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SUMMARY

This paper deals with the estimation of peak inelastic displacements of single-degree-of-freedom (SDOF)
systems, representative of typical steel structures, under constant relative strength scenarios. Mean inelastic
deformation demands on bi-linear systems (simulating moment resisting frames) are considered as the
basis for comparative purposes. Additional SDOF models representing partially-restrained (PR) and
concentrically-braced (CB) frames are introduced and employed to assess the influence of different force-
displacement relationships on peak inelastic displacement ratios. The studies presented in this paper illustrate
that the ratio between the overall yield strength and the strength during pinching intervals is the main factor
governing the inelastic deformations of PR models and leading to significant differences when compared
against predictions based on bi-linear structures, especially in the short-period range. It is also shown that
the response of CB systems can differ significantly from other pinching models when subjected to low or
moderate levels of seismic demand, highlighting the necessity of employing dedicated models for studying
the response of CB structures. Particular attention is also given to the influence of a number of scalar
parameters that characterize the frequency content of the ground-motion on the estimated peak displacement
ratios. The relative merits of using the average spectral period Tgyer, mean period Tr,, predominant period
Ty, characteristic period T and smoothed spectral predominant period T, of the earthquake ground-motion,
are assessed. This paper demonstrates that the predominant period, defined as the period at which the input
energy is maximum throughout the period range, is the most suitable frequency content scalar parameter
for reducing the variability in displacement estimations. Finally, non-iterative equivalent linearization
expressions based on the secant period and equivalent damping ratios are presented and verified for the
prediction of peak deformation demands in steel structures. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Current earthquake performance-based design and assessment methodologies pay special attention
to the reliable determination of structural displacements [1]. Although such seismic demands can be
calculated through sophisticated non-linear response history analyses, their application in practical
assessment is still hampered by the considerable time, costs and expertise they require. Therefore,
there is a need for simplified yet reliable methods for the estimation of structural seismic demands.
Moreover, although in many cases structures do not behave as single-degree-of-freedom (SDOF)
systems, various studies have shown that equivalent SDOF models can provide the basis for the
estimation of global demands on building structures [2,3,46]; accordingly, recent recommendations
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for the evaluation of maximum deformations in buildings are based on such equivalent SDOF
representations [5, 6].

Numerous studies have used SDOF models to develop probabilistic estimations of peak inelastic
displacements under several suites of ground-motions [7—14]. Some of these studies have focused
on the estimation of strength ratios for systems of known ductility, distinguishing between stiff
and soft soils and providing relationships that can be useful in the design of new structures to
attain specified target ductility levels [8, 10]. On the other hand, other studies have evaluated peak
displacement demands for strength-defined structures and have provided relationships which are
useful for the seismic assessment of existing buildings [9, 12]. More recently, Bozorgnia et al. [14]
performed a detailed investigation on inelastic deformations in SDOF systems based on predictive
equations formulated on the basis of a large database including 3122 records. This study verified
the applicability of the “equal displacement rule” originally proposed by Veletsos, Newmark
and Hall [15, 16], and assessed the influence of several earthquake parameters on the inelastic
displacement ratios of elastic-perfectly plastic systems.

Most of the available studies offer statistical results based primarily on elastic-plastic SDOF
systems, and those studies that include pinching behaviour incorporate simultaneously severe
levels of strength deterioration typical of reinforced concrete structures [12, 13, 17-19]. Goda et
al. [19] concluded that the effects of degradation plus pinching can be significant and must be
considered through the use of period-dependent and hysteretic-dependent factors. In the latter study
analyses on three structures (with periods of 0.2, 1.0 and 2.0 seconds) were performed for different
values of normalized yield strength and for three levels of coupled pinching-degradation. Such
levels of concurrent pinching and deterioration differ notably from pinching hysteresis of typical
partially-restrained (PR) or concentrically-braced (CB) systems where no significant deterioration
in strength is evident up to considerably high levels of deformation demand [20-22]. One of the
few studies that differentiate between the influence of degradation and pinching characteristics is
that by Song and Pincheira [17]. They observed that the influence of monotonic and cyclic strength
as well as stiffness degradation and pinching is important only for structures built on soft soils
with virtually no effect observed for ground-motions recorded on rock or stiff soils. However,
pinching loops were constrained to be origin-centred and only 12 records were used. Therefore,
there is a clear need for a full characterization of the influence of different pinching ratios within
the range typically observed in PR structures, which commonly do not exhibit simultaneous
severe strength degradation [20,21]. Similarly, the tension elongation and compression buckling of
bracing members in CB structures induce severe levels of pinching behaviour which are typically
unaccompanied by major strength deterioration and can also build characteristic dynamic effects
which warrant specific consideration [22].

The influence of frequency content of the ground-motion has long been recognized as a crucial
parameter for the accurate estimation of seismic demands [15, 16]. Although response or Fourier
spectra fully characterize the frequency content of a ground-motion and are always illustrative
during the design and assessment processes, the use of a single scalar parameter representative
of the record frequency content can offer some practical advantages. For example, Chopra and
Chintanapakdee [23] introduced the ratio of structural period (7°) over the characteristic period of
the ground-motion (7) to better characterize the difference in inelastic deformation ratios between
near-fault and far-fault ground-motions. Vidic et al. [7] proposed simplified expressions for the
estimation of strength reduction factors utilizing a ground-motion dependent period referred to
as T; (calculated as an approximation of T.). Miranda [2, 10, 12, 24] recommended the use of
the predominant period (7,) in order to improve estimations of peak deformation demands on
structures built on soft soils sites. Shimazaki and Sozen [25], Uang and Maarouf [26], Tiwari
and Gupta [27] and Chakraborti and Gupta [28] also used the predominant period (T}) to better
characterize seismic deformation demands and studied the influence of various earthquake and site
parameters on the displacement estimations. Rathje et al. [29] developed empirical relationships
for four frequency content parameters and encouraged the use of 7,,, as a robust representation of a
strong ground-motion, particularly its long period frequency content, in light of the relation of T},
with the Fourier Amplitude Spectrum. Yet, a comparison of the relative merits of the use of one
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scalar frequency content parameter over others in the context of the prediction of seismic inelastic
demands has not been carried out, particularly for PR and CB structures.

