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Abstract

Nonlinear buckling behaviour of a thin-walled simply-supported stiffened panel that

has uniformly spaced longitudinal stiffeners is studied. The structure is made from

a linear elastic, isotropic and homogeneous material. The panel is subjected to pure

compression applied at the centroid of whole cross-section. In such structures, the

nonlinear interaction can occur between a global (Euler) buckling and local plate (i.e.

the stiffener or the main plate) buckling modes. The interactive buckling behaviour

is usually more unstable than when the modes are triggered individually. This can

lead to a significant reduction of the load-carrying capacity. The current work focuses

on the case where the stiffening is only on one side of the main plate.

An analytical model of a perfect thin-walled stiffened plate is formulated based on

variational principles by minimizing the total potential energy. The equations of equi-

librium are then solved numerically using the continuation and bifurcation software

Auto to determine the post-buckling behaviour. Cellular buckling (or snaking) is

revealed analytically in such a component arising from nonlinear local–global interac-

tive buckling, perhaps for the first time. In addition, the effect of varying the rigidity

at the main plate–stiffener junction is studied; a rapid erosion of the cellular buckling

response is revealed by increasing the joint rigidity.

The initial model is then developed by including more degrees of freedom within the

stiffened panel and the introduction of global and local imperfections. The results
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from the analytical model are validated by the finite element (FE) method using the

commercial software Abaqus as well as by comparing against some experimental

results taken from the literature.

To obtain a greater understanding of the drivers of the structural behaviour, para-

metric studies are conducted for a variety of different plate and stiffener geometries

as well as an investigation into the heightened sensitivity to geometric imperfections.

The worst forms of local imperfection are identified in terms of the initial ampli-

tude, number of waves and the degree of localization. The imperfection sensitivity

and the parametric studies are conducted for two limiting cases, where the main

plate–stiffener joint is assumed to be fully pinned or fully rigid. A framework for

establishing the zone where structural designers need to consider mode interaction

carefully is presented.

2



Acknowledgements

I am indebted to all the great people who have helped and directed me during my

doctoral studies and those whose support made this thesis possible.

First and foremost, I would like to express my deepest gratitude to my PhD supervisor,

Dr M. Ahmer Wadee, for his outstanding guidance, encouragement and patience. His

dedication together with his professionalism and expertise, have been beyond doubt

inspiring and motivating, especially through the hardest stages of the work. I learned

a lot from Dr Wadee and it has been an honour for me to be his PhD student. This

thesis would have never been possible without his support.

I would like to thank the Civil and Environmental Engineering Department and the

library staff at Imperial College for providing facilities, support and assistance. I

would also like to thank all my colleagues, especially Li Bai, Elizabeth Liu and Chi

Hui whom I shared my problems with and they always offered me so much help during

my PhD research. I am grateful to all my friends, who had righteous understanding

of my study situation and honestly backed me with my PhD study path.

A special thanks to my husband, Danial. He was truly encouraging, patient and

supportive from the initial steps right through to its final stages. His love and sacrifices

made the past three years, less stressful especially during the difficult times.

3



Acknowledgements

Finally, I would like to express my deepest gratefulness to my loving family, my

brother and my little sister. Words cannot express how indebted I am for all of the

support and sacrifices that they have made on my behalf. I would like to express my

warm gratitude to my father and to dedicate this thesis to him.

4



Contents

Abstract 1

Acknowledgements 3

List of Figures 10

List of Tables 31

List of Notations 33

1 Introduction 38

1.1 Structural stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.2 Interactive buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.3 Research outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.3.1 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . 42

5



Contents

1.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.3.3 Thesis layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2 Literature review 47

2.1 Plate bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.1.1 Linearized (small deflection) plate theory . . . . . . . . . . . . 49

2.1.2 Approximate methods of analysis . . . . . . . . . . . . . . . . 52

2.1.3 Nonlinear (large deflection) plate theory . . . . . . . . . . . . 56

2.1.4 Approximate methods for the post-buckling response . . . . . 57

2.2 Nonlinear buckling of stiffened plates . . . . . . . . . . . . . . . . . . 61

2.2.1 Global buckling . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.2.2 Local buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.2.3 Initial imperfections and residual stresses . . . . . . . . . . . . 68

2.3 Mode interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.4 Numerical continuation with Auto . . . . . . . . . . . . . . . . . . . 81

2.5 Numerical studies with Abaqus . . . . . . . . . . . . . . . . . . . . . 82

2.6 Experimental studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6



Contents

3 Cellular buckling in a perfect stiffened plate 87

3.1 Analytical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.1.1 Modal descriptions . . . . . . . . . . . . . . . . . . . . . . . . 90

3.1.2 Total Potential Energy . . . . . . . . . . . . . . . . . . . . . . 94

3.1.3 Variational Formulation . . . . . . . . . . . . . . . . . . . . . 98

3.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.2.1 Solution strategy . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.2.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 107

3.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4 Main plate local buckling and imperfection modelling 133

4.1 Development of the analytical model . . . . . . . . . . . . . . . . . . 134

4.1.1 Modal Description . . . . . . . . . . . . . . . . . . . . . . . . 134

4.1.2 Introducing imperfections . . . . . . . . . . . . . . . . . . . . 136

4.1.3 Total potential energy . . . . . . . . . . . . . . . . . . . . . . 137

4.1.4 Variational Formulation . . . . . . . . . . . . . . . . . . . . . 143

4.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.2.1 Pinned stiffener–plate connection . . . . . . . . . . . . . . . . 148

7



Contents

4.2.2 Rigid stiffener–plate connection . . . . . . . . . . . . . . . . . 157

4.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5 Validation of analytical models 171

5.1 Finite element modelling . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.1.1 Perfect stiffened plate . . . . . . . . . . . . . . . . . . . . . . . 176

5.1.2 Imperfect stiffened plates . . . . . . . . . . . . . . . . . . . . . 178

5.2 Comparison with experimental results . . . . . . . . . . . . . . . . . . 186

5.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6 Parametric study 199

6.1 Effect of initial imperfections . . . . . . . . . . . . . . . . . . . . . . . 200

6.1.1 Pinned main plate–stiffener connection . . . . . . . . . . . . . 200

6.1.2 Rigid main plate–stiffener connection . . . . . . . . . . . . . . 207

6.2 Effect of stiffener aspect ratio . . . . . . . . . . . . . . . . . . . . . . 211

6.2.1 Variation in stiffened plate length . . . . . . . . . . . . . . . . 213

6.2.2 Variation in stiffener height . . . . . . . . . . . . . . . . . . . 215

6.2.3 Buckling strength curve . . . . . . . . . . . . . . . . . . . . . 216

6.2.4 Numerical results and discussion . . . . . . . . . . . . . . . . . 218

8



Contents

6.2.5 Interactive buckling zone . . . . . . . . . . . . . . . . . . . . . 226

6.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

7 General conclusions 233

7.1 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

A Expressions for the direct strain for an imperfect stiffener 239

B Expressions for definite integrals 241

C Initial analytical model for a lipped stiffened plate 244

References 247

9



List of Figures

1.1 The optimum design curve for a perfect stiffened plate: xi is a geomet-

ric dimension. The quantity xopti has been termed the “naive optimum”

in the literature (Koiter & Pignataro, 1976). . . . . . . . . . . . . . . 41

1.2 A practical example of a stiffened plate. Photograph of the inside of

the Humber Bridge (UK) box-girder. (Taken by the author). . . . . . 43

2.1 Outline of two theories of beam bending; (a) Euler–Bernoulli beam

theory, (b) Timoshenko beam theory: the dot-dashed lines represent

the neutral axis of bending and W is the global deflection. . . . . . . 50

2.2 (a) Bending (Mi) and twisting (Mij) moments of Kirchhoff–Love plates,

(b) differential element under cylindrical bending about the y axis for

plate bending. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10



List Of Figures

2.3 Effective width approximation for the plate post-buckling stiffness; (a)

axially loaded and simply-supported rectangular plate with width b,

length L and thickness t; (b) ultimate stress distribution σ along the

loaded edge; (c) a uniform edge stress σED distribution at both sides

in the vicinity of the plate edge (i.e. be1 and be2); (d) effective width

concept where the central region is ignored. Note that σav is the average

ultimate stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.4 Buckling modes of the stiffened plates; global buckling mode due to

the (a) stiffener, (b) main plate; (c) local buckling in the stiffener and

the main plate; (d) stiffener tripping. . . . . . . . . . . . . . . . . . . 62

2.5 (a) Strut with flexural rigidity EI; (b) neutral equilibrium at Euler

critical load PE (small deflection assumption). The quantity Q repre-

sents the amplitude of W , the buckling deflection profile. . . . . . . . 64

2.6 Stable and unstable post-buckling equilibrium paths (load–deflection

relations). The graph shows the applied load P versus the modal am-

plitude Q; plates are inherently stable, but shell structures tend to be

unstable after buckling. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.7 Buckling load coefficient kp against the plate aspect ratio φ for a

uniaxially-loaded simply supported plates. . . . . . . . . . . . . . . . 69

2.8 Major forms of coupled solutions relating generalized coordinates in

the post-buckling range. . . . . . . . . . . . . . . . . . . . . . . . . . 72

11



List Of Figures

2.9 Examples of structural components exihibiting interactive buckling;

(a) photographs of an experimental specimen of a sandwich strut un-

der axial compression (Wadee, 1999). From left to right: pre-buckling

followed by global buckling and subsequent interaction between global

and local buckling modes leading to localization; (b) equilibrium dia-

gram for sandwich panels: (i) fundamental path; (ii) critical path of

global buckling triggered at critical bifurcation C; (iii) secondary path

of interactive buckling triggered at secondary bifurcation S; (iv) typi-

cal imperfect path with limit load P I; (c) a reticulated or compound

column with initial configuration and the possible interactive buckling

mode combining global and local modes; (d) a cylindrical shell with

the localized buckling pattern. . . . . . . . . . . . . . . . . . . . . . . 74

2.10 The van der Neut (1969) column: (a) column cross-section and buck-

ling load Kb versus length L, (b) normalized column buckling load

Kb/Kl versus KE/Kl, showing the post-buckling characteristics. . . . 75

2.11 Decomposed modes for global buckling of a sandwich panel. . . . . . 76

2.12 Decomposed modes for local buckling of a sandwich panel. . . . . . . 77

2.13 A example of cellular buckling or snaking in the equilibrium path of

a structural system; PC is the critical buckling load and PM is the

Maxwell load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

12



List Of Figures

2.14 Examples of different kinds of orbits in nonlinear dynamical systems,

where v and t represent displacement and time respectively. Dots rep-

resent the derivative of v with respect to t. Such solutions can also

appear in nonlinear static systems in terms of deflections and slopes.

(a) Periodic orbits are found in stable post-buckling systems such as

compressed plates; (b) homoclinic orbits are found in systems exhibit-

ing localization; (c) heteroclinic orbits are found in systems exhibiting

cellular buckling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.15 Numerical incremental techniques to find the nonlinear equilibrium

path (load–displacement path): (a) Load control/Dead loading; (b)

Displacement control/Rigid loading; (c) Arc-length method/modified

Riks methods. Note that ∆s1 and ∆s2 are the arbitrary arclengths. . 83

3.1 Simply-supported stiffened panel of length L. . . . . . . . . . . . . . 89

3.2 (a) Cross-section and (b) elevation of the representative panel portion

compressed by a force P applied to the centroid. . . . . . . . . . . . . 90

3.3 (a) Sway and (b) tilt components of the strong axis global buckling

mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4 Plastic mechanism; “tripping” mode in a stiffener. . . . . . . . . . . . 92

3.5 (a) Local out-of-plane displacement ws(y, z); (b) a pinned connection

with an additional rotational spring of stiffness cp to model joint fixity;

(c) the local in-plane displacement u(y, z). . . . . . . . . . . . . . . . 93

13



List Of Figures

3.6 (a) Diagrammatic representation of the sequence for computing the

equilibrium paths for the perfect case; (b) shows the perfect case for dif-

ferent values of cp with the corresponding secondary bifurcation points

Si as cp is increased. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.7 Numerical continuation procedure in Auto-07p to find the equilibrium

paths for perfect and imperfect cases when the global or local buckling

mode is critical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.8 Numerical equilibrium paths with cp = 0 Nmm/mm: normalized force

ratio p (= P/PC
o ) versus (a) the sway amplitude qs and (b) the nor-

malized maximum out-of-plane deflection of the stiffener wmax/ts. . . 109

3.9 Numerical equilibrium paths for cp = 0 Nmm/mm: (a) local versus

global modes: wmax/ts versus qs; (b) amplitudes of sway qs versus tilt

qt with the dashed line showing qs = qt. . . . . . . . . . . . . . . . . . 110

3.10 Numerical solutions for the stiffener local out-of-plane displacement w

(left) and local in-plane displacement u (right) with cp = 0 Nmm/mm

for the equilibrium paths at the secondary bifurcation point S and cells

C2–C8 from top to bottom respectively. . . . . . . . . . . . . . . . . . 111

3.11 Numerical solutions from the analytical model with cp = 0 Nmm/mm

visualized on 3-dimensional representations of the strut for (a) cell

C2 (p = 0.9995), (b) cell C4 (p = 0.9829), (c) cell C6 (p = 0.9440) and

(d) cell C8 (p = 0.8894). All dimensions are in millimetres, but the

local buckling displacements in the stiffener are scaled by a factor of 5

to aid visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

14



List Of Figures

3.12 (a–b) Numerical solutions from the analytical model for the local out-

of-plane deflection w in the initial interactive buckling stage, where

cases for cp = 0, 10, 102, 103, 104 Nmm/mm and when cp → ∞ are

shown from top to bottom respectively. . . . . . . . . . . . . . . . . . 113

3.13 Variation of the equilibrium paths for increasing rigidities of the main

plate–stiffener joint (cp = 1, 102, 103, 104 Nmm/mm and cp → ∞).

Graphs show (a) the distribution of qSs and qTs by increasing cp value.

(b) The normalized force ratio p (= P/PC
o ) versus the normalized end-

shortening E/L, (c) the local mode amplitude wmax/ts, (d) the global

mode amplitude qs for the increasing values of cp given in (a). Note

that in (b–d) the pinned case (cp = 0) is included. . . . . . . . . . . . 115

3.14 Definition of local buckling wavelength Λ from the variational model. 115

3.15 Numerical equilibrium paths with cp = 1 Nmm/mm: normalized force

ratio p versus (a) the sway amplitude qs and (b) the normalized maxi-

mum out-of-plane deflection of the stiffener wmax/ts. . . . . . . . . . . 117

3.16 Numerical equilibrium paths for cp = 1 Nmm/mm: (a) local versus

global modes: wmax/ts versus qs; (b) amplitudes of sway qs versus tilt

qt with the dashed line showing qs = qt. . . . . . . . . . . . . . . . . . 118

3.17 Numerical solutions for the stiffener local out-of-plane displacement w

(left) and the local in-plane displacement u (right) with cp = 1 Nmm/mm

for the equilibrium paths at the secondary bifurcation point S and cells

C2–C10 from top to bottom respectively. . . . . . . . . . . . . . . . . 119

15



List Of Figures

3.18 Numerical solutions from the analytical model visualized on 3-dimensional

representations of the strut with cp = 1 Nmm/mm. (a) Secondary

bifurcation point S (p = 1.000), and cell C2 (p = 0.9955), (b) cell

C4 (p = 0.9680), (c) cell C6 (p = 0.9459), (d) cell C8 (p = 0.8910) and

(e) cell C10 (p = 0.8277). All dimensions are in millimetres, but the

local buckling displacements in the stiffener are scaled by a factor of 5

to aid visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.19 Numerical equilibrium paths with cp = 10 Nmm/mm: normalized force

ratio p versus (a) the sway amplitude qs and (b) the normalized maxi-

mum out-of-plane deflection of the stiffener wmax/ts. . . . . . . . . . . 121

3.20 Numerical equilibrium path for cp = 10 Nmm/mm: (a) local versus

global modes: wmax/ts versus qs; (b) amplitudes of sway qs versus tilt

qt with the dashed line showing qs = qt. . . . . . . . . . . . . . . . . . 122

3.21 Numerical equilibrium paths with cp = 100 Nmm/mm: normalized

force ratio p versus (a) the sway amplitude qs and (b) the normalized

maximum out-of-plane deflection of the stiffener wmax/ts. . . . . . . . 123

3.22 Numerical equilibrium path with cp = 100 Nmm/mm: (a) local versus

global modes: wmax/ts versus qs; (b) amplitudes of sway qs versus tilt

qt with the dashed line showing qs = qt. . . . . . . . . . . . . . . . . . 124

3.23 Numerical equilibrium paths with cp = 104 Nmm/mm: normalized

force ratio p versus (a) the sway amplitude qs and (b) the normalized

maximum out-of-plane deflection of the stiffener wmax/ts. . . . . . . . 125

16



List Of Figures

3.24 Numerical equilibrium path with cp = 104 Nmm/mm: (a) local versus

global modes: wmax/ts versus qs; (b) amplitudes of sway qs versus tilt

qt with the dashed line showing qs = qt. . . . . . . . . . . . . . . . . . 126

3.25 Numerical equilibrium paths with cp → ∞: normalized force ratio p

versus (a) the sway amplitude qs and (b) the normalized maximum

out-of-plane deflection of the stiffener wmax/ts. . . . . . . . . . . . . . 127

3.26 Numerical equilibrium path with cp → ∞: (a) local versus global

modes: wmax/ts versus qs; (b) amplitudes of sway qs versus tilt qt with

the dashed line showing qs = qt. . . . . . . . . . . . . . . . . . . . . . 128

3.27 Numerical solutions for the stiffener local out-of-plane displacement w

(left) and the local in-plane displacement u (right) with cp → ∞ for the

equilibrium paths at the secondary bifurcation point S (p = 1.000) and

at the normalized load levels equal to 0.9992, 0.9877, 0.9723, 0.9259,

0.8943 and 0.8619 from top to bottom respectively. . . . . . . . . . . 129

3.28 Numerical solutions from the analytical model visualized on 3-dimensional

representations of the strut with cp → ∞. All dimensions are in mil-

limetres, but the local buckling displacements in the stiffener are scaled

by a factor of 5 to aid visualization. . . . . . . . . . . . . . . . . . . . 130

4.1 Boundary conditions for the stiffener and the main plate. . . . . . . . 135

4.2 (a) Localized imperfection shape produced by increasing α; (b) periodic

imperfection shape (α = 0) with different number of half sine-waves

βπ/L by increasing β. In both cases η = L/2. . . . . . . . . . . . . . 138

17



List Of Figures

4.3 (a) Local out-of-plane deflection of the stiffener ws(y, z) with the ini-

tial imperfection w0(y, z) and local out-of-plane deflection of the plate

wp(x, z) with the initial imperfection wp0(x, z). (b) Incorporation of

the global imperfection functions W0 and θ0 where the strut is stress-

relieved. To incorporate w0 or wp0, the process is simply to replace W0

with w0 or wp0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.4 Numerical continuation procedures when global buckling is critical

with (a) initial out-of straightness qs0 only and (b) both qs0 and initial

out-of-plane displacement w0 present in the stiffener and the main plate.148

4.5 Numerical equilibrium paths for the pinned case (cp = 0 Nmm/mm)

where qs0 6= 0 and w0 = 0; normalized force ratio p (= P/PC
o ) versus (a)

the sway amplitude qs and (b) the normalized maximum out-of-plane

deflection of the stiffener wmax/ts. . . . . . . . . . . . . . . . . . . . . 150

4.6 Numerical equilibrium paths for cp = 0 Nmm/mm where qs0 6= 0 and

w0 = 0: (a) local versus global modes: wmax/ts versus qs; (b) ampli-

tudes of sway qs versus tilt qt with the dashed line showing qs = qt. . 151

4.7 Numerical solutions for the local out-of-plane deflection w (left) and

the local in-plane deflection u (right) with cp = 0 Nmm/mm, where

qs0 6= 0 and w0 = 0, shown for the equilibrium paths at the secondary

bifurcation point S and cells C2–C8 from top to bottom respectively. . 152

18



List Of Figures

4.8 Numerical solutions from the analytical model with cp = 0 Nmm/mm

visualized on 3-dimensional representations of the stiffened plate where

qs0 6= 0 and w0 = 0. (a) cell C2 (p = 0.8827) (b) cell C4 (p = 0.8750),

(c) cell C6 (p = 0.8468) and (d) cell C8 (p = 0.8036). All dimensions

are in millimetres, but the local buckling displacements in the stiffener

are scaled by a factor of 5 to aid visualization. . . . . . . . . . . . . . 153

4.9 Numerical equilibrium path for cp = 0 Nmm/mm where qs0 6= 0 and

w0 6= 0: Normalized force ratio p versus (a) the sway amplitude qs and

(b) the normalized maximum out-of-plane deflection of the stiffener

wmax/ts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.10 Numerical equilibrium paths for cp = 0 Nmm/mm where qs0 6= 0 and

w0 6= 0. (a) Local versus global modes: wmax/ts versus qs; (b) ampli-

tudes of sway qs versus tilt qt with the dashed line showing qs = qt. . 155

4.11 Numerical solutions for the local out-of-plane deflection w (left) and the

local in-plane deflection u (right) with cp = 0 Nmm/mm where qs0 6= 0

and w0 6= 0; for the equilibrium paths at the secondary bifurcation

point S and cells C2–C8 from top to bottom respectively. . . . . . . . 156

4.12 Numerical solutions from the analytical model with cp = 0 Nmm/mm

visualized on 3-dimensional representations of the stiffened plate where

qs0 6= 0 and w0 6= 0. (a) cell C2 (p = 0.8832), (b) cell C4 (p = 0.8658),

(c) cell C6 (p = 0.8462) and (d) cell C8 (p = 0.8031). All dimensions

are in millimetres, but the local buckling displacements in the stiffener

are scaled by a factor of 5 to aid visualization. . . . . . . . . . . . . . 157

19



List Of Figures

4.13 Numerical equilibrium paths for the rigid case (cp → ∞) where qs0 6= 0

and w0 = 0; normalized force ratio p (= P/PC
o ) versus (a) the sway

amplitude qs and (b) the normalized maximum out-of-plane deflection

of the stiffener wmax/ts. . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.14 Numerical equilibrium paths for cp → ∞ where qs0 6= 0 and w0 = 0:

(a) local versus global modes: wmax/ts versus qs; (b) amplitudes of

sway qs versus tilt qt with the dashed line showing qs = qt. . . . . . . 160

4.15 Numerical solutions for the local out-of-plane deflection w (left) and

the local in-plane deflection u (right) with cp → ∞ where qs0 6= 0 and

w0 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.16 Numerical solutions from the analytical model with cp → ∞ visualized

on 3-dimensional representations of the stiffened plate where qs0 6= 0

and w0 = 0 for the normalized load levels equal to(a) p = 0.9141, (b)

p = 0.9124, (c) p = 0.9001 and (d) p = 0.8384. All dimensions are in

millimetres, but the local buckling displacements in the stiffener and

the main plate are scaled by a factor of 3 to aid visualization. . . . . 162

4.17 Numerical equilibrium paths for cp → ∞ where qs0 6= 0 and w0 6= 0;

normalized force ratio p versus (a) the sway amplitude qs and (b) the

normalized maximum out-of-plane deflection of the stiffener wmax/ts. 163

4.18 Numerical equilibrium paths for cp → ∞ where qs0 6= 0 and w0 6= 0.

(a) Local versus global modes: wmax/ts versus qs; (b) amplitudes of

sway qs versus tilt qt with the dashed line showing qs = qt. . . . . . . 164

20



List Of Figures

4.19 Numerical solutions for the local out-of-plane deflection w (left) and

the local in-plane deflection u (right) with cp → ∞ where qs0 6= 0 and

w0 6= 0. The normalized load level p is equal to 0.8845, 0.8657, 0.8369

and 0.7800 from top to bottom respectively. . . . . . . . . . . . . . . 165

4.20 Numerical solutions from the analytical model with cp → ∞ visualized

on 3-dimensional representations of the stiffened plate where qs0 6= 0

and w0 6= 0. All dimensions are in millimetres, but the local buckling

displacements in the stiffener and the main plate are scaled by a factor

of 3 to aid visualization. . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.21 Numerical equilibrium paths for the pinned case (cp = 0). It shows the

normalized load p versus the normalized end-shortening E/L for the

case with (a) the global imperfection only (qs0 6= 0 and w0 = 0) and

(b) both global and local imperfections (qs0 6= 0 and w0 6= 0). . . . . . 168

4.22 Numerical equilibrium path for the rigid case (cp → ∞). It shows the

normalized load p versus the normalized end-shortening E/L for the

case with (a) the global imperfection only (qs0 6= 0 and w0 = 0) and

(b) both global and local imperfections (qs0 6= 0 and w0 6= 0). . . . . . 169

5.1 FE model for a simply-supported and axially loaded stiffened plate in

Abaqus. The FE model is shown for half of the strut length. . . . . 173

5.2 FE analysis procedure in Abaqus. . . . . . . . . . . . . . . . . . . . 174

5.3 Mesh sensitivity study from the numerical FE model in Abaqus. Com-

parison of the global critical buckling load versus the mesh size m. . . 175

21



List Of Figures

5.4 Plot of the ratio of the out-of-plane displacements in the main plate to

the stiffener λp versus the joint rigidity modelling of rotational stiffness

cp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.5 Comparisons of the analytical model (solid line) versus the FE model

(dashed line) solutions for the perfect case (qs0 = 0, w0 = 0), both

with cp → ∞; Normalized force ratio p versus (a) the global mode

amplitudes qs and (b) the maximum normalized out-of-plane deflection

wmax/ts; (c) local versus global mode amplitudes. . . . . . . . . . . . 179

5.6 Comparisons of the analytical results (solid line) versus the FE model

(dashed line) solutions for the local out-of-plane deflection of the stiff-

ener w, both with cp → ∞ where (i)–(iii) correspond to the equilibrium

states at p = 0.99, p = 0.95 and p = 0.89 respectively. . . . . . . . . . 180

5.7 Comparisons of the numerical solutions from the analytical (left) and

the FE (right) models when cp → ∞ visualized on 3-dimensional repre-

sentations of the strut. The results are shown for equilibrium states at

the points shown in Figure 5.5 (a–c) defined as (i)–(iii). All dimensions

are in millimetres but the local buckling displacements in the stiffener

are scaled by a factor of 5 to aid visualization. . . . . . . . . . . . . . 181

5.8 Comparison of the analytical model (solid line) versus the FE model

(dashed line) solutions, both with cp = 1000 Nmm/mm (λp = 0),

qs0 = 0.001, and A0 = ts/10. Normalized force ratio p versus (a) the

global mode amplitude qs and (b) the maximum normalized out-of-

plane stiffener deflection wmax/ts; (c) local versus global mode ampli-

tudes. Note that, the local imperfection is only for the stiffener for this

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

22



List Of Figures

5.9 Comparison of the analytical model (solid line) versus the FE model

(dashed line) solutions, both with cp = 1000 Nmm/mm (λp = 0), qs0 =

0.001, and A0 = ts/10. The out-of-plane deflection of the stiffener w for

the points shown in Figure 5.8(a–c), defined as (i)–(iii), corresponding

to the equilibrium states at p = 0.89, p = 0.84 and p = 0.81 respectively.184

5.10 Comparisons of the numerical solutions from the analytical (left) and

the FE (right) models with cp = 1000 Nmm/mm (λp = 0). Visualized

on 3-dimensional representations of the strut. The results are shown

for equilibrium states at the points shown in Figure 5.8 (a–c), defined

as (i)–(iii). All dimensions are in millimetres, but the local buckling

displacements in the stiffener are scaled by a factor of 5 to aid visual-

ization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.11 Comparison of the analytical model (solid line) versus the FE model

(dashed line) solutions, both with cp = 500 Nmm/mm (λp = 0.1533),

qs0 = 0.001, and A0 = ts/10. Normalized force ratio p versus (a)

the global mode amplitude qs and (b) the maximum out-of-plane nor-

malized stiffener deflection wmax/ts; (c) local versus global mode am-

plitudes. Note that the local imperfection is introduced in both the

stiffener and the main plate for this case. . . . . . . . . . . . . . . . . 187

5.12 Comparison of the analytical model (solid lines) versus the FE model

(dashed lines) solutions, both with cp = 500 Nmm/mm (λp = 0.1533)

for the out-of-plane deflection of the stiffener w for the points as shown

in Figure 5.11(a–c), defined as (i)–(iii), corresponding to the equilib-

rium states at p = 0.87, p = 0.82 and p = 0.72 respectively. . . . . . . 188

23



List Of Figures

5.13 Comparisons of the numerical solutions from the analytical (left) and

the FE (right) models with cp = 500 Nmm/mm (λp = 0.1533) visu-

alized on 3-dimensional representations of the strut. The results are

shown for equilibrium states at the points shown in Figure 5.11(a–c),

defined as (i)–(iii). All dimensions are in millimetres, but the local

buckling displacements in the stiffener and the main plate are scaled

by a factor of 3 to aid visualization. . . . . . . . . . . . . . . . . . . . 189

5.14 Comparison of the analytical model (solid line) versus the FE model

(dashed line) solutions, both with cp = 1000 Nmm/mm (λp = 0.2687),

qs0 = 0.001, and A0 = ts/10. Normalized force ratio p versus (a)

the global mode amplitude qs and (b) the maximum out-of-plane nor-

malized stiffener deflection wmax/ts; (c) local versus global mode am-

plitudes. Note that the local imperfection is introduced in both the

stiffener and the main plate for this case. . . . . . . . . . . . . . . . . 190

5.15 Comparison of the analytical model (solid lines) versus the FE model

(dashed lines) solutions, both with cp = 1000 Nmm/mm (λp = 0.2687)

for the out-of-plane deflection of the stiffener w for the points shown in

Figure 5.14(a–c), defined as (i)–(iii), corresponding to the equilibrium

states at p = 0.82, p = 0.72 and p = 0.69 respectively. . . . . . . . . . 191

5.16 Comparisons of the numerical solutions from the analytical (left) and

the FE (right) models with cp = 1000 Nmm/mm (λp = 0.2687) visu-

alized on 3-dimensional representations of the strut. The results are

shown for equilibrium states at the points shown in Figure 5.14(a–c),

defined as (i)–(iii). All dimensions are in millimetres, but the local

buckling displacements of the stiffener and the main plate are scaled

by a factor of 3 to aid visualization. . . . . . . . . . . . . . . . . . . . 192

24



List Of Figures

5.17 Stiffened panel dimensions in Fok et al (1976) tests. . . . . . . . . . . 194

5.18 Comparison of the experimental results (dots), the analytical model

(solid line) and the FE model (dashed line) solutions. Normalized

force ratio p (= P/PC
o ) versus the normalized relative global mode

deflection (W −W0)/ts for the panel with (a) L = 400 mm and (b)

L = 320 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.19 Comparison of the analytical model (solid line) and the FE model

(dashed line). (a) Normalized force ratio p (= P/PC
o ) versus the nor-

malized maximum out-of-plane deflection wmax/ts; (b) local out-of-

plane deflection of the stiffener w for the points shown in (a) defined

as (i) and (ii). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.1 Imperfection sensitivity for the pinned case (cp = 0). Normalized

imperfection size E0/L against: (a) the normalized peak load, pu (=

P/PC
o ) and (b) the normalized local deflection amplitude A0/ts. The

(×) symbol corresponds to the imperfection form of the plate linear

eigenvalue solution (α = 0, β = 1), the (∗) symbol corresponds to the

periodic imperfection (α = 0, β > 1) and the (◦) symbol correspond

to the modulated imperfection (α 6= 0, β > 1). . . . . . . . . . . . . . 202

6.2 Worst case periodic and localized imperfections for the pinned case

(cp = 0). Normalized imperfection size E0/L against: (a) the peri-

odicity parameter β which gives the lowest peak loads and (b) the

localization parameter α which gives the corresponding lowest peak

loads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

25



List Of Figures

6.3 Numerical equilibrium paths for the pinned case (cp = 0). The graphs

show a family of curves of the normalized force ratio p (= P/PC
o ) versus

(a) the global mode amplitude qs and (b) the normalized local mode

amplitude wmax/ts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.4 Numerical equilibrium paths for the pinned case (cp = 0). The graphs

show a family of curves of the (a) normalized force ratio p (= P/PC
o )

versus the normalized end-shortening E/L, (b) the local versus the

global mode amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.5 Imperfection sensitivity graphs. (a) Normalized peak load pu (= P/PC
o )

versus the initial out-of-straightness coordinate qs0, (b) distribution of

qSs and qTs versus qs0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6.6 Numerical equilibrium paths for the rigid joint case (cp → ∞). The

graphs show a family of curves of the normalized force ratio p (= P/PC
o )

versus (a) the global mode amplitude qs and (b) the normalized local

mode amplitude wmax/ts. . . . . . . . . . . . . . . . . . . . . . . . . . 209

6.7 Numerical equilibrium paths for the rigid joint case (cp → ∞). The

graphs show a family of curves of the (a) normalized force ratio p (=

P/PC
o ) versus the normalized end-shortening E/L and (b) the local

versus the global mode amplitude. . . . . . . . . . . . . . . . . . . . . 210

6.8 Imperfection sensitivity graphs. (a) Normalized peak load pu (= P/PC
o )

versus the initial out-of-straightness coordinate qs0, (b) distribution of

qSs versus qs0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

26



List Of Figures

6.9 Interactive buckling regions while varying the stiffened plate length L.

The length L = Lc is defined when PC
o = PC

l , whereas stiffened plates

with L > Lo and L < Ll are assumed to exhibit pure global buckling

and pure local buckling respectively. The values qDs and wD
max define

the limiting global and local mode amplitudes for pure global and local

buckling respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6.10 Interactive buckling regions while varying the stiffener height h1. The

stiffener height h1 = hc is defined when PC
o = PC

l , whereas stiffened

plates with h1 > hl and h1 < ho are assumed to exhibit pure local

buckling and pure global buckling respectively. The values qDs and wD
max

define the limiting global and local mode amplitude for pure global and

local buckling respectively. . . . . . . . . . . . . . . . . . . . . . . . . 216

6.11 The idealized strength curve in terms of normalized quantities for (a)

global buckling stress versus global slenderness and (b) local buckling

stress versus the local slenderness. . . . . . . . . . . . . . . . . . . . . 217

6.12 Pinned case, varying length L. Graphs show (a) the normalized lateral

displacement at the secondary bifurcation point qSs (= qus ) and (b) the

normalized maximum local out-of-plane displacement wu
max/ts at the

peak load pu, versus the strut length L, for the cases where global and

local buckling are critical, respectively. The vertical dashed line with

label Lc represents the critical stiffened plate length where PC
o = PC

l .

