
 

 

 

 

Pressure Drop and Recovery in Cases of Cardiovascular Disease: a 

Computational Study 

 
 

by 
 

 

 

 

Chrysa Anna Kousera 

 

 

 

 

 

A thesis submitted as partial fulfilment of the requirements for the 

degree of Doctor of Philosophy and the Diploma of Imperial College 

London 

 

 

April 2014 
 

 

 

National Heart and Lung Institute 

Imperial College London 

 



 

i 
 

Abstract 

The presence of disease in the cardiovascular system results in changes in flow and 

pressure patterns. Increased resistance to the flow observed in cases of aortic valve and 

coronary artery disease can have as a consequence abnormally high pressure gradients, which 

may lead to overexertion of the heart muscle, limited tissue perfusion and tissue damage. 

In the past, computational fluid dynamics (CFD) methods have been used coupled 

with medical imaging data to study haemodynamics, and it has been shown that CFD has 

great potential as a way to study patient-specific cases of cardiovascular disease in vivo, non-

invasively, in great detail and at low cost. CFD can be particularly useful in evaluating the 

effectiveness of new diagnostic and treatment techniques, especially at early ‘concept’ stages. 

The main aim of this thesis is to use CFD to investigate the relationship between 

pressure and flow in cases of disease in the coronary arteries and the aortic valve, with the 

purpose of helping improve diagnosis and treatment, respectively. 

A transitional flow CFD model is used to investigate the phenomenon of pressure 

recovery in idealised models of aortic valve stenosis. Energy lost as turbulence in the wake of 

a diseased valve hinders pressure recovery, which occurs naturally when no energy losses are 

observed. A “concept” study testing the potential of a device that could maximise pressure 

recovery to reduce the pressure load on the heart muscle was conducted. The results indicate 

that, under certain conditions, such a device could prove useful. 

Fully patient-specific CFD studies of the coronary arteries are fewer than studies in 

larger vessels, mostly due to past limitations in the imaging and velocity data quality. A new 

method to reconstruct coronary anatomy from optical coherence tomography (OCT) data is 

presented in the thesis. The resulting models were combined with invasively acquired 

pressure and flow velocity data in transient CFD simulations, in order to test the ability of 

CFD to match the invasively measured pressure drop. A positive correlation and no bias were 

found between the calculated and measured results. The use of lower resolution 

reconstruction methods resulted in no correlation between the calculated and measured 

results, highlighting the importance of anatomical accuracy in the effectiveness of the CFD 

model. However, it was considered imperative that the limitations of CFD in predicting 

pressure gradients be further explored. It was found that the CFD-derived pressure drop is 

sensitive to changes in the volumetric flow rate, while bench-top experiments showed that the 

estimation of volumetric flow rate from invasively measured velocity data is subject to errors 

and uncertainties that may have a random effect on the CFD pressure result. 

This study demonstrated that the relationship between geometry, pressure and flow 

can be used to evaluate new diagnostic and treatment methods. In the case of aortic stenosis, 

further experimental work is required to turn the concept of a pressure recovery device into a 

potential clinical tool. In the coronary study it was shown that, though CFD has great power 

as a study tool, its limitations, especially those pertaining to the volumetric flow rate 

boundary condition, must be further studied and become fully understood before CFD can be 

reliably used to aid diagnosis in clinical practice.  
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1. Introduction 
 

 
Figure 1-1 Sites with predilection for arterial disease: I: coronaries. II: carotids, III: intercostals, renals, IV: aorto-iliac 

bifurcation and femoral arteries. It is obvious that bifurcations and curved geometries favour atherosclerosis, because the 

geometry is determinant of blood-flow patterns.(DeBakey et al., 1985) 
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1.1 Motivation for the study 

 

Studying the flow of blood through vessels is a worthwhile endeavour, as blood flow plays 

a significant role in the regulation of vascular health and therefore has a direct connection to 

vascular pathology (Figure 1-1). The velocity patterns inside vessels determine many 

physiologically significant parameters, such as wall shear stress, wall tensile stress, energy 

dissipation and pressure drop.  

 

The importance of flow patterns are nowhere more evident than in the vessels nearer to the 

heart, such as the aorta and the coronary arteries (Malek et al., 1999, Davies, 2009, Dowd et al., 

1999).Their anatomy and physiology makes these parts of the vascular system vulnerable to 

calcification and atheromatous plaque formation (which leads to aortic stenosis and coronary 

artery disease, respectively) and their direct interaction with the heart muscle often makes 

disease there fatal. 

 

1.1.1. The aortic root 

Anatomy 

 

The aorta carries oxygen-rich blood from the heart to the rest of the body. It is 

connected to the left ventricle of the heart via the aortic valve, and the full amount of blood 

supplied by the heart in each heartbeat passes through it. 

 

The aortic valve is embedded inside the aortic root (Figure 1-2) and consists of 

(normally) three leaflets, called the cusps, which move passively with the flow; during systole 

the cusps open to allow blood out of the left ventricle and then close at the start of clinical 

diastole to prevent blood from flowing backwards into the ventricle following the reversal of 

the pressure gradient(Underwood et al., 2000, Berdajs et al., 2002). 

Pathology 

 

A common disease of the aortic valve is Aortic Stenosis (AS), an abnormal narrowing 

of the valve opening (orifice) caused by sclerotic change in the valve leaflets resulting from a 
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process that shares a number of similarities with atherosclerosis in other arteries (Freeman and 

Otto, 2005). The sclerotic change in the leaflets (Figure 1-3) prevents their free movement and 

the reduced orifice lead to an acceleration of the flow. If the acceleration of flow is sufficiently 

large it will result in a large pressure drop. In order to maintain systemic blood pressure and 

organ perfusion this forces the left ventricle to generate higher intraventricular pressure than 

normal and eventually fail, if the condition is left untreated (Heinrich et al., 1996).  

 

 

Figure 1-2 Left Schematic representation of the human aortic root and its most important anatomical parts Right Aortic root 

section across one of the coronary sinuses giving a more detailed view of the valve anatomy (Robert H Anderson, Heart , 

84:670-673, 2000) 

 

According to the American Heart Association (Lloyd-Jones et al., 2009), 29% of 

participants in the population-based Cardiovascular Health Study (CHS) over 65 years of age 

who underwent echocardiography had aortic sclerosis (thickening of the leaflets) and 2% had 

aortic stenosis. The risk of death by cardiovascular disease for those with AS is increased by 

about 50%. Another study (Otto et al., 1999a) reported that 48% of patients over 85 years of 

age had asymptomatic aortic sclerosis and 4% of the same age group had aortic stenosis, in 

keeping with the known increase in prevalence of this condition with increasing age. 

Unfortunately, the older age group in which AS often happens is also at higher risk of adverse 

consequences from surgical intervention to replace the valve.  
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Diagnosis and Treatment 

 

Aortic stenosis is usually diagnosed using a catheter to measure the pressure drop 

across the stenosis or Doppler ultrasound to measure flow velocities, and from these 

measurements a value for the restricted area can be calculated (Heinrich et al., 1996).  

Treatment options include Aortic Valve Replacement open-heart surgery (AVR) and, when the 

risk of open-heart surgery is too high (i.e. estimated mortality risk is more than 10%), a 

procedure called Transcatheter Aortic Valve Implantation (TAVI), where a catheter-driven 

valve replacement takes place inside the beating heart, without the need for the opening of the 

chest (Vahanian et al., 2008a). Both procedures carry relatively little risk in general, but there 

are still patients that are considered too high-risk for any of these two procedures. C 

 

 

Figure 1-3 Human aortic valve with plaque formed on the leaflets. The leaflets become harder and the plaque prevents them 

from opening fully, reducing the orifice area. 
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1.1.2  The coronary arteries 

Anatomy 

 

The coronary arteries are the system of arteries that supply blood to the heart muscle. 

The two main coronary arteries (left and right) stem from above two of the three aortic valve 

cusps, and then branch out into smaller arteries, arterioles and capillaries that permeate the 

heart muscle(Ding et al., 2002).  It has been shown that blood flow inside the coronary arteries 

is controlled by forward and backward pressure waves. The majority of coronary blood flow 

happens during diastole, when the relaxing movement of the heart muscle ‘sucks’ blood from 

the aortic root into the coronary ostia (Davies et al., 2008, Davies et al., 2006). 

Flow inside the coronary arteries is influenced by their small diameter, branching, 

intense curvature and tortuosity (Torii et al., 2009d). The complex geometry creates areas of 

flow separation and low wall shear stress and, combined with disease factors such as high 

cholesterol levels, this leads to plaque formation in the lumen wall.  

Pathology 

 

Atherosclerosis in the coronary arteries is one of the most common causes of death in 

the Western world. In the United States, 1 in 5 deaths in 2005 were caused by Coronary Artery 

Disease (CAD), and it is estimated that once every 25 seconds there is a new coronary event 

and once every minute a CAD-related death. The mortality rate of patients with CAD that 

present in US hospitals is around 10% (Lloyd-Jones et al., 2009). 

 

Figure 1-4 Left A normal coronary artery angiogram. The left main (LMT), the left anterior descending (LAD) and the left 

circumflex (LCx) coronary arteries are visible, among others. Right Angiogram of a severely stenosed (95%) left anterior 

descending coronary artery (stenosis indicated by arrow). 
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CAD results from the narrowing (stenosis) due to plaque formation and/or occlusion of 

at least one coronary artery (Figure 1-4). The stenosis increases the resistance to the flow inside 

the vessel and leads to an observable pressure drop across the stenosis, reducing blood supply. 

When the resistance becomes too high, or the plaque ruptures and thrombotic occlusion of the 

vessel ensues the areas downstream of the stenosis are left with limited or no oxygen supply. 

The protracted lack of oxygen leads to myocardial infarction and heart failure. 

Diagnosis and Treatment 

 

There are several methods for the diagnosis of CAD. They can be divided into two 

categories: anatomical and functional methods. The anatomical methods include angiography, 

intra-vascular ultrasound (IVUS), CT angiography, and more recently OCT (optical-coherence 

tomography) scans, and their aim is to assess the cross-sectional area reduction caused by 

plaque. The most common invasive functional assessment method is called Fractional Flow 

Reserve (FFR) and involves measuring the ratio of distal to proximal flow rate using a pressure 

wire (Figure 1-5) under conditions of hyperaemia to calculate the pressure drop across the 

stenosis. The two categories of methods (anatomical and functional) do not agree on all 

assessments (Gould and Lipscomb, 1974a). Coronary revascularization decisions guided by 

fractional flow reserve (FFR) are associated with improved clinical outcomes and reduced 

healthcare costs, however in the catheter lab fluoroscopy is still the most widely used method 

of coronary disease assessment (Nam et al., 2010, Tonino et al., 2010, Fearon et al., 2007b). 

Treatment options for CAD include medical (drug) treatment, Coronary Artery Bypass 

Graft surgery (CABG) and angioplasty, usually in the form of Percutaneous Coronary 

Intervention (PCI). The decision about which method to use depends on the severity 

assessment of the stenosis. CABG is, as a rule, used in the most severe cases and in 

emergencies, but deciding on PCI or drug treatment can be more complicated, depending on 

the overall risk assessment in each individual case. In some cases, the discrepancies between 

the anatomical and functional assessment methods can prove an obstacle to making the right 

decision, and could lead to preventable deaths. 
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Figure 1-5 ComboWire® XT Guide Wire (Volcano, San Diego California), one of the pressure wires used by the cardiologists 

of our lab (ICCH) to make Fractional Flow Reserve assessments in patients with Coronary Artery Disease. 

 

1.1.3  Pressure drop as a diagnostic tool 

The mechanics of pressure recovery and irreversible pressure loss 

 

In an ideal flow with no constriction or losses, the pressure difference between two 

points along a streamline is given by the Bernoulli equation when suitably modified for 

transient flow as discussed by Wood (Wood, 1999): 
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where p0 is the total pressure, p1 and p2 is the static pressure in two points along one streamline, 

q1 and q2 are the respective velocity values, zi is the vertical height from the reference pressure,  

and ρ is the fluid density. The term ρgzi indicates the hydrostatic pressure, which for a patient 

in a lying or supine position (as in most cases of flow and pressure measurements) can be 

neglected. The term ρqi
2
/2 is the kinetic energy of the fluid at each point and the pressure 

corresponding to this component is sometimes termed dynamic pressure. Static pressure is the 

pressure exerted by the fluid when stationary.  

 

According to this equation, the sum of static pressure and kinetic energy in each point 

along the streamline remains constant and equal to the total pressure of the fluid. If the flow 
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accelerates, for example passing through a stenosed vessel, static pressure (the pressure 

measured in medical applications) falls as kinetic energy rises along the streamline. 

Predictably, when the flow decelerates (for example when coming out of the stenosis) static 

pressure increases as kinetic energy decreases. This phenomenon is called pressure recovery, 

and is to some degree present in all cases of vessel stenosis (Heinrich et al., 1996, Clark, 

1976b, Clark, 1976a). In Figure 1-6 pressure recovery in the case of flow through the aortic 

root is presented. 

 

In the lossless case, total pressure remains constant along the streamline (i.e. the sum of 

‘static pressure plus kinetic energy’ remains constant), meaning that it is possible to recover the 

full amount of static pressure apparently being lost through the narrowing. Of course, in reality 

no flow is without energy losses, but in the case of healthy blood vessels the energy being lost 

along a small distance (such as the length of a coronary artery, or of the aortic root) is 

negligible, in line with the equation of Hagen-Poiseuille for viscous losses: 

 

∆𝑃 =
8𝜇𝐿𝑄

𝜋𝑟4          (1.2) 

 

where ΔP is the pressure drop observed, µ is the viscosity of the fluid,  r is the radius of a 

cylindrical tube, Q is the volumetric flow rate at which the fluid flows and L is the distance 

between the two measurement locations.  

 

In most physiological flows, L is only a few diameters long, and no significant losses 

are observed. However, in the presence of a stenosis the flow becomes complicated and 

disturbed and, in the case of severe aortic stenosis, turbulent. This kind of flow favours a high 

energy dissipation rate and therefore the amount of energy being lost is no longer negligible. 

Total pressure is no longer preserved and the sum of static pressure and kinetic energy is 

smaller distally than proximally (Figure 1-7). This leads to a smaller amount of static energy 

being recovered, increasing the observed pressure drop. In the case of aortic stenosis, the 

increased pressure drop forces the left ventricle to pump blood at a higher pressure in order to 

maintain the required pressure in the ascending aorta, leading to increased myocardial 

workload, myocardial hypertrophy and heart failure. In the coronary arteries a stenosis 

increases the impedance to flow and, when the stenosis is severe enough, the flow that passes 

through it is reduced or stops completely, leading to myocardial infarction and failure. 
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Figure 1-6 The geometry of a normal aortic valve and the respective pressure drop across it. When the flow accelerates 

through the narrower valve area, static pressure drops considerably, but most of the pressure is recovered downstream as the 

aorta widens and the velocity decreases, following the Bernoulli principle. Image from (Heinrich et al., 1996). 

 

The above analysis demonstrates the importance of the concepts of pressure drop and 

pressure recovery in cardiovascular disease. Pressure drop measurement in particular is a 

reliable indicator of the functional impairment caused by the presence of stenosis, and 

consequently invasive or non-invasive pressure difference measurement is part of the 

guidelines for the management of various cases of cardiovascular disease. 

Overview of pressure drop in clinical use 

 

Methods to measure the pressure drop across arterial stenosis were being developed 

even before Cournand, Forssman and Richards developed cardiac catheterisation in the 1940s 

to investigate pulmonary artery disease (Bloomfield et al., 1946). Catheterisation allowed for 

simultaneous invasive pressure measurements inside the left ventricle and the ascending aorta. 

The surplus of pressure in the left ventricle is an indication of aortic stenosis. An example of 

the pressure traces in a case of severe aortic stenosis is shown in Figure 1-9.  
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Figure 1-7 Representation of the pressure and kinetic energy (KE) of the flow through a stenosis with significant energy 

losses. For a given volume flow, velocity v increases where the cross-sectional area A narrows, for example in a stenosis. 

Pressure energy is converted into kinetic energy KE at this point. Where the tube widens, i.e. distal to the stenosis, KE is 

reconverted to the original pressure minus the amount of pressure energy lost inside the stenosis. The overall pressure 

deficiency is indicated by the broken line. (Image from J. Rodney Levick, “An introduction to Cardiovascular Physiology”) 

 

By the mid-70s, the development of percutaneous catheterisation of the coronary 

arteries was introduced (Judkins, 1967, Dotter et al., 1967, Gruentzig and Meier, 1983) and 

visualisations of the coronary arteries led to better assessment and treatment of coronary artery 

disease. In the mid-90’s, functional assessment of coronary lesions was established, with the 

introduction of FFR (Pijls et al., 1991, Pijls et al., 1995). Building on the idea that more severe 

stenoses incur greater pressure drop under the same flow conditions compared to less severe 

ones, presented by Gould et al in 1974 (Gould et al., 1974b, Gould and Lipscomb, 1974a), FFR 

consists of simultaneously measuring aortic (proximal) pressure Pa and pressure at a location 

distal to the diseased area, Pd, with the help of a pressure wire like the one shown in Figure 1-5 

and calculating the ratio of distal to aortic pressure (Pd/Pa). The measurements are made under 

conditions of drug-induced hyperaemia, when resistance to the flow is considered to become 

minimal and remains near constant over several cardiac cycle (Pijls et al., 1997) (Figure 1-9). 

Under these conditions, the pressure ratio becomes a surrogate for the volumetric flow rate 

ratio at the same locations, a measure of functional severity which is far more difficult to 

measure than pressure. 
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The effect of volumetric flow rate on coronary pressure drop 

 

Currently, with the rise of the use of Computational Fluid Dynamics (CFD) in clinical 

applications, many efforts are underway to use non-invasive diagnostic tools in conjunction 

with CFD to estimate the likely pressure drop in coronary arteries, without the need for 

catheterisation (Min and Kochar, 2012, Morris et al., 2013). One parameter that can 

significantly affect the estimate of the pressure drop, but whose importance is often 

underestimated, is the volumetric flow rate at the time of measurement. In the presence of 

stenosis, the relationship between flow rate and pressure is not linear, but is best described by a 

quadratic relationship (Figure 1-8), where the linear term is believed to correspond to viscous 

losses and the square term to the energy loss due to disturbances in the flow structure at the exit 

of a stenosis (Gould, 1978b). Thus, for flow limiting stenoses, a small change in flow rate will 

result a great change in pressure drop. For this reason, knowing the vessel-specific volumetric 

flow rate with a satisfactory level of accuracy is important for the mathematical modelling of 

coronary flow. 

Furthermore, in the case of intracoronary flow velocity measurement, the presence of 

the wire inside the artery may cause discernible changes to the flow measurement (Rajabi-

Jaghargh et al., 2011, Dash et al., 1999, Torii et al., 2007). Finally, volumetric flow rate is 

estimated from measurements of flow velocity with little information on the spatial velocity 

profile, or the actual cross-sectional area of the measurement location. 

In summary, pressure drop is very sensitive to changes in volumetric flow rate, the 

measurement of which is very difficult non-invasively and subject to errors when measured 

invasively. Consequently, when considering the numerical modelling of coronary pressure 

drop, all limitations arising from the errors in estimation of volumetric flow rate need to be 

taken into account. 

The mechanics of blood flow and the effect of disease on flow and pressure distribution 

in the aortic root and the coronary arteries will be presented in more detail in the following 

chapter. 
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Figure 1-8 Relation between coronary flow velocity and pressure gradient due to a stenosis under resting control 

conditions.Left The pressure drop – flow velocity plot throughout one cardiac cycle. The effects of acceleration and 

deceleration of the flow are marked by the dashed and dotted lines respectively. Right The same plot after the effects of 

acceleration and deceleration, unrelated to stenosis severity, have been discarded. The relationship between pressure drop and 

flow velocity is quadratic. Figure adapted from Gould Circ Res 1978 43(2): 242-253. 
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Figure 1-9 Top. Left ventricular pressure (LVP) and aortic pressure measured simultaneously in a patient with severe aortic 

stenosis. At peak systole the ventricle pressure exceeds aortic pressure by more than 50mmHg. Image adapted 

from(Rahimtoola, 2006). Bottom. Example of a FFR measurement trace. Measurements of proximal and distal pressure are 

done simultaneously under conditions of drug-induced hyperaemia. The great difference between the proximal (red) and distal 

(blue) pressure trace indicates the presence of disease. The effect of the hyperaemic drug can be seen in the sudden increase of 

flow velocity, measured using intracoronary Doppler ultrasound. Image courtesy of Dr Ricardo Petraco and Dr Sukh Nijjer, 

Hammersmith Hospital, London. 
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1.2  Objectives of the study and research plan 

 

The aim of this thesis is to explore the role of pressure drop and pressure recovery in cases 

of aortic valve and coronary artery disease, with the hope of contributing to the better 

understanding of the underlying scientific mechanisms of cardiovascular disease. It is hoped 

that a new insight into pressure recovery can be used to relieve the symptoms of aortic valve 

stenosis in people that are too high-risk to receive the current treatment methods and that the in-

depth study of the interaction between pressure and flow in coronary arteries will facilitate the 

transition to non-invasive estimations of pressure drop across a diseased vessel.  

The use of Computational Fluid Dynamics (CFD) to model aortic and coronary 

haemodynamics has been widespread in the past 15 years. Starting from simple models of 

idealised geometries and steady laminar flow, CFD has progressed into fully patient-specific 

studies incorporating complicated anatomy, pulsatile and turbulent flow conditions and other 

features which bring CFD models ever closer to realistic cardiovascular flows. This powerful 

tool, however, is subject to the limitations posed by the imaging and functional data necessary 

for CFD. Therefore, the main objective of the project is to make use of CFD to further increase 

our understanding of the behaviour of pressure in diseased vessels and find applications for the 

new knowledge, but also identify the limitations of CFD in the case of coronary artery disease 

assessment, and propose ways to minimise or overcome them. 

The overall objective of the work in this thesis has been broken down into smaller, 

specific objectives and a research strategy has been outlined. The specific objectives are: 

1. To identify the anatomical features which incur the highest energy losses in numerical 

models of aortic stenosis and coronary artery disease. 

2. To conduct a proof-of-concept study showing that it is possible to improve the 

haemodynamics of aortic stenosis by modifying the anatomy in such a way as to take 

full advantage of pressure recovery, making use of a validated numerical model that can 

predict transition to turbulence.  

3. To develop a new algorithm for the 3D reconstruction of coronary artery anatomy based 

on highly accurate imaging data (Optical Coherence Tomography). 

4. To use the reconstructed models in numerical simulations, both steady-state and 

pulsatile, combining the anatomies with the most accurate pressure and flow velocity 
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measurement data available in fully patient-specific CFD studies with the aim of 

assessing the ability of CFD to reproduce the measured pressure waveforms. 

5. To investigate the effect of parameters such as anatomical model accuracy and flow rate 

estimation on the accuracy of the CFD-derived pressure drop in models of coronary 

artery. 

6. To compare the volumetric flow rate estimation based on invasive flow velocity data 

with a gold standard in pulsatile phantom experiments, to identify the extent of the 

limitations introduced to CFD analysis by the uncertainties involved in the estimation 

of flow rate. 

1.3 Thesis Outline 

 

The thesis starts with Chapters 1 and 2, providing the background and literature review 

relating to the subject at hand. This is followed by Chapters 3 to 7 where the applications 

specifically developed during this project are presented. 

Chapter 2 includes a detailed description of the medical and engineering background of 

the project. The medical background section includes a brief presentation of the human 

circulatory system and its complicated haemodynamics. The nature of cardiovascular disease 

and one of its main causes, atherosclerosis, are also discussed in this chapter. The effect that 

atherosclerosis has on blood flow and pressure is discussed with respect to the particular 

complex haemodynamic conditions observed in the aortic root and the coronary arteries. An 

overview of the diagnostic (imaging and functional) methods and tools currently available in 

clinical practice concludes the medical section. The engineering background focuses on the 

mathematical description of haemodynamics. A review of the mathematical models that have 

been used in the past to describe blood flow is included in this section. Finally, a literature 

review of the various experimental, analytical and numerical studies that have attempted to 

tackle the technical challenges posed by the complicated nature of blood and vessel anatomy 

are presented, leading to the second section of the thesis where the results of the current project 

are being presented. 

Chapter 3 contains the description of a proof-of-concept study, where it is shown that a 

minimal modification of the aortic root and proximal ascending aorta anatomy can lead to 

smaller pressure drop observed across aortic valve stenoses. This CFD study explores the 
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potential pressure recovery that can be achieved at the presence of modifications, while 

documenting the technical challenges that the designing of such modifications would incur. 

The study of flow and pressure in the coronary arteries is described in Chapters 4 and 5. 

The custom-developed algorithm that can produce accurate reconstructions of diseased 

coronary vessels based on OCT images and angiography is described in detail, along with a 

description of the method’s validation in a phantom. Chapter 4 includes the application of the 

reconstruction method in a group of patients for which there are also pressure and flow velocity 

data. The results of the pulsatile, fully patient-specific CFD simulations are presented and 

discussed. In Chapter 6,a sensitivity analysis of the CFD-predicted pressure drop to parameters 

such as anatomical accuracy and flow rate is conducted. Other possible limitations to CFD as a 

tool to assess ischaemia due to coronary lesions are also presented and discussed. Chapter 7 

comprises of a detailed description of phantom flow experiments conducted in order to assess 

the error incurred when estimating the volumetric flow rate from flow velocity data. 

Chapter 8 concludes the thesis with recommendations on the use of pressure recovery 

and pressure drop in diagnosis or treatment of cardiovascular disease. The assumptions and 

limitations of the methodology presented are discussed, and future work suggested in hope that 

the study presented in this thesis is a step in the right direction to achieve better clinical 

decision making and new treatment methods in aortic valve and coronary artery disease.   
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2. Literature Review 

 

 

Figure 2-1 A Wax deposits in an oil pipeline and B Microscopic view of atherosclerotic plaque build-up in a coronary artery: 

different scientific fields, same engineering problem.(Image A from http://www.balmsenergy.com/flow_assurance.html) 

 

2.1 Introduction 

 

In this chapter, the engineering and medical background of the research presented in 

this thesis is explored. The challenges of developing mathematical models for blood flow are 

discussed, while an overview of the human circulatory system is also given, with a focus on the 

mechanics of flow and a brief description of atherosclerosis and how accumulation of 

atherosclerotic plaque in the cardiovascular system can lead to disease. The haemodynamics of 

the aortic root and the coronary arteries in health and disease are then presented, together with 

a brief overview of the diagnostic methods used in clinical practice to assess disease severity 

and the previous computational studies performed in the aortic root and coronary arterial 

system. 

A B
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2.2 The basis of computational modelling for cardiovascular flows 

2.2.1 The Navier-Stokes equations 

 

When trying to describe a flow mathematically, the starting point is the Navier-Stokes 

(N-S) equations. They express Newton’s second law of the conservation of momentum in a 

fluid flowing through a “control volume” (Wood, 2006) and, coupled with the equation of 

continuity, or conservation of mass, they can fully describe the flow field. The N-S equations 

can be written in several forms. The most useful form of the continuity and conservation of 

momentum equations when applying a finite volume computational method (FVM) for an 

incompressible fluid is given by Wood and Xu (2006) as: 

𝜌
𝜕

𝜕𝑡
∫ 𝑑𝑉

 

𝑉
+ 𝜌 ∫ (𝑈 − 𝑈𝑆)𝑛𝑑𝑆 = 0

 

𝑆
                (2.1) 

           

𝜌
𝜕

𝜕𝑡
∫ 𝑈𝑑𝑉

 

𝑉
+ 𝜌 ∫ 𝑈(𝑈 − 𝑈𝑆)𝑛𝑑𝑆 = ∫ [−𝑝 + µ∇𝑈 + µ(∇𝑈)𝑇]𝑛𝑑𝑆

 

𝑆

 

𝑆
                      (2.2) 

 

where U is a vector of the instantaneous fluid velocity at time t, p is the static pressure relative 

to a datum level, n is the unit vector orthogonal to and directed outward from a surface S of the 

volume, ρ is the fluid density which is assumed constant and µ the fluid viscosity, which in 

most simulations is also considered constant, as blood is assumed to behave like a Newtonian 

fluid. US is the velocity of the surface S.  

The system of equations (2.1) and (2.2) has an exact solution only for laminar flows of 

simple fluids. For more complex problems, the equations’ many non-linearities make obtaining 

analytical solutions very difficult, therefore approximations and numerical methods are used to 

solve most problems of practical interest. 

Turbulent flows, in particular, are subject to closure problem of turbulence, whereby the 

number of equations in the model (four, mass conservation and the three components of 

equation 2.2) are fewer than the number of unknowns in the model (ten: pressure, the three 

velocity components and the six Reynolds-stress components). Different turbulence models use 

different approximations in order to define the six Reynolds-stress components and close the 

system. 
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2.2.2 Challenges of using computational modelling in cardiovascular flows 

 

 Describing blood flow mathematically presents a number of challenges. Blood flow is 

pulsatile, depending on the frequency at which the heart pumps blood into the aorta. Assuming 

that a normal person at rest experiences 60 cardiac cycles per minute, one heart beat is around 

1 second in duration. In the case of aortic flow, the Reynolds parameters observed place it in 

the transitional region between laminar and turbulent flow (Figure 2-2). In the case of flow in 

large arteries, turbulence and transitional models have shown better agreement with 

experimental data throughout the cycle, whereas the laminar flow assumption presented 

discrepancies in the velocity profile of the idealized stenosis during mid-acceleration, the phase 

where turbulence appears (Tan et al., 2008).  

 

 

Figure 2-2 A typical cardiac cycle (Velocity vs. Time). For blood flow, the maximum Reynolds number appearing at peak 

systole can be either above or below the critical Reynolds number for the particular flow (Image courtesy of Dr Felicia P.P. 

Tan). 

Another important factor that hinders the development of a mathematical model is the 

fact that blood flows through vessels of great geometric complexity (Figure 2-3). Furthermore, 

haemodynamic forces act on the elastic wall of the vessel, causing it to expand and relax during 

different phases of the cycle, resulting in the need for models which incorporate fluid-structure 

interaction (FSI). All these affect the velocity profiles and the shear stress values, and it has 

been shown that using anatomically accurate models greatly increases the ability of 

computational modelling to quantitatively match measured data (Tan et al., 2009a). 
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Figure 2-3 Diagram of a vessel containing a bifurcation, showing the effect of geometric complexity on velocity patterns 

(Image courtesy of Dr Felicia P.P. Tan). 

 

Finally, blood is a non-Newtonian fluid, meaning that its viscosity varies with shear-

rate γ (dui/dxj), as shown in Figure 2-4. Blood is a shear-thinning fluid, meaning that its 

viscosity decreases as shear-rate increases (Merrill et al., 1963). In the limit where the value of 

γ is sufficiently large to ignore the change of viscosity with respect to it, but not large enough 

to cause damage to particles, fluid flow can be approximately assumed to be Newtonian. 

 

Figure 2-4 Blood viscosity vs. shear rate γ for different temperatures. Blood is a shear-thinning fluid until shear rate reaches 

about 100s-1, when viscosity becomes independent of shear rate. Figure adapted from Merill, J Appl Physiol 1963 18: 255-

260.(Clark, 1976c) 

 

It is still debatable if blood can be accurately modelled as a Newtonian fluid inside 

large arteries. The average value of shear-rate in the boundary layer of large arteries exceeds 

100 s
-1

, which is the minimum value at which blood viscosity is independent of γ. However, 

this value changes with time, and as the flow is pulsatile and wall shear stress becomes zero at 

points of flow reversal, it cannot be said for certain that γ is constantly above this value 

Flow separation 

Laminar flow 

Stenosis 

Disturbed flow 
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(Pedley1980). Most models either use Newtonian fluids in their in vitro simulations of blood 

flow (Bluestein and Einav 1994), or make the assumption that the non-Newtonian behaviour of 

blood can be neglected. In the latter case blood is assumed to have a constant viscosity 

throughout, usually a value 4 times that of the viscosity of water (4.0 against 1.0 mPas) 

(Nakamura et al 2006, Kagadis et al 2007, Tan et al 2008 and 2009 among others). 
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2.3 The mechanics of the human circulatory system 
 

"...I found the task so truly arduous... that I was almost tempted to think... that the 

movement of the heart was only to be comprehended by God. For I could neither 

rightly perceive at first when the systole and when the diastole took place by reason of 

the rapidity of the movement..." 

      William Harvey, "De Motu Cordis", 1628 

 

The circulatory system is an organ system whose primary role is to transfer and deliver 

oxygen and nutrients to the cells, whilst carrying carbon dioxide and other waste away from the 

cells.  

Blood vessels have different characteristics, depending on their role (Pedley, 1980). 

Bigger arteries allow blood to travel at high velocities and at a small energy cost from the heart 

to the various organs; once there, vessel diameters become smaller as they keep branching out 

and become arterioles and then capillaries. At the capillary level flow is particularly slow, since 

the vessel diameter is comparable to the size of red blood cells, which often need to deform in 

order to pass through the vessel (Boryczko et al., 2003).  

The increase in total vessel area combined with the increased resistance posed to the 

flow results in a big drop in both velocity and pressure at the arteriolar level, as shown in 

Figure 2-5.  