In general, simplified methodologies for the estimation of peak structural deformations have
largely followed two approaches: (i) a seismic coefficient approach (where the response of a
non-linear structure is obtained on the basis of the empirically modified response of an elastic
system with the same lateral stiffness and viscous damping [30]), or (ii) an equivalent linearization
approach (in which the inelastic behaviour is accounted for by considering the response of an
equivalent linear system with lower equivalent stiffness and higher viscous damping [31]). Owing
to its versatility, the equivalent linearization approach also forms the basis of seismic assessment
procedures in current European provisions [5, 32]. Furthermore, several equivalent linearization
models have been proposed which can be grouped according to the definition of equivalent
parameters employed. A first set of studies define the equivalent period as the period related to
the secant stiffness at peak inelastic displacement and obtain the equivalent damping from energy
balance relationships [33] or statistical analyses [34]. A second set of studies derive period and
damping pairs through various mathematical optimization procedures [35, 36]. In most cases the
proposed equivalent damping and period expressions are derived as functions of target ductility
levels which are unknown when assessing the response of existing structures. Only Lin and Lin [37]
and Goda and Atkinson [38] propose equivalent linear systems with parameters defined in terms
of strength ratios suitable for the evaluation of existing structures. Goda and Atkinson [38] present
prediction equations of equivalent linear models based on optimal periods for non-degrading,
degrading and degrading plus pinching structures. Lin and Lin [37] suggest equivalent linear
models based on the secant period for bi-linear systems with varying strain hardening stiffness.
However, equivalent linearized models for the estimation of inelastic structural response of PR
and CB structures are lacking. Besides, the use of the secant period as the equivalent period in
equivalent SDOF models should be considered, as it leads to maximum inelastic displacement
and acceleration occurring at the intersection of the capacity and demand diagrams for a given
equivalent damping, hence providing engineers with a direct graphical comparison tool.

In light of the above discussion, this paper seeks to improve the understanding of the deformation
response of SDOF systems representative of commonly used steel structures, with the aim of
informing their seismic assessment. Therefore, the objective of this paper is threefold:

(i) Firstly, to offer a detailed characterization of inelastic demands in steel structures with particular
emphasis on pinching SDOFs representative of PR and CB steel frames.

(i1) Secondly, to assess the influence of different frequency content parameters on the inelastic
demands of SDOF systems simulating typical steel structures with both bi-linear and pinching
hysteresis.

(iii) Finally, and on the basis of the findings of the previous two stages, propose simplified
expressions for the assessment of displacement demands for steel structures in the form of
non-iterative equivalent linearisation procedures based on secant periods.

2. STRUCTURAL SYSTEMS AND EARTHQUAKE GROUND-MOTIONS

Bi-linear (i.e. elastic-perfectly plastic) systems are used in this study as benchmark models for
comparison purposes. In addition, the response of SDOF models representative of PR and CB
structures is considered, for which the characteristics of the structural models employed are
described below.

2.1. PR Pinching Model

The Modified Richard Abbott model as proposed and validated by Nogueiro et al. [39] is used
here to represent the response of Partially-Restrained (PR) steel structures. The Modified Richard
Abbott model is based on the alternation between two limiting curves of the Richard Abbott
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Figure 1. PR behaviour and modelling.

type [40]. As shown in Figure 1a, the boundary curves are characterized by their initial stiffness
(k), post-elastic stiffness (k,) and strength capacities (Fs, and F),, for the lower and upper bound
curves, respectively) where F;, is the yield strength corresponding to the yield deformation 4,,. Also
presented in Figure 1a is the corresponding bi-linear approximation of the Modified Richard Abbott
backbone. The pinching factor (P) is defined here as the ratio between the structural capacity during
pinching intervals and the overall capacity:

P =F,,/Fy, (1)

Additionally, the transition from the lower to the upper curve depends on a shape parameter (t)

defined as [39]:
0/é im t b2
s (_5/5im) o
(0/01im)tr +1
where ¢ is the deformation (displacement or rotation), and t;, ¢ and d;;,, are experimentally
calibrated parameters. The parameter 6;;,, is related to the maximum deformation §,, by:

S1im = C (|00] + 0m) 3)

where |0g| is the absolute value of the deformation corresponding to the starting point of the current
excursion, and C is a calibration parameter taken as 1 in the current study in accordance with typical
values reported for several connection details [39]. Figures 1b and 1c compare the moment rotation
responses of an experimentally observed semi-rigid connection [20] and its respective PR model.

2.2. CB Pinching Model
Figure 2 presents the SDOF model used to study the response of Concentrically-Braced (CB)
frames. The idealized SDOF consists of pin-connected rigid members forming a 1-storey high 2-bay
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Figure 2. CB behaviour and modelling.

CB frame. The structure is modelled in OpenSees [41] with due account for geometric and material
non-linearities. The braces are modelled using fiber-based buckling elements following the approach
proposed by Uriz and Mahin [42]. A typical comparison of experimental [43] and predicted axial
force-displacement relationships of a brace member is also depicted in Figure 2. It is important
to note that the necessary structural parameters such as yield strength and initial period were
obtained from incremental monotonic (pushover) and Eigenvalue analyses on the corresponding
CB models, respectively. Therefore the relative contribution of tension and compression braces is
directly accounted for. These definitions are consistently applied throughout this paper.

2.3. Ground-motions considered

A total of 100 records from 27 earthquakes with magnitudes M,, ranging from 5.65 to 7.51, and
distances ranging from 6.28 to 293 Km, were used in this study. The acceleration records were
obtained from the PEER-NGA database (http://peer.berkeley.edu/nga), and involve different site
classes (according to the NEHRP classification) in order to address the impact of site conditions on
the variability in inelastic response. Special attention was given to the lowest usable frequency in
order to avoid undesired noise and filtering effects. Table I summarizes the catalogue of earthquakes
used while a more detailed information can be found elsewhere [44]. The numbers in parenthesis
under the heading NEHRP site class represent the number of records associated with each soil
site group. Figure 3 presents the median acceleration response spectra normalized by Peak Ground
Acceleration (PGA) for different soil classes. It is worth noting that Site Class C in the NEHRP
provisions (with 360 < v, 30 <760 m/s) is broadly equivalent to Ground Type B as defined in
Eurocode 8 (with 360 < vs 39 <800 m/s). Similarly, based on the limiting values of shear-wave
velocity in the upper 30 metres (vs 30), NEHRP Classes D and E are equivalent to Ground Types C
and D in Eurocode 8 [5].

