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Abstract

In this thesis we investigate the response of plasmonic systems in a quantum op-

tics setting. This work can be grouped into two sub-investigations, the study of

macroscopic and microscopic responses. The narrative of the thesis comprises three

principal parts. First, we give an in-depth review of the field of quantum plasmonics

as it is an important theme that runs through the work contained in this thesis. In

particular, we focus on outlining the cutting edge research that is being done on the

intense interactions between plasmonic systems and quantum emitters. This leads

naturally to the first investigation into the macroscopic response of quantum plas-

monic systems in a metamaterial setting. We outline how complex hybrid systems

of plasmonic metal nanoparticles (MNP) and two-level quantum dots (QD) can be

used to create a quantum plasmonic metamaterial. Metamaterials are structures

composed of periodic lattices of identical subwavelength unit cell scatterers, each of

which governs completely the electromagnetic properties of the entire bulk mate-

rial. We theorize the use of MNP-QD nanorings as a unit cell in order to control

the macroscopic magnetic properties of the metamaterial. We outline how such a

metamaterial can have a tunable, and saturable, magnetic permeability. In the last

part of the thesis we consider the model of a single light mode interacting ultra-

strongly with a collection of emitters, in the anticipation that quantum plasmonic

systems can be brought into this ultrastrong-coupling regime (USC). In particular

we study the emission of the system after the coupling between the light mode and

the emitters is non-adiabatically switched-on. We find evidence that for both two-

level, and multi-level, emitters in the USC, both the counter-rotating terms and the

diamagnetic term must be included to prevent qualitative errors.
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Chapter 1

Introduction

1.1 Motivation and objectives

The endeavour to understand how light and matter interact has been a long run-

ning theme in physics. From classical scattering theories, that explain the colour

of the sky, to the development of quantum electrodynamics, this study has been

wildly successful in helping us understand the world around us as well as developing

technology that is essential to our everyday lives. In this thesis we examine how

light-matter systems interact at the macroscopic and microscopic level. Specifically

we examine two fields which have come to define modern research in this area.

At the macroscopic scale we study the burgeoning field of metamaterials [CS10].

The optics of materials is an immensely interesting, yet complex, area of research.

A bulk material, such as a metal or a dielectric, is known to have characteristic

optical properties. For example, we know that a metal is opaque to light as opposed

to a dielectric which is transparent to it. Such characteristics are relatively simple to

define but the process through which they occur is hugely complicated. A material

is composed of a macroscopic collection of atoms and electrons and the material’s

optical response is dependent on how light interacts with these complex systems.

19



20 Chapter 1. Introduction

Nature has provided us with a finite number of materials, each of which has an

electronic structure which dictates how the material responds to light. Some of

these responses are unique while others are universal. What if we were not satisfied

with this? How would we go about creating novel optical effects not found in nature?

The first idea that springs to mind is to build your own material, electron by electron,

atom by atom, ensuring that it has the optical response desired. Unfortunately this

would be exceedingly difficult and we do not have this type of control at the quantum

level, yet. However the rapidly developing field of metamaterials circumvents this

problem. These man-made designer materials are composed of periodic arrays of

identical unit cell scatterers. As long as the wavelength of the incident light is much

greater than the size of the unit cell, then the individual optical response of a unit

scatterer governs that of the entire material [CS10]. These unit cells are on the

micro- or nano- scale and their fabrication is certainly feasible. Intriguingly the

response is often based on the geometry of the unit cell as opposed to its component

material. Such control allows us to construct materials whose optical properties are

not found in nature, such as the negative refractive index metamaterial [PBS06].

This field is also developing exciting applications such as the super lens [Pen00] and

the invisibility cloak [CCS10].

At the microscopic scale we investigate the prospect of intense interactions between

a collection of quantum emitters and a single light mode. In the rest of this thesis we

define a quantum emitter as a quantum system with a discrete energy level structure,

for example atoms or quantum dots. In order to control light-matter interactions at

the quantum scale it is essential that quantum emitters and light couple strongly.

Unfortunately this is not often the case and we must provide encouragement for

the interaction to take place. The most successful method to achieve this is to

increase the interaction time, which is employed in the field of cavity quantum

electrodynamics [WM08, RBH01]. Here the emitter is placed in a cavity with highly

reflective boundaries. If the light mode does not interact with the emitter initially
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it will just bounce off the boundary and attempt the interaction again, boosting the

chances of coupling. The other method is to decrease the spatial mode volume of the

light, this reduces the size mismatch between light and the emitter and encourages

coupling. Lately, through further innovations of experimentalists, the interaction

between light and quantum emitters has become unprecedentedly strong [NDH+10,

ALT+10]. We have arrived at a point where the coupling frequency has become

comparable to the resonance frequency of both the emitter and the light mode.

This regime is known as the ultrastrong-coupling regime and it has sparked a flurry

of research interest within the quantum optics community [Bra11].

It would appear that these two fields are unrelated. However there is a common

theme in this work that links them both together; quantum plasmonics. Plasmon-

ics is the theory of light-metal interactions at the nano-scale [Mai07]. Plasmonic

modes are hybrid excitations, part electromagnetic wave, part electron plasma os-

cillation. Quantum plasmonics seeks to understand these processes at the quantum

scale. Importantly quantum plasmonics plays a significant role in our study of both

metamaterials and intense light-matter interactions and it has been the inspiration

behind all the work completed in this thesis. In fact, we begin this thesis in chapter

2 by providing a thorough background on quantum plasmonics which is based on a

review article co-written by the present author [TMÖ+13].

The early work in metamaterials occurred in the infrared regime. Increasingly plas-

monic components have been incorporated into metamaterial designs in order to

bring them into the visible regime. In chapter 3 we investigate if we can incorporate

the unique interaction between quantum plasmonic systems into a metamaterial de-

sign. Specifically we take a composite system of a two-level quantum dot and a

silver metal nanoparticle which supports a highly confined plasmonic mode. The

strong interaction between the plasmonic mode and the quantum emitter produces

a Fano interference in the light scattered off the system. We attempt to mani-
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fest this interference effect into a negative permeability metamaterial to introduce

dynamic tunability and nonlinearity. The main results of chapter 3 are published

in [MTMK14a].

Plasmonic modes are characterized by their highly confined fields. We have already

highlighted how small mode volumes can facilitate intense interactions with quantum

emitters. In this regard plasmonic modes interacting with a collection of quantum

emitters can be considered a possible candidate for achieving ultrastrong interac-

tions. In chapter 4 we theoretically examine the model of a single mode interacting

with a collection of emitters in the ultrastrong-coupling regime. In particular we

examine the effect the diamagnetic term, regularly neglected in light-matter mod-

els, has in this regime. We believe that such work will be useful to understand the

behaviour of quantum plasmonic systems in the future. The main results of chapter

4 are contained in [MTMK14b], which is under review for publication.

1.2 Publications

Parts of this thesis are based on material published in the following papers:

• M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S.

Kim. Quantum plasmonics. Nature Physics,, 9, 329-340 (2013).

• K. R. McEnery, M. S. Tame, S. A. Maier, and M. S. Kim. Tunable permeability

in a quantum plasmonic metamaterial. Physical Review A, 89, 013822 (2014).

• K. R. McEnery, Tommaso Tuffareli, S. A. Maier, and M. S. Kim. Non-

adiabatic emission of ultrastrongly-coupled oscillators: signatures of the A2

term. arXiv:1407.7446 (2014).



Chapter 2

Quantum plasmonics

2.1 Introduction

We begin by introducing the reader to the new field of quantum plasmonics [TMÖ+13,

JS11], which is the study of the quantum properties of light, and its interaction with

matter, at the nanoscale. Quantum plasmonics is the result of a cross-pollination

of knowledge between the fields of plasmonics [Mai07] and quantum optics [WM08].

Quantum plasmonics is a rich area of study with many research opportunities. In

this thesis we will specifically concentrate on the study of how plasmonic modes in-

teract with discrete-level quantum emitters. In order to help the readers understand

the context of this work we provide a thorough background in both classical, and

quantum, plasmonics.

We start by introducing the theory of plasmonics, which is the study of the inter-

action between electromagnetic radiation and free electrons at metallic interfaces

or in metallic nanostructures [SBW+10]. Plasmonics is a sub-field of nanophoton-

ics which, as the name suggests, is the study of electromagnetic waves which are

confined to nanoscale dimensions. Plasmonics is concerned with the confinement of

light through metals, thus we give a short review on the optics of metals. We also

23
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emphasise that plasmonic research is underpinned by two main excitation modes,

the surface plasmon polariton (SPP) and the localized surface plasmon (LSP), both

of which are discussed in detail. Following this we shift our focus away from the clas-

sical elements of plasmonics and towards investigating plasmonics at the quantum

level. Initially we concentrate on the fundamental aspects of plasmonic excitations

and we ask ourselves, what are the inherent quantum properties present? Finally

we investigate the interesting, and most relevant, scenario where quantum emitters

possessing finite energy levels, such as atoms, are coupled to plasmonic modes. The

highly confined fields, associated with the plasmonic modes, couple strongly with the

emitters, providing a fruitful platform to study extreme light-matter interactions.

2.2 Plasmonics: the basics

The optical properties of metals

The information on how a metal, or any other material, responds to an electric field

is encapsulated in its electric permittivity ε(ω) [Gre98],

D = ε(ω)E. (2.1)

Where D is the displacement field, which is a linear combination of the incident

external electric field (E) as well as the material’s polarization field (P). This P field

is a consequence of the polarization of all the material’s atoms in response to the

stimuli of the external field. We will discuss this macroscopic parameter, along with

the magnetic version, the permeability µ(ω), in greater detail in chapter 3. For the

moment it will suffice to know that the permittivity is a complex value. The real

part defines the dispersion of light in the metal, while the imaginary component

describes the absorption of light by the metal. Let us investigate a simple model

which can be used to derive an approximate expression for the permittivity of a
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typical metal.

Drude model

For a wide range of frequencies the Drude model provides an accurate description

of the optical properties of metals [Mai07, KV95]. The model treats the electrons

within the metal as a plasma, such that a sea of free electrons of number density n

oscillates against a fixed background of positive ions when subjected to a driving field

of amplitude E0. The electrons in the plasma experience collisions with themselves

and the ions which dampen the oscillations of the plasma at a rate γ. For a harmonic

driving field, we can write the oscillation of an electron, of mass m and charge e, in

the plasma as,

mẍ+mγẋ+ eE0e−iωt = 0. (2.2)

If we also assume a harmonic time dependence for the position of the electron x0e−iωt,

then we can solve for the amplitude of the position as

x0 =
e

m(ω2 + iγω)
E0. (2.3)

We can now derive an expression for the amplitude of the polarization field set up

by the oscillating electrons. To do so we substitute Eq. (2.3) into the formula for

the polarization amplitude P0 = −nex0, which gives

P0 =− ne2

m(ω2 + iγω)
E0. (2.4)

As mentioned earlier the displacement field is a linear combination of the electric

and polarization fields, D = ε0E + P , where ε0 is the permittivity of free space. If

we combine this form of the D field with Eq. (2.1) and Eq. (2.4) then we are left
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with the following expression for the metallic permittivity,

ε(ω) = 1−
ω2
p

ω2 + iγω
, (2.5)

where ωp is the plasma frequency of the electron sea, ωp =
√
ne2/ε0m. What

information can we derive from this permittivity expression? First it is useful to

separate this complex expression into its real and imaginary components,

Re[ε(ω)] = 1−
ω2
p/γ

2

1 + ω2/γ2
, (2.6)

Im[ε(ω)] =
ω2
p/γ

ω(1 + ω2/γ2)
. (2.7)

Let us examine the region around ωp, where the frequencies tend to be much larger

than the damping rates (ω � γ). In such a case Im[ε], which accounts for damping,

is negligible and we can rewrite the real part as

Re[ε(ω)] = 1−
ω2
p

ω2
. (2.8)

Writing the permittivity in this form emphasises the importance of the plasma

frequency in regards the defining characteristics of metals. If the frequency of the

light incident on the metal is less than ωp, then Re[ε(ω)] < 0 and the metal reflects

light. On the other hand it is clear that for frequencies greater than ωp, Re[ε(ω)] > 0,

the metal loses its ‘metallic properties’ as it becomes transparent to light. We

should note that the Drude model has limitations, especially for noble metals where

intersubband transitions in the regime ω > ωp are not taken into account. In

this particular case the Drude model can be used without error if the following

phenomenological correction is used,

ε(ω) = ε∞ −
ω2
p

ω2 + iγω
, (2.9)



2.2. Plasmonics: the basics 27

where the metal dependent ultraviolet permittivity (ε∞) is usually constrained by

1 ≤ ε∞ ≤ 10.

In this section we have shown how a very simple plasma model can be used to learn

about some of the optical properties inherent in metals. We will now move onto the

more complex processes that can take place at metal-dielectric interfaces, namely

the excitation of plasmonic modes.

Surface plasmon polaritons

We have just shown that a metal, for frequencies below its plasma frequency, will

have a negative permittivity which is the key ingredient in exciting plasmonic

modes [Mai07]. The first plasmonic we will discuss is the SPP, which is a propa-

gating surface wave that is excited on the interface between a negative permittivity

material and a positive one. An SPP on a metal-dielectric interface can be thought

of as a photonic mode coupled to the collective oscillation of the free electron plasma

in the metal. The hybrid nature of the SPP, shown in Fig. 2.1, restricts the mode vol-

ume, normal to the interface, to subwavelength dimensions [SBW+10]. Researchers

have long been aware of these plasmonic surface waves. The subject experienced

a rebirth, however, when the photonic community became aware of the possibility

of using SPPs to confine light below the diffraction limit [TYT+97, GB10]. The

diffraction limit imposes the following constraint on the spatial spread of a light

mode

∆i =
λ0

2η
, (2.10)

where i ∈ {x, y, z}, λ0 is the wavelength of the light mode in free space and η =
√
ε

is the refractive index of the non-magnetic material guiding the light [TMÖ+13].

It is clear that materials that are bound to respect the diffraction limit can still

provide subwavelength confinement, for example dielectric waveguides with a large
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Figure 2.1: The coupling of a photon and a plasmon at the interface of a material
with a negative dielectric permittivity (for example, a metal) and one with a positive
dielectric permittivity (for, example air) leads to a splitting of the (ω - k) dispersion
curves (solid lines) for the excitations, which form a plasma shifted photon and a
SPP as the joint state of light (photon) and matter (surface plasmon).

positive permittivity. Significantly, SPP modes can achieve both subwavelength and

subdiffraction confinement.

Let us reflect, for a moment, on why this property has made the study of SPP’s

so relevant. Let us examine the current state of information processing where the

use of miniaturized electronic devices is problematic as their bandwidth and speed

limitations become saturated [GB10]. The obvious advancement is to transport

information with light, however there is a severe limitation on the capacity to in-

tegrate optical devices into miniaturized circuits. The reason for this is due to the

diffraction limit, if the size of photonic waveguides is reduced past a certain size the

guided light mode is no longer confined and all the information is lost. In this re-

gard the SPP provides a convenient hybrid in which broadband light can be guided

and manipulated at nanoscale lengths. Unfortunately, this high confinement comes

at a price; namely high losses in plasmonic modes [Mai07]. To understand this,

let us remind ourselves that we have defined a SPP as a hybrid excitation, part

electromagnetic wave, part oscillation of the free electron plasma. If more of the

SPP energy is confined within the metal’s plasma then the mode will have a greater
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confinement, but at the same time it will be more vulnerable to the ohmic damping

that occurs when the electrons crash off each other.

Localized surface plasmons

The LSP is the plasmonic mode associated with the resonance of the free electron

plasma in a small metallic structure due to an external electric field [Mai07]. The

strong resonance is a direct result of the nanoscale dimensions of the structure, the

metallic surface serves as a restoring force for the oscillating electrons. The LSP acts

to absorb and scatter incident light into the radiative far-field, however it is primarily

characterized by an intense electric field both within the structure and in its near-

field. Due to this property metallic nanoparticles (MNP) supporting LSPs can be

used as an efficient antennas for small emitters, for example atoms [GFDHM11].