 

Figure 2-5 Pressure and velocity drop in the circulatory system as a function of total area. Image from (Boryczko et al., 2003). 

http://en.wikipedia.org/wiki/Heart
http://en.wikipedia.org/wiki/God
http://en.wikipedia.org/wiki/Systole_%28medicine%29
http://en.wikipedia.org/wiki/Diastole
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2.3.1 The main cause of cardiovascular disease:  atherosclerosis 

 

Atherosclerosis is the principal source of cerebral and myocardial infarction (stroke and 

heart attack respectively), the leading cause of death in the US and Europe and a prominent 

cause of death around the world (Truelsen et al., 2003, Lloyd-Jones et al., 2009). The 

atheromatous plaque results from the accumulation of lipoproteins which undergo oxidative 

modification (e.g. oxidised low-density lipoprotein, oxLDL) under the endothelial innermost 

lining of the luminal wall. This process is accompanied by an inflammatory response involving 

white blood cells such as monocytes and T-cells which pass from the bloodstream into the 

sub-endothelium. Monocyte/macrophages try to engulf the lipoproteins, forming lipid-laden 

foam cells, while proliferation of dedifferentiated smooth muscle cells and the presence of 

calcium deposits are also commonly observed (Ross, 1993). This process begins as a fatty 

streak in early life but subsequently results in the formation of a composite material called 

atherosclerotic plaque, or atheroma, Different examples of atherosclerotic plaque are shown in 

Figure 2-6.  

 

Figure 2-6 Examples of coronary atheromatous plaque under microscopy and staining..A. Lipid core with fibrous cap lesions 

are more likely to rupture.B. Lesions with calcification are considered stable. C. Thrombus formed after plaque rupture. 

(Images from http://library.med.utah.edu/WebPath/) 

 

The mechanism of atherosclerosis formation and progress is very complex and has been 

studied extensively, but still the interactions between the cells and molecules involved is not 

entirely clear (Lusis, 2000). Epidemiological studies have shown a multitude of risk factors 

associated with the formation of atherosclerosis, and they can be divided into two large 

categories, systemic risk factors and localised risk factors.  
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The systemic risk factors include elevated cholesterol levels in the plasma (Glass and 

Witztum, 2001), hypertension (Sun et al., 2000), diabetes (Li and Chen, 2005, Glowinska et al., 

2003, Fukuhara et al., 2013), smoking (Kim et al., 2013, Minor et al., 2013), genetic 

predisposition (Rodrigues et al., 2013, Incalcaterra et al., 2013), age (Nozue et al., 2013) and 

the male gender (Martini, 2004, Gao and Geng, 2013). 

The localised risk factors are mostly associated with abnormal wall shear stress 

patterns, with studies showing that areas with low (Caro et al., 1969), oscillating (Ku et al., 

1985) or both (Malek et al., 1999) wall shear stress patterns correlate with the accumulation of 

atherosclerotic plaque. There is also suggestion that the high wall shear stress flow conditions 

resulting from increased flow velocities at vessel narrowings can become harmful, as it can 

promote the degeneration of the fibrous cap covering the plaque, thus facilitating plaque 

rapture (Dolan et al., 2013). More recently, the suggestion was made that the 

multidirectionality of the wall shear stress vector can have an effect in the plaque formation 

mechanism, with experiments in rabbit aortas indicating that a transverse wall shear stress 

index incorporating multidirectionality has good correlation with atherosclerosis development 

sites (Peiffer et al., 2013). 
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2.3 Aortic Stenosis 

2.3.1 The haemodynamics of the aortic valve in health and disease 

 

The aortic valve is situated inside the aortic root and connects the left ventricle with the 

aorta. It consists of (usually) three leaflets which move passively with the flow to allow the 

ejection of blood into the aorta during systole, and then prevent the reversal of flow during 

diastole when the pressure is lower in the relaxing ventricle than in the aorta. Impaired function 

of the aortic valve can result in smaller opening during systole or insufficient closing of the 

valve leaflets during diastole, resulting in abnormal flow patterns. 

Aortic flow can become intermittently turbulent under certain conditions, which largely 

depend on an individual’s cardiac output and pulse frequency (Nerem and Seed, 1972, Kousera 

et al., 2013, Bogren and Buonocore, 1999). When cardiac output is high, systolic flow velocity 

is also high and thus transition to turbulence is more likely. Due to the characteristic geometry 

of the aortic arch, flow tends to form helical structures during deceleration and diastole, as 

shown in Figure 2-7.  

It is widely thought that the presence of turbulence in the aorta is in itself benign and 

fairly common, especially during exercise when cardiac output increases (Kilner et al., 1997, 

Stein and Sabbah, 1976), and poses no danger to an individual’s health. In normal aortas, the 

pressure drop observed across the aortic valve is less than 25 mmHg, and it has been shown 

(Yacoub et al., 1999) that the recirculation observed just above the aortic valve during closure 

facilitates flow into the coronary ostia during diastole. 

As discussed in the introductory chapter, the most common type of aortic valve disease 

is aortic stenosis, brought about by the degeneration of the valve leaflets (cusps) (Akerstrom et 

al., 2013). The degeneration (or aortic valve sclerosis) involves the progressive accumulation 

of lipids, followed by inflammation and calcification, a process very similar to the formation of 

atherosclerosis (but with no smooth muscle cell proliferation), which can be present for many 

years before symptoms appear. Aortic stenosis is more common in elderly patients, who are 

also likely to have comorbidities, such as coronary artery disease (Stefanini et al., 2013). The 

presence of aortic stenosis can result in ischaemia even when coronary atherosclerotic lesions 

are not present (Davies et al., 2011, Broyd et al., 2013, Camuglia et al., 2013). Untreated aortic 

stenosis has a 3-year mortality rate of more than 50% (Ross and Braunwald, 1968), which 

increases to more than 80% in cases of severe cardiac comorbidities (Iung et al., 2003). 
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The presence of stenosis results in stiffer valve leaflets, which cannot open or close 

fully, resulting in problems both during systole and during diastole. During systole, the limited 

cross-sectional area of the valve causes an increase in the pressure drop observed (Yap et al., 

2010). In order to compensate for the loss of pressure, systolic pressure inside the left ventricle 

increases, resulting in overexertion of the heart muscle. If left untreated, the increased pressure 

can result in hypertrophic cardiomyopathy (Smith and Squiers, 2013), which can then cause 

symptoms such as angina, syncope or dyspnoea (Fallen et al., 1967), due to the fact that the 

coronary circulation can no longer provide enough oxygen to the hypertrophic heart muscle, 

leading to ischaemia in the subendocardium (Davies et al., 2011). 

During diastole, a valve which is not fully closed will result in aortic regurgitation and 

results in reduced forward flow, compensated for by an increase in both the systolic and 

diastolic pressures and a shortened R-R interval. A schematic representation of aortic valve 

stenosis is shown in Figure 2-8A, while an image of the resulting hypertrophy is shown in 

Figure 2-8B. 

 

Figure 2-7 Helical flow structures in healthy human aortas during flow deceleration after valve closure (A) visualised in 4D 

MRI (Bogren and Buonocore, 1999) and (B) observed in numerical studies (Kousera et al., 2013). The presence of intermittent 

turbulence in the aorta is considered benign. 

A B
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Figure 2-8 A Schematic representation of aortic stenosis.BLeft ventricular cavity reduced by hypertrophic muscle. (Image 

adapted from (Ho, 2009)) 

 

2.3.2 Treatment options for aortic stenosis 

 

It has been shown that, unlike atherosclerosis, the progress of aortic valve disease 

cannot be stopped or reversed using current medical therapy, and so the only viable treatment 

options are those that can help reduce the pressure drop through the valve, whilst preventing 

regurgitation (Wong et al., 2013, Cowell et al., 2005). This most commonly involves the 

surgical replacement of the valve (aortic valve replacement surgery, or AVR, shown in 

Figure 2-9A). AVR is a very invasive process, which is often too high-risk for the elderly 

population, or population with comorbidities, that forms a large percentage of aortic stenosis 

patients (Bonow et al., 2006).  

A milder, less invasive procedure called Transcatheter Aortic Valve Implantation 

(TAVI) was developed in the previous decade (Cribier et al., 2002).In TAVI, a replacement 

(typically bovine) valve is placed inside a crumpled metal frame, and is then delivered via 

catheter and expanded into place, pushing the original valve against the aortic wall 

(Figure 2-9B). 

The procedure can be very similar to coronary balloon stenting, but an important 

difference is the need for external pacing at high heart rates in order to maintain the original 

valve orifice open for as long as possible to place and expand the new valve. The TAVI 

A B
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procedure is currently considered the best available option for those who are too high-risk to 

get conventional, surgical AVR, as evidenced mainly from the results of the randomised  

clinical PARTNER trial (Svensson et al., 2014, Leon et al., 2010) and research into specific 

types of valves such as the Core Valve Revalving System (Piazza et al., 2008).  

However, TAVI is not without complications. There is a 30-day mortality rate of 

5-15%, usually due to stroke or vascular complications, which can occur in up to 20% of TAVI 

patients. The increased mortality risk can be attributed to the fact that TAVI is recommended 

only for high-risk patients in the ESC guidelines (Vahanian et al., 2012) who have more severe 

forms of disease and/or comorbidities. In a study comparing TAVI and AVR in patients with 

similar disease severity (Smith et al., 2011) it was found that the two procedures result in 

comparable mortality at 1 year, but the patients who received TAVI were more likely to have 

cerebrovascular events, vascular complications and paravalvular leaks compared to the AVR 

group. Furthermore, the presence of coronary artery disease results in increased negative 

procedural and late outcomes compared to combined AVR and coronary artery by-pass surgery 

(Dewey et al., 2010), while the two-year follow-up of the PARTNER trial shows that increased 

paravalvular leak in the TAVI group is associated with increased late mortality compared to the 

AVR group (Kodali et al., 2012). 

 

Figure 2-9Treatment options for aortic stenosis involve the replacement of the diseased valve. A Surgical aortic valve 

implantation.B Graph of atranscatheter aortic valve implantation (TAVI) device delivered using a femoral approach (Edwards 

Lifesciences). 
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A proof-of-concept study using computational fluid dynamics to explore the potential 

of a TAVI-like device that would not require aggressive balloon expansion is presented in 

Chapter 3. 

2.3.3 Diagnostic techniques for aortic stenosis 

 

Transthoracic echocardiography is the most common imaging technique used in the 

diagnosis of aortic sclerosis and stenosis. Echocardiography is quick, cheap and easy to 

perform at the bedside, with the ability to image large portions of the heart in a very short time, 

allowing quick evaluation of a patient’s heart movement in real time. The aortic valve cusps 

are best visible in the parasternal short axis and long axis and apical views (Bilen et al., 2014). 

Echocardiography can provide information on the degree of valve calcification, left ventricular 

function and wall thickness (Baumgartner et al., 2009). Exercise test and pharmacological 

(dobutamine) stress echocardiography can be used to assess the presence of ischaemia (Picano, 

1992, Lancellotti and Magne, 2013). However, measuring the aortic orifice area from 

echocardiography is subject to errors and inconsistencies caused by the low image resolution 

and poor contrast, resulting in operator-dependent and therefore less robust assessment.  

CT has also been used to evaluate the valve orifice area with greater accuracy than 

echocardiography (Bouvier et al., 2006), as well as the size and orientation of the aortic 

annulus to determine the size of the prosthetic valve required in potential valve replacement 

surgery (Samin et al., 2014). It is also used to detect calcification, which is visible on CT 

images as bright white patches. Assessing the degree of calcification (calcium score) can be 

helpful in assessing the potential for treatment with TAVI, as the presence of calcification 

poses increased risk of embolization (Tops et al., 2008). 

Echocardiography used in conjunction with Doppler ultrasound velocity measurements 

is the preferred technique to assess aortic stenosis in clinical practice (Baumgartner et al., 

2009). Doppler echocardiography can be used to indirectly estimate the valve orifice area, 

using the continuity equation (derived from the law of conservation of mass) as shown in 

Figure 2-10.  The pressure differential between the proximal (left ventricular) and distal 

(aortic) side of the valve can also be calculated by applying the Bernoulli equation (Wood, 

1999) using the measured velocity at the aortic valve level.  
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Figure 2-10 Estimation of aortic valve area (AVA) using Doppler echocardiography. The velocity time integral (VTI) is the 

most accurate way of estimating the mean velocity on the cross-section, and is measured at both the LVOT and the aortic valve 

level. The continuity equation (schematically represented in the bottom panel) can then be applied to estimate the aortic valve 

area. Images adapted from (Ozkan, 2012). 

 

The multiple available diagnostic criteria result in a set of guidelines for severity 

assessment. An aortic valve area of less than 1 cm
2
 , a velocity ratio (LVOT level /aortic valve 

level) of less than 0.25, a peak velocity through the valve of more than 4m/s or mean pressure 

gradient through the valve of > 40 mmHg are all considered indications of disease (Vahanian et 

al., 2013, Baumgartner et al., 2009). 

  

LVOT diameter LVOT velocity time 
integral (VTI)

Aortic valve velocity 
time integral (VTI)

regurgitation
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2.3.4 Computational modelling of laminar-turbulent transition in the aorta 

The Shear Stress Transport turbulence model 

 

One of the most commonly used group of models for turbulent flow simulations is the 

Reynolds-Averaged Navier-Stokes models (RANS). In this approach, Reynolds decomposition 

of the flow variables into mean and fluctuating parts is used (Dewan, 2011)(Wilcox 2006). 

Two-equation RANS models are the simplest complete (closed) models of turbulence, which 

means that they can be used to “predict properties of a given flow with no prior knowledge of 

the turbulence structure” (Wilcox 1993), as they do not need to relate the turbulence length 

scale to some typical flow dimension. 

The k-ε (Jones and Launder, 1972) and k-ω  (Wilcox, 2006)  models are the most 

commonly used two-equation RANS models. The k-ε model cannot give satisfactory results 

inside the boundary layer, and generally wall functions have to be used; the k-ω model, though 

it can simulate flow near the wall, is too sensitive to the entry conditions and it can be more 

complicated than is needed to describe the bulk flow. In general, these two models give 

acceptable results for fully turbulent flows, but they do not adapt to transitional flow equally 

well. 

Menter (Menter, 1994b) combined k-ε and k-ω models to form the Shear Stress 

Transport (SST) model. Blending functions that enable the model to switch from the k-ε model 

in the core flow and outer zone of the boundary layer to the k-ω model in the inner zones are 

used, thus combining the advantages of the component models to create a model more accurate 

and more widely applicable than the previous two. 

 

For the derivation of the model, the k-ε transport equations for turbulence kinetic 

energy k and dissipation ε are expressed in terms of ω (root-mean-square fluctuating vorticity). 

(Note that all equations in this paragraph have been multiplied by density, and therefore are 

expressed in terms of dynamic viscosity. Also, D/Dt is the Lagrangian derivative = ∂/∂t + 

ui∂/∂xi): 

Original k-ω model (Wilcox, 1993, Menter, 1994a) : 

𝐷𝜌𝑘

𝐷𝑡
= 𝜏𝑖𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝛽∗𝜌𝑘𝜔 +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝑘1𝜇𝛵)

𝜕𝑘

𝜕𝑥𝑗
]                                     (2.3) 

𝐷𝜌𝜔

𝐷𝑡
=

𝛾1

𝜈𝛵
𝜏𝑖𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝛽1𝜌𝜔2 +

2𝜌𝜎𝜔1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
+

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝜔1𝜇𝛵)

𝜕𝜔

𝜕𝑥𝑗
]                                    (2.4) 
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Modified k-ε model (Menter, 1994a): 

𝐷𝜌𝑘

𝐷𝑡
= 𝜏𝑖𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝛽∗𝜌𝑘𝜔 +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝑘2𝜇𝛵)

𝜕𝑘

𝜕𝑥𝑗
]                                (2.5) 

𝐷𝜌𝜔

𝐷𝑡
=

𝛾2

𝜈𝛵
𝜏𝑖𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝛽2𝜌𝜔2 +

2𝜌𝜎𝜔2

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
+

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝜔2𝜇𝛵)

𝜕𝜔

𝜕𝑥𝑗
]                               (2.6) 

 

where: 

𝑈𝑖: mean velocity 

𝜏𝑖𝑗= 
 ij uu , where 𝑢 

′ is the fluctuation of the velocity, Reynolds-stress tensor 

𝑘 =
1

2
𝑢𝑖
′𝑢𝑖
′̅̅ ̅̅ ̅, turbulence kinetic energy 

𝜇: dynamic viscosity 

𝜇𝛵: dynamic eddy viscosity  

𝜈𝛵 : kinematic eddy viscosity 

Auxiliary relations and closure coefficients: 

𝜎𝑘1 = 0.5, 𝜎𝜔1 =  0.5, 𝛽1 = 0.0750, 𝛽∗
 

= 0.09, 𝜅 = 0.41, 𝛾1 =
𝛽1

𝛽∗ −
𝜎𝜔1 𝜅2

√𝛽∗
 

𝜎𝑘2 = 1, 𝛾2 =
𝛽2

𝛽∗ −
𝜎𝜔2 𝜅2

√𝛽∗
 , 𝜎𝜔2 =  0.856 𝛽2 = 0.0828,  

𝛽 = 𝛽0𝑓𝛽 , 𝛽0 = 0.0708, 𝑓𝛽 =
1+85𝜒𝜔

1+100𝜒𝜔
, 𝜒𝜔 ≡ |

𝛺𝑖𝑗𝛺𝑗𝑘𝑆𝑘𝑖

(𝛽∗𝜔)3 | 

 

The 𝛺𝑖𝑗 and 𝑆𝑖𝑗 terms appearing in the definition of 𝜒𝜔 are called the mean-rotation and 

mean-strain-rate tensors respectively, and are functions of the velocity gradients. 

 

The procedure followed is to take the two transport equations from the k-ω model  and 

multiply them by a blending function F1, while the transformed k-ε equations shown above are 

multiplied by (1 - F1). Then, the corresponding equations of each model are added together to 

give the new model: 

 

𝐷𝜌𝑘

𝐷𝑡
= 𝜏𝑖𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝛽∗𝜌𝑘𝜔 +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝑘𝜇𝛵)

𝜕𝑘

𝜕𝑥𝑗
]                                (2.7) 

 

𝐷𝜌𝜔

𝐷𝑡
=

𝛾

𝜈𝛵
𝜏𝑖𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝛽𝜌𝜔2 +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝜔𝜇𝛵)

𝜕𝜔

𝜕𝑥𝑗
] + 2𝜌(1 − 𝐹1)𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
               (2.8) 
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 where the constants 𝜎𝑘  and 𝜎𝜔  of the new model were calculated according to the formula: 

 

𝜑 =  𝜑1 𝐹1 + (1 − 𝐹1) 𝜑2, φ = model constant                  (2.9) 

 

The function F1 has been designed to be one near the wall region, thus activating the 

original k-ω model, zero away from the surface, and the blending takes place in the outer parts 

of the boundary layer.  

 

A limiter in the kinematic eddy-viscosity is incorporated in the SST model, which 

enables it to solve accurately for flows where adverse pressure gradients appear. This is 

because in adverse pressure gradient flows, the ratio of production to dissipation may be higher 

than one, something that the k-ε and k-ω models could not capture. In those cases Bradshaw’s 

assumption that the turbulent shear stress is proportional to the turbulence kinetic energy is not 

satisfied, which could end in overprediction of the turbulence-viscosity (Tan et al., 2008).  The 

new kinematic viscosity equation, which satisfies Bradshaw’s assumption at all times, is: 

 

𝜈𝛵 =
𝛼1𝑘

max (𝛼1𝜔;𝛺𝐹2)
                          (2.10) 

 

where F2 is another blending function that is one for the flow inside the boundary layer and 

zero for regions of free shear flow. 

 

The blending functions are:  

 

𝐹1 = tanh (𝑎𝑟𝑔1
4)                 (2.11) 

where 𝑎𝑟𝑔1 = min (max (
√𝑘

0.09𝜔𝑦
,

500𝜈

𝑦2𝜔
) ,

4𝜌𝜎𝜔2𝑘

𝐶𝐷𝑘𝑤𝑦2)                        (2.12)

  

y is the distance to the closest wall and 𝐶𝐷𝑘𝑤 is defined as: 

 

 𝐶𝐷𝑘𝑤 = max (2𝜌𝜎𝜔2
1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−10)                         (2.13) 

𝐹2 = tanh (𝑎𝑟𝑔2
2)                (2.14) 
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where: 𝑎𝑟𝑔2 = max (
√𝑘

0.09𝜔𝑦
 ,

500𝜈

𝑦2𝜔
)                                  (2.15) 

 

The model constants are: α = 5/9, β = 0.075, σω= 0.5, α1=0.31  

Transition modelling 

 

Laminar-turbulent transition is a complex phenomenon, but it’s not out of the range of 

RANS methods. With the addition of proper correlations that are taking transition into account, 

RANS-based transitional models have been developed, which satisfy almost all the 

requirements for a reliable and robust transitional model (Menter et al., 2006b). 

The Shear Stress Transport model with transitional correlations 

 

The SST model has been improved to describe transitional flows, by coupling transport 

equations for the intermittency γ, and transition momentum thickness Re, informed by 

empirical correlations, with the SST hybrid k-ε/k-ω model. Additionally, a separated shear 

layer transition treatment is incorporated.  

 

The intermittency factor γ quantifies the intermittent behaviour that is exhibited by 

flows during transition. It is defined as the relative fraction of time during which the flow is 

turbulent at a certain position. It ranges from zero at the transition point to 100 percent at the 

end of transition when the flow is fully turbulent (Steelant and Dick, 2001).The transport 

equation for the intermittency γ needs to be added to the model, in order to turn on the 

production term of the turbulence kinetic energy downstream of the transition point in the 

boundary layer (Menter et al., 2006): 

 

 
𝜕𝜌𝛾

𝜕𝑡
+

𝜕𝜌𝑈𝑗𝛾

𝜕𝑥𝑗
= 𝑃𝛾 − 𝛦𝛾 +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜇𝑇/𝜎𝑓)

𝜕𝛾

𝜕𝑥𝑗
]             (2.16) 

 

The transition source term is: 

  

 𝑃𝛾 = 𝐹𝑙𝑒𝑛𝑔𝑡ℎ𝑐𝑎1𝜌𝑆[𝛾𝐹𝑜𝑛𝑠𝑒𝑡]0.5(1 − 𝛾)              (2.17) 
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where S is the absolute value of the strain rate. The function Fonset is there to make this term 

zero in the laminar boundary layer upstream of the transition and activate it when the local 

strain-rate Reynolds number exceeds the local transition criteria. The function of Fonset is such 

that its value switches rapidly from zero in a laminar boundary layer to one downstream of a 

transition onset. It’s a function of the strain-rate (or vorticity) Reynolds number, ReV and the 

turbulent Reynolds number RT:  

  

ReV =
ρy2

μ
S, 𝑅𝑇 =

𝜌𝑘

𝜇𝜔
                                   (2.18) 

𝐹𝑜𝑛𝑠𝑒𝑡1 =
ReV

2.193Re𝜃c
                         (2.19) 

𝐹𝑜𝑛𝑠𝑒𝑡2 = min (max(𝐹𝑜𝑛𝑠𝑒𝑡1, 𝐹𝑜𝑛𝑠𝑒𝑡1
4 ) , 2.0)                      (2.20) 

𝐹𝑜𝑛𝑠𝑒𝑡3 = max(1 − (
RT

2.5
)

3

, 0)                       (2.21) 

𝐹𝑜𝑛𝑠𝑒𝑡 = max (𝐹𝑜𝑛𝑠𝑒𝑡2 − 𝐹𝑜𝑛𝑠𝑒𝑡3, 0)                     (2.22) 

 

Reθc that appears in equation 2.19 is the critical Reynolds number where the 

intermittency starts to increase in the boundary layer, and is therefore thought as the location 

where turbulence starts to grow, as opposed to Reθt which is the location where the velocity 

profile starts to deviate from the laminar profile. The relation between the two is given by an 

empirical correlation. Flength that appears in equation 2.17 is also a function of Reθt. 

 

The destruction/relaminarisation source is defined as: 

 

𝐸𝛾 = 𝑐𝑎2𝜌𝛺𝛾𝐹𝑡𝑢𝑟𝑏(𝑐𝑒2𝛾 − 1)              (2.23) 

 

where Ω is the vorticity magnitude. This term is used in two ways: it ensures that the 

intermittency is close to zero in the laminar boundary layer and it provides a means for the 

intermittency to return to zero when relaminarisation occurs. Fturb is a function used to 

deactivate the destruction/relaminarisation source when the flow is fully turbulent: 

   

  𝐹𝑡𝑢𝑟𝑏 = 𝑒−
𝑅𝑇
4

4

                          (2.24) 

 

The constants for the intermittency equation and the related functions are: 
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 𝑐𝑎1 = 2.0 , 𝑐𝑒2 = 50, 𝑐𝑎2 = 0.06  , 𝜎𝑓 = 1.0 

 

In order to capture the non-local influence of turbulence intensity an equation for the 

momentum thickness Reynolds number 𝑅𝑒𝜃𝑡
̅̅ ̅̅ ̅̅  is needed. This is defined as: 

 

 
𝜕𝜌𝑅𝑒𝜃𝑡̅̅ ̅̅ ̅̅ ̅

𝜕𝑡
+

𝜕𝜌𝑈𝑗𝑅𝑒𝜃𝑡̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗
= 𝑃𝜃𝑡 +

𝜕

𝜕𝑥𝑗
[𝜎𝜃𝑡(𝜇 + 𝜇𝑇)

𝜕𝑅𝑒𝜃𝑡̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗
]                     (2.25) 

The role of the source term 𝑃𝜃𝑡is to force the transported scalar 𝑅𝑒𝜃𝑡
̅̅ ̅̅ ̅̅   to match the local value 

of 𝑅𝑒𝜃𝑡
̅̅ ̅̅ ̅̅  and is given by: 

 

 𝑃𝜃𝑡 =  𝑐𝜃𝑡
𝜌

𝑡
(𝑅𝑒𝜃𝑡 − 𝑅𝑒𝜃𝑡

̅̅ ̅̅ ̅̅ )(1.0 − 𝐹𝜃𝑡) , 𝑡 =
500𝜇

𝜌𝑈2                      (2.26) 

t is a timescale introduced for dimensional reasons. 𝐹𝜃𝑡is a blending function that is zero in the 

free stream and one in the boundary layer and it is used in order to deactivate the source term 

and allow the value of 𝑅𝑒𝜃𝑡
̅̅ ̅̅ ̅̅  in the free stream to diffuse into the boundary layer. 

 

 𝐹𝜃𝑡 = min (max (𝐹𝑤𝑎𝑘𝑒𝑒−(
𝑦

𝛿
)

4

, 1.0 − (
𝛾−

1

𝑐𝑒2

1.0−
1

𝑐𝑒2

)

2

) , 1.0)            (2.27) 

 

 θBL =
Reθt̅̅ ̅̅ ̅̅ μ

ρU
,     𝛿BL =

15

2
θBL ,𝛿 =

50Ω𝑦

𝑈
𝛿BL                         (2.28)  

 Re𝜔 =
𝜌𝜔𝑦2

𝜇
,  𝐹𝑤𝑎𝑘𝑒 = 𝑒

−(
𝑅𝑒𝜔
105 )2

               (2.29) 

 

 The constants for this equation are  𝑐𝜃𝑡 = 0.03and 𝜎𝜃𝑡 = 2.0 . 

  

The model as described above made inaccurate predictions of the turbulent 

reattachment location, placing the reattachment point fat too downstream. This was attributed 

to the fact that for low free stream turbulence intensity, the turbulence kinetic energy takes 

longer to grow to a large enough value that will cause the boundary layer to reattach. 

 

 To correct this deficiency a modification was introduced to the model, allowing the 

intermittency to take values larger than one whenever the laminar boundary layer separates. 

This was achieved using the ratio of the strain-rate Reynolds number ReV to the momentum 

thickness Reynolds number Reθ. For laminar separation the value of the former exceeds the 



37 
 

value of the latter, whereas for all other flows the values are similar. Therefore this ratio is a 

measure of the size of the laminar separation and is used to increase the production of 

turbulence kinetic energy. The modifications for separation induced transition are therefore: 

 

 𝛾𝑠𝑒𝑝 = min (𝑠1 max ([0, (
𝑅𝑒𝑉

3.235𝑅𝑒𝜃𝑐
) − 1] 𝐹𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ𝑚𝑒𝑛𝑡, 2) 𝐹𝜃𝑡           (2.30) 

 𝐹𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ𝑚𝑒𝑛𝑡 = 𝑒−(
𝑅𝑇
20

)4

  ,  𝛾𝑒𝑓𝑓 = max(𝛾, 𝛾𝑠𝑒𝑝) , 𝑠1 = 2            (2.31) 

 

The model uses three empirical correlations: 

 

𝑅𝑒𝜃𝑡 = 𝑓(𝑇𝑢, 𝜆𝜃),   𝐹𝑙𝑒𝑛𝑔𝑡ℎ = 𝑓(Reθt
̅̅ ̅̅ ̅̅ ) ,𝑅𝑒𝜃𝑐 = 𝑓(Reθt

̅̅ ̅̅ ̅̅ )            (2.32) 

where Tu is the turbulence intensity and 𝜆𝜃 is Thwaites pressure gradient coefficient:  

 

 𝑇𝑢 = 100
√2𝑘/3

𝑈
  ,  𝜆𝜃 =

𝜌𝜃2

𝜇

𝑑𝑈

𝑑𝑠
               (2.33) 

 

The above model can be coupled with a modified version of the SST model presented 

previously. The modified equations of the SST are: 

 

Equation for the eddy viscosity: 

μ
Τ

= min [
ρk

ω
,

α1ρk

SF2
]                           (2.34)  

Equation for the turbulence kinetic energy: 

 𝜕𝜌𝑘

𝜕𝑡
+

𝜕𝜌𝑈𝑗𝑘

𝜕𝑥𝑗
= 𝑃𝑘̃ − 𝐷𝑘̃ +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝑘𝜇𝑇)

𝜕𝑘

𝜕𝑥𝑗
]                     (2.35) 

Equation for the specific dissipation rate: 

 𝜕𝜌𝜔

𝜕𝑡
+

𝜕𝜌𝑈𝑗𝜔

𝜕𝑥𝑗
= 𝛼

𝑃𝑘

𝜈𝑇
− 𝐷𝜔 + 𝐶𝐷𝜔 +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝑘𝜇𝑇)

𝜕𝜔

𝜕𝑥𝑗
]                    (2.36) 

 

where 𝑃𝑘̃ = 𝛾𝑒𝑓𝑓𝑃𝑘  ,  𝐷𝑘̃ = min(max(𝛾𝑒𝑓𝑓 , 0.1), 1.0)𝐷𝑘            (2.37) 

 

The only difference between this and the original SST model is the appearance of the 

effective intermittency γeff .  
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 One last modification had to be made in the original SST model and that involved the 

blending function F1 that switches between the k-ω and the k-ε model. In the centre of the 

laminar boundary layer F1 could potentially switch from one to zero, which is not desirable, as 

the k-ω model must be active in both the laminar and turbulent boundary layer. The modified 

blending function is shown below: 

 

 𝑅𝑦 =
𝜌𝑦√𝑘

𝜇
,  𝐹3 =  𝑒−(

𝑅𝑦

120
)

8

, 𝐹1 = max (𝐹1𝑜𝑟𝑖𝑔, 𝐹3)             (2.38) 

 

where F1orig is the original blending function from the SST model.  

 

2.3.5  Computational aorta and aortic root studies 

 

Aortic flow was one of the first applications of CFD in physiological studies. Already 

in 1985 two studies investigating flow through normal and prosthetic aortic valves were 

published (Idelsohn et al., 1985, Stevenson and Yoganathan, 1985). Most CFD studies in the 

80s and early 90s were done on idealised geometries, usually straight, cylindrical tubes of 

diameter corresponding to the studied vessel, using simple, steady-state or sinusoidal boundary 

conditions. Symmetric or eccentric stenoses were added to simulate the effects of disease (Sud 

and Sekhon, 1990, Wong et al., 1991, Yamaguchi, 1993).  

 

Improvements in the imaging resolution of diagnostic techniques such as MRI and CT 

made the creation of computational models based on patient anatomical data possible (Moore 

et al., 1999, Taylor et al., 1998, Long et al., 2000, Milner et al., 1998), while the combination 

of computational and in vitro models allowed for the validation of the mathematical codes used 

(Weston et al., 1998).  

 

The refinement of computational turbulence models allowed for further study into 

which models can best describe each type of flow. Two-equation RANS models found 

application in turbulence modelling in the larger arteries(Kagadis et al., 2008),(Tan et al., 

2008).(Tan et al., 2009a) used an SST model with transitional correlations (SST Tran) coupled 

with fluid-structure interaction (FSI) to simulate a patient specific model of an aortic aneurysm, 

reconstructed using MRI data, and acquired data for time averaged wall shear stress (TAWSS) 

and wall displacement that could be valuable for predicting and preventing the rupture of the 
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aneurysm. The predicted flow structure at the distal end of the aneurysm agreed well with the 

flow structure measured by PC-MRI, giving validation of the method in this application. 

Following the validation of the transitional model, (Kousera et al., 2013)  investigated the most 

suitable inflow turbulence intensity levels for applications in the human aorta, studying two 

different levels of turbulence intensity, 1% and 1.5% (values that arise from precious in vitro 

validation experiments on models of the carotid), and found that an inflow level of 1% 

provides the best agreement with in vivo hot film velocity measurements presented in (Stein 

and Sabbah, 1976). 

 

The aortic root has been of particular interest to CFD researchers, being one of the first 

applications of CFD in the study of blood flow. The relatively easy access to anatomical and 

functional data, and the clinical relevance of the flow conditions means a large number of 

computational aortic valve studies exist, investigating nearly all aspects of aortic root flow 

including jet symmetry (Ge et al., 2003), diagnosis (DeGroff et al., 1998), effect on device 

design (Schoenhagen et al., 2011), and comparison of pre-post procedure flow patterns (Tan, 

2011).  
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2.4 Coronary artery disease  

2.4.1  The haemodynamics of the coronary artery tree in health and disease 

 

The movement of the heart muscle is a complicated series of coordinated contractions 

and relaxations, which are triggered and controlled by electric signals and are repeated in every 

heartbeat, as illustrated in Figure 2-11. Due to the high amount of work performed by the heart 

muscle cells and the need for these complicated movements, the perfusion of the heart muscle 

presents challenges which are unique to the heart. It is therefore common to study the system of 

arteries providing blood to the heart muscle as a separate circulation “loop”, the coronary 

circulation, which provides blood to the myocardium. 