2.4. Scope of parametric analysis

A statistical study was performed on the peak inelastic displacement demands for several
SDOF systems with 5% viscous damping under constant strength ratio scenarios. The inelastic
displacement ratio (C'r) is defined as the ratio between the peak lateral inelastic displacement
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Table I. Summary of earthquake ground-motions used in this study.

Magnitude Number of Distance [km] PGA [cm/sz] NEHRP
Earthquake name

M,, records Min. Max. Min. Max. site class
1992 Cape Mendocino 7.01 4 10.36 5334 151.11 1468.85 C(2) D(2)
1986 Chalfant Valley-01 5.77 2 10.54 10.54 202.59 279.58 D(2)
1986 Chalfant Valley-02 6.19 2 1433 1433 392.12 438.32 D(2)
2002 Denali, Alaska * 7.9 6 290.70 293.06 10.02 22.39 E(6)
1999 Duzce, Turkey i 7.14 4 2426 206.09 24.73 144.64 C(2) E(2)
1976 Friuli, Italy-01 6.5 2 20.23 20.23 308.83 344.65 C(2)
1976 Gazli, USSR 6.8 2 12.82  12.82 596.70 703.92 C(2)
1999 Hector Mine 7.13 2 5229 5229 143.04 186.05 C(2)
1979 Imperial Valley-06 3 6.53 4 22.65 3035 216.87 320.53 D(2) E(2)
1980 Irpinia, Italy-01 6.90 4 22.65 3035 136.71 350.97 B(4)
1952 Kern County 7.36 2 4339 4339 153.00 174.41 C(2)
1995 Kobe, Japan 6.90 2 2540 2540 284.57 304.56 B(2)
1999 Kocaeli, Turkeyi 7.51 6 47.03 11226 134.64 24394 A(2) B(2) E(2)
1992 Landers 7.28 2 44.02 44.02 713.03 774.17 C(2)
1994 Little Skull Mtn,NV 5.65 3 1412 30.17 116.71 208.81 B(3)
1989 Loma Prieta * 6.93 15 16.51 114.87 94.64 388.07 B(3) D(2) E(8)
1990 Manyjil, Iran 7.37 2 37.90 3790 486.92 504.78 C(2)
1984 Morgan Hill 6.19 2 3820 3820 190.58 196.59 D(2)
1986 N. Palm Springs 6.06 2 6.28 6.28 201.08 214.06 D(2)
1985 Nahanni, Canada 6.76 2 6.80 6.80 959.25 1074.88 C(2)
2002 Nenana Mountain, Alaska : 6.70 8 27528 277.70 7.08 10.73 E(8)
1994 Northridge-01 6.69 12 18.99 4577 110.19 155479  A(4) B(8)
1971 San Fernando 6.61 2 31.55 31.55 145.57 148.98 C(2)
1986 San Salvador 5.80 2 9.54 9.54  398.66 600.51 D(2)
1987 Superstition Hills-02 6.54 2 2991 2991 113.76 152.94 D(2)
1978 Tabas, Iran 7.35 2 5524 5524 819.93 835.58 B(2)
1981 Westmorland 5.90 2 2047 2047 152.18 237.25 D(2)

*Records used for the study on the influence of frequency content parameters

0.01 0.1 1 10
Period [s]

Figure 3. Median normalized acceleration response spectra for different soil classes.

(dinetastic) and the peak lateral elastic displacement demand (d,;qs¢ic) On an infinitely elastic SDOF
with the same mass and initial stiffness:

Simelasti
CR — mmetlastic (4)
6elastic
dinelastic 1S calculated from response history analyses on structures with constant relative strength in
proportion to the strength required to keep the system elastic (F},) which in the case of PR systems
takes the value of Fy, in Figure 1a. The constant relative strength scenarios are characterized by the
strength ratio R defined as:

m.sS,
R=—= )
F,
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where m is the mass of the system and S, is the acceleration spectral ordinate. Four values of lateral
strength ratios R were considered (i.e. R =2, 3, 4 and 5).

As noted before, the shape of the pinching loop for the PR Modified Richard Abbott model
depends on the pinching ratio P and two empirically calibrated coefficients (¢ and ¢5). A sensitivity
study was performed in order to assess the effects of the shape coefficients ¢; and ¢ on the
prediction of inelastic displacements [44]. It was concluded that the variation of ¢; and ¢, over
a typical practical range does not introduce notable differences in the estimations of mean peak
displacements, and hence a constant pair of (¢1,t2) = (15,0.5) can be considered as representative
of PR configurations and is hence used throughout this study. On the other hand, the influence
of P on the inelastic displacement ratios is expected to be significant, as discussed in subsequent
sections. Therefore, parametric analyses were performed for 3 levels of pinching (i.e. P = 0.15,0.3
and 0.6) representative of pinching levels usually observed in PR connections. Similarly, the effects
of 4 normalized slenderness values (A = 0.9,1.3,1.7 and 2.1) characterizing practical ranges of
conventional braced frame designs were considered for CB models. It should be noted that only
square hollow section members of cross-section Class 1 according to Eurocode 3 [45] were used as
braces.

Cr ratios were calculated for a range of initial structural periods (") between 0.10 seconds and 5
seconds. In the case of bi-linear and PR systems, intervals of 0.05 for periods less than 1.5 seconds
were used whereas intervals of 0.2 seconds for structures with longer periods were employed. In
the case of CB models, initial elastic periods between 0.1 and 1.5 seconds with 15 intervals of 0.1
second were considered while intervals of 0.2 seconds were used for structures with longer periods.