The horizontal dot-dashed lines represent the amount of displacement,

above which interactive buckling is assumed to be insignificant (qDs ,

wD
max); the interactive region is therefore Ll < L < Lo. The vertical

dashed line Ls represents the strut length which pu begins to deviate

from PC
l significantly. . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

27



List Of Figures

6.13 Pinned case, varying length L. The central graph shows the normalized

ultimate load Pu/P
C
l versus the normalized global critical load PC

o /P
C
l .

The solid line represents the actual numerical solutions whereas the

dashed lines representing Ll, Lc, Ls and Lo correspond directly to Fig-

ure 6.12. The surrounding graphs show examples of the equilibrium

paths corresponding to the different parts of the central graph, sepa-

rated by the dot-dashed lines. . . . . . . . . . . . . . . . . . . . . . . 220

6.14 Pinned case, varying stiffener height h1. Graphs show (a) the nor-

malized lateral displacement at the secondary bifurcation point qSs (=

qus ) and (b) the normalized maximum local out-of-plane displacement

wu
max/ts at the peak load pu, versus the stiffener height h1, for the cases

where global and local buckling are critical, respectively. The vertical

dashed line with label hc represents the critical stiffened plate length

where PC
o = PC

l . The horizontal dot-dashed line represents the amount

of displacement, above which interactive buckling is assumed to be in-

significant (qDs , wD
max); the interactive region is therefore ho < h1 < hl. 221

6.15 Pinned case, varying stiffener height h1. The central graph shows the

normalized ultimate load Pu/P
C
l versus the normalized global critical

load PC
o /P

C
l . The solid line represents the actual numerical solutions

whereas the dashed lines representing hl, hc and ho correspond directly

to Figure 6.14. The surrounding graphs show examples of the equilib-

rium paths corresponding to the different parts of the central graph,

separated by the dot-dashed lines. . . . . . . . . . . . . . . . . . . . . 223

28



List Of Figures

6.16 Rigid case, varying length L. Graphs show (a) the normalized lateral

displacement at the secondary bifurcation point qSs (= qus ) and (b) the

normalized maximum local out-of-plane displacement wu
max/ts at the

peak load pu, versus the strut length L, for the cases where global and

local buckling are critical, respectively. The vertical dashed line with

label Lc represents the critical stiffened plate length where PC
o = PC

l .

The horizontal dot-dashed lines represent the amount of displacement,

above which interactive buckling is assumed to be insignificant (qDs ,

wD
max); the interactive region is therefore Ll < L < Lo. . . . . . . . . . 224

6.17 Rigid case, varying length L. The central graph shows the normalized

ultimate load Pu/P
C
l versus the normalized global critical load PC

o /P
C
l .

The solid line represents the actual numerical solutions whereas the

dashed lines representing Ll, Lc and Lo correspond directly to Figure

6.16. The surrounding graphs show examples of the equilibrium paths

corresponding to the different parts of the central graph, separated by

the dot-dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

6.18 Rigid case, varying stiffener height h1. Graphs show (a) the normalized

lateral displacement at the secondary bifurcation point qSs (= qus ) and

(b) the normalized maximum local out-of-plane displacement wu
max/ts

at the peak load pu, versus the stiffener height h1, for the cases where

global and local buckling are critical, respectively. The vertical dashed

line with label hc represents the critical stiffened plate length where

PC
o = PC

l . The horizontal dot-dashed line represents the amount of

displacement, above which interactive buckling is assumed to be in-

significant (qDs , wD
max); the interactive region is therefore ho < h1 < hl. 227

29



List Of Figures

6.19 Rigid case, varying stiffener height h1. The graph shows the normalized

ultimate load Pu/P
C
l versus the normalized global critical load PC

o /P
C
l .

The solid line represents the actual numerical solutions whereas the

dashed lines representing hl, hc and ho. The surrounding graphs show

examples of the equilibrium paths corresponding to the different parts

of the central graph, separated by the dot-dashed lines. . . . . . . . . 228

6.20 The idealized strength curves with the symbols representing the global

and the local normalized slendernesses given in (a) Table 6.4 and (b)

Table 6.5. Symbols (∗) and (×) represent the cases where the main

plate–stiffener joint is assumed to be rigid and pinned respectively.

Note the higher slenderness values for the pinned cases. . . . . . . . . 231

7.1 (a) Lipped stiffened plate cross-section geometry. (b) Modelling the

joint rigidity of the main plate–stiffener and lip–stiffener connections

with rotational spring of stiffnesses cp and cl respectively. (c) Local

out-of-plane deflection of the stiffener ws(y, z) with initial imperfection

w0(y, z), local out-of-plane deflection of the main plate wp(x, z) with

initial imperfection wp0(x, z) and local out-of-plane deflection of the lip

wl(x, z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

A.1 Outline the out-of-plane deflection of a stiffener ws(y, z) with the initial

imperfection w0(y, z) in a specimen with length δz along the stiffened

plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

30



List of Tables

2.1 Critical buckling modes and post-buckling characteristics for the col-

umn length constraints in categories 1–4, Length L = L1 is the case

where the local buckling load and Euler buckling load are equal; L2 =

η1/2L1; L0 = (2η/(1 + η))1/2L1. . . . . . . . . . . . . . . . . . . . . . 76

3.1 Cross-section and material properties of an example stiffened plate used

in the numerical study. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.2 Theoretical values of the global and local critical buckling stresses (σC
o

and σC
l ) respectively; subscripts “p” and “s” refer to the main plate

and the stiffener respectively. The expression for σC
o = PC

o /A, where

A is the cross-sectional area of the strut. . . . . . . . . . . . . . . . . 104

5.1 Theoretical and FE values of the global and local critical buckling

stresses (σC
o and σC

l ) respectively; subscripts “p” and “s” refer to the

main plate and the stiffener respectively and kp is taken to be 1.247.

The expression for σC
o = PC

o /A, where A is the cross-sectional area of

the strut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

31



List Of Tables

5.2 Theoretical values of the global and local critical buckling stresses (σC
o

and σC
l ) respectively; subscripts “p” and “s” refer to the main plate

and the stiffener respectively. The expression for σC
o = PC

o /A, where

A is the cross-sectional area of the panel. . . . . . . . . . . . . . . . . 193

6.1 Geometric properties of stiffened plate. . . . . . . . . . . . . . . . . . 213

6.2 Summary of values for Ll, Ls, Lc and Lo, for struts with the properties

given in Table 6.1, for both the pinned and the fully rigid main plate–

stiffener connection. Note that the stiffener height h1 = 38 mm in both

the pinned and the rigid joint cases. . . . . . . . . . . . . . . . . . . . 226

6.3 Summary of values for hl, hs, hc and ho, for struts with the properties

given in Table 6.1, for both the pinned and the rigid joint cases. . . . 226

6.4 Summary of values for λ̄l, λ̄c, and λ̄o, for struts with the properties

given in Table 6.2, for both the pinned and the rigid joint cases. . . . 229

6.5 Summary of values for λ̄l, λ̄c, and λ̄o, for struts with the properties

given in Table 6.3, for both the pinned and the rigid joint cases. . . . 229

32



Nomenclature

Coordinates, Stress, Strains, Loads and Energy

x Transverse direction along panel breadth

y Transverse direction along stiffener depth

z Longitudinal direction

Nx, Ny, Nxy In-plane forces in directions x, y, xy respectively

σx, σy, σz Direct stress in directions x, y, z respectively

τxy, τyz, τzx Shear stress in planes xy, yz, zx respectively

εx, εy Direct strain in directions x and y respectively

εzt Direct strain in z direction for top stiffeners

εzb Direct strain in z direction for bottom stiffeners

εzp Direct strain in z direction for plate

γxy, γxz Shear strain in planes xy and xz respectively

γyzt Shear strain in plane yz for top stiffeners

γyzb Shear strain in plane yz for bottom stiffeners

V Total potential energy

L Lagrangian

χ Bending curvature

U Total strain energy

Ubo Strain energy of global bending

33



Nomenclature

Ubl Strain energy of local bending

Um Strain energy stored in the membrane of the stiffener

Ud Strain energy stored in the membrane of the stiffener due to direct strains

Us Strain energy stored in the membrane of the stiffener due to shear strains

Usp Strain energy stored in rotational spring

M Bending moment

P External load

PC Critical buckling load

PC
o Global buckling load

PC
l Local buckling load

p Normalized load (P/PC
o )

PE Euler load

PM Maxwell load

PU Ultimate load

pu Normalized ultimate load

σY Yield stress

σC Critical buckling stress

σC
o Global buckling stress

σC
ls Local buckling stresses of the stiffeners

σC
lp Local buckling stresses of the plate

kp Plate buckling coefficient

Φ Airy stress function

C Critical bifurcation point

S Secondary bifurcation point

T First snap-back point

E Total end-shortening

34



Nomenclature

Geometric properties

L Stiffened plate length

b Distance between adjacent stiffeners

h1 Height of top stiffener

h2 Height of bottom stiffener

ts Thickness of stiffeners

tp Thickness of main plate

cp Stiffness of rotational spring at the stiffener to main plate junction

Ip Second moment of area of the main plate

A Total cross-section area

r Radius of gyration

λo, λl Global and stiffener local slendernesses respectively

λ̄o, λ̄l Normalized global and stiffener local slendernesses respectively

Material Properties

E Young’s modulus

ν Poisson’s ratio

Ds Flexural rigidity of stiffener

Dp Flexural rigidity of main plate

G Shear modulus

35



Nomenclature

Displacements and generalized coordinates

W (z) Sway component of global buckling

θ(z) Tilt component of global buckling

qs Amplitude of sway component

qt Amplitude of tilt component

qSs qs at secondary bifurcation point

qTs qs at first limit point after S

qDs Limiting global amplitude qs

ws(y, z) Local out-of-plane displacement of stiffeners

wp(x, z) Local out-of-plane displacement of main plate

wD
max Limiting local amplitude wmax

u(y, z) Local in-plane displacement

∆ Pure squash displacement

λp Out-of-plane displacement ratio of the main plate to the stiffener

Λ Wavelength of w(z)

χ Bending curvature

Imperfections

W0(z) Initial out of straightness of global mode

qs0 Initial amplitude of sway component

θ0(z) Initial rotation of a plane section of global mode

qt0 Initial amplitude of tilt component

ws0(y, z) Imperfect local out-of-plane displacement of stiffener

wp0(x, z) Imperfect local out-of-plane displacement of main plate

36



Nomenclature

A0 Amplitude of local imperfection

α Degree of localization of local imperfection

βπ/L Wave number of local imperfection

η Offset of peak imperfect displacement

E0 Initial end-shortening of imperfection

χ0 Initial curvature

37



Chapter 1

Introduction

A thin-walled structure comprises thin plates that are joined along their edges. In

such a structure, the plate thickness is small compared to other dimensions such as

the width and the length. Thin plated steel structures are made from light gauge

steelwork and may be stabilized in one direction by stiffeners. Such structures are

used extensively in various structural applications including industrial and residen-

tial buildings, offshore structures (Ghavami & Khedmati, 2006), box girder bridges

(Murray, 1973; Choi et al., 2009), ship hulls (Grondin et al., 1999; Sheikh et al.,

2002), aircraft skins (Butler et al., 2000; Loughlan, 2004) and particularly where a

high strength to weight ratio is important and desirable. Thin-walled plated struc-

tures are also utilized extensively in sub-surface structures such as tanks, pipes and

culverts (Carrera et al., 2012).

There are a number of reasons to give special consideration to thin-walled structures in

terms of their analysis and design. Such structures are susceptible to local buckling as

well as global (Euler) buckling. These structures buckle locally if the in-plane stresses

reach the critical values for the individual elements. If this happens, the geometry

of the structural cross-section can change significantly, in contrast to global buckling

38



Chapter 1: Introduction

where the cross-section is relatively unchanged. Therefore, thin-walled structures

must be designed against both local and global buckling modes of instability.

Theory and experiments show that under certain circumstances, these two modes of

instability may interact and when this happens the actual collapse load can be de-

creased to below the critical value of the individual buckling loads (Murray, 1984).

This type of instability can be highly unstable, with recent studies highlighting the

interaction of buckling modes leading to localization (Hunt & Wadee, 1998; Woods

& Champneys, 1999; Wadee & Gardner, 2012; Wadee & Bai, 2014). In particular,

Murray (1973), discussed the failure of design codes to take into account that stiffened

plates should have a higher safety factor; he presented a large number of variables

that influence collapse and attempted to define quantitatively the important inter-

dependencies based on analytical techniques and experimental evidence. Although,

in more recent years, efforts have been made to include such effects in the design

procedures, a fundamental understanding and an analytical predictability is only just

emerging from the aforementioned recent studies. The aim of the current work is to

make additional contributions specifically for stiffened plates.

1.1 Structural stability

In an engineering structure, failure can occur due to material failure, structural in-

stability or a combination of the two. The former type relates to the strength of

the material, whereas the latter is particularly due to geometric nonlinearities, e.g.

buckling.

The load at which a structure becomes unstable, known as the “critical load” PC,

depends primarily on structural geometric properties, especially the so-called slen-

derness of an element or structure. This latter quantity tends to be independent
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of the material strength. The deformed configuration introduces nonlinearities that

amplify the stresses in the structure (sometimes known as the P − δ effect). In the

case of thin-walled structures, the P − δ effect can be significant, leading to modal

interactions between the global and local buckling modes that, in turn, can lead

to localization, which is well known to promote undesirable features such as effec-

tive negative stiffnesses, gross sensitivity to initial defects and perhaps even dynamic

snap-back behaviour (Wadee, 2007).

1.2 Interactive buckling

Since thin-walled structures can suffer from local buckling as well as global buckling

along the length, the interaction between these two modes gives a possibility for a third

mode of structural instability, namely interactive buckling. The nonlinear interaction

of local and global buckling instabilities is found in some common structures such as

thin-walled I-beams (Wadee & Gardner, 2012), I-section struts (Wadee & Bai, 2014),

sandwich structures (Hunt & Wadee, 1998), built-up columns (Thompson & Hunt,

1973) and corrugated or stiffened plates (Thompson & Hunt, 1984; Pignataro et al.,

2000). In addition, for compression members built up from thin plates, a design in

which buckling of the whole structure and local buckling of the plate elements occur

simultaneously was often accepted as the optimum design (Tvergaard, 1973b), owing

to the simple notion of maximizing the critical loads, see Figure 1.1. However, since

the development of nonlinear structural stability theory, from the 1960s, this notion

is seen as a naive and potentially dangerous viewpoint.

In the case where the global mode of buckling is critical, the corresponding am-

plitude of buckling can grow until deflections become sufficiently large to induce a

secondary instability, where the local buckling mode is induced and begins to interact

with the existing global mode. Periodic Rayleigh–Ritz analysis, assuming symmetric
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P(xi)



xi



xi
opt

Figure 1.1: The optimum design curve for a perfect stiffened plate: xi is a geometric

dimension. The quantity xopti has been termed the “naive optimum” in the literature

(Koiter & Pignataro, 1976).

and asymmetric local modes, has been used to study this type of interactive buck-

ling phenomenon in sandwich structures (Hunt et al., 1988), with an extension for

orthotropic cores (Da Silva & Hunt, 1990). The approach used Timoshenko beam

theory in which shear strain becomes important. The use of a shear deformable bend-

ing theory has allowed an analytical and later a variational approach to be applied to

such vulnerable structures. Indeed, Hunt and Wadee (1998) studied the interactive

buckling behaviour using the variational approach and were the first to provide an

analytical model that demonstrated localization from local–global mode interaction

in the elastic range. Later, they demonstrated that orthotropic core materials exac-

erbate the behaviour (Wadee & Hunt, 1998) and by changing the core constitutive

model they showed that so-called “cellular buckling” could be triggered (Hunt et al.,

2000). Similarly, in a more recent study, Wadee and Gardner (2012), investigated

the interaction of flange local buckling and lateral torsional buckling in a thin-walled

I-beam subjected to uniform moment and discovered cellular buckling there also.

The latter work gave the idea that cellular buckling may be inherently linked to the

response of thin-walled structures. One of the most well known examples of global and
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local mode interaction is in the study of stringer-stiffened plates (Koiter & Pignataro,

1976; Ronalds, 1989; Butler et al., 2000). The current work, presents a series of

analytical developments that predict and demonstrate the occurrence of behaviour

such as localization and cellular buckling in such structures.

1.3 Research outline

Although the behaviour of metallic stiffened plates has been studied over the past

decades, it is apparent that some of the stability aspects in terms of interactive buck-

ling and localization are still not well understood in such structures. In 1970, the

West Gate Melbourne bridge collapsed by compression buckling of the top flange. The

112 m steel box girder span was in the simply supported condition when the failure oc-

curred. Similarly in 1971, the Koblenz bridge collapse, was associated with instability

of thin plating in compression, this time due to a detailing error (Smith, 1976). In this

thesis, the buckling and post-buckling behaviour of a thin-walled simply-supported

plated panel with uniformly spaced longitudinal stiffeners (or stringers), as shown in

Figure 1.2, is studied using a series of analytical models based on variational prin-

ciples and nonlinear stability theory. A linear elastic system is assumed throughout

and this section outlines the sequence in which the models and results are presented.

1.3.1 Aims and objectives

In this research work, a series of analytical models based on total potential energy

principles, has been developed. A combination of discrete and continuum mechanics

approaches with a first order shear deformable bending theory have been key to mod-

elling the response. The analytical models have led to systems of nonlinear differential

equations that describe the interactive buckling behaviour. The primary goal of the
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Figure 1.2: A practical example of a stiffened plate. Photograph of the inside of the

Humber Bridge (UK) box-girder. (Taken by the author).

research is to investigate the phenomenon of local–global modal interactions in the

buckling behaviour of a stringer-stiffened panel. This phenomenon has been found in

analogous structural components such as sandwich structures (Hunt & Wadee, 1998),

in I-section beams (Wadee & Gardner, 2012), in I-section columns (Wadee & Bai,

2014) and is well known to be a potentially dangerous form of instability.

The interaction can occur between the global buckling of the stiffened plate and

the local buckling of the stiffener as well as the main plate between the stiffeners.

Analytical models are formulated such that a more rigorous theoretical understanding

can be achieved. The corresponding analytical results are validated through numerical

modelling from the finite element (FE) method and from published experiments.

The validation shows that the equilibrium states described by the analytical model

can be reproduced, in terms of the combination of the load with local and global

deformations. Finally, the effects of changing the geometry of the individual elements

of the stiffened plate and the introduction of imperfections are investigated.
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1.3.2 Methodology

An analytical approach has been favoured currently with variational principles playing

a pivotal role, in conjunction with the principle of minimum potential energy. The

expression for the total potential energy V comprises the gained potential energy from

internal deformations, so-called strain energy U , and the work-done by the external

loads PE , where:

V = U − PE . (1.1)

The corresponding equations of equilibrium that are obtained by minimizing V , us-

ing the calculus of variations, are then solved numerically by the continuation and

bifurcation software Auto (Doedel & Oldeman, 2011), which is adept at solving

nonlinear problems with instabilities. Moreover, the commercial software, Abaqus

(2011) is utilized to simulate the stiffened plate using the finite element (FE) method.

The results from the analytical model are compared to the FE model for validation;

there are also a couple of relevant experimental results that are used for comparison

purposes (Fok et al., 1976).

1.3.3 Thesis layout

The thesis comprises six further chapters:

Chapter 2 outlines the research problem in detail and contains a review of the litera-

ture. It focuses on large deflection theory for thin-walled structures, elastic analysis

of axially loaded stiffened plates, instability modes, approximate methods of analysis,

and relevant research works detailing previous analytical, numerical and experimental

research; some of which have already been mentioned.

Chapter 3 details an analytical model formulation based on variational principles
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for a perfect thin-walled stiffened panel subjected to axial compression. The devel-

oped equations are then solved numerically by the continuation and bifurcation soft-

ware Auto-07p (Doedel & Oldeman, 2011). The interaction phenomenon is between

global (Euler) buckling of whole stiffened plate and local buckling of the stiffener

leading to localized buckling in the stiffener. Detailed numerical results are presented

for an assumed plate geometry. It is worth noting that a rotational spring at the

main plate–stiffener junction represents a relative rigidity of the joint. By varying

the rotational stiffness parameter, investigations are conducted for a series of cases

ranging from a pinned to essentially a rigid joint between the stiffener and the main

plate.

Chapter 4 presents a detailed extension of the analytical model formulated in Chapter

3. The global buckling mode is considered to interact with local buckling of the

stiffener and the main plate. An initial imperfection, in terms of an out-of-straightness

of the global stiffened plate, is considered as well as initial out-of-plane imperfections

of the stiffeners and the main plate. The total potential energy is again developed.

Moreover, a link between the main plate deflection and the stiffener deflection is

established by assuming that the joint between the two elements is connected by a

rotational spring, which potentially allows the model to be compared against actual

experiments. The corresponding differential equations are again solved numerically

using Auto-07p and numerical results are presented.

The results for the imperfect case from the analytical model are then compared to

the FE model formulated in Abaqus in Chapter 5. Moreover, the analytical and the

FE models are compared against existing physical experimental results by Fok et al

(1976). Comparisons show excellent correlations for both cases.

A parametric study, to determine the effects of varying global and local slendernesses,

is presented in Chapter 6. The variation in the global and the local slenderness is
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achieved by varying the strut length and the height of the stiffener respectively for

different boundary conditions at the main plate–stiffener junction. Furthermore, im-

perfection sensitivity is studied by varying the imperfect amplitude of global buckling

of the strut as well as the initial local displacement of the stiffeners and the main

plate. The parametric regions for structural designers to avoid, are highlighted for

the examples presented.

Chapter 7 closes the thesis by presenting the conclusions and suggesting where further

work may be conducted to advance the current modelling work. It summarizes the

implications of the results. In addition, a preliminary formulation on the modelling of

lipped stiffened plates is outlined as a possible extension to the research presented.
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Literature review

The study of thin-walled structures is focused around the behaviour of the individual

plate elements that comprise the components. The first mathematical study of thin

plates was probably conducted by Euler, who presented a free vibration analysis of

such structures in 1776 (Webster & Plimpton, 1955). A decade later, various modes

of free vibration were discovered by a German physicist named Chladni. In 1795, Jo-

hann Bernoulli, the Swiss mathematician, attempted to justify Chladni’s findings and

Bernoulli’s solution became known as the now well-known “Euler–Bernoulli bending

theory”. In 1813, Germain, a French mathematician, developed a plate differential

equation by adding shear terms; subsequently, Lagrange, improved the equation by

adding more terms, thus presenting the general plate differential equation for the first

time (Ventsel & Krauthammer, 2001).

Cauchy and Poisson formulated the plate bending problem based on general equations

of the “theory of elasticity”. In 1829, Poisson developed the Germain–Lagrange plate

differential equation as the solution for a plate under static loading where the plate

flexural rigidity D, a measure of the plate bending stiffness, was considered as a con-

stant term. The first satisfactory concept for the theory of plate bending is associated
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with Navier, the French engineer and physicist (Forray, 1968), who considered a sim-

ply supported rectangular plate with thickness t as a function of flexural rigidity D.

An asymptotically exact method for calculating the deflections, stresses and strains

was investigated for uniformly loaded plates by introducing the loading as a double

Fourier series. Kirchhoff published an important thesis on the theory of thin plates

in 1850; later, in 1888, Love presented what become known as the Kirchhoff–Love

theory for plates (Bazant & Cedolin, 1991). The solution for rectangular plates, with

two opposite edges as simply-supported and the other two supports being arbitrary,

was successfully solved by Levy in the late 19th century by proposing a single Fourier

series solution.

Extensive studies in the area of plate bending theory and its various applications

were also made by Timoshenko (1915), Galerkin (1933), Woinowsky-Krieger (1959),

Hencky (1921), Huber (1929), von Kármán, et al (1932) and Nadai and Föppl (Ventsel

& Krauthammer, 2001). In addition, the behaviour of thin-walled structures has been

investigated by a large number of researchers since the 1930s (Cox, 1934). In this

chapter, after a brief overview of the elements of the theory of bending, a review

of some of the relevant literature associated with the stability analysis of elastic

thin-walled plated structures is presented. Moreover, the development of the theory

of general linear and nonlinear buckling is examined, followed by a survey of the

key phenomenological features of the nonlinear buckling of plated structures, mode

interaction, localized and cellular buckling, all of which are relevant in the current

study.

2.1 Plate bending

In the theory of bending, structures that are sufficiently slender are considered. A

structure is slender when the ratio of the length to the cross-section dimensions is
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sufficiently large, for practical purposes usually over approximately a ratio of 10:1

(Bazant & Cedolin, 1991). For such slender members, the Kirchhoff–Love theory

of bending represents a very good approximation to the exact solution according to

three-dimensional elasticity. Deformation of such structures gives stresses through

the structure that are assumed to be constant over time. Such systems are referred to

as “quasi-static” as inertial effects can be neglected (Wadee, 1998). The fundamental

assumptions of the linear, elastic, small-deflection theory of bending for thin plates

are summarized below (Ventsel & Krauthammer, 2001):

1. The plate material is elastic, isotropic and homogeneous.

2. The plate is initially flat.

3. The deflection of the mid-plane is small compared to the thickness of the plate.

4. The straight lines, initially normal to the mid-plane before bending, remain

straight and normal to the mid-plane during deformation.

5. The stress, normal to the mid-plane, is small compared to the other stress

components.

6. The mid-plane remains unstrained after bending since the displacements of the

plate are small.

2.1.1 Linearized (small deflection) plate theory

Small deflection theory was first suggested by Bernoulli in 1705 and systematically

developed by Navier in 1826. The Euler–Bernoulli beam theory (often termed en-

gineer’s beam theory) is based on the following fundamental hypothesis: (i) during

deflection, the plane normal to the mid-section of the beam remains plane and normal

to the deflected centroidal axis of the beam; (ii) the transverse normal stresses are

negligible; see Figure 2.1(a). Timoshenko (1921) improved upon the Euler–Bernoulli

theory by adding the effect of shear, whereby, the normal plane section rotates by an
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amount θ, which is not equal to dW/dz, as shown in Figure 2.1(b). The expression

dθ

dW

dz
z

(a) dθ =
dW

dz

dθ

z

dW

dz

(b) dθ 6= dW

dz

Figure 2.1: Outline of two theories of beam bending; (a) Euler–Bernoulli beam theory,

(b) Timoshenko beam theory: the dot-dashed lines represent the neutral axis of

bending and W is the global deflection.

for the bending moment is given by:

M = −

∫

A

σy dA, (2.1)

where A is the cross-section area of the beam and σ is the bending stress. Since the

definition of the second moment of area of the cross section I =
∫

y2 dA, the bending

moment about the neutral axis can be expressed as:

M =
EI

ρ
=
σI

y
, (2.2)

where E is the Young’s modulus, y is the perpendicular distance from the neutral

axis and ρ is the radius of curvature. By using the small rotation definition of curva-

ture, the Euler–Bernoulli equation for the quasi-static bending of slender, isotropic,

homogeneous beams under uniform bending is given thus:

−EI
d2

dz2
W (z) =M(z). (2.3)

For thin-walled plated structures, there are several theories of bending that attempt

to describe the deformation and stress distributions. The two most well-known are:
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the Kirchhoff–Love theory of plates (also termed classical plate theory), which is an

extension of Euler–Bernoulli beam theory for thin-walled structures, and the Mindlin–

Reissner plate theory (also termed the first-order shear deformation theory of plates).

The fundamental assumptions of Kirchhoff–Love theory are: (i) straight lines normal

to the mid-surface remain straight and normal to the mid-surface after deformation;

(ii) the thickness of the plate does not change during the deformation. However, in

Mindlin–Reissner theory the special assumption is that normals to the mid-surface

remain straight and inextensible but are not necessarily normal to the mid-surface

after deformation; hence it is the plate bending equivalent to the Timoshenko beam

theory.

Mx

Mxy

Mxy+
∂Mxy

∂x
dx

Mx+
∂Mx

∂x
dx

My

Myx

Myx+
∂Myx

∂y
dy

My+
∂My

∂y
dy

x

yz

(a)

x

∂w
∂x

y

z, w
∂w
∂x

∂
2w
∂x2

dx

(b)

Figure 2.2: (a) Bending (Mi) and twisting (Mij) moments of Kirchhoff–Love plates,

(b) differential element under cylindrical bending about the y axis for plate bending.

Consider an element of a thin rectangular homogeneous and isotropic plate of thick-

ness t with Young’s modulus E and Poisson’s ratio ν, under the bending and twisting

moments as shown in Figure 2.2(a). According to the definition for the stresses and

the strains in the x and y directions of the plate, taking moments about the neutral

axis give the following expressions for the bending moments Mx and My (per unit
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length) in the x and y directions respectively, thus:

Mx =

∫

t

σxz dz = −D

(

∂2w

∂x2
+ ν

∂2w

∂y2

)

,

My =

∫

t

σyz dz = −D

(

∂2w

∂y2
+ ν

∂2w

∂x2

)

, (2.4)

where D is the flexural rigidity of a plate, which corresponds to the quantity EI in

beams, and is defined as:

D =
Et3

12(1− ν2)
. (2.5)

Since the condition of plane stress is assumed (i.e. σz = τxy = τyz = 0), the expres-

sions of the twisting moments (per unit length) Mxy and Mxy are thus:

Mxy =Myx =

∫

t

τxyz dz = D(1− ν)
∂2w

∂x∂y
. (2.6)

2.1.2 Approximate methods of analysis

A large amount of research work was conducted to find a solution for the equation of

equilibrium for plates (Marguerre, 1937; Coan, 1951; Yamaki, 1959). An analytically

exact solution for plate bending problems with small deflections using classic methods

was proposed by both Navier and Levy. The problems were limited to relatively

simple plate geometries, load configurations, and boundary conditions. The simplest

differential equation for a plate, based on small deflections, was derived by Lagrange

in 1811 and then was developed by Navier in 1820. In 1883, Saint Venant modified

both equations by considering more loading terms, as expressed in Equation (2.7):

∂4w

∂x4
+

2∂4w

∂x2∂y2
+
∂4w

∂y4
=

1

D

[

q +Nx
∂2w

∂x2
+Ny

∂2w

∂y2
+ 2Nxy

∂2w

∂x∂y

]

, (2.7)

where q, Nx, Ny andNxy are forces denoting lateral (q), axial (Nx, Ny) and shear (Nxy)

external loading; note that q is a pressure and Nx, Ny and Nxy are forces per unit

length. Therefore, for more complicated loading and boundary conditions (Rhodes

& Harvey, 1971a; Rhodes & Harvey, 1971b), the classical analysis methods become
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increasingly difficult or even impossible to use. Hence, in such cases, approximate

methods are the only approaches that can be realistically employed for the solution

of practically important plate bending problems.

In this section, approximate methods, which are widely used for plate and shell bend-

ing analysis, are discussed. These approximate methods are divided into two groups:

indirect and direct (Ventsel & Krauthammer, 2001). Indirect methods are used to

obtain numerical values of unknown functions by, primarily, discretization of the

governing differential equation of the corresponding boundary value problem. Well-

known indirect methods include the Finite difference method, the Boundary colloca-

tion method, the Boundary element method and Galerkin’s method. Direct methods,

however, are based on the variational principles for determining numerical fields of

unknown functions (i.e. deflections, internal forces and moments). Two well-known

direct methods are the Finite element method and the Ritz (Energy) method.

Ritz (Energy) method

The energy method is based on the principle of minimum total potential energy V .