 

Figure 2-11 Left. Diagram of the human heart and the main vessels through which blood flows in and out of the heart’s four 

chambers. Right. Illustration of the  epicardial coronary arteries. 

 

The coronary microvasculature and backward-travelling waves 

 

The amount of flow going into the epicardial arteries is controlled by the resistance to 

the flow posed by the microvasculature, which is located deep inside the heart muscle and is 

directly affected by the contraction and relaxation of the cardiac muscle (Figure 2-12).  

The effect of the heart muscle contracting and relaxing on coronary flow is visible in 

the relationship between the pressure and flow velocity waveforms (Figure 2-13). Whilst in the 

aorta the velocity waveform peaks at around the same time as the pressure waveform, in the 

left coronary artery peak flow occurs during diastole, and in the right coronary artery two 
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distinct peaks can be seen, one in systole and one in diastole. These actions can be seen in the 

wave intensity analysis of the coronary circulation (Sen et al., 2013b). A cluster of forward and 

backward-travelling waves appear during systole and early diastole. During later diastole, 

however, there are no evident waves in either the coronary or aortic circulation, and the 

pressure and velocity waveform appear to be falling at the same rate, suggesting quasi-constant 

resistance at this part of the cycle, which is called the diastolic wave-free period (Sen et al., 

2012). 

 

Figure 2-12 Left An image of the intramural microvasculature of a porcine heart taken using imaging microtome. Image 

adapted from (van den Wijngaard et al., 2011).Right Variation of microvessel diameter and its effect on coronary flow. Image 

adapted from (Kajiya and Goto, 1999). 

 

Figure 2-13 Top row. Pressure and velocity waveforms (left) in the human aorta. Bottom row. Pressure and velocity 

waveforms in the left coronary artery (left). Coronary flow during systole is minimal, while peak flow occurs during diastole. 

Backward travelling expansion waves (red) generating at the microcirculation result in increased diastolic flow. Waveform 

images adapted from (Davies et al., 2008), wave intensity analysis images adapted from (Parker, 2013). 

Left VentricleRight Ventricle

dI (W) 

dI (W) 
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Autoregulation of coronary flow  

 

In a normal individual, the diameter of the intramyocardial microvessels can be, to an 

extent, controlled by the vessels. For example, microvessels can widen in case of increased 

oxygen demand, such as during exercise, and then narrow down again when oxygen demand 

returns to normal (resting conditions). This means that microvascular resistance can vary 

considerably in the same person from beat to beat, thus ensuring a sufficient amount of flow is 

present in the coronary circulation at all times. This effect is called autoregulation of coronary 

flow. 

The autoregulation mechanism can help the coronary circulation maintain the required 

flow in the presence of disease. The increase in flow resistance posed by the presence of 

lumen-obstructing atherosclerotic plaque can be almost completely offset by the widening of 

the microvessels for a wide range of anatomical obstruction, as can be seen in Figure (2-10). 

However, when the degree of anatomical obstruction becomes very high (for example more 

than 70% of the lumen area is obstructed by plaque) then the autoregulation system can no 

longer maintain flow and the disease becomes flow-limiting and intervention may be required. 

 

Figure 2-14 Scatterplot indicating the coronary blood flow reserve in the presence of anatomical obstruction Image adapted 

from (Dicarli et al., 1995). 
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The haemodynamics of diseased coronary arteries 

 

The presence of atherosclerosis in coronary arteries is the main cause of cardiac death 

in the world (Lloyd-Jones et al., 2009), as coronary lesions are more likely to be the rupture-

prone type, resulting in acute infarction. More stable coronary lesions can also become 

dangerous, however, as the presence of lesions, sometimes multiple in the same vessel 

(Figure 2-15), can impair perfusion.  

Flow in the coronary arteries is laminar. In the case of healthy vessels, the presence of 

bends, bifurcations and other complicated geometrical features means that a skewed Poiseuille 

spatial profile can be expected, with higher velocities observed at the outer side of bends and 

slower flow at the inner side. In the case of bifurcations, the amount of flow going into each 

branch can be reasonably estimated by using Murray’s law (Murray, 1926) which suggests that 

the division of flow at bifurcations is directly proportional to the cube of the radius of the 

daughter vessels, or: 

    𝑓 = 𝑘𝑟3              (2.39) 

where f is the volumetric flowrate going into a given daughter branch of radius r, and k is a 

constant depending on the fluid’s inherent properties and the principle of minimum work 

exerted by the heart to pump blood into the vessel. More recently, it has been shown that the 

power of 3 does not provide the best agreement in the case of human coronary vessels, and that 

other values for the exponent, such as 7/3, have been shown to perform better (Huo and 

Kassab, 2009). 

The pressure drop along a healthy epicardial coronary vessel can be calculated from 

Hagen-Poiseuille’s law that can estimate the pressure drop occurring due to the flow of a fluid 

with viscosity µ along a pipe of length L and constant radius r, with a flow rate Q, given by the 

equation 2.40: 

     𝛥𝑃 =  
8µ𝐿𝑄

𝜋𝑟4
              (2.40) 
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Figure 2-15 Example of how localised risk factors drive the formation of atherosclerosis in a right coronary artery 

(angiographic image). At least seven lesions can be identified in a single vessel, most of which are located in areas of 

complicated flow where abnormal wall shear stress can be expected, such as bifurcations (1,4,5) or highly tortuous segments 

(2,3,6). 

Three important assumptions are involved in this equation: a. that flow is laminar 

b. that the pipe length is considerably larger than its diameter and c. that the pipe has a constant 

circular radius. In the case of smooth healthy coronary arteries the first two assumptions hold 

true, and, even though the arteries taper as they are branching out, the change in radius can be 

considered negligible at the level of epicardial coronary arteries. Applying equation 2.40 for 

typical coronary flow conditions, a pressure drop of less than 1 mmHg is estimated, indicating 

that the pressure drop in healthy epicardial coronary arteries is negligible. 

In the case of stenosis, Poiseuille’s equation for pressure drop does not apply, as the 

radius can change dramatically in the stenosis, and the length of the stenosis itself is not much 

larger than the stenosis diameter. Flow is predicted to still be laminar, but the spatial profile 

inside a stenosis tends to present a flat “inviscid” centre, deviating from a typical Poiseuille 

flow profile, and disturbances in the form of recirculation appear downstream of the stenosis 

region due to the sudden spatial expansion. Attempts have been made to develop analytical 

models which will predict the pressure drop caused by the presence of a stenotic lesion based 

on geometrical characteristics such as length, degree of stenosis and parameters such as 

energy/pressure lost to sudden expansion and recirculation, but they appear so far to only work 

on lesions with particular characteristics (single-vessel lesion, high degree of stenosis) which 

are not representative of all lesions, and are not applicable to diffuse lesions (Huo et al., 2012, 

Seeley and Young, 1976, Guagliumi et al., 2013). Therefore, no analytical model exists yet that 
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can robustly and sufficiently describe the pressure profile in a realistic stenosed epicardial 

vessel. 

As discussed above, the pressure-flow relationship in the coronary arteries is 

complicated, and is influenced by a sequence of waves generated at both ends of the 

circulation. When a resistance to the flow is added in the form of a stenosis, coronary 

autoregulation will lower the overall resistance by dilating the microvessels, which have the 

ability to adjust their diameter so that flow will increase or decrease according to the needs of 

the muscle tissue (Feigl, 1983, Deussen et al., 2012). Therefore, despite proximal (aortic) 

pressure remaining largely constant, and pressure loss in the epicardial vessel becoming non-

negligible due to the presence of a stenosis, the supply of flow to the tissue can be maintained 

at high levels for a wide range of anatomical obstruction. This ability to maintain flow in the 

presence of disease is called coronary flow reserve (Knoebel et al., 1972, Gould et al., 1974a). 

As disease progresses, the accumulation of plaque can result in stenoses that pose a 

high enough resistance to flow that the intrinsic regulating system is overcome: microvessels 

become maximally dilated and the pressure distal to a stenosis becomes lower than required for 

sufficient tissue perfusion; a condition called ischaemia (Gould and Lipscomb, 1974a). That is 

usually when stable coronary stenoses become symptomatic, via a mechanism called “the 

ischaemic cascade”(Gerdts, 2011). Common symptoms of stable, flow-obstructing stenoses are 

chest pain, called angina pectoris, either intermittent (for example occurring during periods of 

exercise) or constant, fatigue and breathlessness. Flow-obstructing stenoses are considered to 

have lost their ability to maintain a flow reserve, meaning that intervention is required to 

alleviate the symptoms and restore flow to normal levels (van de Hoef et al., 2013). 

2.4.2 Treatment options for stable coronary artery stenoses 

 

While the more severe or acute cases of coronary artery disease (such as left main stem 

disease, or plaque rupture, respectively) need urgent surgical intervention such as Coronary 

Artery Bypass Graft surgery or PCI, cases of stable CAD may not require such invasive 

treatment, or may require no treatment at all. Lowering the level of cholesterol in the blood via 

medication and/or dietary changes has been proven to prevent, and sometimes reverse the 

accumulation of atheroma (Ross, 1993, Falk, 2006). In cases where the presence of stenosis is 

considered to cause ischaemia, percutaneous coronary intervention (PCI) is an option. In PCI, a 

catheter-delivered balloon is used to break up the plaque to “open” the vessel lumen to reduce 
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the narrowing (balloon angioplasty). Nowadays it is more common to place a drug-eluting stent 

during angioplasty (Figure 2-16), because it has been shown that stenting reduces the 

reoccurrence of stenosis (Violaris et al., 1997).      

 

 

Figure 2-16 Diagram of percutaneous coronary intervention (PCI) to place a stent to “open” a lesion. The stent consists of a 

meshed metal structure which is delivered to the lesion via catheter on an uninflated balloon (A). The balloon is then inflated, 

allowing the stent structure to push against the wall, compressing the plaque and increasing the lumen area (B). The balloon is 

then deflated and removed, leaving the stent in place (C). Drug-eluting stents will then help reduce the plaque burden or 

prevent further plaque from forming in the immediate area, thus reducing the risk for restenosis. 

 

2.4.3 Diagnostic techniques for coronary artery disease 

 

Coronary artery lesions are often diagnosed before they cause any symptoms, but it is 

still not possible to accurately evaluate in vivo the possibility of a lesion to rupture, or predict 

its progress (Wentzel et al., 2003a, Schaar et al., 2007). A summary of available diagnostic 

tools for coronary artery disease is given below. 

Invasive coronary angiography 

 

Visualisation of the coronary arteries is more commonly done using techniques that 

involve patient catheterisation. The oldest and most common is coronary angiography. The in-

plane resolution achieved is in the range of 0.12 to 0.2 mm, and it has been used for 

quantitative coronary anatomical assessment. However, due to the 2D nature of angiography, 

multiple views are required to avoid pitfalls such as foreshortening (a phenomenon where 
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objects appear “shorter” due to perspective) and to avoid errors in assessment of oblong, 

asymmetric stenoses, which are common (Meerkin et al., 2010a). Angiography can only 

visualise the vessel lumen, and, despite the relatively good resolution achieved, no information 

on plaque composition can be derived, except for the appearance of calcification as a hazy 

structure around the lumen. Angiography can be used in conjunction with several other 

techniques for both anatomical and functional assessment, is commonly used as a guide for 

intravascular procedures performed in the catheterisation lab, and currently has a Class I 

recommendation for diagnosis of coronary artery disease in the ESC guidelines.  

 

Figure 2-17 A CT angiogram showing a heavily calcified right coronary artery (left) and the 3D angiogram resulting from the 

volume rendering of the CT slices (right). The epicardial coronary arteries can be clearly visualised and stenoses identified 

(black arrows) on the 3D structure. The 3D coronary artery reconstruction from CT can be used in computational fluid 

dynamics (CFD) applications. Images adapted from (Shi et al., 2004). 

 

Non-invasive techniques: CT and MRI 

 

The field of computed tomography angiography (CTA) is gaining in popularity in 

recent years (Rubinshtein et al., 2014, Muhlenbruch et al., 2007), boosted by great 

improvement of image resolution in the past decade with the 64-slice scan MD-CT achieving 

an in-plane resolution of 0.4-0.5mm (Halon et al., 2006, Schlosser et al., 2008). This allows the 

quantitative assessment of anatomical obstruction in coronary artery disease with reasonable 

accuracy, and is considered reliable for ruling out significant coronary artery disease 

(Windecker et al., 2014). CTA also allows a 3D visualisation of the entire epicardial coronary 

tree (Figure2-21), which finds application in computational studies (Taylor et al., 2013). The 

drawbacks of the use of CT for coronary artery disease assessment include the radiation dose 
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(though that is steadily declining as the method’s technology progresses (Goitein et al., 2011)), 

the lack of real-time images (CT images are averaged over several beats) and the fact that there 

is no way to measure functional parameters such as pressure and flow velocity concurrently 

with the imaging.  CTA is a Class IIa recommended procedure for the diagnosis of coronary 

artery disease in the ESC guidelines for the management of stable disease (Montalescot et al., 

2013). 

Magnetic resonance imaging (MRI) is an imaging method which allows the 

measurement of velocity in the same imaging session (using phase-contrast, PC- MR) with 

reasonable spatial resolution, but the imaging resolution of MRI can be too low for visualising 

the coronary arteries. Even though it can be done (Torii et al., 2009a, Wu et al., 2013) it is not 

standard in clinical practice. 

Intravascular ultrasound 

 

Ultrasound technology can be used to assess coronary arteries invasively. Intracoronary 

ultrasound (IVUS) has several advantages, including higher in-plane resolution (80-150 μm, as 

reported by (Raber and Windecker, 2013)) than angiography, and the ability to penetrate deep 

inside the vessel wall to help visualise plaque composition (Wentzel et al., 2008), making it the 

established standard for accurate measurements of plaque burden. With IVUS, information 

about cross-sectional diameter and area, % area or diameter reduction and stenosis length can 

be derived with great accuracy. However, because the coordinates of the 2D cross-sectional 

images provided by IVUS in this way are local to each image, no information on the 3D 

structure, that is the relative position of each cross-section to the others in 3D space, can be 

derived, meaning that IVUS cannot provide information on vessel curvature and tortuosity, 

which is important from a fluid dynamics point of view, but also in the study of plaque 

structure. 

The idea of pairing IVUS with angiography to create a complete picture of coronary 

vessels was first proposed two decades ago (Laban et al., 1995). Several commercial software 

packages currently available can produce 3D coronary reconstructions based on bi-plane 

angiographic views (Ramcharitar et al., 2008) in a rapid manner that can be used online for 

diagnostic purposes. Mapping IVUS-derived lumen contours onto the angiographic 

reconstructions using a co-registration method helped increase the fidelity of the 
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reconstructions, allowing for better mapping of plaque formation and allowing patient-specific 

numerical flow studies (Prause et al., 1997, Slager et al., 2000). 

Examples of reconstruction using CTA, angiography and angiography-IVUS co-

registration are shown in Figure 2-19. 

Optical Coherence Tomography 

 

Optical coherence tomography (OCT) is an imaging method originally developed for 

application in opthalmology, but also currently in clinical use for the intravascular imaging of 

coronary vessels (Tsimikas and DeMaria, 2012). An OCT probe uses low-coherence 

interferometry to record 2-dimensional images of the lumen cross-sections. The image 

acquisition process in the catheterisation laboratory is similar to that of IVUS, but OCT can 

achieve in-plane resolutions of less than 10 μm in the axial direction (20-40 μm in the lateral 

direction) (Suter et al., 2011). However, due to high attenuation of the signal in the tissue, the 

penetration depth of OCT is considerably smaller than that of IVUS, achieving a range from 

0.1 - 2 mm depending on the type of tissue (Huang et al., 1991, Tearney et al., 1997). This 

means that the assessment of plaque structure and composition is limited to the innermost areas 

of the wall. Also, due to the high attenuation of the OCT signal in blood, occlusion or flushing 

of the vessel with OCT-transparent agent is required before an OCT scan.   

The early methodology for OCT scanning, time-domain OCT (TDOCT), involves 

acquisition times which are long enough to require balloon occlusion to expel blood from the 

area of interest. The occlusion often results in intermittent chest pain or ECG changes (Tearney 

et al., 2012). Furthermore, the use of a photodetector at the receiving end of the reflected light 

results in signal-to-noise ratio (SNR) which can be below the minimum accepted SNR of 80 dB 

(Yaqoob et al., 2005). The newer methodology of spectral-domain OCT (SDOCT) utilises a 

spectrometer instead of a photometer, resulting in deeper tissue penetration, faster acquisition 

times and 20-30 dB higher SNR on average compared to TDOCT (Choma et al., 2003). This 

ensures that occlusive bloodflushing is not required (non-occlusive methods used instead), and 

the SNR has been shown to remain above 80 dB even at low light acquisitions (Leitgeb et al., 

2003). Two types of SDOCT are commonly used: Fourier-domain OCT (FDOCT), which 

employs a wide-spectrum light source and a low-loss spectrometer for detection, and swept-

source SDOCT, or optical frequency domain imaging (OFDI), which makes use of a narrow 
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bandwidth light source that can be tuned to measure spectral oscillations at evenly spaced 

wavelengths (Yaqoob et al., 2005). FDOCT is a method commonly seen in coronary imaging.  

OCT has been shown to accurately measure fibrous cap thickness and detect minor cap 

disruptions (Girassolli et al., 2013, Kubo et al., 2013), while it can also visualise intraluminal 

structures, including plaque composition, lipid pools, intraluminal thrombi and intimal vessels 

(Tearney et al., 2012) with excellent reproducibility (Gonzalo et al., 2009). There is also 

evidence that OCT can be used to identify signs of cardiac allograft vasculopathy which cannot 

be detected with IVUS (Cassar et al., 2013). The very high resolution of OCT images has also 

been used in the assessment of stent failure and optimisation of stent implantation (Tyczynski 

et al., 2010) (Class IIa and IIb respectively in the ESC guidelines for myocardial 

revascularisation), post-ACS (acute coronary syndrome) assessment (Kume et al., 2006), and 

the study of the development of neointimal tissue around stent struts (Feng et al., 2013, Foin et 

al., 2014).  

The use of OCT in a 3D reconstruction algorithm similar to that developed for use with 

IVUS for use in patient-specific computational fluid dynamics applications is presented in 

Chapter 4. 

Near-infrared spectroscopy and multi-modality intravascular techniques 

 

Another intravascular technique used mainly for research purposes is near-infrared 

spectroscopy (NIRS). The NIRS probe can detect the presence of lipids inside the vessel wall, 

and maps of the vessel wall showing the extent of lipid presence can be produced (Waxman et 

al., 2009). However, NIRS gives no information on lumen anatomy and provides only binary 

results on the presence or not of lipids (Goldstein et al., 2011, Jaguszewski et al., 2013), 

making the potential benefit from its use alone unclear (Groves et al., 2014). This limitation of 

NIRS can be overcome by pairing it with other intravascular imaging techniques to provide a 

more complete description of the disease. 

The idea of using multiple imaging modalities to help interpret data is not new, and is 

being commonly used in non-invasive imaging techniques, such as pairing PET with MRI, or 

CT with SPECT (van der Hoeven et al., 2012). A multimodality catheter acquiring IVUS and 

NIRS data simultaneously was developed (Schultz et al., 2010), and in the five years since the 

first application in man it has been used in multiple studies (Mallas et al., 2011, Wentzel et al., 

2010, Pu et al., 2012, Madder et al., 2013, Dohi et al., 2014), which suggest that the 
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combination of the two methods results in better identification of vulnerable plaque (Figure 2-

18B). Recently, NIRS has been used in conjunction with OCT, either as part of an NIRS-IVUS 

multimodality catheter (Roleder et al., 2014) or as a combined NIRS-OCT catheter (Fard et al., 

2013). 

 

Figure 2-18 A Angiographic view of the left side of the coronary artery tree (cranial view, 33o angle tilt) showing a lesionsin 

the left anterior descending and circumflex arteries (red arrows). Image courtesy of Dr SukhNijjer, Hammersmith hospital, 

London.B Matched images of vessel lumen cross-sections usingIVUS co-registered with NIRS (column A) and OCT (column 

B) at three different locations (1-3). Image adapted from (Regar et al., 2013). 

 

Figure 2-19 3D reconstruction of coronary artery stenosed segment (white arrow) using 16-slice CT angiography (A), bi-plane 

angiography (B) and IVUS-angiography co-registration. Images B and C represent the same vessel segmentNote the smoother 

appearance as well as the artefact stenosis appearing at the distal end of image B, which was not visualised using IVUS, 

indicating error in the angiographic reconstruction. Image A adapted from (Rodriguez-Palomares et al., 2011), images B and C 

adapted from (Wentzel et al., 2008). 
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A B C



52 
 

Coronary artery disease assessment: anatomy vs. function 

 

Myocardial muscle perfusion can be assessed using non-invasive methods such as 

positron-emission tomography (PET) and single-photon emission computed tomography 

(SPECT) which can highlight areas of ischaemia by tracing blood perfusion with the use of 

tracing particles such as Thallium and Rubidium (Case and Bateman, 2013, Mullani and 

Gould, 1984). However, these methods cannot provide information on individual lesion 

anatomy or severity, and questions have been raised on the cost-effectiveness of the methods 

(Iwata and Ogasawara, 2013). PET and SPECT are often used as a gold standard in detecting 

ischaemia and is used as validation for other methods (De Bruyne et al., 1994a). 

The vast majority of functional assessment of coronary stenosis is performed non-

invasively with the use of exercise testing and pharmacological stress-testing. However, the use 

of intravascular Doppler ultrasound in conjunction with angiography and pressure 

measurements to estimate coronary flow reserve is on the rise and catheters incorporating both 

pressure and flow velocity transducers are commercially available.  

The use of pressure drop for the functional assessment of coronary artery stenosis 

severity is based in a series of experiments in dogs by Gould (Gould et al., 1974a, Gould and 

Lipscomb, 1974b, Gould, 1978a) in the 1970s exploring the pressure-velocity relationship in 

the coronary arteries, under resting and hyperaemic conditions under maximal vasodilation. 

The main conclusions from those studies were that, in the presence of a stenosis a. the ability of 

the vessels to respond to increased flow demand (i.e. coronary flow reserve) becomes smaller 

as the resistance to the flow posed by the stenosis increases and b. pressure drop across a 

stenosis increases with increasing flow velocity, but the change is sharper (i.e. happens at lower 

velocities) for severe stenoses (Figure 2-20). Furthermore, it was demonstrated that the 

correlation between pressure and flow velocity, or resistance and flow reserve are not linear, 

but quadratic, possibly an indication of the combined viscous and flow separation energy losses 

occurring (Gould and Kelley, 1982).  

As discussed previously, the autoregulatory mechanism for adapting to increased 

oxygen demand is to dilate the subendocardial microvascular bed to reduce resistance to the 

flow. The amount by which flow velocity increases in vasodilator-induced maximal 

hyperaemia is an indication of the coronary flow reserve. In the case of severe stenosis, 

microvascular dilation is necessary even at resting conditions, to compensate for the added 
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resistance posed by the presence of disease, thus reducing the vessel’s flow reserve. With 

increasing stenosis severity the degree of microvascular dilation at rest increases until 

maximum dilation is reached. At this point there is no coronary reserve and any further 

increase in oxygen demand will result in ischaemia during periods of increased flow demand 

(such as during exercise). Therefore, measuring the coronary flow reserve is a way to assess the 

functional impairment caused by a stenosis before a stenosis becomes ischaemic at rest 

(Lipscomb and Gould, 1975), allowing for earlier diagnosis with potentially better clinical 

outcomes.  

It was suggested by (Pijls et al., 1993) that, under conditions of hyperaemia, resistance 

to flow is minimised and presumably constant, indicating a linear relation between flow rate 

and pressure. They argued therefore, that by measuring the pressure drop across a stenosis 

under maximal vasodilation, an assessment of stenosis severity could be made without the need 

for flow measurements, which were at the time unavailable in clinical use, and that a functional 

assessment of stenosis could be more accurate than anatomical assessments (De Bruyne et al., 

1994b). 

 

Figure 2-20 A Relationship between stenosis resistance and hyparemic response in dogs (Gould and Lipscomb, 1974a). When 

resistance becomes too high, hyperaemic response approaches unity B The pressure gradient – flow velocity relationship for 

varying degrees of stenosis. Pressure drop increases faster in severe stenosis (Gould, 1978a). 

 

Fractional flow reserve, or FFR, is defined as the ratio of maximum flow in the 

presence of a stenosis to what maximum flow in the coronary artery would be if there was no 

BA
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stenosis. Under conditions of hyperaemia, the myocardial FFR, 𝐹𝐹𝑅𝑚𝑦𝑜 , can be calculated by 

the equation (2.41): 

    𝐹𝐹𝑅𝑚𝑦𝑜 =
(𝑃𝑑−𝑃𝑣)

(𝑃𝑎−𝑃𝑣)
              (2.41) 

Pa, Pd and Pv are mean aortic pressure (proximal to the stenosis), pressure distal to the 

stenosis and right atrial pressure respectively, all measured at maximal vasodilation. The ability 

of FFR to assess myocardial ischaemia was validated against PET (De Bruyne et al., 1994a). 

Subsequently, Pv was eliminated from the equation and FFR became simply the ratio of mean 

distal to proximal pressure under conditions of hyperaemia Pd/Pa (Pijls et al., 1996). The 

maximum FFR value of 1 indicates no pressure drop across the stenosis; stenosis severity 

increases with decreasing FFR, and the cut-off point for the best clinical outcome was 

originally set at 0.75 (Kern et al., 1997), but then revised upwards to 0.80 before the first 

clinical study was performed (Fearon et al., 2007a). 

Studies were conducted comparing the new method with anatomical assessment. It was 

suggested that FFR can detect ischaemic lesions with greater accuracy than anatomy-based 

assessment methods such as angiography (Sant'Anna et al., 2008), and that this may lead to 

better management of disease and better clinical outcomes when using FFR over angiography 

to guide percutaneous coronary intervention (PCI) decisions (Siebert et al., 2008, Sant'Anna et 

al., 2007). The DEFER and FAME clinical trials (Pijls et al., 2010, Pijls et al., 2007) indicated 

that there is no benefit in performing PCI in functionally non-significant stenoses, and that 

FFR-guided PCI decisions result in better clinical outcomes (Nam et al., 2011). In the FAME 2 

trial (De Bruyne et al., 2012) it was shown that PCI results in significantly fewer instances of 

the primary endpoint (a composite of death from any cause, non-fatal myocardial infarction or 

urgent revascularisation) compared to medical therapy, in lesions assessed based on FFR and 

not angiography. The study was in fact halted due to the large difference of primary end point 

instances between the two groups (4.3% in the PCI group vs.12.7% in the medical therapy 

group), which was mostly driven by the high rate of urgent revascularisation in the medical 

therapy group. The hazard ratio between the two groups increased from 0.32 to 0.39 in the two-

year follow-up (8.1% vs. 19.5% incidence of primary end point)(De Bruyne et al., 2014), and 

the PCI group results are consistently comparable to the registry of patients with non-ischaemic 

lesions. The results of the FAME 2 study suggest that FFR can discriminate between ischaemic 

and non-ischaemic lesions better than angiography, resulting in the revascularisation of only 

functionally impaired lesions. 
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FFR currently holds a Class I recommendation by the ESC for assessing the 

ischaemically-relevant coronary lesions when evidence of ischaemia is not otherwise available 

(Montalescot et al., 2013), a better classification than intracoronary imaging methods IVUS 

and OCT (Class IIa). 

Given the increasing evidence that functional assessment works better than anatomical 

assessment, summarised in a meta-analysis study by (Christou et al., 2007), ways to improve 

on the FFR concept have been made. FFR is limited by the fact that there is no guarantee 

microvascular resistance is indeed constant during maximal hyperaemia, and there is no way to 

assess if maximal vasodilation has been achieved (Pijls and Tonino, 2011), indicating that 

incorporating flow velocity in functional assessment may be necessary. The ability to measure 

intracoronary flow velocity  using Doppler wires enabled a more detailed study of the pressure-

flow relationship in vivo in the catheterisation lab, allowing the direct measurement of 

microvascular resistance (Chamuleau et al., 2003). Though direct measurements of coronary 

flow reserve and resistance were initially dismissed (de Bruyne et al., 1996), a new type of 

functional index was developed, which took into account both hyperaemic pressure drop and 

hyperaemic resistance to assess stenosis(Meuwissen et al., 2002b). The most well-known index 

of this type is the hyperaemic stenosis resistance index (HSR), which is the ratio of mean 

hyperaemic pressure drop to mean hyperaemic flow velocity for a given stenosis (Meuwissen 

et al., 2002a) and is arguably an index closer to the original experiments than FFR. HSR is 

associated with better prediction of ischaemia compared to either FFR or CFR when using a 

cut-off point of 0.8 mmHg/cm (Kern et al., 2006). 

Despite the better clinical outcomes associated with functional assessment, the need for 

administration of a vasodilator to achieve hyperaemia adds costs and time to the process, and 

the uncertainty over achieving maximal hyperaemia has led to poor adoption of functional 

indices in clinical practice. Only about 6-8% of medical centres throughout the world are 

regularly using functional assessment to guide PCI (Kleiman, 2011). Also, it has recently been 

shown that in cases of severe stenoses hyperaemic flow is not significantly different to resting 

flow, due to the inability of the microvasculature to achieve further dilation (Tarkin et al., 

2013) suggesting potential alterations in the FFR lesion classification. In fact, the variability in 

hyperaemic response can result in uncertainty and confusion in cases of intermediate coronary 

stenoses, which are cases where functional assessment is close to the FFR cut-off point. It has 

been shown that, even though the FFR reproducibility across the entire range of FFR values is 

higher than 95%, in the intermediate area ±0.05 from the FFR cut-off of 0.80, diagnostic 
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accuracy of a single FFR measurements drops to about 50%, as shown in Figure 2-21 (Petraco 

et al., 2013c). 

In the initial experiments it was argued that hyperaemia was necessary, as the true 

pressure gradient was considered to be “masked” by the varying microvascular resistance in 

resting conditions. The evidence from more recent literature, however, suggests that the 

hyperaemia requirement may be problematic. 

Sen et al. (Sen et al., 2012), based on the wave intensity analysis study of the aorta and 

coronary arteries, suggested that during the cardiac cycle at rest there is a period of constant 

microvascular resistance, when pressure and velocity are proportional to each other, and the 

pressure drop during that period could be used to assess stenosis severity without the need for 

hyperaemic measurements. 

 

 

Figure 2-21 A Test-restest reproducibility of FFR. The dotted lines indicate the 0.80 cut-off point, while the vertiocal grey 

shaded area shows the intermediate lesions that have a FFR of 0.7 to 0.9. B.   Diagnostic uncertainty (probability that 

revascularisation decision will change if a FFR measurement is repeated) plotted across the FFR range from 0.70 to 0.90Image 

adapted from (Petraco et al., 2013c). 

Their study suggests that the masking effect occurring during resting flow can be 

attributed to the presence of waves generated at the distal end of the circulation, making the 

measurement of the distal to proximal pressure ratio (Pd/Pa) an unreliable tool for assessing 

stenosis severity. However, during a major part of diastole, no waves, backward or forward 

travelling are detected, and resistance during this “wave-free” period is constant and low (Sen 

et al., 2013b), ensuring high flow velocities which can help differentiate between ischaemic 

and non-ischaemic stenoses (Figure 2-22). The study resulted in the development of the 
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instantaneous wave-free ratio (iFR) index with a cut-off point of 0.90, which has been shown to 

be at least just as good as FFR at guiding PCI (Petraco et al., 2013a, Sen et al., 2013a) with the 

added benefit of not requiring hyperaemia to measure.  

There have been unfavourable comparisons of iFR with FFR (Johnson et al., 2013, 

Rudzinski et al., 2012, Pijls et al., 2012) but the comparison of any method to FFR is limited 

by the uncertainties and poor test-retest reproducibility of FFR in the clinically relevant 

intermediate lesion severity range. As stressed by (van de Hoef et al., 2012b), FFR can be a 

clinically useful tool, but its scientific basis is not strong enough to suggest it should be used as 

gold standard against which other methods should be compared, while (Claessens et al., 2004) 

highlighted the importance of incorporating zero flow pressure, which is the pressure at the 

zero-flow intercept in a flow-pressure diagram (Nanto et al., 2001),in the FFR calculations, 

which is not commonly done in clinical practice. A hybrid iFR-FFR approach has been 

suggested, in which only stenoses that fall within an iFR range of 0.86 to 0.93 would get an 

FFR to clarify the diagnosis, thus greatly reducing the use of vasodilators and potentially 

enhancing the adoption of functional assessment (Petraco et al., 2013b). 

Despite the critique on the use of resting conditions to assess stenosis severity, the 

attractiveness of the idea of functional assessment without the need of vasodilator drugs has led 

to the development of other non-hyperaemic indexes, such as baseline stenosis resistance, or 

BSR (van de Hoef et al., 2012a), which, like HSR, is the ratio of mean pressure drop to mean 

velocity, but at rest.  
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Figure 2-22 Wave-intensity analysis in the coronary arteries indicates there is a period during diastole where no waves are 

generated (A, shaded green area), during that time the suction  pressure generated  in the microcirculation (B, dashed line) is at 

its highest and constant, meaning that resistance, too, is minimum and constant during that period (C). This is reflected in the 

way that the pressure and velocity appear to be changing at the same rate (D, appearing as parallel lines in the wave-free 

period) suggesting that, during the wave-free period at rest, pressure can be used as a surrogate for  flow. Image from (Sen et 

al., 2012). 