It is interesting to note that the monotonic force-displacement relationships of PR and CB models
are broadly similar, despite being dependent on different parameters and modelling assumptions,
For example, Figure 4 depicts the hysteretic behaviour of a PR model with P = 0.15 and a CB
model with A\ = 2.1. The bi-linear backbone is also presented in Figure 4a for comparison. It can
be observed from Figure 4a that some differences in cyclic behaviour may occur during the initial
elastic stage and during loading at large inelastic displacements. Nonetheless, based on the apparent
resemblance in Figure 4a, it would seem reasonable to consider using displacement predictions
based on pinching SDOF models as proxies for CB structures. However, due to the intricate tension-
compression balance within pairs of bracing members undergoing dynamic response, notable
differences in the structural hysteresis loops may arise under earthquake loading as illustrated in
Figure 4b. This difference in deformation estimations highlights the necessity for dedicated CB
models that incorporate realistic representations of the brace tension and buckling behaviour.

It is worth noting that results for structural response parameters other than peak displacement
(e.g. Fatigue damage and Park and Ang damage indeces), as well as the effects of various post-
elastic stiffness, have also been examined. For brevity, these results are not included here but related
discussions can be found elsewhere [44].

3. ASSESSMENT OF INELASTIC DEMANDS

The results of more than 140 000 response history analyses, based on the considerations and
definitions described in previous sections, are presented and discussed herein. Mean inelastic
displacement ratios were computed by averaging the results for each period, strength ratio and
hysteretic model. On the basis of the spectral shapes depicted in Figure 3, a clear distinction is made
between moderately stiff to stiff soils sites (Classes A, B, C and D) and soft soils sites (Class E)
for purposes of presentation and discussion [10, 12]. The effects of structural model characteristics,
strength demand and soil conditions on inelastic displacement ratios are discussed below.

3.1. Inelastic displacement demands

Bi-linear Models
Figure 5 presents mean inelastic displacement ratios for moderately stiff to stiff soils sites and soft
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Figure 4. Comparison of hysteretic models of PR and CB systems.

soils sites together with their associated dispersion for bi-linear systems. The curves for C'r follow
the general trends observed by other researchers [9, 12] where inelastic displacement ratios increase
as the structural period tends to zero. The dispersion, quantified here by means of the coefficient
of variation (COYV’), is observed to increase with the strength ratio R and decrease with increasing
period. The values of COV presented in Figure 5b are also largely in accordance with findings from
previous studies [9].
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Figure 5. Inelastic displacement demands for bi-linear systems.
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PR Models

Figure 6 depicts mean inelastic peak displacement ratios of PR models normalized by the mean
inelastic displacement ratios of the corresponding bi-linear systems. It can be observed from
Figure 6a that for periods longer than 1 second, the results of bi-linear and PR models with P = 0.3
are broadly coincident and that this occurs regardless of the strength ratio. However, for stiffer
structures, with initial periods lower than 1 second, PR models exhibit an increasingly higher
displacement that can reach values of twice the expected displacements in bi-linear systems. Similar
results to those presented in Figure 6a were found for other levels of pinching.

Based on the negligible variability in displacement ratios as a function of R observed in Figure 6a,
Figure 6b presents the normalized mean displacement ratios of PR over bi-linear models for different
levels of pinching averaged over all R values considered (i.e. 2, 3, 4 and 5). It can be observed from
Figure 6b that there is some degree of dependence of Cpgr/Cg ratios on the level of pinching,
particularly for relatively stiff systems. As expected, the displacement amplification of short-period
PR models built on moderate to stiff soils with respect to bi-linear predictions tend to increase for
lower values of P owing to the reduced energy dissipation in systems with higher pinching levels.

Figure 6 also presents the results for soft soils sites (Figures 6¢ and 6d). Similar trends as those
identified for moderate to stiff soils (Figures 6a and 6b) are observed, although higher inelastic
demands and increased variability with respect to R are evident in the case of soft soils. Additionally,
for structures with elastic periods longer than 2 seconds, peak displacements of PR models are on
average about 10% lower than those observed for bi-linear structures, even for large pinching levels
(e.g. P = 0.15 in Figure 6d). The levels of dispersion were also found to be similar to those observed
for bi-linear systems and the COV followed the same trends (i.e. increasing with larger strength
ratios R and decreasing with increasing structural flexibilities).

0.6 T T T T T 0.6 T T f f f
0.00 0.50 1.00 1.50 2.00 2.50 3.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00
Period [9] Period [9]
(a) Moderately stiff to stiff soil ground-motions. P = (b) Average for all strength values on moderately stiff
0.3. to stiff soils as a function of pinching factor (P).
2
1.8 V
1.6
[h4
O 144
121
1 4
0.8
0.6 T T T T T 0.6 T T T T T
0.00 0.50 1.00 1.50 2.00 2.50 3.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00
Period [ Period [s]
(c) Soft soil ground-motions. P = 0.3. (d) Average for all strength values on soft soils as a

function of pinching factor (P)

Figure 6. Mean inelastic displacement ratios of PR systems normalized by mean displacement ratios of
bi-linear systems.
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CB Models

Figure 7 presents the mean inelastic displacement ratios of CB systems normalized by the
corresponding inelastic displacement ratios of bi-linear structures. It can be observed from Figure 7a
that the mean displacements obtained with a CB fiber model exceed the bi-linear predictions
most notably for structures with 7" < 1 second, while peak deformations on CB structures can be
slightly lower than their corresponding elastic-perfectly plastic estimations for periods longer than 2
seconds. This effect becomes more pronounced as the structural period shortens and as the level of
inelastic behaviour decreases, particularly for moderate to stiff soils. The same increment in average
peak displacements with decreasing period is evident for CB structures on soft soils (Figure 7c).
Conversely, a grater variability of peak displacements with strength ratios can be observed for soft
soils.

The average ratio of peak displacement values for a constant R = 2 as a function of normalized
slenderness is depicted in Figures 7b and 7d for moderate to stiff soils and soft soils, respectively.
Slightly higher displacements are expected when more slender braces are used on stiffer soils
sites for structures with elastic periods up to 1.7 seconds due to the improved energy dissipation
characteristics of the hysteresis of more stocky braces (Figure 7b) whereas the brace slenderness
influence is negligible in the long period range, most notably for CB structures with 1.3 < \ < 2.1.
On the other hand, a clearer tendency towards greater peak deformations in more slender CB systems
is manifested in the case of soft soils (Figure 7d) for periods up to 1 second. In particular, marked
lower displacements are evident for CB structures incorporating braces with normalized slenderness
of A = 0.9 for the period range between 0.4 and 0.9 second. Conversely, for longer periods, no direct
relationship between the ratio of mean displacements and the brace slenderness can be appreciated.

