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Abstract 
We present an overview of the key building blocks of a design framework for modeling 
and optimization of biomedical systems with main focus on leukemia, that we have 
been developing in the Biological Systems Engineering Laboratory and the Centre for 
Process Systems Engineering at Imperial College. The framework features the 
following areas: (i) a three-dimensional, biomimetic, in vitro platform for culturing both 
healthy and diseased blood; (ii) a novel, hollow fiber bioreactor that upgrades this in 
vitro platform to enable expansion and continuous harvesting of healthy and diseased 
blood; (iii) a global optimization-based approach for the design and operation of the 
aforementioned bioreactor; (iv) a pharmacokinetic / pharmacodynamic model 
representing patient response to Acute Myeloid Leukemia treatment; (v) an 
experimental framework for cell cycle modeling and quantitative analysis of 
environmental stress. This manuscript recapitulates the progress made in the different 
areas as well as the way in which these areas are connected, finally leading to a hybrid 
in vitro/in silico platform which allows the optimization of the ex vivo expansion of 
healthy and diseased blood. 
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1. Introduction  
One of the most challenging features of modeling biomedical systems is bridging the 
gap between phenomena occurring at multiple scales. Between molecular, cellular, 
patient and population scales, an appropriate translation is needed to evaluate the effects 
small scale processes have at large scale and vice-versa. The study of normal and 
abnormal blood production faces these challenges and many others related to the 
complexity of the underlying biological system and the heterogeneity observed in 
hematological malignancies. Deriving patient data directly is not always possible, thus 
making ex vivo observations and studies imperative. For the latter to be accomplished it 
is essential to develop appropriate experimental setups that reproduce in vitro the 
biological characteristics and behavior of the in vivo system. 
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Blood cell production takes place in the bone marrow (BM) which is a highly porous  
three dimensional organ of high complexity, wherein hematopoietic stem cells (HSCs) 
reside. HSCs are unique due to their ability to: (i) self-renew (ii) mature/differentiate 
towards functional cellular units of the immune and oxygen-carrying systems 
(Quesenberry et al., 2001). 
BM failure is characterized by the inability of HSCs to produce healthy blood cells at an 
acceptable rate and quality, leading to a variety of health issues and diseases, among 
which lies leukemia. Leukemia is a cancer of the hematopoietic system characterized by 
the incapability of blood progenitors (HSCs) to mature normally, leading to the 
accumulation of immature white blood cells in the bone marrow (Williams, 2001). 
Acute Myeloid Leukemia (AML) is one of the most common types of leukemia; it affects 
only cells from the myeloid blood lineage. According to Cancer Research UK, 
approximately 8,000 cases of AML occur annually in the UK alone.  
The most frequent treatment for AML is chemotherapy which aims at eliminating the 
cancerous population in the BM through attacking highly proliferative cells (immature 
blasts) (Cancer Research UK, American Cancer Society). This represents a reactive 
approach to the disease initiating after the disease symptoms appear. Current 
chemotherapy treatment protocols are designed based on pre-clinical animal experiments 
and on empirical clinical trials as well as the acquired experience of subspecialist physicians. 
However, a very high heterogeneity in the leukemia characteristics between patients but also 
within a specific patient exists (Preisler et al., 1995), consequently leading to unpredictable 
treatment outcomes. Clinical treatment protocols could, therefore, benefit from a more 
rational and personalized treatment scheduling strategy.  
In addition to receiving drug treatment, these patients (as well as those undergoing other 
diseases of the blood or severe accidents) require frequent blood transfusions. Despite 
the success of blood donations in covering the needs in most of the countries (92M 
blood units collected globally [WHO, 2011]), there is a shortage in rare types of blood 
and a raising demand for regular availability. This is increasingly becoming a problem 
for health services; rare blood is extremely expensive, especially for patients requiring 
frequent transfusions (Tahhan et al., 1994; Meny et al., 2013). A promising solution to 
cover blood shortages either in time or in type is to produce it artificially. However, the 
techniques currently available are extremely expensive at $8,330 per unit of artificial 
blood, compared to $225.42 on average per donated unit of non-rare blood (Timmins 
and Nielsen, 2009) or up to $3,025 per donated unit of rare blood (Meny et al., 2013). 
Clearly, a more cost-effective solution needs to be implemented in order to shift towards 
artificial blood supply.  
The current trends and developments in genomics, proteomics and metabolomics open 
the possibility for obtaining specific information related to the genetic characteristics, 
together with the proteomic and metabolomics profiles of an individual patient, which 
can then be used towards personalized medicine. In this context, personalized healthcare 
is expected to deliver a step change in quality and value of care, through more precise 
and personalized diagnostics as well as cost-effective and targeted therapies. Some of 
the challenges in the delivery of personalized medicine lie in (a) In vitro: the fidelity and 
validity of current experimental systems used to investigate human diseases; (b) In 
silico: the integration of patient-specific and disease-specific datasets and the 
development of validated predictive adaptive models; and (c) In vivo: the application of 
these models to identify simple targets and more efficient, yet less toxic therapies and 
drugs for a specific condition. 
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Figure 1: A framework for the optimization of blood production and personalized leukemia 
treatment in AML 

Here, we present the fundamental features of an integrated framework which aims to 
address (some of) these challenges - with main focus on leukemia. 

