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Abstract

We develop a continuum model, valid at high frequencies, for wave propagation through elastic media
that contain periodic, or nearly periodic, arrangements of traction free, or clamped, inclusions. The ho-
mogenisation methodology we create allows for wavelengths and periodic spacing to potentially be of similar
scale and therefore is not limited to purely long-waves and low frequency.

We treat in-plane elasticity, with coupled shear and compressional waves and therefore a full vector
problem, demonstrating that a two-scale asymptotic approach using a macroscale and microscale results in
effective scalar continuum equations posed entirely upon the macroscale; the vector nature of the problem
being incorporated on the microscale. This rather surprising result is comprehensively verified by comparing
the resultant asymptotics to full numerical simulations for the Bloch problem of perfectly periodic media.
The dispersion diagrams for this Bloch problem are found both numerically and asymptotically. Periodic
media exhibit dynamic anisotropy, e.g. strongly directional fields at specific frequencies, and both finite
element computations and the asymptotic theory predict this. Periodic media in elasticity can be related
to the emergent fields of metamaterials and photonic crystals in electromagnetics and relevant analogies are
drawn. As an illustration we consider the highly anisotropic cases and show how their existence can be
predicted naturally from the homogenisation theory.

1. Introduction

Wave propagation through elastic periodic, or nearly periodic, media, and their simpler acoustic counter-
parts (Craster and Guenneau, 2012), are ripe for exploitation using recently developed ideas from photonics
and metamaterials in optics. Naturally there have been studies of waves in structured elastic media, with
composite fibre media providing motivation. For perfectly periodic media these can be treated using mul-
tipole techniques, plane wave expansions or using brute force numerics; the resultant dispersion diagrams
(Zalipaev et al., 2002; Guenneau et al., 2003) then show stop-bands and other features highly reminiscent
of those from optics. Metamaterials, and structured media such as photonic crystal fibres (Russell, 2003;
Zolla et al., 2005), are topical and important subjects in optics, and electromagnetic (EM) waves. The
metamaterial field has expanded rapidly since Pendry showed that Veselago’s convergent flat lens (Veselago,
1968), overcomes Rayleigh’s diffraction limit (Pendry, 2000). This requires simultaneously negative per-
mittivity and permeability, which is an essential condition for a negative refractive index, as demonstrated
experimentally by Smith et al. (2000). Photonic crystals have a longer history in optics and EM (John,
1987; Yablonovitch, 1987) and also exhibit useful technological phenomena with their use now widespread
(Joannopoulos et al., 2008). The area is almost exclusively preoccupied with electromagnetic (EM) waves,
governed by the Maxwell system of equations: it is also clear that similar effects can occur for elasticity
(Milton and Nicorovici, 2006; Bigoni et al., 2013), but the elastic case is far less developed than for optics,
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and EM, particularly for the vector case of coupled longitudinal-shear in-plane elastic waves. A key ingredi-
ent toward developing fundamental understanding of how a microstructured medium behaves is to upscale
to an effective medium description.

The classical route to replace a microstructured medium with an effective continuum representation
is homogenisation theory, and is detailed in many monographs, Sanchez-Palencia (1980); Bakhvalov and
Panasenko (1989); Bensoussan et al. (1978); Panasenko (2005), and essentially relies upon the wavelength
being much larger than the microstructure which is usually assumed to be perfectly periodic: this limits the
procedure to low frequencies/ long waves and a quasi-static situation, c.f. Parnell and Abrahams (2008);
Walpole (1992) for a general setting and Zalipaev et al. (2002) for the specific application to circular holes.
Unfortunately for many real applications, particularly in photonics, the limitation to low frequencies is a
critical deficiency, nonetheless the attraction of having an effective equation for a microstructured medium
where one need no longer model the detail of each individual scatterer and attention can then be given to
the overall physics of the structure is highly attractive (Guenneau et al., 2012).

To overcome this limitation a high frequency homogenisation (HFH) technique has been developed,
Craster et al. (2010a), to address the scenario when the wavelength and characteristic microstructural
lengthscale are of similar order and multiple scattering can be important: a multiple scales approach is
utilised, a short microscale and a long macroscale, as in quasi-static homogenisation. This is augmented by
utilising some knowledge from physics where it is well-known that a perfectly periodic infinite medium has
an exact formulation in terms of Bloch waves, moreover there are standing waves within the periodic setting
that occur at discrete standing wave frequencies. The standing wave frequency and eigensolution precisely
encode the multiple scattering that occurs and this additional knowledge is then built into the asymptotic
procedure. The result is an effective medium theory for periodic, or nearly periodic, media that has no
upper frequency limit and thus far it has successfully modelled a variety of multi-scale problems in optics
(Craster et al., 2011), discrete lattice media (Craster et al., 2010b), structural mechanics (Nolde et al., 2011),
elastic plates (Antonakakis and Craster, 2012) and surface Rayleigh-Bloch (acoustic or EM) waves along
multi-scale surfaces (Antonakakis et al., 2013a). The theory emerged from earlier work on high frequency
long-wave asymptotics for distorted waveguides (Gridin et al., 2005; Kaplunov et al., 2005), as summarised
in Craster et al. (2013), and produces a continuum description posed entirely upon the long-scale, the
solution of which modulates a short-scale, possibly highly oscillatory, field; the long-scale equation captures
the dynamic anisotropy and features associated with metamaterials and photonic crystal fibres. Thus far
the HFH theory is limited to scalar wave systems such as those modelled by the Helmholtz equation, i.e.
acoustics, water waves, TE or TM polarised electromagnetic waves and shear horizontal polarised elastic
waves, or the extension to a fourth-order elastic plate system. Moving the entire theory to a full vector wave
system has several technical and conceptual challenges and the aim of this article is to overcome them.