0.5 : : T : : 0.5 . . . : !
0.00 0.50 1.00 1.50 2.00 2.50 3.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00
Period [s] Period [9]

(a) Moderately stiff to stiff soil ground-motions. (For (b) Displacement ratio as a function of normalized
A= 1.3). slenderness (A) for moderate to stiff soil ground-
motions and R = 2.
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Figure 7. Mean inelastic displacement ratios for CB systems normalized by mean ratios of bi-linear systems.
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3.2. Effect of level of inelastic behaviour

The influence of the lateral strength ratio on C'r for PR and CB systems as compared against
bi-linear systems is further studied with reference to Figures 8 and 9. Results are presented for
mean peak inelastic displacements for structural periods of 0.4, 1 and 3 seconds for various PR
pinching levels (Figure 8) and brace slenderness (Figure 9) for structures built on moderate to stiff
soils.

PR Models

In the case of PR models, it can be seen that at 7' = 0.4 second the average peak displacements
increase almost linearly with lateral strength ratios R, an observation that is maintained for 7' = 1.0
second albeit at lower deformation levels. A significant and steady dependence on the P factor
is also evident from Figures 8a and 8b, whereas no significant influence of R or P is observed
for longer periods (e.g. T' = 3.0 seconds) where the equal displacement rule seems to be clearly
applicable (Figure 8c).

CB Models

For CB systems (Figure 9) the influence of the level of lateral strength ratio on the displacement
response is different as expected from the discussion on the dynamic behaviour in Section
2.4. Although CR values also increase with increasing R for systems with 7' = 0.4 second,
the dependence on brace slenderness does not follow a clear trend. Also, while mean peak
displacements in CB structures can be in the order of two times the corresponding displacements for
bi-linear systems when R = 2, such displacement amplification is reduced for higher strength ratios
with CB systems experiencing lower displacement demands than elastic-perfectly plastic structures
for R > 4 (Figure 9a). Additionally, the influence of the level of inelastic behaviour appears to be
insignificant for CB structures with 7" = 1.0 and 7" = 3.0 seconds, and the equal displacement rule
again seems to be largely applicable for CB structures in the long period range (Figures 9b and 9c¢).
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Figure 8. Effect of lateral strength ratio on the inelastic displacement ratios of PR systems.
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Figure 9. Effect of lateral strength ratio on the inelastic displacement ratios of CB systems.
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3.3. Effect of soil conditions

Besides the obvious differences in inelastic behaviour for stiff and soft soils sites, as highlighted in
previous sections, it is also important to quantify the dissimilarities in inelastic displacements from
ground-motions recorded in various moderate to stiff soil classes. Therefore, ratios of mean Cp
on each soil class to mean C'r from all ground-motions on moderate to stiff soils (classes A,B,C
and D) were computed and typical results are shown in Figure 10 while a more detailed discussion
can be found elsewhere [44]. Owing to the negligible variability of Cp ratios as a function of R
observed within each soil group [44], Figure 10 presents C'r ratios averaged over all R values
considered (i.e. 2, 3, 4 and 5).

In the case of PR structures built on rock sites (Classes A and B in Figure 10a), neglecting local
site effects by using the average of all soil classes in moderate to stiff soils (Classes A, B, C and
D) would lead to an overestimation of less than 20% in mean inelastic displacement predictions for
periods shorter than 1.7 seconds whereas practically no differences occur for longer periods. These
peak levels of mean variations are maintained for PR structures built on other moderately stiff to
stiff soils. On the other hand, when compared against the average of stiffer soils, the displacement
amplification on soft soils sites is expected even for periods as long as 1.2 seconds and this soft site
amplification increases notably with decreasing periods as shown in Figure 10a.

Similar levels of maximum mean variation as those previously highlighted for PR systems were
observed for CB structures on moderately stiff to stiff soil conditions (Figure 10b). Also, as in
the case of PR structures, CB systems on soft soils sites experience much larger displacements
than those expected for CB systems on stiffer soils (Figure 10b) even in the long period range,
highlighting the necessity for further dedicated studies and specific models for soft soils.
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(a) Inelastic displacement ratios on Site Class A,B and (b) Inelastic displacement ratios on Site Class A,B and
E normalized by mean ratios from stiff soils averaged E normalized by mean ratios from stiff soils averaged
over all R values for PR systems. over all R values for CB systems.

Figure 10. Effect of soil conditions on displacement demands of PR and CB systems.

4. INFLUENCE OF SCALAR FREQUENCY CONTENT PARAMETERS

In order to assess the influence of the frequency content of the ground-motion, as characterized by a
single scalar parameter, peak displacements were determined for bi-linear, PR and CB models with
a number of ratios of 7" normalized over a suite of five different period parameters. A sub-set of 30
records selected to reflect a wide range of frequency content characteristics was used as indicated in
Table I. In the following sub-sections, the definitions of the frequency content parameters employed
are presented followed by a discussion on the comparative merits of their use on the basis of the
generated statistical results.
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4.1. Frequency content parameters investigated

Five commonly employed frequency content indicators are evaluated in the present study: the
average spectral period (Tgyer), mean period (7},), predominant period (7;), characteristic period
(T¢.) and smoothed spectral predominant period (75,).

The average spectral period Ty, is calculated as:

>iy T (Sa(T3)/ PGA)?
2im (S ( )/ PGA)?

where T; are equally spaced periods in the acceleration spectra with 0.05 < 7T; < 4 seconds, AT; =

0.01 second, S,(T;) is the spectral acceleration at T; and PG A is the peak ground acceleration.
The mean period 7},, can be determined as:

L 1/f,C?

Taver -

(6)

where C; is the Fourier amplitude coefficient at frequency f; with 0.25Hz < f; < 20Hz and
Af; =0.01Hz.

The predominant period, Ty, is defined as the period at which the input energy is maximum
throughout the period range and can be computed as the period at which the maximum ordinate of
a 5% damped relative velocity spectrum occurs [24].

