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Abstract Measuring quantitatively the nanoparticle
dispersion of a composite material requires more than
choosing a particular parameter and determining its
correspondence to good and bad dispersion. It addition-
ally requires anticipation of the measure’s behaviour to-
wards imperfect experimental data, such as that which
can be obtained from a limited number of samples. It
should be recognised that different samples from a com-
mon parent population can give statistically different
responses due to sample variation alone and a mea-
sure of the likelihood of this occurring allows a deci-
sion on the dispersion to be made. It is also important
to factor into the analysis the quality of the data in
the micrograph with it: (a) being incomplete because
some of the particles present in the micrograph are in-
distinguishable or go unseen; (b) including additional
responses which are false. With the use of our preferred
method, this paper investigates the effects on the mea-
sured dispersion quality of nanoparticles of the micro-
graph’s magnification settings, the role of the fraction
of nanoparticles visible and the number of micrographs
used. It is demonstrated that the best choice of magnifi-
cation, which gives the clearest indication of dispersion
type, is dependent on the type of nanoparticle struc-
ture present. Furthermore it is found that the measured
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dispersion can be modified by particle loss, through
the limitations of micrograph construction, and mate-
rial /microscope imperfections such as cut marks and
optical aberrations which could lead to the wrong con-
clusions being drawn. The paper finishes by showing the
versatility of the dispersion measure by characterising
various different spatial features.

Keywords composite material - magnification -
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1 Introduction

Many studies into composite materials have shown that
the dispersion quality of nanoparticles can have adverse
effects on the material’s mechanical performance. Given
its importance concerning measurable properties, such
as fracture toughness; fracture energy, strain; stiffness
[1-7], it is no longer sufficient to simply state from view-
ing a micrograph that the nanoparticles are well- or
poorly-dispersed. Instead exact knowledge of the ex-
tent of dispersion is sought such that correlations can
be identified. This requires a robust quantitative mea-
sure for dispersion.

Dispersion has been variously defined, depending on
requirement (for example with respect to particle size
distribution and orientations [8], homogeneity|[9], regu-
larity[10] etc.), but here it is taken to characterise how
well the nanoparticles are spread through the whole
material in terms of their locations. A well-dispersed
system has a homogeneous spread of particles across
the system, such that either the geometry of particles
is completely random or better still the particles are
equally spaced in a near lattice-like formation. Con-
versely a poorly-dispersed system has particles which
are clustered or heterogeneously dispersed such that the
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system is geometrically more disordered than would be
expected if completely random.

This geometric disorder provides an intuitive per-
spective on which to base a dispersion measure. Our
work exploits the properties of the Delaunay network
(the counterpart to Voronoi/Dirichlet tessellation which
defines each Voronoi polygon as the region of the system
in which a specific particle is found to be the nearest),
that is generated using the positions of nanoparticles
[11-16,9]. Good reviews and alternative methods are
also provided by [8,17-19].

It is impractical to base the analysis on the com-
plete system, given the difficulty of registering every
particle in a material. The alternative is to suffice with
a limited number of micrographs each showing a small
local region of the material. Therefore the challenge of
developing a method is ensuring an objective assess-
ment of dispersion is made when analysing data that is
mathematically imperfect.

This paper will develop the methodology to perform
objective experimental assessment of the dispersion of
nanoparticles in a material based upon sample micro-
graphs. A quantity called the Area Disorder is used to
determine the type of dispersion. The effects of varying
the number, placement and magnification of the micro-
graphs taken from any one material are investigated to
check the robustness of the technique. Two questions
will be of particular interest: (1) what is the extent of
the dispersion? (2) how confident can we be that we
have reached the correct conclusion about the mate-
rial?

2 The technique

The technique employed in this paper is simple to per-
form and exploits the unique property of lattice ar-
ranged particles in which triplets of nearest neighbours
are regularly spaced apart. A detailed mathematical de-
scription has been provided in concurrent work [20,21].
This paper considers how it may be applied in a mate-
rials science context.

Each micrograph is made up of n by n pixels with
a pixel length [, determined by the magnification used,
such that each pixel covers an area {2 m? in the material
(note this assumes that the micrographs are square, but
the technique is readily adapted for rectangular micro-
graphs). The total area of the material shown by the
micrograph is L?m? where L = nlm. Within the mi-
crograph is a collection of N identifiable nanoparticles
(where N must be larger than 3) with cross-sectional
areas a; m2, i being an integer between 1 and N, such

that the area fraction (Ay) of the micrograph covered
by nanoparticles is A; = 2 a;/L2.

For each particle the centre of mass point is found
and these positions are used to generate a Delaunay net-
work of triangular cells, making the assumption that
the system obeys periodic boundary conditions. Each
triangle has vertices that lie on the centre of mass points
of a triplet of particles that are considered to be mutual
nearest neighbours, whereby the associated Voronoi poly-
gons of the three particles border one another to share a
common vertex position. Periodic boundary conditions
are used at the edges of the micrograph as these provide
a convenient approach for generating a Delaunay net-
work that spans the complete micrograph. This allows
the following analysis to be based upon an assessment
of the whole micrograph and not the smaller sub-region
given by the hull of the particles. Figure 1 demonstrates
the generation of the Delaunay network over the parti-
cle positions. Particles within the dashed edges of the
rectangle belong to the micrograph, with the remain-
der being ‘virtual’ particles generated through the peri-
odic boundary conditions. Only those Delaunay trian-
gles (all triangles of which have been outlined in Figure
1) with centres that lie within the micrograph are used
in the analysis. The resultant Delaunay network con-
sists of 2N triangles with areas £2m?2, one of which is
highlighted in Figure 1. Although N > 3 can be small,
as shown here, the analysis is simplified when the num-
ber of particles is greater than 100.

2.1 Area Disorder

The Area Disorder of the Delaunay network (ADpg)
is a dimensionless quantity with values between 0 and
1 (having originally been defined for use with Voronoi
tessellation in [22]). It is defined as

ADpa=1— (14 s0/%2) 7", (1)

where 2 and s are the mean and standard deviation
of the Delaunay triangles’ areas respectively. Applying
periodic boundary conditions reduces the Area Disorder
to a single variable quantity of s with 2 = L?/(2N)
such that

ADpe =1— (14 2Nso/ L) (2)

The type of dispersion present can be determined by
calculating the mean value for the Area Disorder of a
material, ADpe;. For example, an ADp; of zero implies
a lattice arrangement of particles and hence a perfectly
dispersed system. Similarly, a random arrangement of
particles gives a mean Area Disorder of less than 0.478,
with the exact value dependent upon the area fraction
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of particles within the micrograph. Larger values for
ADpg suggest a heterogeneous system.