LSPs have, in fact, been exploited by humans since ancient times. The mechanism

by which stained glass obtains its vibrant colour is in fact based on the resonant

properties of the LSP. The exact colour of the glass depends on the resonant fre-

quency of the embedded MNP. The obvious question is what defines the resonant

frequency of a particular MNP. While the geometry of the structure has an effect,

the main factor is the material in which the MNP is embedded [Mai07, KV95]. To

understand this better let us take the example of a subwavelength spherical MNP

which will be the subject of investigation in chapter 3. Due to the size of the MNP

we can take the dipole approximation. In this thesis we will not consider the case of

particles whose size is of the order of the incident light wavelength, such a case can

be tackled, however, using Mie theory [BH83]. Within this dipole approximation

the MNP has a dipole moment of

p
MNP

= ε0εbαE0. (2.11)
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Figure 2.2: (a) Conceptual schematic of an SPP excited on the interface between
gold (negative permittivity) and air (positive permittivity), we see that the propa-
gating wave is evanescently confined in the direction perpendicular to the interface.
We also show specific examples of SPP waveguides, such as gold and silver nanowires
as well as a V-groove waveguide. We also introduce annihilation operators represent-
ing the quantized fields. â represents the SPP mode, while b̂ represents the reservoir
of phonon modes to which the SPP loses energy via ohmic damping. In (b) we show
a conceptual schematic of a LSP mode excited in a gold spherical nanoparticle. Here
â represents the LSP mode, while b̂ and ĉ represent reservoirs that account for ohmic
and radiative damping respectively.
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Where the strength of the MNP’s dipole response is governed by the polarizability,

α = 4πr2 ε(ω)− εb
ε(ω) + 2εb

. (2.12)

Here r is the radius of the MNP, ε(ω) is the frequency dependent permittivity of the

MNP’s composite metal, while εb is the permittivity of the material in which the

particle is embedded. Resonance occurs at the frequency for which the polarizability

is maximized, this scenario is well expressed by the Frohlich condition [KV95]

Re[ε(ω0)] = −2εb. (2.13)

This dependency of the LSP frequency on the surrounding material makes MNPs

an efficient sensing tool, as changes in a material’s permittivity are observed in the

light scattered by a MNP embedded in the material [GFDHM11].

2.3 Quantum plasmonic properties

The investigation into quantum plasmonics can be distilled into three main goals.

First, to exploit the highly localized electric fields associated with plasmonic modes

to stimulate intense interactions with single quantum emitters. Two, to manipulate

quantum information at the nanoscale. Finally, from a more fundamental point of

view, to understand exactly what quantum properties are retained by these complex

quasi-particles. The first goal is the main concern of the thesis and will be covered

in more detail in section 2.4.

To begin, let us briefly elaborate on how both the LSP and the SPP are quan-

tized. In general we wish to quantize the near-field of the LSP. Fortunately, LSP

near-field is analogous to a leaky cavity mode and can be quantized in the stan-

dard way [WS10, RSF+10]. The SPP is more complex and it is best described

by Hopfield’s polariton model [Hop58]. The polariton is a joint state of light and
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matter, and was originally used to describe the polarization field in matter. When

described in this manner a single SPP excitation will exhibit bosonic quantum statis-

tics [WM08, AMY+07]. Initially the quantum nature of the SPP was doubted as

typically quantum effects are associated with microscopic, isolated quantum ob-

jects, such as single atoms or photons. In contrast, the SPP mode is composed of

a macroscopic collection of electrons (∼ 106 electrons) and it was thought that the

collisions between electrons would cause decoherence and a subsequent loss of quan-

tum effects. A huge milestone in proving that SPPs do indeed retain their quantum

properties was the experimental observation of the preservation of entanglement.

In the experiment by Altewischer et al, a polarization-entangled pair of photons

were converted into SPPs on gold films perforated by subwavelength holes, then

back into photons, and the entanglement survived [AvEW02]. Many of the incident

photons were lost due to ohmic and surface-scattering losses, however the photons

that survived were found to be entangled. Further entanglement experiments have

been carried out using different degrees of freedom, such as energy-time entangle-

ment [FRM+05] and the entanglement of orbital angular momentum [RGH+06]. In

all cases the entanglement was preserved. This indicates that the quantum infor-

mation is encoded into the overall oscillation of the electrons, which explains the

preservation of quantum effects despite the macroscopic scale. This ability to encode

quantum information into the SPP mode may prove very useful for the quantum

information community. It could open the door to integrate optical components

with microscopic, on-chip, quantum circuits, something which is not possible with

conventional dielectric waveguides.

The LSP modes associated with metal nanoparticles have some interesting quan-

tum properties aside from their ability to interact strongly with emitters. For single

particles there is the quantum size effect [Hal86, GMK75, KXB93, HLC+11]. De-

pending on the size of the nanoparticle, quantum effects can be significant in the

description of its electrodynamics. The continuous electronic conduction band, valid
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at macroscopic scales, breaks up into discrete states when the dimensions are small

enough, making the use of the Drude model unsatisfactory. This quantum size ef-

fect manifests itself as a shift and broadening of the LSP resonance, in addition

to a fine structure which corresponds to transitions between the discrete energy

levels [Hal86, HLC+11]. For a collection of interacting nanoparticles there is the

effect of quantum tunneling [ZPN09]. If the distance d between two nanoparticles

is d < 1 nm then electron tunneling has a profound impact on the two particle reso-

nance. For even smaller distances (d < 0.5 nm) the two nanoparticles (dimer) enter

a conductive regime where a charge transfer plasmon appears involving electrons

travelling back and forth between the two particles [lMLWX09].

2.4 Quantum emitters coupled to plasmonic modes

The large size mismatch between light and single emitters ensures that their light-

matter interaction is inherently weak. This is a problem as strong, coherent coupling

between single photons and emitters is critical for developing future quantum tech-

nology [Mon02]. There are several strategies to circumvent this problem. High

quality cavities have been used to boost interaction times and encourage stronger

coupling. However the use of cavities places a restriction on the bandwidth and

the size of devices. An alternative strategy is to use an interface to bridge the size

gap. Confining the light field to small effective volumes in this way enables stronger

coupling with the emitter. Plasmonic modes can be squeezed into volumes far be-

low the diffraction limit, and therefore provide an excellent interface between single

photons and emitters [CSHL06].

Cavity QED (CQED) has been a popular platform for proof-of-principle implemen-

tations of quantum information processing [Mon02]. However, the diffraction-limited

optical cavities place a lower bound on the size of these systems. The drive to bring

CQED down to the nanoscale has opened the door to plasmonic CQED. Here, both
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Figure 2.3: Analogy between an atom in a single mode leaky cavity (left) and an
atom residing in the near-field of a resonant LSP mode supported by a MNP (right).
The principle difference between the two is their dissipation channels. The cavity
loses photons by transmission through its side walls (κ). The LSP mode, on the
other hand, dissipates through ohmic (κ1) and radiative (κ2) channels associated
with the MNP. In both cases the atom can radiate via spontaneous emission (γ).

SPP and LSP plasmonic modes offer subwavelength and subdiffraction field confine-

ment that enables extreme light-matter coupling. In particular, the resonant LSP

modes supported by metal nanoparticles can be described effectively as a leaky cav-

ity in quantum optics formalism [WS10, RSF+10], as shown in Fig. 2.3. Recent work

on adding resonators to waveguide SPP systems brings these types of modes into

the quasimode regime of CQED as well [LSY+12, GV07, MOS+09, HFJGVZ13].

Light-matter interactions can be split into two principal regimes, the weak-coupling

and the strong-coupling regime. The strength of the interaction between the emitter

and the field is characterized by a coupling frequency which is inversely related to

the effective volume of the light mode

g ∝ 1

Veff
. (2.14)

The boundary between the strong-coupling and weak-coupling regimes is dependent

on the relative value of g in relation to the damping rates of the plasmonic mode

(κ1, κ2) and the emitter (γ). If g � γ, κ1, κ2 then we are working in the weak-

coupling regime, while if g � γ, κ1, κ2 we have reached the strong-coupling regime.
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Weak-coupling: Purcell enhancement

In the weak-coupling regime the excitation within the emitter-light system is irre-

versibly lost to the outside environment before any coherent exchange of energy can

occur. In this case the light field has a perturbative effect on the emitter, which

manifests itself as a modification of the emitter’s decay rate, a phenomena known

as Purcell enhancement of spontaneous emission [Pur46]. The level of modification

can be quantified by the Purcell factor,

Fp =
γmodified

γfreespace
∝ Q

Veff
. (2.15)

Fp is simply the ratio between the emitter’s modified decay rate, due to the presence

of the strongly coupled light mode, and the decay rate the emitter would have if

placed in an electromagnetic vacuum. Here Q stands for the quality of the light

mono-mode.

Plasmonic modes are particularly suitable in enhancing the fluorescence of emitters

despite having low quality factors due to ohmic losses. This enhancement is due to

two simultaneous processes [ABN06]. First, the intense plasmonic field increases the

excitation rate of the emitter. Second, the subwavelength confinement of the light

field enhances the decay rate of the emitter into the plasmonic mode via the Pur-

cell effect [Pur46]. The fluorescent enhancement, however, can be tempered by the

non-radiative excitation of lossy surface waves at the metal surface [ABN06]. This

process, known as fluorescence quenching, occurs close to the surface and therefore

leads to an optimal distance for coupling the emitter into a plasmonic mode. The

high quality factors, Q, or long interaction times associated with traditional cavities

limits the speed at which photons can be emitted once collected into the cavity. Plas-

monics does not suffer from this problem and thus promises single-photon sources

at optical frequencies with high operation speed. This plasmon-induced Purcell
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enhancement can also be used to encourage quantum interference between the tran-

sitions of a multi-leveled emitter, leading to an enhancement in phenomena such

as electromagnetic-induced transparency, coherent population trapping and lasing

without inversion [YPV09, HS10].

In 2007, Akimov et al demonstrated a 2.5-fold enhancement in the emission of

an ensemble of quantum dots into an SPP mode of a silver nanowire[AMY+07].

Moreover, they observed that the light scattered from the end of the nanowire was

anti-bunched, confirming that the SPP mode could collect and radiate single photons

from the quantum dots. Subsequent experiments have showed Purcell enhancements

of single emitters coupled to SPP [KGB+09, HKSA11] and LSP [ABN06, KHRS06]

modes. Further efforts have also been made recently to exploit more advanced

designs to improve collection and control. One example is hybrid SPPs [JKWB08],

where a waveguide gap is used to achieve Purcell factors as high as 60. The growing

use of nanoantenna to control the emission direction of the collected light is another

example [CVT+10]. These efforts point towards the exciting prospect of single-

photon antennas that can efficiently absorb light from emitters and subsequently

emit the photons in a well-controlled manner [CWrK11].

Intermediate-coupling: the bad cavity limit

While confined plasmonic modes couple very strongly to matter, unfortunately

because of large ohmic losses it is not easy to enter the strong-coupling regime

in plasmonic systems, where light-matter interactions must be dealt with non-

perturbatively. There is, however, a regime where the coupling frequency is in-

termediate between the decay rates of the plasmonic mode and the emitter. This

is known as the bad-cavity limit in CQED and displays interesting physics, such

as cavity-induced transparency [RB95]. A similar effect has been studied in cou-

pled MNP-emitter systems, where very large enhancements in response have been

predicted [RSF+10, WS10, ZGB06].
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Strong-coupling

In general, the strong-coupling regime is characterized by the reversible exchange of

energy between the light field and the emitter, known as the Rabi oscillations. These

oscillations manifest themselves in an energy splitting of the light-matter energy lev-

els. There have been experimental observations of these splittings in the spectra of

ensembles of molecules due to plasmonic interactions [DKB+05, VWP+13]. Experi-

mental evidence for strong-coupling between a single emitter and a plasmonic mode,

however, is still elusive. Classical predictions have suggested strong-coupling could

be achieved between an emitter and a metallic dimer antenna [SSR+10]. There have

also been theoretical examinations of the strong-coupling regime based on a fully

quantum mechanical framework [TH08, VKH12]. These works take into consider-

ation higher-order modes whose relevance cannot be ignored as the metal-emitter

separation decreases past the point where the dipole approximation is valid. As a

result, the intuitive CQED analogy is replaced with macroscopic QED techniques

better suited to more complex systems [DKW98].

Despite these predictions there is still a strong desire to develop ways to increase the

Q-factor of the plasmonic modes in order to more easily enter the strong-coupling

regime. Two main strategies have been pursued. The first concentrates on reducing

the damping of the material. The high confinement and long lifetimes of graphene

plasmons have been proposed in this regard [KCdA11]. In the second, cavities have

been incorporated into plasmonic structures. These plasmonic resonators combine

the benefits of a high Q-factor and small mode volume. De Leon et al have proposed

a plasmonic resonator composed of silver nanowires surrounded by dielectric Bragg

reflectors, and demonstrated Purcell factors exceeding 75 [LSY+12].

One of the main properties that make photons attractive for transporting quantum

information is that they are weakly interacting. However, it also means that they

do not interact with each other very well, making it difficult to perform quantum
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operations. Nonlinear materials can be used to boost this interaction, however the

nonlinearity requires high light intensity. This is unattractive as single-photon inter-

actions are needed for quantum photonic devices. A strongly coupled light-emitter

system has a nonlinear energy structure that allows for photon-photon interactions

at the single-photon level. In CQED this is known as the photon blockade ef-

fect [BBM+05]. An analogy has been found for plasmonics [MNdA12] and was used

to devise the idea of a single-photon transistor [CSDL07].

In addition to single emitters, recent work has studied the interaction of multiple

emitters mediated through a strong interaction with a plasmonic mode [DKF11].

There have been predictions of a plasmonic Dicke effect, where emitters coupled to

a common plasmonic mode experience cooperative emission [PS09]. In a similar sce-

nario, mediated interactions via a plasmonic mode generate entanglement between

emitters [MCGTMM+11]. This is a powerful insight as the proposed entanglement

generation is induced from dissipative processes. In this way a perceived weakness

of plasmonics has been converted into a positive.

Nanolasers, metamaterials and many-body systems

Despite the remarkable progress in studying plasmonic-matter interactions and the

development of a host of promising applications, the problem of high loss must

still be resolved for plasmonics to fulfill its full potential. In 2003, Bergman and

Stockman proposed a plasmonic version of a laser for providing amplification via

stimulated emission [BS03]. This spaser could produce stimulated emission of SPPs

by placing gain material around resonant metallic structures. The work paved the

way for the creation and preservation of strong, coherent plasmonic fields at the

nanoscale. Many proposals have since been put forward to exploit the spaser’s novel

effects, including the creation of subwavelength nanolasers, which out-couple the

spaser’s near-field as propagating radiation [NZB+09, OSZ+09]. Due to the Purcell

enhancement, these nanolasers can display threshold-less lasing [MOS+11]. Spasers
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have also been considered in the design of metamaterials to eliminate damping. As

metamaterials have been brought from the microwave to the optical regime they

have increasingly relied on plasmonic components [Sha07]. Incorporating gain will

be essential for the practical realization of their novel effects.

One of the key successes of quantum optics over the last few decades has been the

precise control of single quantum systems in a range of settings. Cold atom trap-

ping in optical lattices, for instance, has helped shed light on a number of physical

phenomena [BDN12]. However, optical lattices are not easily scalable and the lat-

tice period is restricted to half the wavelength of the trapping laser. Plasmonics

has emerged as a promising route towards investigating scalable solid-state systems

for trapping atoms and molecules [CTP+09, SBZ+11]. Due to the strong-coupling

between the emitter and the plasmonic mode, the metallic trap serves the dual pur-

pose of trapping the atom as well as an efficient probe. The prospect of creating

a plasmonic lattice with a nanometer period has been proposed [GTC+12]. These

lattices would serve as an interesting playground to examine many-body physics in

a parameter regime that is unavailable to traditional optical lattices.