The characteristic period T is the period defining the transition between the acceleration sensitive
and the velocity sensitive regions of the response spectra.
Finally, the smoothed predominant spectral period, 7, is defined as:

S Tiin (S (T})/ PGA) )
> ey I (Sa(T3)/ PGA)

T, =

where T; are periods in the acceleration response spectrum equally spaced on a log axis with
So/PGA > 1.2 and AlogT; = 0.01.

The maximum and minimum values of Tyyer, T, Ty, T and T, for the sub-set of records
employed in this section are summarized in Table II.

Table II. Summary of ground-motions frequency content indicators of the records used in this study.

Earthquake name Taald  Told  Told Tl Told
min. max. min. max. min. max. min. max. min. max.
2002 Denadli, Alaska 0.75 091 0.87 1.04 110 519 0.67 137 020 1.09
1999 Duzce, Turkey 0.70 0.78 1.20 131 196 224 0.77 124 0.72 0.93
1979 Imperia Valey-06 109 138 029 034 226 458 044 050 014 0.18
1999 Kocadi, Turkey 100 127 086 097 090 595 066 0.73 042 0.89
1989 Loma Prieta 094 125 059 0.78 0.67 223 052 0.86 049 1.06

2002 NenanaMountain, Alaska 055 0.64 1.03 155 189 380 112 177 022 185

4.2. Results of statistical study

A better characterization of the influence of the ground-motion frequency content on the dynamic
response would enable a given structural response parameter to be determined with greater
confidence (i.e. less dispersion) and using fewer analyses. This section evaluates the relative merits
of considering a particular scalar frequency content parameter over others when evaluating central
tendencies of peak inelastic displacements in bi-linear, PR and CB structures. For this purpose, the
Coefficient of Variation (COV) is employed as the basis for comparisons in order to quantify the
relative improvement in estimation that a given frequency content indicator offers when a set of
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ground-motions are scaled and/or catalogued according to it. Therefore, peak displacement ratios
were calculated over a number of period ratios normalized over a range of characteristic period
indicators. This section demonstrates that the consideration of 7, as a frequency content indicator
leads to an improved characterization of central tendencies in inelastic displacements of steel
structures under constant relative strength scenarios. In the following, the corresponding statistical
results are presented and discussed for bi-linear, PR and CB systems.

Bi-linear Models

Figure 11 presents the COV of peak inelastic displacements for bi-linear structures over a range
of initial elastic periods (7'/1) and normalized periods (T'/T.,, T/Tc, T/Taver. T /Ty and T/T5).
It can be observed from Figure 11 that by considering the predominant period of the ground-
motion (T}), the variability in the response is reduced rapidly (up to a COV of 0.3 at T'/T, = 1)
and is kept at lower levels over a wider range of structural periods. Other scalar frequency content
parameters provide mixed merits in explaining variations in peak relative displacements, with 7,
and T, reducing the scatter for short period structures but increasing it for longer period systems.
It can also be noted from Figure 11 that the smoothed predominant spectral period (7,) appears to
be the least able to characterize frequency content effects on structural deformations. In turn, this
reduction in the dispersion offers a clear advantage when differentiating among record bins on the
basis of their frequency content. To this end, it can be shown [44] that earthquake suites defined in
terms of T}, follow a consistent pattern which is not achievable through the use of any of the other
ground-motion period indicators considered.

21

1.8 4

154

1.2

Ccov

0.9

0.6

0.3 -
0O 05 1 15 2 25 3 35 4

Normalized Period

Figure 11. Coefficient of variation of inelastic displacement ratios of bi-linear systems for different
normalized periods. R = 5.

PR Models

Figure 12 presents the variation of the COV of Cp, ratios for PR systems normalized by different
frequency content period indicators and for various levels of pinching. It is evident from Figure
12 that the consideration of ground-motion frequency content by means of 7, reduces most
considerably and consistently the dispersion associated with the estimation of peak deformations.
As noted previously for bi-linear systems, in the case of PR structures the COV rapidly decreases
to values below 0.3 at T'/T, = 1 and is remarkably consistent and low for longer period structures
regardless of the level of pinching. Normalization against other frequency content parameters
seems to reduce the variability in displacement estimations to a lesser degree and only for limited
period ranges. Similarly, this means that 7}, is better suited for distinguishing among earthquake
accelerograms when estimating peak deformations in PR structures.

CB Models

Figure 13 presents the COV of the mean peak inelastic displacement ratios as a function of
normalized periods for CB structures with braces of various normalized slenderness values. It can
be observed from Figure 13 that overall, in the case of CB structures, the period normalization by
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T, continues to give lower dispersion values. This is particularly the case for T//T, > 0.5 in CB
structures with braces of A = 0.9 and for 7//T, > 1 in CB structures with braces of A = 1.3 or
1.7. Nevertheless, the reduction in COV is not as clearly beneficial over all periods as in the case
of bi-linear or PR models. In particular, using 7},, or T, seem to be more effective for very short
periods irrespective of the slenderness of the bracing system, and for normalized periods between
1.5 and 2.5 for CB models with A\ = 2.1.

—T T/ T aer
=TTy =TT,

0 T T T T T T T O T T T T T T T 0 T T T T T T T
0 05115 2 25 3 35 4 0 05115 2 25 3 35 4 0 05115 2 25 3 35 4
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(a) P = 0.60 (b) P =0.30 (c) P=0.15

Figure 12. Coefficient of variation of inelastic displacement ratios of PR systems for different normalized
periods, R = 5 and different Pinching Factors P.
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Figure 13. Coefficient of variation of inelastic displacement ratios of CB systems for different normalized
periods, R = 5 and different normalized slenderness .
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5. PROPOSED EQUIVALENT LINEAR MODELS

As discussed before, reliable estimation of peak displacements is a primary consideration in the
seismic assessment of steel structures. To this end, the previous section has shown that the inclusion
of a frequency content indicator leads to an improved characterization of central tendencies in
inelastic displacement responses. Additionally, it has been argued [37] that equivalent linear
systems based on secant periods offer several advantages over optimally defined equivalent systems,
particularly in terms of enabling a direct and meaningful comparison of capacity and demand. In
light of the above discussion as well as results presented in previous sections, this section proposes
and examines expressions for equivalent period (1%,) and equivalent damping (£.,) parameters for
PR and CB structures. The proposed equivalent linear models are based on the secant stiffness and
aim to complement those suggested by Lin and Lin [37] for bi-linear systems.