The total potential energy V is the summation of strain energy U and the work done

P∆. Note that the work done is negative, because the compressive stresses caused

by the load P act in the opposite direction to the movement and therefore causes a

loss in V :

V = U + (−P∆). (2.8)

To determine the equilibrium state, the first variation of total potential energy δV

must vanish for any small changes, hence:

δV = δU + δ(−P∆) = 0. (2.9)

The strain energy due to bending U in the x and y directions, dUx and dUy respec-
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tively, for the linear elastic case, are given by:

dUx =
1

2
Mx dy

(

−
∂2w

∂x2

)

,

dUy =
1

2
My dx

(

−
∂2w

∂y2

)

.

(2.10)

The component of strain energy due to the twisting moment Mxy is:

dUxy =
1

2
Mxy dy

(

∂2w

∂x∂y
dx

)

. (2.11)

By substituting the bending and twisting moments from Equations (2.4) and (2.6)

and integrating over the volume of the plate, the total strain energy stored in bending

is derived thus:

U =
D

2

∫

A

{(

∂2w

∂x2
+
∂2w

∂y2

)2

− 2(1− ν)

[

∂2w

∂x2
∂2w

∂y2
−

(

∂2w

∂x∂y

)2]}

dA, (2.12)

where D is the flexural rigidity of the plate as before and A is the total cross-sectional

area. The work done P∆ for a general plate problem where lateral loads q and shear

stresses τxy are possible, can be expressed as:

P∆ =

∫

A

{

wq +
t

2

[

σx

(

∂w

∂x

)2

+ σy

(

∂w

∂y

)2

+ 2τxy

(

∂w

∂x

)(

∂w

∂y

)]}

dA. (2.13)

The Ritz method then introduces a trial function for w and uses minimization tech-

niques to determine approximate equilibrium states.

Galerkin’s method

Galerkin’s method is an alternative to the Ritz method. In this method, an approx-

imate shape function w is substituted into the original equilibrium equation derived

in Equation (2.7) rather that the total potential energy V . Therefore, since w is not

precisely accurate, an error is introduced when using this method (Bulson, 1970).

The method minimizes the error in a similar way to the Ritz method.
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Finite difference method

The finite difference method is particularly useful for plates with mixed boundary

conditions or varying flexural rigidity. This method is an approximate numerical

procedure which is based on the use of an approximate expression for the deflec-

tion derivatives, that appear in the governing differential equation (Bulson, 1970).

The technique is to subdivide the plate, longitudinally and transversely into a grid

system, where the mesh size is the distance between adjacent grid lines, δx and δy

respectively. The first derivative is the slope at each point, which can be given as

the difference between adjacent deflections divided by the distance between them.

The higher derivatives can be defined in a similar way. Substitution into Equation

(2.7) gives the difference equation valid at each point in terms of the deflections at

the surrounding points. This can be applied to each point of the grid, resulting in

a system of linear equations that can be solved computationally with considerable

speed.

Finite element method

The finite element (FE) method has become widely used in recent years for finding

solutions for plate buckling problems (Crisfield, 1997). In this method, the plate is

divided into a number of elements joined only at specific nodes with shape functions

defining the relations between the nodes. Therefore, continuity and equilibrium are

established at these nodes (Bulson, 1970). Hence, there is no need to formulate the

governing partial differential equation formally. The advantage of the finite element

method is that it produces a matrix formulation for deflections as well as loading and

boundary conditions. This makes it suitable for use when programming by computer

and the results obtained from the FE method are commonly validated against ex-

perimental data (Becque, 2008; Becque & Rasmussen, 2009a; Becque & Rasmussen,
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2009b).

2.1.3 Nonlinear (large deflection) plate theory

Kirchhoff’s linear plate bending theory, is valid only for small deflections (i.e. w .

0.2t) (Ventsel & Krauthammer, 2001), where t is the thickness of the plate. The linear

theory ignores the straining of the middle surface of the plate and the corresponding

in-plane stresses are also neglected. Therefore, the applied load is only carried by

the bending action of the plates. However, if the magnitude of the lateral deflections

increases, the plate deflection is accompanied by significant stretching of the middle

surface, so-called “membrane” action. Therefore, in large deflection theory, a load

is carried by the combined mechanism of bending and membrane action. A classic

approach to the evaluation of the post-buckling behaviour of plates, based on large

deflection theory, was devised by von Kármán in 1910 (Timoshenko & Woinowsky-

Krieger, 1959). In this regard, the Airy stress function Φ(x, y) is introduced to define

the in-plane stresses in the system as follows:

Nx = t
∂2Φ

∂y2
, Ny = t

∂2Φ

∂x2
, Nxy = −t

∂2Φ

∂x∂y
. (2.14)

The corresponding critical buckling load PC and stresses σC can be evaluated from

exact methods, as well as the approximate methods for more complicated conditions,

as previously described. Given that an elastic flat plate can carry stresses higher

than σC due to the stretching of the mid-surface that is inherent in bending in two

orthogonal directions, the behaviour of a plate should be considered after the critical

bifurcation point, i.e. the so-called post-buckling response, where nonlinearities need

to be considered.
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2.1.4 Approximate methods for the post-buckling response

Approximate methods for nonlinear plate buckling problems focus on obtaining an

alternative form of the governing differential equation. In this regard, the nonlinear

version equation of equilibrium, Equation (2.7), can be formulated using the Energy

method, the Effective width method, and the Dynamic method (Ventsel & Krautham-

mer, 2001). More recently approximate methods for post-buckling response problems

have included such as the Finite strip method and Generalized beam theory. Some of

the more common approximate methods are outlined briefly below.

Energy method

The Energy method can be used to determine the behaviour beyond the bifurcation

point in the large deflection plate problems. To consider large deflections, the strain

energy component due to stretching of the mid-surface, the so-called ‘membrane en-

ergy’ Um is added to the original total strain energy U ; this can be calculated from

the expression below given a plane stress assumption:

Um =
t

2

∫

A

[σxεx + σyεy + τxyγxy] dA,

=
t

2

∫

A

[

E(ε2x + ε2y) +Gγ2xy
]

dA,

(2.15)

in which σx, σy, τxy represent the stresses in the middle surface of the plate due to

the in-plane forces. The total direct strains in the x and y directions, εx and εy

respectively and the shear strain within the xy plane, γxy, for an element on the

middle surface are given by:

εx =
∂u

∂x
+

1

2

(

∂w

∂y

)2

,

εy =
∂u

∂y
+

1

2

(

∂w

∂x

)2

,

γxy =
∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y
,

(2.16)
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where, u and v are the in-plane deflections in the x and y directions respectively and w

is the out-of-plane deflection of the plate as before. The key terms in Equation (2.16)

are each of the final terms, these are known as the von Kármán strain components.

The aforementioned Ritz method could then be used to calculate the post-buckling

equilibrium states.

Effective width

An early analysis of the actual post-buckling behaviour of axially loaded plates was

conducted by von Kármán et al. (1932). They suggested a simplified approach to

obtain an estimate for the ultimate load carried by the buckled plate, based on ex-

perimental observations. Consequently, they introduced the notion that the ultimate

buckling load of the plate Pu is carried exclusively by two strips of equal width, the

so-called effective width, located along the unloaded edges and therefore, the reduced

but positive post-buckling stiffness could be determined. This method was further

developed by Cox (1934) and Marguerre (1937) for different boundary conditions.

Consider a rectangular simply-supported plate subjected to compressive stresses in

one direction, Figure 2.3(a). Before the plate buckles, the compressive stresses are

uniformly distributed across the width b. However, after buckling (i.e. beyond the

critical bifurcation point) the distribution of stresses along the loaded edges becomes

progressively nonlinear, see Figure 2.3(b). Therefore, the stress distributions have a

minimum value at the centre, and a maximum at the vicinity of the plate edges. A

typical compressive stress distribution along the plate cross section is shown in Figure

2.3(c). Since the distribution of the compressive stresses depends on the boundary

conditions, for a uniform compressive stress, the stress distribution at both sides in

the vicinity of the plate edges are equal (i.e. be1 = be2 = be/2), as shown in Figure

2.3(d).
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Figure 2.3: Effective width approximation for the plate post-buckling stiffness; (a)

axially loaded and simply-supported rectangular plate with width b, length L and

thickness t; (b) ultimate stress distribution σ along the loaded edge; (c) a uniform

edge stress σED distribution at both sides in the vicinity of the plate edge (i.e. be1

and be2); (d) effective width concept where the central region is ignored. Note that

σav is the average ultimate stress.
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The effective width method can also be applied for stiffened plates with longitudinal

stiffeners, assuming the buckling stress distribution in the stiffener is the same as

in an effective portion of the plate (Ventsel & Krauthammer, 2001). Note that the

effective width in this case, is obtained by multiplying a slenderness reduction factor

λ̄p by the actual width of the plate b (EN1993, 2001). The effective width method is

still the preferred method of design in order to consider the effects of local buckling

in the buckling behaviour of thin walled, steel plated structures. In the Eurocode

for steel design (EN1993, 2001), the effective width is obtained for thin-walled plane

elements with and without stiffeners.

Finite Strip Method and Generalized Beam Theory

One of the more recent post-buckling analysis methods presented in the literature is

the finite strip method which forms the basis of the Direct Strength Method (DSM)

devised by Schafer and Peköz (1999). The finite strip method is often known as a

semi-analytical technique, which works for prismatic thin-walled structural elements.

This method differs from the finite element method in such a way that the struc-

tural element is only divided into a number of longitudinal strips, not transversely

(Graves Smith & Sridharan, 1978). The behaviour of each strip is then determined

using energy principles. A large number of numerical studies have been conducted to

investigate the buckling behaviour in various types of structural components, using

the finite strip method (Plank & Wittrick, 1974; Hancock, 1978; Sridharan & Peng,

1989).

Hancock (1981) used the finite strip method to study the local, distortional and

flexural-torsional buckling of I-beams, bent about their major axes. Graphs of buck-

ling load were presented for I-beams with different cross-sections about their major

axis. Hancock’s model has been found to provide a good prediction for the type of
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critical mode for I-beams with different lengths and cross-sectional dimensions, as

well as with lateral and torsional restraints. The distortional buckling behaviour in

lipped thin-walled sections has been investigated by Schafer (2002) also using the

finite strip method. Later, he provided a review of the development of this method

for cold-formed steel member design (Schafer, 2008).

Another well-known method of analysis for buckling instability problems is the so-

called Generalized Beam Theory (GBT) which is an extension to conventional en-

gineering beam theory (e.g. Euler–Bernoulli beam theory). It allows cross-section

distortion to be considered in the equation of equilibrium. GBT was first presented

by Schardt (1994). He continued the development of the basic theory at the Tech-

nical University of Darmstadt for almost three decades (Gell & Thompsson, 2013).

Later, this method was developed by Davies et al. (1994). This method is valid for

prismatic, open cross-sections and is capable of computing the contributions of each

deformation mode relative to the global displacement field (Davies et al., 1994). The

cross-section and member lengths are analysed separately, with each possible mode

of deformation analysed in turn as separate degrees of freedom, which reduces com-

putation time. The explicit DSM and GBT based software applications are few, but

a couple of examples are CUFSM (2010) and GBTUL (2011).

2.2 Nonlinear buckling of stiffened plates

The essential characteristic of buckling is that the load at which it occurs depends

primarily on the elastic modulus E and the cross-section properties, and it is almost

independent of the material strength. Stiffened panels have been widely used as

primary structural components for many structural systems subjected to compressive

stresses, and are vulnerable to different types of buckling phenomena. In the stability

analysis of stiffened plates, two basic types of buckling mode may be considered. One
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possible mode is a global buckling mode of the entire stiffened plate, a second one is

the local buckling of the stiffener or the main plate. Therefore, four largely recognized

forms of structural failure have been found in stiffened plates (Murray, 1973; Bonello

et al., 1993): (i) main plate induced global buckling; (ii) stiffener induced global

buckling; (iii) local buckling of the stiffener or the main plate and finally (iv) stiffener

tripping, which is associated with the plastic collapse of the stiffeners in a localized

mechanism.

(a) (b)

(c) (d)

Figure 2.4: Buckling modes of the stiffened plates; global buckling mode due to the

(a) stiffener, (b) main plate; (c) local buckling in the stiffener and the main plate; (d)

stiffener tripping.

Global buckling is often referred to as ‘Euler buckling’ and is characterized by simul-

taneous buckling of the stiffener and the main plate acting as one in single curvature.

This mode of instability is shown in Figure 2.4(a–b). Plate buckling is characterized

by buckling of the stiffener, possibly as well as with the main plate between the stiff-

eners, which results in the load redistribution from the main plate into the stiffeners.

This mode of instability is illustrated in Figure 2.4(c). Stiffener tripping, is the rota-
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tion of the stiffener about the main plate–stiffener junction followed by the formation

of a plastic mechanism; this mode of failure is illustrated in Figure 2.4(d). Failure

by tripping can be more catastrophic than failure by local buckling of the plate (i.e.

stiffeners or main plates), because it is associated with sudden plastic collapse in

conjunction with instability (Butler et al., 2000). Therefore, generous safety margins

exist against collapse triggered by yielding or tripping (Danielson et al., 1990).

A more economical design could potentially be obtained if local and global buckling

occur simultaneously at approximately the same stress level (Koiter, 1963). This,

however, is known to trigger the phenomenon known as interactive buckling and is

explained in more detail in Section §2.3. Later, Koiter and Pignataro (1976) presented

that the potential energy expression depends on the ratio of critical stresses for global

and local buckling (λE = σE/σl), where σE and σl are the global buckling and local

buckling critical stresses respectively. They also investigated that this energy depends

on one additional parameter that depends only on the cross-section properties. The

effect of magnitude and direction of applied uniform bending on the axial capacity

of stiffened plates, was also investigated by Bonello et al (1993). They compared

two alternative design approaches, namely an interaction equation and a method

based on the Perry–Robertson design equation (Trahair et al., 2008) compared with

experimental results for continuous stiffened plates under combined axial compression

and lateral pressure. In terms of design approaches, it is found that, the interaction

equation is more conservative than the Perry method.

2.2.1 Global buckling

Given that stiffened plates may buckle globally or locally, each of these types of

mode are now introduced in detail. The stability analysis of plates in terms of global

deflection, is qualitatively similar to the stability analysis of a strut (Timoshenko &

63



Chapter 2: Literature Review

Gere, 1961). The concept of stability of an elastic structure at which the equilibrium

bifurcates, was introduced by Euler (1744). He also provided the solution of the

critical load PC for columns with different boundary conditions and restraints. In fact,

the full nonlinear problem of an axially-loaded pin-ended thin strut, as represented

in Figure 2.5(a) was solved by Euler completely.

P

W(z)

ε

z

L

(a)

Q

P





PE

(b)

Figure 2.5: (a) Strut with flexural rigidity EI; (b) neutral equilibrium at Euler critical

load PE (small deflection assumption). The quantity Q represents the amplitude of

W , the buckling deflection profile.

If a conservative load P is applied and buckling begins to occur, the bending moment

in the deflected column is M = PW , where W is the out-of plane deflection. By

substituting the expression for bending moment into Equation (2.3), the governing

equation becomes:

EI
d2W

dz2
+ PW = 0, (2.17)

where EI is the flexural rigidity of the strut. This is a linear second order ordinary
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differential equation. According to the boundary conditions for a pin-ended strut

(i.e. W = 0 at x = 0,L), this equation has a trivial solution W = 0, but non-trivial

solutions exist and are defined as the linear eigenvalue solution:

Wn(z) = Q sin
nπz

L
, Pn =

n2π2EI

L2
, (2.18)

where n is an integer and Q is the amplitude of the lateral deflection. The lowest

critical load is associated with n = 1, the first eigenvalue, denoted as the well-known

Euler load PC = PE and is given by:

PE =
π2EI

L2
. (2.19)

The Euler load PE represents the buckling load only for perfect elastic columns in

a static and conservative system. The fundamental equilibrium path for lateral de-

flection W is equal to zero. However, once the load reaches the critical value PE,

the solution W = 0 loses stability and the strut has an equal probability to exhibit

positive or negative lateral displacement. This is shown by the load–deflection rela-

tionship sketch in Figure 2.5(b), which shows the relationship when small deflections

are assumed.

As mentioned earlier, linear theory is not valid during structural failure and therefore

the behaviour of the structure is nonlinear due to material (plasticity or large strains)

or geometric (large deflections or buckling) effects. The profile of the load-deflection

relationship after buckling is called post-buckling response. A general theory of the

initial post-buckling behaviour in bifurcation problems was devised and presented

by Koiter (1945) in his famous PhD thesis. The governing differential equations of

equilibrium were derived from minimizing a continuous nonlinear potential energy

functional V that was formulated over a domain S:

V =

∫

S

L dS, (2.20)

where L is similar to the Lagrangian function from dynamical systems theory (Fox,

1987; Hunt & Wadee, 1991). For equilibrium, the total potential energy V must be
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stationary and so the first variation of the total potential energy δV must be zero.

Koiter (1945) proved that: (i) the equilibrium at the critical state is stable if the load

P for the adjacent post-buckling equilibrium states is higher than the bifurcation load

PC and (ii) the equilibrium at the critical state of the perfect structure is unstable

if there exist adjacent post-buckling equilibrium states for which the load P is lower

than the critical load at the bifurcation point. This is shown in Figure 2.6. Thompson

Q

P



PC







Figure 2.6: Stable and unstable post-buckling equilibrium paths (load–deflection re-

lations). The graph shows the applied load P versus the modal amplitude Q; plates

are inherently stable, but shell structures tend to be unstable after buckling.

and Hunt, with parallel work from Sewell, developed Koiter’s study by applying the

total potential energy principles to a discretized system. This led to the development

of a systematic perturbation method for post-buckling analysis (Thompson & Hunt,

1973; Sewell, 1965). Therefore, the total potential energy V can be expressed in terms

of a system of discrete coordinates or modal amplitudes Qi as:

V = V (Q1, Q2, ..., Qi, ..., Qn), (2.21)

and then two axioms linking V to the equilibrium states and their stability could be

established:

Axiom 1. A stationary value of the total potential energy with respect to the

generalized coordinates is necessary and sufficient for the equilibrium of the system.
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Axiom 2. A complete relative minimum of the total potential energy with respect

to the generalized coordinates is necessary and sufficient for the stability of an equi-

librium state.

To determine the equilibrium state for a static system, the first derivative of V with

respect to the generalized coordinates Qi must be zero, and thus:

Vi =
∂V

∂Qi

= 0, (2.22)

then, to examine the stability of an equilibrium state, the second derivative of V with

respect to the generalized coordinates Qi must be calculated as below:

Vij =
∂2V

∂Qi∂Qj

, (2.23)

the equilibrium state being stable when the Hessian matrix Vij is positive-definite,

otherwise, the equilibrium state is unstable. The matrix becoming singular indicates

that the equilibrium state is critical, which defines a bifurcation point that triggers

a change in the equilibrium configuration and triggers the post-buckling response.

2.2.2 Local buckling

Local buckling of individual plates and within stiffened plates can either be within

the main plate buckling or the stiffener buckling. Returning to an axially loaded

rectangular plate shown in Figure 2.3(a). By considering the deflected shape for a

long, thin plate, the deflection function can be expressed as:

w(x, z) = A sin
mπz

L
sin

πx

b
, (2.24)
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therefore, the corresponding strain energy U , Equation (2.12) and the work-done P∆,

Equation (2.13), are given as:

U =
D

2

∫ L

0

∫ b

0

{(

∂2w

∂z2
+
∂2w

∂x2

)2

− 2(1− ν)

[

∂2w

∂z2
∂2w

∂x2
−

(

∂2w

∂z∂x

)2]}

dx dz,

=
Dπ4Lb

8
A2

(

m2

L2
+

1

b2

)2

,

P∆ =
t

2

∫ L

0

∫ b

0

σz

(

∂w

∂z

)2

dx dz,

=
σztm

2π2b

8L
A2.

(2.25)

According to the definition for the total potential energy V and applying the afore-

mentioned axioms, the critical stress σC is given by the following expression:

σC
l =

kpπ
2E

12(1− ν2)

(

t

b

)2

(2.26)

where the coefficient kp is related to the number of half sine waves along the plate

and is given by:

kp =

(

m

φ
+
φ

m

)2

, φ = L/b. (2.27)

The well-known kp versus φ curves for different values of m, can be plotted as shown

in Figure 2.7. This shows that long plates buckle in squares with kp → 4 for the

case of a simply supported long plate under uniaxial compression (Bulson, 1970).

Moreover, wide plates buckle with only one half sine wave along the length.

2.2.3 Initial imperfections and residual stresses

Since the nonlinear post-buckling behaviour of compression members is affected by

geometric nonlinearities, an extensive literature exists regarding actual measurements

of the magnitude and distribution of the initial imperfections and residual stresses

(Paik et al., 1999; Grondin et al., 1999; Sheikh et al., 2002). Initial imperfections and

the residual stresses can arise from the manufacturing and welding processes, as well
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Figure 2.7: Buckling load coefficient kp against the plate aspect ratio φ for a

uniaxially-loaded simply supported plates.

as from damage or corrosion. A general statistical distribution was introduced for the

magnitude of the imperfection parameter by Thompson (1967). In that work, asymp-

totic relationships were derived for the distribution of bifurcation loads. Small-scale

experiments on the elastic buckling of stiffened plates were also presented by Thomp-

son (1976); the nonlinear interaction between global and local modes of buckling was

examined, considering both global and local imperfections. Koiter (1976) showed

that, among the different bifurcations, the structures exhibiting asymmetric bifurca-

tions have much higher imperfection sensitivity than the unstable symmetric ones.

However, for an axially loaded plate in the elastic stable post-buckling range, the

plate is relatively insensitive to initial imperfections and any imperfection sensitivity

of the plate is usually associated with yielding (Wadee, 2000).

Thompson and Lewis (1972), calculated optimal designs of idealized columns with
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equally imperfect flanges and no column imperfections. They proposed that the im-

perfection sensitivity is fundamentally more severe for smaller deflections rather than

larger deflections (Thompson & Lewis, 1972; Koiter & Pignataro, 1976). In addition,

based on the Koiter’s general theory of elastic stability, (Koiter, 1963; Tvergaard,

1973a), it can be shown that a wide integrally stiffened panel under compression is

particularly imperfection-sensitive when buckling of the panel as a wide Euler column

and local buckling of the plate between the stiffeners, occur at the same critical stress.

Moreover, interaction between global (Euler) buckling and local buckling suggests

that failure would tend to localize into the centre (Hunt & Wadee, 1998). Regarding

this issue, amplitude modulation is a key feature of the interactive buckling mode

and finite element formulations for such structures have been presented (Sridharan &

Zeggane, 2001).

2.3 Mode interaction

It is commonly found in practice that structural components may exhibit more than

one buckling mode during the loading history. A very important aspect of stability of

stiffened plates, which is beyond the scope of thin-walled beam theory, is the nonlinear

interaction of local and global buckling. However, the design criterion of triggering

both modes simultaneously is questionable, as was first pointed out by Koiter (1969)

on the basis that local buckling may promote global failure and vice versa.

Although the behaviour of the individual buckling modes might be well understood,

when these buckling modes are triggered in combination, the behaviour of the system

is normally much more complex than when they are triggered individually (Budiansky,

1976). A major step towards a general theory for nonlinear interaction buckling

problems where one mode destabilizes another, is associated with Supple (1967).

The research work presented an elastic system with two degrees of freedom that
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exhibited symmetric bifurcations; equilibrium equations were derived for uncoupled

and coupled modes based on total potential energy principles. The total potential

energy V was a function of the load P and the deflection Qi, thus:

V = V (Qi, P ), (2.28)

where i = 1, 2. A perturbation scheme allowed the development of the equilibrium

equations for the doubly symmetric system, in a truncated form of a power series:

V11Q1 +
1

3!
(V1111Q

3
1 + 3V1122Q1Q

2
2) + δPV ′

11Q1 = 0,

V11Q2 +
1

3!
(V2222Q

3
2 + 3V1122Q2Q

2
1) + δPV ′

22Q2 = 0,
(2.29)

where a subscript i on V denotes partial differentiation of V with respect to the

corresponding generalized coordinate Qi; a prime on V denotes partial differentiation

of V with respect to P and δP is the incremental change in P from a known state

P = P0. For uncoupled modes (Q1 = 0 or Q2 = 0), Equation (2.29) simplified and it

was found that the system would exhibit a stable or unstable symmetric bifurcation

when Viiii > 0 and Viiii < 0 respectively. For coupled modes, a relationship between

Q1 and Q2 was obtained on eliminating δP from Equation (2.29), thus:

XQ2
1 + Y Q2

2 = −6V ′
11V

′
22∆P, (2.30)

where ∆P is the difference between the two critical values of P with X and Y being

coefficients given by the following expressions:

X = V ′
22V1111 − 3V ′

11V1122,

Y = V ′
22V1122 − 3V ′

11V2222.
(2.31)

It was found that the behaviour of the interacting modes is predominantly controlled

by the coefficients X and Y , where each can be positive or negative. Supple (1967)

summarized the solutions for various conditions of X, Y and ∆P . In general, for

∆P 6= 0, there are two types of solutions, represented by an ellipse and a hyperbola

in the Q1Q2 plane, as shown in Figure 2.8. The post-buckling stability for different
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Figure 2.8: Major forms of coupled solutions relating generalized coordinates in the

post-buckling range.

conditions of X, Y and ∆P was summarized into four theorems. The work high-

lighted an important feature such that the post-buckling behaviour from the coupled

instabilities can be unstable, even if individual modes exhibit a stable symmetric bi-

furcation. Parallel work was conducted by Chilver (1967) with the focus being on

both symmetric and asymmetric systems.

Various types of structural components that exhibit interactive buckling have been

studied analytically (Lundquist & Stowell, 1942a; Lundquist & Stowell, 1942b; van der

Neut, 1968; Croll & Walker, 1972; van der Neut, 1974; Koiter & Pignataro, 1976;

Goltermann & Møllmann, 1989; Møllmann & Goltermann, 1989; Hunt & Wadee,

1998; Butler et al., 2000). Williams and Wittrick (1971), produced numerical results

by matrix analysis, for buckling under uniform longitudinal compression of panels

with unflanged and flanged integral stiffeners and with Z-section stiffeners. Cylindri-

cal shells (Hutchinson & Koiter, 1970; Hunt et al., 1986) are perhaps the most efficient

load carriers, particularly in compression. They can exhibit the nonlinear interaction

between different buckling modes, leading to the classic localized diamond buckling

mode pattern (Lord et al., 1997; Yamaki, 1984). In addition, plated structures are

also susceptible to interactive buckling, such as I-section columns and beams (Han-
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cock, 1981; Menken et al., 1991; Wadee & Gardner, 2012), sandwich panels (Allen,

1969; Wadee & Hunt, 1998; Wadee et al., 2010) as shown in Figure 2.9, and stiffened

plates (Murray, 1973; van der Neut, 1976; Tvergaard & Needleman, 1976; Koiter &

Pignataro, 1976), where mode interaction often leads to localized buckling (Champ-

neys et al., 1999).

Perhaps the most classic piece of work on the interactive buckling of columns is

associated with van der Neut (1969). He studied the interaction of local and global

(Euler) buckling of an idealized thin-walled compression member, which comprised

two load carrying flanges with width b, thickness h and length L, and a web with depth

2c that was laterally rigid and had no longitudinal stiffness, as shown in Figure 2.10.

In the study, a perfect column and an imperfect one with an initial local deformation

in the flanges, as well as one with an initial out-of-straightness were investigated. The

stiffness reduction factor η was expressed as:

η =
d(P/Pl)

d(ε/εl)
(2.32)

where P and ε were the applied compressive force and the direct strain within the

flanges respectively. Note that the subscript l referred to the local buckling mode.

For a specific value of the flange width b and thickness h, the investigation examined

the impact of the column length L on the critical buckling mode and the stability of

the corresponding critical state, as is summarized in Table 2.1. The results in Table

2.1 are also illustrated by the classic van der Neut curves, as shown in Figure 2.10(b).

Note that K is the applied compression on the entire strut (as distinct from P ) with

KE and Kl being the Euler load and the local buckling critical load respectively.

The nonlinear interaction between global and local buckling modes is also found

commonly in sandwich structures (Hunt et al., 1988; Hunt & Wadee, 1998; Wadee,

1999). Such structures usually consist of two stiff face plates separated by a relatively

soft core material. In sandwich structures, for global buckling, the effect of shearing in

the core can be accounted for by decomposing the global half sine wave mode derived
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Figure 2.9: Examples of structural components exihibiting interactive buckling; (a)

photographs of an experimental specimen of a sandwich strut under axial compres-

sion (Wadee, 1999). From left to right: pre-buckling followed by global buckling and

subsequent interaction between global and local buckling modes leading to localiza-

tion; (b) equilibrium diagram for sandwich panels: (i) fundamental path; (ii) critical

path of global buckling triggered at critical bifurcation C; (iii) secondary path of

interactive buckling triggered at secondary bifurcation S; (iv) typical imperfect path

with limit load P I; (c) a reticulated or compound column with initial configuration

and the possible interactive buckling mode combining global and local modes; (d) a

cylindrical shell with the localized buckling pattern.
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Figure 2.10: The van der Neut (1969) column: (a) column cross-section and buckling

load Kb versus length L, (b) normalized column buckling load Kb/Kl versus KE/Kl,

showing the post-buckling characteristics.
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Category Column Length Critical mode Post-buckling characteristics

1 L ≥ L1 Euler buckling Neutral (approx)

2 L ≤ L2 Local buckling Neutral (approx)

3 L2 ≤ L ≤ L0 Local buckling Stable

4 L0 ≤ L ≤ L1 Local buckling Unstable

Table 2.1: Critical buckling modes and post-buckling characteristics for the column

length constraints in categories 1–4, Length L = L1 is the case where the local

buckling load and Euler buckling load are equal; L2 = η1/2L1; L0 = (2η/(1+η))1/2L1.

from Euler buckling with two generalized coordinates so-called ‘sway’ and ‘tilt’, as

shown in Figure 2.11. Based on linear theory, the sway component W (x) and the tilt

W(x)



θ(x)

y

x

y



Figure 2.11: Decomposed modes for global buckling of a sandwich panel.

component θ(x) can be expressed by (Hunt et al., 1988):

W (x) = qsL sin
πx

L
,

θ(x) = qtπ cos
πx

L
.

(2.33)

In addition, for local buckling, two modal contributions named ‘snake’ and ‘hourglass’

can be considered, as shown in Figure 2.12. The local mode in sandwich structures is a
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y

x

θN(x)

y

x

WH(x)





WN(x)

Figure 2.12: Decomposed modes for local buckling of a sandwich panel.

linear combination of snake (antisymmetric) and hourglass (symmetric) modes with

an associated wave number iπx/L; these two modes originated in Goodier (1946).

The lateral displacement W and the rotation of the plane section θ for the snake (N)

and hourglass (H) modes are thus:

WN(x) = a1
L

i
sin

iπx

L
,

θN(x) = a2π cos
iπx

L
,

WH(x) = a3
L

i
sin

iπx

L
,

(2.34)

where L is the panel length, and x is the longitudinal axis. Note that a1 is the ampli-

tude of snake component, a2 is the amplitude of tilt component of local snake and a3

is the amplitude of the hourglass component. Since, one face remains predominantly

straight, and the other face buckles periodically, a1 = a3 (Wadee, 1998). Hunt and

Wadee (1998) studied the interactive buckling behaviour in an axially loaded sand-

wich panel using a variational formulation. The approach also followed Timoshenko

beam theory since shear strain was found to be essential for the nonlinear interaction

between the global and the local buckling modes and buckle pattern localization was
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predicted for the first time.

The interactive buckling behaviour of stiffened panels was studied considering the

global (Euler) and local buckling modes of the stiffener (van der Neut, 1969; Murray,

1973; Koiter & Pignataro, 1976; Sridharan & Peng, 1989). Mode interaction in un-

symmetrical panel structures (i.e. a T-section stiffened plate) was investigated by van

der Neut (1976). It was suggested that in such panels, the plate side is more affected

by local buckling than the stiffener side. This effect is exaggeratedly represented in a

model where the stiffeners do not participate in local buckling. Therefore, it was indi-

cated that the sensitivity to imperfections of the model was restricted to a geometric

parameter R, where R = KE/Kl and is ratio of the Euler and the local buckling

loads. He proposed that this structure is strongly imperfection-sensitive in the case

of coincident loads of global and local buckling. In a parallel study, Tvergaard and

Needleman (1976), investigated the mode interaction and imperfection-sensitivity nu-

merically and focused on similar features. Sridharan and Peng (1989; 1991), presented

a theoretical formulation for an analytical model to study the nonlinear interaction

of the local and global instabilities of axially compressed stiffened plates and they

compared the results of their investigation with those given by Koiter and Pignataro

(1976), and Tvergaard, (1973a). More recently with the advent of modern compu-

tational facilities, the post-buckling phenomena for isotropic stiffened panels with

compression loading have been investigated using the FE method by Lillico et al

(2003). The model has been incorporated within the strip program,Vipasa, with

the constraint and optimization software, Viconopt, to design multi-bay stiffened

panels (Durban et al., 2001).