Figure 2 shows the classification diagram indicating
the type of dispersion found for any given pair of val-
ues for ADp.; and area fraction, Ay. The dashed-line
shows the crossover between good and poor dispersion,
in which materials falling beneath this line are classi-
fied with good dispersion and conversely those materi-
als falling above are classified with poor dispersion.

Experimentally it is very difficult to take enough
micrographs of a material to obtain a precise estimate
of the ADp, due to the large number of micrographs
required (in [16] it was suggest that it could require
as many as 100 micrographs, however this requirement
should be expected to decrease with lower magnification
micrographs which pick up more particles and cover
larger areas). In any single micrograph the measured
value for the Area Disorder will vary around the mean
value due to natural fluctuations in local area fraction.
Hence it is unlikely that any two independently placed
micrographs of the same material will give identical val-
ues for ADpg. Furthermore it is possible to obtain a
value of ADp,) greater than the true mean value. Thus
it is important to expect some intrinsic imprecision in
the measured value of ADpg from a single micrograph
due to sample variation and account for this in the anal-
ysis. This continues to hold true to a significant, but
lesser, extent when estimating the ADp, from a lim-
ited number of independently placed micrographs.

To correctly identify the dispersion of the material a
hypothesis test is performed to determine the likelihood
that the set of micrographs represent a particular type
of dispersion.

2.2 Hypothesis test

The hypothesis test is a simple two-sided z-test where
the estimated mean value of ADpe measured from k
sample micrographs, e.g. AD; = Zle AD; /k (here
AD; is the measured Area Disorder for the i*® micro-
graph), is examined against the random variation of the
null hypothesis. An alternative estimate for the mean
can also be obtained through the simultaneous anal-
ysis of all Delaunay triangles from the collection of &
micrographs, discussed in Section 4.2.3, and the same
hypothesis test used.

The null hypothesis states that the nanoparticles
(with the material’s dimensions being very much larger
than the micrograph) are homogeneously randomly dis-
tributed across the material with a calculable mean
(1r) and standard deviation (o) for the Area Disorder
of a sample region. If the material obeys the null hy-

pothesis then, assuming that the micrographs are cho-
sen independently, in 95% of cases AD; will have a
value that lies within two standard errors (defined as
or/VE) of the expected mean pg under the null hy-
pothesis. This is based upon the bell shape error curve
of random variation expected for ADpg in the null hy-
pothesis.
The test statistic Z is defined as

Z), = Vk (ADy — ur(Ay)) /or(Ag, N). (3)

The null hypothesis is rejected at the 5% significance
level when |Z| > 2. In such cases either the material
is likely to be well dispersed, such that Z < —2 or al-
ternatively the material is likely to be poorly dispersed,
such that Z > 2. When |Z;| < 2 the system is indis-
tinguishable from randomly dispersed. The dotted-lines
in Figure 2 show an example of the tolerance bound-
aries, within which the measurement is indeterminate
from random. As either N or the number of micro-
graphs sampled over increases then these boundaries
contract towards the dashed-line. That said the varia-
tion in value of ADpe for random dispersion is small
compared to the overall range in values for ADpg.

Values for pur and or are determined using theo-
retical models. The most realistic approach is to treat
particles as having hard non-overlapping cores, which
will be called the random hard-core model (RHM). Here
particles are placed one at a time randomly without bias
anywhere in the system subject to the constraint that
a particle must not overlap with any other. In these
models the values of ur and or are dependent on the
area fraction A; and weakly dependent on the number
of particles present.

In the absence of known analytical solutions, com-
puter simulations can be performed to numerically cal-
culate the value of ADpg for different values of Ay.
When N > 100 then it is found that pr(Ay) is approx-
imately independent of N. An analytical solution can be
derived at the limit of point-like particles where Ay = 0.
In this case pr(0) = 0.468 and or(0, N) = 0.214N 93,
The set of mean values with respect to area fraction
forms the dashed crossover boundary seen in Figure 2.
The boundary is not linear with respect to Ay but can
be well approximated with the linear relation:

pr(Ar) = pr(0) = 245 (ur(0) — pr(0.5))
~ 0.468 — 0.532A . (4)
In general or(As, N) can be factorised as a prod-
uct of variables of the form og(As, N) =~ So(A;)N~1/2

with So(Ay) found to be well fitted by the simple func-
tion

So(Ag) ~0.214 — 0.427A4 7™, (5)
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as illustrated by the dashed-line in Figure 3.

With Ay known, for example when predefined by
the global properties of the material, and all particles
are identifiable through image analysis, then using these
values for pr and o allows the technique of measuring
ADpg and calculating Zj, to be used as stated. That
said, care must be taken when applying the technique
to samples which do not have all the particles identified,
as will be shown later.

3 Experimental Method
3.1 Materials

In this paper, a particulate-modified epoxy polymer
is used [23]. This is produced by mixing an epoxy
resin, a curing agent and various particles. The epoxy
resin used was ‘LY556’ supplied by Huntsman, UK,
which is a standard diglycidyl ether of bis-phenol A
(DGEBA) with an epoxide equivalent weight (EEW) of
185 g/eq. The curing agent was an accelerated methyl-
hexahydrophthalic acid anhydride, ‘Albidur HE 600’
(anhydride equivalent weight of 170 g/eq), supplied
by Nanoresins, Geesthacht, Germany. This mixture is
poured into release-coated moulds to produce plates,
and cured at 90 °C for 1 h then post-cured at 160 °C for
2 h. In the resulting microstructure of the cross-linked
polymer the epoxy forms the matrix.

Two particle compositions have been used, the first
containing silica nanoparticles covering an area frac-
tion Ay = 0.137, and the second containing both silica
nanoparticles at Ay = 0.066 and rubber microparti-
cles with an area fraction of 0.106. Nanoresins supplied
silica nanoparticles at a concentration of 40 wt% in a
DGEBA epoxy resin (EEW = 295 g/eq) as ‘Nanopox
F400’. The mean particle radius of the silica is given by
the manufacturer as # = 10nm. Nanoresins also pro-
vided the carboxyl-terminated butadiene-acrylonitrile
(CTBN) epoxy adduct with a rubber concentration of
40 wt% in a DGEBA epoxy resin, as ‘Albipox 1000’
(EEW = 330 g/eq), which forms the rubber micropar-
ticles upon curing. Further details of these materials
and their preparation are given by [24].