5.1. Non-iterative equivalent linearization models for steel structures

The equivalent period T¢, is defined hereafter as a function of the strength ratio R, the predominant
period of the ground-motion 7}, and the initial structural period 1" as:

R-1)T,+T
T.,/)T = #-VT, +T léTq if T<T,
RT, . )
Toy/T = | so—2—r if T,<T<15T,
a 2.8T, — 1.2T g g
T.,/)T = VR if T >15T,

Equation 9 was obtained by employing strength-ductility relationships for target ductility
scenarios over normalized periods (1'/Ty) as described in detail elsewhere [44]. In those simplified
relationships, the strength ratio R was observed to increase from a value of 1 at T//T, ~ 0 to 1.6
times the ductility (1) at T//T, = 1 before keeping a constant value of R = p for period ratios
greater than 7'/T, = 1.5.

On the basis of the extensive database generated in the course of this study and considering
an equivalent period defined by Equation 9, it is possible to determine an equivalent damping
ratio (&4) for each period-displacement pair that would minimize the error in peak deformation
estimations. Multivariate regression analyses can then be performed in order to develop prediction
expressions for mean equivalent viscous damping values [37]. The equivalent damping expressions
obtained from such regression analyses are given below for PR and CB models. Importantly, the
high variability and peculiar features of structural response observed for soft soils in the previous
sections, calls for dedicated models which are the subject of current research. Accordingly, only
data for moderate to stiff soils sites (70 records) were used in the computation of the regression
expressions for equivalent damping presented herein.

Equivalent Damping for PR Models
For PR structures with 7' < 1.0 second, the equivalent damping can be estimated as:

€eq = 0.05 + aeb”
a=1425R0-2 (10)
b= (0.28 + P/1.5)In(R) — 2.7

Whereas for PR structures with 7" > 2.0 seconds:

€eq =0.05 +aln(R) +b
a=0.0299P + 0.14 (11)
b = 0.02826

Values for PR structures with 1 < 7' < 2 seconds can be found by linear interpolation.
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Equivalent Damping for CB Models
Similarly, expressions for the estimation of equivalent damping in CB systems with 7" < 1.5
seconds can be established as follows:

€eq =0.05 +aln(T)+b
a = —0.053R — 0.054 > —0.27 (12)
b=0.95R"07

For the estimation of equivalent damping for CB structures with elastic period greater than
T > 1.5 seconds, the value of &.,(T = 1.5) can be assumed to be applicable. In light of the minor
dependence of CB peak displacements on the normalized brace slenderness (\) and the high
variability in the response observed (e.g. Figure 13), Equation 12 does not incorporate a slenderness
regression function.

5.2. Verification and application

The accuracy of Equations 9 to 12 to predict peak displacement demands can be evaluated by the
median ratio (E) of approximate (d,,) to exact (é.,) peak inelastic displacements defined as:

Oap(Teq; Eeq)
E(T,R,o,Ty) = med ((5%(T,£,R,04,Tg)> 13)
where J., is determined from detailed non-linear response history analysis.

A value of E close to 1 indicates that the proposed equivalent linear model accurately describes
the displacement response, whereas values of £ < 1 or £ > 1 represent under or overestimations of
peak displacement, respectively. With reference to the previously-generated dataset, for a given
structural period 7', strength ratio R and ground-motion predominant period Ty, the equivalent
period (from Equation 9) and damping (from Equations 10 to 12) can be calculated. Subsequently,
the approximate peak inelastic displacement (d,,) can be estimated from the response spectra of
the equivalent linear system. Based on such approximate peak inelastic displacement and the exact
values of peak deformations, values of E were computed for a range of systems, strength reduction
factors and hysteretic models for the 70 ground-motion records on moderately stiff to stiff soils
employed in this study.

Figure 14 shows the median ratio of approximate to exact peak inelastic displacements for PR
systems with different pinching levels and for different strength demands while Figure 15 presents
the corresponding Coefficients of Variation (COV). Similarly, Figure 16 presents median ratios
of approximate to exact peak displacement for CB structures of varying slenderness and strength
factors while the associated COV are depicted in Figure 17. In general, Equations 9 to 12 were found
to provide reasonable estimations of peak displacements for a wide range of periods. It can be seen
from Figure 14 that the proposed PR equivalent linear models provide reliable estimations (i.e.
within +20%) for structures with periods greater than approximately 0.20 second whereas notable
under-predictions would be expected for very stiff PR structures (i.e. 7' = 0.1 or 0.15 second). These
reasonable estimates could be observed irrespectively of the strength demand ratio or the level of
pinching in the system (Figure 14). In the same way, peak displacement estimations within £20%
would be expected for CB systems with A = 1.3 or 1.7 for periods greater than 0.20 second while
higher levels of discrepancies may arise for specific combinations of strength demands and period
ranges like for R = 2 and 7' < 0.8 when X = 0.9. Nonetheless, notable over-estimations would be
expected for very stiff CB structures, characterized by periods lower than 0.2 second (i.e. T = 0.1
and 0.15 second) in all cases (Figure 16).

Equations 9 to 12 seem to adequately cover a wide range of practical CB and PR structural
configurations. In effect, by using the equivalent models of Equations 9 to 12, there is a significantly
low level of scatter in the peak displacement estimations for PR structures over the whole period
range under study (e.g. by comparing the COV of T'/1 in Figure 12 with the corresponding curves
in Figure 15). However, the improvement is less significant for the dispersion of peak deformation
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estimations in CB systems (e.g. by comparing the COV of T'/1 in Figure 13 with the corresponding
curves in Figure 17) while the scatter in the short period range remains important for both PR and
CB systems. In particular, the increased levels of error observed for 7' < 0.2 second in Figures 14
and 16 can be attributed to the higher levels of response variability which are associated with this
very short period range. Further refinements for very short period structures should be explored in
future studies. Such studies should also consider a larger set of records as well as a finer period
discretization (i.e. shorter period intervals of AT < 0.01 second for 7" < 0.2 second).
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Figure 14. Median ratio of approximate to exact (dap/dez) peak inelastic displacements for PR models.
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Figure 15. COV of approximate to exact (dap/dex) peak inelastic displacements for PR models.