It is notable that the HFH theory of Craster et al. (2010a) is not alone: there is considerable motivation
to create effective continuum models of microstructured media, in various related fields, that break free
from the conventional low frequency homogenisation limitations. This desire has created a suite of extended
homogenisation theories originating in applied analysis, for periodic media, called Bloch homogenisation
(Conca et al., 1995; Allaire and Piatnitski, 2005; Birman and Suslina, 2006; Hoefer and Weinstein, 2011).
There is also a flourishing literature on developing homogenised elastic media, with frequency dependent
effective parameters, also based upon periodic media (Willis, 2009; Nemat-Nasser et al., 2011; Norris et al.,
2012). Those approaches notwithstanding, our aim here is to extend the HFH theory previously only
available for scalar Helmholtz or elastic plate cases to the full vector elastic system.

A typical situation might be a finite slab of composite medium, created from equidistant holes or fibres,
through which elastic waves then propagate: a schematic is shown in Fig. 1(a) for circular holes, although
the methodology is in no way limited to cylindrical defects. If the medium is of large extent, with some
lengthscale L, and the holes and their spacing are of lengthscale l, with l� L, the scale mismatch suggests
an asymptotic approach. On the small-scale, attention can be focused on a single elementary cell, shown
dashed in Fig. 1(a), and its dynamics are then coupled into the global picture. If a medium is actually
infinite and perfectly periodic then the elementary cell truly captures all of the multiple scattering within
a framework known as Bloch theory. Here one can assume that there is a phase shift, characterised by
a wavenumber vector κ, and from solid-state physics it is known (Brillouin, 1953; Kittel, 1996) that one
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Figure 1: A typical geometry (a) an infinite square array of cylindrical holes with the elementary cell of side 2 shown as the
dashed line inner square. In (b) the associated irreducible Brillouin zone is shown, where κ1 and κ2 are components of the
Bloch vector κ which describes the phase shift undergone by an elastic wave moving across the elementary cell.

need only focus attention upon an irreducible Brillouin zone in wavenumber space (shown in Fig. 1(b)) and
this representation is useful both within the asymptotic scheme and as a verification of it. In particular,
standing waves occur at the edges of the irreducible Brillouin zone (the points Γ, X,M in Fig. 1(b)) and
the asymptotic technique uses the behaviour in the neighbourhood of these points to create a long-scale
effective medium valid close to the corresponding standing wave frequencies.

In this article we begin, section 2, by formulating the two-scale approach and deriving the effective
long-scale partial differential equation (PDE) for a function f0(X): the PDE contains integrated quantities
from the short-scale, but is only posed on the long-scale. For low-frequencies we can generate a long-wave
version of the theory and this is briefly described in section 2.4. It is naturally important to verify the
asymptotic technique versus full numerical simulations and we proceed to do so in section 3. Initially,
asymptotic dispersion curves for the Bloch theory are compared to full numerical simulations, section 3.1,
before moving on to look at strongly anisotropic directional waves (section 3.2). We draw together some
concluding remarks in section 4.

2. Formulation

We consider an elastic medium punctured by, say, a square array of cylindrical holes although the precise
geometry is irrelevant. The inner surface of the holes will be taken here to be either traction free (σ ·n = 0)
or clamped (u = 0) where σ is the elastic stress tensor, u the displacement and n the outward pointing unit
normal from the hole.

The elastic medium is taken to be linear and isotropic with the stress related to the elastic displacements
via the constitutive relation

σij = µ(ui,xj + uj,xi) + λδijuk,xk . (1)

The usual Einstein summation convention is adopted and x = (x1, x2) are a Cartesian coordinate system
with µ, λ the Lamé parameters and , xj denoting differentiation with respect to variable xj . The equation
of state, with exp(−iΩt) time dependence assumed and suppressed hereafter, is

σij,xj + ρΩ2ui = 0, (2)
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and ρ is the density.
To generate the effective description of the medium we follow the methodology given in Craster et al.

(2010a) that derives a high-frequency homogenisation theory for general structures in the simpler situation
of acoustics or equivalently SH polarised elastic waves. The theory envisages a large array, comprising many
microcells each with lengthscale 2l, with l taken for convenience here to be unity, over a macroscale L� l;
this motivates the introduction of a small positive parameter ε = l/L� 1 and two spatial variables ξ = x,
on the microscale, and X = εx, on the macroscale, that are treated independently; this is a multiple scales
approach (Bender and Orszag, 1978). This natural separation of scales is augmented by an ansatz for the
stresses

σij(ξ,X) = σ0ij(ξ,X) + εσ1ij(ξ,X) + ε2σ2ij(ξ,X) + . . . (3)

displacements
ui(ξ,X) = u0i(ξ,X) + εu1i(ξ,X) + ε2u2j(ξ,X) + . . . (4)

and for the frequency squared
Ω2 = Ω2

0 + εΩ2
1 + ε2Ω2

2 + . . . (5)

A key point is that we deliberately make no assumption of the frequency being small: the quasi-static long-
wave theory conventionally used in homogenisation theory follows by setting Ω2 = ε2Ω2

2, see section 2.4,
with the consequent simplification that the leading order elastic response, on the microscale, is constant.