2.5 Future perspectives

A huge amount of progress has been made in the growing field of quantum plas-

monics. However, many quantum properties of surface plasmons are still to be

fully explored and a number of problems remain along the route to realizing fully

functioning and reliable quantum devices that take advantage of the intense light-

matter interactions that plasmonics offers. The most pressing issue is how to deal

with loss. While recent work has shown that loss compensation and gain can be

achieved in basic plasmonic waveguides in the classical regime [BL11], it remains

to be seen how these techniques can be translated into the quantum regime and in

what way noise can be accommodated. It might be, however, that hybrid quantum
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Figure 2.4: A range of topics on the horizon of the field of quantum plasmonics.
Including, probing deeper into the fundamental properties of light-matter systems,
such as their potential for ultrastrong quantum interactions with emitters at the
nanoscale.

plasmonic-photonic systems will be the optimal solution in the trade-off between

confinement and loss [CSHL06] , perhaps even exploiting the loss when needed for

investigating dissipative effects in quantum systems [VWC09]. Moreover, as we

start to look at miniaturizing plasmonic components further, several questions are

already beginning to appear: At what scale do current quantization methods based

on a macroscopic approach break down? When will non-local microscopic effects,

requiring density functional theory [HLC+11] combined with quantum optics, need

to be considered in the design of new quantum plasmonic components? In Fig. 2.4

we highlight some exciting and unexplored topics related to these questions. Finding

the answers to these and many more related questions promises to make the next

stage of research in the field of quantum plasmonics a very fruitful and productive

time. In the next two chapters we will outline our own efforts to exploit the promise

of quantum plasmonics.



Chapter 3

Macroscopic response of a

quantum plasmonic metamaterial

3.1 Introduction

In this chapter we investigate how a macroscopic collection of quantum plasmonic

structures can be engineered to exhibit unusual optical responses. Specifically, we

introduce a theoretical design for a quantum plasmonic metamaterial which has a

tunable negative permeability. This model combines two different types of phe-

nomenon, one taken from the field of metamaterials and the other from quantum

plasmonics. The first is the use of an effective optical magnetic dipole as a unit cell in

a metamaterial to produce artificial magnetism at optical frequencies. The effective

magnetic dipole we use is a coplanar ring of silver metal nanoparticles (MNP) sup-

porting localized surface plasmon modes (LSP) [ASE06, ST09, AE08]. The second

phenomenon used is the Fano interference [Fan61, LZM+10], which is observed when

light scatters from an MNP interacting with a two-level semiconductor quantum dot

(QD) in the bad cavity limit [ZGB06, RSF+10, WS10]. By replacing each MNP in

the coplanar ring of the unit cell with one of these MNP-QD ‘metamolecules’, we

41
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Figure 3.1: Schematic of the quantum plasmonic metamaterial. This includes a
detailed sketch of one of the unit cells consisting of a MNP-QD nanoring. The unit
cell has nanoscale dimensions: the radius of the MNP nanoring, QD nanoring, MNPs
and QDs are 38 nm, 6nm, 16 nm and approximately 1 nm respectively. An arbitrary
optical field can be injected into the metamaterial and the figure shows an example
of a transverse plane wave at the center of a focused beam. The interaction between
the QDs and MNP fields at each site, or ‘metamolecule’, cause a Fano profile to
appear in the scattered magnetic field of the MNP ring. The configuration shown is
for a material with a magnetic response in the ẑ direction only and the material is
therefore anisotropic. To make an isotropic material with the same response in all
directions, a cubic lattice consisting of three orthogonal arrays of nanorings should
be used as the unit cell.

are able to transfer the Fano interference into the magnetic resonance of the ring.

When the MNP-QD nanorings are then used as the unit cell of a metamaterial,

the Fano interference manifests itself in the metamaterial’s effective permeability

µeff . We exploit this interference to obtain control over the metamaterial’s optical

properties and , in particular, we introduce tunability and nonlinearity into µeff .

We begin by reminding the reader of the basics of metamaterials which we discussed

in chapter 1. We then elaborate on how metamaterials can mimic magnetism at

high frequencies, how this can then be used to realise negative index materials,

and what challenges need to be overcome so artificial magnetism can be brought

into the optical regime. Once this background material is covered we introduce
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our model in detail. First, we elaborate on the physics of the interacting MNP-

QD metamolecule and show that a Fano interference profile is present in the linear

polarizability (α) of the joint system. Following this, we discuss how the ‘bare’

MNP nanoring acts as a magnetic resonator and we calculate the effective bulk

permeability of a metamaterial composed of these nanorings. Finally, we incorporate

the MNP-QD metamolecule into the nanoring and calculate the permeability of our

proposed quantum plasmonic metamaterial.

3.2 Metamaterials

The propagation of light is modified significantly as it passes from the vacuum into

materials. Common modifications include the light being reflected, refracted or

its velocity being retarded. These modifications are attributed to the interaction

between light and the atoms that constitute the material. Imagine, for a moment,

we had the technology to build a material from the bottom up, atom by atom. If this

were the case then we could create a material with whatever optical properties we

desired. Unfortunately, we are limited by present technology as we do not possess

the required control at the atomic level. It would seem that in our endeavour

to manipulate light we are limited to materials that nature has provided for us.

Recently, researchers have rejected this notion by fabricating designer materials

that boast electromagnetic responses not possible in naturally occurring materials.

The most important example of such a material is the metamaterial. The Greek

word meta means beyond which highlights that these materials have properties that

cannot be found naturally [SPW04, PSS06, SCC+05]. These metamaterials are

periodic structures whose unit cell is subwavelength size. Each unit cell is composed

of an identical subwavelength structure which we will call a meta-atom. The size

of the meta-atom ensures that the incoming light cannot individually discern them.

As a result they, conceptually, replace the role of atoms in regular materials [CS10].

Therefore the optical response of the bulk material is governed by the response of
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each individual meta-atom, over which we have full control. Crucially the optical

response of these meta-atoms is based on their structure rather then the chemical

properties of their component elements. The advent of metamaterials has radically

altered our perception of how light can be manipulated. It has even spawned a new

field of theoretical research, transformation optics, which has led to the proposal of

the invisibility cloak [CCS10]. The precise light control that metamaterials provide

will enable us to create technology previously thought to be the stuff of science

fiction.

3.2.1 Macroscopic optical response parameters

As mentioned earlier, the total response of a material to light is due to the com-

bined response of each atom. These complicated dynamics are simplified by the

fact that the atoms are all much smaller then the wavelength of the incident light.

This allows us to average over the effect of the atoms and define the response of

the material to light with simple macroscopic parameters [Gre98]. These parame-

ters are the permittivity (ε) and the permeability (µ) which determine the electric

and magnetic response of the material respectively. We have already discussed the

permittivity in chapter 2 but for completeness we present an expression for both

response parameters,

D = ε(ω)E, (3.1)

B = µ(ω)H, (3.2)

where E is the electric field, D the dielectric displacement field, H the magnetic field,

and B the magnetic induction field. To clarify where these parameters come from,

let me restate the D field as

D = ε0E + P. (3.3)
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We see that the electromagnetic field expected in the presence of a material (D field)

is the original electric field as well as the polarization field which is set up within

the material. The degree of polarization of the atomic ensemble in the material is

given by the electric susceptibility (χ), such that P = ε0χ(ω)E. With this in mind

the permittivity is more clearly defined as, ε(ω) = 1+χ(ω). A similar argument can

be used for the magnetic response but, as we shall discuss later, one is less likely

to come across naturally magnetic materials. Typically these response parameters

are complex functions of frequency, where the imaginary part characterizes the light

absorption of the material. The defining feature of metamaterials is that the period-

icity of the unit cells is subwavelength, allowing us to define an effective permittivity

(εeff) and permeability (µeff). This is in stark contrast to other designer materials

attempting to control light. For example photonic crystals exhibit fantastic con-

trol over light due to periodic defects in their structure [Nor07]. Unfortunately, the

periodicity of these defects is on the order of the light wavelength which makes it im-

possible to characterise these crystals with these simple, and functional, macroscopic

parameters.

3.2.2 Artificial magnetism

In order to have complete control over light one must be able to influence both

the electric and magnetic components of an electromagnetic wave. Most mate-

rials, however, interact weakly with the magnetic field, with some exceptions at

lower frequencies. The weakness of magnetic effects in optical materials is directly

related to the small value of the fine structure constant [SCC+05]. The ability

to produce artificial magnetism at elevated frequencies has been one of the great

success stories of metamaterials. This was achieved by using subwavelength mag-

netic resonators as meta-atoms. The first example of this was Pendry’s design of

two concentric split-ring resonators (SRRs) with a magnetic resonance in the mi-

crowave [PHRS99]. The SRR is analogous to an LC resonator, where the resonance
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frequency is ω0 ∼
√

1/LC. The incoming magnetic field induces a circular current

in the SRR which creates the effect of a magnetic dipole, while the gaps in the SRR

provide a capacitance which gives the magnetic response a resonance property. The

ability to produce artificial magnetism at high frequencies has already impacted on

medical diagnostics, where it is used to improve MRI scans [PSS06].

3.2.3 Negative refractive index

Typically resonant responses, both electric and magnetic, are associated with neg-

ative real values of the permittivity and permeability. It is virtually impossible to

find negative permeability materials in nature but negative permittivity materials

are quite common. Many metals, such as the noble metals (gold and silver), fall

into this category. The defining optical property of metals is that they are opaque

to light. This is in fact characteristic of any material in which either (but not both)

the permittivity or the permeability is negative. Negative permittivity materials

are also associated with surface plasmon modes which make them particularly in-

triguing [PSS06]. The advent of metamaterials has allowed us to investigate what

would happen if a material had negative real values for both the permittivity and

permeability. In fact this question has long since been theoretically tackled. Vese-

lago pondered what the refractive index of such a material would be [Ves68]. The

refractive index

η =
√
εµ, (3.4)

is a useful parameter to study the propagation of light through a material, where the

imaginary component is associated with absorption, while the real part governs the

phase velocity of light through the material (vphase = c
η
). Veselago found that the

real part of η can be made negative in a material with a negative permittivity and

permeability. A negative index of refraction is something that cannot be found in
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nature. For a student well versed in conventional optics these materials have some

astonishing fundamental properties. Perhaps the most significant of these is that the

phase velocity of light is directed against its energy flow in a negative index material.

Also at an interface with a positive index material, light bends in the ‘wrong’ way

as defined by Snell’s law. Finally the vectors E, H and wave vector k are arranged

in accordance to a left hand rule as opposed to the usual right hand rule [SK00].

What’s more, standard optical phenomena are strangely modified in these materials.

For example the Doppler shift is reversed and Cerenkov radiation [Cer] is radiated

in a cone directed behind the moving charge instead of in front. Researchers have

already envisioned applications for negative index metamaterials (NIM), the most

interesting of which is the idea of a perfect lens which can access the near-field of

objects [Pen00, ZL08].

The first metamaterial to experimentally show both a negative electric and mag-

netic response over the same frequency band was devolped in 2000 [SPV+00]. This

metamaterial was a composite structure based on the SRR. The magnetic resonance

frequency of the SRR is lower than electric resonance frequency typically exhibited

by metals. At lower frequencies the dissipation in metals drowns out the negative re-

sponse. Ingeniously the electric response frequency in the SRR metamaterial was de-

pressed by also incorporating a lattice of thin wires into the metamaterial [PHSY96].

The wires give the electrons in the metal a large effective mass which helps to reduce

the electric resonance frequency, ensuring both the electric and magnetic resonance

overlap. Designs are constantly improving, a notable example is the double-fishnet

metamaterial which provides a broadband effective negative index of refraction at

both infrared and optical wavelengths [HWTH10, ZFP+05, HPM+12].
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3.2.4 The way forward: plasmonic metamaterials

After these early successes, the next challenge has been to develop a NIM that

operates in the optical regime. The main stumbling point has been the need to find a

magnetic resonator design to replace the SRR. Intuitively, it was thought that optical

magnetic resonances could be achieved by scaling down the SRR to an appropriate

size. However there is a lower bound to the size achievable before the metal of

the SRR deviates from a perfect conductor, at this point further miniaturization of

the SRR will not lead to an increase in resonance frequency [KEW+06, ZKK+05].

There have been many advances in this regard, particularly with metamaterials

based on plasmonic components. Metallic structures supporting LSP modes resonate

naturally in the optical regime, making them obvious candidates. Metamaterials of

this type have shown to experimentally exhibit a negative refractive index. However

there remains many challenges, such as the development of a bulk 3-D optical NIM,

the need to reduce the large losses associated with plasmonic modes and the need

to ensure an isotropic response [SW11].

We have highlighted the need to develop an isotropic optical magnetic resonator in

order to realise a fully functional optical NIM. An example of such a design is the

MNP nanoring [AE08, ASE06, ST09]. Three nanorings can be placed orthogonally

in the unit cell of a metamaterial to ensure an isotropic response. This design

suffers from the problem that the magnetic and electric responses don’t overlap.

In the remainder of the chapter we take this excellent design and introduce two-

level quantum dots. The fruit of the combined labours is a dynamically tunable,

nonlinear, magnetic resonator that could prove very useful in the design of future

optical metamaterials.
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3.3 The MNP-QD metamolecule

When light of a particular frequency is incident upon a MNP of subwavelength

size a LSP is excited [Mai07]. Placing quantum emitters such as atoms, quantum

dots and nitrogen vacancy centers within the MNP’s strong near-field enhances the

interaction between them [TMÖ+13]. The MNP provides an interface between the

incident light and the emitter, acting much like an antenna. As a result, the coupling

frequency between the MNP field and the emitter can become very large. However,

due to the large ohmic and radiative damping associated with the MNP field mode,

it is rarely the case that a MNP-emitter system is able to reach this regime, despite

the large coupling frequency. Typically the coupling frequency, while lower than the

MNP field’s damping rate, is much larger than the emission rate of the emitter. In

this ‘bad-cavity’ limit a Fano interference can occur between the incident field and

the excited field in the MNP-emitter system, leading to a characteristic Fano profile

in the frequency of the scattered field [ZGB06, RSF+10, WS10]. This interference

is ubiquitous in wave mechanics and occurs when a discrete system interacts with

a continuum [Fan61, LZM+10]. In the present case being considered, the former is

the emitter and the latter is the MNP. This particular MNP-emitter type of system

has been studied in depth using both a semi-classical [ZGB06] and a fully quantum

mechanical model [RSF+10, WS10]. The semi-classical model is perfectly suitable to

examine the Fano interference in the weak-driving field limit. However, in the strong-

field limit the semi-classical model breaks down and some of the nonlinear behavior

predicted is invalidated by quantum noise [WS10]. In order to study nonlinear effects

in our metamaterial design our model must be able to operate in the strong-field

limit. As such, our model is set up from the beginning within a quantum framework.
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3.3.1 The MNP-QD polarizability

We focus on producing Fano interferences in a silver MNP-QD metamolecule and

exploiting them in our metamaterial design. Thus, we are interested in the explicit

optical response of the MNP-QD metamolecule. The response of this system to

incident light is characterized by a frequency dependent polarizability, α(ω) [Gre98].

For a given incident field amplitude E0 it is defined as

α(ω) =
p

MNP−QD
(ω)

E0

, (3.5)

where p
MNP−QD

(ω) is the amplitude of the metamolecule’s dipole moment. The po-

larizability is a complex function, where the imaginary part describes the molecules

ability to absorb light.

The quantum model

To derive the MNP-QD system’s polarizability, we first define its Hamiltonian, which

is given by

Ĥ = Ĥ0 + Ĥint + Ĥdrive. (3.6)

Where the individual terms are

Ĥ0 = ~ω0â
†â+ ~ωxσ̂†σ̂, (3.7)

Ĥint = i~g(σ̂â† − σ̂†â), (3.8)

Ĥdrive = −E0µ(σ̂e−iωt + σ̂†eiωt) (3.9)

− E0(ζ∗âe−iωt + ζâ†eiωt).

Here, ω0 and ωx are the resonance frequencies of the MNP plasmonic field mode

and the QD respectively, and ω is the external driving field frequency. The MNP

resonant frequency ω0 can be derived using the Frohlich condition [Mai07] and
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by modeling the permittivity of silver using the Drude model, leading to the re-

lation ω0 = ωp√
ε∞+2εb

. The plasma frequency of silver is taken as ωp = 2π ×

2175 THz [ASE06, AE08, ST09] and ε∞ is the ultraviolet permittivity of silver,

which is set to ε∞ = 5 [ST09]. Finally, εb is the permittivity of the background

material in which the MNP-QD metamolecule is embedded.

In Eq. (3.6), the term Ĥ0 is the free energy Hamiltonian of the MNP and QD,

where â† (â) is the creation (annihilation) operator for the MNP plasmonic mode

and σ̂† (σ̂) is the raising (lowering) operator for the QD. The term Ĥint describes the

near-field interaction between the QD and the MNP plasmonic mode, while Ĥdrive

accounts for the driving of the system by an external electric field E0. The coupling

of the MNP plasmonic mode to the QD and the driving field are characterized by g

and ζ respectively, and µ is the dipole moment of the QD.