 

Limited understanding of coronary pressure-flow relationship can result in less-than-

optimum diagnosis 

 

While in the case of aortic stenosis anatomical obstruction can be used as a surrogate 

assessment method for functional impairment, this is not possible in the case of coronary artery 

disease. This is because the pressure-velocity relationship in the coronary arteries is 

complicated by the presence of compression and decompression waves originating in the 

microcirculation, as discussed in section 2.2.3. The diameter of the microvasculature changes 

throughout the cycle and from beat to beat, resulting in large variations in downstream 

resistance to the flow. The pressure waves generated at the distal end result in variations in 
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velocity which can be independent of the anatomical obstruction at hand. For this reason, there 

is poorer than expected correlation between anatomical-based and function-based assessment 

of coronary artery disease, with function-based assessment shown to result in better clinical 

outcomes (Pijls et al., 2010).  

The fact that so many different functional indices exist which propose to measure the 

same thing (ischaemia) but appear not to be in agreement with each other, or have poor test-

retest reproducibility, is a clear indication that the complexity of the pressure-flow relationship 

in the coronary arteries means that great care should be taken when attempting to interpret the 

results as a reliable assessment of function. Though the concept of coronary flow reserve is 

widely accepted, attempts at measuring and/or estimating it can be fraught with practical issues 

which could cast uncertainty over the reliability of the measurement (Hoffman, 2000). 

However, the clinical studies suggesting that functional assessment can be better than 

anatomical assessment indicate that the development of a globally accurate functional method 

of evaluating ischaemia is worth pursuing.  It is considered that the discrepancy between the 

anatomical and functional tests can be attributed to the fact that the two method types are 

looking into different aspects of coronary artery disease, and it is thought that these aspects 

may be complementary. For this reason studies have attempted to develop new assessment 

methods which combine anatomical and functional methods, which are often performed 

together, in an attempt to improve assessment (Sinha Roy et al., 2008, Matsumoto et al., 2013, 

Zafar et al., 2013), but so far no clinical data exist to test the accuracy of these methods in a 

clinical setting.  

An attempt at understanding the pressure-flow relationship in the coronary arteries 

using computational fluid dynamics modelling is presented in Chapters 4-6. 

2.4.4 Computational modelling of coronary arteries 

 

Computational modelling in the coronary artery tree developed later than modelling of 

the larger arteries. The smaller size, the location of the coronary arteries on the heart muscle 

and the complicated flow conditions resulted in delays in the development of patient-specific 

models, which only started appearing less than a decade ago. (Banerjee et al., 1999) and (Torii 

et al., 2007) studied the effect of pressure and flow wires used in invasive assessment on the 

velocity spatial profiles in idealised models of curved tubes. (Banerjee et al., 2000) used 

measurements of coronary flow reserve from patients who underwent angioplasty to study 
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residual stenoses, while (Torii et al., 2009b) used patient-specific anatomical models taken 

from MRI images of one patient pre and post angioplasty to study the change in 

haemodynamics. A non-Newtonian approach to coronary flow allowed researchers to establish 

the locations of particulate buildup in curved arteries (Jung et al., 2006). More complicated 

approaches incorporate the movement of the epicardial coronary vessels on the beating heart 

muscle, but there is no indication that the temporal change in curvature and torsion have 

significant effects in the flow patterns (Torii et al., 2010, Hayashi and Yamaguchi, 2002). 

(Wentzel et al., 2003b) and (Gijsen et al., 2014) have been using CFD investigating the links of 

flow and wall shear stress patterns in the coronary arteries and bifurcations to the probability of 

vulnerable plaque rupture. 

Computational modelling of coronary flow reserve 

 

Given the increasing interest in the studies of coronary flow reserve, and the 

development of functional assessment of coronary artery disease, it is not surprising that CFD 

studies have tried to come up with ways to replicate the invasive functional tests with equally 

reliable, non-invasive ones. The concept of using a non-invasive or mildly invasive imaging 

techniques to obtain anatomical data which can then be used in CFD simulation to provide 

virtual CFR or FFR data is a very attractive one, but the actual implementation of this is 

proving to be quite challenging. The most famous use of CFD to help evaluate FFR 

non-invasively is the concept of FFRCT(Zarins et al., 2013), where computed tomography 

angiography (CTA) images are used to reconstruct the coronary artery tree (at the level of 

epicardial vessels). Murray’s law and assumptions on volumetric flow rate based on a patient’s 

myocardial mass and brachial pressure are used as boundary conditions in steady-state flow 

simulations to produce the FFR profile of the entire structure, arguably helping to identify 

ischaemic lesions (Taylor et al., 2013). Clinical trials (Min et al., 2012a, Min et al., 2012b) 

report accuracy levels of 70-80% when compared to invasive FFR measurements, while 

negative predictive value is higher than positive predictive value (which has been shown to be 

as low as 67%). The limitations of the method may be attributed to the use of non patient-

specific flow data as boundary conditions, and in particular in the use of a single value for 

coronary flow reserve (~4) across an entire range of stenoses, when by definition flow reserve 

declines with stenosis severity.  
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Few other attempts at testing the ability of CFD to predict ischaemia exist. The two 

existing studies have used angiographic data to create anatomical reconstructions in steady-

state CFD simulations. (Siogkas et al., 2013) used flow data at rest averaged over the wave-free 

period, therefore modelling iFR. A good correlation with measured FFR was observed, though 

the study was limited by the small number of patients (n=7) and the stenosis range which was 

skewed towards non-ischaemic lesions. The other study (Morris et al., 2013)used flow velocity 

and pressure boundary conditions averaged over the entire cohort to also achieve a good 

correlation with measured data. However, similar limitations apply to this study too. Though it 

had a larger number of patients (n = 35), a small fraction of those (9 stenoses or 25%) belonged 

in the clinically relevant intermediate lesion severity range, while many of the geometries 

represented post-PCI anatomies, meaning that the majority of lesions (21, or 60%) were in the 

non-ischaemic range.  

The CFD studies published so far indicate that CFD may be better at modelling 

non-ischaemic lesions than ischaemic, which is potentially useful, but further investigation is 

required to try and understand the reason behind the discrepancy. 
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3. Pressure Recovery in an idealised model of aortic stenosis 
 

 

 

Figure 3-1 Echocardiography-based stereolithography model of the aortic valve of an aortic stenosis patient.Stenosed orifice to 

the right of the picture. Image adapted from(Gilon et al., 2002) 
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3.1 Introduction 

 

In this chapter, the aim is to test the hypothesis that recovery of pressure in cases of 

aortic stenosis is possible by remodelling the aortic root and ascending aorta. CFD is used in a 

proof-of-concept study to show whether implanting a device designed to maximise pressure 

recovery will lead to significant reduction of pressure loss in cases of severe aortic valve 

stenosis. The device is tested for three different valve orifice anatomies, ranging from 

completely idealised to patient-specific, to observe the effects of anatomy irregularities on its 

effectiveness. Such a device could potentially be useful as an alternative treatment option for 

patients who are not fit for valve replacement surgery. 

On a previous study of flow in the ascending aorta (Kousera et al., 2013) it was 

determined transition to turbulence for part of the cycle is common in healthy subjects, making 

it a certainty that flow will undergo transition to turbulence in cases of aortic stenosis too. 

Therefore, the γ-Reθ Transition Model (SST Tran), which has been validated for arterial flow as 

described in Chapter 2, is used in steady state simulations representing the moment of peak 

systole when maximum flow through the valve (and therefore maximum pressure drop) occurs.  

The results presented consist of comparisons between flow simulation with and without 

the original device design for the three different valve orifice shapes. The parameters 

investigated were the velocity field, the pressure distribution and the turbulence kinetic energy. 

Further investigation of the differences in the flow patterns near the valve orifice was necessary 

to assess the limitations of the original device design, and to provide information about 

possible future improvements.  

The chapter concludes with a summary of the work presented, and suggestions on what 

the next steps in the development of this device could be. 
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3.2 Methodology 

 

3.2.1 Idealised model geometry 

 

An idealised virtual 3D model of the left ventricular outflow tract (LVOT), aortic root 

with a domed, unmoving valve inside (fully open) and proximal ascending aorta was built in 

ANSYS ICEM CFD 13 (ANSYS Inc., Cannonsburg, PA) software. An example model and the 

dimensions used are shown in Figure 3-2. In order to study only the effect of valve shape on 

flow and pressure patterns, a simple idealised geometry was created, and so the LVOT was 

assumed to have a circular cross-section (its shape is normally elliptic), the ascending aorta was 

designed as a straight tube with no curvature and the coronary ostia were omitted. The 

ascending aorta section was created longer than real life (100 mm compared to a normal length 

of around 50 mm), in order to minimise the effect of the outlet on the numerical results, and 

also to allow enough space for the flow to develop completely after boundary layer 

reattachment. The LVOT, however, was kept at a typical length of 30 mm, in order to simulate 

the undeveloped nature of flow coming out of the left ventricle and through the valve. 
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Figure 3-2 Top. MRI scan of the left ventricular outflow tract (LVOT), aortic root and valve and ascending aorta, image 

adapted from (Paelinck et al., 2011). Bottom. Example of the idealised LVOT, aortic root and ascending aorta geometry used 

in the CFD simulations. The diameters and lengths were chosen based on characteristic values commonly found in patients 

with aortic stenosis. The idealised geometry comprises a longer than real life ascending aorta section and does not include 

curvature. 

LVOT

Aortic   root

Ascending 
Aorta

Valve
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3.2.2 Valve shape 

 

Three different valve shapes were tested: a circular disk, a triangular disk with rounded 

edges, and a highly irregular valve shape taken from a patient’s CT scan as seen in Bouvier et 

al (Bouvier et al., 2006). The valve geometries are shown in Figure 3-3. Since there would be 

no quantitative comparison among the three valve geometries, emphasis was given on creating 

characteristic shape differences, progressing from completely ideal to entirely realistic 

anatomies, so achieving the same orifice cross-sectional area was considered of lesser 

importance. The cross-sectional area of the circular disk was the largest at around 100 mm
2
, 

while the triangular shaped orifice had a cross-sectional area of 70 mm
2
. The cross-sectional 

area of the patient-specific valve orifice was calculated based on the CT image as 64.4 mm
2
. 

Because of the differences in cross-sectional area, quantitative comparison of pressure drop 

was only made between the same orifice shapes, with or without the device, and not among 

different valve shapes.  

The whole geometry, including the valve dome was modelled as rigid. Though healthy 

aortic valve leaflets are subject to considerable movement during a cardiac cycle, opening and 

closing fully, the calcified plaque that has formed on the leaflets of stenosed valves reduces 

their mobility considerably, making them almost rigid in more severe cases. Furthermore, in 

this study the valves were studied at just one part of the cycle, peak systole, where the valve is 

open at the maximum. The assumption of a rigid valve dome is, therefore, justified.  

 

3.2.3 Device design 

 

The shape of a calcified aortic valve, especially a domed one, resembles a nozzle, as 

indicated in Figure 3-1 (Gilon et al., 2002). Flow through nozzle-shaped openings accelerates 

rapidly within a small distance, becomes disturbed and separates from the wall downstream. 

The flow jet created is subject to high shear that leads to substantial energy losses. Therefore, 

the shape of a calcified valve is very unfavourable when it comes to recovering lost pressure. 
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Figure 3-3 The three different valve orifice shapes used in the simulations, circular, triangular, and patient-specific based on a 

CT scan as shown in (Bouvier et al., 2006) 

The design of the device used was chosen to have particular characteristics that favour 

pressure recovery, namely reshape the flow downstream of the valve in such a way as to 

maximise pressure recovery and minimise energy losses. In order for this to be achieved, the 

device must induce quick reattachment of the separated flow jet. A Venturi-like diffuser shape 

like the one shown in Figure 3-5 was decided on, given the use of similar designs in 

applications that have similar goals (Xu and Huang, 2011, Meakhail et al., 2008). The walls of 

the device are tapering out in a way that captures the jet coming from the orifice along the 

region where high shear is expected, and in this way the desired flow reattachment is induced 

within a few millimetres.  

It is clear that the device would have maximum effect if it could be placed exactly on 

the orifice, but doing so would block coronary flow and so the device was originally placed 

10 mm away from the orifice opening. This was done in an attempt to test the concept of 
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pressure recovery on a simple geometry, before considering more complicated device structure 

which would accommodate the coronary arteries and other issues that may arise.  

The distal side of the device has the same diameter as the ascending aorta at that point, 

enabling a smooth transition from the device to the vessel lumen downstream, and a potential 

tethering point. 

 

3.2.4 Computational mesh generation 

 

The resulting six geometries (two for each valve shape: one without the device 

implanted, and one with the device implanted) were meshed using tetrahedral elements. The 

size of the domain, the complexities created by the presence of an internal wall (the valve dome 

inside the aortic annulus) and the expected presence of high velocity gradients required a large 

number of elements to ensure detailed and accurate results, resulting in grids of upwards of 

1.2 million nodes and more than 4 million elements. A prism layer was placed near the domain 

wall in order to achieve better element size control.  Because of the use of a turbulence 

mathematical model, the size of the elements adjacent to the wall was chosen so that the 

parameter y+ had a value of less than two (Kim et al., 1971). By doing this, an important 

modelling condition is satisfied: the first layer of elements near the wall is entirely contained in 

the viscous sublayer of the boundary layer, consequently enhancing convergence and ensuring 

accurate solution near the walls. A cross-section of the mesh along the central axis of the 

domain is shown in Figure 3-5. 
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Figure 3-4 A The calcified aortic valve resembles a nozzle, a configuration which leads to high energy losses due to sudden 

cross section expansion. B. The Venturi shape, where the cross-sectional area increases gradually, preventing flow separation 

and minimising energy losses. C. The device model placed inside the idealised model. The device resembles a Venturi, 

following the lines of high shear patterns in order to prevent energy losses. 

 

 

Figure 3-5 A cross-section of the mesh of the geometry shown in Figure 3-4 C. Due to the complicated geometry and flow 

conditions, a very fine mesh was used, comprising of 1.2 million nodes, or upwards of 4million elements. 

 

3.2.5 Boundary conditions and simulation set up 

 

The same flow parameters and boundary conditions were used in all simulations so that 

the results would be comparable. The simulations were run under the assumption of rigid walls 

and blood was modelled as Newtonian and incompressible, with dynamic viscosity set to 

0.00334 Pa.s and density to 1060 kg/m
3
. These assumptions have been shown to be acceptable 

for studies in large arteries such as the aorta (as discussed in Chapter 2). Steady-state 

simulations were set up, using boundary conditions likely to be observed in a stenotic aortic 
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valve region at peak systole. Specifically, the inlet volumetric flow rate was chosen such that 

velocity at the orifice with a typical cross-sectional area of 70mm
2 

would be around 4m/s 

(Figure 3-6). A flat inlet velocity profile was chosen, in order to reflect the fact that the flow 

going into the aortic valve is not fully developed. A turbulence intensity level is required at the 

inlet, and based on previous work this level was set to 1% (Kousera et al., 2013). The solution 

satisfies the no-slip condition at the walls, while the outlet boundary condition was left as an 

opening (fluid is allowed to flow both into and out of the domain) with zero relative pressure. 

The solution convergence target was set to a strict root-mean square velocity residual of 10
-6

, 

which was achieved in all cases between 100 and 200 iterations. 

 

Figure 3-6 Velocity through a stenosed aorta, measured using echocardiography. Peak velocity reaches 400cm/s, or 4m/s. 

Image courtesy of Dr Matthew Shun-Shin, St Mary’s Hospital, Imperial College London. 

 

The choice of the zero pressure condition combined with the rigid wall assumption 

means that the pressure values obtained are not those observed by measuring brachial artery 

blood pressure, but since the focus of this study is on pressure differences between different 

locations in the domain and not absolute pressures, the results reported are not affected by the 

choice of outlet pressure level. 
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3.2.6 Transitional turbulence model 

 

The mathematical model used for these simulations was the Shear Stress Transport 

model for turbulence, enhanced with correlations for intermittency γ and momentum thickness 

Reynolds number Reθ that allow it to detect transition from laminar to turbulent flow, 

otherwise known as the γ-Reθ Transition Model (Langtry and Menter, 2009). It has been shown 

(Nerem and Seed, 1972, Kousera et al., 2013) that Reynolds numbers observed in the human 

aorta vary throughout the cycle in such a way that flow can change from laminar to turbulent 

and back, and turbulence may exist only in parts of the anatomy, therefore a mathematical 

model capturing this transitional state would be better suited for the present study than a fully 

turbulent or laminar model. The γ-Reθ Transition Model is a RANS (Alfonsi, 2009) model that 

has successfully been used in the past (Tan et al., 2009b) to describe this type of physiological 

flow, and has been shown to be particularly adept at matching experimental data in cases where 

spatial retardation of the flow occurs, such as the sudden flow expansion from the stenosed 

valve orifice to the ascending aorta. A full description of this model and why it was chosen as 

the most suitable for this application can be found in the engineering background section of 

Chapter 2. 

 

3.3 Results 

 

3.3.1 Flow patterns, turbulence kinetic energy and pressure drop 

 

The results for the simulations on the circular, triangular and patient-specific orifice in 

the original state and with the device implanted are shown in Figures 3-7, 3-8 and 3-9 

respectively. Velocity vectors and turbulence kinetic energy (TKE) were plotted on a 

characteristic two-dimensional plane passing through the centre of the geometry in the 

longitudinal direction. In this view, the progress of the jet as it moves away from the orifice 

and into the ascending aorta can be seen plainly, and the differences between the valve orifice 

shapes can be distinguished best. A pressure plot along the vessel centreline indicates the 

amount of pressure drop observed as flow passes through the orifice, and the potential pressure 

recovery achieved by the presence of the device. 
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The jet coming out of the circular orifice is symmetrical, and it expands in a similar 

way in all directions while decelerating, before reattaching to the walls (Figure 3-7). There is 

an area of low velocity recirculation inside the sinuses and almost stationary flow at the side of 

the ascending aorta before flow reattachment. The symmetry of the flow pattern is reflected in 

the TKE plot; TKE is high in areas of high fluid shear, near the edges of the expanding flow 

jet. TKE is energy that is transported from the main flow to the turbulent, high-shear regions; 

this energy is irreversibly lost to the main flow, and thus TKE is a suspected major contributor 

to the high observed pressure drop across the orifice. The small pressure recovery observed in 

the pressure plot confirms the irreversible nature of the lost energy. 

With the device in, the jet coming out of the orifice is captured immediately and flow 

reattachment happens very quickly inside the device lumen. Flow again expands and 

decelerates gradually, but this time attached to the walls, avoiding the development of high 

shear. The TKE plot indicates a significant reduction of energy loss, meaning that, as the flow 

decelerates, pressure is recovered downstream. Comparing the pressure plots with and without 

the device it is clear that, though the pressure drop at the orifice is the same in both cases, a 

significant proportion (57%) of energy and pressure are recovered downstream in the presence 

of the device. 

Similar observations can be made in the case of the triangular orifice with rounded 

edges (Figure 3-8). The out flowing jet is not symmetrical and flow reattaches mostly to one 

side of the lumen resulting in an asymmetric TKE pattern, but with the device in place the jet is 

captured before it deviates far from symmetry. Even so, the different angle of impact with the 

device leads to a small but distinct area of high TKE resulting in a smaller, but still significant 

proportion of pressure being recovered (50%). 

In the case of the patient-specific lumen there is no symmetry in the jet coming out of 

the orifice, and in fact the highest velocities are observed near the corners of the orifice, 

forming three separate jets (Figure 3-9). This behaviour leads to chaotic flow downstream, and 

high TKE values very near the orifice itself. For this reason, the device used in this case was 

slightly modified to include a funnel-like proximal end that would ensure that all three high-

velocity jets were captured and channelled through the device. Even with this modification, the 

pressure recovery observed (14%) is considerably lower than in the previous two idealised 

cases.  
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Figure 3-7 Velocity vectors and turbulence kinetic energy pattern on the longitudinal mid-plane for the circular orifice, 

without and with the device. The pressure plot along the geometry centreline suggests that 57% of the pressure is recovered in 

the presence of the device. 
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Figure 3-8 Velocity vectors and turbulence kinetic energy pattern on the longitudinal mid-plane for the triangular orifice, 

without and with the device. The pressure plot along the geometry centreline suggests that 50% of the pressure is recovered in 

the presence of the device, despite the asymmetric nature of the incoming jet. 
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Figure 3-9 Velocity vectors and turbulence kinetic energy pattern on the longitudinal mid-plane for the patient-specific orifice 

shape, without and with the device.The device was modified to include a funnel-shaped proximal end in order to capture the 

irregular jets coming out of the orifice. The pressure plot along the geometry centreline suggests that 14% of the pressure is 

recovered in the presence of the device, a considerably lower amount than in the idealised cases. This suggests that in the 

patient-specific case the reduction in the level of TKE is not enough to achieve useful pressure recovery. 
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3.3.2 Effect of valve orifice shape on flow patterns and pressure drop 

 

From the TKE plots it is quite clear that the presence of the device greatly reduces the 

amount of turbulence kinetic energy in the ascending aorta. Therefore, we hypothesized that 

the discrepancy between the pressure recovery achieved in the idealised cases and that 

achieved in the realistic case is because in the realistic case another source of irreversible 

energy losses is present that is not related to the TKE levels in the ascending aorta. A plot of 

velocity streamlines near the valve orifice is shown in Figure 3-10.  It is obvious that in the 

case of a circular orifice flow through the stenosis is very structured and laminar, with a flat 

spatial profile and no high-shear edges to cause energy loss. In the triangular orifice some 

secondary motion caused by the edges and the domed structure is observed. In the irregular 

orifice, however, the flow structure has already completely broken down at the orifice, with 

secondary motion, backward flow and three high-velocity jets coming out in different 

directions from the pointed edges of the orifice. This means that a high amount of energy has 

already been lost at the orifice that the tested device design cannot recover. 

 

 

Figure 3-10 Velocity vectors indicating flow patterns on the valve orifice for the three difference rifice shapes. In the circular 

orifice case the flow jet coming out of the valve is very structured, whilst secondary motion is observed in the triangular orifice 

shape. In the case of the patient-specific orifice, however, flow is irregular, with no central jet, but just smaller jets coming out 

in different directions, and large areas of recirculation. The marked difference in flow patterns around the orifice could be the 

reason why the device cannot achieve high pressure recovery in the patient-specific case. 

 

To test this hypothesis further, another simulation was conducted, where the device was 

designed so as to be a complete extension of the patient-specific valve orifice. The results are 

shown in Figure 3-11. The results indicate that a device attached to and completely matching 

the orifice geometry can produce a similar amount of pressure recovery (56%) as the non-
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attached device can in the symmetric circular and triangular geometries. This strongly suggests 

that there is a significant amount of energy being lost on the orifice that cannot easily be 

recovered downstream. 

 

3.4 Discussion 

 

This study aimed to prove that maximising pressure recovery inside the ascending aorta 

can help decrease the pressure drop across the valve by a clinically significant margin. That 

margin was predicted to be up to 57% for the chosen inlet Tu level. 

This result demonstrates that the geometry of a stenosed aortic valve and the anatomy 

downstream favour high shear flow that results in increased energy and pressure losses, but 

modifying the geometry of the valve and/or the anatomy distal to it using a properly shaped 

device could help reduce energy losses and result in higher pressure recovery. However, highly 

irregular orifice shapes that are a common occurrence in diseased valves result in a large 

amount of energy irreversibly lost on the orifice, lowering the efficiency of the device to the 

point where only an exact extension of the orifice will provide significant benefit.  

Designing such a device that covers the orifice presents challenges, since without 

modifications this design results in the blocking of the coronary ostia. Further study is required 

to overcome this problem. 

3.4.1 Patients who would benefit from a pressure recovery device 

 

According to the American Heart Association (Lloyd-Jones et al., 2009), 29% of 

Community Health System patients over 65 years of age who underwent echocardiography had 

aortic sclerosis (thickening of the leaflets) and 2% had aortic stenosis. The risk of death by 

cardiovascular disease for those with aortic stenosis is increased by about 50%. In another 

study (Otto et al., 1999b) it is stated that 48% of patients over 85 years of age have 

asymptomatic aortic sclerosis and 4% of the same age group have aortic stenosis,  in keeping 

with the known increase in prevalence of this condition with increasing age. The older age 

group in which aortic stenosis often happens is also at higher risk of adverse consequences 

from surgical intervention to replace the valve.  
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Figure 3-11 Velocity vectors and turbulence kinetic energy pattern on the longitudinal mid-plane for the patient-specific 

orifice shape, with a device modified to fit the orifice shape exactly. The pressure recovery achieved in this case indicates that 

significant energy losses occur on the irregular patient-specific orifice, necessitating a device redesign that will address the 

issue. 

 

Current treatment options for aortic valve stenosis include Aortic Valve Replacement 

open-heart surgery (AVR) and, when the risk of open-heart surgery is too high (i.e. estimated 

mortality risk is more than 10%), a procedure called Transcatheter Aortic Valve Implantation 

(TAVI), where a catheter-driven valve replacement takes place inside the beating heart, 

without the need for the opening of the chest (Vahanian et al., 2008b). Both procedures carry 

little risk in general, but there are still patients that are considered too high-risk for any of these 

two procedures.  

Given the previously stated prevalence of the disease in older individuals who are more 

likely to have medical comorbidities, there is a considerable percentage of patients who would 

benefit from a procedure that is less demanding than the currently available options.  

3.4.2 Device effectiveness in realistic vs. idealised valve geometries 

 

This preliminary study showed that, though in an idealised geometry it is possible to 

recover pressure downstream of aortic stenosis by implanting a simple device that minimises 

irreversible turbulence kinetic energy losses, when trying to apply the principle in a realistic 
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valve shape, many challenges arise, as the original device cannot recover energy losses at the 

orifice, but only downstream from it. This result demonstrates the perils of using over-

simplified idealised geometries to simulate flow in the human vessels, and shows that 

important features of the geometry that have a measurable effect on the flow, such as the valve 

shape irregularities, would need to be identified and incorporated into virtual models before 

drawing conclusions relevant to clinical practice. 

 

3.4.3 Limitations of the study 

 

The study on the aortic stenosis is a preliminary, proof-of-concept study. For this 

reason, an idealised geometry was used to represent the left ventricular outflow tract, aortic 

sinuses and proximal ascending aorta, while omitting important anatomical features such as the 

coronary ostia. The geometry consisted of circular, straight tubes, while the sinuses were 

represented as a symmetric, spherical shape. All simulations were steady-state, modelling 

blood as Newtonian and incompressible. The simplified, idealised design was chosen so that 

the study could better focus on the effect of the valve orifice shape in the efficiency of the 

device tested. Clearly, pulsatile studies in more realistic anatomies are required to further test 

the viability of the concept.  

 

3.4.4 Potential applications of the device 

 

The potential issues concerning the practical implementation of a relatively large device 

inside the ascending aorta have not been considered in this study. These would include 

challenges regarding the percutaneous implantation of the device and the potential need for 

anticoagulant therapy to prevent clotting. Further development would be necessary to 

miniaturise, and further assess the thrombogenic properties of the valve. Based on the analysis 

presented, it is also clear that in order to be effective, a Venturi device would be required to 

cross the valve, thus excluding the coronary ostia from aortic flow.  

The above analysis suggests that the device would not be suitable for development into 

a clinical application as is. It is likely that the modifications required to make this device 
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clinically useful would present similar challenges to those involved in the current TAVI 

procedure. Therefore, the main advantage of a potential Venturi device would be that the valve 

does not have to be returned to its original, pre-stenosis cross-sectional area to achieve 

significant decrease in pressure drop, avoiding the aggressive balloon stent inflation required in 

TAVI. Stroke is the most common adverse effect for TAVI, with a 20% likelihood of stroke 

within 30 days of a TAVI procedure (Smith et al., 2011).  It is difficult to know if the incidents 

of stoke at 30 days could be reduced by not aggressively expanding the aortic valve.  Further 

testing would be necessary to assess this.   

3.5 Summary and Conclusion 

 

In this chapter, the aim was to investigate the use of the phenomenon of pressure 

recovery in a device design that could reduce the pressure drop observed across stenosed aortic 

valves. The device was tested in three virtual models of valve orifice anatomy in a proof-of-

concept study.  

Steady-state CFD simulations were set up using an idealised model of the left 

ventricular outflow tract, aortic root and ascending aorta. A rigid, domed valve was placed 

inside the root, testing three different valve orifice shapes: a completely idealised circular disk 

shape, a triangular shaped disk with rounded edges and a valve shape based on the CT scan of 

an actual aortic stenosis patient. For each orifice shape the original geometry and a geometry 

incorporating the device were produced. The flow conditions were chosen to represent peak 

systole, when maximum flow, and therefore maximum pressure drop, is observed. The flow 

velocity and turbulence kinetic energy patterns were compared between the original and 

device-implanted geometries and their effect on the behaviour of pressure throughout the 

geometry was examined. 

It was found that the proposed device can recover more than 50% of the pressure lost 

on an idealised circular or triangular orifice, but its effectiveness is greatly diminished when 

applied to a realistically irregular patient-specific orifice. Observing the velocity and TKE 

patterns suggests that, in the case of the patient-specific orifice, recovering the energy lost as 

shear in the proximal ascending aorta is not enough to achieve a level of pressure recovery that 

could become useful in clinical practice. Studying the flow patterns on the orifice revealed that 

flow patterns in the patient-specific case are markedly more irregular than those in the circular 
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and triangular idealised cases, indicating a large amount of energy loss occurs on the orifice 

itself. 

Modifying the device to place it across the orifice increased its effectiveness to the 

levels observed in the idealised models, suggesting further modifications are required in the 

device to ensure energy lost on the orifice will be recovered too, the most likely of which is to 

create a device that will cross the valve, starting from the LVOT and ending in the ascending 

aorta. This would result in remodelling of the aortic root, adding challenges to the device 

design, including the need for a new valve inside the remodelled aortic root, and provision for 

flow into the coronary arteries. In conclusion, this device, with the modifications required to 

make it clinically applicable, would likely not present an advantage compared to existing 

procedures. 
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4. A new algorithm for accurate 3D coronary artery reconstruction 

based on Optical Coherence Tomography and angiography 

 

 

Figure 4-1  A 3D image of the healthy human heart, epicardial coronary arteries visible. Image copyright National Geographic, 

2007. 
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4.1 Introduction 

 

In the previous chapter, the role that pressure drop can play in the treatment of aortic 

valve disease was explored. In this chapter the role of pressure drop in the diagnostics of 

coronary artery disease is investigated. The coronary arteries are one order of magnitude 

smaller than the aorta, which presents challenges to both imaging the vessels and measuring 

flow rate. For this reason, fully patient-specific numerical (CFD) studies of human coronary 

arteries are fewer than other, larger arteries, and there is still considerable room for 

improvement. 

 

In this chapter, a novel method for the 3D reconstruction of human coronary artery 

anatomy is presented, making use of the high resolution and contrast of Optical Coherence 

Tomography (OCT), combined with angiography data to create one of the most accurate 

coronary artery reconstructions to date. The chapter begins with a description of the custom 

algorithm developed to achieve the reconstruction, followed by the presentation of the 

reconstruction method’s validation using a phantom model of idealized artery geometry. The 

use of this method in fully patient-specific, pulsatile CFD simulations is then presented in the 

next Chapter. An overview of the reconstruction and CFD process is shown in Figure 4-2. 

 

 

Figure 4-2 Overview of the reconstruction and CFD simulation set up process for the patient-specific study of human 

coronary arteries. 
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4.2 Patient Demographics 

 

Nineteen patients (age 65.9±10.8; 14 (73.7) male) with 21 stenoses (of which 13 

located at the left anterior descending artery, 5 at the right coronary artery and 3 at the left 

circumflex artery) scheduled for invasive coronary angiography and pressure wire assessment 

were formally enrolled into the study. Patients with significant aortic stenosis and mitral 

regurgitation were excluded to avoid confounding coronary flow velocity patterns.  Patients 

with significant renal impairment limiting angiographic dye use were also excluded since 

OCT imaging was a prerequisite of the study.  Table 4-1 provides the demographic data for 

the patients. 

Table 4-1 Demographic data for patient group (n = 19) 

Mean age in yrs (range) 65.9 (44-81) 

Male (%) 14 (73) 

Mean BMI (range) 30.17 (21.63-41.82) 

Risk factors (n, (%))  

hypertension 13 (68.4) 

hypercholesterolemia 14 (73.7) 

diabetes 8 (42.1) 

current smoker 4 (21) 

prior MI 4 (21) 

peripheral vascular disease 1 (5.3) 
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4.3 Imaging data acquisition 

 

4.3.1 Angiography 

 

Angiographic images were acquired using a 6 F guiding catheter via a 6 F sheath 

engaged into the left main stem for left coronary system stenoses or the ostial right coronary 

artery.  Fluoroscopic angiography was performed using a Toshiba system (Infinix) and 

archived into a McKesson Medcon system (McKesson, San Francisco).   

 

Angiograms were obtained in serial monoplane using an isocentred table. Two 

unobstructed views of the vessel segment of interest with at least 45 degrees angle of 

separation between views were taken. Table panning was prohibited during data acquisition. 

Electrocardiographic data determining the cardiac phase was stored simultaneously with the 

angiographic data.  The coronary artery images for the reconstruction were selected during 

diastole. 