Very recently, Wadee and Gardner (2012) have studied the interaction of flange local

buckling and lateral torsional buckling in a thin-walled I-beam subjected to uniform

moment. A similarly variational approach was adopted as for the sandwich problem.

The equilibrium paths after the secondary bifurcation point showed the behaviour
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known as ‘cellular buckling’ (Hunt et al., 2000) or ‘snaking’ (Burke & Knobloch,

2007). This is the phenomenon where the equilibrium after the secondary bifurcation

undergoes a sequence of destabilizing and restabilizing processes, which is signified

by a sequence of limit points (sometimes snap-backs) on the equilibrium paths, as

sketched in Figure 2.13. Referring to the buckling modes, this phenomenon reflects
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Figure 2.13: A example of cellular buckling or snaking in the equilibrium path of a

structural system; PC is the critical buckling load and PM is the Maxwell load.

the progressively spreading waves in the structure, which was initially localized at

mid-span, as found in the work on sandwich struts. Such a phenomenon has been also

captured in cylindrical shell buckling (Hunt et al., 1999; Hunt et al., 2003) and in the

sandwich problem for certain core material nonlinearities (Hunt et al., 2000). These

systems are usually associated with the Maxwell load PM, where the load oscillates

about a fixed load PM as the deflection progresses, as shown in Figure 2.13, and

is associated with the eventual periodic profile of the post-buckling mode emerging

(Budd et al., 2001). Structural systems exhibiting localization, cellular buckling,

or snaking, exhibit what is normally considered to be dynamical systems behaviour

involving homoclinic and heteroclinic orbits in phase space (Woods & Champneys,

1999; van der Heijden et al., 2002; Chapman & Kozyreff, 2009; Taylor & Dawes,

2010), as sketched in Figure 2.14.
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(a) Periodic orbit
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(b) Homoclinic orbit
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(c) Heteroclinic orbit

Figure 2.14: Examples of different kinds of orbits in nonlinear dynamical systems,

where v and t represent displacement and time respectively. Dots represent the deriva-

tive of v with respect to t. Such solutions can also appear in nonlinear static systems in

terms of deflections and slopes. (a) Periodic orbits are found in stable post-buckling

systems such as compressed plates; (b) homoclinic orbits are found in systems ex-

hibiting localization; (c) heteroclinic orbits are found in systems exhibiting cellular

buckling.
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2.4 Numerical continuation with Auto

If the equations of equilibrium of a structure presented as a system of ordinary differ-

ential equations (ODEs) that are accompanied by a number of boundary conditions,

the system is known as a boundary-value problem (Seydel, 1994). Theoretically,

buckling is caused by a bifurcation in the solution of the equations of equilibrium and

post-buckling is defined as what happens after buckling has occurred. Mathemati-

cally, the post-buckling state describes the nonlinear behaviour of the system. There

is specific software available to solve the equations of such systems such as: Mat-

Cont (Dhooge et al., 2003), COCO (Dankowicz et al., 2011) and Auto-07p (Doedel

& Oldeman, 2011). These are collectively known as numerical continuation software.

Auto-07p is a member of a particular class of such software which is capable of

solving ODEs subjected to boundary and integral conditions and is used extensively

in the current study. The accuracy of Auto has been tested in the past by related

studies on nonlinear buckling phenomena and has been shown to be excellent (Lord

et al., 1997; Hunt & Wadee, 1998; Wadee & Hunt, 1998; Woods & Champneys, 1999;

Hunt et al., 1999; Hunt et al., 2000; Wadee & Gardner, 2012; Wadee & Bai, 2014).

It can also perform limited bifurcation analyses for algebraic systems and partial dif-

ferential equations (PDEs). Moreover, Auto-07p allows the user to vary the input

parameters and assess the evolution of obtained solutions on a parametric path. In

other words, the user is able to assess the equations for a range of values, rather than

just for a single value, which is the case for non-continuation solvers of ODEs. A

number of branching or bifurcation points may also exist in solving the differential

equations of equilibrium. Auto-07p has the ability to detect different types of bifur-

cating solutions on the evolution path. When solving ordinary differential equations

with bifurcating branches, the process of ‘branch switching’ means to evaluate one so-

lution that emerges on a new branch from a bifurcation point. This ‘first solution’ on

the emanating branch then serves as the starting point for subsequent tracing of the
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entire branch. Auto-07p and the other numerical continuation software mentioned

earlier are able to capture and switch between different bifurcating branches, while

generic non-continuation ODE solvers are usually unable to identify different branches

in the first place. In addition, compared to other ODE continuation solvers, Auto-

07p is computationally inexpensive to run. In contrast, MatCont and COCO are

integrated in Matlab (2010) and are both accessible through their Matlab GUIs

but are commensurately slower since they rely on the Matlab interpreter.

2.5 Numerical studies with Abaqus

Performing the structural analysis within the commercial FE code Abaqus (2011),

eigenvalue analysis is used to predict the buckling loads and the corresponding buck-

ling shapes (eigenmodes). The buckling load is generally used as a parameter in

determining the post-buckling strength of members. From the static FE viewpoint,

the eigenmode is used for describing the imperfection shape when the maximum am-

plitude of the imperfection is known but the distribution is not. Superposing multiple

buckling shapes may be used as the initial geometric imperfection to analyse various

mixed or interaction modes (Saito & Wadee, 2009). Another method is to use a

stochastic process to generate signals randomly for the geometric imperfection shape.

In addition, residual stresses can be also modelled as initial stress conditions where

the variations of the residual stress through the thickness are given explicitly along the

sections in the longitudinal direction of the member (Sarawit et al., 2003). Although,

to represent a true strength, it is desirable that the worst imperfection component is

analysed so that safe designs can be established.

After buckling occurs, nonlinear analysis is required to investigate the load–deflection

behaviour. When the loads are applied by means of prescribed displacements, and

no snap-back behaviour occurs, an incremental method (where proportional loads or
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displacements are applied) can be utilized. Numerical methods are inevitably em-

ployed to construct the equilibrium paths (load–displacement diagram). Incremental

methods are the most widely used to determine a successive equilibrium state along

the equilibrium path using an iterative procedure for a nonlinear system. The suc-

cessive state can correspond to an increment of loading P or to an increment of

displacement ∆, the corresponding methods respectively termed load control and

displacement control incremental methods (see Figure 2.15). In the load control in-







(a)







(b)





✁

 

 

(c)

Figure 2.15: Numerical incremental techniques to find the nonlinear equilibrium path

(load–displacement path): (a) Load control/Dead loading; (b) Displacement con-

trol/Rigid loading; (c) Arc-length method/modified Riks methods. Note that ∆s1

and ∆s2 are the arbitrary arclengths.

cremental method, Figure 2.15(a), equilibrium states are sought for various levels of

loading. The load control method, however, cannot be applied to traverse past a

limit point (where dP/d∆ = 0) on an equilibrium path, even if the incremental step

is reduced considerably. An alternative method, which deals with the limit point

case, is based on finding successive equilibrium states corresponding to prescribed

values of a displacement parameter; this method is referred to as the displacement

control incremental method, Figure 2.15(b). Starting from a known equilibrium state,

an unknown equilibrium state is sought for an increment in a displacement param-

eter; this usually stabilizes the structure unless there is snap-back present (where

d∆/dP = 0). In other cases, the modified Riks method (an arclength method where
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both loads and displacement are varied), Figure 2.15(c), can be used in order to be

able to detect and go beyond limit points (Riks, 1972). The latter two approaches are

effective in obtaining nonlinear static equilibrium states during the unstable phase

of the response. In addition, for all methods, geometric imperfections must also be

introduced to obtain some response in the buckling mode before the critical load is

reached. Since Abaqus has been used extensively for studying nonlinear buckling

problems successfully (Gardner & Nethercot, 2004a; Gardner & Nethercot, 2004b;

Becque & Rasmussen, 2009b; Wadee et al., 2010), it is used extensively in the current

work, particularly for validation studies.

2.6 Experimental studies

Over the past decades a large number of experimental works have been published

on the elastic behaviour of stiffened plates with small scale models. However, full-

scale experimental studies of stiffened plated structures are relatively scarce. The

physical tests by Murray (1973), Tulk and Walker (1976), Ghavami (1994) and Pan

and Louca (1999) are some of the studies regarding the buckling behaviour of stiffened

plates subjected to compression or bending. The more likely mode of failure in these

experimental studies were stiffener tripping or, initially, plate buckling. However, an

experimental study of a thin-walled stiffened plate conducted by Fok et al. (1976)

focused on the case where global buckling was critical. The study investigated the

effect of local elastic buckling of the stiffener outstands on the global behaviour of

the stiffened plate. A simplified mathematical model was also developed, based on

the post-buckling analysis of the stiffener. The imperfection sensitivity arising from

the interaction of the global and the local buckling modes was also studied. Two

specific small-scale tests with different lengths were presented. They also found that

while the interaction occurs, the load in the equilibrium path in the post-buckling
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stage reduces rapidly where the rate of unloading depended on the ratio of the local

critical load PC
l to the Euler (global buckling) load PE. Moreover, the effect of a local

imperfection in the stiffeners on the behaviour of the main plate was also investigated

by the same authors (Fok et al., 1977).

Grondin et al. (1999) conducted large-scale tests on twelve identical single stiffened

steel plate specimens that were 2000 mm long, under axial compression and combined

compression and lateral loads. The physical tests examined the behaviour of the struts

for three different conditions of restraint at the unloaded longitudinal edge: fully

restrained, free-end and the model with varying discrete restraints along the edge.

Initial imperfections and the residual stresses were also considered in the physical

experiments.

2.7 Concluding remarks

In the current study, a series of increasingly sophisticated models are presented that

account for interactive buckling in axially-loaded stiffened panels including the pos-

sibility of localized and cellular buckling. The models build on existing interactive

buckling work by developing a variational model based on elasticity theory to simulate

the interaction between a global Euler-type mode and a local mode of buckling. Par-

ticular attention has been given to panels that exhibit highly unstable post-buckling

behaviour. The models will be validated by FE models devised in Abaqus and

compared against appropriate physical experiments found in the literature.

The present chapter has reviewed some of the most important research works that

are relevant to the current research study. The development of plate theory was

followed by a brief outline of the relevant linear and nonlinear buckling theories.

Some classic works on the nonlinear interaction of different buckling modes in different
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structural components, were reviewed. The more relevant approximate methods were

also covered as was an outline of the numerical methods relevant to the study in

the subsequent chapters. Finally, some experimental studies were highlighted, in

particular, the experimental study by Fok et al (1976), the results from which will be

compared against in Chapter 5.
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Cellular buckling in a perfect

stiffened plate

The classic problem of a plated panel comprising a uniform flat plate stiffened by

several evenly spaced blade-type longitudinal stiffeners under axial compression, made

from a linear elastic material, is now studied. Under this type of loading, wide panels

with many stiffeners can be divided into several struts, each with a single stiffener.

These individual struts are primarily susceptible to a global (or overall) mode of

instability namely Euler buckling, where flexure about the axis parallel to the main

plate occurs once the theoretical global buckling load is reached. However, when the

individual plate elements of the strut cross-section, namely the main plate and the

stiffener, are relatively thin or slender, elastic local buckling of these may also occur;

if this happens in combination with the global instability, the resulting behaviour is

usually far more unstable than when the modes are triggered individually (Chilver,

1967; van der Neut, 1968; Thompson & Supple, 1973; Koiter & Pignataro, 1976;

Thompson & Hunt, 1984).

The development of a variational model is presented that accounts for the interaction
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between the global Euler buckling mode and the local buckling mode of the stiffener,

such that the perfect elastic post-buckling response can be evaluated. At this stage, it

is assumed that local buckling of the main plate does not occur. A system of nonlinear

ordinary differential equations subject to integral constraints is derived and solved

using the numerical continuation package Auto-07p (Doedel & Oldeman, 2011). It is

indeed found that the system is highly unstable when interactive buckling is triggered;

snap-backs in the response show a sequence of destabilization and restabilization that

gives a progressive spreading of the initial localized buckling mode.

This latter type of response has become known in the literature as cellular buckling

(Hunt et al., 2000) or snaking (Burke & Knobloch, 2007) and it is shown to appear

naturally in the current numerical results. This effect is particularly strong where

the rotational restraint provided at the joint between the main plate and the stiffener

is negligible. As far as the author is aware, this is the first time this phenomenon

has been found analytically in stiffened plates undergoing Euler and local buckling

simultaneously. Similar behaviour has been discovered in various other mechanical

systems such as in the post-buckling of cylindrical shells (Hunt et al., 2003) and the

sequential folding of geological layers (Wadee & Edmunds, 2005). More recently it

has also been found in the lateral buckling of thin-walled beams (Wadee & Gardner,

2012) and the flexural buckling of thin-walled columns (Wadee & Bai, 2014) both with

characteristic I-sections. Moreover, cellular buckling has been captured in physical

tests for some closely related structures that suffer from local–global mode interaction

(Becque & Rasmussen, 2009a; Wadee & Gardner, 2012); it is revealed by the buckling

elements exhibiting a continuously varying deformation wavelength. However, by

increasing the rotational stiffness of the aforementioned joint, the snap-backs that

characterize cellular buckling, can be moderated and the equilibrium path then shows

an initially smoother response with the snap-backs appearing later in the interactive

buckling process.
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3.1 Analytical Model

Consider a thin-walled simply-supported plated panel that has uniformly spaced stiff-

eners above and below the main plate, as shown in Figure 3.1, with the associated

coordinate system, where the panel length is L and the spacing between the stiffeners

is b. The panel is made from a linear elastic, homogeneous and isotropic material

with Young’s modulus E, Poisson’s ratio ν and shear modulus G = E/[2(1 + ν)].

Simply-supported stiffened panel:

b

Focus on this portion

L

Figure 3.1: Simply-supported stiffened panel of length L.

According to Figure 2.7 for wide plates, the aspect ratio φ→ 0 and therefore the local

critical stresses calculated from Equation (2.26) reduces to the following equation

which shows that the buckling of a wide plate is governed by the plate length only

and not the width:

σC =
π2E

12(1− ν2)(L/t)2
. (3.1)

A portion of the panel that is representative of its entirety can therefore be isolated

as a strut, as shown in Figure 3.1, since the transverse bending curvature of the panel

during buckling would be relatively small, particularly if L ≪ nsb, where ns is the
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P Neutral axis of bending
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Figure 3.2: (a) Cross-section and (b) elevation of the representative panel portion

compressed by a force P applied to the centroid.

number of stiffeners in the panel. The main plate (width b and thickness tp) has upper

and lower stiffeners (heights h1 and h2 respectively with equal thickness ts) connected

to it, as shown in Figure 3.2(a). The strut is loaded by an axial force P that is applied

to the centroid of the cross-section, shown in Figure 3.2(b). Although the model is

formulated for the general case with stiffeners on both sides of the main plate, the

numerical results focus on the practically significant case where the stiffeners are only

connected to one side of the panel, i.e. where h2 = tp/2.

3.1.1 Modal descriptions

In the current work, the geometries are chosen such that global buckling about the

x-axis is the first instability mode encountered by the strut, before any local buckling

in the main plate or stiffener occurs. The formulation for global buckling is based on

small deflection assumptions, since it is well known that it has an approximately flat

(or weakly stable) post-buckling response (Thompson & Hunt, 1973). The study is

primarily concerned with global buckling forcing the stiffener to buckle locally shortly

after or even simultaneously. It has been shown in several works (Hunt & Wadee,
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z
y W(z)

Sway mode:

(a)

z
y θ(z)

Tilt mode:

(b)

Figure 3.3: (a) Sway and (b) tilt components of the strong axis global buckling mode.

1998; Wadee et al., 2010; Wadee & Gardner, 2012; Wadee & Bai, 2014) that shear

strains need to be included to model the local–global mode interaction analytically.

For thin-walled components, rather than, for instance, soft core materials used in

sandwich structures (Wadee et al., 2010), Timoshenko beam theory gives sufficiently

accurate results (Wadee & Gardner, 2012). This can be applied to global flexural

buckling within the framework of two degrees of freedom, known as “sway” and “tilt”

in the literature (Hunt et al., 1988; Hunt & Wadee, 1998). These are associated with

functions describing the global lateral displacement W and the angle of inclination θ

respectively defining the appropriate kinematics, as shown in Figure 3.3(a–b). From

linear theory, it can be shown that W (z) and θ(z) can be represented by the following

expressions:

W (z) = −qsL sin
πz

L
, θ(z) = qtπ cos

πz

L
, (3.2)

where the signs of qs and qt in W (z) and θ(z) are representative of a “right-hand”

coordinate system. The quantities qs and qt are the generalized coordinates of the

sway and tilt components of global buckling respectively. The corresponding shear

strain γyz during bending is given by the following expression:
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γyz =
dW

dz
+ θ = − (qs − qt) π cos

πz

L
, (3.3)

of course if standard Euler–Bernoulli bending were used, then γyz would be zero and

qs would be equal to qt. The initial global buckling displacement puts the stiffener into

extra compression and it therefore becomes vulnerable to local buckling. The direction

of global buckling is therefore crucially important; if the stiffener goes into extra

compression and buckles locally, it can lead to catastrophic failure of the panel (Butler

et al., 2000), where excessive deflection can lead to a plastic collapse mechanism within

the stiffener, leading to the so-called tripping phenomenon (Ronalds, 1989). Figure

3.4 shows this mode of failure. Plastic hinges occur at the outstand of the stiffener

primarily due to the local buckles, causing overstressing of the extreme fibres.

M

P

M

P

Figure 3.4: Plastic mechanism; “tripping” mode in a stiffener.

The stiffener is taken to be a flat plate (blade-type) throughout the current study. The

local kinematics of the stiffener require careful consideration. A linear distribution in

y for the local in-plane displacement u(y, z) is assumed owing to the application of

Timoshenko beam theory. The tips of the stiffeners have free edges but a rotational

spring with stiffness cp is included to model the resistance to rotation about the

z-axis that the joint provides between the stiffeners and the main plate. Hence, if

cp = 0, the stiffeners are effectively pinned with the main plate. In the generic

case (cp > 0), however, the assumed out-of-plane displacement along the width of

the stiffener ws(y, z) can be approximated by a function that is a summation of
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trigonometric and polynomial terms. Figure 3.5 shows the form of the functions w

y

ws(y,z)

y

x

(a)

cp

x

(b)

u(h1-y,0) u(h1-y,L)
y

(c)

Figure 3.5: (a) Local out-of-plane displacement ws(y, z); (b) a pinned connection

with an additional rotational spring of stiffness cp to model joint fixity; (c) the local

in-plane displacement u(y, z).

and u with the algebraic expressions being given thus:

u(y, z) = Y (y)u(z), ws(y, z) = f(y)w(z), (3.4)

where Y (y) = (y + ȳ)/h1 and

f(y) = B0 +B1Y +B2Y
2 +B3Y

3 + B4 sin (πY ) , (3.5)

with B0, B1, B2, B3 and B4 being constants evaluated by solving for the appropriate

boundary conditions of the stiffener. The choice of shape reflects the possibility of

the slope at the junction between the main plate and the stiffener being small in the

less compressed zone of the stiffener. For y = −ȳ, at the junction between stiffener

and the main plate, the conditions are:

ws(−ȳ, z) = 0, Ds
∂2

∂y2
ws(−ȳ, z) = cp

∂

∂y
ws(−ȳ, z), (3.6)

and for y = h1 − ȳ, the free-end, the conditions are:

Ds
∂2

∂y2
ws(h1 − ȳ, z) = 0, Ds

∂3

∂y3
ws(h1 − ȳ, z) = 0, (3.7)
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where ȳ is the location of the neutral-axis of bending measured from the centre line of

the main plate, which is calculated using the standard method by equating the first

moments of area:

Aȳ =
ns
∑

m=1

Amȳm

⇒ ȳ =
ts [h

2
1 − h22]

2 [(b− ts) tp + (h1 + h2) ts]
.

(3.8)

In this case, A is the cross-section area of one portion of the stiffened plate, which in

total is divided into ns elements. By applying the boundary conditions, the function

for the deflected shape of the stiffener ws(y, z) is found to be:

ws(y, z) =

{

Y − S4
π3

6

[

2Y − 3Y 2 + Y 3 −
6

π3
sin (πY )

]}

w(z), (3.9)

where:

S4 =
{

π
[

(Dsπ
2)/(cph1) + π2/3− 1

]}−1
. (3.10)

3.1.2 Total Potential Energy

The governing equations of equilibrium are derived from variational principles by

minimizing the total potential energy V of the system. The total potential energy

comprises the contributions of global and local strain energies of bending, Ubo and Ubl

respectively, the strain energy stored in the “membrane” of the stiffener Um arising

from axial and shear stresses, and the work done by the external load PE . The

global bending energy accounts for the main plate and is hence given by the standard

expression (Thompson & Hunt, 1973):

Ubo =
1

2
EIp

∫ L

0

Ẅ 2 dz =
1

2
EIp

∫ L

0

q2s
π4

L2
sin2 πz

L
dz, (3.11)
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where dots represent differentiation with respect to z and Ip = (b − ts)t
3
p/12 + (b −

ts)tpȳ
2 is the second moment of area of the main plate about the global x-axis. The

local bending energy Ubl, accounting for the stiffener only, is given by the standard

expression (Allen & Bulson, 1980), thus:

Ubl =
Ds

2

∫ L

0

∫ h1−ȳ

−ȳ

{

[

∂2ws

∂z2
+
∂2ws

∂y2

]2

− 2 (1− ν)

[

∂2ws

∂z2
∂2ws

∂y2
−

(

∂2ws

∂z∂y

)2
]}

dy dz,

=
Ds

2

∫ L

0

[

{f 2}yẅ
2 +

{

f ′′2
}

y
w2 + 2ν

{

ff ′′
}

y
wẅ + 2(1− ν)

{

f ′2
}

y
ẇ2

]

dz,

(3.12)

where primes denote differentiation with respect to y, Ds is the plate flexural rigidity

given by Et3s/[12(1−ν
2)] and the terms in braces, such as {F (y)}y are definite integrals

thus:

{F (y)}y =

∫ h1−ȳ

−ȳ

F (y) dy. (3.13)

Here, F (y) is an example function that is integrated with respect to y for the depth of

the buckling stiffener. The compressive side of the panel only contributes to the local

bending energy once global buckling occurs. The membrane energy Um is derived from

considering direct strains (ε) and shear strains (γ) in the stiffener. The longitudinal

strain εz has to be modelled separately for the top and the bottom stiffener. Note

that the tilt component of the in-plane displacement from the global mode is given

by ut = yθ; hence:

εz,global =
∂ut
∂z

= −yqt
π2

L
sin

πz

L
. (3.14)

The local mode contribution is based on von Kármán plate theory (Bulson, 1970).

A purely in-plane compressive strain ∆ is also included. Assuming that b is much

larger than both tp and ts, the value of ȳ is relatively small. The direct strain for the

main plate is given by: εzp = −∆. The combined expressions for the direct strains

for the top and bottom stiffeners εzt and εzb respectively, including local and global
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buckling, are:

εzt = −y qt
π2

L
sin

πz

L
−∆+

∂u

∂z
+

1

2

(

∂ws

∂z

)2

,

= −y qt
π2

L
sin

πz

L
−∆+ Y u̇+

1

2
{f 2}yẇ

2,

εzb = −y qt
π2

L
sin

πz

L
−∆.

(3.15)

This assumes of course that only the upper stiffener is susceptible to local buckling.

The complete expression for the membrane strain energy Um is given by:

Um = Ud + Us

=
1

2

∫ L

0

∫ ts/2

−ts/2

[
∫ h1−ȳ

−ȳ

(

Eε2zt +Gγ2yzt
)

dy +

∫ −ȳ

−(h2+ȳ)

(

Eε2zb +Gγ2yzb
)

dy

]

dx dz,

(3.16)

where Ud is the contribution from direct strains, which is given by the terms multiplied

by the Young’s modulus E; whereas Us, the contribution arising from the shear

strains, is given by the terms multiplied by the shear modulus G. The transverse

component of the strain εy is neglected since it has been shown that it has no effect on

the post-buckling stiffness of a long plate with three simply-supported edges and one

free edge (Koiter & Pignataro, 1976). The total direct strain energy Ud is therefore:

Ud =
1

2
Ets

∫ L

0

{

1

3

[

(h1 − ȳ)3 + (h2 + ȳ)3
]

q2t
π4

L2
sin2 πz

L
+∆2 (h1 + h2)

+
[

(h1 − ȳ)2 − (h2 + ȳ)2
]

∆qt
π2

L
sin

πz

L

+ h1

[

1

3
u̇2 +

1

4h1
{f 4}yẇ

4 +

{

Y f 2

h1

}

y

u̇ẇ2

]

− qt
h1π

2

L
sin

πz

L

[(

2

3
h1 − ȳ

)

u̇+
1

h1
{yf 2}yẇ

2

]

− h1∆

[

u̇+
1

h1
{f 2}yẇ

2

]

+

(

tp
ts

)

(b− ts)∆
2

}

dz.

(3.17)

The shear strain energy Us requires the shear strain γyz, which is also modelled

separately for the compression and the tension side of the stiffeners. The general
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expression for the shear strain γyzi in the stiffeners is thus:

γyzi =
dW

dz
+ θ +

∂u

∂y
+
∂ws

∂z

∂ws

∂y
, (3.18)

and the expressions for the top and bottom stiffeners are given respectively:

γyzt = − (qs − qt) π cos
πz

L
+

u

h1
+
{

ff ′
}

y
(wẇ),

γyzb = − (qs − qt) π cos
πz

L
.

(3.19)

The expression for Us is therefore:

Us =
1

2
Gts

∫ L

0

{

(qs − qt)
2 π2 cos2

πz

L
(h1 + h2)

+
1

h1

[

u2 + h1
{

(ff ′)
2}

y
(wẇ)2 + 2

{

ff ′
}

y
(uwẇ)

]

− (qs − qt)

[

2u+ 2
{

ff ′
}

y
(wẇ)

]

π cos
πz

L

}

dz.

(3.20)

The strain energy stored in the rotational spring connecting the stiffeners to the main

plate is:

Usp =
1

2
cp

∫ L

0

{

∂

∂y
ws(−ȳ, z)

}2

dz =
1

2
cp

∫ L

0

[f ′2(−ȳ)] w2 dz, (3.21)

where F (−ȳ) means that the example function F is evaluated at y = −ȳ. The final

component to be identified is the work done by the axial load P , which is given by:

PE =
P

2

∫ L

0

[

2∆ + q2sπ
2 cos2

πz

L
− 2

(

h2 + ȳ

h1 + h2

)

u̇

]

dz, (3.22)

where the end-shortening E comprises components from pure squash and sway from

global buckling combined with the local buckling of the stiffener respectively. The

total potential energy V is given by the summation of all the strain energy terms

minus the work done, thus:

V = Ubo + Ubl + Um + Usp − PE . (3.23)
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3.1.3 Variational Formulation

The governing equilibrium equations are obtained by performing the calculus of vari-

ations on the total potential energy V following a well established procedure that has

been detailed in Hunt and Wadee (1998). The integrand of the total potential energy

V can be expressed as the Lagrangian (L) of the form:

V =

∫ L

0

L (ẅ, ẇ, w, u̇, u, z) dz. (3.24)

The first variation of V is given by:

δV =

∫ L

0

[

∂L

∂ẅ
δẅ +

∂L

∂ẇ
δẇ +

∂L

∂w
δw +

∂L

∂u̇
δu̇+

∂L

∂u
δu

]

dz; (3.25)

to determine the equilibrium states, V must be stationary, hence the first variation δV

must vanish for any small change in w and u. Since, δẅ = d(δẇ)/ dz, δẇ = d(δw)/ dz

and similarly δu̇ = d(δu)/ dz, integration by parts allows δV to be expressed in terms

of δw and δu only. This process develops the Euler–Lagrange equations for w and u;

these comprise a fourth-order and a second-order nonlinear differential equation for

w and u respectively. Differentiating the Lagrangian L partially with respect to the

corresponding parameters gives the following expression for δV :
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δV =

∫ L

0

{

Ds

[

{f 2}yẅ + ν{ff ′′}yw

]}

δẅ

+

{

Ds

[

2 (1− ν) {f ′2}yẇ

]

+
1

2
Ets

[

{f 4}yẇ
3 + 2{Y f 2}yẇu̇− 2∆{f 2}yẇ

−qt
π2

L
sin

(πz

L

)

]

+Gts

[

{(ff ′)2}yw
2ẇ +

1

h1
{ff ′}ywu

− (qs − qt) π cos
(πz

L

)

{ff ′}yw

}

δẇ

+

{

Ds

[

{f ′′2}yw + ν{ff ′′}yẅ

]

+Gts

[

{(ff ′)2}ywẇ
2 +

1

h1
{ff ′}yẇu

− (qs − qt) π cos
(πz

L

)

{ff ′}yẇ

]

+ cpf
′(−ȳ)2w

}

δw

+

{

1

2
Etsh1

[

2

3
u̇−∆− qt

π2

L
sin

(πz

L

)

(2h1/3− ȳ)

]

−
h2 + ȳ

h1 + h2
P

}

δu̇

+

{

Gts

[

1

h1
u+

1

h1
{ff ′}ywẇ − (qs − qt) π cos

(πz

L

)

]}

δu dz.

(3.26)

Integrating by parts with respect to z, gives the following expression for δV :
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δV =

{

Ds

[

{f 2}yẅ + ν{ff ′′}yw

]}L

0

δẇ

−

{

Ds

[

{f 2}y
...
w + ν{ff ′′}yẇ + 2 (1− ν) {f ′2}yẇ

]

+
1

2
Ets

[

{f 4}yẇ
3 + 2{Y f 2}yẇu̇− 2∆{f 2}yẇ − qt

π2

L
sin

(πz

L

)

]

+Gts

[

{(ff ′)2}yw
2ẇ +

1

h1
{ff ′}ywu− (qs − qt) π cos

(πz

L

)

{ff ′}yw

]}L

0

δw

+

{

1

2
Etsh1

[

2

3
u̇−∆− qt

π2

L
sin

(πz

L

)

(2h1/3− ȳ)

]

−
h2 + ȳ

h1 + h2
P

}L

0

δu

+

∫ L

0

{

Ds

[

{f 2}y
....
w + 2ν{ff ′′}yẅ − 2 (1− ν) {f ′2}yẅ + {f ′′2}yw

]

−
1

2
Ets

[

{f 4}y(3ẇ
2ẅ) + 2{Y f 2}y(ẅu̇+ ẇü)− 2∆{f 2}yẅ − qt

π3

L2
cos

(πz

L

)

]

−Gts

[

{(ff ′)2}y(wẇ
2 + w2ẅ) +

1

h1
{ff ′}ywu̇

+ (qs − qt)
π2

L
{ff ′}y sin

(πz

L

)

w

]

+ cpf
′(−ȳ)2w

}

δw dz

+

∫ L

0

{

1

2
Etsh1

[

−
2

3
ü+ qt

π3

L2
cos

(πz

L

)

(2h1/3− ȳ)

]

−Gts

[

1

h1
u+

1

h1
{ff ′}ywẇ − (qs − qt) π cos

(πz

L

)

]}

δu dz.

(3.27)

The variables are now rescaled with respect to the non-dimensional spatial coordinate

z̃, defined as z̃ = 2z/L. Similarly, non-dimensional out-of-plane and in-plane displace-

ments w̃ and ũ are defined with the scalings 2w/L and 2u/L respectively. Note that

the scalings exploit symmetry about the midspan and the equations are hence solved

for half the strut length; this assumption has been shown to be acceptable for cases

where global buckling is critical (Wadee, 2000) as well as for the cases where local

buckling is critical and L is much larger than the local buckling wavelength. The

non-dimensional differential equations are thus:
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˜....w +
L2

2{f 2}y

[

ν {ff ′′}y − (1− ν)
{

f ′2
}

y

]

˜̈w + k̃w̃ − D̃

[

{f 4}y
{f 2}y

(

3 ˜̇w2 ˜̈w
)

+
{2Y f 2}y
{f 2}y

(

˜̈u ˜̇w + ˜̈w ˜̇u
)

− 2∆ ˜̈w − 2 qt
π2

L

{yf 2}y
{f 2}y

(

sin
πz̃

2
˜̈w +

π

2
cos

πz̃

2
˜̇w

)

]

−
G̃L2w̃

2 {f 2}y

[

{

(ff ′)
2
}

y

(

˜̇w2 + w̃ ˜̈w
)

+
1

h1
{ff ′}y

˜̇u+ (qs − qt) π
2 {ff ′}y sin

πz̃

2

]

= 0,

(3.28)

˜̈u−
3

4

G̃

D̃
ψ

{

ψ
[

ũ+ {ff ′}y
(

w̃ ˜̇w
)

]

− 2π (qs − qt) cos
πz̃

2

}

−

{

3Y

h1
f 2

}

y

(

˜̇w ˜̈w
)

+
1

2
qtπ

3

(

ψ −
3ȳ

2L

)

cos
πz̃

2
= 0,

(3.29)

where the rescaled quantities are:

D̃ = EtsL
2/8Ds, G̃ = GtsL

2/8Ds, k̃ =
L4

16 {f 2}y

[

{

f ′′2
}

y
+ cpf

′2(−ȳ)/Ds

]

,

(3.30)

with ψ = L/h1 and f ′2(−ȳ) is as described previously. Equilibrium also requires the

minimization of the total potential energy with respect to the generalized coordinates

∆, qs and qt leading to the three integral equations in nondimensional form:

∂V

∂∆
= ∆

[

1 +
h2
h1

+
tp(b− ts)

ts

]

−
P

Etsh1
+ qt

π

h1L

[

(h1 − ȳ)2 − (h2 + ȳ)2
]

−
1

4

∫ 2

0

[

˜̇u+
1

h1

{

f 2
}

y

(

˜̇w2
)

]

dz̃ = 0,

∂V

∂qs
= π2qs + s̃ (qs − qt)−

PL2

EIp
qs −

s̃φ̃

2π

∫ 2

0

cos
πz̃

2

[

ũ+ {ff ′}y
(

w̃ ˜̇w
)

]

dz̃ = 0,

∂V

∂qt
= π2qt + Γ̃3∆− t̃ (qs − qt)−

1

2

∫ 2

0

{

sin
πz̃

2

[

Γ̃1
˜̇u+ Γ̃2

(

˜̇w2
)

]

−
t̃φ̃

π
cos

πz̃

L

[

ũ+ {ff ′}y
(

w̃ ˜̇w
)

]

}

dz̃ = 0,

(3.31)
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where the rescaled quantities are:

Γ̃1 =
Lh1 (2h1 − 3ȳ)

(h1 − ȳ)3 + (h2 + ȳ)3
, Γ̃2 =

3L {yf 2}y

(h1 − ȳ)3 + (h2 + ȳ)3
,

Γ̃3 =
6L

[

(h1 − ȳ)2 − (h2 + ȳ)2
]

π
[

(h1 − ȳ)3 + (h2 + ȳ)3
] , φ̃ =

L

h1 + h2
,

s̃ =
Gts(h1 + h2)L

2

EIp
, t̃ =

3GL2(h1 + h2)

E
[

(h1 − ȳ)3 + (h2 + ȳ)3
] .