The above Hamiltonians do not account for any losses the system may incur due

to interactions with an external environment. The system can lose energy both

radiatively to the electromagnetic vacuum, as well as due to ohmic losses in the

metal. These environmental couplings can be modeled as an interaction of the

system with a bath of quantized harmonic oscillators [ZGB06, RSF+10, WS10].

Treating these interactions with Born-Markov approximations enables the use of a

master equation in Lindblad form, ˙̂ρ = L̂(ρ̂), which gives a complete description of

the system dynamics [Car99]. Here, the Lindblad operator acts as follows

L̂(ρ̂) =
i

~
[ρ̂, Ĥ] + L̂0 + L̂x, (3.10)

where

L̂j =
γj
2

(2ĉj ρ̂ĉ
†
j − [ĉ†j ĉj, ρ̂]+), (3.11)

j = {0, x}, ĉ0 (ĉx) represents â (σ̂) and []+ is the notation for the anti-commutator.

γx is the spontaneous emission rate of the QD and γ0 accounts for both ohmic, γnr,
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and radiative damping, γr, of the MNP, where γ0 = γnr+γr. The spontaneous emis-

sion rate of the QD is taken as γx = 80×109 rad s−1 [RSF+10]. The ohmic damping

of the MNP is γnr = γ+ γ3(2εb+ε∞)
ωp

, where γ is the damping frequency of silver which

we take as γ = 2.7 × 1013 rad s−1 [ASE06, AE08, ST09]. The radiative emission

is calculated from a dipole scattering formula, γr = 2k3ω0r3

ε∞+2εb
[AE08], where k is the

wavenumber of the light. Radiative scattering dominates for larger MNPs which are

more efficient antennas, while for small MNPs the ohmic damping dominates as the

mean free path of the conduction band electrons decreases [BHA00].

Solving the MNP-QD dynamics

In order to find the dipole moment of the MNP-QD metamolecule and hence it’s

polarizability we need to find the expectation values of the system operators. By

working in the Heisenberg picture we can calculate the equations of motion for the

expectation values, i.e. the Maxwell-Bloch (MB) equations, which we express here

in a frame rotating with the driving field frequency ω,

〈 ˙̂a〉 = −(i∆0 +
γ0

2
)〈â〉+ g〈σ̂〉+

iζE0

~
, (3.12)

〈 ˙̂σ〉 = −(i∆x +
γx
2

)〈σ̂〉 − g〈â〉+ 2g〈âσ̂†σ̂〉 (3.13)

+
iµE0

~
(1− 2〈σ̂†σ̂〉),

where ∆0(x) = (ω0(x) − ω). In the general case, the above equations are difficult to

solve as they are not in a closed form and thus form an infinite hierarchy of equa-

tions [Arm09]. However, we can make approximations that transform the equations

into more amenable semi-classical equations. This can be done by making the as-

sumption that the QD and the MNP field are separate systems and factoring the

term 〈âσ̂†σ̂〉 into its light and matter components. This is a reasonable assumption

when considering that the large damping of the MNP field inhibits coherent inter-

actions [WS10]. The MB equations can then be simplified further by assuming a
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weak driving field. In this case, the excited state population of the QD, 〈σ̂†σ̂〉, is

taken to be negligible [ZGB06, RSF+10, WS10].

The MNP-QD system described above is a driven-dissipative one and therefore

we are interested in calculating the polarizability when the system reaches a non-

equilibrium steady state (NESS), i.e. when the system operators
˙̂
O = 0. Using

the above simplifications the NESS value of the MNP plasmonic field annihilation

operator can be found to be

〈â〉 =
g〈σ̂〉

i∆0 + γ0
2

+
iζE0

~(i∆x + γ0
2

)
. (3.14)

To ensure the above quantum framework correctly describes the physics of the sys-

tem we compare its results to those predicted by classical theory [RSF+10]. In this

way we can relate 〈â〉 to the MNP dipole moment (p
MNP

) as well as expressing g and

ζ in terms of system variables.

Linking the quantum and the classical models

The coupling frequency, g, of the dipole interaction between the MNP field mode

and the QD is defined as ~g = µξ, where iξâ = Êm is the positive frequency part of

the MNPs dipolar electric field and µ is the dipole moment of the QD. In order to

derive an expression for g and ζ, one must equate the NESS quantum expectation

value of the MNP electric field with its classically derived value, i.e. 〈Êm〉 = Em.

The classical NESS value is given by

Em =
S

4πε0εb

p
MNP

d3
, (3.15)
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where the dipole moment of the MNP is

p
MNP

=αMNP

(
E0 +

Sp
QD

4πε0εbr3

)
=4πε0εbr

3

(
εm(ω)− εb
εm(ω) + 2εb

)(
E0 +

Sp
QD

4πε0εbr3

)
. (3.16)

Here, S is a scalar parameter set to 2 (-1) for the case of the driving field being paral-

lel (perpendicular) to the MNP-QD separation vector, d is the MNP-QD separation

distance, r is the radius of the MNP, E0 is the driving field amplitude and p
QD

is the

dipole moment of the QD. From Eq. (3.16), we see that the MNP is excited by the

external driving field and the QD field. The dipole moment of the QD is given by

p
QD

= µ〈σ̂〉. The frequency dependent complex function, εm(ω)−εb
2εb+εm(ω)

, determines the

resonance frequency, ω0, of the MNP field, where εm is the permittivity of the metal,

calculated with the Drude model. This resonance will occur when the Fröhlich con-

dition is met, Re[εm(ω)] = −2εb [Mai07, KV95]. A first-order Taylor expansion of

εm(ω) allows the MNPs polarizability to be approximated by a complex Lorentzian

α
MNP

=
12πε0ε

2
br

3βi

i∆0 + γ0
2

. (3.17)

The non-radiative damping, γnr = γ + γ3(2εb+ε∞)
ωp

comes naturally from εm(ω), while

the radiative damping is added in phenomenologically. For brevity we use the param-

eter β =
(γ2(2εb+ε∞)+ω2

p)2

2(2εb+ε∞)
3
2 ω3

p

. The Taylor approximation allows us to draw an analogy

between the plasmonic mode and a leaky cavity mode. The NESS value for the

MNPs electric field in the quantum formalism is

〈Êm〉 = iξ〈â〉 (3.18)

=
i~g〈â〉
µ

. (3.19)
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Substituting Eq. (3.14) into the above equation we find

〈Êm〉 =
i~g2〈σ̂〉

µ(i∆0 + γ0
2

)
+

−gζE0

µ(i∆x + γx
2

)
. (3.20)

If we substitute Eq. (3.17) into Eq. (3.16), then the subsequent expression into

Eq. (3.15) and compare it with Eq. (3.20) one obtains the following expressions for

g and ζ,

g =
Sµ

d3

√
3βr3

4πε0~
, (3.21)

ζ = −iεb
√

12βε0π~r3. (3.22)

If we subsequently compare the NESS value of 〈â〉 with the classical expression of

p
MNP

(Eq. (3.16)), we see that

p
MNP

= ζ∗〈â〉. (3.23)

The Fano profile

Using Eq. (3.23), an expression for the polarizability of the joint MNP-QD meta-

molecule system can be derived as

α(ω) =
ζ∗〈â〉+ µ〈σ̂〉

E0

. (3.24)

Then, by solving the MB equations, Eqs. (3.12) and (3.13), in the steady state, an

analytic expression for the system’s polarizability is found to be

α(ω) =
iµ2

~(i∆x + γx
2

+ g2

i∆0+
γ0
2

)
+

i|ζ|2

~(i∆0 + γ0
2

+ g2

i∆x+ γx
2

)

+
iµg(ζ∗ − ζ)

~((i∆x + γx
2

)(i∆0 + γ0
2

) + g2)
. (3.25)



56 Chapter 3. Macroscopic response of a quantum plasmonic metamaterial

In Fig. 3.2 (a) and (b) we show the imaginary and real parts of the metamolecule’s

polarizability for a range of driving field frequencies, when the resonant frequency

of the MNP and QD set to be equal. Here, the dipole moment radius of the QD,

r0 = µ
e
, is taken as r0 = 0.9 nm (corresponding to 43.22 Debye) [RSF+10] and the

background permittivity is εb = 2.2. One can clearly see the Fano interference profile

due to the MNP-QD interaction. In addition, looking closer at the imaginary part

of the polarizability in Fig. 3.2 (d), one can see that the interference suppresses light

absorption at the resonance frequency. The real part of the polarizability is used to

calculate the dispersion of the MNP-QD metamolecule. The frequency regions either

side of the resonance are governed by anomalous dispersion where the polarizability

decreases with increasing frequency, whereas at resonance there is a sharp increase

in polarizability with increasing frequency, i.e. normal dispersion. This effect is

also seen in EIT systems where it is responsible for slow light propagation [FIM05].

The Fano interference effect can be amplified by increasing the MNP-QD coupling

frequency g. In the above example, g is quite strong due to the small separation

distance chosen, g/ω0 = 5×10−4. However, if the QD is placed too close to the MNP,

then higher-order multipoles are excited in the MNP and the dipole approximation

breaks down [YZD+08]. This should be avoided if we wish to use this scatterer in

a metamaterial design using dipole formulae. The QD must also be placed further

than 1 nm from the MNP surface in order to avoid electron tunneling [ZPN09]. We

have placed the QD at a distance of 2r which is sufficient for higher order multipoles

to be negligible [YZD+08] as well as to avoid tunneling effects [ZPN09].

3.4 The MNP nanoring metamaterial

Let us now consider a ring of identical MNPs in a specific configuration that has

recently been studied for its application as a magnetic resonator in the visible

regime [ASE06, ST09, AE08, SML+13]. The goal of this section is to describe
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Figure 3.2: Imaginary (a) and real (b) parts of the polarizability of a MNP-QD
metamolecule, whose individual dipole radii are 16 nm and 0.9 nm respectively, and
whose separation distance is 32 nm. The MNP and QD are resonant in this example
and they couple transversely (S = −1). The system is encased in a background
medium of permittivity εb = 2.2 and is driven weakly, E0µ = 0.0001 meV, where
E0µ
~ is the coupling frequency between the QD and the driving field. In (c) a sketch

of the system shows that the MNP and QD are transversely coupled. In (d) we
show the imaginary polarizability around the resonance frequency, highlighting the
Fano dip.

this ‘bare’ system quantum mechanically so that later we can incorporate the meta-

molecule from the previous section.

In order to calculate the permittivity or permeability of a metamaterial, it is common

practice to isolate either its electric or magnetic response with a particular type of

incident field. Despite the permittivity and permeability being calculated using a

special type of excitation method, these characteristic functions of the metamaterial

approximate well the response of the metamaterial to an arbitrary form of incident

field [ILKJ03, ASE06]. Thus we will concentrate on isolating the magnetic response
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of the ring. To achieve this, we direct a high frequency magnetic field along the

ring’s normal axis [AE08], as shown in Fig. 3.1. The MNPs thus feel the following

electric field

E0 =
iωµ0RH0

2
φ̂, (3.26)

induced by the time varying incident magnetic field H = H0e
−iωtẑ. Here, R is

the radius of the ring, ω is the frequency of the driving field, and φ̂, and ẑ are

unit vectors in the cylindrical coordinate system (R̂, φ̂, ẑ). The displacement field

induced in each MNP is also directed along the azimuthal direction. Due to this

symmetry, there is no net electrical response and we are therefore able to isolate

the magnetic response of the system. A circular displacement field current is set up

which acts as a magnetic dipole, whose magnitude is given by [ASE06]

m =
−iωp

MNP
NR

2
, (3.27)

where N is the number of electric dipoles in the ring and p
MNP

is the dipole mo-

ment of a single MNP. In Fig. 3.1 the ring configuration we consider is shown for

a material with a magnetic response in the ẑ direction only. Thus, the material is

anisotropic. To make an isotropic material with the same response in all directions,

a cubic lattice consisting of three orthogonal arrays of nanorings should be used.

This can be achieved in a face-centered cubic lattice, where up to four different

nanoring orientations can be included in a single unit cell [ASE06]. Furthermore, in

our calculations we concentrate on the case of N=4 as it is the minimum number of

MNPs in the ring such that the magnetic dipolar response dominates higher-order

multipoles [AE08]. This is essential for the validity of characterizing the meta-

material’s magnetic response with the permeability parameter, µeff , which we now

derive [Sim11].
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3.4.1 The permeability of a MNP nanoring metamaterial

The quantum model

We start by calculating the dipole moment of one of the MNP inclusions using a

quantum framework. Although, strictly speaking, this approach is not required as

the process is essentially classical, we set up the quantum formalism now so that it

can be used when we integrate MNP-QD metamolecules into the ring in the next

section. The equations of motion derived using this framework are also valid in the

classical regime. The Hamiltonian of the bare system is as follows

Ĥ = Ĥ0 + Ĥint + Ĥdrive, (3.28)

where the individual terms are

Ĥ0 =
N−1∑
n=0

~ω0â
†
nân, (3.29)

Ĥint =
N−1∑
n,m=0

~Jnm(â†nâm + â†mân) n 6= m (3.30)

Ĥdrive = −E0

N−1∑
n=0

(ζ∗âne
−iωt + ζâ†ne

iωt). (3.31)

Here, the inter-MNP coupling frequency is given by Jnm, which for nearest neighbor

coupling we denote as J1 and for next-nearest neighbor coupling as J2.

The effective permeability

Now, let’s turn our efforts to calculate the effective permeability of a (classical) MNP

nanoring metamaterial using our quantum formalism. In the Heisenberg picture,

using the full system Hamiltonian, the equation of motion for the expectation value

of the annihilation operator of each MNP field mode, 〈ân〉, can be found and for
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N = 4 they can be written as

〈 ˙̂an〉 = −(i∆0 +
γ0

2
)〈ân〉 − iJ1〈ân+1〉 − iJ1〈ân−1〉 (3.32)

− iJ2〈ân+2〉+
iζE0

~
,

where the indices are written in modulo 4. This set of coupled equations can be

solved in a straightforward manner in the steady state as the system’s symmetry

means that the expectation value of each dipole is the same. By incorporating

Eq. (3.22) and Eq. (3.23) into the solution of Eq. (3.32) the dipole moment of a

single MNP can be written as

p
MNP

=

(
−|ζ|2ωµ0RH0

2~(i∆0 + γ0
2

)

)(
1 +

i(2J1 + J2)

i∆0 + γ0
2

)−1

. (3.33)

Then, using Eq. (3.27) we can calculate the magnetic polarizability of a single

nanoring, αm = m
H0

. The effective permeability of the macroscopic composite

system (metamaterial) can be calculated using the Maxwell-Garnett mixing for-

mula [CS10, Sim11],

µeff = 1 +
1

N−1
d (α−1

m + i k
3

6π
)− 1

3

, (3.34)

where Nd is the volume concentration of nanorings in the metamaterial. The imagi-

nary term in the denominator is only necessary when the rings are part of a regular

three dimensional array. In this case, the radiative damping of the magnetic dipole

is cancelled out [AE08]. Let us pause here, for a moment, in order to explicitly

derive the values of the MNP-MNP coupling frequencies. This will allow us to plot

the permeability and extract information from the results.

Deriving the MNP-MNP coupling frequency

In order to calculate the inter-MNP coupling frequencies we repeat the procedure

used in section 3.3. The dipole moment of the nth MNP, p
MNP,n

, in an N = 4 nanoring
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using classical theory is given by

p
MNP,n

=
12πε0ε

2
br

3βi

i∆0 + γ0
2

(E0 +Q1pMNP,n+1
+Q1pMNP,n−1

+Q2pMNP,n+2
), (3.35)

where Q1(2) are scalar interaction terms that account for nearest (next-nearest)

neighbour MNP-MNP interactions in the ring. The above expression takes into

account the Lorentzian approximation for the MNP resonance that was used in sec-

tion 3.3. Using Eq. (3.32) the NESS dipole moment in the quantum framework is

given by

ζ∗〈ân〉 =
i|ζ|2E0

~(i∆0 + γ0
2

)
− iJ1ζ

∗(〈ân+1〉+ 〈ân−1〉)
i∆0 + γ0

2

(3.36)

− iJ2ζ
∗〈ân+2〉

i∆0 + γ0
2

.