In order to illustrate the use of the equivalent linearization expressions, the assessments of a 6-
storey 5-bay CB frame and a 2-storey 6-bay CB building are presented as examples. The buildings
were designed and modelled by Malaga-Chuquitaype et al. [46,47] and have initial periods of 1.1
second (6-storey frame) and 0.22 second (2-storey frame) obtained from Eigenvalue analysis. The
slenderness of the first-storey braces are A\ = 1.3 for the 6-storey building and A\ = 1.1 for the
2-storey frame. Figures 18a and 19a show schematic views of the buildings under consideration
together with their corresponding base shear versus roof drift curves derived from non-linear static
(pushover) analyses. The response to El Centro record with T, = 1.95 seconds is considered herein.

In the case of the 6-storey CB frame, the record was scaled to have a PG A to acceleration at yield
ratio equal to 3, which corresponds to a strength ratio R = 7.26 [47]. According to Equation 9, the
T.,/T ratio can be estimated as 2.74 (i.e. T., = 3 seconds). By means of Equation 12, coefficients
a and b are evaluated as -0.27 and 0.2, respectively, and the resulting equivalent viscous damping
is &g = 22%. Figure 18b presents the demand diagram for this 6-storey CB structure. It can be
observed that the equivalent linearized model predicts a roof displacement of approximately 95
cm which should be compared with the 102 cm obtained from refined non-linear response history
analysis [47].
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Figure 16. Median ratio of approximate to exact peak inelastic displacements for CB models.

2.1 e 2.1
! —R=5
181 1.8 1
159 15 -
1.2 1 1.2
3 3
© 09 O g4 >
0.6 0.6 -
0.3 -
0 — 0 —
0 05 1 15 2 25 3 0 05 1 15 2 25 3
Period [s] Period [s]
(@ X=0.9 bX=13
2.1 : : 2.1
1 —R=5
1.8 -
15 -
12
3 3
© 09 o
0.6
0.3
0 — 0 —
0 05 1 15 2 25 3 0 05 1 15 2 25 3
Period [g] Period [s]
©X=1.7 dix=21

Figure 17. COV of approximate to exact (dap/dex) peak inelastic displacements for CB models.
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Similarly, in the case of the 2-storey building the record was scaled in order to get a strength
ratio of R = 3. Equation 9 leads to a T, /T ratio of 3.42 (i.e. T¢q = 0.75 second) while Equation 12
estimates the coefficients @ and b as -0.21 and 0.39, respectively, resulting in an equivalent viscous
damping of &, = 77%. Figure 19b presents the demand diagram for this 2-storey CB structure
from which a peak displacement of 10 cm is obtained, comparable to the the 7.9 cm displacement
obtained from refined non-linear response history analysis [46]. The good predictions obtained here
serve only to exemplify the applicability of the proposed models in estimating peak displacement
demands. However, the validity of the proposed linearized model clearly needs to be examined
further in future studies covering more buildings and within a comprehensive probabilistic context.
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(a) Pushover curve of the 6-storey 5-bay CB frame. (b) Demand and capacity diagrams.

Figure 18. Application of the equivalent linearization on the displacement estimation of a 6-storey structure
with R = 7.26.
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(a) Pushover curve of the 2-storey 7-bay CB frame. (b) Demand and capacity diagrams.

Figure 19. Application of the equivalent linearization on the displacement estimation of a 2-storey structure
with R = 3.

6. CONCLUDING REMARKS

This paper has examined the inelastic displacement response of steel framed structures of known
levels of strength when subjected to a relatively large number of ground-motions. SDOF systems
with three hysteretic responses were analysed: (i) bi-linear systems typical of moment resisting
structures, (ii) Modified Richard-Abbott models representative of partially restrained (PR) frames,
and (iii) fiber-based models simulating concentrically-braced (CB) framed structures. The influence
of model characteristics, level of inelastic behaviour and soil conditions on peak displacement
ratios has been discussed.
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The study revealed key differences in the inelastic deformation demands between bi-linear,
PR and CB models, particularly in the relatively short period spectral region. The ratio between
the overall yield strength and the strength during pinching intervals was found to be the main
factor governing the inelastic deformations of PR models when compared with bi-linear model
predictions. PR models can exhibit higher displacement demands that may reach more than double
the peak displacements estimated through bi-linear models for relatively stiff structures. Despite
their similar cyclic force-displacement relationships, the seismic response of CB and PR models
was observed to follow different tendencies, with the rate of displacement amplifications decreasing
as the strength ratio increases for CB models when compared against bi-linear predictions. It
was found that the effects of local site conditions on displacement ratios are relatively small for
moderately stiff to stiff soils, whereas significant displacement amplifications occur in the case of
soft soils relative to stiffer sites.

A study on the influence of a number of scalar parameters that characterize the frequency content
of the ground-motion on the estimated peak displacement ratios was performed. The predominant
period of the ground-motion (7},) was found to be clearly more effective in reducing the variability
and thus enhancing the accuracy of peak inelastic displacement estimations in bi-linear and PR
structures when compared with other scalar frequency indicators such as average spectral period
Tover, mean period T, characteristic period 7. and smoothed spectral predominant period 7,. As
for CB structures, the inclusion of Ty, reduces the dispersion in peak displacements for T'/T, > 0.5
in CB structures with more stocky braces (i.e. A = 0.9) while significant improvements are also
evident for 7'/ T, > 1 in CB structures with )\ = 1.3 or 1.7. Nevertheless, the reduction in COV is
not as consistent over all periods as in the case of bi-linear or PR models.

Finally, non-iterative equivalent linearization expressions for the estimation of peak deformations
on SDOF systems with known strength were proposed. In light of the findings of this study, the
equivalent linear system proposed was defined as a function of the strength ratio R, the predominant
period of the ground-motion T, and the structural initial elastic period T'. The developed equations
were validated by examining the range of estimated over exact peak displacements. These
prediction equations appear to be reliable (i.e within +20% average error) for the assessment of
steel structures with 7" > 0.20. However, further validation studies are needed to cover a wider
range of structural configurations, as well as to incorporate expressions covering soft soil conditions.
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