Adopting the two-scales approach, and the ansatz above, we obtain a hierarchy of equations, from (2),
as

O(1) : σ0ij ,ξj + ρΩ2
0u0i = 0

O(ε) : σ1ij ,ξj + ρΩ2
0u1i = −ρΩ2

1u0i − σ0ij ,Xj
O(ε2) : σ2ij ,ξj + ρΩ2

0u2i = −ρΩ2
2u0i − ρΩ2

1u1i − σ1ij ,Xj
(6)

that must be solved order-by-order alongside appropriate boundary conditions. The constitutive relation,
(1), rewritten in two-scales as

σij = µ(ui,ξj + uj,ξi) + λδijuk,ξk + ε(µ(ui,Xj + uj,Xi) + λδijuk,Xk) (7)

also requires expansion. This leads to

O(1) : σ0ij = µ(u0i,ξj + u0j ,ξi) + λδiju0k,ξk
O(ε) : σ1ij = µ(u1i,ξj + u1j ,ξi) + λδiju1k,ξk + µ(u0i,Xj + u0j ,Xi) + λδiju0k,Xk
O(ε2) : σ2ij = µ(u2i,ξj + u2j ,ξi) + λδiju2k,ξk + µ(u1i,Xj + u1j ,Xi) + λδiju1k,Xk .

(8)

Before settling down to solve this system of equations the boundary conditions must be clearly identified.
We consider an elementary cell on the microscale ξ, on the hole surface we set either u = 0 or σ · n = 0
depending upon whether the holes are clamped inclusions or traction-free holes and we treat both cases
simultaneously. More importantly, we need to set boundary conditions on the edges of the cell and at
this point we recall that physically there exist standing waves corresponding to waves perfectly in-phase or
out-of-phase across the cell. This is shown in the Brillouin zone of Fig. 1(b) and there are three cases to
consider: in-phase both horizontally and vertically (Γ), out-of-phase in both directions (M) and in-phase/
out-of-phase in opposite directions (X). These boundary conditions apply on the microscale and so for,
say, the in-phase case, we have the stresses periodic in ξ1 and ξ2 over each cell, but we do not specify the
boundary conditions on the macroscale X.

Returning to the ordered equations (6) the O(1) equation is independent of the long scale and this
suggests that the leading order solution is

u0i = f0(X)U0i(ξ; Ω0). (9)

The short-scale displacement field U0i(ξ; Ω0) is entirely on the short-scale and its behaviour is modulated
by a long-scale, unknown, function f0(X). The short-scale displacement field is different for each standing
wave frequency Ω0 and we emphasise this by including it in the argument of the U0i . It is worth dwelling
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on (9) and noting that one could envisage having two different scalar functions f01 , f02 multiplying each
displacement field or, if one used a potential formulation, the shear and compressional potentials. However,
ultimately for self-consistency one is drawn to conclude that f01 = f02 and unexpectedly a single scalar
function f0 emerges on the long-scale. The entire aim of this article is to determine the partial differential
equation that f0 obeys and thus to determine the effective long-scale continuum equation describing the
punctured elastic medium. Before doing so, we remark that the vector nature of the equations is captured
by the vector field U0 on the short-scale, but the long-scale is described by a scalar function f0.

Associated with the short-scale displacement, U0i , is a stress field, S0ij (ξ; Ω0), defined as

S0ij = µ(U0i,ξj + U0j ,ξi) + λδijU0k,ξk . (10)

The leading order equation, for the short scale, is then

S0ij ,ξj + ρΩ2
0U0i = 0 (11)

and this can be solved, subject to the boundary conditions, to identify the displacements U0i and stresses
S0ij ; in the examples treated later these solutions are found numerically.

Moving to first order, the O(ε) equation in (6) has a homogeneous solution which is a multiple of U0

and this turns out to be irrelevant as it ultimately integrates to zero in later calculations and is henceforth
ignored: more importantly there is a particular solution

u1i(ξ,X) = f0,Xj (X)U1ij (ξ; Ω0). (12)

This particular solution involves a tensor function U1ij defined on the short-scale and it is determined
as follows. First, we invoke solvability conditions which are a vector version of the Fredholm alternative
commonly used in Sturm-Liouville theory. We form a function as the dot product of the O(ε) vector equation
(8) with U0 minus the dot product of the vector equation (11) with u1 and then the integral of this over an
elementary cell S, i.e. in the short-scale, must be zero which leads to∫

S

(u1iS0ij ,ξj − U0iσ1ij ,ξj )dS =

∫
S

(ρΩ2
1u0iU0i + U0iσ0ij ,Xj )dS. (13)

Performing these integrals, by using Green’s theorem and the boundary conditions, everything eventually
cancels except the Ω2

1 term. This then implies that Ω2
1 = 0 and it is set to zero, a caveat is that we have

implicitly assumed that each standing wave eigenfunction is isolated - repeated roots can, and do, occur and
are treated later in sections 2.2, 2.3.