3.2 Micrographs

The test material is prepared by mounting it in a RMC
Products ultramicrotome and slicing using a diamond
knife along the longest plane to create a smooth sur-
face. This surface is scanned using a MultiMode scan-
ning probe atomic force microscope (AFM) from Veeco
equipped with a NanoScope IV controlled J-scanner

and a 5nm silicon probe in tapping mode. The AFM
records a pair of images depicting the phase (hardness)
and height of the scanned area. The phase image is
often the clearest and hence most suitable image for
analysis, with the epoxy making up the predominant
background tone. The hard silica nanoparticles provide
distinct lighter tone responses whilst the soft rubber
particles are darker in tone. Lower level particles, i.e.
those just below the surface, add additional noise to the
background by generating local high intensity maxima.
Overall the intensity of the nanoparticles in the phase
image varies depending on their height with respect to
the surface.

3.3 Image Processing

From a micrograph the particles are identified using an
automated computer routine which broadly consists of
three stages. Firstly, the image is processed: converting
the micrograph into greyscale; suppressing the back-
ground noise by smoothing the image with a median
filter to reduce small fluctuations of intensity; adjust-
ing the contrast level of the micrograph to maximise the
difference between nanoparticles and the background
material. The filter’s square aperture size is chosen to
be /2 times the observed particle diameter (Fobs) SO
that applying the filter to the image will not remove
particles. Tops is chosen over the actual particle radius
7 because: (a) particles intercept the sample surface at
different heights; (b) the broad probe tip induces par-
ticles to appear inflated in size (through convolution
with probe tip [25] the form of which depends on the
exact probe shape and height of particle above the sur-
face). Hence the mean particle radius is assumed (for
simplicity) to be read as

Tobs = V 2/3F + dpr0b7 (6)

with dpron, = 5 nm being the width of the probe (a worst
case scenario which ignores the complex relationship
between the profiles of the probe and particle) to give
a ratio Tops/T = 1.32.

Secondly, particles are identified through the oper-
ator’s chosen segregation method, as described below.
Thirdly, the particles found are corrected by splitting
overly large particles into components and removing
likely false positives. The inclusion of false particles,
generated through the computer algorithm, is reduced
by pruning those particles that lie closer than the mean
particle diameter (2Tops) to another point. Additional
false positives are caused by any cut lines present on
the material’s surface after cutting with the diamond
knife and scan aberration of the AFM. Where scanning



Quantifying nanoparticle dispersion: Objective analysis of micrographs 5

aberrations are present (indicated in the micrographs
by horizontal banding along the righthand side), as is
seen in many of the micrographs of the silica-rubber
modified composite, the effects are limited by remov-
ing potential particles which have a minor axis length
(before splitting) of less than two pixels wide.

The chosen segregation process automates particle
selection in order to avoid manual picking — a laborious
task which is impractical for sampling large numbers of
micrographs. This will inevitably lead to some errors
in particle identification through the addition (through
false positives and fragmentation) or exclusion of some
particles. Two methods of automated segregation are
used in this paper; in both the particles are assumed to
lie at the focal point of local maximum intensities.

In the simple approach (SimAlg) the algorithm finds
every local maximum, regardless of strength above the
background, and assigns this to be the particle’s centre,
i.e. each maximum represents a particle. This method
is susceptible to large numbers of false positives when
fluctuations of intensity in the background of the mi-
crograph are stronger than can be removed using the
digital filter.

The second, more selective, computer algorithm (Se-
1Alg) identifies the hull of a particle by finding all con-
nected image pixels that lie around a local maximum
which have intensities no more than a set threshold
value, T, different from the peak value. Alternatively
particles can be found by repeating the same process
using a threshold value of 255 — T' (where 255 is the
maximum intensity) around a local minimum and tak-
ing the complement of the resultant binary image. The
threshold value T is adjusted until the number of par-
ticles found by each method is approximately equal.
Particles are identified either from both methods and
combined to form a complete list of particles (in the case
of silica nanoparticle modified composite) or just from
the local maximum (in the case of silica-rubber particle
modified composite). At this stage duplicate particles
are not removed. Additional splitting of conjoined par-
ticles is performed by assuming that the centre of mass
points of a joint set of particles arise at the local max-
ima within their hull. Larger objects, over twice the
maximum expected size estimated by @ = 7(Tops)? for
spherical particles, are broken into smaller particles by
assuming each constituent particle has a centre of mass
that lies at a local intensity maximum within the hull
of the object.

Figure 4 shows the output of the steps taken by
the selective computer routine to convert a micrograph
image to centre of mass points which are then used to
generate a Delaunay network.

The image processing and subsequent analysis of
batches of micrographs are performed together using
a single automated MATLAB program with standard
functions. Other existing routines of image analysis can
be made using commercially available software (which
may require more complex code or separate analysis of
each micrograph). For example, greyscale binarization
using a threshold value can be used instead of SelAlg,
as long as false positives are eliminated and no system-
atic regional bias is placed on the particles picked out
through selection. The difficulty lies in automation of
the binarization method as it is uncertain how to opti-
mise the threshold value. Predominantly, this is done by
matching the measured area fraction of nanoparticles
with the known area fraction of the material. However
this ignores the fact that significant over-sizing of the
particle can occur due to finite probe tip size, and that
particles lower in depth within the material surface are
darker in colour so less likely to be picked out as well
as being less well defined.

The purpose here of the chosen routines is not en-
dorsement but rather to highlight the differences in
measurement of particle arrangement that will arise be-
cause of the varying degrees of success that different
approaches have at identifying and separating parti-
cles. Recognising this means that techniques need to
be developed to address and compensate for any bias.

4 Results and discussion

In this section we discuss how the apparent dispersion
of the system is affected by the data quality given in
the micrograph and methods for handling the output
to maintain an objective perspective. The data quality
is affected by both the initial experimental conditions
of the microscope when measurement of the material is
made and the computation routine of identifying and
locating particles from the resultant micrograph.

4.1 Strategy for handling incomplete images where not
all the particles are visible

When interpreting micrographs it is unlikely that all
the particles can be detected without some loss due to
the imperfections of the microscope or the limitations
in the detection technique used by the segregation al-
gorithm. The data on the particles in these systems can
be described as incomplete, i.e. the complete data on
all the particles within the micrograph is not known.
Additionally, particle incompleteness is caused by
the method of preparation used to obtain a suitable
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smooth surface of the material sample for taking micro-
graph images. On average, half of the particles present
are lost (as the silica nanoparticles are indivisible by the
knife), that would have been found if looking along the
equivalent plane through the material, onto the oppos-
ing face when slicing open the material to reveal a ‘flat’
surface. Thus the effect of incompleteness of nanopar-
ticles has very real implications on the result found,
even if subsequently perfect conditions exist when tak-
ing measurements. So it is important to ask what effect
does the loss of particles have on the average measured
dispersion quality. Specifically how robust is the mean
value of ADpe to small changes in particle numbers,
which could be the result of close particles merging to
register as one or false positive particle detection? Sec-
ond, how much change is observed when a large pro-
portion of the particles are missing from the analysis
and can it be compensated for?