(3.32)

Since the strut is an integral member, the relationships in Equation (3.31) provide

a mathematical link between qs and qt before any interactive buckling occurs, i.e.

when w = u = 0. The boundary conditions for w̃ and ũ and their derivatives are for

simply-supported conditions at z̃ = 0 and for symmetry conditions at z̃ = 1:

w̃(0) = ˜̈w(0) = ˜̇w(1) =
.̃..
w(1) = ũ(1) = 0, (3.33)

with a further condition from matching the in-plane strain:

1

3
˜̇u(0) +

1

2

{

Y

h1
f 2

}

y

˜̇w2(0)−
1

2
∆ +

P

Etsh1

(

h2 + ȳ

h1 + h2

)

= 0. (3.34)

This final condition is derived from the term outside the integral and multiplied by δu

in the expression for δV in Equation (3.27). It is also worth noting that the terms in

braces in Equations (3.28)–(3.34) are integrated with respect to the original definition

of y.

Linear eigenvalue analysis for the perfect strut (qs0 = qt0 = A0 = 0) is conducted to

determine the critical load for global buckling PC
o . By considering the Hessian matrix

Vij, thus:

Vij =





∂2V
∂q2s

∂2V
∂qs∂qt

∂2V
∂qt∂qs

∂2V
∂q2t



 (3.35)

at the critical load, with the pre-buckling condition qs = qt = w = u = 0, the matrix

is singular. Hence, the critical load for global buckling is:

PC
o =

π2EIp
L2

[

1 +
s̃

π2 + t̃

]

. (3.36)
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If the limit G→ ∞ is taken, a primary assumption in Euler–Bernoulli bending theory,

PC
o reduces to the expected classical Euler column buckling load for the properties of

the stiffened plate considered.

3.2 Numerical results

The full system of equilibrium equations are difficult to solve analytically. The contin-

uation and bifurcation software Auto-07p (Doedel & Oldeman, 2011) is thus used;

it has been shown in previous works (Hunt & Wadee, 1998; Wadee & Gardner, 2012)

to be an ideal tool to solve the equations for this kind of mechanical system. The

solver is adept at locating bifurcation points and tracing branching paths as model

parameters are varied. Numerical examples, representing the perfect behaviour of the

strut, are shown in this section for the cases where global buckling is critical. In the

current chapter, a fixed set of cross-section and material properties are chosen and

are given in Table 3.1 (see Figure 3.2(a)).

Column length L 5000 mm

Plate breadth b 120 mm

Plate thickness tp 2.4 mm

Stiffener depth(top) h1 38 mm

Stiffener depth(bottom) h2 1.2 mm

Stiffener thickness ts 1.2 mm

Young’s modulus E 210 kN/mm2

Poisson’s ratio ν 0.3

Table 3.1: Cross-section and material properties of an example stiffened plate used

in the numerical study.

The global critical load PC
o can be calculated using Equation (3.36), whereas the local
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buckling critical stress σC
l can be evaluated using the well-known formula in Equation

(2.26), where the coefficient kp depends on the plate boundary conditions; limiting

values being kp = 0.426 and kp = 1.247 for a long stiffener connected to the main

plate with one edge free and the edge defining the junction between the stiffener and

the main plate being taken to be pinned and fixed respectively (Bulson, 1970). For

the panel geometry selected, Table 3.2 shows that global buckling is critical and that

the stiffener could be next, to buckle locally since the local buckling stress of the main

plate is much higher than that of the stiffener.

σC
o (N/mm2) σC

l,s (N/mm2) σC
l,p (N/mm2) Critical mode

Pinned junction 4.89 80.22 309.85 Global

Fixed junction 4.89 236.02 539.91 Global

Table 3.2: Theoretical values of the global and local critical buckling stresses (σC
o

and σC
l ) respectively; subscripts “p” and “s” refer to the main plate and the stiffener

respectively. The expression for σC
o = PC

o /A, where A is the cross-sectional area of

the strut.

3.2.1 Solution strategy

The current study comprises an analysis of a system of nonlinear non-autonomous

ordinary differential equations (ODEs) subject to boundary conditions and integral

constraints. To solve such equations, Auto computes families of equilibrium solutions

and computes the stability of those solutions along these families (Doedel & Oldeman,

2011). The solver can also locate folds, branch points and bifurcations to tori along

families of periodic solutions. Branch switching is possible at bifurcation points. This

latter feature is important in the current investigation since the expected cellular

behaviour comprises a secondary bifurcation followed by a sequence of limit points in

the post-buckling range. The software package can also identify more complex critical

points such as Hopf bifurcations, and period doubling bifurcations, which shows its
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versatility in solving nonlinear problems, although some of these features are not

particularly relevant to the current problem.

To solve the governing equations, the principal parameters used in the numerical

continuation procedure in Auto-07p were interchangeable although generally qs was

varied for computing the equilibrium paths for the distinct buckling modes. However,

the load P was used as the principal continuation parameter for computing the inter-

active buckling paths. Since the critical load was obtained analytically from Equation

(3.36), the post-buckling path was generated from PC
o and many bifurcation points

were detected on the weakly stable post-buckling path. Initially, using a continua-

tion method, the lowest value of qs was determined at the location of the secondary

bifurcation point S called qSs . Subsequently, the second run started from S using the

branch switching function, after which the full equilibrium path was obtained with a

sequence of snap-backs (in small values of cp) when the interaction between the global

and the local modes occurred. Figure 3.6(a) shows the procedure diagrammatically.

P

PC
SRun-1

Run-2

qs
S

C

T

qs
T qs

(a)

P

S1 S2 S3 S4

cp increasing 

PC C

qs

Run-1

Run-2

(b)

Figure 3.6: (a) Diagrammatic representation of the sequence for computing the equi-

librium paths for the perfect case; (b) shows the perfect case for different values of cp

with the corresponding secondary bifurcation points Si as cp is increased.

Moreover, the graph in Figure 3.6(b) shows the perfect case for different values of

cp with the corresponding secondary bifurcation points as cp is increased. Figure 3.7
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also presents a flowchart for the procedure for both perfect and imperfect cases when
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Figure 3.7: Numerical continuation procedure in Auto-07p to find the equilibrium

paths for perfect and imperfect cases when the global or local buckling mode is critical.

the global or local buckling mode is critical.

Beyond this point, a new equilibrium path describing local–global interactive buckling

was found. Typically, this reduced the load P with w and u becoming non-trivial as

the interaction advanced. On the interactive buckling path, a progressive sequence

of destabilization and restabilization, exhibited as a series of snap-backs in the equi-
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librium paths was observed – the signature of cellular buckling (Hunt et al., 2000;

Wadee & Edmunds, 2005; Wadee & Gardner, 2012; Wadee & Bai, 2014). In Figure

3.6, the first such snap-back is labelled as T with qs = qTs and the existence of it

marks the beginning of the rapid spreading of the buckling profile from being initially

localized to being eventually completely periodic.

3.2.2 Results and discussion

In the current section, the numerical results from the analytical solutions are pre-

sented. Initially the stiffness of the rotational spring cp is set to be zero which defines

a fully-pinned connection between the main plate and the stiffener. Later, by increas-

ing cp, semi-rigid and fully rigid connections are considered.

For the example being considered, Figure 3.8 shows equilibrium plots of the normal-

ized axial load p = P/PC
o versus (a) the generalized coordinates of the sway com-

ponent qs and (b) the maximum out-of-plane normalized deflection of the buckled

stiffener (wmax/ts). The graphs in Figure 3.9(a) show the relative amplitudes of the

global and local buckling modes and the graph in (b) plots the relationship between

the sway qs and tilt qt components of the global buckling mode, which are almost

equal; this indicates that the shear strain is small but, importantly, not zero. The

second, fourth, sixth and the eighth cells are labelled as C2, C4, C6 and C8 respectively,

which are generated from the initial buckling point C labelled in the corresponding

graphs. Figure 3.10 illustrates the corresponding progression of the numerical solu-

tions for the local buckling functions w and u for the secondary bifurcation S and

the cells C2 to C8. One of the most distinctive features of the equilibrium path for

pinned (i.e. cp = 0 Nmm/mm) and semi-rigid (i.e. cp less than 1000 Nmm/mm)

cases, as shown in Figures 3.8 and 3.9, is the sequence of snap-backs that effectively

separates the equilibrium path into 10 individual parts (or cells) in total, as shown.
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Each path or cell corresponds to the formation of a new local buckling displacement

peak or trough. Figure 3.11 shows a selection of 3-dimensional representations of the

deflected stiffened plate at a specific state on paths C2, C4, C6 and C8. The results

for this example clearly show cellular buckling with the spiky features in the graphs

shown in Figures 3.8 and 3.9. Moreover, the buckling patterns, as seen in Figure

3.11, clearly show an initially localized buckle gradually spreading outwards from the

panel midspan with more peaks and troughs. The maximum out-of-plane displace-

ment wmax approaches a value of 1.65 mm, which is of the order of ts (1.2 mm) and

shows that the local stiffener deflections are large, thereby justifying the incorporation

of von Kármán plate theory within the model (Timoshenko & Woinowsky-Krieger,

1959).

In the literature (Hunt et al., 2000; Wadee & Edmunds, 2005) the Maxwell load (PM)

is calculated for snaking problems, which represents a realistic lower bound strength

for the system. Presently, however, it is more complex to determine such a quantity

because the system axial load P does not oscillate about a fixed load PM as the

deformation increases. This is primarily owing to the fact that, unlike systems that

exhibit cellular buckling, such as cylindrical shells and confined layered structures

(Hunt et al., 2000), there are two effective loading sources as the mode interaction

takes hold: the axial load P , which generally decreases and the sinusoidally varying

(in z) tilt generalized coordinate qt, which represents the axial component of the

global buckling mode that generally increases. The notion of determining the “body

force”, discussed in Hunt and Wadee (1998), could be used as way to calculate the

Maxwell load, but this has been left for future work.
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Figure 3.8: Numerical equilibrium paths with cp = 0 Nmm/mm: normalized force

ratio p (= P/PC
o ) versus (a) the sway amplitude qs and (b) the normalized maximum

out-of-plane deflection of the stiffener wmax/ts.
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Figure 3.9: Numerical equilibrium paths for cp = 0 Nmm/mm: (a) local versus global

modes: wmax/ts versus qs; (b) amplitudes of sway qs versus tilt qt with the dashed

line showing qs = qt.
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Figure 3.10: Numerical solutions for the stiffener local out-of-plane displacement

w (left) and local in-plane displacement u (right) with cp = 0 Nmm/mm for the

equilibrium paths at the secondary bifurcation point S and cells C2–C8 from top to

bottom respectively.
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Figure 3.11: Numerical solutions from the analytical model with cp = 0 Nmm/mm

visualized on 3-dimensional representations of the strut for (a) cell C2 (p = 0.9995),

(b) cell C4 (p = 0.9829), (c) cell C6 (p = 0.9440) and (d) cell C8 (p = 0.8894). All

dimensions are in millimetres, but the local buckling displacements in the stiffener

are scaled by a factor of 5 to aid visualization.

Hitherto, the results have been presented for the case where the joint between the main

plate and the stiffener was pinned (cp = 0). Figure 3.12 shows how the introduction

of the joint stiffness affects the response. First of all, the value of σC
l,s is increased

since rotation at the joint is more restrained. This, in turn, increases the value of

qSs and qTs at different rates, as shown in Figure 3.13(a). It can be seen that as cp
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Figure 3.12: (a–b) Numerical solutions from the analytical model for the local

out-of-plane deflection w in the initial interactive buckling stage, where cases for

cp = 0, 10, 102, 103, 104 Nmm/mm and when cp → ∞ are shown from top to bottom

respectively.
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is increased the initial interactive mode that emerges from the secondary bifurcation

S is more localized with a smaller wavelength (Figure 3.12) and resembles the more

advanced cells shown in Figure 3.10 directly. Moreover, it is demonstrated that the

snap-backs occur later in the interactive buckling process.

As expected, the cellular buckling behaviour in the post-buckling response, is rapidly

eroded by increasing the rotational stiffness. In other words, by comparing the equi-

librium paths against the equilibrium paths when cp = 0 Nmm/mm, it is observed

that the snap-backs start to vanish from the first cell to the last, as cp increases.

For larger values of cp (i.e. cp ≥ 1000 Nmm/mm), no cellular behaviour is observed

in the post-buckling paths. Figure 3.13(b) shows the normalized axial load p versus

the normalized total end-shortening, E/L, that is given by the Equation (4.32). It is

observed that the total end-shortening increases significantly, when cp → ∞. Figure

3.13(c) shows the global versus the local amplitude of deflections for different val-

ues of cp. For the normalized maximum local out-of-plane displacement wmax/ts, the

post-buckling path shows a stiffer response for higher values of cp. At p = 0.85, the

normalized maximum out-of-plane displacement wmax/ts is decreased by 39% from

1.742 when cp = 0 to 1.068 when cp → ∞ approximately. Figure 3.13(d) shows p

versus qs. It is observed that the position of the secondary bifurcation point S is

increased by 71% from 0.0064 for the pinned case (cp = 0.0 Nmm/mm) to 0.0215

for the rigid case (cp → ∞) approximately. In addition, as cp increases, a significant

reduction in both the amplitude and the wavelengths of the local displacement is

observed at the same load level. The interactive buckling wavelength Λ can also be

then compared, which is defined in Figure 3.14. It is found that the wavelength Λ

is 205.73 mm and 62.6 mm at p = 0.89 for cp = 0 and when cp → ∞ respectively,

showing a reduction of approximately 70%.

The detailed numerical results are also presented when the rotational spring stiffness

cp > 0. In these cases, the joint between the main plate and the stiffener is considered
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Figure 3.13: Variation of the equilibrium paths for increasing rigidities of the main

plate–stiffener joint (cp = 1, 102, 103, 104 Nmm/mm and cp → ∞). Graphs show (a)

the distribution of qSs and qTs by increasing cp value. (b) The normalized force ratio

p (= P/PC
o ) versus the normalized end-shortening E/L, (c) the local mode amplitude

wmax/ts, (d) the global mode amplitude qs for the increasing values of cp given in (a).

Note that in (b–d) the pinned case (cp = 0) is included.
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Figure 3.14: Definition of local buckling wavelength Λ from the variational model.
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as a semi-rigid connection when cp=1, 10, 102 and 104 Nmm/mm and effectively a

fully-fixed junction when cp tends to infinity. For the case where cp → ∞, the strain

energy due to the rotational spring tends to zero since the relative rotation between

the stiffener and the main plate tends to zero. The parameter S4 in the stiffener

deflection function given in Equation (3.10) is therefore:

lim
cp→∞

S4 = lim
cp→∞

3cph1
3Dsπ3 + cph1π3 − 3πcph1

=
3

π(π2 − 3)

≈ 0.13901.

(3.37)

Figures 3.15–3.26 illustrate the equilibrium paths when cp is set to be 1, 10, 102 and

104 Nmm/mm and when cp → ∞ respectively. According to the results, it is found

that the effect of the snap-backs is reduced by increasing the spring stiffness and

it turns into a smooth path when a fully-fixed junction is considered between the

main plate and the stiffener. Figure 3.17 illustrates the corresponding progression

of the numerical solutions for the local buckling functions w and u at the secondary

bifurcation point S and cells C2–C10 from top to bottom. Figure 3.18 shows a selection

of 3-dimensional representations of the deflected stiffened plate at a specific state on

paths S, C2 to C4, C6, C8 and C10. Figures 3.19, 3.21, 3.23 and 3.25 are identical

to Figure 3.15 but are for cases of cp = 10, 102 and 104 Nmm/mm and cp → ∞

respectively. In addition, Figures 3.20, 3.22, 3.24 and 3.26 are identical to Figure

3.16 but are for cases of cp = 10, 102 and 104 Nmm/mm and cp → ∞ respectively.

Moreover, Figures 3.27 and 3.28 present the local out-of-plane deflection profiles w as

well as local in-plane deflection of the stiffener u and the corresponding 3-dimensional

representations of the deflected stiffened plate respectively, for the case where cp → ∞.
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Figure 3.15: Numerical equilibrium paths with cp = 1 Nmm/mm: normalized force

ratio p versus (a) the sway amplitude qs and (b) the normalized maximum out-of-plane

deflection of the stiffener wmax/ts.
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Figure 3.16: Numerical equilibrium paths for cp = 1 Nmm/mm: (a) local versus

global modes: wmax/ts versus qs; (b) amplitudes of sway qs versus tilt qt with the

dashed line showing qs = qt.
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Figure 3.17: Numerical solutions for the stiffener local out-of-plane displacement w

(left) and the local in-plane displacement u (right) with cp = 1 Nmm/mm for the

equilibrium paths at the secondary bifurcation point S and cells C2–C10 from top to

bottom respectively.
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Figure 3.18: Numerical solutions from the analytical model visualized on 3-

dimensional representations of the strut with cp = 1 Nmm/mm. (a) Secondary bi-

furcation point S (p = 1.000), and cell C2 (p = 0.9955), (b) cell C4 (p = 0.9680),

(c) cell C6 (p = 0.9459), (d) cell C8 (p = 0.8910) and (e) cell C10 (p = 0.8277). All

dimensions are in millimetres, but the local buckling displacements in the stiffener

are scaled by a factor of 5 to aid visualization.
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Figure 3.19: Numerical equilibrium paths with cp = 10 Nmm/mm: normalized force

ratio p versus (a) the sway amplitude qs and (b) the normalized maximum out-of-plane

deflection of the stiffener wmax/ts.
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Figure 3.20: Numerical equilibrium path for cp = 10 Nmm/mm: (a) local versus

global modes: wmax/ts versus qs; (b) amplitudes of sway qs versus tilt qt with the

dashed line showing qs = qt.
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Figure 3.21: Numerical equilibrium paths with cp = 100 Nmm/mm: normalized force

ratio p versus (a) the sway amplitude qs and (b) the normalized maximum out-of-plane

deflection of the stiffener wmax/ts.

123



Chapter 3 : Cellular Buckling in a Perfect Stiffened Plate

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

qs

w
m
a
x
/t

s

x10
−2

C S

(a)

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

qs

q t

x10
−2

x10
−2

C

S

(b)

Figure 3.22: Numerical equilibrium path with cp = 100 Nmm/mm: (a) local versus

global modes: wmax/ts versus qs; (b) amplitudes of sway qs versus tilt qt with the

dashed line showing qs = qt.
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Figure 3.23: Numerical equilibrium paths with cp = 104 Nmm/mm: normalized force

ratio p versus (a) the sway amplitude qs and (b) the normalized maximum out-of-plane

deflection of the stiffener wmax/ts.
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Figure 3.24: Numerical equilibrium path with cp = 104 Nmm/mm: (a) local versus

global modes: wmax/ts versus qs; (b) amplitudes of sway qs versus tilt qt with the

dashed line showing qs = qt.
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Figure 3.25: Numerical equilibrium paths with cp → ∞: normalized force ratio

p versus (a) the sway amplitude qs and (b) the normalized maximum out-of-plane

deflection of the stiffener wmax/ts.
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Figure 3.26: Numerical equilibrium path with cp → ∞: (a) local versus global modes:

wmax/ts versus qs; (b) amplitudes of sway qs versus tilt qt with the dashed line showing

qs = qt.
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Figure 3.27: Numerical solutions for the stiffener local out-of-plane displacement w

(left) and the local in-plane displacement u (right) with cp → ∞ for the equilibrium

paths at the secondary bifurcation point S (p = 1.000) and at the normalized load

levels equal to 0.9992, 0.9877, 0.9723, 0.9259, 0.8943 and 0.8619 from top to bottom

respectively.
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Figure 3.28: Numerical solutions from the analytical model visualized on 3-

dimensional representations of the strut with cp → ∞. All dimensions are in mil-

limetres, but the local buckling displacements in the stiffener are scaled by a factor

of 5 to aid visualization.
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3.3 Concluding remarks

A nonlinear analytical model for a representative portion of a wide stiffened plate

with a perfect geometry has been presented. The structure is subjected to uniaxial

compression that is loaded at the centroid of the whole cross-section. A form of cellular

buckling, with a characteristic sequence of snap-backs in the mechanical response, has

been found that arises from a potentially dangerous interaction of local and global

modes of buckling. To model a more realistic joint condition between the main

plate and the stiffener, a rotational spring was considered along the strut length with

stiffness cp. It can have a full range of positive values from zero, to model a fully-

pinned connection, to effectively infinity for a fully-rigid joint. The full equations

of equilibrium were solved numerically by the continuation and bifurcation software

Auto-07p (Doedel & Oldeman, 2011). The numerical examples, representing the

cases where cp = 0 (fully-pinned), 1, 10, 102, 104 Nmm/mm and where cp → ∞

(fully-fixed), have been presented.

For the fully-pinned case, cellular buckling was found with a characteristic sequence

of snap-backs in the mechanical response. The buckling mode of the stiffener went

from localized to periodic with a progressively reducing wavelength. It was also found

that although the effect of the snap-backs can be reduced by increasing the rotational

stiffness cp, the mode interaction persisted and the local buckling profile still changed

wavelength as has been found in related experimental studies (Becque & Rasmussen,

2009a; Wadee & Gardner, 2012; Wadee & Bai, 2014). It was also evident that the

out-of-straightness at the secondary bifurcation point (qSs ) and at the first snap-back

location (qTs ), increased when a greater value of cp was used. Moreover, it has been

found that the number of local buckling waves increases with higher values of cp.

The maximum deflection of the stiffener at mid-span (wmax) also decreased as cp was

increased.
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In the following chapter, the model presented currently is extended by including the

consideration of local buckling of the main plate in combination with the stiffener.

Moreover, initial geometric imperfections are also introduced to the model with aim

of making the model more practically applicable to the real situation.
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Main plate local buckling and

imperfection modelling

In the previous chapter, the perfect elastic post-buckling response of an axially loaded

plated panel made from a linear elastic material was considered. The nonlinear mode

interaction between the weakly stable global Euler buckling mode and the strongly

stable local buckling mode of the stiffener was fully described. However, it was as-

sumed that the main plate was fully-rigid and it had no local deformation. The pri-

mary focus was on capturing the perfect elastic post-buckling response with the highly

unstable cellular buckling behaviour and the steadily changing buckling wavelength

being highlighted. Since real structures contain imperfections, considering these is an

important aspect (Thompson, 1967; van der Neut, 1974; Koiter & Pignataro, 1976).

It has been shown in the past that such systems are highly imperfection sensitive

when the global critical load and the local critical load are sufficiently close. In the

current chapter, the previous analytical model is extended to study the behaviour

of imperfect systems. Moreover, nonlinear mode interaction between global Euler

buckling of the entire cross-section with the local in-plane and out-of-plane deflec-
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tion of the stiffener and the main plate is modelled to act in sympathy with each

other. The initial global out-of-straightness of the stiffened plate as well as the local

out-of-straightness of the stiffener and the main plate are also considered.

4.1 Development of the analytical model

4.1.1 Modal Description

The same definitions for the section and material properties are used as described in

the previous chapter (see Figure 3.2). It is also considered that there is a rotational

spring with the stiffness cp along the stiffened plate, as shown in Figure 3.5(a), which

models the rigidity of the junction between the stiffener to the main plate. The

lateral displacement W (z) and the rotation of the plane section θ(z) about the x-

axis are given in Equation (3.2). The general form of the equations for the local

in-plane displacement u(y, z) and out-of-plane displacement of the stiffener ws(y, z)

based on the corresponding boundary conditions, are the same as the ones presented

in Equations (3.4)–(3.10). In the current chapter, the local out-of-plane deflection

of the main plate wp(x, z) is introduced with appropriate boundary conditions. The

shape of the local buckling mode along the width of the main plate can be estimated

by a nonlinear function that is a summation of trigonometric and polynomial terms.

The general form of this approximation can be expressed by the following equations:

wp(x, z) = g(x)wp(z), (4.1)

where:

g(x) = C0 + C1X + (−1)iC2X
2 + C3X

3 + C4 sin (πX) , (4.2)

and X(x) = x/b. Moreover, for i = 1, the range for x = [0, b/2] and for i = 2, the

range for x = [−b/2, 0]. To establish g(x), the constant coefficients C0, C1, C2, C3
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cp


 






Figure 4.1: Boundary conditions for the stiffener and the main plate.

and C4 are determined again by applying appropriate boundary conditions for the

main plate as shown in Figure 4.1. At the junction between the stiffener and the

main plate x = 0, there is no relative deflection and the moment is dependent on the

joint stiffness cp. Therefore:

wp(x, z) = 0, Dp
∂2

∂x2
wp(x, z) = cp

∂

∂x
wp(x, z), (4.3)

whereas at the tips of the main plate at x = b/2 and x = −b/2, the slope and the

shear force are zero and thus:

∂

∂x
wp(x, z) = 0, Dp

∂3

∂x3
wp(x, z) = 0, (4.4)

where Dp is the main plate flexural rigidity given by the expression Et3p/[12(1 −

ν2)]. The function for the deflected shape wp(x, z) can be deduced from the above

conditions and written thus:

wp(x, z) = −

{

sin (πX) + Jp

[

X + (−1)iX2 −
1

4
sin (πX)

]}

wp(z), (4.5)

where:

Jp = {[1/4− (2Dp)/(cpbπ)− 1/π]}−1 . (4.6)

In physical experiments it is often observed that the main plate deflects in sympathy

with the stiffener to some extent. In the current work, the following relationship is

assumed, wp(z) = λpw(z). Moreover, by adding the moment equilibrium relationships
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for the stiffener, given in Equation (3.6), and the main plate, given in Equation (4.3),

at the joint, an explicit relationship can be derived for the relating parameter λp,

thus:

Ds
∂2

∂y2
ws(−ȳ, z) +Dp

∂2

∂x2
wp(0, z) = cp

[

∂

∂y
ws(−ȳ, z) +

∂

∂x
wp(0, z)

]

, (4.7)

and this leads to the following expression for λp after a little bit of manipulation:

λp =

(

2b2

3h21

)[

cph1 (3− S4π
3 + 3S4π)− 3DsS4π

3

cpb (4Jp + 4π − πJp) + 8DpJp

]

. (4.8)

This simplifies the formulation considerably by allowing the system to be modelled

with effectively only one out-of-plane displacement function w(z).

4.1.2 Introducing imperfections

The consideration of initial geometric imperfections within the system, leads to more

accurate modelling of the actual practical situation. In the current chapter, both

initial global and local imperfections are introduced. A lateral displacement W0 is

introduced as a global imperfection as well as an initial rotation of the plane section

θ0. The corresponding expressions are thus:

W0(z) = −qs0L sin
πz

L
, θ0 = qt0π cos

πz

L
, (4.9)

with qs0 and qt0 defining the amplitude of the generalized coordinates defining the

initial global imperfection. The function for the local out-of-plane imperfection for

the stiffener and the main plate is expressed as:

w0(z) = A0 sech

[

α (z − η)

L

]

cos

[

βπ (z − η)

L

]

. (4.10)

The form of the local imperfection closely matches that of the least stable localized

buckling mode for the strut on a softening foundation. This is derived from a first
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order approximation of a multiple scale perturbation analysis (Wadee et al., 1997),

where z = [0, L] and w0 is symmetric about z = η. This form for w0 enables the study

of periodic and localized imperfections; the degree of localization and the number of

waves can be changed by varying the parameters α and β respectively. It is worth

noting that the relationship between wp0 and w0 corresponds to that for the perfect

case; hence, wp0 = λpw0 is assumed. The shape of the initial imperfection is illustrated

in Figure 4.2. By increasing the α value, the initial imperfection forms into a localized

shape; Figure 4.2(a). The value of β controls the number of half sine-waves, as shown

in Figure 4.2(b). Note that the imperfection is always assumed to be symmetric

about the mid-span of the stiffened plate. This type of study using such a shape

of imperfection, has been shown to provide a good approximation of the worst case

imperfection in other situations of local–global mode interaction (Wadee, 2000; Wadee

& Simões Da Silva, 2005; Wadee et al., 2010).

4.1.3 Total potential energy

The full formulation of the total potential energy V of the perfect stiffened plate was

established in the previous chapter. Currently, the global and the local imperfections

are introduced, as shown in Figure 4.3(a). It is assumed that the initial out-of-plane

deflections of the stiffener w0 and the main plate wp0 are stress-relieved (Thompson

& Hunt, 1984), implying that the elemental moment M and thus the local bend-

ing energy for both elements drops to zero (Wadee, 2000), as illustrated in Figure

4.3(b). The introduction of the global and the local imperfections provide additional

expressions to the global and the local bending strain energy expressions. The global

strain energy Ubo of bending involves the second derivative of W and W0, and is hence

calculated from the equation below:
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Figure 4.2: (a) Localized imperfection shape produced by increasing α; (b) peri-

odic imperfection shape (α = 0) with different number of half sine-waves βπ/L by

increasing β. In both cases η = L/2.

Ubo =
1

2
EIp

∫ L

0

(

Ẅ − Ẅ0

)2

dz =
1

2
EIp

∫ L

0

(qs − qs0)
2 π

4

L2
sin2 πz

L
dz, (4.11)

where dots again represent differentiation with respect to z. Based on plate theory,

to obtain the full expression of the strain energy from local bending Ubl, the second

derivative terms of the local out-of-plane deflection of the main plate are added to

Equation (3.12). The resulting local bending energy expression is thus:
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Figure 4.3: (a) Local out-of-plane deflection of the stiffener ws(y, z) with the initial

imperfection w0(y, z) and local out-of-plane deflection of the plate wp(x, z) with the

initial imperfection wp0(x, z). (b) Incorporation of the global imperfection functions

W0 and θ0 where the strut is stress-relieved. To incorporate w0 or wp0, the process is

simply to replace W0 with w0 or wp0.
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Ubl =
Ds

2

∫ L

0

∫ h1−ȳ

−ȳ

{

[

∂2(ws − w0)

∂z2
+
∂2(ws − w0)

∂y2

]2

−2 (1− ν)

[

∂2(ws − w0)

∂z2
∂2(ws − ws0)

∂y2
−

(

∂2(ws − w0)

∂z∂y

)2
]}

dy dz,

+
Dp

2

∫ L

0

∫ b/2

−b/2

{

[

∂2(wp − wp0)

∂z2
+
∂2(wp − wp0)

∂x2

]2

−2 (1− ν)

[

∂2(wp − wp0)

∂z2
∂2(wp − wp0)

∂x2
−

(

∂2(wp − wp0)

∂z∂x

)2
]}

dx dz,

=
Ds

2

∫ L

0

[

{f 2}y (ẅ − ẅ0)
2 +

{

f ′′2
}

y
(w − w0)

2 + 2ν
{

ff ′′
}

y
(w − w0)(ẅ − ẅ0)

+2(1− ν)
{

f ′2
}

y
(ẇ − ẇ0)

2
]

dz,

+
Dp

2

∫ L

0

[

{g2}x (ẅp − ẅp0)
2 +

{

g′′2
}

x
(wp − wp0)

2 + 2ν
{

gg′′
}

x
(wp − wp0)(ẅp − ẅp0)

+2(1− ν)
{

g′2
}

x
(ẇp − ẇp0)

2
]

dz,

(4.12)

where primes denote differentiation with respect to the respective subscript outside

the closing brace, with the terms within the braces being definite integrals, thus:

{F (y)}y =

∫ h1−ȳ

−ȳ

F (y) dy, {H(x)}x =

∫ b/2

−b/2

H(x) dx, (4.13)

where F (y) andH(x) are example functions representing the actual expressions within

the braces. Considering the local deflection of the main plate as well as the global

deflection along with the imperfection within the stiffener, a series of extended ex-

pressions for the global and local direct strains of the stiffeners and the main plate

are obtained. Subsequently, the global buckling distribution of the longitudinal strain

εz, the direct strains for the top and bottom stiffeners εzt and εzb respectively and
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the main plate εzp are thus:

εz,global = −y
d(θ − θ0)

dz
= −y (qt − qt0)

π2

L
sin

πz

L
.