To determine the second order tensor U1ij we require four coupled equations and these emerge from the
first order equation in (6): after replacing u1i with (12), the first order constitutive equation, (8), is split in
two such that,

σ1ij = σ
(1)
1ij

+ σ
(2)
1ij
, (14)

where,

σ
(1)
1ij

= µ(u1i,ξj + u1j ,ξi) + λδiju1k,ξk , σ
(2)
1ij

= µ(u0i,Xj + u0j ,Xi) + λδiju0k,Xk (15)

so the first term is to be determined whereas the second term contains leading order quantities that are
known. The first order equation from (6) is rewritten as,

σ
(1)
1ij ,ξj

+ ρΩ2
0u1i = −σ0ij ,Xj − σ

(2)
1ij ,ξj

. (16)

The four required equations come by writing the stresses back in terms of displacements and we then get
four coupled equations for U1ij :

µ(U111,ξjξj
+ U1j1,ξ1ξj

) + λU1k1,ξkξ1
+ ρΩ2

0U111 = −(4µ+ 2λ)U01,ξ1
− (µ+ λ)U02,ξ2

(17)

µ(U121,ξjξj
+ U1j1,ξ2ξj

) + λU1k1,ξkξ2
+ ρΩ2

0U121 = −(µ+ λ)U01,ξ2
− 2µU02,ξ1

(18)
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µ(U112,ξjξj
+ U1j2,ξ1ξj

) + λU1k2,ξkξ1
+ ρΩ2

0U112 = −(µ+ λ)U02,ξ1
− 2µU01,ξ2

(19)

µ(U122,ξjξj
+ U1j2,ξ2ξj

) + λU1k2,ξkξ2
+ ρΩ2

0U122 = −(4µ+ 2λ)U02,ξ2
− (µ+ λ)U01,ξ1

. (20)

Note here we have implicitly assumed that the Lamé parameters are constant over the cell since we treat a
single phase periodic problem, but similar equations can be derived for spatially varying µ and λ (heteroge-
neous λ and µ is a case of practical importance in models of elastic metamaterials, which consist e.g. of soft
inclusions in a rigid matrix, or the other way around, in order to achieve some locally resonant behaviours).
Equations (17) to (20) are then solved subject to the boundary conditions on an elementary cell.

We now move to second order, the O(ε2) equation of (6), and adopt a similar approach to that at first
order. In particular we form a function that must be zero from solvability and deduce that the following
integral over the elementary cell must be satisfied∫

S

(u2iS0ij ,ξj − U0iσ2ij ,ξj )dS =

∫
S

(ρΩ2
2u0iU0i + U0iσ1ij ,Xj )dS. (21)

Performing the various integrals over the elementary cell then gives a partial differential equation for the
scalar function f0(X) entirely on the long scale as

f0,XkXj

∫
S

µ(U0i(U1ik,ξj + U1jk,ξi)− U1ik(U0i,ξj + U0j ,ξi) + λ(U1ik,ξiU0j + U0kU0j − U1kjU0i,ξi))dS

+f0,XjXj

∫
S

µU0iU0idS + f0,XiXj

∫
S

µU0iU0jdS + f0Ω2
2

∫
S

ρU0iU0idS = 0. (22)

The important point about this equation is that the short-scale is completely absent, it has been integrated
out and is encapsulated within coefficients of a rank-2 tensor Tij as (22) can be written as

Tij
∂2f0

∂Xi∂Xj
+ Ω2

2f0 = 0. (23)

We will verify this using non-trivial examples later where we use equation (23) to find asymptotic dispersion
curves for perfectly periodic Floquet-Bloch problems and compare with full numerical solutions. We stress
that we have reduced the complexity of the elasticity problem described by (1) and (2) to solving the scalar
PDE (23). If we were to perform our analysis in a three-dimensional elastic periodic setting (e.g. a cubic
array of rigid or traction-free spheres), the derivation of (23) would apply mutatis mutandis with i, j ranging
from 1 to 3 and the Bloch vector now describing the edges of a tetrahedron.

2.1. Bloch analysis

A key canonical problem that can be solved without recourse to an effective medium approach, and
ideal for comparison with the asymptotic theory, is that of elastic waves propagating within an infinite
perfectly periodic medium. These waves can be considered on an elementary cell and acquire a phase-shift
in, vector, Bloch wavenumber as they pass from one cell to the next, c.f. Fig. 1. One then solves the elastic
problem on an elementary cell with Bloch quasi-periodic boundary conditions on the edge of the cell that
u(1, y) = exp(2iκ1)u(−1, y) and u(x, 1) = exp(2iκ2)u(x,−1) and similarly for the stresses. These boundary
conditions then allow one to work only with a single elementary cell and dispersion relations are found
relating frequency Ω to Bloch wavenumber κ = (κ1, κ2). For simple geometries, such a cylindrical holes,
these have been found using numerical methods or semi-analytical techniques such as multipoles (Zalipaev
et al., 2002; Guenneau et al., 2003). From the symmetry of, say, cylindrical holes placed on a square lattice
array one can identify the irreducible Brillouin zone (in wavenumber space) c.f. Fig. 1(b) that needs to
be considered, ΓMX in our case. Traditionally in solid-state physics dispersion curves are plotted around
the exterior paths ΓM , XM and ΓM and these identify key features such as stop-bands, curvature changes
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(with consequent group velocity implications) and so on; it is worth mentioning that doing so runs the risk
of missing interesting physics (Craster et al., 2012).