4.1.1 Test systems

A random hard-core model (RHM) is used to inves-
tigate these two questions. Here it is the average be-
haviour over a large number of samples that is stud-
ied, not individual samples as the discrepancies be-
tween samples and the theoretical expectation can oc-
cur through sample variation alone. Let Af be the real
average area fraction of material. The expected average
number of particles found along a test plane of area L2,
assuming no particle loss and identical spherical parti-
cles with mean radii 7, is calculated from the material’s
known area fraction by Ney, = 347L?/2772. This ex-
pression accounts for the particles intercepting the test
plane at different heights giving a reduced-size mean
cross-sectional area.

Let A} be the observed area fraction from the mi-
crograph where only a fraction f of particles are visible
such that A’ = fAj. Particles are chosen to be invisible
through random assignment. Figure 5(b) shows exam-
ple spatial plots seen when performing this process and
Table 1 tabulates the change in the value of observed
mean Area Disorder (ADp,)) as particles become unde-
tectable using the quantity:

EDel(f = 1) - EDel(f) )

AADpe = A
Pel ADpa(f = 1)

(7)

Here AADp,, is referenced against the complete parti-
cle case of f = 1. With small particle loss, up to 10%
of the total number of particles, the value of ADpe
changes by less than 2%. As the expected natural vari-
ation of a RHM is typically of the order of 3% such
small discrepency in ADpe; caused by variation in ob-
served particle numbers is masked. This suggests that

the ADpe measure is sufficiently robust that it will
not be thrown off by outliers in the data generated by
false positive particles or a few missing particles. How-
ever with large losses of particles the value of ADpg
changes significantly compared to that with no loss and
requires careful interpretation. A simplistic hypothesis
would assume that the RHM remains spatially homo-
geneous with the remaining particles as would be found
for point-like particles (where Ay = 0).

Figure 6 shows the equivalent A’f versus ADpg di-
agram seen in Figure 2. The dashed-line shows the ex-
pected division at random dispersion if the measured
ADnpq obeyed RHM models with area fractions equal to
A’, (and no indistinguishable particles). The solid-line
is the measured value for ADp, when 50% of the par-
ticles are undetectable, such that A’ = Ay/2. The cir-
cles shows an example path for Ay = 0.4 traced out as
more particles become undetectable, hence lowering the
observed packing fraction and changing the recorded
ADpe1. The arrows point to the direction of increasing
particle loss.

These results demonstrate that with the absence of
select particles from a spatially random distribution of
particles then the arrangement of the remaining par-
ticles registers as more clustered than expected for a
RHM with the effective area fraction equal to A}. It
shows that although some of the particles might be un-
detectable in a micrograph their effect on the detectable
particles can be important. It is worth bearing this in
mind as it means that if the measured ADp, is less than
that from a RHM using A’f then it will also be less than
that found from a RHM using Ay with the equivalent
fraction of particles lost. In general the converse cannot
be said: if the spatial arrangement of particles fails to
register as good dispersion then it does not necessarily
follow that it is poorly dispersed.

However, when Ay is small then the measured value
of ADpe (for a RHM using A; and with f < 0.5 par-
ticles visible) is effectively equivalent to the RHM with
area fraction equal to A} and all particles observable (as
can be seen in Figure 6 by the convergence of dashed
and solid lines when A% < 0.1). This is beneficial as
typically the area fraction of the composite materials
under investigation is less than 0.2, which corresponds
to A} < 0.1, and the observed f is much smaller than
the 0.5 upper limit for AFM images. Hence for these
systems it is sufficient to substitute a RHM using A’f
for the more correct RHM using Ay with (1 — f) parti-
cles undetectable.

This increase in observed value for ADpg is found
for other well-dispersed particle arrangements. The most
extreme case is for the perfect lattice. For example, take
a near square-lattice array of particles — see the spatial
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plots in Figure 5(a) — with particles having small ran-
dom perturbations away from the lattice location such
that the minimum possible distance between particles
is equal to the diameter of the particles for Ay = 0.4.
The squares in Figure 6 show the various observed mea-
surement for ADpe as f is varied. The value of ADpe;
increases rapidly from near 0 as A’f decreases. How-
ever it is always bounded by the equivalent behaviour
of RHM, in this case that of Ay = 0.4 again shown by
the circular points.

With clustered systems the value of ADp, decreases
but remains greater than that expected for point-like
randomly distributed particles. An example of this is
shown by the diamonds in Figure 6 and the spatial plots
in Figure 5(c) in which 2000 particles, in clusters of 10
with each particle Gaussian-distributed about a ran-
domly positioned centre but limited by the constraints
of particle size.

4.1.2 Modified z-tests

Consequently for these materials a z-test can still be
meaningfully performed on the micrograph using A’f as
the area fraction and Ngyuna for the number of parti-
cles. The test statistic is denoted as Zj(low) for clarity.
The exact circumstances for which particles lose visi-
bility are dependent on a complex combination of the
method of sample preparation, the set-up of the micro-
scope, the position of the material under observation
and the analysis program used. Hence it is difficult to
evaluate f before taking the micrographs and instead f
is estimated afterwards from the set of k micrographs
using

Nfound 27T 2 —
~ — = Ntound, 8
f Nexp <3L2Af found ( )

where 7 is the mean radius of a particle given by the
manufacturer and Neyp is the expected number of par-
ticles. From f the effective area fraction can be calcu-
lated:

272\ —
|~ fA; = <3L2) N, )

Calculation of A'f cannot be done through direct mea-
surement of particle size because of the inaccuracies in
measured size brought on by the use of the finite-tipped
probe and the ill-defined particle boundary given by the
detection algorithm. When Zj(low) > —2 a second z-
test can be performed equating A} = 0, with the test
statistics denoted as Zj(upp), to see if the system is
likely to be dispersed poorly.

The implied consequence of the analysis shown here
should give pause for thought. Given that the measured

value of ADp,; (and by extension the observed disper-
sion) is sensitive to the fraction of particles that are
visible, then the absolute value of ADpg is of less use
to the investigator than its relative position compared
with the values of other test materials (which informs
us about any correlations in behaviour). This under-
lines the importance of measuring, as near as possible,
each sample using an identical method (with respect to
sample preparation, microscope used and computer al-
gorithm used for analysis) to ensure a fair comparison
between results.