 

DICOM files were imported into CAAS QCA3D (Pie Medical Imaging BV, 

Maastricht, The Netherlands) and the centreline of the vessel was traced manually in both 

views. An anatomical feature evident on both views was used as a fiducial point to aid the 

reconstruction (Figure 4-3). The reconstructed vessel was stored in the stl file format (Chua et 

al., 1997). 

 

4.3.2 Optical Coherence Tomography (OCT) 

 

Optical coherence tomography (OCT) was performed using the C7 Dragonfly 

intravascular imaging catheter and Ilumien console (St Jude Medical, Minnesota).  The 2.7 F 

OCT imaging catheter was advanced over an intracoronary angioplasty wire across the 

coronary stenosis and image acquisition was performed after automated injection of contrast 

media given at the rate of 4 ml/s for 4 seconds.  Contrast media replaces intracoronary blood 

and allows light based imaging of the vessel lumen at high resolution.  Care was taken to 

ensure stenosis and vessel were imaged with good quality.  Data was archived upon the 

Ilumien and exported as DICOM and TIFF format for offline analysis. 
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The presence of imaging artefacts such as non-uniform rotational distortion, saturation 

or motion required a second scan. However, since the data acquisition was complex, 

requiring post-PCI assessment, it was not clinically safe to perform further runs, as the 

amount of contrast used would reach dangerous levels. 

 

 

Figure 4-3 A-B. Two angiographic views used for the reconstruction. The yellow lines indicate the traced lumen while the 

red cross represents the fiducial point as seen in both pictures. C. The 3D reconstruction based on the images A and B, using 

software CAAS QCA3D. Areas of disease are shown in red, while green indicates the suggested path of the original normal 

vessel, providing estimation for % anatomical obstruction. The lumen contours are represented by circles and ellipses. 

D.Diameter and cross-sectional area plots along the reconstructed vessel, providing the location of the minimal luminal area. 

 

271 images of the vessel segment were acquired for each OCT acquisition (a typical 

OCT slice shown in Figure 4-4) with a slice interval of 0.2 mm (i.e. 54.2 mm length). In six 

cases, incomplete expulsion of blood by contrast led to a swirling pattern reducing the quality 

of the images, resulting in the necessity to exclude slices from the analysis, typically 50 slices 

A B

C D
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(10 mm) at the end of the pullback run where the lumen could not be reliably estimated. The 

smallest vessel segment reconstructed was 29 mm long.  In one case, two overlapping OCT 

scans were performed in an attempt to image a longer vessel segment where diffuse disease 

was present, and so the longest vessel reconstruction in this dataset was 65 mm long.  

 

 

 

Figure 4-4 A typical OCT slice, showing the minimal luminal area (MLA) of a proximal right coronary artery stenosis. The 

lumen wall is coloured bright orange, while the lumen appears black, the contrast between the light and dark areas is very 

high, facilitating contour tracing. The image resolution is 10µm. A longitudinal cross-section of the vessel segment imaged 

can be seen at the bottom. 

 

Reference points for the matching of the two methods were provided by visual 

identification of the OCT catheter on the coronary angiogram at its distal-most location in the 

vessel (when the pullback begins). The location of branches and other geometrical features, 

such as the catheter or the lesion itself were also used to assist matching.  Since the starting 

point and the length of the pullback were clearly defined, it is easy to locate the proximal end 

of the segment to be reconstructed (Figure 4-5). Changes to the OCT catheter tip position or 

vessel diameter following contrast injection were not considered in this study. 

 



88 
 

 

Figure 4-5 Left. Anangiograohic view of the OCT catheter inside the vessel at its most distal location. The catheter can be 

seen as two black dots on the wire. The pullback begins at the location of the most proximal of the two dots (red circle). 

Right. The corresponding location of the pullback beginning on the vessel using the same view (19 degrees left anterior 

oblique, 19 degrees cranial). The green line indicates the beginning of the centreline tracing. Knowing the pullback start point 

and length, it is easy to determine the end point. 

 

4.4 3D Reconstruction Algorithm 

 

The data collected were analysed off-line using a custom software package designed 

in a Matlab environment (MathworksInc, Natick, Mass). The reconstruction process is 

described below: 

 

4.4.1 Segmenting the lumen contours from the OCT slices 

 

The OCT scan slices (1024x1024 pixels, resolution 10μm/pixel)  were imported into 

Matlab R2012a (Fig 4-6A). The guide wire and OCT catheter were masked automatically 

prior to segmentation, to avoid errors in the algorithm. The algorithm scans each prepared 

slice radially for the points of maximum brightness, as shown in Figure 4-6B. Points lying 

outside 1.5 standard deviations either side of the mean distance from the cluster centroid were 

removed and the remaining points were smoothed using a moving average filter with a span 

of 11 points either side (Fig 4-6C). Thresholding was used to aid the algorithm. The 

brightness threshold used was optimised for each slice such that noise and other undesirable 

features (such as minor swirling) were removed automatically. The lumen contours were then 

traced using an active contour algorithm, a process (Matlab, function Snake2D, copyright 
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2010, Dirk-Jan Kroon) utilising a deformable spline which outlines object contours using 

gradient vector flow (Xu and Prince, 1997, Xu and Prince, 1998). The initial spline in each 

frame was defined as a circle around the centroid of the cluster points (Fig 4-6C). Once the 

contours were traced they were located on the XY (Z=0) plane of Cartesian coordinates, with 

the centroid placed on the origin. The normal unit vector for the surface defined by the 

contour was therefore ẑ = (0, 0, 1) (Fig 4-8). 

 

 

Figure 4-6 A. Original OCT scan imported as a greyscale image into Matlab software B. Same image with dots indicating the 

points of maximum brightness as found in the first stage of the algorithm. C. The dots represent the same points after deleting 

outliers and smoothing. The circle near the centre is drawn around the centroid of the points cluster and serves as the initial 

spline of the active contour algorithm. D. Segmentation of the lumen (bold line) is achieved using an active contour algorithm. 

 

The lumen tracing algorithm is semi-automatic, with very few minor adjustments 

required as input. Most of the input required is related to the parameters of the active contour 
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algorithm, which include the expansion (balloon) factor and stiffness and sensitivity to noise. 

These parameters need to be adjusted to the image quality and vessel caliber that can vary 

considerably from patient to patient.  

 

4.4.2 Calculating the centreline of the vessel from angiography 

 

The anatomy reconstruction provided by QCA3D was imported into Matlab as a set of 

vertices in Cartesian coordinates (Figure 4-7). For each few millimeter segment of vessel 

which typically contains 3 to 4 vertices in the longitudinal direction, vertex coordinates were 

averaged to obtain the coordinate of the segment’s centroid. The spline formed by the 

calculated centroids was then smoothed using a least squares interpolation method. The 

smoothing parameter was set to 0.9, close to the neutral value of 1, so that the smoothed 

spline points remained close to the original data. 

 

 

Figure 4-7 Left. The vessel reconstructed using CAAS QCA3D software based on the data from shown in Figure 4-3. 

Right. The surface points (blue) are imported into Matlab and the centreline (red) is calculated and smoothed. 
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4.4.3 Combining contour and centreline data to obtain reconstructed geometry 

 

The calculated centreline provides the ‘spine’ onto which the lumen contours will be 

mapped. It is first divided into vectors 0.2 mm in length, equal to the slice thickness; these 

vectors form the surface normal vectors of the plane onto which each lumen contour will be 

placed. The angle, , between the normal vector of the XY plane and the centreline vectors is 

calculated as in equation (4-1): 
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Angle   is the angle of rotation, while the unit vector corresponding to the cross 

product of the vectors forms the axis of rotation; the x, y and z  components of the unit vector 

are noted as  xv , yv  and zv  respectively. These parameters are used in a 3D rotation matrix 

(Table 4-2) which is applied to each contour. The process is schematically represented in 

Figure 4-8. 

 

Table 4-2 The rotation matrix used on the contour slices so that they become aligned with the centreline. The inputs required 

are the angle of rotation  , and vx, vy and vz , which are the x, y and z components respectively of the unit normal vector of 

the cross product between the two vectors, which forms the axis of rotation 



























































Z

Y

X

Z

Y

X

)cos-(1vcosv)vcos-(1sinvv)vcos-(1sinv-

v)vcos-(1sinv-)cos-(1vcosv)vcos-(1sinv

v)vcos-(1sinvv)vcos-(1sinv-)cos-(1vcos

'

'

'

2

zzyxzxy

zyx

2

yyxz

zxyyxz

2

x







 

Once the contours have been rotated to the desired orientation, the distance between 

their current and intended location is calculated, and a translation is applied, placing the 

contours in their final location. 

 

The final step is to apply in-plane rotation of each contour. Due to lack of catheter 

path information, a uniform rotation was applied throughout the vessel. The information 

needed for this step is provided by the angiographic images. A characteristic geometrical 

feature (like a branch) is identified in both the angiogram and the OCT scan. Then the vectors 

d0 and d1 are drawn from the centre of the vessel to the common point in the OCT slice and 
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angiogram respectively (Figure 4-8). The characteristic point from the OCT scan is traced 

through the initial rotation and translation, and the new vector d’0 is traced on the final 

contour plane. The angle between d’0 and d1 is the in-plane rotation angle. All contours are 

then rotated by the same angle. This method works under the assumption that the OCT 

catheter does not rotate around its axis during the scan. Given the fact that an OCT catheter is 

protected by a stiff sheath and the lengths scanned are relatively small (54.2 mm), this is a 

reasonable assumption, which has been shown to result in credible reconstruction, as shown 

in the validation section 4.5 of this chapter. 

 

The reconstruction is complete when the contours are exported in the form of 3D 

Cartesian coordinates into a custom-developed FORTRAN routine which combines the data 

into a stereolithography file. The resulting 21 geometries are presented in Figure 4-11. 

 

 

Figure 4-8 Determination of in-plane rotation angle Left. The vector d0 connecting the centroid of the vessel cross-section to 

the fiducial point (in this case a branch) in the OCT slice is shown in green. Right. The same distance traced on the 

angiogram, shown in the red vector d1. The vector d0 is traced throughout the initial translation-rotation process, to form the 

vector d’0 when the lumen contour is placed in the final plane. The angle between d’0 and d1 is the angle of in-plane rotation. 

Each vessel is reconstructed using the 3D angiography-based reconstruction technique 

before adding the OCT contours. The results of the two different methods applied to the same 

vessel segment are compared in Figure 4-10, where the added fidelity from the OCT images 

over the more smoothed 3D angiography images is apparent. The OCT-based reconstruction 

appears considerably more irregular as would be expected in vivo, while the shape of the 

lesion also looks considerably different, though the calculated minimal luminal area (MLA) 

is similar.  These differences are due to the QCA3D software representing the vessel contours 

as ellipses, whereas the OCT based methodology more closely represents the true lumen 

d0

d1

1mm

1mm
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contours segmented from the OCT scans. This results in realistic reconstruction that requires 

no smoothing of the contour shape and minimal smoothing of the centreline. 

 

Figure 4-9 Schematic representation of the 3D rotation of the lumen contours. Top. The contours originally lie on the XY 

plane, with ẑ  as plane normal. Bottom. The vessel centreline provides the unit vector which becomes the rotation axis. 

Applying the rotation matrix on the original contour coordinates, the coordinates of the rotated geometry can be calculated. 

Finally, the oriented contours are translated into position. 

 

 

Figure 4-10 Comparison of the angiography-based QCA3D reconstruction (a) and the angiography with OCT reconstruction 

(b) methods applied to the same vessel segment. In the QCA3D method lumen contours are represented as ellipsoids giving 

a smoothed appearance.  Whereas the lumen contours from the OCT images provide a much closer representation of the 

vessel characteristics, including, surface irregularities and the lesion shape. 

10µm in-plane resolution 
~0.18mm typical in-plane 

resolution 
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Figure 4-11 Examples of reconstructed coronary artery anatomies using the method described in this chapter. 
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4.5 Validation of the reconstruction method 

 

As with all computer-based modelling, testing of the new method was required to 

ensure that the reconstructed geometry represents the real vessel anatomy. For this reason, a 

virtual 3D model of idealised coronary anatomy, including branching, curvature, and the 

presence of stenosis was built, and with the aid of rapid prototyping a phantom model was 

made, which was then imaged using the same protocol applied to the human vessels 

presented above. A virtual reconstruction was produced and then compared to the original 

virtual model, in an attempt to evaluate how close the reconstruction method can get to the 

real anatomy. The final result was found to be satisfactory. The full methodology used for the 

validation is described below. 

4.5.1 Virtual 3D model of an idealised coronary stenosis 

 

A model of idealised stenosed coronary anatomy was built in ANSYS ICEM CFD 13 

(ANSYS Inc., Cannonsburg, PA). The geometry is 52 mm long with a diameter ranging from 

3.5 mm at the proximal end to 2.5 mm at the distal end, mimicking the normal tapering of the 

vessel as it branches out. It consists of a main vessel and a bifurcation branching out at an 

angle of 45 degrees. An eccentric, 50% diameter (75% cross-sectional area) stenosis was 

included in the model, placed near the bifurcation region, a common occurrence in cases of 

coronary artery disease. Care was taken to include features that would pose challenges to the 

reconstruction algorithm, such as the presence of a branch, which creates large areas of 

shadow, and of a stenosis placed exactly on the bifurcation which has also been a challenge 

for the reconstruction algorithm to capture, so that model presented a true challenge for the 

algorithm. The model is, however, lacking curvature in the longitudinal direction, which 

limits the model’s ability to validate the centreline assumption. 

A cross-section of the model is shown in Figure 4-12. The geometry was converted to 

a stereolithography (stl) file and a wall thickness of 1mm was added to the model to facilitate 

the rapid prototyping process that followed.  

 

 



96 
 

4.5.2 Rapid prototyping to produce phantom model 

 

The virtual 3D model was then used as a model for rapid prototyping (Sirris, Brussels, 

Belgium). The Polyjet printing method was used. Polyjet is a 3D printing method which was 

developed in 2001 as a very promising technique, improving on the accuracy of other 

methods, whilst achieving lower surface roughness for smoother models (Pilipovic et al., 

2009, Salmi, 2013). The method consists of printing very thin (0.16µm) layers of 

photopolymer material using a technique similar to ink-jet 2D printers. The CAD-guided 

layers of photopolymer build up to create the 3D geometry whilst being simultaneously cured 

under an ultra-violet light to maintain structure. The final spatial resolution of the structure is 

about 0.016 mm (Ibrahim et al., 2009) , comparable to the OCT slice thickness of 0.2 mm. 

 

Figure 4-12 Top A two-dimensional sketch of the proposed model geometry. The addition of a branch and a stenosis very 

near the bifurcation were designed to pose a realistic challenge to the algorithm. Bottom The final 3D model, the lumen to 

be imaged is shown in orange and the stenosis is highlighted in green. A 1mm-thickness wall was added (transparent yellow) 

to aid the rapid prototyping process. 
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Initially Polyjet was limited by the lack of variety of compatible materials (Durham, 

2003), but with the development of new materials it has become the preferred method of 

producing phantom models, especially in cardiovascular and other medical applications 

(Murugesan et al., 2012, Salmi et al., 2013b, Salmi et al., 2013a, Lambrecht et al., 2009). 

The material chosen for this application was TangoPlus FullCure W (Objet ltd, 

Rehovot, Israel), a rubber-like, commercially available material. The material has a 

combination of properties that make it attractive for use in a phantom model of coronary 

artery, as it is compliant, durable, is unaffected by water and can be transparent below a 

certain thickness, allowing for easier control of the OCT catheter. The mechanical properties 

of the material as used in arterial phantoms, an application similar to the one presented in this 

chapter were investigated by (Biglino et al., 2013) who showed that TangoPlus is a material 

suitable for use in in vitro testing of arterial models, achieving a distensibility that is within 

the physiological range, as shown in Figure 4-13. A picture of the final model is shown in 

Figure 4-14. As there would be no modelling using human blood, or modelling of the arterial 

wall structure and properties, the interaction of the TangoPlus material with blood was not 

investigated. 

 

 

Figure 4-13 A plot of wall distensibility vs. wall thickness for a TangoPlus phantom arterial model (black circles) compared 

to the physiological range (grey diamonds). Image reproduced from (Biglino et al., 2013) 
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4.5.3 Imaging of phantom model 

 

A known limitation of the OCT method is that it can only visualize one branch at a 

time. For this reason, only the model’s side branch was imaged using OCT. The reason that 

the side branch was chosen was because it would provide a bigger challenge to the model, 

because it has a curving centerline and provides a dimmer view of the stenosis (the stenosis 

being located on the main vessel). It should also be noted that the rapid prototyping process 

resulted in a rough model ‘lumen’ (Figure 4-15 and 4-19), adding another challenge to the 

model, as roughness was not included in the original virtual model. 

 

 

Figure 4-14 The final phantom model that was created using rapid prototyping from the virtual model shown in Figure 4-12. 

The material (Tangoplus) is distensible and partially transparent allowing for easy visualisation of the OCT catheter during 

imaging. The rapid prototyping process resulted in a smaller lumen compared to the one created in the virtual model, due to 

the presence of roughness which was difficult to remove. 

 

The imaging protocol followed was the same as described in sections 4.3.1 and 4.3.2. 

For the OCT imaging 271 images of the model segment were acquired with a slice interval of 

0.2mm, (i.e. 54.2mm length). A slice showing the presence of stenosis and the branching is 

shown in Figure 4-15. For the angiography data acquisition angiograms were obtained so that 

there were at least two unobstructed views of the model with a sufficient angle between the 

views to allow for good quality reconstruction, as shown in Figure 4-16. 

 

 

stenosis

branch

proximal main
distal  main
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4.5.4 3D Reconstruction and comparison to virtual model 

 

 The reconstruction method was the same as described in section 4.4. The angiography 

images and angiography-based reconstruction are shown in Figure 4-17, while the completed 

reconstruction compared to the original model is shown in Figure 4-18. 

 

 

 

Figure 4-15 Top. An OCT scan slice of the phantom model, showing both the stenosis (top left) and the bifurcation. The 

roughness seen on the lumen surface is a result of the rapid prototyping process, and was not present in the virtual model. 

Since the stenosis was in the main vessel and not in the branch, it was visualised at a distance, which has affected the 

contrast of the stenosis images. This was deliberately chosen to test the algorithm’s effectiveness at low contrast Bottom. A 

longitudinal view of the scanned model. The parameters were kept the same as in the patient protocol to facilitate 

comparison. 
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Figure 4-16  Two angiographic views of the phantom model, injected with contrast agent. The stenosis is clearly visible in 

both views. The two views form an angle of ~50 degrees, enough to provide an initial 3D reconstruction. Care was taken to 

include views that are routine in the cath lab. 

 

Figure 4-17  Top row. The two angiographic views shown in Figure 4-16 were used for the initial reconstruction. The 

process is the same as shown in Figure 4-2. Bottom row. The reconstruction result (shown left) and the diameter and area 

plots as calculated from that. The sudden dip in diameter and area near the halfway point indicates the presence of the 

stenosis. 
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Qualitatively, from the image of the two models (original and reconstructed) 

superimposed it can be clearly seen that the reconstruction is in good agreement with the 

original geometry. Using the new reconstruction method it was possible to capture the 

bifurcation angle, and also trace the contour and eccentric location of the stenosis very well, 

despite the reduced contrast created by the dimmer view of the stenosis (Figure 4-15). 

 

Figure 4-18 Top. The first attempt at reconstruction of the model branch.An misstep of the algorithm is visible just proximal 

to the stenosis. Modifying the algorithm parameters can easily  fix this. The stenosis area is shown enlarged at the inset. 

Bottom. Same as the top figure, but with the original virtual model design superimposed in grey. Visual assessment 

indicates that the two models (original and reconstructed) are quite close, with good agreement on the bifurcation angle and 

the tracing of the stenosis. 

Two tests were carried out to assess quantitatively the level of agreement of the 

reconstructed geometry to the original one. In preparation for the tests, the 3D geometries 

(original and reconstructed) were divided into 2D planes parallel to the x axis (which 

coincides with the longitudinal axis of the main vessel) 0.2 mm apart. This simplified the 3D 
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geometry into a set of 2D planes of constant x, enabling us to determine the error in the 

estimation of y and z coordinates only.  

The first test consisted of calculating the error in the y and z direction of the 

reconstructed geometry’s centreline. The mean of differences between the reconstructed and 

original geometries was calculated for the y and z direction, respectively, and was then 

normalised by the diameter of the vessel. It was found that the reconstruction was accurate 

within 0.60% of the vessel diameter in the y direction and within 0.36% of the vessel 

diameter in the z direction, indicating a very high level of accuracy. 

The second test consisted of calculating the correlation between the area of the 

reconstructed and the original cross-sections. The reconstructed cross-sectional areas were 

found to be 18% less than the original cross-sectional areas. This consistent underestimation 

is attributed to the presence of roughness in the phantom model imaged for the 

reconstruction, which made the effective lumen contour smaller than the originally designed 

one. The extent of the presence of roughness can be seen in Figure 4-19. This is a limitation 

of the method that was used to test the model’s accuracy. The underestimation of the cross-

sectional areas is consistent with the presence of roughness in the model, suggesting that in 

the application of the reconstruction method on human vessels, where the interest is in 

detecting the true lumen, the cross-sectional areas calculated will be closer to the clinically 

real value. 
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Figure 4-19 The  OCT slice of Figure 4-15 showing the difference between the original model lumen (green marking) and 

the phantom model lumen (red marking). It is obvious that the lumen of the phantom model is smaller than the model it was 

based on, and this is due to limitations in the rapid prototyping method resulting in a marked level of surface roughness. The 

reconstruction algorithm is tuned to detect the inner lumen contour (shown in red) and so resulted in a 18% underestimation 

of the cross-sectional area. This issue is not expected to affect application of the reconstruction method on patients. 

 

4.5.5 Conclusion 

 

 Testing of the method on a phantom model of known geometry provided validation 

for the reconstruction algorithm presented in this chapter. The reconstructed phantom 

geometry is in agreement with the original virtual model qualitatively. Quantitatively, the 

model has been shown that it can follow the vessel centreline very closely with error of less 

than 1% in all directions. Due to limitations in the rapid prototyping method, the phantom 

model lumen was smaller than the original model lumen, resulting in 18% underestimation of 

the cross-sectional area, an error which is attributed to the discrepancy between the phantom 

model and the original as shown in Figure 4-19, and not to a fault in the algorithm.  
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4.6 Discussion 

 

4.6.1 Optical coherence tomography provides high resolution 

 

Optical Coherence Tomography is an increasingly utilised imaging tool that offers 

considerably higher in plane resolution than IVUS (Cilingiroglu et al., 2012, Athanasiou et 

al., 2012, Tu et al., 2011). It allows the representation of all the geometrical features of the 

anatomy, including macroscopic roughness and jagged, calcified edges, which contribute to 

increased wall shear stress and the hemodynamic effects of stenoses, but cannot easily be 

imaged using other commonly used methods (Bark and Ku, 2010, Park et al., 2012, de Cesare 

et al., 1993). The centreline-based reconstruction method has been used successfully by 

(Athanasiou et al., 2012) and (Tu et al., 2011), who also provide validation for the method’s 

accuracy. 

 

4.6.2 Fusion of OCT with angiography overcomes coronary reconstruction challenges 

 

The accurate reconstruction of coronary anatomy has proven a great challenge. MR 

imaging of coronary arteries is rarely used in clinical practice, involves sophisticated methods 

(Keegan et al., 2004) and long image acquisition time (Torii et al., 2009a, Cardenes et al., 

2011). CT angiography is more promising, achieving a typical slice thickness of 0.75 mm 

(Hoffmann et al., 2006) but surface smoothing is required, which introduces errors. 

Quantitative analysis of coronary anatomy (2D QCA) is possible using angiography data 

(Girasis et al., 2011). The 2D approach based on uniplanar angiography, however, does not 

account for foreshortening, or for the fact that the same stenosis severity can be graded 

differently in different angiographic views (Seiler, 2011). This limitation has been addressed 

by using 3D coronary artery reconstruction based on two orthogonal angiography views. This 

method, supported by software such as CAAS QCA3D (Gronenschild et al., 1994) or 

CardioOp-B (Meerkin et al., 2010b) produces a reconstructed vessel volume consisting of 

circular or elliptical lumen contours, avoiding many of the pitfalls associated with 2D 

analysis (Schuurbiers et al., 2009, Ramcharitar et al., 2008). Other angiography techniques 

such as rotational angiography (RoCA), or combinations of CT and angiography have been 

used to produce reconstructions that are corrected for heart movement and unreliable ECG 
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gating (Cardenes et al., 2011, Cardenes, 2012). RoCA has been used in a proof-of-concept 

attempt to computationally predict pressure drop across coronary artery stenosis (Morris et 

al., 2012). However, in those cases, the lumen contours are still assumed to be circular or 

elliptic, which offers no information about the real geometry of the lumen.  

 

The fusion of angiography and intra-vascular ultrasound (ANGUS) method (Slager et 

al., 2000) utilises the actual contour of the lumen from intravascular ultrasound (IVUS) 

pullback imaging with in plane and longitudinal resolutions of ~0.1 mm (100 μm) and 

~0.5 mm respectively. IVUS scans only provide the local coordinates of the lumen contours, 

and therefore the contours are mapped onto an angiography-based model to obtain the final 

reconstructed geometry. This requires knowledge of the exact path of the IVUS wire, adding 

additional time to the patient scan. 

 

This study continues in the same vein as the studies mentioned above, trying to 

improve our understanding of coronary disease by a) increasing the accuracy of the contour 

tracing by using OCT and b) calculating and comparing phasic pressure and velocity results 

using patient-specific data. The proposed method makes use of data collected from routine 

catheter laboratory procedures as input, with no additional information required and no extra 

time per scan. The reconstruction algorithm developed is reliable, robust, and requires 

minimal user input and can be applied to any clinical dataset. The resulting reconstruction 

inherits the high resolution of OCT, while being equally easy and practical to perform as 

angiography-based reconstruction.   

 

The pairing of OCT with angiography has been attempted by other groups within the 

last two years, with most research conducted concurrently with, and published after, the 

method presented in this chapter. So far the method has proven useful in applications where 

increased reconstruction fidelity is required. Most studies focus on studying the effect of local 

haemodynamics on plaque development and rupture (Vergallo et al., 2014, Bourantas et al., 

2012b) and the combination of OCT with angiography has been shown to better assess the 

potential for neointimal thickness development around stents (Bourantas et al., 2014). To the 

author’s knowledge, no studies pairing the new OCT-angiography fusion with CFD to 

measure FFR have been conducted as of the writing of this document.  

  



106 
 

4.6.3 Method limitations 

 

A number of limitations have been identified during the development of this 

reconstruction method. 

The angiographic views were acquired using serial monoplane, rather than biplane 

imaging. This presents challenges regarding matching the timing of the frames used in the 

angiographic reconstruction from which the centreline was extracted. This is a limitation of 

the method, which could result in erroneous estimation of the vessel centreline. However, 

ECG was available, limiting the valid option frames to the diastolic phase of the cycle, while 

monoplane angiography has also been used in past OCT-angiography fusion with success (Tu 

et al., 2011). However, performing the reconstruction with biplane angiographic images 

would likely result in better reconstruction. 

OCT imaging is subject to imaging artefacts. Most of these artefacts, such as motion, 

inefficient expulsion of blood or oversaturation are easily identifiable and a repeat scan is 

enough to overcome these issues. However, issues relating to elliptical distortion due to 

skewed catheter position may not be as easy to identify, but can potentially compromise 

image quality. These issues could be addressed by looking at repeat scans of the same vessel 

section but due to patient health concerns these were not available for all vessels. 

Additionally, part of the lumen contours in an OCT scan is hidden by the shadow of the 

catheter. An interpolation method based on the vessel curvature on either side of the shadow 

was used to approximate the lumen contour in that section. Therefore, lumen features covered 

by the shadow could not be viewed and included in the final reconstruction. The same 

technique was used for side branches.  

The results of the OCT lumen tracing were not validated against manual contouring. 

This constitutes another limitation of the method. However, the high resolution and contrast 

of OCT imaging results in more accurate imaging and therefore less ambiguous object 

boundaries compared to other methods, such as IVUS, and therefore the algorithm result was 

considered reliable. Validation against manual contouring in future is, however, necessary to 

provide more confidence in the reconstruction result. 

 

Due to the limitation of intravascular imaging techniques such as IVUS and OCT, 

information on the position of the lumen contours in 3D space must be obtained from another 
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imaging method, most commonly angiography. Different reconstruction approaches have 

used either the centerline (Cilingiroglu et al., 2012, Athanasiou et al., 2012, Tu et al., 2011), 

or the imaging catheter path (Wentzel et al., 2008) as the base for the 3D reconstruction. The 

use of the catheter path is clearly the more accurate option, as the image contours are 

obtained perpendicularly to the catheter path, which doesn’t coincide with the centerline, 

especially in curved anatomies. Furthermore, information on the catheter path torsion can be 

obtained and the lumen contours’ in-plane orientation determined using a rotating TNB frame 

(Wentzel et al., 2003b). Due to lack of torsion information, in a centerline-based 

reconstruction a uniform in-plane rotation is used. 

 

However, imaging of the catheter pullback using diluted contrast agent without any 

imaging acquisition is required to enable catheter path-based reconstruction, adding time and 

effort to the imaging, meaning it is difficult to obtain this information outside of a research 

setting. The centerline method is less accurate, but has been shown to work when used in 

OCT-based reconstructions (see references in section 4.6.2 and above), providing useful 

results with the need for fewer resources.  

 

Changes to the OCT catheter tip position or vessel diameter following contrast 

injection were not considered in this study. This could affect the accuracy of OCT and would 

be true of any intravascular approach that attempts to perform fusion with angiography for 

vessel reconstruction. 

 

A phantom model was used to validate the reconstruction technique. The model 

included a bifurcation stenosis and branching geometry. However, it lacked curvature in the 

longitudinal direction, which limits the model’s ability to validate the centreline assumption. 

Errors introduced by the limitations presented in this model are expected to be low, 

but they can potentially contribute to sources of error when the model is used in CFD studies. 

The impact of the reconstruction method limitations on the CFD simulation results are further 

discussed in Chapters 5 and 6. 
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4.7 Summary and Conclusion 

 

The aim of this chapter was to present a novel method for creating accurate 3D virtual 

models of coronary artery anatomy and then use the new models in fully patient-specific CFD 

simulations to estimate distal pressure and FFR. The use of a high-resolution, high-contrast 

imaging method (OCT) resulted in reconstructions which capture the real shape of the lumen. 

The contour-tracing algorithm developed and presented in this chapter is quick (7s per slice) 

and requires minimal input which mostly consists of minor adjustments to parameters due to 

the difference in contrast and vessel calibre among patients.  

The lumen contours are originally calculated in local 2D coordinates. Their positions 

in 3D space are determined using angiographic views, which provide information about the 

vessel centreline. The lumen contours are positioned perpendicular to the centreline, in a 

departure from the established method of using the catheter path, saving both effort and time, 

and resulting in contour positioning of equivalent accuracy. The final shape of the 

reconstructed vessel is determined using a uniform in-plane rotation based on fiducial points 

in the OCT and angiographic views. The reconstruction method was validated by creating 

and then imaging a phantom model of known geometry, resulting in small errors (less than 

1%) in centreline estimation. An 18% underestimation in luminal area is attributed to the 

presence of roughness in the phantom model, but not in the original geometry used to 

compare, and exposes a limitation of the rapid prototyping technique used to create the 

phantom and not of the algorithm. 

The study presented in this chapter demonstrates that it is feasible to combine OCT 

invasive imaging with conventional coronary angiography to produce credible coronary 

vessel reconstructions. The process is relatively quick and semi-automated, and has been 

validated on a phantom model of idealised coronary anatomy. This reconstruction method 

was combined with patient-specific measured data of flow velocity and pressure in fully 

patient-specific CFD simulations. The results of the CFD study are described in the next 

chapter. 
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5. Application of the new coronary artery reconstruction method in 

CFD simulations 

 

 

 

Figure 5-1 CFD flow streamlines simulated in patient-specific models of coronary arteries of increasing (left to right) 

anatomical obstruction. There is evident change in the flow patterns downstream of the diseased area. Image from 

(Javadzadegan et al., 2013) 
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5.1 Introduction 

 

In the previous chapter, a new method of reconstruction of 3D coronary geometry 

using OCT and angiographic data was described. In this chapter, the setup of CFD 

simulations using the new reconstruction method combined with patient-specific, invasively 

measured pressure and flow velocity data is presented. The simulation results are assessed 

both in qualitative terms (testing that the model can realistically model transient coronary 

flow) and in quantitative terms (testing if the model can predict distal pressure given 

proximal pressure and distal flow velocity data). The chapter concludes with a list of the 

method’s limitations leading up to further investigations presented in Chapters 6 and 7. 

 

5.2 Invasive pressure and flow velocity measurement 

 

Simultaneous pressure and Doppler flow velocity measurements were made in the 

target vessel using a Combowire XT (Volcano Corporation, San Diego USA).  Intracoronary 

nitrates (300 mcg) were administered prior to wire insertion.  The Combowire pressure 

measurement was equalised with the aortic pressure at the coronary ostia.  Simultaneous 

proximal aortic pressure (Pa) and distal coronary pressure (Pd) and flow velocity data were 

acquired at resting and hyperaemic conditions, the latter was induced by intravenous 

adenosine infusion (140mcg/kg/min) into the right femoral vein using a 6F sheath.   

 

Initial measurements were made at the ostium, prior to making further measurements 

proximal and distal to the coronary stenosis.  Great care was taken to ensure a high density 

Doppler envelope was recorded to ensure accurate tracking by the digitisation systems.  At 

the end of each recording, the pressure sensor was returned to the catheter tip to ensure there 

was no pressure drift.  Where drift was identified the measurements were repeated. 