Typical Bloch dispersion diagrams are shown in Figs. 3, 5. The asymptotic technique we develop is
based about a knowledge of the standing wave solutions that are exactly at the edges of the Brillouin zone:
Γ, M and X. In its simplest incarnation the HFH approach generates asymptotic dispersion curves at the
edges of the Brillouin zone and these then provide a perfect vehicle upon which to test the theory. Recasting
(23) into a perfectly periodic system with Bloch conditions on the elementary cell lead immediately to
f0(X) = exp(iκjXj/ε) around, say, the wavenumber at point Γ, which leads to the asymptotic representation

Ω ∼ Ω0 +
Tij
2Ω0

κiκj (24)

and the coefficients Tij capture the essential physics; essentially identical formulae hold at M and X. The
asymptotic technique is more versatile than just generating dispersion curves and it can provide deeper
insight into wave phenomena as shown in section 3.2.

2.2. Repeated eigenvalues: Linear asymptotics
Repeated eigenvalues are, as we shall see later, commonplace in specific examples and are particularly

relevant to Dirac-like cones (Chan et al., 2012; Antonakakis et al., 2013b) that have practical significance. If
we assume repeated eigenvalues of multiplicity p the general solution for the leading order problem becomes,

u0i = f
(l)
0 (X)U

(l)
0i

(ξ; Ω0) (25)

where we sum over the repeated superscripts (l) throughout. This alteration of (9) has technical conse-
quences, but the route to an effective description is similar. We multiply the first order equation of (6) by

U
(m)
0i

, subtract u1i multiplied by equation (11) then integrate over the microcell to obtain,

f
(l)
0,Xi

Aiml + Ω2
1f

(l)
0

∫
S

ρU
(l)
0i
U

(m)
0i

dS = 0. (26)

This is now a system of coupled partial differential equations for the f
(l)
0 (X) on the macroscale and, provided

Ω1 6= 0, the leading order behaviour of the dispersion curves near the Ω0 is now linear (these then form
Dirac-like cones). These coupled partial differential equations on the long-scale now replace (22) near these
frequencies.

For the perfect lattice and Bloch problem, c.f. section 2.1, we set f
(l)
0 = f̂

(l)
0 exp(iκjXj/ε) and obtain

the following system of equations,(
iκjAjml + Ω2

1εBml
)
f̂
(l)
0 = 0, for m = 1, 2, ..., p (27)

where,

Ajml =

∫
S

µ
(
U

(m)
0i

(U
(l)
0i,ξj

+ U
(l)
0j,ξi

)− U (l)
0i

(U
(m)
0i,ξj

+ U
(m)
0j,ξi

)
)

+λ
(
U

(l)
0i,ξi

U
(m)
0j
− U (m)

0i,ξi
U

(l)
0j

)
dS (28)

and

Bml =

∫
S

ρU
(l)
0i
U

(m)
0i

dS. (29)

The system of equations (27) is written simply as,

CF̂0 = 0, (30)

with Cll = Ω2
1εBll and Cml = iκjAjml for l 6= m. One must then solve for Ω2

1ε = ±√αijκiκj when the
determinant of C vanishes and the asymptotic relation is,

Ω ∼ Ω0 ±
1

2Ω0

√
αijκiκj . (31)

If Ω1 is zero, one must go to the next order, and a slightly different analysis ensues, and we treat this next.
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Figure 2: Bloch dispersion curves and HFH asymptotics for cylinders of radius 0.01 in an elementary cell of side 2: (a) Clamped
and (b) traction free boundary conditions. The solid lines are from numerical simulations and the dashed lines are from the
HFH Eqns. (24, 31) and (36). In some cases, particularly in (b) for the linear asymptotics, the HFH and full numerics are
visually indistinguishable.

2.3. Repeated eigenvalues: Quadratic asymptotics

Assuming that Ω1 is now zero, u1i = f
(l)
0,Xj

U
(l)
1ij

(we again sum over all repeated (l) superscripts) and

advance to second order using (6). Taking the difference between the product of equation (6) with U
(m)
0i

and
u2iS0ij ,ξj , and integrating over the elementary cell, gives a system of coupled partial differential equations,

f
(l)
0,XiXi

Aml + f
(l)
0,XkXj

Dkjml + Ω2
2f

(l)
0 Bml = 0, for m = 1, 2, ..., p, (32)

where,

Aml =

∫
S

µU
(l)
0i
U

(m)
0i

dS, (33)

Dkjml =

∫
S

(
µ
(
U

(m)
0i

(U
(l)
1ik,ξj

+ U
(l)
1jk,ξi

)− U (l)
1ik

(U
(m)
0i,ξj

+ U
(m)
0j,ξi

) + U
(l)
0j
U

(m)
0k

)
+λ
(
U

(l)
1ik,ξi

U
(m)
0j
− U (l)

1jk
U

(m)
0i,ξi

+ U
(l)
0k
U

(m)
0j

))
dS (34)

and

Bml =

∫
S

ρU
(l)
0i
U

(m)
0i

dS. (35)

For the Bloch wave setting, c.f. section 2.1, using f
(l)
0 (X) = f̂

(l)
0 exp(iκjXj/ε) we obtain the following

system, (
−κiκiAml − κkκjDkjml + Ω2

2ε
2Bml

)
f̂
(l)
0 = 0, for m = 1, 2, ..., p (36)

and this determines the asymptotic dispersion curves.