By comparing Eqs. (3.35) and (3.36) expressions for J1 and J2 are found to be

J1(2) = −12πε0ε
2
br

3βQ1(2). (3.37)

The value of Qj is found from the general scalar interaction terms Qj`, where Q1 =

Qj` for j and ` nearest neighbors and Q2 = Qj` for j and ` next-nearest neighbors.

In the case of the magnetic response excitation, Qj` can be defined as the azimuthal

component of the electric field at site j due to the azimuthally directed dipole at

site ` [AE08]. The interaction term is therefore calculated from the standard form

of a dipolar electric field [Gre98]

E =
eikr

′′

4πε0εb
[k2(r′′ × p)× 1

r′′3
+ (3r′′(p · r′′)− pr′′2)(

1

r′′5
− i

r′′4
)], (3.38)

where r′′ is the distance vector between the receiving dipole j at coordinates (z =

0, R = Rring, φ = 2πj
N

) and the source dipole ` at coordinates (z′ = 0, R′ = Rring, φ
′ =

2π`
N

). Using the definition of Qj` and Eq. (3.38) we derive the expression [AE08,
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ST09],

Qj` =
eikr

′′

4πε0εmr′′5
(3.39)

×[(kr′′)2(2R2 cos(φ′ − φ)−R2 cos2(φ′ − φ)−R2)

+ (3R2 sin(φ′ − φ))(1− ikr′′)− (r′′2 cos(φ′ − φ))(1− ikr′′)].

Explicitly we have

Q1 =
ei
√

2kR

16
√

2πε0εbR5
(−2k2R4 + 3R2(1− ik

√
2R)), (3.40)

Q2 =
ei2kR

128πε0εbR5
(−16k2R4 + 4R2(1− i2kR)), (3.41)

where k is the wave vector of the light, k = ω
√
µ0µbε0εb, where µ0 is the free space

permeability and µb is the relative permeability of the background medium.

Plotting the effective permeability

In Fig. 3.3 we plot the effective permeability of a metamaterial with nanorings that

have 2, 3 and 4 MNP inclusions. As mentioned earlier, only for N = 4 is the effective

permeability physically meaningful. It is, however, informative to plot N = 2 and

3, as they show the effect the inter-MNP coupling has on red-shifting the nanoring’s

magnetic resonance from the electric resonance of a single MNP (vertical dashed

line). In both Fig. 3.3 (a) and (b) one can see the material’s resonance properties,

including negative real values in panel (b). For the MNP nanoring we use the

parameters of Ref. [ASE06], see Fig. 3.3. Apart from a slightly smaller, and more

realistic, volume concentration of Nd = (96nm)−3, all other parameters are the same.
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Figure 3.3: Imaginary (a) and real (b) parts of the effective permeability of an MNP
nanoring metamaterial. The ring radius, R, and MNP radius, r, are 38nm and 16nm
respectively. The MNPs are encased in a material with permittivity εb = 2.2 and
permeability µb = 1. We plot the effective permeability for three values of N in
each nanoring, N = 2 (blue line), N = 3 (green dashed line) and N = 4 (red dotted
line), where Nd = (96nm)−3. The vertical dashed line corresponds to the electric
resonance of a single MNP. In (c) we show a sketch of the nanoring system.

3.5 The MNP-QD nanoring metamaterial

3.5.1 The weak-field limit

We now take the nanoring design from the previous section and replace each MNP

with the MNP-QD metamolecule from section 3.3, as shown in Fig. 3.4 (c). In

this case there are two magnetic dipoles excited by the incident magnetic field; one

set up by the ring of MNPs and the other by the QD ring. We use Eq. (3.34)

again to calculate the effective permeability of a metamaterial composed of these

MNP-QD nanorings. However, in this case we must deal with two magnetic dipole

excitations, as well as taking into account MNP-QD interactions. The Hamiltonian
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for the system is

Ĥ = Ĥ0 + Ĥint + Ĥdrive, (3.42)

where the individual terms are

Ĥ0 =
N−1∑
n=0

~ω0â
†
nân +

N−1∑
n=0

~ωxσ̂†nσ̂n, (3.43)

Ĥint =
N−1∑
n,m=0

~Jnm(â†nâm + â†mân) n 6= m (3.44)

+
N−1∑
n,m=0

~Inm(σ̂†nσ̂m + σ̂†mσ̂n) n 6= m

+
N−1∑
n,m=0

i~gnm(â†nσ̂m + ânσ̂
†
m),

Ĥdrive = −E0

N−1∑
n=0

(ζ∗âne
−iωt + ζâ†ne

iωt) (3.45)

− E0µ
N−1∑
n=0

(σ̂ne
−iωt + σ̂†ne

iωt).

First we will calculate the effective permeability in the weak-field limit. In this case

we can derive steady state MB matrix equations accounting for each site

Aā = Bσ̄ + c̄ (3.46)

Dσ̄ = −Bā+ ē (3.47)

Where ā and σ̄ are vectors which represent the expectation values for â and σ̂ at

each site in the ring, given as

ā =



〈â1〉

〈â2〉

〈â3〉

〈â4〉


, σ̄ =



〈σ̂1〉

〈σ̂2〉

〈σ̂3〉

〈σ̂4〉


. (3.48)
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The matrix A represents the MNP-MNP interactions in the nanoring, given as

A =



i∆0 + γ0
2

iJ1 iJ2 iJ1

iJ1 i∆0 + γ0
2

iJ1 iJ2

iJ2 iJ1 i∆0 + γ0
2

iJ1

iJ1 iJ2 iJ1 i∆0 + γ0
2


, (3.49)

where the MNP-MNP coupling frequency Jn was defined in the previous section.

The matrix D represents the QD-QD interactions in the nanoring, given as

D =



i∆x + γx
2

iI1 iI2 iI1

iI1 i∆x + γx
2

iI1 iI2

iI2 iI1 i∆x + γx
2

iI1

iI1 iI2 iI1 i∆x + γx
2


, (3.50)

where I1 and I2 are the nearest neighbor and next-nearest neighbor QD-QD coupling

frequencies, given by

I1(2) =
µ2

~
Q1(2). (3.51)

The matrix B is the MNP-QD coupling matrix, given as

B =



g1 0 −g2 0

0 g1 0 −g2

−g2 0 g1 0

0 −g2 0 g1


. (3.52)

Here, the coupling frequency g1 is for same-site MNP-QD interactions, while g2 is for

an MNP coupling with its next-nearest QD neighbor. From Fig 3.4 (c) we can see

that the same-site and next-nearest neighbor interactions are transverse (S = -1).

Due to the azimuthal external electric field exciting the ring, the same-site QD and

next-nearest neighbour QD relative to each MNP are driven in opposite directions.
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As such they are out of phase, this is represented by the minus signs in the matrix.

We find that the next-nearest neighbour QD works to reduce the influence of the

same-site QD on each MNP. Fortunately due to the stronger same-site interaction

frequency the Fano interference still occurs. Similarly both nearest neighbour QDs

relative to an MNP are also out of phase, however in this case their interaction

frequency is the same and their effect on the MNP is cancelled out. Finally, the

vectors c̄ and ē represent the external driving of the MNPs and the QDs by the

induced electric field,

c̄ =
ζωµ0R1H0

2~



1

1

1

1


, ē =

µωµ0R2H0

2~



1

1

1

1


, (3.53)

where we have taken into account the differing radii of the MNP (R1) and QD (R2)

nanorings. We can solve these equations to calculate the dipole moment of each

MNP and QD within the nanoring,

p
MNP

= ζ∗ā1 = ζ∗(A + B(D−1)B)−1(B(D−1)ē+ c̄), (3.54)

p
QD

= µσ̄1 = µ(D + B(A−1)B)−1(B(A−1)c̄+ ē). (3.55)

Due to the symmetry of the system the dipole moment is the same on each site for the

MNPs and also for the QDs. Following the procedure in section 3.3 we calculate the

magnetic dipole of both the MNP and QD rings. The total magnetic polarizability

of the MNP-QD nanoring can be found using the relation αm =
m

MNP
+m

QD

H0
and

Eq. (3.34) can be used to calculate the effective permeability of a metamaterial made

from the MNP-QD nanorings. The effective permeability (µeff) of the metamaterial

is shown in Fig. 3.4 (a) and (b). Due to the red-shift of the magnetic resonance

of the MNP ring, as shown in section 3.4 ( c.f. Fig. 3.3), the QD resonances have
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Figure 3.4: Imaginary (a) and real (b) parts of µeff for a QD-MNP nanoring meta-
material. The parameters of the system are chosen to be the same as in Figs. 3.2
and 3.3, with a MNP-QD detuning ∆ = (ω0 − ωx) = 0.195 × 1015 rad s−1. In (c)
a sketch of the system is shown, where the unit cell now consists of two interacting
rings, the MNP ring and the QD ring. The arrows on the MNPs show the electric
field direction at each MNP and their direction also represents their adjacent QD’s
dipole orientation. In (d) we examine the difference between Re(µeff) with (red) and
without (black) QDs in the nanoring.

been red-shifted in order to ensure Fano interference. The MNP ring has a radius

of R1 = 38 nm, while the QD ring has a radius of R2 = 6 nm. Thus the same

site MNP-QD separation is d = 32 nm, as was the case for the MNP-QD molecule

investigated in section 3.3.

We can see that the Fano interference present in the effective permeability is more

prominent than that observed in the polarizability of an individual MNP-QD molecule

(c.f. Fig. 3.2). This is due to multiple QDs in the nanoring interacting with each

MNP either directly or mediated through MNP-MNP interactions. In Fig. 3.4 (d)

we show how the introduction of the QDs in the nanoring design changes the real

part of the permeability from positive to negative through the Fano interference.
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Figure 3.5: Tunability of the MNP-QD nanoring metamaterial. The real part of µeff

for different MNP-QD detunings. We plot: (1) ∆ = 0.195, (2) ∆ = 0.196, and (3)
∆ = 0.197. All detunings are in units of 1015 rad s−1. The dashed red line shows
the bare MNP nanoring in the absence of QDs.

The magnitude of Re(µeff), when negative, is not very large. This is related to the

strength of the magnetic resonator. In our proof-of-principle calculations we have

confined the MNP-QD nanoring to only four sites. In practice the strength of the

resonance can be easily amplified by simply increasing the number of sites in the

ring [AE08].

From the above analysis, one can see that the integration of QDs in the MNP

nanoring has transferred the Fano line-shape of the metamolecule to the effective

permeability of the metamaterial. This provides an extra degree of control over

the metamaterial’s response. An example of this is the ability to tune the fre-

quency at which negative permeability occurs. From Fig. 3.4 (d) one can see that

the Fano dip causes a negative real permeability at the QD resonance frequency.

Thus, by dynamically shifting the resonance frequency of the QDs, one can shift

the frequency at which the metamaterial has a negative permeability, as shown in

Fig. 3.5. However, the trade-off for this tunability is that as the QDs are detuned

away from the magnetic resonance the bandwidth narrows. The bandwidth, δ, of

the dip varies from 0.05 THz to 0.01 THz as we detune the QD away from the MNP
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nanoring’s resonance. This still compares favourably to the bandwidth found in EIT

experiments with cold rubidium atoms, where a dip bandwidth of δ = 50 MHz is

observed [WZJZ03].

3.5.2 The strong-field limit: nonlinear effects

So far, all calculations have been confined to the weak driving field limit. If we want

to study the nonlinear properties of the nanoring metamaterial we need to consider a

strong driving field. Driving the MNP-QD metamolecule strongly can dramatically

modify how light scatters from it. The two-level QD becomes saturated by the

driving field and its interaction with the MNP field disappears, and with it any

Fano interference. This nonlinear Fano effect cannot be predicted by classical or

semi-classical theory, and has been studied previously in isolated MNP-QD systems

and recently observed in quantum-well structures [ZG11, MdAN11, KGR+08]. In

Fig. 3.6 the parameters used in our study are chosen in order to show this effect for

a single MNP-QD system of the nanoring. The MNP and the QD are driven by the

same external field, and one can see that as the intensity of the field increases (from

the top row to the bottom row), the Fano dip in the metamolecule’s polarizability

is washed out by the saturation of the QD’s population. These results have been

computed by solving the full master equation numerically. The numerical approach

involves solving the eigenproblem,

L̂(ρ̂SS) = 0, (3.56)

where ρ̂SS is the NESS density matrix of the system. The difficulty here lies in

the unbounded dimensions of the bosonic MNP field mode, whose Hilbert space is

infinite. To proceed, we must truncate the dimension of the MNP field’s Hilbert

space. In order to capture the non-classical behavior we ensure that we allow for a

dimension of at least 15. This problem is well suited to the quantum optics toolbox
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developed by Tan [Tan99].

Our nanoring contains a minimum of four MNPs which makes its combined Hilbert

space very large. Thus while the formalism we have developed and studied in this

work is now in place, it is unfortunately too computationally intensive at present to

study the saturation of the nanoring. However, logically if the QD is saturated in

the MNP-QD metamolecule it will also be saturated when coupled to the MNPs in

the nanoring. We know the addition of the QDs into the MNP nanoring cause the

material’s permeability to become negative at their resonance frequency, as seen in

Fig. 3.4 and Fig. 3.5. Thus, if the QD was saturated by a separate control field then

the permeability could be controlled and varied with the light intensity between

positive and negative values. In future work, techniques from many-body quantum

systems [GCJA13] may be used together with our formalism in order to make the

computation accessible.

Figure 3.6: Nonlinear response of the MNP-QD metamolecule. A comparison of the
imaginary ((a) and (c)) and real ((b) and (d)) parts of the polarizability for a weak
external driving field (top row) with E0µ = 0.0001 meV, and a strong driving field
(bottom row) with E0µ = 0.1 meV. The MNP-QD detuning is ∆ = 0.195× 1015rad
s−1.
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3.6 Remarks

In this chapter we have developed a quantum optical model to describe the dynamics

of a negative permeability metamaterial integrated with two-level QDs. Using this

model we found that the Fano interference of a MNP-QD metamolecule can manifest

itself in the macroscopic magnetic response of a metamaterial consisting of MNP-QD

nanorings. We have shown that this effect can be used to tune the properties of the

metamaterial. Our model is also useful to study nonlinear effects that arise when

the metamaterial is driven strongly. We showed an example of this by studying how

the nonlinear Fano effect can affect our nanoring.

Importantly, we must ask can this design support a negative refractive index? While

each MNP has its own electric response, the frequencies at which the MNP nanoring

metamaterial has a negative permeability and the frequencies at which it has a

negative permittivity do not overlap. Even with inclusion of the QDs this problem

remains. Unfortunately the Fano profile in the electric and magnetic scattered fields

cannot be tuned independently in our scheme. Without this ability it is not possible

to ensure a frequency overlap. Instead, in future work we intend to investigate

how to incorporate the magnetic nanoring resonators with a broadband negative

permittivity background [CS10], using various types of lattice configuration. In this

way by dynamically tuning the magnetic response, we may also be able to control

the metamaterial’s refractive index. However, even for a material that has only a

negative permeability, recent work has shown interesting quantum dynamics can

be observed in the spontaneous emission interference of an emitter placed in close

proximity [ZXY11]. The ability to tune and saturate the magnetic response in this

scenario may open up new additional features.

Another direction of future work would be to exam how fluorescence quenching of

the QD by the MNP would affect our system. In our parameter space we do not
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expect quenching to be a major factor [AB10], however it would be interesting to

quantify at what point this approximation no longer holds for the system we have

studied.

Furthermore, in our calculations we have used similar parameters to previous stud-

ies [ASE06, ST09, AE08]. However, it has been noted recently that the ohmic

damping used for the MNP fields may well be an underestimation [MS10], resulting

from the discrepancy between the Drude model used theoretically and experimen-

tal results at higher frequencies. Using more realistic damping it has been shown

that rings with spherical MNPs no longer have a strong enough magnetic resonance

to achieve Re(µeff) < 0. However, this problem may potentially be resolved using

MNP’s with embedded gain material [HPM+12] or different type of nanostructures

in place of the MNPs. Indeed, by considering more complex, strongly polarized

plasmonic nanostructures within the ring [MS10, MS11], negative permeability has

been shown to be possible, whilst ensuring damping is correctly accounted for. Here,

Morits and Simovski have explored the use of dimers [MS10] and nanoprisms [MS11],

with the latter providing negative permeability in the visible regime. In both cases

only dipole interactions are considered, therefore the basic theoretical model we have

developed in this work using MNPs can be transferred to these more complex nanos-

tructures in a straightforward manner, with the qualitative results of our analysis

remaining valid.