4.2 Selecting the necessary magnification level of the
microscope to achieve a reliable estimate of ADpg

The effects of the microscope’s magnification on the
measurement of dispersion is complex. Varying the res-
olution of the micrograph will change both the extent
of nanoparticle microstructure seen and the ability of
the image analysis to distinguish between nanoparti-
cles. Specifically, for a given sample of material, those
micrographs taken by the microscope at lower magni-
fications will show larger-scale spatial features, which
ideally leads to stronger indications of lattice-like or
heterogeneous dispersions, but also are more strongly
affected by the arbitrary merging and loss of nanopar-
ticles due to the discrete nature of the pixel resolution.
To experimentally study the effects of the magnifi-
cation level upon ADpg, the AFM magnification level
for the two test materials is chosen such that the resul-
tant micrographs show a surface area of the material
that spans a length L of either 1, 1.5, 2.5, 3.5, 5, 7.5
or 10 pm. If desired L can be converted to a unit-less
measure, L', by multiplying by the square-root of the
average number density, A\ = N/L? = 3A;/277?2, ex-
pected for a given area fraction and particle size.

4.2.1 Silica nanoparticle modified composite

In this section the silica nanoparticle modified compos-
ite is analysed using the previously described method
and the type of dispersion determined with the aid of
the Zy(low) test statistic. The composite is sampled at
six different locations (four broadly chosen to be located
close to the four corners and two close to the centre of
the material’s microtomed surface) with an image taken
at each of the six magnification levels (given above) to
produce 36 micrographs (each micrograph consists of
512 by 512 pixels giving a pixel length of | = L/512
metres). A measurement of ADp, is made for each indi-
vidual micrograph to demonstrate the spread of values
for ADp,) obtainable from a single snapshot, and also
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an estimate for the average behaviour at each magnifi-
cation scale is gathered. Examples of the micrographs
obtained for various magnifications are shown in Figure
7 (a-f).

Tables 2 and 3 tabulate the analysis data obtained
using the selected and simple computer algorithm from
the set of micrographs with various magnification lev-
els. Notice that the fraction of particles visible in ei-
ther case is much less than the theoretical maximum
of a half (expected for AFM images) when compared
to Nexp (equivalent to 1 — f) and implies that not all
the particles can be identified in the micrograph (the
exact fraction of particles measured will depend on the
approach taken during image processing, as is demon-
strated here with SimAlg picking out between two and
three times as many particles as SelAlg).

The standard error of the ADpg) values (SExp) gauges

the variations in measurement of individual micrographs
away from the estimated mean value. A relatively large
change in SEap is seen between L = 1uym and L =
2.5 pm, while lesser improvement is obtained by fur-
ther reductions of magnification. An exception occurs
with L = 10 um where the variation in measurement
worsens. This is likely to be due to inaccuracies in par-
ticle position brought on by the smallness of particle
size (diameter of 20nm) when compared to the pixel
width of the micrograph (19.5nm). On a note of cau-
tion, when N < 100 then the simplification of jg that
goes into Zj, is invalid.

Figure 8 plots the results for the observed number of
particles, Area Disorder and Zj(low) versus the image
length L. The measured data from individual micro-
graphs are shown as cross (for SelAlg) and plus points
(for SimAlg) whereas the means are shown as joined
circle and square points respectively. The observed av-
erage number of particles increases approximately lin-
early with L?, see Figure 8(a), but is much less than the
theoretical maximum for the AFM micrograph shown
by the dashed-line as was already alluded to from the
tables and is clearly less than that expected from us-
ing the material’s known area fraction shown by the
dotted-line.

Figure 8(b) shows the trend in the observed value of
ADp, for the different magnification levels. The dotted-
line in Figure 8(b) again indicates the danger of naively
using the material’s known global area fraction without
compensating for the incompleteness of visible particles
present in the micrographs. By doing so we strikingly
reduce the difference between the observed responses
of ADpe in the test material and that for the corre-
sponding RHM. Most importantly depending on the
choice of segregation algorithm the system can be in-
accurately read as either poorly dispersed (as would be

read from SelAlg) or well dispersed (as would be read
from SimAlg) and hence the analysis would be sensitive
to the computer program used.

Using the correct adjustment for the RHM, shown in
Figure 8(b) by the dashed and point lines (with symbols
corresponding to that used for means), a much stronger
case can be made that the nanoparticles in the test ma-
terial are better-dispersed-than-random. This is shown
most clearly with the values of Z (low). Although over-
all ADp, varies with L the likelihood that it resulted by
chance from a RHM decreases, as shown by the increas-
ingly negative values for Zj(low) in Figure 8(c). This
indicates that the evidence that the material is better-
dispersed-than-random is strengthening with L. With
a Zx(low) = —2 then only 2.5% of samples of a equiv-
alent RHM will have ADp. with a lower value than
has been measured. By reducing Zj(low) to —5 this
drops to 0.00001% of RHM samples. Hence a responce
of Zy(low) over —10 makes it extremely unlikely that
the observed properties represent a set of randomly dis-
persed nanoparticles and thus must be more regularly
dispersed.

Thus it can be concluded from the results that par-
ticularly promising magnification levels lie approximately
between 2.5 and 5 um. For these resolutions the stan-
dard error of ADpe between samples is kept at an ac-
ceptable level whereas the fraction of particles visible in
the micrographs remains relatively constant. Further-
more the mean value of ADpg also remains reasonably
constant to within £0.005.

4.2.2 Silica-rubber particle modified composite

In this section the silica-rubber particle modified com-
posite is analysed using the previously described method
involving SelAlg (SimAlg is not considered as it indis-
criminately picks out features in both the silica nanopar-
ticles and the rubber microparticles) and the type of
dispersion determined with the aid of the Zy(upp) test
statistic. Micrographs are taken at six different loca-
tions along the material’s cut surface, with images cap-
tured for each magnification level (each micrograph con-
sists of 382 by 382 pixels giving a pixel length of [ =
L /382 metres).