2.4. Long wave zero frequency limit

Under traction free boundary conditions on the holes the medium permits wave propagation at frequencies
of the order of Ω2 ∼ O(ε2); the case of clamped boundary conditions is fundamentally different and the
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T11 T22 Ω0

−0.1826 2.470 2.112
1.6246 −2.4885 3.3317
−196.4900 −0.1476 3.5485
200.6397 −0.6115 3.6216
1.0742 4.9378 4.3847
−28.7271 4.0614 4.5952
27.4797 0.2967 4.6258

Table 1: The first seven standing wave frequencies for a square cell with clamped holes of radius r = 0.4 at wavenumber
κ = (π/2, 0) at X, c.f. Fig. 3(a), together with associated values for T11 and T22. Opposite signs of T11, T22 together
with absolute values of similar orders of magnitude yield characteristic type of propagation. If one coefficient is much less in
magnitude than the other, e.g. |T11| � |T22|, then directive propagation emerges in the horizontal and vertical directions. The
above coefficients are used in Fig. 6
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Figure 3: Bloch dispersion curves and HFH asymptotics for cylinders of radius 0.4 in an elementary cell of side 2: (a) Clamped
and (b) traction free boundary conditions. The solid lines are from numerical simulations and the dashed lines are from the
HFH Eqns. (24, 31) and (36).

material exhibits a zero-frequency stop-band and no long-wave low frequency solution. Note this can have
potential applications in shielding elastic waves of very long wavelengths (e.g. seismic waves).

For the traction-free case, the leading order equation is σij,ξj = 0 and admits two independent solutions

for ui = f
(l)
0 (X)U

(l)
0i

, where U
(l)
0i

are constants. Constant U0 solutions are inserted in the first order equation

to yield Ω1 = 0. Then we solve for u1i = f
(l)
0,Xj

U
(l)
1ij

where the first order equation is the same as the leading

order but the boundary conditions are σ1ijnj = 0. Finally Ω2 is obtained using equation (36) then inserting
Ω0 = εΩ2 to give the linear asymptotics.

3. Results

We begin by verifying the accuracy of the asymptotic technique by creating asymptotic dispersion curves
from (24) and comparing them to full numerical simulations performed using finite elements, before then
moving on to investigate some of the broad features and wave phenomena that can arise in elasticity. For
definiteness we fix the normalised elastic Lamé parameters λ, µ as 2.3, 1 respectively, and similarly for the

9



density ρ = 1, in all of the following computations as typical material values. These normalised parameters
can be used for elastic media with a Poisson ratio close to 0.35, for instance fused silica, which is drilled to
fabricate photonic crystal fibres (in dimensional terms ρ = 2.2×103 kg m3, λ = 31.15×109 Pa, µ = 16.05×109

Pa).

3.1. Bloch dispersion curves

Typical Bloch dispersion curves, with both the HFH asymptotics (dashed lines) and numerical simu-
lations from finite elements (solid lines) shown are plotted in Figs 2, 3 and 5 for cylindrical inclusions of
radii 0.01, 0.4 and 0.8 respectively. These figures show the clamped inclusions in panels (a) and traction free
holes in panels (b); an immediate conclusion is that clamped inclusions have a zero frequency stop-band,
in common with Dirichlet inclusions in the acoustic/ polarised electromagnetic analogues, c.f. Antonakakis
et al. (2013b), whereas traction-free inclusions share features with the analogous Neumann case at low
frequencies, i.e., there is a low-frequency linear response. The zero-frequency stop-band behaviour of the
clamped inclusions completely derails the classical homogenisation approach of effective media that requires
low frequencies and long waves and the microstructured medium supports no waves in this limit: nonetheless
the HFH asymptotics from (24) accurately represent the dispersion curves close to the edges of the Brillouin
zone for both clamped and traction-free cases.

For clamped inclusions (Figs 2(a), 3(a) and 5(a)), one recognises that, apart from the zero-frequency
stop-band, other stop bands and features from the dispersion curves are striking. Stop-bands correspond
to ranges of frequency where waves will not propagate within the medium and so have important physical
consequences. The bottom edge of the zero-frequency stop-band moves to higher frequencies as the radii
increase and the dispersion curves gradually flatten, this is particularly noticeable for radius 0.8 (Fig. 5(b)).
Some of the associated eigenmodes, at Γ, are shown in Fig. 4 with panel (c) showing the eigenmode for the
flat band where the two components of U0 are effectively rotations of each other.