εzt = εz,global −∆+
∂u

∂z
+

1

2

(

∂ws

∂z

)2

−
1

2

(

∂w0

∂z

)2

,

= −y (qt − qt0)
π2

L
sin

πz

L
−∆+ Y u̇+

1

2
{f 2}y

(

ẇ2 − ẇ2
0

)

,

εzb = εz,global −∆

εzp = −∆+
1

2

(

∂wp

∂z

)2

−
1

2

(

∂wp0

∂z

)2

.

(4.14)

The derivation of the final terms in the expression for εzt and εzb may be found in

Appendix A. The membrane energy due to the direct strains Ud is thus:

Ud =
E

2

∫ L

0

{
∫ ts/2

−ts/2

[
∫ h1−ȳ

−ȳ

ε2zt dy +

∫ −ȳ

−(h2+ȳ)

ε2zb dy

]

dx

+

∫ tp/2

−tp/2

∫ (b−ts)/2

−(b−ts)/2

ε2zp dx dy

}

dz,

=
1

2
Ets

∫ L

0

{

1

3

[

(h1 − ȳ)3 + (h2 + ȳ)3
]

(qt − qt0)
2 π

4

L2
sin2 πz

L
+∆2 (h1 + h2)

+
[

(h1 − ȳ)2 − (h2 + ȳ)2
]

∆(qt − qt0)
π2

L
sin

πz

L

+ h1

[

1

3
u̇2 +

1

4h1
{f 4}y

(

ẇ2 − ẇ2
0

)2
+

{

Y f 2

h1

}

y

u̇
(

ẇ2 − ẇ2
0

)

]

− (qt − qt0)
h1π

2

L
sin

πz

L

[(

2

3
h1 − ȳ

)

u̇+
1

h1
{yf 2}y

(

ẇ2 − ẇ2
0

)

]

− h1∆

[

u̇+
1

h1
{f 2}y

(

ẇ2 − ẇ2
0

)

]

+

(

tp
ts

)[

(b− ts)∆
2 +

1

4
{g4}x

(

ẇ2
p − ẇ2

p0

)2
−∆{g2}x

(

ẇ2
p − ẇ2

p0

)

]}

dz.

(4.15)

The shear strains in the stiffeners γyzi and the plate γxz, including the contribution

from qs0, w0 and wp0 are given by the following expressions (Bazant & Cedolin, 1991):
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γyzi =
∂

∂z
(W −W0) + (θ − θ0) +

∂u

∂y
+
∂ws

∂z

∂ws

∂y
−
∂w0

∂z

∂w0

∂y

γxz =
∂wp

∂z

∂wp

∂x
−
∂wp0

∂z

∂wp0

∂x
,

(4.16)

the expressions for the top and bottom stiffeners are given respectively:

γyzt = − [(qs − qs0)− (qt − qt0)] π cos
πz

L
+

u

h1
+ {ff ′}y(wẇ − w0ẇ0),

γyzb = − [(qs − qs0)− (qt − qt0)] π cos
πz

L
,

(4.17)

with the explicit expression for the main plate shear strain:

γxz = {gg′}x(wpẇp − wp0ẇp0), (4.18)

the membrane energy contribution from the shear strains Us is therefore:

Us =
1

2
Gts

∫ L

0

{

[(qs − qs0)− (qt − qt0)]
2 π2 cos2

πz

L
(h1 + h2)

+
1

h1

[

u2 + h1{(ff
′)
2
}y (wẇ − w0ẇ0)

2 + 2{ff ′}yu (wẇ − w0ẇ0)
]

− [(qs − qs0)− (qt − qt0)]

[

2u+ 2{ff ′}y(wẇ − w0ẇ0)

]

π cos
πz

L

+

(

tp
ts

)

{(gg′)
2
}x(wpẇp − wp0ẇp0)

2

}

dz.

(4.19)

The final component of strain energy is that stored in the rotational spring of the

stiffness cp representing the rigidity of the main plate–stiffener joint. It is expressed

as:

Usp =
1

2
cp

∫ L

0

{[

∂

∂y
[ws(−ȳ)− w0(−ȳ)]−

∂

∂x
[wp(0)− wp0(0)]

]2}

dz,

=
1

2
cp

∫ L

0

{[

f ′(−ȳ) (w − w0)− g′(0)(wp − wp0)

]2}

dz,

(4.20)

where f ′(−ȳ) and g′(0) indicate the value of f ′ and g′ at y = −ȳ and x = 0 respec-

tively. The final component is the work done by the axial load P , which is given

by:
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PE =
P

2

∫ L

0

[

2∆ + q2sπ
2 cos2

πz

L
− 2

(

h2 + ȳ

h1 + h2

)

u̇

]

dz, (4.21)

where the end-shortening E again comprises components from pure squash and sway

from global buckling combined with the local buckling of the stiffener. Therefore,

the total potential energy V is given by the summation of all the strain energy terms

minus the work done, assembled as:

V = Ubo + Ubl + Ud + Us + Usp − PE . (4.22)

4.1.4 Variational Formulation

The governing differential equations are obtained by performing the calculus of vari-

ations on the total potential energy V . The integrand of the total potential energy

V can be expressed as the Lagrangian (L) of the form:

V =

∫ L

0

L (ẅ, ẇ, w, ẅp, ẇp, wp, u̇, u, z) dz. (4.23)

Note that the local deflection of the main plate wp and the stiffener w relate to each

other by the following relationship wp = λpw and therefore the first variation of the

total potential energy V has the same expression as Equation (3.25). Subsequently,

partial derivatives of the Lagrangian (L) function with respect to the corresponding

variables, leads to the following expression for the first variation δV :
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δV =

∫ L

0

{

Ds

[

{f 2}y (ẅ − ẅ0) + ν{ff ′′}y (w − w0)

]

+Dpλ
2
p

[

{g2}x (ẅ − ẅ0) + ν{gg′′}x (w − w0)

]}

δẅ

+

{

Ds

[

2 (1− ν) {f ′2}y (ẇ − ẇ0)

]

+Dpλ
2
p

[

2 (1− ν) {g′2}x (ẇ − ẇ0)

]

+
1

2
Ets

[

{f 4}y
(

ẇ3 − ẇẇ2
0

)

+ 2{Y f 2}yẇu̇− 2∆{f 2}yẇ

− (qt − qt0)
π2

L
sin

(πz

L

)

]

+Gts

[

{(ff ′)2}y
(

w2ẇ − ww0ẇ0

)

+
1

h1
{ff ′}ywu−

[

(qs − qs0)− (qt − qt0)
]

π cos
(πz

L

)

{ff ′}yw

]

+Etp

[

1

2
λ4p{g

4}x
(

ẇ3 − ẇẇ2
0

)

− 2∆λ2p{g
2}xẇ

]

+Gtpλ
4
p{(gg

′)2}x
(

w2ẇ − ww0ẇ0

)

}

δẇ
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δu dz,

(4.24)
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where the terms in the braces can be found in Appendix B. Using the same procedure

detailed in Chapter 3, the nondimensional differential equations are obtained thus:

˜....w − ˜....w 0 +
L2

2{f 2}y

[

ν{ff ′′}y − (1− ν){f ′2}y
] (
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[

{f 4}y
{f 2}y

(

3 ˜̇w2 ˜̈w − ˜̈wẇ2
0 − 2 ˜̈w0
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˜̇w
)

+
{2Y f 2}y
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(
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2
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]

+
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(
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)
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−
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(4.25)

˜̈u−
3

4

G̃

D̃
ψ

[

ψ
(

ũ+ {ff ′}y
(

w̃ ˜̇w − w̃0
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))
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2
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−

{
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y

(
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)

+
1

2
(qt − qt0) π

3

(

ψ −
3ȳ

2L

)

cos
πz̃

2
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(4.26)

where the updated non-dimensional parameters are:

k̃ =
L4

16 {f 2}y

[

{

f ′′2
}

y
+ λ2p (tp/ts)

3 {g′′2}x + cp [f
′(−ȳ)− λpg

′(0)]
2
/Ds

]

, (4.27)

and w̃0 = 2w0/L. The three integral conditions in non-dimensional form are as

follows:
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∂V

∂qs
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π
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[
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{
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(
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(
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)

λ2p
4h1

∫ 2

0

[

{g2}x
(

˜̇w2 − ẇ2
0

)

]

dz̃
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(4.28)

where the rescaled quantities are the same expressions given in Equation (3.32). Since

the column is an integral member, Equation (4.28) provides a relationship linking qs

and qt before any interactive buckling occurs, i.e. when w = u = 0. This relationship

is assumed to hold also between qs0 and qt0, which has the beneficial effect of reducing

the number of imperfection amplitude parameters associated with the global mode

to one; the relationship is given by:

qs0 =
(

1 + π2/t̃
)

qt0. (4.29)

The boundary conditions for w̃ and ũ and their derivatives are for pinned conditions

for z̃ = 0 and for symmetry at z̃ = 1:

w̃(0) = ˜̈w(0) = ˜̇w(1) =
.̃..
w(1) = ũ(1) = 0, (4.30)

with a further condition from matching the in-plane strain:

1

3
˜̇u(0) +

1

2

{

Y

h1
f 2

}

y

[

˜̇w2(0)− ẇ2
0(0)

]

−
1

2
∆ +

P

Etsh1

(

h2 + ȳ

h1 + h2

)

= 0, (4.31)

which is obtained in precisely the same way as in Chapter 3. The global critical load,

PC
o , determined by the linear eigenvalue analysis of the perfect system, remains the

same as before and is given by Equation (3.36).
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4.2 Numerical results

In this section, representative numerical examples are presented. The material and

section properties used throughout the current chapter are the same as the properties

that were used in Chapter 3. Note that the following numerical examples consider the

case where global buckling is critical (L = 5 m). The continuation and bifurcation

software Auto-07p (Doedel & Oldeman, 2011) is again utilized to solve the full

equations of equilibrium numerically. The numerical results are presented for an

imperfect stiffened plate with an initial out-of-straightness only in terms of the global

mode (qs0 6= 0 and A0 = 0), and for an imperfect case with both global and local

imperfections in the stiffener as well as in the main plate (qs0 6= 0 and A0 6= 0). The

results are presented into two limiting values for cp where the joint between the main

plate and the stiffener is described as fully-pinned (i.e. cp = 0) and fully-rigid (i.e.

cp → ∞).

To find the equilibrium path for the fundamental and post-buckling states, a similar

solution strategy is performed as in Chapter 3 (see Figure 3.7), which is illustrated

diagrammatically in Figure 4.4. However, for an imperfect panel, the equilibrium

path is computed initially from zero axial load and then the load P is increased up to

the maximum value where the limit point is detected. The load subsequently drops

and the path is asymptotic to the perfect path, as shown in Figure 4.4. Note that,

in the case where there is only a global imperfection, the location of the secondary

bifurcation point S is obtained in the first run and then the full post-buckling path

is generated from this point with branch switching. The case with both initial global

and local imperfections, however, only requires a single run without branch switching.
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Figure 4.4: Numerical continuation procedures when global buckling is critical with

(a) initial out-of straightness qs0 only and (b) both qs0 and initial out-of-plane dis-

placement w0 present in the stiffener and the main plate.

4.2.1 Pinned stiffener–plate connection

The study is first conducted for an imperfect system of the stiffened plate with a

pinned connection (cp = 0). In this section, two sets of numerical examples are con-

sidered. The initial example focuses on the stiffened plate with a global imperfection

only with qs0 = 0.001. However, the second numerical example focuses on the case

with both initial global and local imperfections in the stiffener and the main plate,

i.e. A0 6= 0. The initial out-of-straightness of the stiffened plate qs0 remains the same

as in the initial case. The local imperfection amplitude A0 is ts/10 (= 0.12 mm).

Note that for this case, the initial imperfection shape is the first linear eigenmode

with α = 0 and β = 1. In addition, the applied imperfection is symmetric about

mid-span and therefore η is L/2 in both cases. The corresponding numerical results

are presented in Figures 4.5–4.8 for the case with a global imperfection only, and

Figures 4.9–4.12 are for the case with the combined global and local imperfections.

Figures 4.5 and 4.9 show the equilibrium path of the normalized axial load p = P/PC
o

versus (a) the generalized coordinate of the sway component qs and (b) the maximum

out-of-plane normalized deflection of the buckled stiffener (wmax/ts). The graphs in
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Figures 4.6 and 4.10 show respectively in (a) the relative amplitudes of global and the

local buckling modes and in (b) the relationship between sway qs and tilt qt compo-

nents of the global buckling mode, which are almost equal; this indicates again that

the shear strain is small but, importantly, not zero. Figures 4.7 and 4.11 illustrate the

corresponding progression of the numerical solutions for the local buckling functions

w and u for the secondary bifurcation point S and cells C2–C8. Furthermore, a selec-

tion of 3-dimensional representations of the deflected stiffened plate are illustrated in

Figures 4.8 and 4.12 respectively. These graphs correspond to specific states on the

equilibrium path labelled as C2, C4, C6 and C8.
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Figure 4.5: Numerical equilibrium paths for the pinned case (cp = 0 Nmm/mm)

where qs0 6= 0 and w0 = 0; normalized force ratio p (= P/PC
o ) versus (a) the sway

amplitude qs and (b) the normalized maximum out-of-plane deflection of the stiffener

wmax/ts.
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Figure 4.6: Numerical equilibrium paths for cp = 0 Nmm/mm where qs0 6= 0 and

w0 = 0: (a) local versus global modes: wmax/ts versus qs; (b) amplitudes of sway qs

versus tilt qt with the dashed line showing qs = qt.
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Figure 4.7: Numerical solutions for the local out-of-plane deflection w (left) and the

local in-plane deflection u (right) with cp = 0 Nmm/mm, where qs0 6= 0 and w0 = 0,

shown for the equilibrium paths at the secondary bifurcation point S and cells C2–C8

from top to bottom respectively.
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Figure 4.8: Numerical solutions from the analytical model with cp = 0 Nmm/mm

visualized on 3-dimensional representations of the stiffened plate where qs0 6= 0 and

w0 = 0. (a) cell C2 (p = 0.8827) (b) cell C4 (p = 0.8750), (c) cell C6 (p = 0.8468) and

(d) cell C8 (p = 0.8036). All dimensions are in millimetres, but the local buckling

displacements in the stiffener are scaled by a factor of 5 to aid visualization.
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Figure 4.9: Numerical equilibrium path for cp = 0 Nmm/mm where qs0 6= 0 and

w0 6= 0: Normalized force ratio p versus (a) the sway amplitude qs and (b) the

normalized maximum out-of-plane deflection of the stiffener wmax/ts.
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Figure 4.10: Numerical equilibrium paths for cp = 0 Nmm/mm where qs0 6= 0 and

w0 6= 0. (a) Local versus global modes: wmax/ts versus qs; (b) amplitudes of sway qs

versus tilt qt with the dashed line showing qs = qt.
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Figure 4.11: Numerical solutions for the local out-of-plane deflection w (left) and the

local in-plane deflection u (right) with cp = 0 Nmm/mm where qs0 6= 0 and w0 6= 0;

for the equilibrium paths at the secondary bifurcation point S and cells C2–C8 from

top to bottom respectively.
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Figure 4.12: Numerical solutions from the analytical model with cp = 0 Nmm/mm

visualized on 3-dimensional representations of the stiffened plate where qs0 6= 0 and

w0 6= 0. (a) cell C2 (p = 0.8832), (b) cell C4 (p = 0.8658), (c) cell C6 (p = 0.8462)

and (d) cell C8 (p = 0.8031). All dimensions are in millimetres, but the local buckling

displacements in the stiffener are scaled by a factor of 5 to aid visualization.

4.2.2 Rigid stiffener–plate connection

The analytical model for the perfect system of the stiffened plate with a fully rigid

connection for the stiffener to the main plate (i.e. cp → ∞) was developed in Chapter

3. The same material and section properties are used in the following numerical exam-
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ples. In this section, two sets of numerical examples are considered. As in the previous

section, the initial example focuses on the structure with a global imperfection only

but the second set contains both global and local imperfections in the stiffener and

the main plate. In these cases, the amount of qs0 and A0 remain the same as in the

previous section. However, in this case, α = 3, β = 53 and η = L/2 for w0. This

form for w0 is used since it replicates the interactive buckling mode relatively close

to the secondary instability. The corresponding numerical results are presented in

Figures 4.13–4.16 for the case with a global imperfection only, and Figures 4.17–4.20

are for the case with the combined global and local imperfections. Figures 4.13 and

4.17 show the equilibrium path of the normalized axial load p = P/PC
o versus (a) the

generalized coordinate of the sway component qs and (b) the maximum out-of-plane

normalized deflection of the buckled stiffener (wmax/ts). The graphs in Figures 4.14

and 4.18 show respectively in (a) the relative amplitudes of the global and the local

buckling modes and in (b) the relationship between sway qs and tilt qt components

of the global buckling mode, which again are almost equal. Figures 4.15 and 4.19

respectively illustrate the corresponding progression of the numerical solutions for

the local buckling functions w and u for the secondary bifurcation point S and cells

C2–C8. Furthermore, a selection of 3-dimensional representations of the deflected

stiffened plate are shown in Figures 4.16 and 4.20 respectively.
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Figure 4.13: Numerical equilibrium paths for the rigid case (cp → ∞) where qs0 6= 0

and w0 = 0; normalized force ratio p (= P/PC
o ) versus (a) the sway amplitude qs and

(b) the normalized maximum out-of-plane deflection of the stiffener wmax/ts.
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Figure 4.14: Numerical equilibrium paths for cp → ∞ where qs0 6= 0 and w0 = 0: (a)

local versus global modes: wmax/ts versus qs; (b) amplitudes of sway qs versus tilt qt

with the dashed line showing qs = qt.
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Figure 4.15: Numerical solutions for the local out-of-plane deflection w (left) and the

local in-plane deflection u (right) with cp → ∞ where qs0 6= 0 and w0 = 0.
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Figure 4.16: Numerical solutions from the analytical model with cp → ∞ visualized on

3-dimensional representations of the stiffened plate where qs0 6= 0 and w0 = 0 for the

normalized load levels equal to(a) p = 0.9141, (b) p = 0.9124, (c) p = 0.9001 and (d)

p = 0.8384. All dimensions are in millimetres, but the local buckling displacements

in the stiffener and the main plate are scaled by a factor of 3 to aid visualization.
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Figure 4.17: Numerical equilibrium paths for cp → ∞ where qs0 6= 0 and w0 6= 0;

normalized force ratio p versus (a) the sway amplitude qs and (b) the normalized

maximum out-of-plane deflection of the stiffener wmax/ts.
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Figure 4.18: Numerical equilibrium paths for cp → ∞ where qs0 6= 0 and w0 6= 0. (a)

Local versus global modes: wmax/ts versus qs; (b) amplitudes of sway qs versus tilt qt

with the dashed line showing qs = qt.
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Figure 4.19: Numerical solutions for the local out-of-plane deflection w (left) and the

local in-plane deflection u (right) with cp → ∞ where qs0 6= 0 and w0 6= 0. The

normalized load level p is equal to 0.8845, 0.8657, 0.8369 and 0.7800 from top to

bottom respectively.
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Figure 4.20: Numerical solutions from the analytical model with cp → ∞ visualized

on 3-dimensional representations of the stiffened plate where qs0 6= 0 and w0 6= 0. All

dimensions are in millimetres, but the local buckling displacements in the stiffener

and the main plate are scaled by a factor of 3 to aid visualization.

The work-done expression given in Equation (4.21), provides the expression for the

total end shortening E given by:

E =

∫ L

0

[

∆+
1

2
q2sπ

2 cos2
πz

L
−

(

h2 + ȳ

h1 + h2

)

u̇

]

dz. (4.32)
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Figures 4.21 and 4.22, show the normalized axial load p versus the normalized total

end-shortening E/L for the stiffened plate with pinned and rigid main plate–stiffener

connections respectively. The corresponding graphs in (a) are for the case with the

global imperfection only and in (b) with both the global and local imperfections. It

is clearly observed that at the same load level, the normalized end-shortening E/L

has a larger value when cp tends to infinity.
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Figure 4.21: Numerical equilibrium paths for the pinned case (cp = 0). It shows the

normalized load p versus the normalized end-shortening E/L for the case with (a)

the global imperfection only (qs0 6= 0 and w0 = 0) and (b) both global and local

imperfections (qs0 6= 0 and w0 6= 0).
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Figure 4.22: Numerical equilibrium path for the rigid case (cp → ∞). It shows the

normalized load p versus the normalized end-shortening E/L for the case with (a)

the global imperfection only (qs0 6= 0 and w0 = 0) and (b) both global and local

imperfections (qs0 6= 0 and w0 6= 0).
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4.3 Concluding remarks

A nonlinear analytical model for an axially-loaded thin-walled stiffened plate in Chap-

ter 3 has been developed by including the local deflection of the main plate in the

formulation. In addition, an initial global out-of-straightness and local out-of-plane

displacement of the stiffener and the main plate were also considered. Significant

reduction in the load-carrying capacity was observed for the structure with a small

initial global imperfection or both global and local imperfection components. A rapid

increase in the normalized end-shortening of the strut E/L when the cp value tends

to infinity was also found.

In the next chapter, the studied analytical models presented hitherto are validated

against physical experiments from the literature as well as finite element models

formulated in the commercial code Abaqus (2011).
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Validation of analytical models

The analytical model of the perfect and imperfect stiffened plate are now validated

by comparing the model results against results from physical experiments from the

literature as well as using finite element analysis conducted in the commercial code

Abaqus (2011). The continuation and bifurcation software Auto-07p (Doedel &

Oldeman, 2011) is used to solve the system of equilibrium equations presented in the

previous chapters. Once validated, the analytical model can be exploited to determine

imperfection sensitivity and the zone where the mode interaction is the strongest.

An axially loaded portion representative of a stiffened plate with length L, stiffener

heights h1 and h2 at the top and the bottom of the main plate respectively with

thickness ts and the main plate breadth b with thickness tp is considered. Sets of

section and material properties is chosen in each of the following examples. The same

coordinate system, as in previous chapters, is used currently as was shown in Figure

3.2. The global critical load PC
o is again calculated using Equation (3.36), whereas the

local buckling critical stress σC
l is evaluated using the well-known formula expressed

in Equation (2.26), where the coefficient kp depends on plate buckling conditions.

Since the rotational spring with stiffness cp again represents the relative rigidity at
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the main plate–stiffener junction, by increasing the cp value, the relative rigidity can

vary from being pinned (cp = 0) to being fully-fixed (cp → ∞). However, the value of

the global critical buckling load, PC
o remains the same, since it is independent of cp.

To find the equilibrium path in the fundamental and post-buckling states, a similar

solution strategy is performed as in previous chapters for the perfect and imperfect

cases, as described in Figures 3.6 and 4.4 respectively.

5.1 Finite element modelling

In this section, the numerical results from the analytical model are compared to the

results from the numerical model using finite element (FE) analysis facilitated by the

commercial software Abaqus (2011). Consider an axially loaded stiffened plate with

cross-section and material properties as was shown in Table 3.1. The two parts of the

stiffened plate, i.e. the stiffener and the main plate, were modelled separately with

linear quadrilateral S4R elements with an 8 mm mesh along the panel (see later).

The stiffener and the main plate were then tied together at their junction. To model

the fully-pinned connection (i.e. when cp = 0), the rotational degree of freedom in

the z direction was released with the tie constraint. In the semi-rigid case as well as

the fully-rigid main plate–stiffener connection case, a series of linear rotational spring

elements was modelled along the length of the strut at each node with the exception

of the nodes at the supports to avoid clashes with the boundary conditions. The

rotational springs all had the same stiffness equal to mcp, where m is the mesh size.

They restrain the rotation about the longitudinal axis z.

The stiffened plate was modelled with simply supported boundary conditions at the

supports. The corresponding boundary conditions at the ends, restrained the dis-

placement in the x and y directions and the rotation about the y and z axes. It is
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worth noting that the half length was simulated to retain symmetry. Therefore, an

appropriate boundary condition, with reference “ZSYMM” was also applied at mid-

span. Consequently, the axial displacement in the z direction, u, was zero as well as

the rotations about x and y axes. Since the stiffened plate is part of a multi-stiffener

panel, there is a compatible boundary condition for the main plate edges as explained

in Chapter 4. Therefore, the main plate displacement in the x-direction and rotations

in the y and z-directions were restrained in the FE model. The axial load was applied

at the centroid of the whole cross-section which generated a uniform in-plane pressure

on the stiffened plate (see Figure 5.1). The FE analysis procedure in Abaqus is also

illustrated as a flowchart in Figure 5.2.

x

y

z

Figure 5.1: FE model for a simply-supported and axially loaded stiffened plate in

Abaqus. The FE model is shown for half of the strut length.

Once the model was constructed, a linear eigenvalue buckling analysis was conducted

to estimate the critical buckling load. This type of analysis is a linear perturbation

procedure, and the buckling load is calculated relative to the fundamental state of

the structure. The Riks method (Riks, 1972), with reference “STATIC, RIKS” in
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Figure 5.2: FE analysis procedure in Abaqus.

the Abaqus commands, was then used to determine the post-buckling path. The

command “STEP, NLGEOM” was applied to account for geometric nonlinearities.

An initial imperfection from the linear eigenvalue analysis was applied to the perfect

geometry so that there was some displacement prior to the critical load being reached.

Thus the post-buckling analysis was based on the initial imperfection in the stiffened

plate obtained from introducing an initial displacement that was affine to the solution

of the eigenvalue buckling analysis.

A mesh sensitivity study was conducted on the FE model in order to optimize the

simulation. The graph in Figure 5.3 shows the normalized critical load p = P/PC
o from

the numerical simulation in Abaqus against mesh size m. It was found that the mesh

size m = 8 mm provides a sufficiently high degree of accuracy versus computational

costs. The total number of elements in the stiffener and the main plate were 1565
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and 5008 respectively. Although by decreasing the mesh size to less than 8 mm the

results become more accurate, but the mesh sensitivity results show that the error

for the critical load is approximately 0.6% for the 8 mm mesh. Moreover, halving

the mesh size does not change the error very much but increases computation time

considerably.

2 4 6 8 10 12 14 16

0.95

0.975

1

1.025

1.05

m

p

Figure 5.3: Mesh sensitivity study from the numerical FE model in Abaqus. Com-

parison of the global critical buckling load versus the mesh size m.

In the current validation study, the focus is on intermediate and large values of the

rotational stiffness cp in order to simulate semi-rigid and fully-rigid connections re-

spectively. In the analytical equations, cp is the rotational stiffness per unit length

and since it is assumed to be uniform along the length of the stiffened plate, the

total rotational stiffness is thus: cpL. However, in the finite element model, since the

rotational spring is applied at each individual node along the length with the same

stiffness, the total stiffness of the spring element in the numerical model is therefore

mcp.
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5.1.1 Perfect stiffened plate

In this section, numerical results from the analytical model for a perfect stiffened plate

are compared to the FE solution conducted in Abaqus. The initial imperfections

that are introduced into the static Riks analysis within the FE model are sufficiently

small and therefore, the almost perfect response is studied and compared against the

perfect system of the analytical model. The rotational stiffness cp tends to infinity to

provide a fully-rigid main plate–stiffener connection in the analytical solution. The

corresponding equations for the stiffener and the main plate are the same as the ones

discussed in the previous chapter. However, for the FE model, the rotational spring

stiffness cp is set to a sufficiently high value of 1010 Nmm/mm. According to the

geometric properties of the stiffened plate, Table 3.1, this level of stiffness provides a

similar joint rigidity as in the analytical model evaluated from the following equations:

(S4)Auto = lim
cp→∞

3cph1
3Dsπ3 + cph1π3 − 3πcph1

=
3

π(π2 − 3)
,

(S4)Abaqus =
3(1010)h1

3Dsπ3 + (1010)h1π3 − 3π(1010)h1
,

≈ 0.13901. (5.1)

Comparing this to Equation (3.37), the approximation matches the exact value to 5

decimal places showing that cp = 1010 Nmm/mm is a suitable value to use. Hence,
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Jp and λp are thus:

(Jp)Auto = lim
cp→∞

4cpbπ

8(−1)iDp − 4cpb+ cpbπ

=
4π

π − 4
,

(Jp)Abaqus =
4(1010)bπ

8(−1)iDp − 4(1010)b+ (1010)bπ
,

≈ −14.63917,

(λp)Auto = lim
cp→∞

(

2b2

3h21

){

3DsS4π
3 − cph1 (3− S4π

3 + 3S4π)

−8DpJp − cpb (4Jp + 4π − πJp)

}

,

(λp)Abaqus =

(

2b2

3h21

){

3DsS4π
3 − (1010)h1 (3− S4π

3 + 3S4π)

−8DpJp − (1010)b (4Jp + 4π − πJp)

}

≈ 0.674. (5.2)

Moreover, Figure 5.4 shows the relationship between the ratio of the out-of-plane

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

cp

λ
p

x10
10

Figure 5.4: Plot of the ratio of the out-of-plane displacements in the main plate to

the stiffener λp versus the joint rigidity modelling of rotational stiffness cp.

deflections in the main plate to the stiffener λp and the cp values. It shows that the

level of cp selected for FE model is on the plateau region of λp, which seems to mimic

a fixed joint.
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A linear eigenvalue analysis is first conducted in Abaqus (2011). The correspond-

ing eigenvalue is found to be 1.61 kN, which is approximately 1% lower than PC
o

determined by the analytical model, as given in Equation (3.36). Figure 5.5 shows

equilibrium plots of the normalized axial load p = P/PC
o versus the normalized buck-

ling amplitudes of (a) the global mode of the strut qs and (b) the normalized local

mode deflection of the stiffener wmax/ts. The graph in (c) shows the relative ampli-

tudes of the global and local buckling modes for the studied perfect case. Figure 5.6

shows the local out-of-plane deflection profiles w at the respective locations (i)–(iii),

shown in Figure 5.5(a–c), the comparison being for the same value of p. In addition,

the visual comparisons of the 3-dimensional representation of the stiffened plate from

the analytical and the FE models are also presented in Figure 5.7.

5.1.2 Imperfect stiffened plates

In this section, three examples of the FE model results are considered and compared

against the corresponding analytical solutions in Auto-07p (Doedel & Oldeman,

2011). The first FE model with rotational stiffness, cp = 1000 Nmm/mm is considered

for the case where local buckling deflections are confined to the stiffener only (λp = 0).

The initial amplitude for the local out-of-plane displacement in the analytical model

A0 is set to be ts/10 (= 0.12 mm) with α = 8.0, β = 35 and η = L/2, to be

compatible with the eigenvalue analysis from Abaqus. However, in the second and

the third examples, the local buckling deflection of the main plate is included alongside

the stiffener (λp 6= 0). The rotational spring stiffnesses cp are set to be 500 and

1000 Nmm/mm respectively. In addition, the local imperfections have the same

amplitude as in the first model with α = 5.0, β = 75 and η = L/2, for the same reason

as described for the first example. For the two latter examples, the corresponding

initial deflection amplitude ratios λp are approximately 0.1533 and 0.2687 respectively,

which have been evaluated from Equation (4.8). The amplitudes of the global out-
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Figure 5.5: Comparisons of the analytical model (solid line) versus the FE model

(dashed line) solutions for the perfect case (qs0 = 0, w0 = 0), both with cp → ∞; Nor-

malized force ratio p versus (a) the global mode amplitudes qs and (b) the maximum

normalized out-of-plane deflection wmax/ts; (c) local versus global mode amplitudes.
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Figure 5.6: Comparisons of the analytical results (solid line) versus the FE model

(dashed line) solutions for the local out-of-plane deflection of the stiffener w, both

with cp → ∞ where (i)–(iii) correspond to the equilibrium states at p = 0.99, p = 0.95

and p = 0.89 respectively.
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Figure 5.7: Comparisons of the numerical solutions from the analytical (left) and the

FE (right) models when cp → ∞ visualized on 3-dimensional representations of the

strut. The results are shown for equilibrium states at the points shown in Figure

5.5 (a–c) defined as (i)–(iii). All dimensions are in millimetres but the local buckling

displacements in the stiffener are scaled by a factor of 5 to aid visualization.