The micrographs are inspected to decide whether
silica nanoparticles are present. Those images with more
than 3 particles are put forward for the computer anal-
ysis, whereas those micrographs with insufficient par-
ticles have AD assigned to be 0. Figure 9 shows an
example micrograph for each magnification level. The
identified particles’ centre of mass positions are overlaid
where appropriate. These micrographs illustrate some
of challenges met when analysing the material. In Fig-
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ure 9(a) no nanoparticles are present and instead the
micrograph has haphazardly been focused on the inter-
nal structure of a rubber microparticle. In Figure 9(d)
the computer algorithm selects the cutting lines in pref-
erence to the nanoparticles. While in Figure 9(e) some
of the scanning aberrations are identified as particles
(although this has been greatly restricted and in other
cases entirely removed by applying the filtering tech-
nique described in the method section).

Table 4 tabulates the analysis data. An indication
to the number of micrographs found to have fewer than
three nanoparticles is given by the second column of Ta-
ble 4. For the four highest magnification micrographs,
L < 5 pum, it is possible to place the micrograph on the
material such that none of the nanoparticles are seen,
either because we are between clusters or because we
have focused inside or around a rubber microparticle.
The difference in the apparent dispersion quality be-
tween micrographs with nanoparticles and those with-
out exaggerates the magnitude of the standard error of
ADpe. This point is best illustrated by the large reduc-
tion in value of the standard error as L increases from
L =5pm to L = 7.5 yum which corresponds to whether
or not some micrographs contain no nanoparticles.

Figure 10 plots the observed number of particles,
Area Disorder and Z(upp) versus the image length L.
The mean number of particles seen in a micrograph
increases with L, as illustrated in Figure 10(a). The
optical dilation of particles closely packed into clus-
ters means that it is not possible to partition out all
the particles, so no attempt is made to compare the
number of particles seen on average with that expected
for the system. It is instead felt that that the aim
should be to obtain sufficient particle locations to char-
acterise the shapes of the clusters in order to mea-
sure the inter-cluster behaviour correctly. Micrographs
with particle data that are found to contain a high
number of false positives, sufficient to affect the re-
sult, are indicated with additional symbols in Figure 9.
For highly magnified micrographs background material
can be indistinguishable from nanoparticles (the results
from these micrographs are indicated by square points).
At lower magnifications, false positives are introduced
in the presence of any deep cut-lines (triangular points)
and/or scanning aberration (diamond points) on the
micrograph.

Figure 10(b) shows the test values of ADpe. The
mean value (shown by the connected circles) increases
strongly monotonically with L, changing by 0.73 (this is
a far stronger response than seen for the silica modified
composite where ADy, varied only by 0.03). The dotted
line in Figure 10(b) indicates the expected behaviour for
null hypothesis, that the nanoparticles of the material

are distributed randomly (A; = 0). The effect on ADy,
of the inclusion of the micrographs with large numbers
of false positives depends on the source of the error. In
the higher magnification micrographs identified parts of
the background material will push the value of ADpg
up towards being random-like. Whereas in lower magni-
fication micrographs inclusion of the false positives due
to cut marks or scan aberrations will tend to make the
system appear more clustered, with a localised band of
false particles in one location of the micrograph.

The effect of the shifting value of ADpe; on the ap-
parent dispersion quality is strikingly shown by Zj (upp)
in Figure 10(c). When Zj(upp) is above the dotted
line the material is determined to be dispersed in a
worse than random manner. An inaccurate conclusion
would be drawn by the operator (that the micrographs
are not poorly dispersed) when using micrographs with
L < 3.5um. Only when using L at least as large as
5 pm does the correct dispersion quality become appar-
ent, that the material is poorly dispersed. Note here a
large negative value for Zj(upp) does not suggest evi-
dence for good dispersion, but merely indicates that the
samples show better behaviour than expected for point-
like random objects. Only by repeating the hypothesis
test using Zg(low) could this be decided upon. In any
case this is unnecessary because the number of parti-
cles present in the micrographs for cases where this is
true are less than 100. Hence we would disregard these
findings as suspect because the simple arguments used
for defining the RHM become invalid for small N. The
actual value for pr(Ay = 0) becomes strongly depen-
dent on N and approaches 0 with decreasing particle
number [21].

Thus it can be concluded that for visually clustered
systems the chosen size of the micrograph ought to
be selected such that it is much larger than the fea-
tures of the material, in this case the rubber micropar-
ticles, that are of sizes ordering 1 um, and the clustered
nanoparticles, with the clusters being of a size around
Lews = 2pm. The minimum size of the micrograph
required to ensure it will contain a cluster can be esti-
mated using:

(1 pm)?
0.066

L > '/T(Lclus/2)2 _
= Af

= 6.9 ym. (10)

Here we assume that the clusters devoid the surround-
ing space of nanoparticles (hence we need to select a mi-
crograph large enough that the equivalent RHM would
have the same total area of nanoparticles as that which
makes up the cluster) and that the clusters are assumed
to be circular. We can see that our crude estimate for
L matches well with the crossover value that was ob-
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served experimentally to be between L = 5um and  and @k is found to measure no more than 0.03 greater
L ="75pm. than ADy.

4.2.8 An alternative ensemble estimate for ADpe

We have seen that the use of ADj, suffers from two
limitations: (1) it is highly influenced by the quality
of information available in a micrograph (i.e. including
those micrographs with low particle numbers will sig-
nificantly lower ADy); (2) large fluctuations in particle
numbers between micrographs are not accounted for in
Zy,, where the null hypothesis assumes that every mi-
crograph contains IV particles. The use of ADj, is neces-
sitated when the micrographs are individually analysed
before estimating the average behaviour. However, an
alternative estimate can be obtained through analysing
all the micrographs simultaneously.

Each micrograph is a small region of the larger ma-
terial and thus should share the same statistical prop-
erties. We record the areas of the Delaunay triangles
of each micrograph and collated them into one large
table of areas ({{2;}). From this the Area Disorder
is calculated using the ensemble estimate @k =1-
(1 + st/ﬁk)_l, where 25, and S, are the mean and
the standard deviation area. The @k estimate avoids
the limitations seen in ADj. In practice micrographs
that contain none or less than three particles cannot
provide accurate Delaunay triangles and have to be es-
timated. For an upper-bound estimate (ADg(ub)), two
triangles are assumed to be present that occupy half
the area of the micrograph. For a lower-bound estimate
(ADg(Ib)), these micrographs are ignored completely.