Electrocardiogram (ECG), pressures and flow velocities were archived in the device console 

(ComboMap®, Volcano Corporation). An example of the raw data acquisition screen is 

shown in Figure 5-2. The data were exported from the console into a computer, and  analysed 

further using custom-built software Study Manager (Academic Medical Center, University of 

Amsterdam, The Netherlands). During the data acquisition detailed notes were taken to time 

the location of the wire in conjunction with the angiographic images of the wire, to facilitate 
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offline analysis. 

 

The measured FFR of the lesions is skewed towards non-flow limiting (17/21 lesions 

are above the 0.80 cutoff). However, two thirds of the lesions studied (14/21) fall within the 

intermediate lesion range (0.7-0.9). Intermediate lesions can benefit most from FFR-guided 

clinical decisions (Doh et al., 2014) but are also the most challenging for CFD studies to 

replicate (Nakazato et al., 2013b). Of the 17 non-flow limiting lesions, nine had a FFR value 

between 0.81 and 0.85, while two lesions had a FFR of 0.80. 11 of the 17 lesions received 

PCI despite a negative measured FFR, due to other indications of flow limitation, such as 

persistent symptoms, or CFR < 2, further confirming that the majority of the lesions studied 

fall in the clinically relevant intermediate severity category. 

 

 

Figure 5-2 A typical screenshot of the Volcano Console during the data acquisition using Combowire XT. Proximal 

pressure (Pa) is measured at the coronary ostia and is shown in red. The pressure at the location of the wire, usually distal to 

the stenosis (Pd), is shown in yellow. The bottom section shows the Doppler velocity signal in greyscale, and the automatic 

tracing of the waveform produced by tracking the maximum velocity in the sample volume at each time point (shown in 

light blue). The measurements are ECG-gated (ECG trace at the top of the image in white). 

 

5.3 Simulation set-up 

 

The improved reconstructed anatomy described in the first section of this chapter 

was used in CFD simulations to allow more realistic representation of patient-specific data. 



112 
 

Simulations were carried out using 21 patient-specific cases of reconstructed coronary 

anatomy combined with the respective patients’ pressure and flow velocity. In some cases the 

location of the stenosis was very proximal, and so proximal extension to the vessel was added 

by maintaining the same cross-sectional area as the original proximal end, to avoid numerical 

errors arising from the entrance effect. The patient demographics are the same as in section 

4.2.  

5.3.1 Volume rendering and meshing 

 

Each of the reconstructed vessel segments represented a luminal surface surrounding 

the flow domain, which was discretised into an unstructured hexahedral mesh of 120-150,000 

elements using ANSYS ICEM CFD 13 (ANSYS Inc., Cannonsburg, PA). The mesh 

resolution near the wall was locally refined, achieving a thickness of about 0.2% of the vessel 

diameter for the elements adjacent to the wall. The high resolution near the wall significantly 

improved convergence of the computation. Images of the mesh used are shown in Figure 5-3. 

5.3.2 Patient-specific boundary conditions and simulation parameters 

 

Transient pulsatile simulations were set up using Ansys CFX pre-processing software 

(ANSYS UK). The boundary conditions were based on the patient-specific pressure and flow 

velocity waveforms acquired during FFR measurement (Figure 5-4). The proximal pressure, 

distal pressure and distal velocity waveforms were ensemble averaged over five to seven 

beats using the peak R wave as a fiducial marker to improve the signal to noise ratio, whilst 

preserving the characteristic features, such as the anachrotic and dicrotic notch. The averaged 

waveforms were then decomposed into the first 15 frequency harmonics using Fourier 

decomposition, and the resulting components were recombined into a series of trigonometric 

polynomials (Figure 5-5). This process provided a representation of the waveforms in a 

convenient equation form that could be input directly into the simulation set-up. 

 

The inlet boundary condition was defined as the aortic (proximal) pressure waveform. 

The distal velocity waveform was imposed at the outlet boundary, together with a flat spatial 

profile, as this provided the best agreement with normal volumetric flow rate values (Torii et 

al., 2010).  
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Figure 5-3 Examples of the unstructured, hexahedral mesh with added prism layers usedin the models. A. Mesh at the 

stenosis B. Mesh at the inlet cross-section. C. Mesh at the outlet cross-section. 

 

Figure 5-4 Patient pressure and flow velocity measurements just before and after administering the vasodilator adenosine to 

increase flow. At baseline, when flow is normal, there is little difference in the proximal and distal pressure waveforms. 

After flow increases the deviation of the Pa and Pd waveforms indicating disease is more pronounced. The data for the CFD 

simulations were taken by ensemble averaging 5-8 beats from the hyperaemia measurement section. 
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This combination of pressure and velocity boundary conditions means that peripheral 

(microvascular) resistance to the flow is implicitly incorporated. The coronary circulation is 

unique since blood flow is predominantly diastolic rather than systolic. During systolic 

myocardial contraction, the microvasculature is compressed meaning that microvascular 

resistance rises significantly.  In contrast, during diastole and active myocardial relaxation, 

the microvascular resistance falls leading to an acceleration of flow. Resistance is not 

constant during the cardiac cycle but varies dramatically and only phasic analysis allows 

determination of instantaneous resistance at any given point in the cycle. The fluid dynamics 

inside the coronaries are greatly affected by this variation (Vignon-Clementel et al., 2010, 

Sen et al., 2012) and using zero-pressure or other unrealistic boundary conditions results in 

physiologically unrealistic pressure and wall shear stress values. 

 

 

Figure 5-5 The ensemble averaged waveforms for proximal pressure (Pa, top), distal pressure (Pd, just below Pa) and flow 

velocity (bottom). 

 

The vessel wall was assumed to be rigid and immobile, while blood was modeled as 

Newtonian (mid-range viscosity of 0.00334 Pa.s) and incompressible (density 1060kg/m
3
). 

Motion of the coronary arteries was neglected for reasons of simplicity, as calculations are 

not likely to be affected significantly by the domain vessel motion (Torii et al., 2010). Rigid 

wall has also been shown to be a reasonable assumption for CFD simulations of blood flow in 
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large arteries; though arteries are compliant and can be modeled so, it has been shown that 

the increased numerical accuracy provided by fluid-structure interaction (FSI) models is not 

significant enough to justify the increased computational costs of FSI (Tan et al., 2009b, Torii 

et al., 2009c). Also, coronary arteries are less compliant than larger arteries, further justifying 

the rigid wall assumption.  

 

The maximum Reynolds number observed was low (<400), meaning that flow is 

laminar throughout the cycle, with observed disturbances caused by the presence of geometry 

irregularities. The system of the continuity and Navier-Stokes equations was solved 

iteratively for each element of the mesh in ANSYS CFX Solver 13. A root-mean-square error 

of less than 10
-6

 was specified as the convergence target, and a maximum of 25 iterations per 

time step was set in order to reach the desired convergence. The time step was chosen at 

0.001s, based on previously conducted time-independence tests by (Tan et al., 2008). 

 

5.3.3 Statistical testing 

Transient results 

 

The calculated distal pressure waveforms were compared against the measured data. 

Two statistical tests were performed. First, for each case, the shape of the calculated 

waveform was compared to that of the measured waveform using Pearson’s correlation with 

the aid of open-source statistical computing software R (http://www.r-project.org/). A 

correlation coefficient was produced for each patient and also a mean correlation throughout 

the cohort. This test was considered necessary in order to evaluate the ability of the method to 

accurately model the time-varying microvascular resistance. Even though patient-specific 

data of pressure and velocity were applied as boundary conditions, the rigid wall assumption 

(which means impedance is not modelled) could still have a marked effect on the shape of the 

resulting waveform.  

The second statistical test was to calculate the mean of differences between the 

calculated and measured pressure waveforms. This was done for all time points throughout 

the cohort, in order to evaluate the overall ability of the model to quantitatively assess the 

distal pressure on a given anatomy.  
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Time-averaged results 

 

 The ratio of mean distal to proximal pressure (Pd/Pa) measured under conditions of 

hyperaemia, otherwise known as FFR is, as discussed in Chapter 2, clinically important as it 

could improve diagnosis. For this reason the FFR derived from the CFD results was 

compared to the FFR resulting from the ensemble averaged waveforms of the clinically 

measured pressure data. A correlation plot and a Bland-Altman (Altman and Bland, 1983) 

plot were created to assess the model’s ability to predict FFR. The results are presented in the 

section below. 

5.4 Results 

5.4.1 Flow and pressure patterns 

 

An example of the flow patterns observed in a coronary stenosis can be seen in 

Figure 5-6, while the corresponding pressure profiles are shown in Figure 5-7. The flow 

accelerates upon entering the stenosis, then separates from the boundary and forms a high 

velocity jet which becomes reattached to the vessel wall distally. Due to the presence of 

curvature and the tortuous nature of the coronary vessels, flow patterns are not symmetrical, 

but the jet coming out of the stenosis tends to reattach on the outer side of the bend, leaving a 

long area of recirculation on the inside of the bend.  

The increased flow through the stenosis predictably results in a sudden drop in 

pressure due to the Bernoulli effect. However, as in the case of aortic stenosis described in 

Chapter 3, viscous losses due to the increased flow combined with the extensive recirculation 

lead to irreversible pressure losses. Consequently, even though flow velocity distal to the 

stenosis is on a similar level to the velocity proximally, only a small fraction of pressure is 

recovered, and a distinct pressure drop is observed in the part of the vessel which is distal to 

the stenosis. The Reynolds number remains well below 400 at all times for all cases 

considered, which means that the assumption of laminar flow is justified.  

5.4.2 Comparison of calculated and measured distal pressure waveforms 

 

The distal pressure waveform calculated by the CFD simulation was compared to the 

measured distal pressure waveform and the cross-correlation coefficient test was used as a 
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measure of similarity between the two. The results are displayed in Figure 5-8. The mean 

cross-correlation coefficient for the total of 21 cases was 0.898±0.005 (p<0.01), whilst the 

mean of the differences between measured and simulated results was -3.45 mmHg (4.4% of 

the mean measured pressure), with a mean standard deviation of differences of 8.17 mmHg, 

as seen in the Bland-Altman plot of Figure 5-9.  
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Figure 5-6 Velocity streamlines in the 21 lesion anatomies studied. 
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Figure 5-7 Pressure profiles in the 21 lesion anatomies studied. The red colour indicates low pressure. 
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Figure 5-8 Comparison of the measured (grey line) and calculated (dashed line) distal pressure waveforms for all lesions 

(the proximal pressure is shown in black). The model-predicted distal pressure correlates well with the measured pressure 

waveform, as indicated by the correlation coefficient being very high for all cases. 
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Figure 5-9 Bland-Altman plot of the differences between  the mean distal pressure calculated by the CFD model and the 

measured values. A bias of less than 4 mmHg was found, and the limits of agreement were found to be between -24.6 and 

16.4 mmHg. 

 

5.4.3 Comparison of calculated vs. measured FFR 

 

The FFR values calculated by the CFD model were compared to the values of FFR 

measured by averaging the ensemble-averaged measured aortic and distal pressure 

waveforms over a cardiac cycle. The correlation plot is shown in Figure 5-10. The correlation 

coefficient was 0.58, which indicates a positive correlation, but  is not as strong as one would 

expect from fully patient-specific CFD simulations. This result, however, bears resemblance 

to the result reported in (Morris et al., 2013) where the authors attempted to calculate FFR 

using steady-state CFD on reconstructions based on rotational angiography. 

 

A Bland-Altman plot of the same data was created and is shown in Figure 5-11. There 

is no bias in the mean of the two sets of data (calculated and measured), and the standard 

deviation is 0.08, which is less than 10% of the FFR value range (from 0-1). The limits of 

agreement are placed at ±1.96 standard deviations. This indicates that nearly all the 

calculated data points are within ±0.165 of the corresponding measured data points. Given 
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that the cut-off point for FFR is 0.80, the differences within the limits of agreement could be 

significant for each individual patient.  

The binary cut-off of FFR means that the CFD results can also be evaluated in terms 

of whether the FFR prediction (significant or non-significant) is in agreement with the 

measured values.  In Figure 5-12 it is shown that in 16 out of 21 vessels the CFD-based FFR 

prediction would agree with the measured assessment of lesion significance. Of the five 

lesions where the CFD-based and measured FFR were in disagreement, the FFR significance 

was overestimated by CFD in three cases and underestimated in two. These results represent 

a 77% success rate for CFD-based FFR prediction in this cohort. 

The combined information from the correlation and Bland-Altman plots suggests that 

uncertainty over the accuracy of the calculated FFR remains after using patient-specific 

anatomical, pressure and velocity data. These results are further discussed in the next section. 

5.5 Discussion 

5.5.1 Patient-specific phasic flow analysis 

 

Patient-specific coronary artery CFD studies are scarce compared to other large 

vessels, such as the aorta, since high-quality anatomical and velocity data is difficult to 

acquire. Previous studies have been limited to models based on post-mortem vessel casts with 

steady flow as boundary conditions (Goubergrits et al., 2009), or generic combinations of 

idealised or patient geometry and velocity waveforms (LaDisa et al., 2006, Yin et al., 2009, 

Yakhot et al., 2005). To date there is only a limited number of fully patient-specific 

simulations of coronary flow in the literature; one involves very long image acquisition time 

not suitable for clinical applications, whilst another uses aortic pressure and flow data to 

implicitly calculate flow in the coronary tree by simulating a larger part of the cardiac 

anatomy (Torii et al., 2010, Hajati et al., 2012). 
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Figure 5-10 Predicted (calculated by CFD) FFR vs. measured FFR for the 21 lesions studied. The correlation coefficient 

between the two sets of data is 0.58, suggesting a positive correlation, but not as strong as could be expected. 

 

 

Figure 5-11 Bland-Altman plot of the calculated and measured FFR values for the 21 lesions studied. No bias was detected 

between the two sets of data, and the standard deviation was small at 0.08. 
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Figure 5-12 Predicted (calculated by CFD) FFR vs. measured FFR for the 21 lesions studied. The vertical and horizontal 

lines represent the FFR cut-off point of 0.80 for the measured and predicted data respectively. Points lying in the bottom left 

and top right quarters represent successful prediction of lesion significance from the CFD. A total of five points lie in the top 

left and bottom right quarters, indicating unsuccessful prediction of lesion significance. 

 

Furthermore, the majority of the literature focuses upon mean pressure and velocity 

values. However, mean flow is not representative of true phasic flow due to nature of the 

coronary circulation.  Extrinsic compression by the myocardium in systole means that flow 

velocity is much less during systole, while active relaxation and decompression of the 

microcirculation lead to greatly accelerated flow in diastole.  Therefore, our approach was to 

model patient-specific conditions for the entire cardiac cycle, calculating phasic pressure 

waveforms and comparing with measured data.  
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5.5.2 Limitations of the proposed model 

 

Where algorithmic predictions differ from the measured values, there are several 

sources of potential errors.  These include limitations of the reconstruction algorithm and the 

measured haemodynamic parameters. These are discussed separately below.   

Limitations based on the reconstruction method 

 

As discussed in the limitations section of Chapter 4 (Section 4.6.3), the reconstruction 

method used to produce the 3D models used in the CFD simulations presented in this chapter 

is subject to limitations, including the use of monoplane angiography, and the use of the 

centreline instead of the OCT catheter path, either due to data not being available in a clinical 

setting, or in order to simplify the data collection and reconstruction process. Though results 

presented in other publications (Tu et al., 2011, Bourantas et al., 2012a) appear to validate the 

assumptions made in this study, it is possible that errors introduced by the reconstruction 

process propagate to the CFD simulations and result in errors and inaccuracies.  

Currently, the existing centreline-based reconstructions making use of 

OCT-angiography or IVUS-angiography fusion have not yet been used to estimate FFR from 

CFD simulations, so no direct comparison with the results of the current study can be made to 

compare and identify which reconstruction errors are critical to the CFD result. The 

centreline-based reconstruction method has, however, been used in CFD studies focusing 

more on the flow patterns near the wall and the related wall shear stress with reliable results 

(Bourantas et al., 2014, Bourantas et al., 2012a, Vergallo et al., 2014). 

This study’s limitations are further explored in Chapter 6, in the context of the results 

and limitations of similar studies. 

Limitations based on data collection and processing 

 

Results obtained from mathematical models based on patient-specific data can be 

compared directly with in-vivo measurements.  Whilst this provides an opportunity to test the 

reliability of the models, it should be recognised that human in-vivo measurements using 

state-of-the-art technology are themselves limited with well-recognised measurement 

variability (Mynard and Steinman, 2013).   
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Invasive intracoronary measurements involve simultaneous pressure and Doppler wire 

assessment.  This wire requires training in its use and does not yet behave like a typical 

angioplasty wire.  Therefore for technical reasons it may not be possible to acquire flow 

velocity data in all vessels and across all lesions.  Other researchers have estimated coronary 

flow by using thermodilution techniques (De Bruyne et al., 2001, Pijls et al., 2002).  

However, these approaches do not generate a flow waveform which can be co-registered with 

the electrocardiogram and pressure waveforms.  Furthermore, thermodilution techniques can 

be affected by the volume of the injectant, the length of the vessel and the number of side-

branches.  

 

Volumetric flow rate can only be estimated in vivo in humans. Open-chested animal 

models have previously allowed estimation of volumetric flow rate based upon isolated 

arteries with measuring tools inserted into the vessel with careful measurement of vessel 

diameter (Gould and Kelley, 1982).  This technique is not possible in humans.  We chose to 

estimate volumetric flow rate using measured flow velocity with the assumption of an 

idealised spatial flow profile and combined this with highly accurate cross-sectional areas 

measured with OCT.  All methods to measure vessel diameter are inherently limited as 

coronary vessels can show marked changes in size dependent upon endothelial function, the 

flow volume and the intracoronary pressure generated by flow (Muller et al., 2012).  As such, 

our estimation is not biased to over or under estimation and follows the current state-of –the 

art in this field.  

 

However, even though our results are not biased when it comes to comparing the 

mean of differences across the entire 21-lesion cohort (as indicated by the Bland-Altman plot, 

Figure 5-11), it does lead to a high standard deviation of ~8 mmHg in predicted pressure, 

which suggests that the difference between the CFD-calculated and the measured pressure 

difference at a given time-point for a single patient could be over- or under-estimated by as 

much as 16 mmHg (2 standard deviations). This indicates a level of uncertainty in the CFD 

calculations that prevent the use of this method as an accurate predictor of pressure drop in 

the coronary arteries. 

 

A further limitation is that we can only model resistance based upon flow velocity and 

measured pressure.  The true impedance relies upon modeling vessel wall elasticity which 



127 
 

remains a limitation of all CFD approaches to date. 

 

Other practical limitations of the method employed in this study include the approach 

to imaging the vessel.  Simultaneous bi-plane angiographic imaging was not available in all 

cases, operated multi-view angiography using isocentred imaging equipment was used 

instead.  Theoretically the availability of bi-plane imaging will lead to improved three-

dimensional angiographic reconstructions and more accurate modeling, though monoplane 

angiography has been used in OCT-angiography fusion with success (Tu et al., 2011).  Our 

model also performed well without bi-plane imaging and is expected to produce better results 

when it becomes available in the future. Whilst bi-plane imaging is increasingly common, it 

is expensive, not in routine use for all patients; the use of single plane imaging means it is 

readily applicable to the majority of patients. 

 

OCT contour segmentation and reconstruction are limited by the shadow cast by the 

intracoronary wire along which the OCT catheter runs.  This limitation is inherent to OCT 

technology and is overcome by the use of specialized interpolation functions in the active 

contour algorithm. However, the validation work on the reconstruction method presented in 

section 4.5 suggests that there are few errors in the reconstruction which would not be 

expected to significantly affect the CFD results. 

 

A key limitation associated with all CFD studies is that this approach is not fully 

automated and cannot currently produce an output within the time frame of performing a live 

intra-coronary procedure.  The CFD simulation requires an average of 48 hours of computer 

processing using a conventional desktop workstation and a parallel 4-core run.  Increase in 

computer processing power and optimisation of the algorithms will improve this in the future. 

 

The effects of individual sources of error in the CFD FFR calculations are 

investigated in Chapter 6. 

 

5.5.3 Potential Applications for future 

 

By modeling the haemodynamics of specific coronary lesions it is possible to assess 

and predict the impact of shear stress, and physiological pressure gradients imposed by a 
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given lesion.  Treatment using such pressure based techniques (such as FFR) have been 

shown to improve clinical outcomes.  Using a combination of imaging modalities combined 

with derived pressures and velocities, it may be benefit both current clinical practice, in 

addition to on-going work attempting to further understand the relations between shear stress 

and likelihood of stenosis rupture or occlusion.  By accurately modeling phasic pressure 

changes in the distal vessel, this model may allow greater understanding of how a coronary 

stenosis impacts coronary physiology throughout the cardiac cycle, rather than an averaged 

across the cycle.   

 

5.6 Summary and Conclusion 

 

In this chapter, geometries reconstructed from OCT and angiographic data as 

described in the previous chapter were combined with invasively measured proximal pressure 

and distal flow velocity data in pulsatile CFD simulations, in an attempt to compare the CFD-

calculated distal pressure waveform to the clinically measured pressure. The results for a 21-

patient cohort indicated a very small mean of differences (4.4%), but with a higher than 

expected standard deviation of ~8mmHg. This result indicates that uncertainty over the CFD-

calculated pressure drop for an individual patient remains significant even when using state-

of-the-art imaging, pressure and flow velocity data, which is reflected in the positive, but not 

as high as expected correlation between the calculated and measured FFR (r=0.58). 

The potential sources of error in the CFD simulations and their effect on the CFD 

results are further investigated in Chapters 6 and 7. 
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6. Further investigation of the differences between CFD-derived and 

measured physiological parameters under hyperaemia 

 

 

Figure 6-1 Instantaneous vorticity plots in an idealised model of carotid stenosis, using three different CFD models (adapted 

from (Tan et al., 2011)).The variation in the results suggests that, as impressive as the capabilities of CFD are, validation 

against a gold standard is always necessary before the results can be considered reliable. 

DNS              LES       ESm0.13
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6.1 Introduction 

 

 CFD is currently being presented as a non-invasive alternative to estimating FFR in 

patients with coronary artery disease. In the previous chapter it was shown that, despite being 

capable of predicting FFR in a 21-vessel cohort, fully patient-specific phasic CFD 

simulations cannot reliably predict the FFR of all individual vessels within the cohort. The 

limitations posed to the CFD models were discussed and the conclusion was reached that 

further investigation is required in order to identify which of the limitations presented can 

significantly affect the CFD result. 

The parameters which are expected to have the biggest influence on the CFD 

estimations of FFR include misrepresentation of the patient anatomy in the 3D model and 

errors in the estimation of boundary conditions compared to the actual flow conditions in the 

vessel. Tests were devised to assess the sensitivity of the CFD result to variations in anatomy 

and volumetric flow rate, while the effect of the proximal pressure variability on the FFR 

ratio was also investigated as a potential cause of discrepancy. Three different types of 

patient-derived anatomy (angiography-based reconstruction, OCT-only reconstruction and 

the novel OCT-angiography co-registration method described in the previous chapter) were 

combined with patient-specific flow rates in phasic CFD simulations and the resulting FFR 

results were compared to the measured values. The effect of volumetric flow rate is 

investigated in a sensitivity analysis of the effect of flow rate on FFR within the normal 

hyperaemic range in three stenoses of varying severity.  

Other limitations, such as omission of branches or errors associated with velocity 

measurement, and the effect they may have on the potential of CFD to accurately predict FFR 

are also discussed at the end of the chapter. 
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6.2 Effect of anatomy on CFD-based FFR predictions 

 

6.2.1 Model description 

 

The data from the cohort of 21 vessels (19 patients) presented in Chapter 4 were used 

for this study (patient demographics shown in Table 4-1). For each vessel an angiogram, an 

OCT scan, and invasive pressure and flow velocity data were available. The pressure and 

flow were measured for resting and hyperaemic flow. A detailed description of the methods 

used to acquire these data is shown in chapter 4 sections 4.3 and 4.8. 

The angiographic imaging DICOM files were imported into CAAS QCA3D software 

(Pie Medical Imaging BV, Maastricht, The Netherlands) and the centreline of the vessel was 

traced manually in two views with a known angle between them. An anatomical feature 

evident on both views was used as a fiducial point to aid the reconstruction (Figure 4-3 

contains a detailed description of the process). The final vessel reconstruction consists of 

elliptical cross-sections. The short and long axes of the ellipse are determined by the 2D 

measurements on each of the two views, and so the estimation of cross-sectional area has 

been shown to be reliable (Schuurbiers et al., 2009, Goubergrits et al., 2009). However, the 

fixed geometrical shape of the cross sections results in a smooth appearance of the vessel 3D 

reconstruction, and though the vessel’s curvature and tortuosity are captured, it is not a true 

representation of the lumen shape.  

The OCT data were analysed using a custom software package designed in a Matlab 

environment (MathworksInc, Natick, Mass). The reconstruction process consisted of an 

algorithm which traces the lumen contours based on the contrast between the wall (light) and 

lumen (dark) areas of the images. OCT, as all intravascular methods, only provides local, 2D 

coordinate information, and so, apart from the longitudinal distance (slice thickness), there is 

no information on the relative position of the resulting lumen contours in 3D space. The 3D 

reconstruction consists of a tube with the OCT catheter path coinciding with the Z axis and 

the lumen shaped based on the true lumen contours extracted from OCT, placed on X-Y 

planes 0.2 mm (slice thickness) apart. The final result contains no vessel curvature or 

tortuosity information, but is a reliable representation of the lumen shape.  
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The two imaging methods, angiography and OCT, provide incomplete but 

complementary information. Therefore, an algorithm combining the two using a co-

registration process can result in a more reliable reconstruction. Lumen contours were traced 

on the OCT scans, and were then rotated and mapped onto the centreline of the angiographic 

reconstruction, which contains curvature information, with the help of several fiducial points 

to enable co-registration between the two methods. The reconstruction process is described in 

detail in chapter 4. The 3D reconstruction achieved by this method is shown along with the 

other two methods in Figure 6-2. 
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Figure 6-2 A. Angiography-based reconstruction of a lesion in the left circumflex coronary artery. The curvature and 

tortuosity of the vessel are captured in 3D space by using two angiographic views to create the reconstruction. The lumen 

contours, however, are represented by elliptical shapes and do not represent the true lumen shape. B. OCT-based 

reconstruction of the same vessel segment. The lumen contours extracted from the OCT images provide important extra 

information, such as the presence of a tandem lesion at the distal end of the vessel (bottom), that the angiographic 

reconstruction presents as a single stenosis. However, there is no information on curvature and tortuosity, meaning that some 

contours are skewed compared to the neighbouring ones, resulting in artefact sharp edges, and the vessel segment appears 

longer than reality. C. The same vessel segment reconstructed by co-registering angiography and OCT. The detailed 

representation of the lumen contours from OCT combined with curvature information from angiography, contributes to a 

superior reconstruction. 

A

B

C
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6.2.2 Simulation set-up 

Volume rendering and meshing 

 

Hexahedral meshes of 120-150,000 finite volumes were created for all geometries 

using the methodology described in paragraph 4.9.1. In the geometries incorporating the 

OCT-derived lumen contours, the wall roughness was markedly higher than in the geometries 

created based on angiography only. For this reason, grid refinement near the wall was 

considered necessary to capture the flow around the rough geometry, but also to improve the 

simulation convergence.   

Boundary conditions and simulation parameters 

 

Pulsatile simulations were set up using Ansys CFX 13.0 pre-processing software 

(ANSYS UK). The boundary conditions were provided by the patient-specific pressure and 

flow velocity waveforms acquired during FFR measurement. The proximal pressure and 

distal velocity waveforms were ensemble averaged over five to seven beats using the peak R 

wave as a fiducial marker to improve the signal to noise ratio, whilst preserving the 

characteristic features, such as the anachrotic and dicrotic notch. The boundary conditions 

were vessel-specific, and so each set of boundary conditions was used three times, one for 

each reconstruction method. Fourier decomposition of the waveforms was used in order to 

convert the waveforms in a convenient equation form that could be input directly into the 

simulation set-up. The CFD model assumptions made in all cases were that flow is laminar 

(max Re ~ 400), blood is Newtonian and that there is no wall distension or domain motion. 

Justification of these assumptions is presented in chapter 4. 

 

6.2.3 Results and discussion 

 

 The CFD-predicted vs. measured FFR plots for the three different anatomy 

reconstructions are shown in Figures 6-3 to 6-5. In the case of angiography-based and OCT-

based reconstruction, no correlation was found between the predicted and measured FFR 

(correlation coefficient of 0.048, p = 0.84 and 0.12, p = 0.6 respectively), while for the 
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combined OCT and angiography reconstructed models a statistically significant positive 

correlation (correlation coefficient 0.58, p = 0.003) was found.  

From the plots presented in Figures 6-3 to 6-5 it is evident that the geometry used to 

represent the patient anatomy plays an important role in the validity of the simulation 

outcome. It also appears that the use of angiography-based or the OCT-based reconstructions 

alone led to failure to estimate the pressure drop inside the vessel, with only the combined 

angiography-OCT reconstruction method providing a positive correlation with measured FFR 

data. 

This result indicates that in order to provide reliable predictions of FFR, a true 

representation of both the lumen shape and the curvature and tortuosity of the vessel needs to 

be included in the model geometry. Curvature and tortuosity information can be easily 

obtained using imaging methods such as angiography or CT, and sometimes MRI. However, 

reliably visualising the true shape of the coronary vessel lumen contours can only be achieved 

with high-resolution, usually intravascular imaging methods, such as OCT or IVUS. 64-slice 

CT offers high resolution imaging too, but it still only has accuracy comparable to 

angiography (Sehovic, 2013, Lee et al., 2013).  

The correlation between the measured and predicted FFR in the best geometrical 

representation is not high enough to suggest that geometry is the only important factor in the 

success of a CFD simulation. In what follows, other possible parameters the CFD-derived 

FFR may be sensitive to are tested and discussed. 
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Figure 6-3 CFD-predicted vs. measured FFR plot and corresponding Bland-Altman diagram using angiography-based 

models. There was no correlation between the two data sets. 

 

Figure 6-4 CFD-predicted vs. measured FFR plot and corresponding Bland-Altman diagram using OCT-based models. 

There was no correlation between the two data sets. 
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Figure 6-5 CFD-predicted vs. measured FFR plot and corresponding Bland-Altman diagram using fusion of OCT and 

angiography reconstructed models. There was a positive correlation between the two data sets. 

 

6.3 Effect of hyperaemic proximal pressure (Pa) on the FFR ratio 

 

Fractional flow reserve is defined as the ratio of distal to proximal pressure (Pd/Pa) 

under maximal vasodilation. It has been established (Tarkin et al., 2013) that the 

administration of vasodilators like adenosine results in variations in proximal pressure, with 

commonly lower Pa observed during hyperaemia compared to resting flow conditions 

(Figure 6-6). Since the proximal pressure is used as the denominator in calculations of FFR, it 

could be assumed that the lowering of proximal pressure could result in overestimation of 

lesion severity. 

In order to test the effect of Pa in the FFR calculations, the observed pressure drop 

across the lesions during invasive and CFD-based FFR calculations were compared using 

absolute differences. The calculations were done in the 21-vessel group studied in Chapter 4, 

and the pressure drop was calculated as (mean hyperaemic proximal pressure) - (mean 

hyperaemic distal pressure) in the measured data and the CFD results using the geometries 
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obtained by the OCT-angiography co-registration algorithm. The results of the comparison 

are shown in Figure 6-7. 

 

Figure 6-6 Left. An example of change in the FFR classification (severity assessment) during adenosine-induced 

hyperaemia. Intracoronary proximal (Pa) and distal (Pd) pressure traces are shown at the top, while at the bottom is the 

respective FFR ratio. It can be seen that, before reaching stable hyperaemia, FFR falls below the threshold, possibly due to 

simultaneous Pa depression. Image from (Tarkin et al., 2013). Right. Example of proximal pressure depression during 

adenosine-induced hyperaemia in one of the vessels used in the CFD simulations. 
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Figure 6-7 CFD-predicted pressure drop vs. measured pressure drop correlation plot (top left) and Bland-Altman plot (top 

right) show that removing Pa from the calculations does not result in higher correlation. Similar correlation was found when 

testing CFD-predicted pressure drop against the measured FFR. 

 

The results suggest that removing proximal pressure from the comparison between 

measured and CFD-predicted pressure drops does not result in improvement in the 

correlations, or the limits of agreement achieved in a Bland-Altman plot. In fact, the 

correlation coefficients between CFD-predicted pressure drop vs. measured pressure drop and 

CFD-predicted pressure drop vs. measured FFR are very similar, suggesting that the 

magnitude of proximal pressure has little to no effect on the accuracy of the CFD result. 

 

6.4 Sensitivity of CFD-predicted FFR to volumetric flow rate 

 

The results presented in section 6.2 suggest that there is a positive correlation of 
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predicted and measured FFR when using the most accurately reconstructed coronary anatomy 

available. However, the correlation was not as strong as one would expect based on the use of 

state-of-the-art pressure and flow velocity data as boundary conditions. This suggests that 

more parameters can have marked effects on the accuracy of the CFD-based FFR estimation.  

 

We hypothesized that the error in the estimation of coronary volumetric flow rate 

from coronary flow velocity provides a large source of measurement variability. 

 

6.4.1 Model description 

 

In order to test this hypothesis, three of the patient-specific coronary anatomies of the 

original cohort presented in Table 5-1 were selected to perform a sensitivity analysis on. The 

geometries were chosen based on the stenosis severity as indicated by the measured FFR 

value; one had a FFR of 0.68, considerably smaller than the 0.80 cutoff, indicating severe 

stenosis, another had a FFR of 0.95 indicating mild disease, while the third had a FFR of 

0.81, indicating moderate disease. The angiography/OCT fusion reconstructed geometries of 

the three vessels are shown in Figure 6-8. 

