
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Algorithm 1: Computing the intersection between the segment [Q1, Q2] and the triangle
4(P0, P1, P2).

• if Q1 ∈ 4 or Q2 ∈ 4, then the segment intersects the triangle;

• else if [Q1, Q2] ∩ [P0, P1] 6= ∅, then the segment intersects the triangle;

• else if [Q1, Q2] ∩ [P1, P2] 6= ∅, then the segment intersects the triangle;

• else if [Q1, Q2] ∩ [P0, P2] 6= ∅, then the segment intersects the triangle;

• otherwise there is no intersection between the segment and the triangle.

finite element approximation for dendritic crystal growth with thermal convection was studied.

Algorithm 2: Finding the subset T m+ of T m.

• Mark all the elements of T m as “clear”.

• Assuming that Γm does not intersect the boundary ∂Ω of the domain, proceed as follows:

1. mark all the elements cut by the interface as “cut”;

2. mark all boundary elements as “outside”;

3. mark all clear neighbours of “outside” elements as “outside” until no more such
neighbours can be found.

4. mark all “cut” elements as “outside”.

The above algorithm produces a partition of the original bulk triangulation T m, where the “outside”
triangles are the elements in T m+ . We note that T m+ contains all the elements that are intersected by Γm.
This is motivated by the fact that we need to evaluate φm+1

s on Γm in (10b), and this is only guaranteed
to be well-defined if φm+1 is defined on all such intersected elements.

4.3. Topological changes

For ease of presentation, in Section 3 we have restricted ourselves to the case of Γm being a single
closed curve, which can be parameterised over I, the “periodic” interval [0, 1]. It is straightforward to
extend our approximation (10) to the case where Γm is given by a family of closed curves. Then each
connected component of Γm is discretised individually, and its evolution is described by the analogues of
(10b) and (10c).

In particular, the ability of our method to deal with a family of curves also allows us to perform
topological changes, such as the merging of two curves into one, or the pinching-off of one curve from
another. In practice we monitor the need for topological changes, and then implement the changes, with
the help of the 2D variant of the package El-Topo, see [14]. Our usage of this library can be summarised
as follows.

Let Qm be the mesh configuration at time t = tm, consisting of (i) the current positions of the vertices
of Γm and (ii) the connectivity of the grid in terms of pairs of vertex indices. As input parameters El-
Topo expects the current mesh configuration Qm as well as a velocity function, which in our case is given
by 1

τm
δ ~Xm+1, and the time step size τm. This allows El-Topo to define a predicted mesh configuration

Q̂m+1, where each vertex is transported with its own velocity, and where no topological changes are
performed. If Q̂m+1 features self-intersections, then topological changes are performed to produce a final
mesh configuration Qm+1 which is as close as possible to Q̂m+1, but which is guaranteed to be intersection
free. For more details on how El-Topo proceeds to determine the necessary topological changes, we refer
to the description of the 3D counterpart in [14].
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5. Numerical experiments

We implemented our finite element approximation (10) within the framework of the C++-based soft-
ware DUNE, see [11, 10]. Throughout this section we use uniform time steps τm = τ , m = 0, . . . ,M−1. As
we will often compare our numerical results to the phase field computations in [8], we also fix α1 = 1

16 π
2

throughout this section.
Our first experiment refers to (6a), where the true solution of a circular void, moving at constant

speed through an infinite conductor, is known. We chose the following parameters: L1 = 1.5, L2 =
0.5, α2 = 3π2. The initial geometry is a circle with radius R = 0.25 and centre z = (−0.5, 0), while

T = 2 × 10−3. Following [6], we define the error E = ‖ ~X − ~x‖L∞ := maxm=1→M ‖ ~Xm − ~x (·, tm)‖L∞ ,

where ‖ ~Xm − ~x (·, tm)‖L∞ := max i=1→N{min ~y∈Γ(t) | ~Xm(~qmi ) − ~x (~y, tm))|} between ~X and the true
solution on the interval [0, T ]. Since the exact solution is known, it is worth calculating an experimental
order of convergence. To this end, we employ (25a) with

N = Nf = 16Nc = Ni := 27+i , i = 0→ 2 .