This method is similar to that obtained through
tiling or stitching micrographs together to form a larger
image, thereby increasing the number of particles anal-
ysed, but is easier to perform as micrographs can and
should be taken from separate regions of the material
rather than an adjoining patch (which lessens the risk
of being in an atypical/ or locally similar region of the
material). A/Bk improvements are best seen in poorly
dispersed systems. Revisiting the silica-rubber particle
modified composite, we find that the correct type of
dispersion is interpreted for the highest magnifications
(L =1,2.5 or 3.5 um) where ADj, was misleading. This
is shown in Figure 10 by the envelope of likely measure-
ments bounded by the two dashed lines which demon-
strate that Zj,(upp) > 2. The value of ADj, can also be
seen to be much more stable with L, compared to ADy,
with a maximum variation of 0.2 and 0.7 respectively.
For well dispersed systems little benefit is brought by
using AD; because the variation in particle number,
between micrographs, is minor compared to the mean
value. Hence the dispersion type is interpreted the same

4.3 Additional dispersion measurements for two
species particle modified composites

For dual-modified composites the dispersion quality of
either or all types of particles may be responsible for
the unique materials characteristics seen. The method
of measuring Area Disorder is sufficiently versatile that
it can be adapted, without reinterpretation, to describe
a variety of types of particle dispersions. Two such pos-
sibilities are outlined below, describing rubber particles
and nanoparticle clusters.

4.3.1 Dispersion of Rubber microparticles

The same method of analysis can be used to measure
the dispersion quality of the rubber particles. A pre-
requisite before analysis is that the contrast of the mi-
crograph is inverted to make the darker regions of the
rubber particles light and conversely the silica nanopar-
ticles dark. The radius of the rubber particles used in
the silica-rubber particle modified composite is of the
order of 500 nm and the area fraction is given as 0.106.
Due to their macroscopic size the diamond knife, dur-
ing sample preparation, splits the rubber particle in two
and means that the AFM micrographs show all the lo-
cations of the rubber along the plane. Similarly the rub-
ber particles’ relatively large size means that they are
less likely to be missed by the computer detection pro-
cess and so do not require the additional subdivision
of potential particles nor require adjustment to the ob-
served area fraction. Thus the measured value of the
Area Disorder reflects the actual dispersion of the rub-
ber and the z-test reverts to the perfect case given in
equation (3) with test statistic Zj.

Figure 11 shows an example micrograph of the
silica-rubber particle modified composite with the cen-
tral locations of the rubber particles, determined us-
ing the computer algorithm previously described, over-
laid as points. The Area Disorder is calculated as
ADpei(rubber) = 0.3941 with Z, = —0.4371 and the
interpretation is that the dispersion of rubber parti-
cles is indistinguishable from random. Caution should
be taken here as the analysis is based upon the loca-
tion of only twenty-five particles (where the workings
of Zj, does not correctly account for the number depen-
dence of the mean value expected for such small num-
bers of particles). Nonetheless this is the best that can
be achieved when analysing using the same set of mi-
crographs that are suitable for measuring nanoparticles
dispersion. Thus the point is emphasised that because
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rubber particles are many orders of magnitude larger
than the nanoparticles, then to obtain a more precise
estimate for the dispersion requires taking a separate
set of AFM micrographs at much lower magnification
levels.

4.3.2 Dispersion of Clusters

Sometimes there are cases where studying the statis-
tics of the clusters are of interest. The complexity of
the cluster can be reduced by removing the internal
structure of nanoparticles and treating the cluster as
a macroscopic particle. This would be useful to test
properties that may not be dependent on the inter-
nal structure of clusters but rather the spatial arrange-
ment of clusters. In such a case the homogeneity or
heterogeneity of the clusters themselves may make use-
ful statistics. Studying nanoparticle dispersion masks
these large-scale differences behind more dominant and
populous short-ranged particle-particle spacings within
a cluster.

Here we described a method that could be used to
obtain a measure of cluster dispersion using the Area
Disorder. As before a micrograph of the material is used
to generate the Delaunay network based upon the lo-
cations of the nanoparticles. Select the shortest edge
from each Delaunay triangle and omit the remaining
two edges. This will result in a skeleton network of con-
nected pairs (see Figure 12(a)). Any remaining link that
has a length greater than a cut-off length ;. (which
is chosen by finding the lowest distance bin of a 200
bin histogram of minimum Delaunay edge length with
a frequency of less than five) is subsequently removed.
This leaves isolated groups of connected particles which
we define to be clusters. The dispersion quality of these
clusters can then be analysed using the Area Disorder
measure as previously described. To avoid the need to
write new specialised computer code we simplify the
problem by assuming that the exact shape of the clus-
ter is irrelevant (i.e the average shape of a cluster is
isotropically circular) such that the cluster can be con-
tracted to the centre of mass point without changing
the Delaunay tessellation. The Delaunay network for
the clusters is then generated from these centre of mass
positions and used to calculate the Area disorder for
clusters (see Figure 12(b)). In principle, interpretation
of the Area Disorder of clusters would be the same as
that for the individual nanoparticles.

For the example shown in Figure 12 the Area Disor-
der of nanoparticles is read as ADp¢(Nano) = 0.8363
whereas the dispersion of the clusters is less poorly dis-
persed with an Area Disorder of ADpe(Clus) = 0.5350.

5 Conclusions

This paper has outlined some of the practices required
to implement a dispersion parameter to quantify real
data. By being aware of the micrographs’ subjective
limitations it is possible to account for the underlying
data quality when evaluating the dispersion by use of
an appropriate likelihood test such as the z-test used
here.

The first step is to define a parameter, in this case
the Area Disorder (ADpg)). The behaviour for the ‘per-
fect’ data set (no errors in particle position and all par-
ticles observable) has been outlined. Regions on the di-
agram of ADpg versus the area fraction of nanopar-
ticles correspond to good and bad dispersion, and the
line of division between the two is at isotropic random
dispersion. The second step is to allow for the natu-
ral variation in observation expected to occur between
finite-sized micrographs. The inherent uncertainty in
the observed value of ADp, causes the boundary be-
tween good and bad dispersion to be ill-defined. A z-
test allows the experimenter to judge the likelihood of a
sample micrograph representing a randomly dispersed
material and hence upon rejection of the null hypothe-
sis whether the material is dispersed well (better than
random) or poorly.

The third step requires the experimenter to recog-
nise that the data are likely to be imperfect. Incom-
pleteness of particles is a problem inherent to AFM im-
ages. The fraction of particles visible in the micrograph
can strongly change the apparent dispersion behaviour
as their positions are influenced by (i.e not independent
of) the hidden/missing particles. Consequently: (a) a
hard-core randomly dispersed system can look clustered
beyond that accountable from sample variation alone;
(b) the area fraction used for the RHM to compare with
the experimental data is important when deciding on
the strength of evidence there is for a system to be well
dispersed.