Steady state CFD simulations were set up. A pressure of 100mmHg, representing a 

typical mean aortic pressure (Pa) was chosen as inlet boundary condition in all cases. The 

outlet boundary condition was volumetric flow rate, which varied from 1.2 to 2.8 ml/s in 

0.4ml/s increments. All values used are within the physiological range of cycle-averaged 

volumetric flow rate observed in the coronary arteries during vasodilation (Sakamoto et al., 

2013). 

 

6.4.2 Results and discussion 

 

The predicted pressure drop is shown in Figure 6-9. The results are shown as % 

pressure drop compared to the inlet pressure of 100mmHg, so that a 20% pressure drop 

indicates a distal pressure measurement of 80mmHg, or a FFR of 0.80, representing the 

cutoff value. 
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Figure 6-8 Three vessel anatomies taken from the original 19-patient cohort and used in the sensitivity analysis. Measured 

FFR is shown for each lesion. 

 

 

 

Figure 6-9 Mean % pressure drop vs. volumetric flowrate for three different patient-specific coronary anatomies with 

varying degrees of disease severity. The red line indicates the FFR cutoff point of 0.80, suggesting that the volumetric 

flowrate is an important parameter in determining the overall pressure drop. This result is not surprising, but is rarely 

considered when using pressure drop to assess coronary stenoses in clinical practice. 

 

Several attempts to use CFD for the prediction of FFR can be found in the literature. 

The imaging techniques used for coronary vessel reconstruction vary from non-invasive 64-

slice CT, to invasive rotational coronary angiography, to fusion of angiography with 

severe mild moderate
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intravascular ultrasound. In all cases a good correlation between the CFD-estimated and the 

measured FFR values is shown. However, the agreement is not as high as might be needed to 

make a clinically satisfactory diagnostic technique. In the VIRTU-1 study (Morris et al., 

2013), the overall bias between measured and calculated FFR was low, but the limits of 

agreement were found to be almost 0.3 either side of the mean. 

 All of the existing studies have struggled with acquiring reliable patient-specific 

volumetric flow rate data. The approach taken to overcome this challenge varies from study 

to study: in the VIRTU-1 study (Morris et al., 2013) a steady-state Windkessel model of 

microvascular resistance and impedance (Segers et al., 1999) boundary condition was 

adopted, using one set of parameters averaged over all cases, essentially assuming the same 

set of boundary conditions for all cases. A complicated system of  resistance, impedance and 

capacitance used in a lumped heart model, combined with a Windkessel resistance model and 

Murray’s law (Murray, 1926) were adopted in the calculation of FFRct (Kim et al., 2010). 

The parameters of the system were fine-tuned to fit each patient’s data, resulting in a positive 

predictive value of 74%, as presented in the DISCOVER-FLOW study (Koo et al., 2011). 

The concept of TIMI frame count (Gibson et al., 1996) was used to estimate resting flow rate 

from angiographic images in a small study of 7 patients (Siogkas et al., 2013). While the 

agreement with the measurement was quite high, with a correlation coefficient of 0.85, the 

cases presented had very mild stenoses, all having a FFR measurement >0.85 which is not 

representative of the general population of CAD patients. Also, as with DISCOVER-FLOW, 

the flow rate estimations were not validated against the real flow rate at the time of the FFR 

measurement. 

A study by (Papafaklis et al., 2014), published after work on the current study was 

completed and published, proposed a way to circumvent the uncertainties in the volumetric 

flow rate estimation which are evident in all attempts to incorporate volumetric flow, 

measured or estimated, into CFD simulations for FFR. Steady-state CFD simulations of 

models built using angiography are run, setting a constant mean proximal pressure and 

calculating the mean distal pressure for a range of flow rates which range from 1 – 4 ml/s, 

values which correspond to the normal range for hyperaemic flow. The area under the 

pressure drop-flow curve (a measure they call vFAI) is used as a measure of function. The 

method achieves good correlation with measured data, however the study is limited by a 

small cohort.  
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Looking at Figure 6-9 it is clear that pressure drop rises proportionally to the rising 

volumetric flow rate. A 1.6ml/s increase in flow rate can result in a CFD-FFR variability 

ranging from 20%-30% depending on the lesion severity. This result is important in that it 

shows a variation in volumetric flow rate which is within the range observed in coronary 

vessels during hyperaemia can result in the CFD-based FFR “reading” changing from 

significant to non-significant, when no other change in anatomy or pressure has been made. 

The linear relationship within this small range appears to be in agreement with Hagen-

Poiseuille’s law, but the pressure-flow relationship in the presence of stenosis appears to 

become quadratic when larger ranges are considered. 

This result highlights the importance of using reliable estimations of  volumetric flow 

rate as boundary conditions in CFD simulations in order to obtain a reliable FFR reading, 

indicating that a validation of the methods used in previous studies to estimate volumetric 

flow rate is necessary before CFD-derived FFR can become a reliable non-invasive 

assessment of ischaemia-causing coronary lesions. There are many challenges associated 

with volumetric flow rate estimation both at rest, and especially during hyperaemia, such as 

errors in the velocity readings and missing information on the spatial distribution of velocity. 

As a result, a physical experiment was designed in order to test the accuracy of the 

volumetric flow rate estimation from invasively measured flow velocity against a gold 

standard flow rate measurement, and the results are presented in the next chapter. 

 

6.5 Other factors that can affect the FFR predictions 

6.5.1 Branch omission 

 

One of the primary limitations of OCT, and all intravascular methods, is the inability 

to visualise more than one vessel at a time. This limits CFD modelling to simulations of a 

single vessel, omitting the bifurcations, the runoff to branches or the collateral flow from 

other vessels, which puts into question the assumption of the conservation of mass within the 

control volume which is inherent to any CFD flow analysis. This can have a marked effect on 

CFD studies of the wall shear stress distribution (Wellnhofer et al., 2010). 

Apart from a study measuring coronary flow distribution in dogs with artificially 

induced occlusions (Schuhlen et al., 1994),  no studies were found that directly measure flow 
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distribution in the branches of the coronary arterial tree in human owing to limitations posed 

by the measurement methods. Flow distribution in coronary branches is controlled by 

downstream resistance to the flow, which is variable among vessels in the presence of 

progressing disease.   

One way to bypass the problem is to simulate the entire coronary arterial tree based 

on a high-resolution CT-scan, including all the visible branches and determining the outflow 

conditions based on the radii of the branches and microvascular resistance data(Murray, 

1926) and the oxygen demand of the tissue supplied by each vessel. This approach has been 

shown to work (Taylor et al., 2013, Koo et al., 2011, Nakazato et al., 2013a) but the accuracy 

of the method is still lower than expected. 

The use of Murray’s law could provide a way to partially overcome the single-vessel 

limitation of OCT and other intravascular imaging methods. Knowing the angle of the side 

branch to the vessel visualised (which can be estimated using angiography) and measuring 

the length of the branch shadow in the OCT scan, it may be possible to make a reasonable 

estimate of the branch cross-sectional area and, therefore, make it plausible that flow lost to 

branches can be calculated. However, using such a method would also require further 

assumptions, such as assuming a circular branch cross-section. More importantly, parameters 

likely to affect branch flow such as the potential presence of stenosis in the branches and 

collateral flow from other vessels, would still not be taken into account. No CFD studies 

incorporating side branchesin their calculations of FFR exist to date. 

 

6.5.2 Errors in the imaging data and reconstruction method 

 

A number of limitations have been identified during the development of the 

reconstruction method, which are discussed in detail in sections 4.6.3 and 5.5.2. These 

limitations pertain to either the way the data was collected (e.g. the use of monoplane 

angiography, use of data from one OCT run per vessel in most cases), or in the reconstruction 

process itself (e.g. use of centreline instead of the catheter path). It is possible that these 

assumptions or potential sources of error in the imaging and reconstruction processes can 

propagate and affect the CFD results, though there are currently no data to quantify the effect 

these would have in the CFD-based estimation of FFR. 
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One surprising result presented in this chapter was the low correlation between FFR 

derived from angiography-only based reconstruction and the measured values. Studies have 

shown positive correlations of CFD-derived FFR with measured values using either 

angiography (Siogkas et al., 2013, Papafaklis et al., 2014), or imaging techniques with lower 

imaging resolution than angiography, such as CTA (Min et al., 2012b). We hypothesize that 

the reason behind the apparent discrepancy lies in the method of reconstruction. Specifically, 

the studies mentioned above make use of algorithms which trace the true lumen shape on the 

angiogram or CT scan. Contrary to that, the use of the QCA 3D software only provides 

elliptical lumen sections which approximate the vessel cross-sectional area, but not the actual 

lumen shape. The addition of the OCT-derived lumen contours results in a major 

improvement and a positive correlation, suggesting that the lumen shape is required as well 

as an accurate estimate of the cross-sectional area in order for the CFD model to achieve 

good agreement with the measured FFR. The correlation of the OCT-angiography fusion 

derived FFR is comparable to that of other, similarly-sized studies.   

 

6.5.3 Errors in the pressure and flow velocity data 

 

In this chapter it was shown that the quality of the CFD simulation results depend 

strongly on the quality of the patient data used in the reconstruction process and as boundary 

conditions. No imaging or measuring method is without errors. Depending on the equipment 

used, operator skill and parameters beyond the operator’s control, there is marked patient-to-

patient variability in the quality of the data.  

Errors in the measurement of pressure are usually in the form of drift, which is a 

consistent over- or under-estimation of the pressure reading that can be easily identified, 

measured and corrected. Errors in the intravascular measurement of velocity, however, are 

more complicated to detect and identify, and more challenging to correct. 

The Volcano Combowire used in the study contains a Doppler ultrasound probe. The 

ultrasound beam emitted by the probe detects the particle with the highest velocity within the 

sample volume and records the component of the velocity at which it travels  in  the direction 

of the beam. Two important assumptions are made about the velocity measurements: (a) the 

velocity recorded is the maximum inside the sample volume and (b) the ultrasound beam 
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covers enough of a vessel cross-section to record the maximum velocity in that cross-section. 

These two assumptions combined suggest that all volumetric flow rate estimations made from 

these measurements should assume the recorded velocity is the maximum on a given cross-

section. Whilst the first assumption appears to be valid, based on the mechanism of Doppler 

ultrasound (Doucette et al., 1992), the second one may not be true at all times, meaning that 

the maximum velocity on the cross-section may not be recorded if it lies outside of the 

sample volume. This is possible in clinical practice, as it is common to bend the end of the 

wire where the probe is located by, typically, ~23 degrees in order to allow easier guidance of 

the wire through bends and bifurcations. Even though the wire is carefully rotated to record 

the highest velocity, the common occurrence of high velocity jets attached to the wall may 

mean that peak velocity is still missed. The effect of the ultrasound beam’s change of 

direction affected by the bending of the wire has not been investigated yet.  

The importance of potential erroneous flow velocity measurements is that small errors 

can have a significant effect on the volumetric flow rate estimation, a parameter that FFR 

estimation is very sensitive to, as shown previously. Most studies (Doucette et al., 1992, 

Chou et al., 1994) suggest that the velocity distribution profile inside the coronary arteries 

comes close to a Poiseuille parabolic distribution, but usually skewed towards the outer side 

of the vessel curvature. This is supported both by experimental and CFD studies (Manbachi 

et al., 2011) and also by the fact that the Womersley parameter (a measure of pulsatility) for 

coronary flow is lower than in the aorta (ranging between 5-10 for most cases), indicating 

that a Poiseuille parabolic profile may be a better approximation than a Womersley profile in 

this case (Wood, 1999).  

The volumetric flow rate is given by the surface integral of the measured velocity on 

the cross-section (equation 6.1). An important assumption in equation 6.1 is that the velocity 

id measured perpendicular to the cross-sectional area. Calculating the volumetric flow rate 

can be done analytically when the mean velocity over the cross section is known, by 

multiplying the mean velocity by the cross-sectional area. Given that in a parabolic velocity 

distribution the mean velocity is known to be half the maximum, volumetric flow rate 

estimations Qparabolic from Doppler ultrasound-derived maximum velocity 𝑣𝐷𝑈𝑆 measurements 

can be calculated using equation 6.1 for Qparabolic: 

𝑄 =  ∬ 𝑣 ∙ 𝑑𝐴     →            {
𝑄𝑓𝑙𝑎𝑡 = 𝐴 ∗ 𝑣𝐷𝑈𝑆

         𝑄𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 = 𝐴 ∗
𝑣𝐷𝑈𝑆

2
𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

    (6.1) 
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where 𝐴 is the cross-sectional area at the measurement location.  

There is, however, evidence from the CFD results (Figures 6-11 and 6-12) that the 

velocity profile can deviate significantly from the Poiseuille profile in the area downstream of 

a stenosis. When flow is forced through a stenosis, the spatial profile becomes almost flat, 

with the mean flow velocity being almost equal to the maximum flow velocity on the cross 

section. It would result in smaller errors in the estimation of flow rate, if velocity 

measurement could be made within the stenosis as then the measured velocity could be 

directly multiplied by the cross-sectional area to provide the instantaneous flow rate (Qflat in 

equation 6.1). However, high velocities near the stenosis region can result in increased 

technical challenges in obtaining velocity measurements, as the presence of a jet and 

recirculation reduces the steerability of the wire, while the presence of stenosis also restricts 

wire manoeuvring. Assuming a Poiseuille parabolic velocity distribution to estimate flow rate 

in the area near a stenosis would result in flow rate underestimation. On the other hand, in the 

area just downstream of a stenosis, especially in the presence of curvature, the high-velocity 

jet created by the presence of stenosis can separate from the vessel wall, and then reattach on 

the outer side of a curved region, creating a very high velocity peak near the outer wall, 

combined with retrograde flow at the inner wall. In the case of such skewed spatial profiles, 

the peak velocity on the cross-section can be higher than twice the mean, in which case an 

overestimation of the flow rate would occur. Therefore, assuming a Poiseuille profile to 

estimate volumetric flow rate in that case can result in random over- or under-estimation of 

the volumetric flow rate, depending on the location of the wire at the time of measurement. 

In the transient flow simulations presented in chapter 4 and in paragraph 5.2 both the 

assumption of a parabolic and a flat velocity distribution were tested. There was consistent 

underestimation of the pressure drop measured when the parabolic flow assumption was 

used, whilst the flat profile assumption appeared to provide the best agreement with the 

measured data, and therefore it is the only result shown. This would suggest that the 

velocities measured in this way are closer to the mean velocity on the cross-section, rather 

than the maximum. This could be explained by the ultrasonic beam missing the maximum 

velocity on the cross-section, which can, as discussed, be near the edges due to the potentially 

skewed profile, and thus less likely to be captured by the beam, as shown in Figure 6-10. 

Though no studies investigating the effect of a skewed velocity profile and/or ultrasonic 

beam for the coronary arteries, careful positioning of the wire was a major 

suggestion/limitation reported in the most widely quoted Doppler probe validation paper 
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(Doucette et al., 1992), while studies in the carotid arteries found the skewness present can 

affect the Doppler ultrasound measurements (Mynard and Steinman, 2013), indicating that 

similar errors may be present in intracoronary ultrasound measurements.  

The better agreement achieved with the flat profile assumption is problematic when 

taking into account the deviation of the maximum velocity from the mean in each cross-

section evidenced by the CFD results shown in Figures 6-11 and 6-12. The fact that the 

maximum cross-sectional velocity downstream of a stenosis appears more likely to be at least 

twice the mean suggests that the flat profile assumption should theoretically overestimate 

volumetric flow rate (and therefore pressure drop) in most cases. In practice there is an 

almost equal possibility of over- or under-estimation in the CFD-predicted pressure drop, 

suggesting the presence of random, rather than systematic, error.  

A possible explanation for this could be derived from revisiting the assumption that, 

because of the low Womersley parameter values, flow in healthy vessels will be close to 

parabolic at all time points in the cycle. The velocity profiles plotted at near-peak flow in the 

healthy part of the vessel (either proximal or very distal to the stenosis, when flow is no 

longer affected by the stenosis) shown in Figures 6-11 and 6-12 suggest a flattening of the 

profile, compatible with mild flow pulsatility, which results in the maximum cross-sectional 

velocity being closer to the mean than it would be in a Poiseuille profile. Combining this 

observation with the concept that the velocity recorded by the Doppler wire probe may not be 

the maximum in the cross-section (as discussed above), this observation would suggest that 

the velocity recorded could be closer to the mean value than the maximum -though more 

likely to be overestimated than underestimated- thus making the option of the flat profile 

assumption the better choice in flow rate estimations.  

This, however, would only be valid in measurements made in a healthy vessel 

segment (such as shown in Figure 6-12). In the cases of highly skewed flow profiles just 

distal to stenoses on curved vessel sections (such as in Figure 6-11) the effects of pulsatility 

are eclipsed by the effects of local geometry, and the possibility of peak flow being outside 

the probe beam is higher, as illustrated in Figure 6-10, resulting in flow rate underestimation. 

The effect of incident angle, a consistent underestimation occurring because the 

ultrasound beam is not aligned to the direction of flow (therefore measuring velocities that 

are not perpendicular to the cross-section), which can exceed 20 degrees in many cases, 
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would also result in underestimation of the maximum cross-sectional velocity, contributing to 

the errors observed.  

The effect that the presence of the wire itself has on the flow profile have been 

investigated using CFD (Torii et al., 2007). It was shown that the presence of a catheter inside 

a coronary blood vessel creates an obstruction which results in a modified, M shaped flow 

profile that results in ~15% reduction of peak velocity within the sample volume compared to 

a catheter-free vessel. The effect of the presence of the catheter in the change in pressure is 

not as pronounced as the effect on flow, meaning that this could also suggest that the peak 

velocity measured by the wire may, in fact, be lower than the actual peak velocity. 

The fact that velocity measurements can be made at any part of the vessel and that the 

type of cross-sectional profile encountered cannot be known at the time of measurement 

suggest a random nature of the resulting error (over- or underestimation of flow rate) that is 

supported by near-zero bias of the CFD results as shown in Chapter 5. 

Though there are alternatives to measuring coronary flow rate and velocity, they are, 

in general, more limited than intravascular Doppler ultrasound. Phase-contrast MRI can 

provide information on flow at the coronary ostia, but the temporal resolution is low, about 

10 times less than invasive measurements at best (Markl et al., 2007). Another suggested way 

is to time the perfusion of contrast in the angiographic imaging. Though this has been shown 

to result in reliable results (Siogkas et al., 2013), its use would be limited by low contrast of 

the angiographic views, and the frame rate of the angiographic acquisition. 
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Figure 6-10 Schematic representation of the Doppler ultrasound beam velocity detection. When the wire is unbent the 

conical beam is pointing straight, capturing the largest part of the cross-section (blue section). Wires are routinely bent in 

clinical practice to aid manoeuvring. The US probe is at or near the tip of the wire, meaning that in the case of a bent wire 

the beam is pointing off-centre. This means that it can capture a smaller section of the cross-section (yellow section). When 

the velocity profile is skewed, as it is often the case in the coronary arteries, the off-centre beam could randomly not capture 

the maximum velocity on the cross-section. 

 

6.5.4 Effect of measurement location uncertainty 

 

Even though it is possible to angiographically visualise the flow wire as it is making 

measurements inside a vessel, it is still possible that errors in registering that location with the 

respective location in the 3D reconstructed model used in CFD simulations can be made. In 

the case of coronary stenosis, there could be great variation in the lumen’s cross-sectional 

area within just a few millimetres (Figure 6-13), especially in cases of more severe stenosis 

and/or the presence of diffuse disease, which may not be clearly visible in the angiographic 

images, but could mean marked differences in area within a small longitudinal distance. 

Estimating the area of the cross-section where the velocity measurement was made in such 

cases can prove a challenge, which will have an important influence on the flow rate 

estimation. In the case of a vessel with a true diameter of 3mm and a measured velocity of 

0.3m/s, misestimating the vessel diameter by 0.3mm can result in more than 20% under- or 

overestimation of the flow rate. Taking into account the results of Figure 6-9, this is a 

potential problem with Combowire-based flow rate estimates, and one which cannot easily be 

assessed in in vitro experiments with straight, unobstructed tubes, or in vivo measurements in 

healthy vessels. 

unbent wire

bent wire

us beam

us beam

Velocity profile
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Another uncertainty related to cross-sectional area estimation is the compliance of the 

arterial wall and the heart motion. Though in the coronary arteries wall compliance is limited 

by the fact that coronary vessels are positioned inside grooves on top of the relatively stiff 

heart muscle, some level of compliance still exists, and combined with the heart muscle 

movement which may distort the vessel shape, it can be seen that cross-sectional area 

estimation is subject to several sources of error, which has never been quantified.  
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Figure 6-11. CFD-derivedspatial velocity profiles at various locations in a patient-specific model of right coronary artery 

stenosis. The presence of stenosis combined with curvature results in highly skewed profiles which can affect the ultrasound 

probe measurements. 
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Figure 6-12 CFD-derived spatial velocity profiles at various locations in a patient-specific model of left anterior descending  

coronary artery stenosis. The milder stenosis and degree of curvature means that the spatial profiles remain close to 

Womerlsley-type flow for most of the vessel length. 
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Figure 6-13 (Left to Right) Proximal to distal cross-sections of the phantom model taken 1mm apart at the level of the 

bifurcation/stenosis area. In the case of stenosis, the cross-sectional area can vary significantly within a few millimetres, 

introducing another source of uncertainty in the flow wire velocity based estimation of flow rate 

 

6.6 Summary and Conclusion 

 

In this chapter an attempt was made to evaluate the different parameters which could 

have an effect in the ability of CFD to provide accurate estimation of FFR values. 

The first parameter to be tested was the accuracy of the anatomical representation. 

The results clearly show that a high quality reconstruction of the vessel of interest is 

necessary in order to obtain reliable FFR values. CFD models using angiography-only or 

OCT-only anatomy reconstructions resulted in FFR predictions which had no correlation to 

the measured values. The reconstruction method of angiography-OCT co-registration 

presented in Chapter 4 did result in a positive correlation of 0.58.  

However, it was shown that an accurate geometry representation is not enough, as the 

CFD-based estimation of FFR was shown to be highly sensitive to the variation in volumetric 

flow rate, a parameter which is a necessary part of any CFD simulation set-up. A sensitivity 

analysis was conducted to study the effect that varying the volumetric flow rate within the 

physiological range would have on the CFD-calculated pressure drop for three given patient-

specific anatomies of varying level of severity, based on their measured FFR. It was found 

that the pressure drop observed is proportional to the volumetric flow rate, and the same 

lesion anatomy can appear as significant or non-significant depending on the flow rate. 

Other potential limitations to achieve an accurate CFD-based FFR calculation were 

also discussed. The effect of branch omission on the CFD results has been poorly studied and 

has been shown to have an effect in calculated wall shear stress, meaning that this is an 

important limitation that needs to be addressed. The use of intravascular Doppler ultrasound 
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has a set of limitations and caveats which lead to uncertainties over the volumetric flow rate 

estimation, which in turn has been shown in this chapter to be one of the most important 

parameters that can affect the CFD result.  

The results presented in this chapter suggest that the two main parameters which can 

affect the CFD-based estimation of FFR in a patient-specific manner are the quality of the 

anatomical reconstruction, and the estimation of volumetric flow rate. The constant 

improvement of imaging techniques, both invasive and non-invasive, and the presence of a 

strong technical background on reconstruction techniques are making accurate anatomy 

reconstruction progressively better and more widely available. Estimating volumetric flow 

rate information for currently available data is not as straightforward. Studies that have 

attempted to use CFD to estimate FFR provide a positive correlation to the measured FFR 

values, but the correlation is not high enough to warrant the replacement of the current 

invasive techniques with the use of CFD to estimate FFR. The results shown in this chapter 

suggest that a better understanding of the way flow velocity data are obtained in vivo and a 

closer inspection of the methods used to estimate the volumetric flow rate from these velocity 

data is necessary before the use of CFD for non-invasive estimation can be considered as a 

reliable method to assess coronary lesion severity. 

The observations and conclusions reached from the results presented in this chapter 

indicate that the uncertainty over the volumetric flow rate estimation from invasive Doppler 

ultrasound measurements can have a significant effect in the CFD results. Based on the 

conclusions from this chapter physical experiments were considered necessary in order to 

estimate the actual error in the calculations of volumetric flow rate based on Doppler 

ultrasound velocity measurements. The results of these experiments are presented in 

Chapter 7. 
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7. Phantom testing of flow rate estimation based on invasive flow 

velocity measurements. 

 

Figure 7-1 Theory vs. reality: Velocity through plane surface plot in the ascending aorta at different points in the cardiac 

cycle. The column on the left consists of a plot of the theoretical Womersley profile (Womersley, 1955), a  common 

assumption for pulsatile CFD simulations. In the column on the right real patient data derived from phase contrast MRI in a 

similar location throughout the cardiac cycle are presented (Markl et al., 2012). It is clear that real velocity profiles look very 

different to what the best theoretical model can describe. This has serious implications in our ability to estimate and impose 

suitable volumetric flow rate boundary conditions. 
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7.1 Introduction 

 

 In the previous chapter the sensitivity of pressure drop to the volumetric flow rate was 

shown to be sufficiently high to have a marked effect on the CFD-derived pressure drops 

calculated in patient-specific applications. It was concluded that the uncertainty in the 

estimation of volumetric flow rate from invasively measured flow velocity data can 

potentially compromise the CFD results and is a bottleneck in the development of non-

invasive CFD techniques for accurate prediction of pressure drop  in individual patients.  

In this chapter the results from a series of bench-top experiments conducted in order 

to assess the accuracy of estimating volumetric flow rate from invasive Doppler ultrasound 

flow velocity measurements are presented. A flow loop containing a pulsatile pump and 

flexible tubing was built and pressure and flow velocity measurements were made using a 

Combowire (same as the type used to provide the data in Chapter 4) on two different models, 

a simple plastic tube of known diameter and an idealised model of coronary artery stenosis. 

The Combowire-estimated flow rates were compared against the flow rate measured by a 

time-of-flight ultrasound flow probe (gold standard).  

The chapter ends with a discussion of the most important limitations, and an 

assessment of the reliability of invasive Doppler ultrasound as a way of estimating volumetric 

flow rate for CFD simulations. 

 

7.2 Methodology 

7.2.1 Phantom models 

 

Two phantom models were used in this study (see Figure 7-2). The first model was a 

270mm long compliant plastic tube, 6 mm in diameter. The second model was a 52 mm long 

idealised phantom model of coronary geometry with a 75% area stenosis in the main branch. 

The model was created from a 3D CAD design using rapid prototyping. The material used is 

called TangoPlus (Sagi and Libermann, 2008) and has been shown to have similar 

distensibility to that of the human artery wall (Biglino et al., 2013). The idealised coronary 

artery phantom model is described in more detail in section 4.5 of Chapter 4. Both models 
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were required to have a degree of transparency that would allow visualisation of the wire 

during the invasive measurements.  

The first model was used in order to test the accuracy of volumetric flow rate 

estimation in a simple geometry of known cross-sectional area. The second model is a more 

realistic geometry which contains large cross-sectional area longitudinal gradients, providing 

a more realistic challenge to the estimation of volumetric flow rate.  

 

Figure 7-2. The two models used in the flow experiments. Top.A compliant tube of with no contrictionBottom.Idealised 

model of coronary anatomy, with stenosis on the level of the bifurcation. Flow to the distal main was occluded, so that flow 

only passed through the branch. 

 

7.2.2 Experimental system 

 

 Experimental set-up 

 

 A schematic representation of the experimental set-up is shown in Figure 7-3. Each of 

the two phantom models was placed in a flow loop made of compliant tubing driven by a 

positive displacement pulsatile electric pump (pulsatile blood pump for rabbits, Harvard 

Apparatus, MA, USA). The pump is specifically designed to mimic the ventricular action of 

the heart, providing flow waveforms which are very similar to those observed in rabbits. The 

pump has controllable stroke volume and stroke rate, allowing for flexible control of the 

mean flow rate. In the rabbit pump model the stroke volume ranges from 0.5 ml to 10 ml, 

while the stroke rate can be set between 20 and 200 strokes per minute. For the purpose of 

this experiment, a stroke rate of 60 beats per minute was chosen and the stroke volume was 

D = 0.065in (1.68mm)
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adjusted so that a target mean flow rate ranging from 3ml/s to 10ml/s was achieved. The 

pump output is controlled with an analog switch (Figure 7-4) meaning that the exact flow rate 

for all measurements was determined during post-processing. 

An auxiliary flow loop was added to enable easier control and/or blocking of the flow 

in the main loop if desired. The Combowire Y-connector was placed in the main flow loop 

proximal to the phantom, an approach similar to that used in patients, where the wire is 

inserted in the coronary artery from the ostia, proximal to the stenosis.  

The focus of this study was to assess the estimation of volumetric flow rate from flow 

velocity measurements. For this reason it was possible to obtain clinically relevant results 

without matching the rheological properties (viscosity, density) of the fluid used exactly to 

those of blood; therefore, a 35%w/w glycerol solution in water was used. The solution is a 

Newtonian fluid that has a kinematic viscosity of 3.52e-06 m
2
/s, which is close to that of 

blood (average value ~2.7e-06 m
2
/s). 

 

Figure 7-3 Schematic representation of the experimental system. The system (except the pump) was placed in a water bacth 

to ensure a robust signal from the flow probe P1. 

phantom P1

pump

distal 
flow probe

flow control loop

water bath

Y-connector for wire insertion

proximal pressure
reference location (Millar 
catheter)



160 
 

 

Figure 7-4 The pump used in the experiment (pulsatile blood pump for rabbits, Harvard Apparatus, MA, USA). The positive 

displacement pump can produce a realistic left ventricular flow waveform. 

A small quantity of talcum powder was added to the reservoir to ensure a strong 

signal from the Doppler ultrasound, which measures the velocity of particles inside the fluid. 

Consequently, it is a valid assumption that the fluid used remained Newtonian and 

incompressible throughout the experiment. The flow rate through the phantom could be 

controlled by varying the stroke volume and stroke rate of the pump. Furthermore, a flow 

limiter distal to the phantom but proximal to the point where the two loops are reconnected 

was used to redirect part of the flow to the auxiliary loop. The peak Reynolds number was 

kept consistently below 700 to ensure laminar flow conditions. 

A calibrated, time-of-flight perivascular ultrasonic flow-meter (T400 PS series, 

Transonic Systems Inc., NY, USA) was used to measure the instantaneous flow rate distal to 

the phantom. The probe consists of a cuff that loosely wraps around the tubing and position 

two transducers opposing a reflective plate to measure volumetric flow (Figure 7-5). This 

method is accepted as a reliable way to measure volumetric flow rate in clinical research, and 

in this study it was used as the gold standard volumetric flow rate measurement against which 

the flow rate estimations from the ultrasound flow velocity measurements would be 

compared. In order for the probe to work, air space between the probe and the measurement 

area must be filled, as air will not transmit the ultrasound signal. In vivo the use of acoustic 

stroke volume 
control

stroke rate 
control

stroke volume (ml)

forward flow 
ball valve

return flow 
ball valve

piston



161 
 

coupling gel to aid transmission is quite common, but in this bench-top experiment full 

immersion of the flow loop (except the pump) in a water bath was chosen as the most reliable 

way to ensure robust signal acquisition. 

The flow probe was connected into a Transonic Systems T-402 instrumentation 

console fitted with a TS420 perivascular module as shown in Figure 7-5. This module, which 

is compatible with in vivo arterial/venous blood flow, was chosen for its ability to record both 

mean flow rate but also record instantaneous flow rate. The module is calibrated for the use 

with blood as circulating fluid, which has different acoustic properties to the fluid used. For 

this reason the numerical indications on the screen were not accurate for measurements in 

water, and the probe and module were calibrated before the experiment took place. The 

calibration curve for the probe is shown in Figure 7-5. 

The Combowire XT wire was connected to a Combomap pressure and flow system 

(Volcano Corporation, San Diego USA), where it was possible to visualise pressure and flow 

velocity waveforms. The pressure signal had to be calibrated by placing the Combowire on a 

flat surface and zeroing the signal prior to the start of acquisition. The Combomap system can 

record data at specified times, and a log of the signal acquisition data can be saved and 

exported into purpose-built software Study Manager (Academic Medical Center, University 

of Amsterdam, The Netherlands) for analysis. 

A 3.5 F pressure sensor wire (Millar Instruments, Houston, TX, USA) was inserted 

through the Y-connector and placed at the proximal end of the main loop where it recorded 

proximal pressure (Pa) for the duration of the experiment. The pressure sensor was calibrated 

just prior by recording measurements at known depths of water, and then converting from 

mmH2O to mmHg. The signal from the Millar pressure sensor was passed through a 

PM-1000 transducer amplifier (DATAQ Instruments, Inc. Akron, OH, USA) before being 

connected to a measurement module. 
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Figure 7-5 Top. Two views of the Transonics Systems T400 PS flow probe used in the experiment. Middle. The T-402 

console fitted with two TS420 perivascular modules. This module is calibrated for blood, so manual calibration of the signal 

was required to obtain accurate measurements. Bottom. The calibration curve of the flow probe signal. Three measurements 

of the time it took to fill a 200 ml beaker were made for three different flow rate values. The calibration resulted in a linear 

equation which was used on all probe readings. 
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7.2.2 Data acquisition 

 

The Transonic Systems console, the Combomap system and the Millar catheter 

transducer amplifier were connected to a DT9804-16SE-BNC USB measurement module 

(Data Translation GmbH, Bietigheim-Bissingen, Germany) to enable the transfer of the 

signal data to a PC for simultaneous signal recording (Figure 7-8). Notocord software 

(Notocord Systems, Croissy Sur Seine, France) was used to make simultaneous recordings of 

all four different signals (the flow probe, the Pa pressure measured by the Millar probe and 

the Combowire-measured Pd pressure and flow velocity data (Figure 7-6). The output of the 

DT9804 device provides electric signals which are then visualised in the Notocord system. 