181



Chapter 5: Validation of analytical models

of-straightness qs0 are set to be 0.001 in all three FE models. Table 5.1 presents the

Source σC
o (N/mm2) σC

l,s (N/mm2) σC
l,p (N/mm2) Critical mode

Theory 4.89 236.02 309.85− 539.91 Global

FE-1 4.942 215.69 − Global

% difference +0.12 -9.42 - N/A

FE-2 4.942 227.81 − Global

% difference +0.12 -3.60 - N/A

FE-3 4.942 228.94 503.15 Global

% difference +0.12 -3.09 +7.31 N/A

Table 5.1: Theoretical and FE values of the global and local critical buckling stresses

(σC
o and σC

l ) respectively; subscripts “p” and “s” refer to the main plate and the

stiffener respectively and kp is taken to be 1.247. The expression for σC
o = PC

o /A,

where A is the cross-sectional area of the strut.

corresponding critical global stresses σC
o as well as the local critical stresses for the

stiffener and the main plate σC
l,s and σC

l,p respectively, for all the components from the

analytical and the FE models. The corresponding difference between the FE and the

analytical values are also evaluated for each example.

Figure 5.8 shows the equilibrium path for the first example with cp = 1000 Nmm/mm.

The graphs in (a–b) show the normalized load p versus the global mode amplitude

qs and the maximum normalized local out-of-plane deflection wmax/ts respectively.

The graph in (c) shows the global amplitude qs versus the local amplitude wmax/ts.

Figure 5.9 shows the local out-of-plane deflection profiles w at the respective locations

(i)–(iii), shown in Figure 5.8(a–c), the comparison being for the same value of p. A

visual comparison between the 3-dimensional representations of the stiffened plate

from the analytical and the FE models is also presented in Figure 5.10.

Moreover, Figures 5.11 and 5.14 show a series of equilibrium paths when cp = 500
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Figure 5.8: Comparison of the analytical model (solid line) versus the FE model

(dashed line) solutions, both with cp = 1000 Nmm/mm (λp = 0), qs0 = 0.001, and

A0 = ts/10. Normalized force ratio p versus (a) the global mode amplitude qs and (b)

the maximum normalized out-of-plane stiffener deflection wmax/ts; (c) local versus

global mode amplitudes. Note that, the local imperfection is only for the stiffener for

this case.
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Figure 5.9: Comparison of the analytical model (solid line) versus the FE model

(dashed line) solutions, both with cp = 1000 Nmm/mm (λp = 0), qs0 = 0.001, and

A0 = ts/10. The out-of-plane deflection of the stiffener w for the points shown

in Figure 5.8(a–c), defined as (i)–(iii), corresponding to the equilibrium states at

p = 0.89, p = 0.84 and p = 0.81 respectively.
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Figure 5.10: Comparisons of the numerical solutions from the analytical (left) and the

FE (right) models with cp = 1000 Nmm/mm (λp = 0). Visualized on 3-dimensional

representations of the strut. The results are shown for equilibrium states at the points

shown in Figure 5.8 (a–c), defined as (i)–(iii). All dimensions are in millimetres, but

the local buckling displacements in the stiffener are scaled by a factor of 5 to aid

visualization.
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and cp = 1000 Nmm/mm respectively with the initial imperfection in the main plate

as well as in the stiffener. The graphs show the normalized load p = P/PC
o versus

(a) the global mode amplitude qs and (b) the maximum normalized local out-of-plane

deflection of the stiffener wmax/ts. The graphs in (c) show modal amplitudes qs versus

wmax/ts. Figures 5.12 and 5.15 show the local out-of-plane deflection profiles w at

the respective locations (i)–(iii), shown in Figures 5.11 and 5.14 (a–c) respectively.

In addition, visual comparisons between the 3-dimensional representations of the

stiffened plate from the analytical and the FE models are also presented in Figures

5.13 and 5.16. As it can be seen in the aforementioned figures, all sets of graphs

show very good correlation in terms of the mechanical response; the results for w

from the analytical and the FE models being almost indistinguishable. In particular,

by including the main plate local deflection as well as that of the stiffener (i.e. the

second and third examples), the number of waves in the interactive mode (w) are

increased and therefore, the comparison between the analytical results and the FE

models (i.e. FE-2 and FE-3 in the Table 5.1) are improved in terms of the maximum

out-of-plane deflection and the wavelengths. Although, it seems that the FE model is

unable to capture the changing wavelength of the post-buckling mode that has been

observed in physical experiments (Becque & Rasmussen, 2009a; Wadee & Gardner,

2012; Wadee & Bai, 2014). Nevertheless with increasing cp, the rate of reduction in

local buckling wavelength is reduced, hence the better quantitative comparison.

5.2 Comparison with experimental results

An experimental study of thin-walled stiffened plates by Fok et al (1976) focused

on the case where global buckling was critical. In this section, two specific tests

conducted on a panel with multiple stiffeners, are considered. The corresponding ex-

perimental results are then compared with the numerical results from the analytical
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Figure 5.11: Comparison of the analytical model (solid line) versus the FE model

(dashed line) solutions, both with cp = 500 Nmm/mm (λp = 0.1533), qs0 = 0.001,

and A0 = ts/10. Normalized force ratio p versus (a) the global mode amplitude qs

and (b) the maximum out-of-plane normalized stiffener deflection wmax/ts; (c) local

versus global mode amplitudes. Note that the local imperfection is introduced in

both the stiffener and the main plate for this case.
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Figure 5.12: Comparison of the analytical model (solid lines) versus the FE model

(dashed lines) solutions, both with cp = 500 Nmm/mm (λp = 0.1533) for the out-of-

plane deflection of the stiffener w for the points as shown in Figure 5.11(a–c), defined

as (i)–(iii), corresponding to the equilibrium states at p = 0.87, p = 0.82 and p = 0.72

respectively.
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Figure 5.13: Comparisons of the numerical solutions from the analytical (left) and the

FE (right) models with cp = 500 Nmm/mm (λp = 0.1533) visualized on 3-dimensional

representations of the strut. The results are shown for equilibrium states at the points

shown in Figure 5.11(a–c), defined as (i)–(iii). All dimensions are in millimetres, but

the local buckling displacements in the stiffener and the main plate are scaled by a

factor of 3 to aid visualization.
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Figure 5.14: Comparison of the analytical model (solid line) versus the FE model

(dashed line) solutions, both with cp = 1000 Nmm/mm (λp = 0.2687), qs0 = 0.001,

and A0 = ts/10. Normalized force ratio p versus (a) the global mode amplitude qs

and (b) the maximum out-of-plane normalized stiffener deflection wmax/ts; (c) local

versus global mode amplitudes. Note that the local imperfection is introduced in

both the stiffener and the main plate for this case.
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Figure 5.15: Comparison of the analytical model (solid lines) versus the FE model

(dashed lines) solutions, both with cp = 1000 Nmm/mm (λp = 0.2687) for the out-of-

plane deflection of the stiffener w for the points shown in Figure 5.14(a–c), defined as

(i)–(iii), corresponding to the equilibrium states at p = 0.82, p = 0.72 and p = 0.69

respectively.
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Figure 5.16: Comparisons of the numerical solutions from the analytical (left) and

the FE (right) models with cp = 1000 Nmm/mm (λp = 0.2687) visualized on 3-

dimensional representations of the strut. The results are shown for equilibrium states

at the points shown in Figure 5.14(a–c), defined as (i)–(iii). All dimensions are in

millimetres, but the local buckling displacements of the stiffener and the main plate

are scaled by a factor of 3 to aid visualization.
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model in Auto and the FE model in Abaqus. The cross-section of the stiffened

panel investigated by Fok et al (1976) is shown in Figure 5.17. The corresponding

experimental specimen had 10 blade stiffeners with length L. The geometric proper-

ties were thus: b = 45.5 mm, h1 = 13.5 mm, and ts = tp = 0.735 mm. The studied

model was made of cold-setting Araldite R© (epoxy resin) and the material had an elas-

tic constitutive relationship, but unfortunately no material properties were provided.

Hence, in the analytical and numerical studies, nominal values of E and ν are used.

Given that the behaviour was elastic and only ratios of loads and displacements were

presented as the results, this does not pose a problem as long as the same values are

used in the analytical and FE models.

In the first test, the length L of the panel was 400 mm, ensuring that the global critical

buckling load was much less than the local buckling load. As in the Fok et al (1976)

article, the initial global out-of-straightness of the strut was taken as W0 = 1.2ts and

no out-of-plane imperfection in the stiffeners nor in the main plate was considered

(i.e. w0 = wp0 = 0). In the second test, however, the length of the stiffened panel

was reduced to L = 320 mm. Although, the ratio of PC
o to PC

l decreased by about

15%, the global buckling mode remained critical. The corresponding stresses for both

tests are summarized in Table 5.2.

L (mm) σC
o (N/mm2) σC

l,s (N/mm2) σC
l,p (N/mm2)

Test 1 400 7.122× 10−4E 3.34× 10−3E 1.176× 10−3E

Test 2 320 1.109× 10−3E 3.34× 10−3E 1.176× 10−3E

Table 5.2: Theoretical values of the global and local critical buckling stresses (σC
o

and σC
l ) respectively; subscripts “p” and “s” refer to the main plate and the stiffener

respectively. The expression for σC
o = PC

o /A, where A is the cross-sectional area of

the panel.

For the L = 320 mm panel, the initial global buckling mode imperfection W0 was set

to 0.8ts and the amplitude of the out-of-plane imperfection A0 = 0.01ts with α = 4,
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b/2 b
tp

ts h1

L

Figure 5.17: Stiffened panel dimensions in Fok et al (1976) tests.

β = 11 and η = L/2, giving a similar interactive mode as the FE model. The relative

rigidity between the stiffeners and the main plate was again defined by rotational

springs with stiffness cp. For both models, the stiffness of the rotational spring cp

was set to be 300 Nmm/mm since this gave the best match with the peak load of

the experimental results. To find the equilibrium path, the numerical continuation

process was initiated from zero load as for an imperfect case (see §4.2).

Figure 5.18 shows the comparisons between the experimental results from Fok et

al (1976), the results from the analytical and the FE models. The comparisons show

strong agreement between all three sets of results. The graphs in Figure 5.18(a–

b) show the normalized force ratio p versus the normalized global mode deflection

(W −W0)/ts in tests 1 and 2 respectively. Since there was no information provided

about the local out-of-plane deflection magnitude, the results from the analytical

model are best compared to the results of numerical model in Abaqus. Figure

5.19(a) presents the comparison of the normalized force ratio p versus the maximum

normalized out-of-plane deflection wmax/ts of the stiffener. However, Figure 5.19(b)

shows the comparisons of the analytical and the FE model results for the local out-
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of-plane displacement of the stiffener w. Note that the results are obtained when

(i) p = 0.80 and (ii) p = 0.65. The visual comparison between the local buckling

amplitudes and wavelength is excellent. Of course at lower loads, in the advanced

post-buckling range, there is divergence between the non-midspan peaks; this is a

further example of the the FE model locking the modal wavelength, as found in earlier

studies, even though actual experimental evidence points to the contrary (Becque,

2008; Wadee & Gardner, 2012; Wadee & Bai, 2014).

5.3 Concluding remarks

The analytical model based on variational principles was introduced in Chapter 3

and extended to include global and local imperfections and the buckling of the main

plate, in Chapter 4. By introducing the sympathetic deflection of the main plate

along with the locally buckling stiffener, the currently developed model could now

be compared to published experiments (Fok et al., 1976) and a finite element model

formulated in Abaqus (2011). The comparison between the analytical model and

the corresponding results from both the FE model and the physical experimental

results are found to be excellent. The comparisons are seen to be the best where the

main plate buckles in sympathy with the stiffener and where the rigidity of the joint

connecting the stiffener to the main plate is high. It is also found that the static

FE model formulated in Abaqus, compares very well to the analytical model in the

neighbourhood of the secondary instability. The FE model, however, seems to have

problems by not allowing the local buckling wavelength to change. In particular, it is

unable to track any cellular buckling, even though, it is clearly seen in experiments of

closely related structural components (Becque, 2008; Wadee & Gardner, 2012; Wadee

& Bai, 2014). A possible way to overcome this problem might be to perform dynamic

(explicit) analysis within Abaqus, instead of Riks analysis, although for that a more
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Figure 5.18: Comparison of the experimental results (dots), the analytical model

(solid line) and the FE model (dashed line) solutions. Normalized force ratio p (=

P/PC
o ) versus the normalized relative global mode deflection (W − W0)/ts for the

panel with (a) L = 400 mm and (b) L = 320 mm.
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Figure 5.19: Comparison of the analytical model (solid line) and the FE model

(dashed line). (a) Normalized force ratio p (= P/PC
o ) versus the normalized maxi-

mum out-of-plane deflection wmax/ts; (b) local out-of-plane deflection of the stiffener

w for the points shown in (a) defined as (i) and (ii).
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intensive computational effort would be required.

In the next chapter, a more detailed imperfection sensitivity study is presented and a

parametric investigation is conducted to provide greater understanding of the inter-

active buckling phenomena and to highlight the practical implications for design.
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Parametric study

A nonlinear analytical model for an axially loaded thin-walled stiffened plate, based

on variational principles, was introduced in Chapter 3 and then developed in Chapter

4 by considering the local deflection of the main plate as well as the stiffener. The

corresponding analytical results were validated against physical experiments, as well

as finite element models, formulated in the commercial software Abaqus (2011) in

Chapter 5. Excellent agreement was found in terms of the mechanical response and

the predicted deformation. So far, the numerical examples have been considered with

a set of section and material properties that was focused on the case where global

buckling was critical (L = 5 m). The highly unstable post-buckling behaviour was

revealed for all cases including the cellular behaviour when the rigidity of the main

plate–stiffener junction was modelled as pinned (cp = 0 Nmm/mm) or semi-rigid

(cp ≤ 1000 Nmm/mm) and the non-cellular buckling behaviour being observed for

the cases where the aforementioned joint was assumed to be rigid, i.e. cp → ∞.

In this chapter, initially, imperfection sensitivity is studied by varying the amplitude

of a local imperfection as well as varying the periodic and the localization factors

that change the profile qualitatively. Moreover, an initial global buckling out-of-
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straightness amplitude is also varied in order to study the effect of the initial global

imperfection. After that, a parametric study is presented aimed at varying the length

L of the stiffened plate and the height of the stiffener h1, to obtain a better under-

standing of where the interactive buckling behaviour of the stiffened plate is important

in terms of the geometric properties and where it can be practically neglected.

6.1 Effect of initial imperfections

In this section, an initial imperfection is considered in terms of the local deflection

of the stiffener w0 and the global out-of-straightness of the stiffened plate W0. The

stiffened plate cross-section properties are the same as were given in Table 3.1. The

form of the local imperfection w0 is obtained from Equation (4.10) and the global

out-of-straightness W0 is derived from Equation (4.9). It is worth reiterating that the

initial local displacement of the main plate wp0 relates to the local out-of-straightness

of the stiffener with wp0 = λpw0, as discussed in Chapter 4. Numerical continuation

is again performed in Auto. The solution strategies for the aforementioned cases are

the same as those explained in previous chapters. The material properties of Young’s

modulus E = 210 kN/mm2 and Poisson’s ratio ν = 0.3 are kept constant in all the

following examples.

6.1.1 Pinned main plate–stiffener connection

In this section, local and global imperfection sensitivities are investigated for the case

where the main plate–stiffener connection is assumed to be pinned (cp = 0). The

initial set of numerical examples focus on the local imperfections. Therefore, the

initial local out-of-plane displacement w0 is only considered in the equation of equi-

librium and the initial out-of-straightness, qs0 is set to zero. The local imperfection
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amplitude A0, the periodicity and the localization parameters β and α respectively,

are varied to determine the worst case combination that gives the lowest peak load.

The subsequent set of numerical examples consider the post-buckling behaviour of

the stiffened plate by varying the global imperfection amplitude qs0. In the following

examples global buckling is critical (L = 5 m).

Local imperfection only (A0 6= 0 , qs0 = 0)

In this section, three types of local imperfection w0 are studied in the stiffened plate.

The initial end-shortening E0 due to the local imperfection, is also considered, which

is evaluated from the first-order approximation:

E0 =
1

2

∫ L

0

ẇ2
0 dz. (6.1)

Initially, the periodicity and the localization parameters β and α respectively, are kept

at constant values of 1 and 0 respectively. This type of imperfection also replicates

the first local buckling eigenmode captured from the FE model. At this stage, the

amplitude of local deflection A0 and E0 are varied. The peak loads are recorded for

each value of E0. This method is used since it does not bias the results against any

particular imperfection profile (Wadee, 2000).

Figure 6.1(a) shows the normalized initial end-shortening E0/L versus the normalized

peak load pu = P/PC
o . By increasing the E0 value, the corresponding normalized

peak loads pu are plotted with the (×) symbol when β = 1 and α = 0. A very small

reduction is found in pu, which indicates that the stiffened plate is insensitive to the

purely periodic local imperfection when β = 1. In the second step, the initial end-

shortening E0 is kept constant. Since, the imperfection is kept periodic (i.e. α = 0),

the β value and the amplitude A0, are varied. This variation in A0, as well as β,

values are shown in Figures 6.1(b) and 6.2(a) respectively. It is worth noting that,

the periodic amplitude parameter β, takes odd integer values only, in order to satisfy
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Figure 6.1: Imperfection sensitivity for the pinned case (cp = 0). Normalized im-

perfection size E0/L against: (a) the normalized peak load, pu (= P/PC
o ) and (b)

the normalized local deflection amplitude A0/ts. The (×) symbol corresponds to the

imperfection form of the plate linear eigenvalue solution (α = 0, β = 1), the (∗)

symbol corresponds to the periodic imperfection (α = 0, β > 1) and the (◦) symbol

correspond to the modulated imperfection (α 6= 0, β > 1).
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Figure 6.2: Worst case periodic and localized imperfections for the pinned case (cp =

0). Normalized imperfection size E0/L against: (a) the periodicity parameter β which

gives the lowest peak loads and (b) the localization parameter α which gives the

corresponding lowest peak loads.
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the symmetry boundary conditions at mid-span. The combination of β and A0 that

gives the lowest peak load is determined as the critical peak load, as shown with the

(*) symbol in both graphs of Figure 6.1. It is observed that, by increasing the β

value, the peak load is reduced significantly as E0 increases.

In the final step, the localized imperfection is considered by varying the α value,

while E0 is kept constant at the same value that was obtained in the second stage.

In addition, β is also kept constant as the critical value determined in the previous

stage. Therefore, an increase in the A0 value is found by increasing the α value, as

shown in Figure 6.1(b) with the circle (◦) symbol. The combination of α and A0

which gives the lowest peak load is also determined. A significant further reduction

in the peak loads is observed when the imperfection is more localized (modulated) by

varying α, for all values of E0 as shown in Figure 6.1(a). The corresponding α values

for each value of normalized end-shortening E0/L are also shown in Figure 6.2(b).

For the largest E0 value, the amplitude A0 for the worst case periodic imperfection is

slightly more than ts/10, whereas for the worst modulated imperfection, A0 increases

to approximately ts/4. Note that for higher values of E0/L, α begins to reduce, this

would be expected since the perfect case shows cellular buckling and hence the post-

buckling mode amplitude envelope begins to spread outwards from the mid-span.

Global imperfection only (qs0 6= 0 , A0 = 0)

In this section, only the initial out-of-straightness of the stiffened plate W0 is in-

troduced to the equilibrium equations. A set of values for the normalized initial

out-of-straightness amplitude qs0 is assumed between zero (perfect case) and 1/500.

Figure 6.3 shows a series of graphs of the normalized axial load pu (= P/PC
o ) versus

(a) the global mode amplitude qs and (b) the local mode amplitude wmax/ts. More-

over, the graphs in Figure 6.4 show the normalized axial load pu versus the normalized
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Figure 6.3: Numerical equilibrium paths for the pinned case (cp = 0). The graphs

show a family of curves of the normalized force ratio p (= P/PC
o ) versus (a) the global

mode amplitude qs and (b) the normalized local mode amplitude wmax/ts.
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Figure 6.4: Numerical equilibrium paths for the pinned case (cp = 0). The graphs

show a family of curves of the (a) normalized force ratio p (= P/PC
o ) versus the

normalized end-shortening E/L, (b) the local versus the global mode amplitude.
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end-shortening E/L and the normalized local versus the global mode amplitudes, re-

spectively.

Figure 6.5(a) shows a scatter plot of the normalized peak load, pu against the initial

global imperfection amplitudes. Moreover, Figure 6.5(b) shows the corresponding

global out-of straightness qs at the secondary bifurcation point qSs and the first snap-

back location qTs versus qs0. It is clearly observed that the peak load pu decreases as

the size of the imperfection increases beyond qs0 = 4 × 10−4, which shows that the

stiffened plate is sensitive to global imperfections of sufficient size. Moreover, qSs and

qTs values also increase as qs0 increases. In other words, as a result of both types of

imperfection, the sensitivity studies show that the formation of the first new peak

or trough (during cellular buckling) occurs further down the post-buckling path for

larger initial imperfections. It is also observed that the formation of the new cell

undergoes a similar restabilization path length.

6.1.2 Rigid main plate–stiffener connection

In this section, global imperfection sensitivity is studied for the case where the main

plate–stiffener junction is assumed to be rigid (cp → ∞). The same set of material

and geometric properties as the pinned case in the previous section is considered to

study the buckling and post-buckling behaviour of the stiffened plate by varying the

global imperfection amplitude qs0. It is worth noting that, in the following examples,

global buckling is still critical (L = 5 m). A set of values of the normalized initial

out-of-straightness amplitude qs0 are assumed to be between zero (perfect case) and

1/500. Figure 6.6 shows a series of graphs of the normalized axial load pu = P/PC
o

versus (a) the global mode amplitude qs and (b) the local mode amplitude wmax/ts.

Moreover, the graphs in Figure 6.7 show the normalized axial load pu = P/PC
o versus

the normalized end-shortening E/L and the normalized local versus the global mode
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Figure 6.5: Imperfection sensitivity graphs. (a) Normalized peak load pu (= P/PC
o )

versus the initial out-of-straightness coordinate qs0, (b) distribution of qSs and qTs

versus qs0.
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Figure 6.6: Numerical equilibrium paths for the rigid joint case (cp → ∞). The

graphs show a family of curves of the normalized force ratio p (= P/PC
o ) versus (a)

the global mode amplitude qs and (b) the normalized local mode amplitude wmax/ts.
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Figure 6.7: Numerical equilibrium paths for the rigid joint case (cp → ∞). The

graphs show a family of curves of the (a) normalized force ratio p (= P/PC
o ) versus the

normalized end-shortening E/L and (b) the local versus the global mode amplitude.
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amplitudes, respectively.

In addition, Figure 6.8(a) shows a scatter plot of the normalized peak load, pu against

the initial global imperfection amplitudes. Moreover, Figure 6.8(b) shows the corre-

sponding value of qs at the secondary bifurcation point qSs and the first snap-back

location qTs versus qs0. It is clearly observed that the peak load pu decreases as the

size of the imperfection increases, which shows that the stiffened plate is highly sen-

sitive to global imperfections. Moreover, the qSs and qTs values also increases as qs0

increases. In other words, as a result of both types of imperfection, again, the sen-

sitivity studies show that the formation of the first new peak or trough (snap-back)

occurs even further down the post-buckling path for larger initial imperfections; this

is similar to the perfect case yet no cellular buckling was found.

6.2 Effect of stiffener aspect ratio

The axially loaded stiffened plate with the geometric properties as summarized in

Table 3.1 has been considered thus far. The corresponding aspect ratio L/h1, was

131.57 and global buckling was the initial instability mode. In this section, a para-

metric study on the aspect ratio of the stiffened plate is conducted by varying the

length of the stiffened plate L as well as the height of the stiffener h1. Moreover, the

effects of varying the aspect ratio on the normalized global and local panel slender-

ness ratios λ̄o and λ̄l are then discussed. It is worth noting that, in the proceeding

sections, an imperfect stiffened plate with an initial global amplitude qs0 equivalent

to a maximum mid-span deflection of L/2000 and the initial local amplitude A0 equal

to t/100 with β = 1 and α = 0 is considered.
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Figure 6.8: Imperfection sensitivity graphs. (a) Normalized peak load pu (= P/PC
o )

versus the initial out-of-straightness coordinate qs0, (b) distribution of qSs versus qs0.
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6.2.1 Variation in stiffened plate length

In this section, initially, the parametric study is conducted by varying the global

slenderness ratio L/r with changing the strut length L. Note that r is the section

radius of gyration which is equal to
√

I/A, where I is the total second moment of area

about the neutral axis of bending parallel to the main plate and A is the total cross-

section area of the effective portion of the stiffened plate shown in Chapter 3. The

other geometric properties of the effective portion stiffened plate are kept constant

and are given in Table 6.1. The expression for the global buckling critical load PC
o

is given by Equation (3.36). The critical load for local buckling PC
l is evaluated

using the plate critical buckling stress formula given in Equation (2.26), where for

the stiffener t ≡ ts and b ≡ h1, and multiplying it by the total cross-sectional area A.

Plate breadth b 120 mm

Plate thickness tp 2.4 mm

Stiffener depth(top) h1 38 mm

Stiffener depth(bottom) h2 1.2 mm

Stiffener thickness ts 1.2 mm

Table 6.1: Geometric properties of stiffened plate.

Hitherto, the full set of equilibrium equations were solved when global buckling was

critical (i.e. PC
o < PC

l ). It is clear that varying the strut length L only affects the

global critical load PC
o , whereas varying the stiffener height h1 affects both the global

and the local critical loads, PC
o and PC

l , respectively.

The length Ll is determined when PC
l < PC

o and interactive buckling does not occur

sufficiently quickly (defined below). Therefore, the stiffened plate with L < Ll exhibits

effectively pure local buckling. The length Lo is determined when PC
o < PC

l and
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thus the stiffened plate with L > Lo exhibits effectively pure global buckling and

interactive buckling, again, does not occur sufficiently quickly. A critical length Lc

is also determined for the condition where PC
o = PC

l . With such a condition, the

secondary instability will be triggered simultaneously with the primary one. The

current work considers a mid-span deflection value of L/125 as a limiting value for the

global lateral deflection for both pinned and rigid cases; hence cases where qs > 0.008

at the peak load, where qs = qus
1, are considered to have effectively negligible mode

interaction. The stiffened plate length, where, qus = 0.008, is determined and denoted

as Lo. Hence, interactive buckling, where local buckling is critical, occurs in the

length range: Ll < L < Lc. However, where global buckling is critical, interactive

buckling occurs when the length lies in the range: Lc < L < Lo; both cases are

illustrated diagrammatically in Figure 6.9. For the range Lc < L < Lo, the load

Lc Lo

qs
D

qs

L






u

(a)

w

LcLl
L

D
w







u
/ts

/ts

(b)

Figure 6.9: Interactive buckling regions while varying the stiffened plate length L. The

length L = Lc is defined when PC
o = PC

l , whereas stiffened plates with L > Lo and L <

Ll are assumed to exhibit pure global buckling and pure local buckling respectively.

The values qDs and wD
max define the limiting global and local mode amplitudes for pure

global and local buckling respectively.

carrying capacity pu for the perfect case is determined by the global critical load PC
o

and the post-buckling behaviour is then studied. Whereas, for the range where local

1Since the studied model in this section relatively represents the perfect case, the notation qS
s

is

used in the proceeding results.
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buckling is critical, a similar criterion is utilized for the maximum local out-of-plane

deflection wmax at the peak load. In this range, the load carrying capacity pu is

determined as the peak load only. The study is conducted for both cases where the

main plate–stiffener connection is pinned and rigid.

6.2.2 Variation in stiffener height

In this study, a similar method is used to vary the local slenderness λl, which is equal

to h1/ts. Thus, the stiffener height h1 is varied and hence the stiffener thickness

ts and the panel length L are kept constant as given in Table 3.1. Similarly, the

critical stiffener height hc is determined when PC
o = PC

l . By increasing h1, the local

critical load PC
l decreases and the global critical load PC

o increases. This is due to

the increase in the second moment of area I about the bending axis parallel to the

main plate. It is considered that the stiffener height h1 > hl, effectively pure local

buckling occurs and therefore the interactive region where local buckling is critical is

in the stiffener height range: hc < h1 < hl. However, decreasing h1 implies that PC
l

increases and PC
o decreases and therefore global buckling can become critical. It is also

considered that the stiffener height h1 < ho exhibits effectively pure global buckling

and therefore the interactive region where global buckling is critical is in the stiffener

height range: ho < h1 < hc. Figure 6.10 shows these features diagrammatically. It is

worth noting that the limiting value for the stiffener local out-of-plane deflection is

identified where a kink (significant slope change) is observed in the equilibrium path

for both the pinned or rigid cases separately.
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Figure 6.10: Interactive buckling regions while varying the stiffener height h1. The

stiffener height h1 = hc is defined when PC
o = PC

l , whereas stiffened plates with

h1 > hl and h1 < ho are assumed to exhibit pure local buckling and pure global

buckling respectively. The values qDs and wD
max define the limiting global and local

mode amplitude for pure global and local buckling respectively.

6.2.3 Buckling strength curve

It is well-known that the failure mechanism primarily occurs due to structural in-

stability and plasticity in slender and stocky structural members, respectively. The

normalized global slenderness λ̄o can be obtained from (Trahair et al., 2008):

λ̄o =

√

σY
σC
o

, (6.2)

and the normalized local slenderness λ̄l is calculated from:

λ̄l =

√

σY
σC
l,s

, (6.3)

where σY and σC
o are the yield and the global buckling stresses, respectively. Cur-

rently, σY is taken as 355 N/mm2. In addition, σC
l,s is the critical stress of the stiffener

which is derived from Equation (2.26), and therefore the normalized local slenderness

is given by:

λ̄l =
h1
ts

√

12(1− ν2)

kpπ2

(σY
E

)

. (6.4)
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The global and local critical stresses, normalized with respect to σY , hence, σ̄o =

σC
o /σY and σ̄l = σC

l,s/σY respectively, are then obtained for the elastic buckling curve,

thus:

σ̄o = (λ̄o)
−2, σ̄l = (λ̄l)

−2. (6.5)

The idealized buckling design curves are therefore plotted in terms of the nondimen-

sional stress and slenderness, as shown in Figure 6.11. It is clear that for λ̄x > 1,

σo

λo
1

1

(a)

σl

λl
1

1

(b)

Figure 6.11: The idealized strength curve in terms of normalized quantities for (a)

global buckling stress versus global slenderness and (b) local buckling stress versus

the local slenderness.

where x = {o, l}, columns are relatively slender and elastic buckling dominates; but

for λ̄x < 1, columns are stocky and plasticity dominates. With imperfections, how-

ever, the situation is less distinct. Nevertheless, for λ̄x ≫ 1, the elastic buckling load

is approximately the ultimate load and plasticity effects are indeed negligible. In

the following section, numerical examples are presented for an example set of stiff-

ened plate lengths L as well as stiffener heights h1; the corresponding normalized

slendernesses are calculated using Equations (6.2) and (6.4) respectively.
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6.2.4 Numerical results and discussion

Pinned main plate–stiffener connection

In this section, numerical continuations are performed in Auto for the stiffened

plate with a pinned joint between the stiffener and the main plate (i.e. cp = 0). It is

observed in Figure 6.12 that, for the particular section properties given in Table 6.1,

panel lengths between Ll = 800 mm and Lo = 3500 mm are the most vulnerable to

interactive buckling, whereas with L < Ll and L > Lo are vulnerable to pure local

buckling and pure global buckling respectively. The critical strut length Lc is found

to be approximately 1235 mm by both the theoretical calculation and the numerical

solution.

Figure 6.13 shows the results in terms of the classic curve that was presented by

van der Neut (1969), see Figure 2.10. This shows Pu/P
C
l versus PC

o /P
C
l for varying

L. It is observed that for L > Lo, the stiffened plate exhibits pure global buckling

that is weakly stable, after the critical bifurcation point. For Lc < L < Lo, the

strut exhibits a weakly stable equilibrium path after the critical bifurcation point,

followed by an unstable interactive post-buckling path after the secondary bifurcation

point. For L ≈ Lc, the global and the local buckling modes are triggered practically

simultaneously and the stiffened plate exhibits an unstable interactive post-buckling

path. For Ll < L < Lc, the strut exhibits a stable equilibrium path after the critical

bifurcation point, followed by an unstable interactive post-buckling path after the

secondary bifurcation point. Finally for L < Ll, the strut exhibits pure local buckling

of the main plate that is strongly stable. Note that for Ll < L < Lo, all equilibrium

paths exhibit cellular buckling behaviour during mode interaction.

With the section properties given in Table 3.1 and L being fixed, the numerical con-

tinuations are carried out for varying the stiffener height h1. Figure 6.14 corresponds
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Figure 6.12: Pinned case, varying length L. Graphs show (a) the normalized lateral

displacement at the secondary bifurcation point qSs (= qus ) and (b) the normalized

maximum local out-of-plane displacement wu
max/ts at the peak load pu, versus the

strut length L, for the cases where global and local buckling are critical, respectively.