The experimental order of convergence EOC is computed as log (Ei−1

Ei )/ log ( Ni
Ni−1

). The corresponding

errors are listed in Table 1, where it appears that we observe a convergence of at least O(h) in the
measured error.

i τ N Nf hf Nc hc ‖ ~X − ~x‖L∞ × 103 EOC

0 8× 10−6 128 128 7.81× 10−3 8 1.25× 10−1 16.459 –

1 2× 10−6 256 256 3.91× 10−3 16 6.25× 10−2 7.556 1.1232

2 5× 10−7 512 512 1.95× 10−3 32 3.13× 10−2 3.474 1.1212

Table 1: Results of the convergence test.

The next experiment corresponds to [8, Fig. 2], see also [13, Fig. 4]. We chose the radius of the
initially circular void to be relatively large compared to the width of the conductor, 2L2. We used the
following parameters: L1 = 1, L2 = 0.5, α2 = 512

9 π2, τ = 4.5× 10−7, N = 1024. As initial data we chose
a circle with radius 0.375 and centre (−0.5, 0); the refinement parameters were Nf = 512 and Nc = 4,
respectively. In Figure 4 we plot the results of the simulation at times t = 0, 8×10−5, and T = 3.6×10−4.
We note the good agreement with both [13, Fig. 4] and [8, Fig. 2]. In the phase-field approximation
discussed in the latter, the evolution appears to be slightly faster, which is likely to be due to the choice
of Robin boundary conditions there, instead of the simpler Dirichlet boundary conditions prescribed in
(3b).

The next experiment corresponds to [8, Fig. 6], see also [23, Fig. 9]. We used the following parameters:
L1 = 0.5, L2 = 0.5, α2 = 3π2, τ = 2× 10−7, N = 2232. As initial data we chose two ellipses, the left one
with horizontal semiaxis 0.14, vertical semiaxis 0.2 and centre (−0.15, 0), the right one with horizontal
semiaxis 0.12, vertical semiaxis 0.24 and centre (0.15, 0). The refinement parameters were Nf = 512
and Nc = 4, respectively. In Figure 5 we plot the results of the simulation at times t = 0, 3.04 × 10−5,
3.8 × 10−5, 4.56 × 10−5 and T = 1.5 × 10−4. We observe that as the two elliptical voids try to attain
a more circular shape they touch and merge into a single void. This represents a change of topology,
which here is performed with the help of the library El-Topo, as discussed in §4.3. Here we note that
the time at which the two ellipses merge is sensitive to the choice of the tolerance parameters employed
in El-Topo. Due to the fast evolution immediately after the merging, we used much smaller time steps
(' 10−11) for some time afterwards (roughly, an interval of 10−6), as otherwise we observed a relatively
large area loss. We note the good agreement with the results presented in [8, Fig. 6].

Our final experiment corresponds to [8, Fig. 7]. We used the following parameters: L1 = 1.5, L2 =
0.5, α2 = 30π2, τ = 3.32 × 10−7, N = 1024. As initial data we chose an ellipse with horizontal semiaxis
0.4, vertical semiaxis 0.2 and centre (−0.8, 0). The refinement parameters were Nf = 512 and Nc = 4,
respectively. In Figure 6 we plot the results of the simulation at times t = 0, 8.75×10−5, 1.75×10−4, 2.625×
10−4 and T = 3.32× 10−4. Here a different topological change can be observed during the evolution. As
the void elongates in the direction of the applied electric field, the front of the moving void pinches off and
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Figure 4: (α2 = 512
9
π2) Plots of the interface curve at times t = 0, 8 × 10−5, T = 3.6 × 10−4, and adaptive bulk mesh at

time t = T .

Figure 5: (α2 = 3π2) Plots of the interface curve at times t = 0, 3.04 × 10−5, 3.8 × 10−5, 4.56 × 10−5, T = 1.5 × 10−4, and
adaptive bulk mesh at time t = T .
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Figure 6: (α2 = 30π2) Plots of the interface curve at times t = 0, 8.75 × 10−5, 1.75 × 10−4, 2.625 × 10−4, T = 3.32 × 10−4,
and adaptive bulk mesh at time t = T .

then separates. Like in Figure 5, we used much smaller time steps after the pinch-off, to avoid a relatively
large area loss. After the split the smaller void travels faster than the main part of the void. Here, once
again, we note the good agreement with the numerical results for the phase-field approximation discussed
in [8, Fig. 7].
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M. Ohlberger, and O. Sander, A generic grid interface for parallel and adaptive scientific
computing. part ii: Implementation and tests in dune, Computing, 82 (2008), pp. 121–138.

[11] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and
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