Chapter 4

Microscopic response in the

ultrastrong-coupling regime

4.1 Introduction

In the previous chapter we examined how a macroscopic collection of quantum

plasmonic structures responds to light. Specifically, we showed that interacting

MNP-QD systems could be used favourably in a negative permeability metamate-

rial design. In this chapter, we step away from dealing with large complex systems.

Instead we focus on how smaller systems interact. In particular we are interested

in a single light mode interacting with a collection of two-level quantum emitters

when the interaction strength is extremely large. This model has a particular rel-

evance to quantum plasmonics as we know plasmonic modes couple very strongly

with quantum emitters. With the fast pace of experimental advances, it is certainly

possible in the years ahead that a collection of quantum emitters interacting with a

plasmonic mode will reach the ultrastrong-coupling regime (USC). This, less than

subtle, name is used by quantum opticians to describe the situation in which the

coupling frequency between two systems is comparable to or greater than the sys-

73
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tem’s resonance frequency [Bra11]. In this regime the rotating wave approximation

(RWA) used by theoreticians to simplify light-matter dynamics becomes invalid. It

is a fascinating regime that displays unique behaviour that should prove very fruit-

ful in developing future quantum technologies. We are motivated to understand

how to correctly model such systems in order to provide a solid platform for future

experimental work in quantum plasmonics.

We begin this chapter by giving a brief description of the USC regime and how such

systems interact with their surrounding environment. We place an emphasis on the

latter point. We are interested in how USC systems can be externally probed and

thus we must understand how they radiate into the environment. Following this

we outline the main work of this chapter, the investigation of the emission radiated

after the coupling between a large number of two-level emitters and a single mode

cavity field is non-adiabatically switched on. Counter-rotating terms as well as the

so-called diamagnetic – or A2 – term are included in the light-matter interaction,

where A is the vector potential. Under typical conditions, the system relaxes to

the new ground state by radiating into two spectrally resolved output modes. We

find that the Thomas-Reiche-Kuhn (TRK) sum rule, associated with the emitters,

enforces qualitative constraints on the quantum statistics of this radiation. For

ideal two-level emitters the populations of the two modes are always found equal.

This result cannot be recovered if the A2 term is neglected, or even if it is partially

included via renormalization of the light mode frequency. For imperfect two-level

emitters, featuring residual couplings to higher levels, we show that it is instead

possible to circumvent this constraint, and that a naive application of the two-level

approximation would give the wrong predictions. We discuss when an effective two-

level description can be recovered in this regime. Our work in this chapter illustrates

how the A2 term, TRK rules, and the failure of the two-level approximation can play

a crucial role as soon as the RWA is dropped.
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4.2 Ultrastrong-coupling

Quantum technologies based on optics exploit intense interactions between light

and matter degrees of freedom [Mon02], and it is a typical experimental goal in this

context to maximize the coupling between the two. The strength of light-matter

interactions is restricted by interaction times as well as the volume of the given light

mode. Traditional cavity QED setups exploit high quality cavity mirrors to boost

interaction times, yet the resulting coupling frequency remains only a tiny fraction of

that of the system components. Experimental advances, for example in semiconduc-

tor microcavities and circuit QED, have pushed the strength of light-matter interac-

tions into the ultrastrong-coupling regime [NDH+10, MAK+11, ALT+10, TAC+12,

SHGE11]. This regime is characterized by interactions where the coupling frequency

(g) is comparable to the bare frequencies of the light and matter modes. The theoret-

ical description of the USC demands the inclusion of terms that do not conserve the

excitation numbers of the individual components — the so-called ‘counter-rotating

terms’ — making the application of the RWA invalid [Bra11, CBC05]. This regime

has been studied extensively due to the lure of exotic phenomena such as the ex-

istence of virtual excitations in the ground state [CBC05], dynamical Casimir ef-

fects [LGCC09], and quantum phase transitions [NC10, EB04].

Bloch-Siegert regime

To understand the limits of the RWA, let us briefly examine the Rabi model which

describes a two-level atom interacting with a single light mode,

HRabi = ωaâ
†â+ ωxσ̂z + g(â+ â†)(σ̂ + σ̂†). (4.1)
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Figure 4.1: The dressed state energy levels of the resonant Rabi Hamiltonian (ωa =
ωx = ω0) as a function of coupling frequency normalized to the resonance frequency
g/ω0. This spectrum is characterized by the oscillating behaviour of the energy levels
and is markedly different to the spectrum of the Jaynes-Cummings Hamiltonian.

Invoking the RWA is equivalent to neglecting the terms, âσ̂† and â†σ̂. This leads to

the Jaynes-Cummings Hamiltonian [WM08, Aga12]

HJC = ωaâ
†â+ ω̂xσ̂z + g(âσ̂† + â†σ̂). (4.2)

In this model the total number of excitations is a good quantum number, allowing

HJC to be diagonalized exactly. However when g gets large, the quantum excitations

are no longer conserved and the Jaynes-Cumming model becomes obsolete. To get

a better idea of when exactly this occurs let us perform the unitary transforma-

tion [BGB11]

U = eΛ(âσ̂†−â†σ̂)+ g
2ωa

(â2−â†2)σ̂z (4.3)
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on HRabi, where Λ = g
ωa+ωx

. If we restrict the transformation to second order in Λ,

we arrive at the Bloch-Siegert Hamiltonian [BGB11]

HBS = (ωa +
g2

ωa + ωx
σ̂z)â

†â+ (ω̂x +
g2

ωa + ωx
)σ̂z + g(âσ̂† + â†σ̂). (4.4)

We see that HBS is similar to HJC, however in HBS there is a frequency shift for

both components proportional to g2

ωa+ωx
. Obviously this shift becomes important

when this parameter becomes non-negligible. Thus, taking into account acceptable

errors, we can gauge that the RWA approximation is valid up to g
ωa+ωb

∼ 0.1. Any

system with a value of g greater than this is adjudged to be in the USC regime. The

Bloch-Siegert is a sub-regime of the USC, HBS remains valid only for lower values

within the USC regime. However it has proved a useful example to show how crucial

the relative magnitudes of g, ωa, and ωb are to discern the validity of the RWA.

4.3 Open systems in the ultrastrong-coupling regime

In order to examine how information leaks from USC systems it is essential to

clarify a proper dissipative theory for this regime. One can always employ a Fano-

type diagonalization technique, where the entire system-environment Hamiltonian

is exactly diagonalized, which quantifies the true system-environment eigenstates

regardless of the coupling strength [Fan61]. This approach has been used to under-

stand quantum electrodynamics in dielectrics, where the matter is represented by a

bosonic polarization field [HB92]. The calculations required, however, can be quite

involved compared to approximate quantum optics methods such as the Markovian

master equation [BP02] or input-output theory [CG84, GZ04]. On the other hand,

these approximate methods, when applied naively, can predict unphysical results

in the USC regime [BO12]. The naivety we allude to is the perception that the

system should dissipate into the ground state of its individual components. This is

exactly what happens if the formalism is derived from a dissipative model in which
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each system component interacts with an infinite bath of harmonic oscillators in

the vacuum. This model is satisfactory for a weakly-coupled system, however in

the USC system the ground state of the individual components is not the collective

system’s true ground state. In order to ensure that the theory predicts dissipation

to the true ground state the interaction between the system and the environment

must be expressed in terms of eigenstates that diagonalize the system Hamilto-

nian [CC06, ARH12, BGB11].

Furthermore, these standard methods often make a Markovian approximation, mean-

ing the coupling between the system and the environment is assumed to be frequency-

independent. In a weakly-coupled system, where the transitions are very closely

spaced, this is a reasonable approximation. However if the transitions are widely

spaced, as is the case in even resonant USC systems, one can no longer neglect

the coloured nature of the environment without error. Including the full spectral

density of the environment is cumbersome and precludes many calculations. There

is, fortunately, an intermediate approximation. If the transitions are spaced far

apart, and their decay rates small enough, such that they are well distinguishable

then we can approximate each transition decaying into an independent environ-

ment [BGB11]. In this case we can apply a markovian approximation for each

transition, this independent-transition approximation has the advantage that each

transition can have a unique coupling frequency to the environment.

4.3.1 The model

The system under examination consists of a confined photonic mode of bare fre-

quency ωa and annihilation operator â (cavity mode for brevity), and a collection

of n two-level emitters with ground state |g〉 and excited state |e〉, separated by a

frequency ωb, and identically coupled to the cavity mode via electric dipole interac-

tions. For convenience we introduce the collective operator b̂ = n−1/2
∑n

k=1 |g〉k〈e|k
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(matter mode for brevity), and consider the Holstein-Primakoff regime n� 1, where

[b̂, b̂†] ' 1 [HP40]. The cavity mode is weakly coupled to a continuum of external

modes α̂ω where it can radiate. To simplify the discussion we shall neglect losses

in the matter system, and assume that the modes α̂ω are fully accessible for mea-

surement. While we are adopting a terminology typical of polaritonic systems, our

treatment may be applied to other scenarios. The components of the total Hamil-

tonian, Htot = Hsys +Hext, read (~ = 1)

Hsys = ωaâ
†â+ ωbb̂

†b̂+ g(â+â†)(b̂+b̂†) +D(â+â†)2, (4.5)

Hext =

∫
dω ωα̂†ωα̂ω +

∫
dω J(ω)(â+ â†)(α̂ω + α̂†ω) (4.6)

The cavity mode interacts with the external continuum through a frequency de-

pendent coupling strength J(ω). The term proportional to D originates from the

squared vector potential term (A2) in the minimal coupling Hamiltonian. For a col-

lection of ideal two-level emitters, the TRK sum rule for the ground state dictates

that [Tho25, Wan99, Kuh25]

D =
g2

ωb
. (4.7)

We shall leave D implicit, however, to allow us to study the impact of the A2 term on

the system dynamics. To allow ultrastrong-coupling we include the counter-rotating

terms âb̂ and â†b̂†. When the coupling g is a significant fraction of the bare frequen-

cies ωa, ωb, the open dynamics of the system is more conveniently described in terms

of the eigenmodes which diagonalize Hsys. We shall refer to these eigenmodes as

the upper (U) and lower (L) polariton. They can be expressed as linear combi-

nations of the positive and negative frequency parts of both the light and matter

modes [Hop58], i.e.

p̂k = wkâ+ xkb̂+ ykâ
† + zkb̂

†. (4.8)
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Where k ∈ {L,U}. The Hopfield coefficients, {wk, xk, yk, zk}, and the polaritonic

frequencies, ωk, are determined by inserting Eq. (4.8) into [p̂k, Hsys] = ωkp̂k and

solving the following eigenvalue problem [Hop58, CBC05]



ωa + 2D g −2D −g

g ωb −g 0

2D g −ωa − 2D −g

g 0 −g −ωb





wk

xk

yk

zk


= ωk



wk

xk

yk

zk


. (4.9)

These Hopfield coefficients are normalized by imposing the bosonic commutation

relations [p̂k, p̂
†
k′ ] = δkk′ , which gives us the normalization condition

w∗kwk′ + x∗kxk′ − y∗kyk′ − z∗kzk′ = δkk′ (4.10)

We can also express the bare bosonic modes in terms of the polaritonic modes:

â = w∗Lp̂L + w∗U p̂U − yLp̂
†
L − yup̂

†
U (4.11)

b = x∗LpL + x∗U p̂U − zLp̂
†
L − zup̂

†
U (4.12)

By recasting Htot in terms of the polaritonic operators, we obtain

Htot =
∑
k=L,U

ωkp
†
kpk +

∫
dωωα†ωαω

+
∑
k=L,U

∫
dωJ(ω)(αω + αω)((w∗k − y∗k)pk + (wk − yk)p†k). (4.13)

At this point, let us reemphasise why we express Htot in this way. A reasonable

dissipative theory should demand that the interaction with the external continuum

of environment modes brings the system into its true ground state, the polaritonic

mode vacuum (pk|0〉k = 0). As mentioned in the introduction of this section, this

will not be the case if the system-environment interaction is expressed in terms
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of the bare modes. In this case the system will be dissipate into the bare mode

vacuum (|0〉a, |0〉b). It is clear that this scenario will bring the polaritonic modes

into a non-zero energy state,

E0 =
∑
k=L,U

〈0a, 0b|p†kpk|0a, 0b〉 =
∑
k=L,U

(|yk|2 + |zk|2). (4.14)

The interaction Hamiltonian in Eq. (4.13) ensures the system dissipates into its true

ground state, once the RWA has been performed. This is a perfectly reasonable

approximation for weak system-environment interactions and it leaves us with the

total Hamiltonian,

Htot '
∑
k=L,U

ωkp̂
†
kp̂k +

∫
dωωα̂†ωα̂ω

+
∑
k=L,U

∫
dωJ(ω)((w∗k − y∗k)α̂†ωp̂k + (wk − yk)α̂ωp̂†k). (4.15)

It is important to note that the RWA must be performed after the change into

the polaritonic basis, since it is the modes pL, pU that oscillate harmonically in the

interaction picture with respect to Hsys +Hext [BO14a]. In some cases, however, it

may be acceptable to perform the RWA before the change of basis, followed by a

rescaling of the coupling coefficients [lib14a].

4.3.2 Input-output theory

Having set up the correct model for the dissipation in a USC bosonic system, we

must now derive equations of motion in order to extract information about the

system dynamics. In this regard, we will work in the Heisenberg picture and express

the system dynamics in the form of Heisenberg-Langevin equations [GZ04]. At

this point, one could study the dynamics induced by Hamiltonian (4.15) for a very

general class of coupling profiles J(ω), for example by Fano diagonalization [Fan61].

For our purposes, however, it shall be sufficient to deal with a simplified problem,
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where a further set of approximations guided by physical intuition is made. We

assume that the couplings to the continuum are sufficiently weak and smooth as

to induce an (approximately) Lorentzian broadening of each resonance ωk, whose

width is γk. The frequencies ωk of the polaritonic modes are assumed to be well

resolved, in the sense that γL, γU � ωU − ωL. All of the above amounts to a rather

standard procedure in open quantum systems, where the problem is recast as a pair

modes in two independent, Markovian environments. In fact, this procedure is the

independent-transition approximation mentioned in the introduction of this section.

Each environment corresponds to a broadband (i.e. with a width much larger than

γk) collection of external modes αω, centred around the frequency ωk. Any finite-

bandwidth effect or cross talk between these two effective environments is neglected.