The vertical dashed line with label Lc represents the critical stiffened plate length

where PC
o = PC

l . The horizontal dot-dashed lines represent the amount of displace-

ment, above which interactive buckling is assumed to be insignificant (qDs , wD
max); the

interactive region is therefore Ll < L < Lo. The vertical dashed line Ls represents

the strut length which pu begins to deviate from PC
l significantly.
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Figure 6.13: Pinned case, varying length L. The central graph shows the normalized

ultimate load Pu/P
C
l versus the normalized global critical load PC

o /P
C
l . The solid

line represents the actual numerical solutions whereas the dashed lines representing

Ll, Lc, Ls and Lo correspond directly to Figure 6.12. The surrounding graphs show

examples of the equilibrium paths corresponding to the different parts of the central

graph, separated by the dot-dashed lines.
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Figure 6.14: Pinned case, varying stiffener height h1. Graphs show (a) the normal-

ized lateral displacement at the secondary bifurcation point qSs (= qus ) and (b) the

normalized maximum local out-of-plane displacement wu
max/ts at the peak load pu,

versus the stiffener height h1, for the cases where global and local buckling are critical,

respectively. The vertical dashed line with label hc represents the critical stiffened

plate length where PC
o = PC

l . The horizontal dot-dashed line represents the amount

of displacement, above which interactive buckling is assumed to be insignificant (qDs ,

wD
max); the interactive region is therefore ho < h1 < hl.
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to Figure 6.12, for varying h1. It is observed in Figure 6.14 that the stiffened plates

with stiffener height between ho = 27 mm and hl = 46 mm are most vulnerable to in-

teractive buckling, whereas stiffeners with h1 > hl and h1 < ho are vulnerable to pure

local buckling and pure global buckling respectively. The critical stiffener height hc is

found to be approximately 38 mm by both theoretical calculation and the numerical

solution.

Figure 6.15 shows a plot of Pu/P
C
l versus PC

o /P
C
l for varying h1, and examples of the

actual equilibrium paths for different ranges of h1. It is observed that for h1 < ho, the

strut exhibits pure global buckling that is weakly stable, after the critical bifurcation

point. For ho < h1 < hc, the strut exhibits a weakly stable equilibrium path after the

critical bifurcation point, followed by an unstable interactive post-buckling path after

the secondary bifurcation point. For h1 ≈ hc, the global and the local buckling modes

are triggered practically simultaneously and the strut exhibits an unstable interactive

post-buckling path. For hc < h1 < hl, the strut exhibits a stable equilibrium path

after the critical bifurcation point, followed by an unstable interactive post-buckling

path after the secondary bifurcation point. Finally for h1 > hl, the strut exhibits

pure local buckling. Again, all equilibrium paths exhibit cellular buckling behaviour

within the interactive region.

Rigid main plate–stiffener connection

In this section, numerical continuations are presented for the stiffened plate with a

rigid joint between the main plate and the stiffener (cp → ∞). Initially, the stiffened

plate length L is varied with the section properties given in Table 6.1. Figures 6.16 and

6.17 correspond to Figures 6.12 and 6.13, for the rigid main plate–stiffener junction,

respectively. According to the graphs in Figure 6.16, it can be observed that a stiffened

plate with a length between Lc = 720 mm and Lo = 2100 mm are most vulnerable
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Figure 6.15: Pinned case, varying stiffener height h1. The central graph shows the

normalized ultimate load Pu/P
C
l versus the normalized global critical load PC

o /P
C
l .

The solid line represents the actual numerical solutions whereas the dashed lines

representing hl, hc and ho correspond directly to Figure 6.14. The surrounding graphs

show examples of the equilibrium paths corresponding to the different parts of the

central graph, separated by the dot-dashed lines.
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Figure 6.16: Rigid case, varying length L. Graphs show (a) the normalized lateral

displacement at the secondary bifurcation point qSs (= qus ) and (b) the normalized

maximum local out-of-plane displacement wu
max/ts at the peak load pu, versus the

strut length L, for the cases where global and local buckling are critical, respectively.

The vertical dashed line with label Lc represents the critical stiffened plate length

where PC
o = PC

l . The horizontal dot-dashed lines represent the amount of displace-

ment, above which interactive buckling is assumed to be insignificant (qDs , wD
max); the

interactive region is therefore Ll < L < Lo.
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to interactive buckling where global buckling is critical, whereas struts with L > Lo

are vulnerable to pure global buckling. On the other hand, a stiffened plate with a

length between Ll = 650 mm and Lc = 720 mm are most vulnerable to interactive

buckling where local buckling is critical, whereas struts with L < Ll are vulnerable

to pure local buckling.
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Figure 6.17: Rigid case, varying length L. The central graph shows the normalized

ultimate load Pu/P
C
l versus the normalized global critical load PC

o /P
C
l . The solid line

represents the actual numerical solutions whereas the dashed lines representing Ll, Lc

and Lo correspond directly to Figure 6.16. The surrounding graphs show examples

of the equilibrium paths corresponding to the different parts of the central graph,

separated by the dot-dashed lines.
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The stiffener height h1 is also varied for the stiffened plate with the geometric proper-

ties in Table 6.1 with the length L being fixed at the critical value, for the fully rigid

main plate–stiffener connection. It is observed in Figure 6.18 that the stiffened plate

with the stiffener heights between ho = 26 mm and hl = 39 mm are most vulnerable

to interactive buckling, whereas the stiffener with h1 > hl and h1 < ho are vulnerable

to pure local buckling and pure global buckling respectively. The critical stiffener

height hc has the same value as the one in the pinned case. Figure 6.19 shows a very

similar trend as shown in Figure 6.15.

6.2.5 Interactive buckling zone

The region where interactive buckling is significant is summarized in Tables 6.2 and

min(Ll, Ls) (mm) Lc (mm) Lo (mm)

Pinned 800 1235 3500

Rigid 650 720 2100

Table 6.2: Summary of values for Ll, Ls, Lc and Lo, for struts with the properties given

in Table 6.1, for both the pinned and the fully rigid main plate–stiffener connection.

Note that the stiffener height h1 = 38 mm in both the pinned and the rigid joint

cases.

6.3 in terms of the stiffened plate length L and the stiffener height h1 respectively,

min(hl, hs) (mm) hc (mm) ho (mm) L (mm)

Pinned 46 38 27 1235

Rigid 39 38 26 720

Table 6.3: Summary of values for hl, hs, hc and ho, for struts with the properties

given in Table 6.1, for both the pinned and the rigid joint cases.

for both the pinned and the rigid main plate–stiffener connection. In the interactive
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Figure 6.18: Rigid case, varying stiffener height h1. Graphs show (a) the normal-

ized lateral displacement at the secondary bifurcation point qSs (= qus ) and (b) the

normalized maximum local out-of-plane displacement wu
max/ts at the peak load pu,

versus the stiffener height h1, for the cases where global and local buckling are critical,

respectively. The vertical dashed line with label hc represents the critical stiffened

plate length where PC
o = PC

l . The horizontal dot-dashed line represents the amount

of displacement, above which interactive buckling is assumed to be insignificant (qDs ,

wD
max); the interactive region is therefore ho < h1 < hl.

227



Chapter 6: Parametric study

0 1.5 3
0

0.5

1

qs × 10−2

p

0 1.5 3
0

0.5

1

qs × 10−2

p

0 0.5 1 1.5
0

0.5

1

1.5

ho hc hl

PC
o /P

C
l

P
u
/
P

C l

h1 increasing global local

0 1.5 3
0

0.5

1

wmax/ts

p

0 1.5 3
0

0.5

1

qs × 10−2

p

Figure 6.19: Rigid case, varying stiffener height h1. The graph shows the normalized

ultimate load Pu/P
C
l versus the normalized global critical load PC

o /P
C
l . The solid

line represents the actual numerical solutions whereas the dashed lines representing

hl, hc and ho. The surrounding graphs show examples of the equilibrium paths

corresponding to the different parts of the central graph, separated by the dot-dashed

lines.
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zone, the post-buckling behaviour is highly unstable after the secondary instability

is triggered. It is clear that by increasing the rigidity of the connection between the

main plate and the stiffener, the vulnerability to interactive buckling is reduced, in

terms of both the stiffened plate length L and the stiffener height h1. Tables 6.4

and 6.5 summarize the values of the global and the local normalized slendernesses,

λ̄l λ̄c λ̄o

Pinned 2.088 2.09 5.62

Rigid 1.22 1.23 3.39

Table 6.4: Summary of values for λ̄l, λ̄c, and λ̄o, for struts with the properties given

in Table 6.2, for both the pinned and the rigid joint cases.

λ̄l λ̄c λ̄o

Pinned 2.52 2.09 3.19

Rigid 1.25 1.23 2.06

Table 6.5: Summary of values for λ̄l, λ̄c, and λ̄o, for struts with the properties given

in Table 6.3, for both the pinned and the rigid joint cases.

λ̄o and λ̄l, the values of which are calculated using Equations (6.2) and (6.4), directly

corresponding to the values of the stiffened plate lengths and the stiffener height given

in Table 6.2 and Table 6.3, respectively.

Note that the global and the local normalized slendernesses, for each critical stiffened

plate length Lc and the critical stiffener height hc, are equal, and are therefore denoted

using a single piece of notation λ̄c.

When L is varied, the normalized global slenderness only changes and therefore λ̄c ≈

λ̄l as seen in Table 6.4. However, as h1 is varied the normalized local slenderness λ̄l

changes together with the normalized global slenderness. Therefore, since the critical

length Lc is different for the pinned and the rigid cases (see Table 6.3), λ̄c differs from
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both λ̄o and λ̄l, as seen in Table 6.5. Figure 6.20(a–b) shows the idealized strength

curves (see Figure 6.11) corresponding to the values of global and the local normalized

slendernesses given in Tables 6.4 and 6.5, respectively. With imperfections, of course,

the reduction from the idealized strength curve is likely to be the greatest where

λ̄ = λ̄c.

6.3 Concluding remarks

Imperfection sensitivity and parametric studies were performed for an example set

of material and geometric properties of a series of thin-walled stiffened plates for

two limiting cases where the main plate was assumed to provide a pinned and rigid

connection to the stiffener.

Initially, imperfection sensitivity studies were conducted for the cases with the pres-

ence of the global and local imperfections only. The model identified the highly

imperfection sensitive nature of the struts that are susceptible to cellular buckling.

Significant reduction in the load-carrying capacity was observed for the struts with a

small initial global and local imperfections. It was also found that the local imperfec-

tion that had a localized (modulated) profile was always seemed to be the worst case

in terms of the load-carrying capacity, as was the case for axially loaded sandwich

struts (Wadee, 2000). The study on different forms of global and local imperfections

indicates the need for caution in numerical assessments during the design process for

actual thin-walled stiffened plates that undergo interactive buckling behaviour.

The investigation also focused on changing the global and the local slendernesses

by varying the panel length and the stiffener height. A deflection based criterion

was defined such that an interactive buckling dominated region, where the interac-

tion between global and local buckling dominates, may be determined. For pinned
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Figure 6.20: The idealized strength curves with the symbols representing the global

and the local normalized slendernesses given in (a) Table 6.4 and (b) Table 6.5. Sym-

bols (∗) and (×) represent the cases where the main plate–stiffener joint is assumed

to be rigid and pinned respectively. Note the higher slenderness values for the pinned

cases.
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main plate–stiffener connections, all examples (including where the global mode or

the local mode was critical) within the interactive region exhibit unstable cellular

buckling. For a fully rigid main plate–stiffener connection, examples for the cases

where global buckling was critical, exhibit unstable post-buckling responses without

the observation of the cellular behaviour, as found in Chapter 4.
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General conclusions

This thesis has presented a series of analytical models with increasing complexity

that account for the interactive buckling phenomena in axially-loaded thin-walled

stringer-stiffened plates with a varying rigidity of the main plate–stiffener connection.

Using the calculus of variations, the analytical models have been developed based on

elasticity theory and total potential energy principles. The models focused on the

nonlinear interaction between the global (Euler) buckling mode and the local buckling

mode of the stiffener as well as the main plate.

The highly unstable post-buckling behaviour followed by a sequence of snap-backs

has been highlighted, outlining sequential destabilization and restabilization. This

phenomenon captured the vulnerability to cellular buckling behaviour for stiffened

plates with rotationally weak main plate–stiffener connections. Imperfection sensi-

tivity and parametric studies were conducted highlighting some important behaviour

that needs particular attention in the context of structural design.

The research study, initially, focused on a perfect case, adapted to investigate the

effect of varying the rigidity of the main plate–stiffener connection, by introducing
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a rotational spring that restricted the relative rotation between the main plate and

the stiffener. Distinct features were captured by the numerical examples for the case

where global buckling was critical. In that case, the stiffened plate first buckled

globally at the primary bifurcation point and then followed the weakly stable post-

buckling path until a secondary bifurcation point, where interactive buckling of the

stiffener was triggered. For the pinned case, cellular buckling was found with a

characteristic sequence of snap-backs in the mechanical response; each snap-back

corresponded to the new formation of a peak or trough in the local buckling mode

profile. The buckling mode of the stiffener changed from localized to periodic with

a progressively reducing wavelength. Although, the effect of the snap-backs reduced

by increasing the rigidity of the main plate–stiffener connection, the mode interaction

persisted and the local buckling profile still changed wavelength.

The model was then extended to include the local deflection of the main plate. In ad-

dition, two types of geometric imperfections were included into the equilibrium equa-

tion: an initial out-of-straightness (global imperfection) and an initial out-of-plane

displacement of the stiffener as well as the main plate (local imperfection). Significant

reductions in the load-carrying capacity were observed for the structure with a small

initial global imperfection or both global and local imperfection components.

The developed analytical models were compared to published experiments (Fok et al.,

1976) and a finite element (FE) model formulated in Abaqus (2011). In the FE

models, 4-noded shell elements (S4R) were used and Riks analyses were performed to

generate the post-buckling response, with the introduced imperfection obtained from

the linear eigenvalue analysis. The comparison between the analytical model and

the corresponding results from both the FE model and the experimental results were

found to be excellent. Indeed, the comparisons were seen to be the best where the

main plate buckles in sympathy with the stiffener and where the rigidity of the joint

connecting the stiffener to the main plate was high. It was also found that the static
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FE model formulated in Abaqus, compared very well to the analytical model in the

neighbourhood of the secondary instability. The FE model, however, seemed to have

problems by not allowing the local buckling wavelength to change. In particular, it

was unable to track any cellular buckling, even though it is clearly seen in experiments

of closely related structural components (Becque, 2008; Becque & Rasmussen, 2009a;

Wadee & Gardner, 2012; Wadee & Bai, 2014).

Imperfection sensitivity studies were carried out for the cases with a global imperfec-

tion only and a local imperfection only by varying the local imperfection amplitude

A0 and the global imperfection amplitude qs0, respectively. The results revealed the

highly imperfection sensitive nature of the stiffened plate. Moreover, two forms of the

local imperfection, namely a periodic and a modulated imperfection were examined.

In order to carry out meaningful comparisons, the initial imperfection end-shortening

E0 was introduced; essentially a measure of the imperfection size that avoided using

simply the amplitude. By keeping E0 constant, it was found that the modulated lo-

calized imperfections always resulted in a more severe reduction in the load-carrying

capacity. It was also found that the worst case form for larger imperfections (larger

E0) was always associated with a larger number of waves (larger β), which is a con-

sequence of the steadily reducing wavelength in the nonlinear response of the perfect

system. However, as E0 was increased, the degree of localization (α) reduced for the

systems which showed cellular buckling.

Moreover, parametric studies were conducted for two limiting cases where the main

plate–stiffener connection rigidity was assumed to provide a pinned or a rigid support.

The global and local slendernesses were varied by changing the stiffened plate length

and the stiffener height respectively. The results were presented in a similar way to

the classic curve described by van der Neut (1969). The parametric regions most vul-

nerable to interactive buckling were determined for both limiting cases. Since distinct

global buckling and local buckling of the stiffener are well understood, the focus was on
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investigating the post-buckling behaviour for the struts within the interactive region.

For the pinned main plate–stiffener connection, the interaction between the global

and the local modes always resulted in highly unstable cellular buckling behaviour.

The parametric study provided a methodology for investigating such structures. It

allowed full investigation of the effect of changing section properties on the buckling

and post-buckling behaviours. The analytical model identified the potentially danger-

ous region where the strut is most vulnerable to the highly unstable interactive and

cellular post-buckling behaviour, which would have to be treated with great caution

in design considerations.

7.1 Further work

Hitherto, a thin-walled simply-supported stiffened panel with uniformly spaced longi-

tudinal blade stiffeners were considered. The analytical model has been developed to

investigate the interaction between the global (Euler) buckling and the local buckling

of the stringer-stiffened plate.

The analytical model can be adapted for a stiffened plate with lipped stiffeners as

shown in Figure 7.1(a). This type of stiffener would introduce the possibility of

distortional buckling. Similar to the current research study, the relative rigidity of

the connection between the stiffener and the lip can be provided by a rotational spring

with stiffness cl at the stiffener–lip junction, as shown in Figure 7.1(c). Hence, the

shape of the local buckling mode along the width of the lip can be estimated by a

nonlinear function that is again a summation of both polynomial and trigonometric

terms. Appendix C presents an outline formulation that may be used as a starting

point for modelling this. Since lipped sections are known to suffer from distortional

buckling, the interaction between the global and the distortional buckling mode may

also be considered in the equilibrium equation.
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Figure 7.1: (a) Lipped stiffened plate cross-section geometry. (b) Modelling the joint

rigidity of the main plate–stiffener and lip–stiffener connections with rotational spring

of stiffnesses cp and cl respectively. (c) Local out-of-plane deflection of the stiffener

ws(y, z) with initial imperfection w0(y, z), local out-of-plane deflection of the main

plate wp(x, z) with initial imperfection wp0(x, z) and local out-of-plane deflection of

the lip wl(x, z).

In the literature (Hunt et al., 2000; Wadee & Edmunds, 2005), the Maxwell load

(PM) has been calculated for snaking problems, which is known to be a realistic lower

bound strength for the system. Presently, however, it is more complex to determine

such a quantity because the system axial load P does not oscillate about a fixed load

PM as the deformation increases, unlike the diagram shown in Figure 2.13. This is

primarily owing to the fact that, unlike other systems that exhibit cellular buckling,

such as cylindrical shells and confined layered structures (Hunt et al., 2000), in the

current case there are in fact two effective loading sources as the mode interaction

takes hold: the axial load P , which generally decreases, and the sinusoidally varying

(in z) tilt generalized coordinate qt, which represents the axial component of the
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global buckling mode and generally increases. The notion of determining the “body

force”, as discussed in Hunt and Wadee (1998), could be used as a way to calculate

the effective Maxwell load, but this has been left for future work.

As mentioned earlier, the Abaqus/Riks method in the current FE model has diffi-

culty in capturing the wavelength change of the local buckling mode pattern in the

post-buckling response. A possible way to overcome this problem might be to per-

form Dynamic/Explicit analysis within Abaqus, instead of static Riks analysis. It

has been found in the literature that Abaqus/Explicit, which solves equations of

motion as opposed to static ones, is potentially capable of tracing sharp snap-backs

in the post-buckling response (Degenhardt et al., 2001). Therefore, further investi-

gations would be required to focus on treating the problem as a dynamical system

within Abaqus such that snap-backs may be replicated more readily. Issues such as

determining the inertial matrix would need addressing, but are likely to be tractable.

Nevertheless the model developed in the present thesis has provided a fresh insight

into the behaviour of a very common structural element by identifying the potential

occurrence of the phenomenon of cellular buckling, a highly dangerous form of in-

stability. This should sound a note of caution to structural analysts and designers

in that subtle, yet hazardous, phenomena may be being missed by standard analysis

techniques and software. Analytical approaches still provide a powerful, rigorous but

still practical methods for understanding complex instability problems.
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Expressions for the direct strain for

an imperfect stiffener

Consider a simply-supported and axially loaded stiffened plate, as shown in Figure

3.2(b). The local out-of-plane deflection of the stiffener ws(y, z) with the initial

imperfection w0(y, z) was introduced in Figure 4.3. After buckling, the deflected

shape of the stiffened plate can be sketched diagrammatically as shown in Figure A.1.

The expression for the direct strains arising from the local out-of-plane displacement

δw0(y,z)

δz

δws(y,z)

Figure A.1: Outline the out-of-plane deflection of a stiffener ws(y, z) with the initial

imperfection w0(y, z) in a specimen with length δz along the stiffened plate.

component in the middle surface of the stiffener is:
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εz,l =
(δw2 + δz2)

1/2
− (δw2

s0 + δz2)
1/2

(δw2
s0 + δz2)

1/2
,

=
(δw2 + δz2)

1/2

(δw2
s0 + δz2)

1/2
− 1,

(A.1)

dividing the numerator and the denominator of the fraction by δz2, the expression

for εz,l becomes:

εz,l =
(w′2 + 1)

1/2

(w′2
s0 + 1)

1/2
− 1,

=
(

w′2 + 1
)1/2 (

w′2
s0 + 1

)−1/2
− 1,

≈

(

1 +
1

2
w′2

)(

1−
1

2
w′2

s0

)

− 1,

≈
1

2
w′2 +

1

2
w′2

s0 −
1

4
w′2w′2

s0,

(A.2)

by neglecting the higher order term from the final expression, the relationship for εz,l

is thus:

εz,l =
1

2
w′2 +

1

2
w′2

s0. (A.3)
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Expressions for definite integrals

The full expressions of the definite integrals for the stiffener and the main plate were

obtained in Maple, thus:

Expressions for the definite integrals of the stiffener

{f 2}y = h1
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4
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2
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. (B.1)
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. (B.2)

{ff ′′}y =
π

h1
S4

[

S4

(

3π

2
−
π5

45

)

− 1 +
π2

6

]

. (B.3)

{f ′2}y =
1

h1

[

1 + S2
4

(

π6

45
−

3π2

2

)]

. (B.4)
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Expressions for the definite integrals for the main plate
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Initial analytical model for a lipped

stiffened plate

The analytical model can be adapted for a stiffened plate with lipped stiffeners as

shown in Figure 7.1(a). This type of stiffener would introduce the possibility of dis-

tortional buckling. The relative rigidity of the connection between the stiffener and

the lip can be provided by a rotational spring with stiffness cl at the stiffener–lip

junction, as shown in Figure 7.1(c). Hence, the shape of the local buckling mode

along the width of the lip can be estimated by a nonlinear function that is again a

summation of both polynomial and trigonometric terms. The general form of approx-

imate deflection shape for a lipped stiffened plate can be expressed by the following

equation:

wl(x, z) = L(x)wl(z), (C.1)

where:

L(x) = −
[

L0 + L1Xl + L2X
2
l + L3X

3
l + L4 sin (πXl)

]

, (C.2)

and Xl(x) = x/bl. For L(x), the coefficients L0, L1, L2, L3 and L4 are determined

by applying appopriate boundary conditions for the lip. At the junction between the
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stiffener and the lip, x = 0 and y = h1 − ȳ, the conditions are:

wl(x, z) = 0, Dl
∂2

∂x2
wl(x, z) = cl

∂

∂x
wl(x, z), (C.3)

whereas at the lip tip, x = bl, the conditions are:

wl(x, z) = wl(z),
∂2

∂x2
wl(x, z) = 0,

∂3

∂x3
wl(x, z) = 0, (C.4)

where Dl = Et3l /[12(1− ν2)] is the lip flexural rigidity. The function for the deflected

shape wl(x, z) can be deduced from the above conditions and written thus:

wl(x, z) = −

{

Xl + Jl
π3

6

[

3X2
l −X3

l − 2Xl +
6

π3
sin (πXl)

]}

wl(z), (C.5)

where:

Jl =

{

π

[

Dlπ
2

clbl
+
π2

3
− 1

]}−1

. (C.6)

Moreover, although the general form of the local deflection of the stiffener is the same

as the expression in Equation (3.5), by adding the lip, the boundary conditions at

the junction between the stiffener and the lip, y = h1 − ȳ are:

ws(y, z) = w(z), Ds
∂2

∂y2
ws(y, z) =Ml, Ds

∂3

∂y3
ws(y, z) = Ql, (C.7)

where Ql and Ml are the shear force and the bending moment at the lip and the

stiffener junction, respectively. The boundary conditions for the stiffener at the junc-

tion between the stiffener and the main plate are the same as the ones in Equation

(3.6). The function for the deflected shape ws(y, z) can be deduced from the above

conditions and written thus:

ws(y, z) =

{
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(C.8)

where:

S4 =
6cph1 +Qlh

3
1λl (6Ds + 2cph1)− 3Mlh

2
1λl (2Ds + cph1)

6Dsπ3 + 2cph1π3 − 6cph1π
. (C.9)
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Similarly, according to the sympathetic local deflection of the lip, the relationship

between the local deflection of the lip and the stiffener can be assumed, wl(z) =

λlw(z). Therefore, by adding the moment equilibrium relationships at the lip–stiffener

junction, an explicit relationship can be derived for the relating parameter λl, thus:

λl =

(

bl
h1

)[

6 + S4π
3 − 6S4π

6− 2S4π3 + 6S4π + blQlh21 − 3blMlh1

]

. (C.10)
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Schafer, B. W., & Peköz, T. 1999. Laterally braced cold-formed steel exural members

with edge stiffened flanges. ASCE J. Struct. Eng., 125(2), 118–127.

255



References

Schardt, R. 1994. Generalized beam theory–an adequate method for coupled stability

problems. Thin-Walled Struct., 19(2-4), 161–180.

Sewell, M. J. 1965. The static perturbation technique in buckling problems. J. Mech.

Phys. Solids, 13, 247–265.

Seydel, R. 1994. Practical bifurcation and stability analysis: From equilibrium to

chaos. Interdisciplinary Applied Mathematics, vol. 5. New York, USA: Springer.

Sheikh, I. A., Grondin, G. Y., & Elwi, A. E. 2002. Stiffened steel plates under uniaxial

compression. J. Constr. Steel Res., 58(5-8), 1061–1080.

Smith, D. W. 1976. Bridge failures. ICE Proceedings, 60(3), 367–382.

Sridharan, S., & Peng, M. H. 1989. Performance of axially compressed stiffened plates.

Int. J. Solids Struct., 25(8), 879–899.

Sridharan, S., & Peng, M. H. 1991. An optimization strategy for wide stiffened plates

subjected to interaction of local and overall buckling. Comput. Struct., 41(2),

233–243.

Sridharan, S., & Zeggane, M. 2001. Stiffened plates and cylindrical shells under

interactive buckling. Finite Elements in Analysis and Design, 38(2), 155–178.

Supple, W. J. 1967. Coupled branching configurations in the elastic buckling of

symmetric structural systems. Int. J. Mech. Sci., 9, 97–112.

Taylor, C., & Dawes, J. H. P. 2010. Snaking and isolas of localised states in bistable

discrete lattices. Phys. Lett. A, 375, 14–22.

Thompson, J. M. T. 1967. Towards a general statistical theory of imperfection-

sensitivity in elastic post-buckling. J. Mech. Phys. Solids., 15, 413–417.

Thompson, J. M. T., & Hunt, G. W. 1973. A general theory of elastic stability.

London: Wiley.

256



References

Thompson, J. M. T., & Hunt, G. W. 1984. Elastic instability phenomena. London:

Wiley.

Thompson, J. M. T., & Lewis, G. M. 1972. On the optimum design of thin-walled

compression members. J. Mech. Phys. Solids., 20, 101–109.

Thompson, J. M. T., & Supple, W. J. 1973. Erosion of optimum designs by compound

branching phenomena. J. Mech. Phys. Solids, 21, 135–144.

Thompson, J. M. T., Tulk, J. D., & Walker, A. C. 1976. An experimental study of

imperfection-sensitivity in the interactive buckling of stiffened plates. Pages 149–

159 of: Buckling of structures. International Union of Theoretical and Applied

Mechanics. Berlin Heidelberg: Springer.

Timoshenko, S. P. 1915. On large deflections of circular plates. Tech. rept. 89. Mem.

Inst. Ways Commun.

Timoshenko, S. P. 1921. On the correction for shear of the differential equation for

transverse vibration of prismatic bars. Phil. Mag., 41, 744–746.

Timoshenko, S. P., & Gere, J. M. 1961. Theory of elastic stability. New York, USA:

McGraw-Hill.

Timoshenko, S. P., & Woinowsky-Krieger, S. 1959. Theory of plates and shells. New

York, USA: 2nd edn, McGraw-Hill.

Trahair, N. S., Bradford, M. A., Nethercot, D. A., & Gardner, L. 2008. The behaviour

and design of steel structures to EC3. 4th edn. Taylor and Francis.

Tulk, J. D., & Walker, A. C. 1976. Model studies of the elastic buckling of a stiffened

plate. J. Strain Anal. Eng. Des., 11(3), 137–143.

Tvergaard, V. 1973a. Imperfection sensitivity of a wide integrally stiffened panel

under compression. Int. J. Solids Struct., 9, 177–192.

257



References

Tvergaard, V. 1973b. Influence of post-buckling behaviour on optimum design of

stiffened panels. Int. J. Solids Struct., 9, 1519–1534.

Tvergaard, V., & Needleman, A. 1976. Mode interaction in an eccentrically stiffened

elastic-plastic panel under compression. Pages 160–171 of: Budiansky, B. (ed),

Buckling of structures. International Union of Theoretical and Applied Mechan-

ics. Berlin Heidelberg: Springer.

van der Heijden, G. H. M., Champneys, A. R., & Thompson, J. M. T. 2002. Spatially

complex localisation in twisted elastic rods constrained to a cylinder. Int. J.

Solids Struct., 39, 1863–1883.

van der Neut, A. 1968. The longitudinal stiffness of simply supported imperfect plate

strips. Internal report. Delft University of Technology, Delft University of Tech-

nology, Department of Aerospace Engineering, Report VTH-152.

van der Neut, A. 1969. The interaction of local buckling and column failure of thin-

walled compression members. Pages 389–399 of: Hetényi, M., & Vincenti, W. G.

(eds), Applied mechanics. International Union of Theoretical and Applied Me-

chanics. Berlin Heidelberg: Springer.

van der Neut, A. 1974. Mode interaction with stiffened panels. Tech. rept. VTH-180.

Delft university of technology.

van der Neut, A. 1976. Mode interaction with stiffened panels. Pages 117–132 of:

Budiansky, B. (ed), Buckling of structures. International Union of Theoretical

and Applied Mechanics. Berlin Heidelberg: Springer.

Ventsel, E., & Krauthammer, T. 2001. Thin plates and shells: Theory: Analysis, and

applications. CRC Press.

von Kármán, T., Sechler, E. E., & Donnell, L. H. 1932. The strength of thin plates

in compression. Trans. ASME J. Appl. Mech, 54(APM), 54–55.

258



References

Wadee, M. A. 1998. Localized buckling in sadwich structures. Ph.D. thesis, University

of Bath, Bath, UK.

Wadee, M. A. 1999. Experimental evaluation of interactive buckle localization in

compression sandwich panels. J. Sandw. Struct. Mater., 1(3), 230–254.

Wadee, M. A. 2000. Effects of periodic and localized imperfections on struts on

nonlinear foundations and compression sandwich panels. Int. J. Solids Struct.,

37(8), 1191–1209.

Wadee, M. A. 2007. Nonlinear mathematics in structural engineering. Mathematics

Today, 43, 104–108.

Wadee, M. A., & Bai, L. 2014. Cellular buckling in I-section struts. Thin-Walled

Struct., 81, 89–100.

Wadee, M. A., & Edmunds, R. 2005. Kink band propagation in layered structures.

J. Mech. Phys. Solids, 53(9), 2017–2035.

Wadee, M. A., & Gardner, L. 2012. Cellular buckling from mode interaction in

I-beams under uniform bending. Proc. R. Soc. A, 468(2137), 245–268.

Wadee, M. A., & Hunt, G. W. 1998. Interactively induced localized buckling in

sandwich structures with core orthotropy. Trans. ASME J. Appl. Mech, 65(2),

523–528.

Wadee, M. A., & Simões Da Silva, L. A. P. 2005. Asymmetric secondary buckling in

monosymmetric sandwich struts. Trans. ASME J. Appl. Mech, 72(5), 683–690.

Wadee, M. A., Yiatros, S., & Theofanous, M. 2010. Comparative studies of localized

buckling in sandwich struts with different core bending models. Int. J. Non-

Linear Mech., 45(2), 111–120.

259



References

Wadee, M. K., Hunt, G. W., & Whiting, A. I. M. 1997. Asymptotic and Rayleigh–

Ritz routes to localized buckling solutions in an elastic instability problem. Proc.

R. Soc. A, 453(1965), 2085–2107.

Webster, A. G., & Plimpton, S. J. 1955. Partial differential equations of mathematical

physics. Mineola, New York: Dover Publications.

Williams, F. W., & Wittrick, W. H. 1971. Numerical results for the initial buckling

of some stiffened panels in compression. Aero. Quart., 23, 24–40.

Woods, P. D., & Champneys, A. R. 1999. Heteroclinic tangles and homoclinic snaking

in the unfolding of a degenerate reversible Hamiltonian–Hopf bifurcation. Physica

D, 129(3–4), 147–170.

Yamaki, N. 1959. Post-buckling behaviour of rectangular plates with small initial

curvature loaded in edge compression. Trans. ASME J. Appl. Mech, 27(2), 355–

342.

Yamaki, N. 1984. Elastic stability of circular cylindrical shells. Applied Mathematics

and Mechanics Series, vol. 27. New York, USA: Elsevier.

260