A conservative approach to classifying systems in-
volves performing either or both of the two variants of
the z-test (Z(upp),Zi(low)) on the material. Zy(upp)
is based on comparing the material against a system
exhibiting complete spatial randomness (a RHM with
point-particles such that A = 0). If Z,(upp) is greater
than 2 then the material is highly likely to be heteroge-
neous and poorly dispersed. Z(low) is based on com-
paring the material against the RHM with A’f related
to the observed particles. When Zj(low) < —2 then
the material is highly likely to be better-dispersed than
random. If neither criterion is satisfied then the systems
are indeterminate from randomly dispersed (which does
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not discount them from being better dispersed but we
cannot tell from the data available).

In high area fraction materials (Ay > 0.2) it is pos-
sible to further limit the types of materials that fall into
the indeterminate class by redefining Zi(low) to be a
test against the RHM that uses the material’s known
area fraction and then removes the correct fraction of
particles from the data set of particles’ centre of mass
positions. Although this gives better realism it would
involve the simulation of each specific system in the
absence of known solutions.

When almost all the particles are observable then it
is sufficient to perform the original z-test.

The choice of magnification level for the micrograph
that is required for the reliable estimate of dispersion is
dependent on the type of structure present (i.e whether
there are individual nanoparticles or collective nano-
clusters). When nanoparticles are singular, such that
we suspect that good dispersion is present, then mi-
crographs with magnifications of 2.5 um < L < 5um
should be chosen to ensure good visibility of particles.
Alternatively if it is suspected that the system is clus-
tered then a much larger L should be used, sufficient
to ensure clusters are always seen in the micrograph,
and the pretence of identifying all the particles can be
abandoned. When it is possible for the user to anal-
yse the micrographs collectively then the ensemble av-
erage of ADpe may provide a more reliable measure
than ADp,. In applying these findings more generally
it should be noted that the acceptable magnification
levels, given by L, will need to be adjusted proportion-
ally to the radius of the nanoparticle used.
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Table 1 Changes in observed value for ADpe1 when particles
are not visible. The example is for a RHM with Ay = 0.2.

Number of particles fraction lost ADpe; AADpe;
1000 0% 0.365 0%

990 1% 0.365 0%

950 5% 0.373 2%

900 10% 0.380 4%

500 50% 0.425 16%

490 51% 0.426 17%

450 55% 0.429 18%

Table 2 Measured statistics for silica nanoparticle modified
composite using SelAlg.

L (pum) N f ADy, SEap  Zk(low)
1.0 101 0.154 0.4023 0.0097 —6.2788
2.5 496 0.121  0.4159 0.0067 —11.0523
3.5 929 0.116 0.4133 0.0057 —16.1673
5.0 2153 0.132 0.4265 0.0042 —16.9616
7.5 3924 0.107 0.4147 0.0028 —32.6654
10.0 8007 0.122 0.4266 0.0064 —33.3362
Table 3 Statistics measured using SimAlg
L (um) N f ADy, SEap  Zk(low)
1.0 259 0.396 0.3652 0.0030 —13.8140
2.5 1468 0.359 0.3640 0.0060 —34.5558
3.5 2662 0.332 0.3640 0.0052 —47.6969
5.0 5644 0.345 0.3619 0.0062 —70.4391
7.5 8526 0.232 0.3394 0.0070 —118.7651
10.0 17315 0.265 0.3466 0.0080 —155.0225

Table 4 Measured statistics for silica-rubber particle mod-
ified composite. The bracketed numbers give the number of
micrographs found to have less than 3 nanoparticles.

L (/Lm) N N < 37 Ek SEap Z (upp)
1.0 6.5 Yes(5) 0.1118 0.1118 —10.3940
2.5 88.2 Yes(3) 0.3310 0.1554 —14.7250
3.5 113.7  Yes(3) 0.3576  0.1628  —13.4499
5.0 283.8  Yes(2) 0.5535 0.1754 16.4796
7.5 347.7 No(0) 0.7744  0.0442 65.4106
10.0 451.8  No(0) 0.8321  0.0259 88.5849
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Fig. 2 Classification diagram of dispersion for given combinations of Area Disorder and area fraction. The inserts show sample
micrographs for a (bottom-top) lattice-like, random or clustered system.
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Fig. 3 Trend of Sp for null hypothesis. The dashed-line is the prediction function prescribed in the main text.
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Fig. 4 Stages of image processing (based upon SelAlg):(a) Original micrograph, (b) identified hull of particles, (c) centre of
mass points, (d) corresponding Delaunay network.
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Fig. 5 Particle dispersion can appear very different when a fraction of the particles are hidden. This figure shows particles
arranged in a lattice, row (a); at random, row (b); in clusters, row (c), when either all (f = 1), half (f = 0.5) or a quarter

(f = 0.25) of particles are visible.
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Fig. 6 A} versus ADpe) diagram for three differently dispersed systems. The dashed-line gives the anticipated behaviour for

the RHM if the hidden particles have no influence on the positions of the remainder. The solid-line is the actual behaviour for
a RHM when 50% of the particles are lost.
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Fig. 7 (a,d) show micrographs at L = 1 um. Similarly (b,e) illustrate micrographs at a different location at L = 2.5 um and

(c,f) micrographs at L = 5pum. The dots in the micrographs give the determined centre of mass points for the recognised
nanoparticles determined using SelAlg(a-c) and SimAlg(d-f).
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Fig. 8 Measurements for the silica nanoparticle modified composite: (a) the number of particles, (b) the Area Disorder, (c)
the z-test. The black crosses or red pluses give observations from individual micrographs for SelAlg and SimAlg respectively.
Similarly the black circles or red squares connected by solid-lines are their means and the same points connected by dashed-lines
the corresponding corrected RHM.
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Fig. 9 Micrographs of the silica-rubber particle modified composite with L = 1.0 um (a); 2.5 um (b); 3.5 pm (c); 5.0 pm (d);
7.5 um (e) and 10.0 pm (f).
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Fig. 10 Measurements for the silica-rubber particle modified composite: (a)the number of particles, (b) the ‘Area Disorder,
(c) the z-test. The cross points give observations from individual micrographs and the connected circles give the mean value.
Squares, triangles and diamonds are used to indicate suspect micrographs with high numbers of false positives. Dashed-lines
provide the alternative ensemble approach.

Fig. 11 Measuring the Area Disorder of rubber particles: (a) the centre of the rubber particles are picked out as points by
the computer algorithm, (b) the corresponding Delaunay network.

Fig. 12 Demonstration of finding the centre of mass points of clusters and generating from them a Delaunay network: (a)
shows the skeleton network of connected pairs in each cluster; (b) gives the centre of mass positions of the clusters and the
generated Delaunay network.