We can thus rephrase Eq.(4.15) as two modes in two independent environments, i.e

H =
∑
k=L,U

ωkp̂
†
kp̂k +

∫
k

dωα̂†ωα̂ω +

√
γk
2π

∫
k

dω(p̂kα̂
†
ω + p̂†kα̂ω) (4.16)

where, γk ≡ 2πJ2(ωk)(|wk|2 + |yk|2) has been approximated as constant in the inte-

gration range, and the suffix k indicates that the integral is performed in a frequency

range ωk ± δk, where δk � γk justifies a Markov approximation, but δk is still small

enough to ensure that the ranges ωk ± δk, ωk′ ± δk′ do not overlap for k 6= k′. We

can now derive equations of motion for the system using the Heisenberg equation

˙̂
A = i[H, Â],

˙̂pk =− iωkp̂k − i
√
γk
2π

∫
k

dωα̂ω, (4.17)

˙̂αω =− iωαω − i
√
γk
2π
p̂k (4.18)
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First let us solve Eq. (4.18) for the dynamics of the environmental modes at time

’t’,

α̂(t) = αω(0)e−iωt − i
√
γk
2π

∫ t

0

p̂k(t
′)e−iω(t−t′)dt′, (4.19)

where we have specified the initial conditions of the system as t0 = 0. If we now sub-

stitute Eq. (4.19) into Eq. (4.17), we can simplify the polaritonic dynamics greatly

˙̂pk = −iωkp̂k − i
√
γk
2π

∫
k

dωαω(0)e−iωt − γk
2π

∫
k

∫ t

0

p̂k(t
′)e−iω(t−t′)dωdt′. (4.20)

To simplify Eq. (4.20) we can define an input field operator,

p̂k,in = − i√
2π

∫
k

dωαω(0)e−iωt, (4.21)

which obeys the commutation rule [p̂k,in(t), p̂†k′,in(t′)] = δkk′δ(t − t′). To simplify

further we can utilise the following results,

∫
k

dωe−iω(t−t′) = 2πδ(t− t′) (4.22)∫ t

0

f(t′)δ(t− t′)dt′ = f(t)

2
, (4.23)

which hold under our approximation that the spectrum can be assumed infinitely

flat around each polaritonic mode. Taking all these results into consideration we

can derive a final form for the polaritonic mode dynamics

˙̂pk = −iωkp̂k −
γk
2
p̂k +

√
γkp̂k,in. (4.24)

We can also derive a time-reversed Heisenberg-Lanegvin equation,

˙̂pk = −iωkp̂k +
γk
2
p̂k −

√
γkp̂k,out. (4.25)
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which relates the system dynamics to the output field operator

p̂k,out =
i√
2π

∫
k

dωαω(tf )e
−iω(t−tf ), (4.26)

which is defined for some final time tf . From Eqs. (4.24) and (4.25) we can derive

the input-output relations

p̂k,out =
√
γkp̂k − p̂k,in. (4.27)

This allows us to relate the system dynamics p̂k with the output into the environment

p̂k,out

4.3.3 Propagation of quantum states into the external modes

The simplicity of our model allows us to investigate in great detail the way in

which quantum states propagate from our polaritonic system and into the exter-

nal field modes. In this work we shall assume that both output fields pk,out are

fully accessible; in other words, given an initial time t0 and a final time tf , the ex-

perimentalist may manipulate any field mode of the form f̂k =
∫ tf
t0

dtφk(t)p̂k,out(t),

where
∫ tf
t0

dt|φ(t)|2 = 1 ensures bosonic normalization. It is easy to also include

non-accessible environmental modes which restrict the full collection of system in-

formation [TRPS12], but we do not include them here. Fixing t0 = 0 without loss

of generality, we then consider the long time limit tf →∞, in which all the informa-

tion that was present in the polaritonic system at t = 0 has been transferred to the

external fields. Here, we are interested in the output modes that best retain such

quantum information. It is then an easy exercise to show that these are given by

the exponential wave-packets φk(t) =
√
γke

iωkt−γkt/2, yielding

f̂L = p̂L(0), f̂U = p̂U(0). (4.28)
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Importantly, the relations in Eq. (4.28) are expressed in the Heisenberg picture, and

are valid for arbitrary initial states. Therefore, at least in principle, the experimen-

talist can have access to two output fields that exactly reproduce the initial system

statistics.

Initial state capture

Let us take a moment to examine in more detail how we arrived at Eq. (4.28). We

wish to analyze travelling light modes of the output field that have exponential form

f̂k(s) = N

∫ ∞
0

p̂k,oute
−stdt, (4.29)

where Re[s] > 0. By demanding that fk(s) respects bosonic commutation relations

we impose the following normalization constant, N =
√

2Re[s]. Allowing s to be

complex, we can see that this form is equivalent to a Laplace transform of pk,out.

By taking the Laplace transform of Eq. (4.27) we can formulate our exponentially

decaying travelling output mode in terms of the input mode and the system operator

f̂k(s) = N
√
γkp̂k(s)−Np̂k,in(s), (4.30)

where F (s) is the Laplace transform of the general time dependent function F(t).

If we also apply the Laplace transform on Eq. (4.24) then we can recast Eq. (4.30)

in terms of the system’s initial state

f̂k(s) = N
τk(s)√
γk
p̂k(0) +N(τk(s)− 1)p̂k,in, (4.31)

where τk(s) = γk
s+iωk+

γk
2

. τk(s) determines the mixture of information from Pk,in

and pk(0) that will be collected by fk(s). The condition to collect the initial state
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exclusively is, τk(s0) = 1, which is satisfied by

sk0 = −iωk +
γk
2
. (4.32)

Which leaves us with,

f̂(sk0) = f̂k = p̂k(0). (4.33)

4.4 The importance of the A2 term in the ultrastrong-

coupling regime

As we have alluded to already, the counter-rotating terms may not be the only

extra terms that should be taken into account in the USC regime. We must also

consider the inclusion of the diamagnetic, or ‘A2’, term which becomes relevant

for ultrastrong-coupling frequencies, as seen in Eq. (4.5). This term is propor-

tional to the squared vector potential term which ensures gauge invariance in the

non-relativistic minimal coupling Hamiltonian [Woo76]. There is not, however, a

consensus over the correct role of this term [NC10, VGD14, BO14b]. A revealing

microcosm of this disagreement is found in the research on superradiant phase tran-

sition in the Dicke model. For two-level atoms it was proved that this quantum

phase transition was an artifact left by neglecting the A2 term [RWZ75, RW91].

In most of the above examples the physics beyond the counter-rotating terms be-

comes crucial as the strength of light-matter interactions is pushed towards the

extreme regime g ∼ ωb. Still, for the sake of simplicity one may wonder whether

there exist an intermediate USC regime in which counter-rotating terms are dom-

inant while other effects, for example associated with A2, are suppressed. In this

chapter, we investigate this question for a simple polaritonic system composed of a

large number of two-level emitters interacting with a single mode cavity field, and
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Figure 4.2: (a) Schematic conceptualizing the emission of the polaritonic system into
the output modes f̂U and f̂L. (b) Frequency distribution of the output modes f̂U
(blue, solid) and f̂L (red, dashed), encoding the quantum statistics of the polaritons
at t0. We have fixed ωa = ωb, g = 0.05ωa, D = g2/ωb, and chosen a frequency-
independent coupling to the external modes J(ω) =

√
γ/2π, where γ = 0.01ωa is

the decay rate of the cavity in absence of the matter mode.

find a negative answer. Specifically, we study the evolution of the system, initially

in the bare modes vacuum, following a non-adiabatic ‘switch-on’ of the ultrastrong-

coupling. As the system relaxes to the ground state of the coupled Hamiltonian,

photons are radiated into two spectrally distinct output modes. We find that A2,

in combination with the TRK rules and the possibility of transitions to far detuned

levels of the emitters, affect qualitatively the statistics of these modes. A correct

description of the system beyond the RWA thus requires the inclusion of all these

elements in the theoretical model. The examples we studied suggest that a correct

model of the quantum emitters in the USC should include a sufficient number of

transitions as to approximately saturate the TRK rule for the ground state. While

in general this will result in additional theoretical difficulties for the description of

the USC, we show how suitable parameter regimes can be identified in which an im-

perfect two-level system can be approximated by an ideal one, upon appropriately

rescaling the A2 term.
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4.4.1 Non-adiabatic emission

The impact of the A2 term on the emission properties of our polaritonic system can

be appreciated with a simple and yet interesting example, in which the coupling g is

abruptly ‘switched-on’ from an initially negligible value. Such a modulation can be

achieved, for example, in USC intersubband-cavity systems by inducing a fast change

in the density of the two-dimensional electron gas [GAH+09, ATBS05, ATB+06].

Assuming the two uncoupled bare bosonic modes â, b̂ to be initially prepared in

their vacuum state (â|0a0b〉 = b̂|0a0b〉= 0), and that the coupling is non-adiabatically

introduced, the system is not able to respond to the perturbation and remains in

the vacuum state of the bare modes. However, for t > 0 the ultrastrongly coupled

system will start dissipating towards the vacuum of the polaritonic modes and in

order to do this it must radiate into the continuum. According to Eq. (4.28), the

quantum properties of such radiation are fully captured by the output modes f̂L, f̂U .

Using Eqn. (4.8) and Eqn. (4.28), we can immediately recognize that the statistics

of the two field modes f̂L, f̂U is that of a two-mode Gaussian state of vanishing first

moments. This is fully characterized by its covariance matrix, whose entries can be

easily found as combinations of the Hopfield coefficients. To begin with, we turn our

attention to the mean populations of the output modes, which in terms of Hopfield

coefficients read

〈f̂ †k f̂k〉 = nk = |yk|2 + |zk|2. (4.34)

A non-zero value of these quantities is perhaps the simplest signature of the influence

of the counter-rotating terms on the dynamics. Figs. 4.3 and 4.4 illustrate the

behaviour of nk as a function of the coupling g, the bare frequency difference ωa−ωb

and, most importantly, the parameter D associated with the A2 term. The TRK

sum rules impose a boundary on the allowed value of D. In the case of of an electric
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Figure 4.3: Mean population of f̂U and f̂L as a function of coupling strength nor-
malized to the matter-field frequency g/ωb, when ωa = ωb. In this plot the blue
solid line refers to D = g2/ωb, while the red dashed line refers to A2 being neglected
(D = 0). We see that for D = g2/ωb the populations are distributed equally, while
for D = 0, nL is larger.

dipole interaction between a two-level emitter and a light mode the TRK sum rule

imposes [NC10]

D =
g2

ωb
. (4.35)

When this correct value for a two-level system is taken, we observe that the exci-

tations are distributed equally between f̂U and f̂L, in all the explored range of the

remaining parameters g, ωa, ωb. Setting instead D = 0, which corresponds to ne-

glecting A2 but not the counter-rotating terms, results in a higher population being

predicted for the lower frequency mode f̂L. We note that, as far as the population

of the two modes is not negligible (which would correspond to the RWA), the two

models are never in agreement.

4.4.2 Bare mode resonance

We now move on to clarify the above findings for the special case of bare mode

resonance ωa = ωb ≡ ω0, where a thorough analytical understanding of the problem
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Figure 4.4: Ratio nU/nL of the mean populations of f̂U and f̂L as a function of bare
mode detuning ∆ab = ωb−ωa for fixed coupling g = 0.2ωa. The blue solid line refers
to D = g2/ωb, while the red dashed line refers to A2 being neglected (D = 0).

is possible. In addition, we fully characterize the output state for this case as a

product of two single-mode squeezed vacuum states for the modes f̂U , f̂L. To do this,

we explicitly diagonalize Hsys, from Eq.(4.5), in two simple steps. First, consider

the following ‘number-conserving’ transformation

â = cos θr̂U − sin θr̂L, b̂ = cos θr̂L + sin θr̂U , (4.36)

where r̂U , r̂L are independent bosonic modes that annihilate the same state as â, b̂.

With the choice θ = 1
2

tan−1(g/D), we can recast

Hsys =
∑
k=U,L

ω0r̂
†
kr̂k +

ηk
2

(r̂k + r̂†k)
2, (4.37)

where,

ηU = D +
√
g2 +D2, (4.38)

ηL = D −
√
g2 +D2. (4.39)
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Figure 4.5: Uncertainty of the squeezed quadratures ∆X, as a function of coupling
strength g, when ωa = ωb. X ∈ {QL,ΠU} and Q̂L = f̂L + f̂ †L, Π̂U = i(f̂ †U − f̂U). We
define the uncertainty as ∆X =

√
〈X2〉 − 〈X〉2, in our case any value of uncertainty

below 1 indicates squeezing. The blue solid line refers to D = g2/ωb, while the red
dashed line refers to A2 being neglected (D = 0). We observe that for D = g2/ωb
the output modes are squeezed equally, while for D = 0, f̂L is more squeezed.

Note that ηU > 0 while ηL < 0. The r̂U , r̂L modes do not interact, and are inti-

mately related to the polaritonic modes p̂U and p̂L respectively. To complete the

diagonalization we consider the squeezing transformation

r̂k = cosh ξkp̂k − sinh ξkp̂
†
k, k = U,L, (4.40)

which, choosing ξk = 1
4

log
(

1 + 2ηk
ω0

)
, reduces Hsys to the diagonal form employed

in Eq. (4.15), with the polaritonic frequencies given by ωk =
√
ω0(ω0 + 2ηk). We

finally note that ωU > ωL and ξU > 0, while ξL < 0, signifying that p̂U and p̂L are

obtained by squeezing the modes r̂U and r̂L in orthogonal quadratures. Eq. (4.40)

illustrates that the vacuum states of â, b̂ (hence of r̂U , r̂L) corresponds to a product of

single-mode squeezed states for p̂L, p̂U , and hence for the output modes f̂L, f̂U . This

is shown in Fig. 4.5, where the behaviour of the uncertainties of the quadratures

of the two output modes is illustrated as a function of the normalized coupling

frequency (g/ωb). We find that f̂U and f̂L are squeezed equally when the A2 term



92 Chapter 4. Microscopic response in the ultrastrong-coupling regime

is included. If, however, it is neglected then we find that f̂L is squeezed more than

f̂U . This corresponds to our observations of the mean population in Fig. 4.3. This

can be fully clarified by noting that the degree of squeezing and population of each

mode is a monotone function of |ξk|. It is then useful to calculate

|ξU | − |ξL| =
1

4
log

[
1 +

4

ω0

(
D − g2

ω0

)]
, (4.41)

which proves in a transparent manner that the two modes are squeezed equally, and

thus have equal mean populations, when D assumes the TRK value for a two-level

system. On the other hand, the correct behaviour of squeezing and populations can

never be reproduced if D, hence A2, is neglected. We note that this result holds

for any value of the coupling g, suggesting once again that counter-rotating effects,

no matter how weak, cannot be properly accounted for without the inclusion of a

suitable diamagnetic term in the light-matter interaction.

4.4.3 Imperfect two-level emitters

As anticipated, a further commodity that may need to be given up beyond the RWA

is the two-level approximation. To investigate this issue in our context we enrich

the structure of each emitter by considering, in addition to the levels |g〉, |e〉, the

existence of higher excited states |e′j〉. For simplicity, we shall keep the assumption

of bare mode resonance between â and b̂. Each transition |g〉 ↔ |e′j〉 has a frequency

ωj > ω0 and is dipole coupled to the cavity field. We neglect the possibility of dipole

transitions between excited states. Again, we consider collective operators ĉj =

n−1/2
∑n

k=1 |gk〉〈e′j|k, which together with b̂ describe a set of mutually independent

annihilation operators in the limit n� 1. Thus, the system Hamiltonian in Eq. (4.5)

is modified as

H ′sys = Hsys +
∑
j

ωj ĉ
†
j ĉj + gj(ĉj + ĉ†j)(â+ â†), (4.42)
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Figure 4.6: (a) Ratio nU/nL of the mean populations of f̂U and f̂L in the case of
(b) three-level emitters, where the third level is weakly coupled to the light mode
(g1/ω1 � 1). nU/nL is plotted as a function of the third-level coupling frequency
normalized to the the third-level transition frequency g1/ω1. The blue solid line
represents the model in which the full three-level system is accounted for. The
red dashed line represents a two-level approximation which naively incorporates the
third level in the A2 term. We also include the model for a perfect two-level system
as a qualitative comparison (black dotted line). We see that the deviation from
the ideal two-level result, as g1 is increased, is qualitatively incorrect in the naive
treatment, as well as being overestimated in magnitude. Parameters: g/ω0 = 0.1
and ω1/ω0 = 2.5

where gj are the coupling strengths of the newly introduced transitions. Note that

the TRK sum rule for the ground state now imposes a larger weight for the coefficient

of A2, that is D = g2/ω0 +
∑

j g
2
j/ωj. The construction of the normal modes of H ′sys

in terms of bare operators, and the determination of the output fields statistics

following a non-adiabatic introduction of the coupling, follow the same lines as

before. We shall again focus on the statistics of the output operators f̂L, f̂U , being

in this case defined as the two output modes with the lowest (L), and second-lowest

(U) carrier frequency, respectively.

We are interested here in regimes where gj � ωj, such that transitions to the

higher levels are suppressed and each emitter can be expected to approximate a

two-level system. Thus it may be tempting at this point to simply neglect the

modes ĉj and recover the Hamiltonian in Eq (4.5), valid for two-level emitters, with

the only difference that D > g2/ω0, since the |g〉 ↔ |e〉 transition does not saturate
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the sum rule anymore [NC10]. This, for example, would predict a slightly higher

population and squeezing in the output mode f̂U according to Eq. (4.41). It is,

however, dangerous to make inconsistent, partial, approximations. For this partial

approximation the higher levels are included in the A2 term, but aside from this the

two-level approximation persists. In Fig. 4.6 we compare this partial approximation

with the full calculation employing Hamiltonian (4.42), for the simplest case in which

only one extra mode ĉ1 is considered. We find qualitative discrepancies whenever

the difference of the populations is non-negligible: we can indeed observe that the

full Hamiltonian can result in nL > nU . This suggests the partial inclusion of the

higher levels in the A2 term is erroneous.