These signals then need to be converted to pressure, velocity and flow rate measurements. 

Calibration for the flow probe and Millar catheter was performed manually, but the 

measurements of the Combowire pressure and velocity data were automatically calibrated by 

the Combomap system (Figure 7-7). To ensure the simultaneous recording of all signals from 

all sources, reference points were inserted into the Notocord live recording to denote the 

recording times in the Combomap system, thus eliminating potential time-lag errors.  

Simultaneous measurements of pressure and Doppler flow velocity were performed 

using a Combowire XT (Volcano Corporation, San Diego USA). The procedure was 

performed by two cardiology registrars at Hammersmith Hospital (Drs Sukhjinder Nijjer and 

Ricardo Petraco) who were involved in the collection of the patient-specific imaging, 

pressure and flow velocity data presented and analysed in Chapter 4. The Combowire was 

inserted into the main flow loop proximal to the phantom, and was then manually guided to a 

location distal to the phantom, as close to the flow probe as possible without interfering with 

the probe signal, where three 30-second acquisition recordings were made. The flow rate was 

adjusted to a new value and, once the system had stabilised again, the data recordings were 

repeated for each flow rate. A total of fifteen recordings at four different flow rate levels were 

made for the straight tube phantom model. 

In the case of the stenosis, measurements at the distal end of the model were made for 

three different flow rates, and five recordings were made before tears in the phantom model 

prevented further measurements.  

The flow rate range tested is different between the two phantom models. For the 

straight tube experiment a wide flow rate range from ~ 4 - 12 ml/s was tested, in order to 
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better match the range tested by (Doucette et al., 1992).  The flow rates used in the stenosis 

phantom experiments were lower than the flow rates used in the unobstructed tube 

experiment, aiming at a range from ~1-4 ml/s, covering the range of normal coronary and 

hyperaemic coronary flow, before the experiment was halted. The lower flow rates were 

achieved by reducing the resistance to the flow into the auxiliary loop, allowing for more 

flow to be diverted from the phantom model.  

 

Figure 7-6 Example of the signal recordings made by the Notocord software. The four traces represent the signal from (top 

to bottom) the flow probe, the Millar catheter measuring proximal pressure, the Combowire flow velocity and pressure 

signals. 

 

Figure 7-7. Left. The Volcano Combomap system console which allows for automatic calibration, visualisation and 

recording of the Combwiresignal.RightAn example of a Combowire XT, which enables measurement of flow and pressure 

simultaneously (top) and the system of Y-connector, torque device and wire introducer used to insert and control the wire 

(bottom). 
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Figure 7-8 The USB measurement module (Data Translation GmbH, Bietigheim-Bissingen, Germany) used to transfer the 

signals to a PC for real-time recording of the data. 

 

7.2.3 Data post-processing 

 

The data collected was saved and exported to Microsoft Excel software, where they 

were sorted and analysed, based on the notes and markers placed during data acquisition.  

Estimation of volumetric flow rate from Combowire Doppler wire 

The Doppler ultrasound transducer embedded in the Combowire detects the particle 

moving at the maximum velocity at a given timepoint within the sample volume covered by 

the ultrasound beam, usually set at ±10 degrees from the centre (Doucette et al., 1992). The 

volumetric flow rate had to be estimated based on that velocity value, the cross-sectional area 

at the location of the measurement, and assumptions on the spatial distribution of velocity. 

Though in the literature it is suggested that the parabolic (Poiseuille) profile assumption is the 

closest to the realistic flow conditions (Figure 7-9), in this experiment it was found that the 

flat profile assumption gives the closest agreement with the flow rates measured by the flow 

probe, as shown in the Results section below. 
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Figure 7-9 The difference between a flat and parabolic velocity profile. The ultrasound beam emitted by the wire detects the 

particle with the highest velocity within the sample volume. In the case of a flat profile (A) the maximum velocity on a 

cross-section is also the mean. In the case of parabolic flow (B) the mean spatial velocity is equal to half the maximum 

velocity. The flat and parabolic spatial velocity distributions allow for an analytical calculation of the volumetric flow rate. 

 

7.3 Results 

 

7.3.1 Unobstructed tube 

 

A correlation plot between the Combowire-based flow rate estimates and the flow 

rates measured by the Transonics probe is shown in Figure 7-10. Even assuming a flat 

velocity spatial distribution, treating the velocity measured by the Combowire as the mean 

over the cross-section, there is a consistent underestimation of the flow rate, which is easily 

seen when comparing to the line of identity, and quantified in the Bland-Altman plot also 

shown in Figure 7-10. A negative bias of 0.70 ml/s was found across all measurements, with 

limits of agreement ranging from -3.11 to 1.71 ml/s. Agreement appears to be better at the 

lower flow rate level of approximately 4 ml/s, which is the level closest to coronary flow rate 

measurements. 
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Figure 7-10 Left. Flow rate calculated from the Combowire measurements  (Qflow wire) vs. flow rate measured using a flow 

probe (Qflow probe) and corresponding Bland-Altman plot (right) for the unobstructed tube (d = 6mm) at three different flow 

rate levels. A consistent underestimation of the flow rate was observed even when using the flat profile assumption. 

 

7.3.2 Stenosis 

 

The correlation plot of the Combowire-based flow rate estimates against the 

Transonics flow probe measurements distal to the stenosis in the phantom are shown in 

Figure 7-11. Again assuming a flat spatial distribution for the velocity, the Combowire-based 

estimates appear to be close to the line of identity.  
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Figure 7-11 Top Left. Flow rate calculated from the Combowire measurements  (Qflow wire) vs. flow rate measured using a 

flow probe (Qflow probe) at the distal end of a stenosis at three different flow rate levels, using the flat profile assumption. 

Top right. Respective Bland-Altman plot. 

 

7.3.3 Doppler wire angle measurement 

 

 

Figure 7-12 Left. Picture of the Combowire used in the experiments presented in this chapter.Right. Calculation of the wire 

angling used for easier manipulation using the tangent (ratio of side b over side a). The angle in this case was estimated to be 

~23 degrees. 

As discussed in Chapter 6, when a Combowire is used, interventional cardiologists 

tend to bend the tip of the Combowire in order to allow easier guiding and manoeuvring of 

the wire through the complicated coronary artery anatomy. There are no studies investigating 
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the effect that this wire angle can have on the measurements, and no measurement of this 

wire angle used in practice has been shown before. In Figure 7-12 the angle of the wire used 

in the experiment presented in this chapter is calculated at ~23 degrees using trigonometry. 

Given the fact that a Doppler wire has a beam angle of ~10 degrees, this measurement would 

suggest that the wire angle can have an effect on the measured velocity.  

 

7.4 Discussion 

7.4.1 The flat profile assumption gives the best agreement with measured results 

 

As discussed extensively in Chapter 5, there are many uncertainties over the shape of 

the cross-sectional velocity profile measured inside a coronary artery, especially in the 

presence of stenosis (In Figure 7-11 an example of how the cross-sectional velocity profile 

can vary within one stenosed arterial segment can be seen). The Doppler flow wire studies 

presented so far assume a parabolic velocity spatial distribution over the cross-section, and 

their reported results  (Gould et al., 1974c) show excellent agreement in cases of straight 

tubes in vitro. In the in vivo cases, however, the cross-sectional velocity distribution issue is 

bypassed by directly comparing flow velocity measurements to the gold standard flow rate, 

reporting good correlations. When flow wire-based flow rate estimates were compared with 

the gold standard flow rates the agreement results in consistent underestimation, with the 

deviation from the line of identity increasing at higher flow rates, a trend observed in the 

unobstructed tube experiments presented in Figure 7-10. Furthermore, when the in vitro 

experiments were repeated in a pullback through a tube with varying degrees of curvature, 

underestimations in velocity of more than 5 cm/s were observed in the highly curved areas at 

two different velocity levels, signifying that in realistic flow conditions flow underestimation 

is to be expected.  

The relationship between the measured velocity Vwire and the cross-sectional mean 

velocity was revised from 0.5*Vwire, as seen in (Gould et al., 1974c), to 0.47*Vwire by (Gould 

et al., 1974d), in a first indication that the parabolic profile assumption may not be suitable 

for in vivo flow rate estimation in the coronary arteries, though there are no more studies 

testing the validity of estimating flow rate from flow wire measurements. 
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One of the reasons for the lack of flow rate validation studies may be because in 

modern functional assessment methods for the severity of coronary artery disease such as 

coronary flow reserve (CFR) and hyperaemic stenosis resistance index (HSR), flow velocities 

measured using flow wires are used directly in the index calculations. This is done based on 

the argument that multiple velocity measurements are conducted in one vessel, the cross 

sectional area and spatial velocity distribution of which do not change from one instance of 

velocity measurement to the next; under these conditions a change in velocity (for example 

an increase during maximal vasodilation) can arguably be considered to reliably reflect the 

change in volumetric flow rate.  

Though the use of Combowire or other combined pressure-flow probes are not 

commonly used to assess coronary lesions in clinical practice, the potential for estimation of 

the flow rate could prove useful in computational applications attempting to assess pressure 

gradient in a coronary vessel. In these cases, the volumetric flow rate is a necessary boundary 

condition in order to create a well-posed mathematical problem. As shown in Chapter 5, 

small errors in the volumetric flow rate estimation can result in great variation in the pressure 

gradients calculated by CFD for the same geometrical model, emphasizing the use of accurate 

estimates of flow rate as a necessary step towards achieving reliable CFD pressure gradient 

calculations. The errors reported in the studies referred to above and those shown in the 

experiment results presented in this chapter suggest that, even if a spatial velocity distribution 

profile could be used universally, great uncertainties remain over flow rate estimations. Based 

on the sensitivity analysis presented in Figure 7-9, underestimation of the mean volumetric 

flow rate by 0.70ml/s (the bias shown in the Bland-Altman plot of Figure 7-10) would result 

in a 10-15% change in pressure drop depending on stenosis severity. A change of this 

magnitude can potentially change the diagnosis of an intermediate lesion.  

 

7.4.2 Better agreement is observed at lower flow rates 

 

As in the validation studies by Doucette and Chou, the agreement between the 

Combowire-estimated and the measured volumetric flow rate becomes weaker at higher flow 

rates, where flow rate is more likely to be markedly underestimated in the Combowire-based 

estimates (Figure 7-10 and Figure 7-11). A possible explanation for this could be that, at 

higher flow rates, the velocity profile distribution further deviates from simple assumptions 
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(such as flat or parabolic), with the influence of geometry being potentially exacerbated by 

the increase in flow rate, resulting in the formation of jets and the presence of recirculating 

flow in parts of the cross section. Furthermore, because of the pulsatile nature of coronary 

flow (Womersley parameter in tubes the size of coronary arteries under physiological pulse 

conditions can range from 3-8) an increased peak Reynolds number which is still below the 

transition threshold can result in the increase of laminar disturbances caused by the reversal 

of the pressure gradients during the flow deceleration phase, also contributing to changes in 

the cross-sectional profile. The cross-sectional profile can be further modified by the 

presence of the catheter, as discussed in Chapter 6, leading to greater underestimation of the 

flow at higher flow rates (Torii et al., 2007). 

The flow rates at which agreement with the measurements is best coincide with the 

flow rates observed most often in the coronary arteries at rest (1-3ml/s). In the unobstructed 

tube experiment, flow rate underestimation was present at the lowest flow rate, but the 

measurements were considerably closer to the line of identity at the two higher flow rate 

levels. In the stenosis experiment shown in Figure 7-11 (left), which was conducted at 

realistic resting flow rates of less than 2 ml/s, of the five measurements made there were two 

cases of underestimation and one of overestimation, while two measurements were lying very 

near the line of identity, resulting in an overall better correlation with the flow probe 

measurements.  

 

7.4.3 Potential Limitations 

 

The experiment presented in this chapter was small in scale, and resulted in limited 

number of data points. However, high correlations are observed and useful conclusions could 

be reached from the analysis of these results. 

The circulating fluid chosen for the experiments was a solution of glycerol in water 

(35% w/w). This mixture was chosen over a blood substitute as it is simple to make and 

preserve but still matches the viscosity of blood fairly closely (kinematic viscosity of glycerol 

solution is 3.52e-06 m
2
/s to an average value for blood of ~2.7e-06m

2
/s), so that the flow 

conditions (Reynolds number and Womersley parameter) are as close as possible to those 

found in coronary flow. However, glycerol and water being Newtonian fluids, these 
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experiments cannot account for blood’s non-Newtonian behaviour, though this is not 

expected to have a significant effect on the accuracy of the flow rate estimates at the shear 

rates observed in these experiments.  

Compliant tubing was used in the experiments, but the two different phantoms used 

(the unobstructed tube and the stenosis phantom model) had different elastic properties, with 

the stenosis phantom being stiffer than the unobstructed tube. The changes in cross-sectional 

area due to wall compliance and flow pulsatility could not be evaluated for either model, and 

this is a limitation to the experiment. However, the arterial wall is compliant as well, and 

there are no known ways of measuring coronary arterial wall elasticity in vivo. Therefore, this 

is a limitation that any attempt at estimating volumetric flow rate from flow wire 

measurements in vivo will have to face, and incorporating the effect of compliance in the 

error may provide a more realistic assessment of the flow wire-based estimates than the rigid 

wall assumption. 

A time-of-flight, perivascular ultrasonic flow-meter was used as the gold standard 

against which the Combowire-based flow rate estimates were compared. As discussed in 

previous chapters a gold standard comes with an error margin that must be taken into account 

when evaluating the results. The errors reported in validation studies for the ultrasonic flow 

meter against electromagnetic flow meters range from under 10% (Gorewit et al., 1989, 

Hartman et al., 1994) to 15% in vivo (Lundell et al., 1993), though the in vitro reported error 

in the latter study is again lower at ~11%. The variability reported is therefore consistently 

small, and the flow-meter can be relied on to provide accurate flow rate measurements. 

 

7.5 Summary and Conclusion 

 

In this chapter, the results from a series of bench-top experiments conducted to test 

the accuracy of volumetric flow rate estimates based on Doppler wire velocities are 

presented. A flow loop was set up using compliant tubing and a positive displacement pump 

to produce physiological pulsatile waveforms. A 35%w/w solution of glycerol in water with 

kinematic viscosity similar to blood was used as circulating fluid. Flow velocity 

measurements were made using a Volcano Combowire XT, commonly used in clinical 

practice for the functional assessment of coronary artery disease. Measurements were also 
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made using a calibrated, time-of-flight perivascular ultrasound flow-meter, which was used 

as the gold standard against which the Combowire measurements were compared. Two 

phantom models were tested:  a long, unobstructed tube of known diameter, and an idealised 

model of a coronary artery bifurcation including a 75% area stenosis. Measurements were 

made at various flow rate levels, ranging from 1-2ml/s (physiological resting conditions) to 

10ml/s.  

The results from the experiments show that the assumption of a flat spatial velocity 

distribution when calculating volumetric flow rate from Combowire measurements provides 

the best agreement with the gold-standard probe measurements in all cases. Even though this 

goes against the results found by the two flow wire validation studies conducted in the 1990s, 

it does help explain the better performance of CFD in predicting pressure gradient when 

working under the flat profile assumption. A discussion as to why there is better agreement 

under the flat profile assumption is presented in Chapter 5. A good correlation was found 

between the Combowire-based flow rate estimates and the gold standard (0.84 for the 

unobstructed tube, 0.93 for the stenosis phantom). The correlation was better at smaller flow 

rates, while flow rate underestimation by the flow wire was more likely at higher flow rates.  

In the case of the phantom stenosis model it was shown that individual flow 

measurements are equally likely to over- or underestimate the flow rate, resulting in very 

small average bias. This pattern is similar to that observed in the CFD-based pressure 

gradient calculations, where individual cases can be over- or underestimated in the CFD 

results compared to invasive measurements, but the overall bias is near zero. Given the fact 

that even small changes in volumetric flow rate can havea noticeable effect in the pressure 

drops observed (as presented in Chapter 6) the similar patterns in the flow rate and CFD-

based pressure drop errors could provide a likely cause for the latter. 
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8. Conclusion and Recommendations 

 

8.1 Main conclusions 

 

One of the main objectives of this project was to investigate the pressure-flow 

relationship in models of the aortic root and the coronary arteries using computational fluid 

dynamics (CFD), with a focus on the phenomenon of pressure recovery in cases of aortic 

stenosis, and the ability of CFD to predict pressure drop in cases of coronary artery disease. 

Making use of a mathematical model for laminar-turbulent transition which has been 

well-established as suitable for use in aortic flow, the potential for a device which maximises 

pressure recovery by minimising energy losses incurred by the presence of jet formation and 

separation and turbulence in cases of aortic stenosis was tested. The device has a Venturi-like 

geometry and was placed inside the aortic root/proximal ascending aorta, starting 10 mm 

above the valve orifice with a tapering section that captures the jet coming out of the 

narrowed valve orifice, then gently sloping out towards the aortic wall in an attempt to avoid 

flow separation and reduce energy lost as turbulence kinetic energy. It was shown that the 

pressure lost as turbulence kinetic energy in the aortic root can be almost eliminated with the 

use of the device, which can potentially result in the recovery of more than 50% of the lost 

pressure  

Limitations to the device were, however, identified. Three different valve orifice 

shapes were investigated, an idealised, circular disk, a triangular shape with rounded angles 

and the orifice of a patient-specific, heavily calcified valve. In its original position 10 mm 

from the valve orifice, the efficiency of the device declined with the increasingly realistic 

valve shapes. Modification of the device to make it a perfectly fitting extension of the patient-

specific valve orifice resulted in very high (>50%) levels of pressure recovery, creating a new 

set of challenges, such as finding ways to accommodate coronary flow. 

Given the results presented in this proof-of-concept study, the conclusion was reached 

that a device taking advantage of pressure recovery to help develop a milder procedure of 

alleviating aortic stenosis symptoms can result in clinically useful levels of pressure recovery. 
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However, any potential device will have to either cross or become a continuation of the valve 

orifice, suggesting that modifications are required in the device to ensure energy lost on the 

orifice will be recovered too. This would add challenges to the device design, including 

provision for flow into the coronary arteries. Therefore, it was concluded that this device, 

with the modifications required to make it clinically applicable, would likely not present an 

advantage compared to existing procedures. 

Fully patient-specific (including anatomical and pressure/flow data) studies of 

coronary arteries are very few, largely due to the smaller size of the coronary arteries, which 

can render non-invasive imaging resolution and pressure/flow measurement quality 

insufficient for use in CFD studies. As stated in the objectives of the thesis, a better 

understanding of the pressure/flow relationship in the coronary arteries would be useful given 

the recent studies suggesting that functional assessment of coronary artery disease is 

associated with better clinical outcomes than the standard anatomical assessment, and CFD 

could be a valuable tool for that purpose. 

The first step towards that direction was to develop a new, quick, semi-automatic 

algorithm to create accurate 3D reconstructions of coronary anatomy by fusing angiography 

with optical coherence tomography (OCT). The OCT-derived lumen contours inherit the high 

image resolution of the state-of-the art intracoronary imaging method, while curvature and 

tortuosity information are provided by well-established techniques for angiograghy-based 

reconstruction. The accuracy of the reconstruction technique was tested by creating a virtual 

3D model of a stenosis with bifurcation of known geometry and building a phantom model 

using rapid prototyping. Qualitatively it was found that the reconstructed model followed the 

shape of the original model accurately, capturing the stenosis position and bifurcation angle. 

Quantitatively, a small, consistent underestimation of the lumen contour area was found, 

which, however, is attributed to impurities causing roughness on the inner surface of the 

phantom model which are not present in the virtual model the reconstruction was compared 

against.  

The next step was to use the reconstructed geometries in fully patient-specific, 

transient CFD simulations of 21 coronary vessels, in which pressure and flow velocity data 

acquired invasively in the catheterisation lab were used as boundary conditions. The 

complicated haemodynamics in the coronary arteries caused by the variable microvascular 

resistance were implicitly taken into account in the simulations by using pressure as inlet and 
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flow as outlet boundary conditions. The shape of the resulting distal pressure waveforms 

followed the measured distal pressure waveforms closely, with correlation coefficients higher 

than 0.88 in all cases, indicating the successful modelling of resistance in this study. Though 

the mean of differences between the measured and calculated distal pressure was negligible at 

~4 mmHg (<4.5% of the mean distal pressure), the standard deviation was higher than 

expected at 8mmHg. 

The 21 stenoses studied had a mean measured FFR of 0.85 and range from 0.69 to 

0.96, with the majority (66.7%) of these falling in the clinically relevant intermediate lesion 

severity category (FFR = 0.70-0.90). The CFD-predicted FFR was found to have a 

significant, positive correlation with the measured FFR results (r = 0.58, p = 0.003). No bias 

was found between the virtual and actual FFR measurements, but the limits of agreement 

(±0.16) between the two suggest that uncertainties in the evaluation of an individual lesion’s 

FFR remain. Despite this, there was an agreement of 77% between the severity diagnosis of 

the measured and predicted FFR, a number which is comparable to the accuracy results of the 

only existing relevant study (Zarins et al., 2013).   

Another important objective of the project was to investigate the parameters which 

could negatively affect the accuracy of the CFD results in studies of coronary flow. Since the 

use of CFD in the study of coronary flow developed more recently than other applications of 

CFD in blood flow -and there are also fewer opportunities for validation of the results- it was 

considered useful to investigate the sensitivity of the CFD results to the anatomical accuracy 

of the reconstruction and the volumetric flow rate estimation errors.  

For this reason, the anatomies of the 21 vessels originally studied were reconstructed 

using three different techniques: based on angiography imaging data only, based on OCT 

imaging data only and using the angiography and OCT fusion algorithm that was developed 

during this project. This was done in an attempt to evaluate which anatomical features (i.e.  

lumen shape or curvature/tortuosity) have a greater impact in the CFD FFR outcome. Using 

the correlation of CFD-predicted FFR to measured FFR, it was found that only the fusion of 

angiographic and OCT images can produce a virtual anatomy model that can successfully 

predict measured FFR (r = 0.58, p = 0.003). In the case of using angiography alone (r = 

0.048, p =0.84) or OCT alone (r = 0.12, p = 0.6) no significant correlation was found between 

the CFD and measured FFR results. This suggests that a highly accurate anatomical model is 

a requirement for CFD models that hope to be able to predict FFR. The only non-invasive 
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technique that can currently provide a satisfactory level of geometrical accuracy is 64-slice 

MD-CT. 

The correlation between the CFD-predicted and measured FFR was positive when 

using the angiography/OCT fusion anatomical model, but it was still lower than expected. A 

sensitivity analysis to investigate the role that flow rate plays in the CFD-based calculation of 

FFR was conducted. Three patient-specific anatomies corresponding to a severe, mild and 

moderate lesion were chosen from the original 21 vessel group and reconstructed using the 

angiography/OCT fusion algorithm. Steady-state simulations using a 100mmHg fixed 

pressure at the inlet and varying the volumetric flow rate at the outlet within the physiological 

limits of flow rates observed in hyparaemic coronary flow were conducted. In all three cases 

it was shown that varying the flow rate within the physiological range can alter the FFR 

diagnosis, indicating that the CFD result is very sensitive to flow rate. This result has 

important implications in potential uses of CFD to predict pressure drop in coronary lesions, 

as it shows that reliable flow rate measurements are a requirement for accurate results.  

This finding, of just how sensitive to flow rate variation the CFD results can be, led to 

the discussion of potential limitations posed to CFD studies by the fact that the most reliable 

coronary volumetric flow rate estimation can be made using intracoronary Doppler flow 

velocity measurements, which comes with a set of limitations and potential pitfalls. An 

experiment was designed to test the accuracy of flow rate estimated by a Doppler wire 

against a gold standard perivascular ultrasonic flow-meter in phantom models, an 

unobstructed tube and a model of idealised coronary anatomy, including a stenosis and 

bifurcation. Flow velocity measurements were made at various volumetric flow rate levels 

using a Combowire, a tool commonly used in research of coronary artery disease. It was 

found that, making use of the flat velocity distribution assumption (assuming that the 

measured velocity is close to the mean velocity over the cross-section) provides high 

correlation (r>0.85) and good agreement with the flow-meter measurements. Also, it was 

found that better agreement is observed at lower flow rates, comparable to the flow rates 

observed in resting coronary flow, whereas at higher flow rates a consistent underestimation 

was observed. It was also found that, at flow rates close to those observed in the coronary 

arteries Combowire-based flow estimates can be randomly over or under the measured value, 

resulting in minimal bias, but relatively wide limits of agreement. 
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The results from the bench-top experiments appear to indicate that the flat profile 

assumption will result in the most accurate estimate of the actual volumetric flow rate inside 

the coronary arteries. This result is consistent with the better performance of the CFD models 

observed when making the same assumption compared to the more commonly assumed 

parabolic (Poiseuille) flow spatial velocity distribution. This is contrary to previous validation 

studies on the subject, which found that the parabolic profile assumption gives the closest 

agreement with the gold standard measurements.  

There are multiple possible reasons for this discrepancy. Looking into the spatial 

velocity profiles at various cross-sections of the CFD simulation results it is obvious that the 

relationship between the maximum and mean velocity on a cross-section varies greatly with 

location, proximity to a stenosis and overall vessel geometry. Furthermore, there are 

limitations in the flow wire itself, the two most important in this application being spectral 

broadening (accentuated by the bending of the wire tip by more than 20 degrees in clinical 

practice), and the potential to miss the maximum velocity if that lies very near the vessel wall 

and out of the sample volume, a common occurrence in curved vessels. The combination of 

the two could result in consistent underestimation of the maximum velocity such that the 

value recorded may be closer to the mean spatial velocity rather than the maximum. None of 

the previous flow wire validation studies made measurements in cases of stenosis either in 

vivo or in vitro, and reported velocity underestimations of ~14% when testing a flow wire in 

highly curved tubing in vitro, which could explain the discrepancy between the results of 

these experiments and the previous studies.  

8.2 Assumptions and Limitations to the study 

8.2.1 Assumptions in the CFD simulations 

 

Assumptions on the rheology of blood 

 

In all simulations performed, blood was modelled as Newtonian. As discussed in 

Chapter 2, blood is a suspension of particles (such as red blood cells and platelets) in plasma, 

and has complex rheological properties. At low shear rates it behaves as a non-Newtonian 

fluid, the viscosity of which declines with increasing shear rate. It has been experimentally 

found that at a shear rate of about 100 s
-1

 blood’s viscosity stabilises. Though flow velocities 
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in the coronary arteries and the aorta exceed this shear rate threshold, it is possible that the 

Newtonian fluid assumption may not hold in parts of the flow field where there is stagnation, 

or very low, oscillating flow. However, studies have shown (Lee and Steinman, 2007) that 

the difference between modelling blood as Newtonian and non-Newtonian are negligible, and 

the Newtonian behaviour assumption is now standard in CFD simulations of large arteries. 

Blood viscosity is a function of red blood cell concentration, or hematocrit, which 

varies from person to person. Due to lack of hematocrit information for the patients studied, a 

widely accepted average value of blood viscosity (0.00334 Pa.s) was used. Changes in blood 

viscosity within the normal hematocrit range are not expected to have a noticeable effect on 

pressure and flow characteristics. 

The rigid wall assumption 

 

Elasticity is a very important property of the arterial wall, and has been widely studied 

as arterial stiffness is associated with increased risks for cardiovascular diseases. Wall 

elasticity significantly affects the speed of wave propagation, with noticeable effects on the 

pressure and flow patterns observed. Coupling CFD with wall mechanics simulations to 

create fluid-structure interaction (FSI) models of flow in blood vessels is increasing in 

popularity. However, information on wall properties such as elasticity and thickness is 

required to realistically model fluid-structure interaction, and this information cannot be 

easily measured in vivo. Therefore, most FSI simulation use generic wall properties measured 

post-mortem, and not patient-specific ones, even though there is large variation from subject 

to subject. It has been shown (Torii et al., 2009c, Tan et al., 2009b) that FSI simulations 

contribute little to the accuracy of flow studies in larger arteries, and, with the increased 

computational cost of FSI, it is often considered unnecessary.  

8.2.2 Limitations of the aortic stenosis study 

 

The study on the aortic stenosis is a preliminary, proof-of-concept study. For this 

reason, an idealised geometry was used to represent the left ventricular outflow tract, aortic 

sinuses and proximal ascending aorta, while omitting important anatomical features such as 

the coronary ostia. The geometry consisted of circular, straight tubes, while the sinuses were 

assumed to have a symmetric, spherical shape. All simulations were steady-state. The 
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simplified, idealised design was chosen so that the study could better focus on the effect of 

the valve orifice shape on the efficiency of the device tested.  

8.2.3 Limitations of the coronary artery study 

 

A major limitation of the coronary artery study is the use of single vessel models, 

omitting flow lost to branches and collateral flow. This is a limitation inherited by the 

inability of OCT and other intracoronary imaging techniques to visualise more than one 

vessel at a time. Errors may also be introduced through the imaging methods used, including 

the use of serial monoplane angiography, and the assumption that the OCT-derived lumen 

contours are perpendicular to the vessel centreline and the application of a uniform in-plane 

rotation angle throughout the vessel. Moreover, there is a degree of uncertainty in 

determining the exact location of the FFR and flow velocity measurements used as boundary 

conditions. Because of this, it is possible that errors in the estimation of the volumetric flow 

rate from velocity measurements arising from uncertainty over the cross-sectional area of the 

measurement location are possible.  

8.2.4 Limitations of the flow experiment study 

 

The major limitation of the bench-top experiment study was its small size. Even 

though the high correlation coefficient observed helped achieve statistical significance in the 

unobstructed tube study, the fact remains that the number of experimental points (n = 14 for 

the unobstructed tube and n = 5 for the stenosis model) was low and all conclusions from this 

study can only be considered preliminary. However, they could provide incentive for larger 

scale studies investigating the accuracy of volumetric flow rate estimates based on flow wire 

velocity measurements, updated for the potential methodology pitfalls and limitations 

highlighted by these experiments. 
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8.3 Recommendations for future work 

8.3.1 Pressure recovery in aortic stenosis 

 

As demonstrated by the result presented in Chapter 3, a realistic application of a 

Venturi-shaped device promoting pressure recovery in cases of aortic valve stenosis would 

have to cross/remodel the valve. This presents a set of difficulties, however, because crossing 

the valve is a more invasive procedure than simply placing a device inside the ascending 

aorta.  

The device design as presented in this thesis does not appear to present advantages 

over the currently available treatment options. It is, therefore, suggested that more detailed 

study into the design, potential benefits and application challenges of a pressure-recovering 

device should be conducted before revisiting this concept. 

 

8.3.2 Coronary flow studies 

 

Non-invasively assessing the functional severity of coronary artery disease using CFD 

is a very attractive idea which has been gaining in popularity in recent years. The concept of 

using patient-specific anatomical data and assumptions on flow and pressure as boundary 

conditions has the potential to result in useful clinical results (such as the FFR index) without 

the need for intracoronary pressure and flow velocity measurements. However an 

investigation into the potential pitfalls of the new method was necessary to establish the 

limits of reliability of using the CFD method. 

The results of the CFD studies presented in Chapters 4 and 5 indicate that the quality 

of the anatomical and functional data used can have a significant effect on the accuracy of the 

CFD result. In particular, only with the use of anatomical reconstructions of high fidelity 

based on high resolution imaging data were CFD-derived values of FFR positively correlated 

with the measured values. Omitting vessel curvature and tortuosity, or using lower-resolution 

images which cannot well define lumen contours result in less than optimal results. 

Moreover, it was shown that the CFD-derived FFR result is sensitive to changes of 

volumetric flow rate which are within the hyparaemic physiological range, putting into 



182 
 

question the use of generic, or averaged, flow rate data as boundary conditions in CFD-based 

calculations of FFR. 

There is currently no way of obtaining reliable flow velocity measurements in the 

coronary arteries non-invasively, and as it was shown in the experiments of Chapter 6 

estimating volumetric flow rate from intracoronary Doppler flow velocity can result in errors 

too. Therefore, the need for reliable, patient-specific flow rate is an important limitation of 

CFD which may not be easily overcome in the near future. Recent studies have shown that 

the hyperaemic flow conditions stipulated as a requirement in the original experiments may 

not be necessary to assess coronary function, while it has also been shown that there is 

smaller variability in the flow rates observed in the wave-free diastolic period when peak 

flow occurs, which can be considered to be 20%-30% more than the mean baseline flow. 

Consequently, using the hyperaemia-free iFR index as the functional assessment test 

simulated with CFD may reduce the flow rate variability and may therefore help overcome 

the flow rate limitation of CFD coronary studies. 

The limitations and challenges discussed in this thesis are not unique to the proposed 

methodology, but face all of the technologies and methodologies which try to address the 

problems of computational modelling of the coronary arteries.  Almost all measures in 

clinical practice come with considerable variability.  Common measures such as blood 

pressure vary by more than 15% when made in clinic, and FFR specifically has been shown 

to change classification 15% of the time when measured by world experts 10 minutes  

apart.  Even clinical technologies with FDA approval make approximations which to the eyes 

of the CFD modeller may appear troublesome.   

The question we face moving forward is not necessarily if we need to strive for 

engineering perfection, but rather whether it is possible to add significant benefit to clinical 

diagnostics in a cost-effective and timely manner.  This may, on occasion, mean that 

simplifications in methodologies may be made that will result in less accurate models, but 

which might provide a stepping stone to accelerate development.  
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