Figure 4: For large cylinders with radius 0.8, the eigenmodes for the first, second and third standing wave frequencies at
Ω = 4.8053, 5.0762, 5.6985 and at Γ respectively in (a), (b) and (c), c.f. Table 2 are shown. Column panels separate the
different frequencies and rows separate the two components of displacement, namely U01 and U02 for the top and bottom rows
respectively.
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T11 T22 Ω0

0 2.062 4.8053
−3.6225 0 5.0762
−0.0037 0.0044 5.6985
6.8525 −2.3573 6.2524
0.0120 −4.1465 7.6726
−3.9605 −0.0330 7.8804
5.2294 −23.3779 8.1499
0.0284 −0.0272 8.2729

Table 2: The first eight standing wave frequencies for a square cell with clamped holes of radius r = 0.8 at wavenumber
κ = (π/2, 0) at X, c.f. Fig. 5(a), together with associated values for T11 and T22. Opposite signs of Tii’s together with
absolute values of similar orders of magnitude yield characteristic type of propagation. If one coefficient is almost zero then
directive propagation emerges in the horizontal and vertical directions (infinite artificial anisotropy). The above coefficients
are used in Figs. 9 and 7
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Figure 5: Bloch dispersion curves and HFH asymptotics for cylinders of radius 0.8 in an elementary cell of side 2: (a) Clamped
and (b) traction free boundary conditions. The solid lines are from numerical simulations and the dashed lines are from the
HFH Eqns. (24, 31) and (36)

Dispersion curves are related to group velocity via the gradient of the curves and changes in curvature
and isolated flat, or nearly flat, dispersion curves are useful indicators of interesting and useful phenomena.
These features are evident in the figures e.g. the third mode of Fig. 5(a). Flat curves correspond to modes
that are “slow” or to directional standing waves. In Fig. 4 we illustrate three of the eigenfunctions at point
X of the Brillouin zone for the setting of clamped holes with r = 0.8. Notably the first three modes at the
standing wave frequencies of Ω = 4.8053, 5.0762 respectively and beginning to be reminiscent of waveguide
modes as the flatness of the bands suggests from Fig. 5(a). In Fig. 4(c) the almost completely flat mode
has a rotational symmetry for U01, U02 and this is an isolated mode for a linear array of cylinders within a
waveguide.

For the traction-free cases the numerical dispersion curves have been previously found by Zalipaev et al.
(2002); Guenneau et al. (2003) using multipole techniques; at low frequency (Ω ∼ 0 near Γ) one obtains
two linear dispersion curves that correspond to the effective medium for long waves (see section 2.4). As a
general trend, for these traction-free cases of Figs. 2(b), 3(b) and 5(b) one observes that at very small radii,
Fig. 2(b), there are no stop-bands and the dispersion curves are almost identical to those for a medium with
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Figure 6: Directive emission in horizontal and vertical directions, caused by a point compressive source at frequency Ω = 2.19,
in a doubly periodic array of square cells with circular holes of radius r = 0.4, clamped at their surface. c.f Fig. 3(a) first
mode at point X. Panel (b) shows FEM calculations and panel (a) reproduces the effects by HFH with T11 = −0.18255 and
T22 = 2.46973 (see Table 1).

no inclusions; this explains the multiple crossings near, say, Ω ∼ 2.2 at wavenumber M . This small radius
situation can also be treated using a complementary asymptotic technique, matched asymptotic expansions
(Guo and McIver, 2011), valid for very small weakly interacting inclusions. As the inclusion radii increase
from 0.4 to 0.8 the multiple crossings become less common and of lower multiciplity, and eventually stop-
bands open up. The asymptotic theory works exceptionally well providing accurate curves showing changes
in curvature as the hole radius changes, e.g. the lowest mode at M , the emergence of a stop band as hole
radius increases and successfully capturing the changes in curvature for, say, the lowest mode at X in Fig.
5(b): indeed all major features of the dispersion diagram are captured.

It is satisfying to note that the asymptotics based upon the scalar f0 equation capture the detailed
behaviour of the dispersion curves and this is strong verification of the approach we have employed. We now
move on to using the asymptotics to predict and explain specific phenomena. The power of the asymptotic
technique, is that it allows us to replace a microstructured medium by an effective dispersive medium whose
elastic properties are encapsulated within the coefficients Tij in the PDE of Eq. (22), or by the coefficients
in the coupled cases of repeated roots. The form of the f0 equation (22) then guides one to anticipate or
predict particular features.

3.2. Highly- directional standing waves

Some features of the dispersion diagram, and the asymptotics, reflect the underlying symmetry of the
geometry, for instance, if the hole geometry is symmetric then the tensor Tij is purely diagonal. Moreover, at
wavenumber position Γ of the Brillouin zone one obtains T11 = T22 at the isolated standing wave frequencies.
However, in general, this is not the case at M or at X where the non-zero elements T11 and T22 need not be
identical nor even have the same sign. For changes in sign, the PDE for f0 (22) that represents the effective
medium changes type from elliptic to hyperbolic with the result that strongly directional waves propagate
along the characteristics.

Highly directional waves have been recently identified for simple mass-spring models that originate from
solid state physics (Ayzenberg-Stepanenko and Slepyan, 2008; Osharovich et al., 2010; Osharovich and
Ayzenberg-Stepanenko, 2012) and at key frequencies one observes directional standing waves that have an
interpretation in terms of flat bands in the dispersion curves (Craster et al., 2012). Other discrete systems
notably for frames, Colquitt et al. (2012), also exhibit these striking features, and their occurence is shown to
be a generic consequence of the underlying HFH asymptotic equations changing from elliptic to hyperbolic
(Antonakakis et al., 2013b). Therefore this feature is observed in continuum electromagnetic periodic media
too (Craster et al., 2012) and the behaviour predicted using HFH. Here we demonstrate that this highly
directional behaviour also occurs in elasticity.
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(c) 

(a) (b) 

(d) 

Figure 7: A square array of holes of radius 0.8 is considered. Here we take 196 clamped holes and a compressive source excites
the medium at the frequencies of Ω = 4.85 and Ω = 5.03 for panels (a), (c) and (b), (d) respectively c.f. Fig. 5(a). Panels (c)
and (d) show FEM simulations and panels (a) and (b) confirm the cross effects with HFH. T11, T22 coefficients are given in
Table 2 for the first and second modes.