Indeed, a naive two-level approximation cannot explain multi-level behaviour with-

out violating the TRK sum rule, as Eq. (4.41) requires D < g2/ω0 to achieve a higher

population in the lower frequency mode. Still, in the regime D & g2/ω0, one may be

content to neglect the fine details associated to the modes ĉj, and ask whether a re-

fined two-level approximation can be found. This is indeed the case, as can be seen

by adiabatically eliminating the modes ĉj from Hamiltonian (4.42) [GJ10, Rr12].

This yields

H ′sys ' Hsys −
∑
j

g2
j

ωj
(â+ â†)2, (4.43)

where the contribution of higher levels is effectively removed from the A2 term, such

that D → Deff = g2/ω0, the TRK value for an ideal two-level system. This exactly

corresponds to neglecting the difference in populations for the two output modes and

this behaviour is seen for small third-level coupling frequencies in Fig. 4.6. A similar

line of reasoning can be adopted if one is interested in simplifying the model by only

including a small number of extra modes ĉj, in which case the sum in Eq. (4.43) will

extend only to those modes that are neglected. This indicates that, in a consistent

description of two- or multi-level emitters beyond the RWA, one should remove from

the A2 term the contributions of any neglected transitions.
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4.4.4 Two mode properties

Up to this point we have specified how, by studying single mode observables, emitted

by a polaritonic system after a non-adiabatic switch-on of the ultrastrong-coupling,

we can gain insight into the role of the A2 term. Can we do the same for two

mode observables? We investigate, for the case of perfect two-level emitters, the

entanglement between the two polaritonic ouput modes (f̂U and f̂L). We plot the

log-negativity (EN), as a measure of entanglement [VW02, Ple05, LKPL00], versus

the bare-mode detuning in the cases of the inclusion and exclusion of the A2 term

(c.f Fig. 4.7). We observe that at resonance the output modes are not entangled,

regardless of whether the A2 term is included or not. We find the greatest discrep-

ancy occurs when ωb > ωa. In this case, we find that by neglecting the A2 one would

wrongly predict a greater amount of entanglement then if the A2 was correctly ac-

counted for. Entanglement is an important resource in many quantum technologies,

thus it is important to know how the A2 term affects this particular entanglement

generation procedure.

Log Negativity

We construct the two-mode covariance matrix for the modes f̂U and f̂L in order

to investigate the correlations that exist between them. As we are dealing with

Gaussian states in this scenario (vacuum states), whose behaviour is completely

determined by the second-order moments of the annihilation operator, knowledge of

the covariance matrix is sufficient for all our calculations [Aga12]. We shall write the

Gaussian two-mode state of the output modes in terms of the quadratures QL, QU ,

ΠL and ΠU , defined as Qk =
(fk+f†k)√

2
and Πk =

(fk−f†k)√
2i

, k = L,U . Notice that we have

normalized these quadratures slightly differently to those used to quantify single-

mode squeezing. The reason for this was for convenience of having a non-squeezed
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Figure 4.7: In the case of ideal two-level emitters, we plot the log-negativity (EN)
between f̂U and f̂L as a function of the normalized matter-light detuning ∆ab/ωa, for
different values of D. The blue solid line represents D = g2/ωb and the red dashed
line represents D = 0. Parameters: g/ωa = .2.

minimal uncertainty of 1. Now, let us a define a row vector R,

R =

(
QL ΠL QU ΠU

)
. (4.44)

Using this vector we can construct the covariance matrix,

σi,j =
1

2
〈RiRj +RjRi〉 − 〈Ri〉〈Rj〉. (4.45)

We now have a matrix in the block form,

σ =

αL γ

γT αU

 . (4.46)

Using Eqn. (4.8), the covariance matrix for the two output modes can be expressed in

terms of the bare modes. Assuming that the bare modes are initially in the vacuum

state we can express the covariance matrix in terms of the Hopfield coefficients. We
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can now calculate the log-negativity (EN) as a measure of the entanglement,

EN = max[0,−ln(2v−)]. (4.47)

Where v− is defined as the smaller of the two symplectic eigenvalues of σ,

v± =

√√√√∆̃(σ)±
√

∆̃(σ)2 − 4Det[σ]

2
, (4.48)

where ∆̃(σ) = Det[αL] + Det[αU ]− 2Det[γ].

4.5 Remarks

By probing the emission of a simple polaritonic system in the USC regime, we have

highlighted a companionship between the counter-rotating terms, A2 term, and the

failure of the two-level approximation. Our results indicate that a consistent descrip-

tion of physics beyond the RWA should display a balance between the weight of the

A2 term and the number of dipole transitions that are included when modeling the

quantum emitters. Whenever an allowed transition is neglected, its corresponding

contribution to A2 should be removed from the Hamiltonian.

We remark that our results are based on a number of assumptions, on top of the

dipole and Holstein-Primakoff approximations. One of these is the single-mode

treatment of the field. This should hold at low enough light-matter coupling, in

particular if the emitters are placed in the middle of a Fabry-Perot cavity, where

the next allowed field mode vanishes. The model can be expected to show its

limitations as g is increased to higher and higher values [Lib14b]. Furthermore, we

have neglected the possibility of dipole transitions between the excited states. By

applying the TRK rules to states other than the ground state, however, one finds

that some of these transitions must necessarily be allowed. Their effect may be safely
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neglected if one assumes that the emitters, while in large numbers, are sufficiently

diluted in space [VvDM11]. We believe that future studies trying to address one or

more of these limitations will greatly benefit the understanding of the USC regime.

Finally, we note that our study concerns emitters obeying the TRK sum rules, and

we have assumed that their ground–to–first excited state transition plays the major

role in the light-matter interaction. Systems that do not conform to these rules, for

example involving USC between a cavity field and transition between excited states

[CN12], will require a separate treatment. t



Chapter 5

Conclusion

5.1 Summary of thesis achievements and outlook

In this thesis we have studied the role of quantum plasmonics in light matter-

interactions on both a macroscopic and microscopic scale. We began by providing a

comprehensive review on the field of quantum plasmonics, with particular attention

given to the the study of plasmonic modes interacting with quantum emitters.

Following this, we examined the possibility of integrating two-level quantum dots

(QD) into a plasmonic metamaterial that has a negative permeability. The unit cell

of the metamaterial is a ring of plasmonic metal nanoparticles (MNP), each of which

supports an electric dipole. We theoretically examined the prospect of interchanging

each MNP in the ring with a MNP-QD metamolecule. Light scattered from such

a metamolecule exhibits a Fano interference effect. We proved that this Fano in-

terference effect can be manifested into the magnetic response of the metamaterial.

Finally we showed that we can exploit the Fano interference to introduce dynamic

tunability and nonlinearity into the metamaterial’s magnetic response.

We also examined the model of a single mode of light interacting ultrastrongly
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with a collection of quantum emitters, which we treat as a polaritonic system in the

Holstein-Primakoff approximation. We were motivated to study this by the prospect

of such a regime being attained in a quantum plasmonic setting. In particular we

examined the role of the diamagnetic, or A2, term in the light-matter dynamics.

This term is derived from the fundamental minimal coupling Hamiltonian yet it

is regularly neglected in the effective Hamiltonians used in quantum optics. We

studied the relevance of the A2 term by examining the emission from our system

after a non-adiabatic switch-on of the light-matter coupling. This emission is split

into two separate output modes, relating to the upper and lower polaritonic modes

of the system. We find that the mean population will be distributed equally in each

output mode if we account for the A2 term. If, however, we naively neglect the A2

term then we find that the population distribution is unequal. These results were

verified by also examining the single mode squeezing of the output modes. The

conclusion drawn from this chapter is that the A2 term is qualitatively important in

the USC and this holds true for both two-level and multi-level emitters.

In this thesis we show that the study of quantum emitters interacting with plas-

monic structures is a diverse and fertile area of research. We have given examples of

both fundamental results and possible real world applications. However this thesis

only takes the first step. There is still much work to be done. As regards our quan-

tum plasmonic metamaterial, the next step is to use quantum emitters to provide

dynamic tunability in a negative refractive index metamaterial. We envisage two

ideal milestones in this regard. The first is the deisgn of a metamaterial that com-

bines our MNP-QD nanoring with a broadband negative permittivity background,

which ensures the electric and magnetic responses overlap. In this way the negative

refractive index is controlled via the magnetic response of our MNP-QD nanoring.

The ultimate goal, however, would be to build upon the ideas presented in chap-

ter 3 to combine quantum emitters and plasmonic structures in the unit cell of a

metamaterial in such a way that the electric and magnetic responses could be tuned
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independently. We believe this endeavour is a practical synergy of quantum optics,

plasmonics and metamaterials, which could provide rich rewards in the future.

One of the greatest challenge for quantum plasmonics is to reduce the large amounts

of dissipation associated with plasmonic modes. Until this is overcome it will be

difficult to enter the USC in a practical plasmonic setting and hence the effects

of the A2 term will not be relevant. However, as I have mentioned in chapter 2,

there are many reasons to be hopeful in this regard. The work we have presented

in chapter 4 is still of fundamental importance and is relevant to a wide range of

physical settings. For future work we would like to further explore the impact multi-

level systems have on the A2 term in the USC regime, as it is both a fundamentally

intriguing and experimentally relevant problem.



Appendix A

The A2 term

In this appendix we elaborate on the details used in the study of the A2 term

in chapter 4. Specifically, we wish to show how the system Hamiltonian used in

Eq. 4.5 is derived from the minimal coupling Hamiltonian (Hmc). To do so we adopt

a slightly different notation to the one used in the main body of the thesis. In the

main text, we found convenient to use a non-uniform notation in which the symbols

|g〉, |e〉 denoted the ground and first excited state of a single emitter, assumed to take

central role in the dynamics of interest, while the remaining levels were indicated

as |e′j〉. The corresponding bosonic modes were also grouped as b̂, associated with

the |g〉 ↔ |e〉 transition, and ĉj associated with |g〉 ↔ |e′j〉. For the purposes of this

appendix, however, it shall be more convenient to adopt a uniform notation where

we label all levels as |εl〉 through a single discrete index l ≥ 0. It is assumed that the

corresponding energies εl are non-decreasing in l, with l = 0 labelling the ground

state. Similarly, the collective operator associated with |ε0〉 ↔ |εl〉 shall be indicated

as b̂l. This has the advantage of rendering the derivations to follow more compact. It

is straightforward to recover the notation of the main text by associating |g〉 ≡ |ε0〉,

|e〉 ≡ |ε1〉 and b̂ ≡ b̂1.
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A.1 The minimal coupling Hamiltonian

To begin we will take the case of a single emitter that can be described as a collection

of non-relativistic particles, of mass mj and charge qj, that are subject to a potential

V̂ which includes both trapping forces as well as inter-particle interactions. Such a

system can be described by the minimal coupling Hamiltonian (~ = 1)

Hmc = Hfield +
∑
j

(p̂j − qjÂ)2

2mj

+ V̂ (x̂1, x̂2, ...). (A.1)

Where Hfield accounts for the free field dynamics. x̂j is the position operator of the

j-th particle and p̂j is it’s momentum operator. We will make the dipole approx-

imation, as such we can assume that the vector potential operator Â is spatially

independent. Under this approximation Â commutes with all the particle operators,

allowing us to expand the Hamiltonian as follows

Hmic = Hfield +Hemitter +Hint +Hdiam, (A.2)

Hemitter =
∑
j

p̂2
j

2mj

+ V̂ , (A.3)

Hint = −
∑
j

qjp̂j · Â
mj

, (A.4)

Hdiam =
∑
j

q2
j

2mj

Â2. (A.5)

To connect this microscopic description to the effective models which are expressed

in terms of emitter energy levels, we assume that Hemitter gives rise to a discrete level

structure:

Hemitter =
∑
l

εl|εl〉〈εl|. (A.6)
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Using the canonical commutation relations, we can express p̂j = imj[Hemitter, x̂j]

and thus rewrite the interaction Hamiltonian as

Hint = i
∑
ll′

(εl − εl′)〈εl|d̂ · Â|εl′〉|εl〉〈εl′ |. (A.7)

We have introduced the dipole operator as d̂ =
∑

j qjx̂j. To reduce Hmc into a more

recognisable form we make the following approximations. We assume that there are

no transitions between excited states. We also set the ground state energy ε0 to zero,

thus εl now corresponds to the transition frequency of the |ε0〉 ↔ |εl〉 transition.

We also introduce the notation

σ̂l = |ε0〉〈εl|, (A.8)

σ̂†l = |εl〉〈ε0|. (A.9)

Finally we also consider a single-mode quantized field (Hfield = ω0â
†â), whose vector

potential can be written Â = A0(â + â†). By introducing the abbreviations Gl ≡

εl|〈εl|d̂ · Â|ε0〉| for the light-emitter coupling frequency and α ≡
∑

j

q2j
2mj

A2
0, we can

write the effective Hamiltonian

Heff '
∑
l

[
εlσ̂
†
l σ̂l +Gl(σ̂l + σ̂†l )(â+â†)

]
+ ω0ââ

† + α(â+ â†)2. (A.10)

The TRK rule for the ground state [Wan99] can now be used to derive a strict rela-

tionship between the couplings Gl, the transition frequencies εl, and the coefficient

α, characterizing the strength of the diamagnetic term. One has

∑
l

εl

∣∣∣〈εl|d̂ ·A0|ε0〉
∣∣∣2 =

∑
j

q2
j

2mj

A2
0 (A.11)
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which is easily seen to correspond to the equality

∑
l

G2
l

εl
= α. (A.12)

A.2 The bosonization of many emitters

Having established the key parameters of single emitters that emerge from the mi-

croscopic model, we can move on to the description of a large number n � 1 of

these that interact with the same field. Following the same steps as before, the

corresponding microscopic Hamiltonian can be written as

Hn
eff '

∑
l,k

[
εlσ̂
†
l,kσ̂l,k +Gl(σ̂l,k + σ̂†l,k)(â+â†)

]
+ ω0ââ

† + α(â+ â†)2. (A.13)

where D ≡ nα and the dummy index k labels the individual emitters, which we

have assumed identically coupled to the field â for simplicity. We can exploit the

symmetries of Eq. (A.13) to define the collective operators

b̂l ≡
1√
n

∑
k

σ̂l,k, (A.14)

allowing us to rewrite

H
(n)
eff =

∑
l

[
εlb̂
†
l b̂l + gl(b̂l + b̂†l )(â+ â†)

]
+D(â+ â†)2, (A.15)

where gl ≡
√
nGl. It is simple to see that this Hamiltonian is the multi-level

generalization of Eq. (4.5). Comparing the definitions of gl and D with Eq. (A.12),

we find that the TRK sum rule translates in this case to

∑
l

g2
l

εl
= D (A.16)
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which in the two-level case reduces to

D =
g2

ωb
, (A.17)

as defined in the main body of the thesis.
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and X. Li. A subwavelength plasmonic metamolecule exhibiting

magnetic-based optical Fano resonance. Nature Nanotechnology,

8(95), 2013.

[SPV+00] D. R. Smith, W. J. Padilla, D. C. Veir, S. C. Nemat-Nasser, and

S. Schultz. Composite medium with simultaneously negative per-

meability and permittivity. Phys. Rev. Lett., 84(4184), 2000.

[SPW04] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire. Metamaterials

and negative refractive index. Science, 305:799–792, 2004.

[SSR+10] S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and

F. Borghese. Interaction nanopolaritons: Vacuum Rabi splitting

with a single quantum dot in the center of a dimer. ACS Nano,

4:6369–6376, 2010.



122 BIBLIOGRAPHY

[ST09] C. R. Simovski and S. A. Tretyakov. Model of isotropic resonant

magnetism in the visible range based on core-shell clusters. Phys.

Rev. B, 79(045111), 2009.

[SW11] C. M. Soukoulis and M. Wegener. Past achievements and future

challenges in the development of three-dimensional photonic meta-

materials. Nature Photonics, 5(523), 2011.

[TAC+12] Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato,

C. Ciuti, P. Klang, G. Strasser, and C. Sirtori. Ultrastrong cou-

pling regime and plasmon polaritons in parabolic semiconductor

quantum wells. Phys. Rev. Lett., 108(106402), 2012.

[Tan99] S. M. Tan. A computational toolbox for quantum and atomic

optics. J. Opt. B, 1(424), 1999.

[TH08] A. Trugler and U. Hohenester. Strong coupling between a metal

nanoparticle and a single molecule. Phys. Rev. B, 77(115403),

2008.

[Tho25] W. Thomas. Naturwissenschaften, 13(627), 1925.

[TMÖ+13] M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier,
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