This behaviour is illustrated in Figs. 6, 7 and 9. Starting with radius 0.4 and choosing a frequency
(Ω = 2.16) close the first standing wave frequency, 2.11, given in Table 1 we can then use the associated
T11, T22 to simulate the asymptotic behaviour: here |T11| � |T22|. It is important to note that due to the
symmetry of the circular hole geometry, that we chose to illustrate the theory with, that we only plot, and
perform the asymptotics explicitly for standing waves corresponding to the edges of the irreducible Brillouin
zone ΓMX. In order to interpret the highly directive fields observed we require the asymptotics at the
point N where κ = (0, π/2), and then the T11 and T22 coefficients exchange values. The superposition of
the two unidirectional effective media then gives the observed bi-directive emission in orthogonal directions.
Fig. 6 shows the result from a finite element simulation with a centrally placed compressive source excited
at Ω = 2.16 in Fig. 6 (b) together with the corresponding HFH asymptotic simulation in Fig. 6 (a).
Clearly both show the same quantitative features of a cross with its arms along the horizontal and vertical
directions, as alluded to above this is an immediate consequence of T11 and T22 having opposite signs and
being of different magnitude, in this case being roughly a factor of ten different. This cross-like feature is
ubiquitous and arises often, although for the larger radius, r = 0.8, that we consider the size of the holes
slightly obscures the effect for finite element simulations.

The T11, T22 coefficients for r = 0.8 at point X of the Brillouin zone are presented for the first two modes
of Table 2 where one of the two coefficients is zero. The resulting simulations comparing full numerical
simulations and HFH asymptotics are in Figs. 7(a,b,c,d). Clearly such highly anisotropic features are an
ubiquitous feature of elastic wave propagation in structured media; they could have important applications
in directing and guiding the flow of elastic wave energy through composites.

Figure 8 further illustrates the strong directionality that can be achieved by exciting periodic media at
precise frequencies. Here we deliberately chose a case where the T11 = −3.2484 and T22 = 3.3839 are of
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Figure 8: An x-shape is formed by compressive source at frequency Ω = 1.51 for a doubly periodic square array of 225 stress
free circular holes with r = 0.8 c.f. Fig. 5(b). Panel (b) shows FEM calculations and panel (a) confirms the former with HFH
where T11 = −3.2484 and T22 = 3.3839. The weakeness of the x-shape in the FEM computations comes from interference with
other modes at that frequency c.f. Fig 5(b).

similar magnitude, but opposite sign, to trigger waves in a X shape. The frequency chosen Ω = 1.51 for
traction-free holes of radius 0.8 and so also illustrates that this behaviour is not limited to clamped holes.

A natural extension is to consider situations where the magnitude of the coefficients of the tensor are of
similar order, but where the signs are still opposite. For instance when the radius is 0.8 and frequency is
6.252, T11 = 6.8525 and T22 = −2.3572 c.f. the 4th line of Table 2. In this particular case the characteristics
form an angle of 32 degrees with respect to the horizontal and vertical axes as the coefficients do not have
an equal absolute value. The resultant weak x-shape effect shown in Fig. 9 comes from the superposition of
two effective media, for points X(π/2, 0) and N(0, π/2) of the Brillouin zone. The HFH simulations shown
in Fig. 9(a) and the full numerical simulations shown in Fig. 9(b) share this qualitative feature.

4. Concluding Remarks

HFH theory is here developed for vector wave eqations, specifically for elasticity where the compressive
and shear fields and inherently coupled through the boundary conditions. Degenerate cases of multiple roots
are treated as well as the classical low frequency homogenisation. Of most importance are the homogenisation
results obtained at high frequencies where direct FEM simulations on elastic photonic crystals are in very
good qualitative agreement with HFH therefore enabling specific behaviour to be predicted. Both clamped
and traction free boundary conditions are treated, but this is not a limitation on the method as using the
same formulations for two-phase media, with a continuity condition on displacement and traction between
the two phases, can also be treated at the expensive of some algebra . A counter-intuitive, but very important
result, is that the ultimate effective medium equation is scalar; this suggests that many complex composite
media wave computations can potentially be sidestepped using this formulation.

In addition this approach opens the way for the application of HFH in the full vector Maxwell systems in
electromagnetism where a similar approach should yield effective equations. It is notable that many of the
phenomena that have recently revolutionised the field of optics can also be shown to occur for elasticity, the
strongly directional anisotropy illustrated here being just one example, and a follow-up article illustrating
this and using HFH to predict and interpret the behaviour is in preparation.
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Figure 9: A weak x-shape is formed by compressive source at frequency Ω = 6.27 for a doubly periodic square array of 225
clamped circular holes with r = 0.8 c.f. Fig. 5(a). Panel (b) shows FEM calculations and panel (a) confirms the former with
HFH where Tii coefficients are found in the fourth row (mode) of Table 2.
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