2. Design framework. 
Fig.1 presents key building blocks of the integrated design framework under 
development at the BSEL in the Imperial College CPSE. It involves (i) a suitable 
platform for on-demand production of artificial blood (regularly needed for transfusions 
in critical patients); and (ii) an optimization strategy for personalized chemotherapy 
treatment design through closing the loop: from in vivo to in vitro and in silico. More 
specifically, hematopoietic cells donated from AML patients are cultured ex vivo via 
appropriately-designed in vitro platforms (Sections 3, 4 & 6) which expose to 
measurement a variety of parameters crucial for the cancer evolution: cell growth; cell 
cycle kinetics; metabolic evolution under appropriate environmental conditions. The 
parameters derived from the in vitro studies are incorporated in advanced mathematical 
tools (Section 5) that enable the prediction of patient response to chemotherapy. In 
parallel, umbilical cord HSCs are cultured in a biomimetic, cost-effective, 3D 
bioreactor, expanded and differentiated into red blood cells by careful signaling to 
externally control the same process of blood production that is diseased in leukemia 
(Sections 3 & 4). 

3.  A novel 3D bioreactor for ex-vivo culture of healthy and diseased blood 
As mentioned in Section 1, both normal and abnormal hematopoiesis take place in the 
BM. A first step towards understanding and further optimizing chemotherapy for AML 
treatment is executing in vitro studies that recapitulate the in vivo micro-environment.  
Blood cell production naturally occurs in the bone marrow, where stem cells receive the 
appropriate signals to proliferate and specialize. These signals consist of both chemical 
(nutrients, oxygen and growth factors, which are signaling proteins that provide 
extracellular stimuli to the cells) and mechanical (adhesion, cell-cell contact) stimuli 
that are unique to the 3D microenvironment (Panoskaltsis et al., 2005). However, most 
of current research is still performed in under 2D culture systems, wherein the 
mechanical stimuli received by the cells are nonnative and thus the cellular proliferation 
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is reduced. This limitation is typically overcome by increasing chemical stimulation in 
the form of the expensive, specialized growth factor proteins (Timmins and Nielsen, 
2009). 
Taking into consideration the architecture of the BM microenvironment, we describe, in 
the sequel, the development of two 3D in vitro platforms which serve as an in vitro bone 
marrow mimicry allowing the expansion of normal and diseased blood. 

3.1. A high throughput 3D micro-bioreactor for ex vivo normal and diseased blood 
expansion 
A 3D micro-bioreactor was developed by Mortera et al. (2010, 2011), consisting of 
highly porous Polyurethane (PU, pore size approximately 100µm), of dimensions 5x5x5 
mm, as shown in Fig.2, which allows perfusion of nutrients and oxygen within the 
matrix. The adhesion signals of the ECM are recapitulated by coating this PU cube with 
collagen type I. This micro-bioreactor successfully supported the long-term expansion 
of three leukemic cell lines (K-562, HL-60 and Kasumi-6), resembling three different 
leukemia sub-types, i.e., human erythromyeloblastoid, acute promyelocytic and acute 
myeloid leukemia respectively, for over 6 weeks. Moreover, it successfully supported 
expansion and differentiation of  Umbilical Cord Blood Cells (blood cells with high 
proliferation/differentiation potential that are extracted from the cord which arises from 
the navel that connects the fetus with the placenta) without any exogenous cytokines for 
a time frame of 4 weeks, in contrast to traditional 2D culture systems that allowed 
Umbilical Cord Blood Cells expansion only for a few days in absence of exogenous 
growth factors. This 3D ex vivo BM mimicry enabled the formulation and long-term 
maintenance of a dynamic culture population consisting of erythroid and myeloid 
precursors as well as progenitor and myeloid maturing cells. The 3D micro-bioreactor 
provides an ideal laboratory high throughput technical platform for screening several 
environmental factors and identifying those that are crucial for the successful ex vivo 
expansion of normal and leukemic blood. In order to produce blood at quantities 
sufficient for transfusion purposes, it is essential to scale up the ex vivo blood expansion 
(Rousseau et al., 2014). Moving on that direction, we developed a 3D hollow fiber 
reactor which enables red blood cell expansion at higher and continuous rate. 

3.2. A 3D bioreactor for scaling up ex vivo normal and diseased blood expansion 
Based on our 3D micro-bioreactor we scaled up the system and incorporated circulation 
of oxygenated nutritious medium, resulting in a 3D perfusion bioreactor capable of 
producing artificial blood (see Fig.1) which was patented by Panoskaltsis et al. (2012). 
It recapitulates the architectural and functional properties of blood formation and 
thereby reduces the need for expensive growth factors by more than an order of 
magnitude. The red blood cells (RBC) produced comply with the clinically required 
properties in terms of oxygen-carrying capacity, surface markers, and shape (Macedo, 
2011).  

 
Figure 2: (a): Geometry of the 3D micro-bioreactor (b)-(c): Scanning Electron microscopy (SEM) 
images of the highly porous 3D micro-bioreactor including seeded leukemic cells. 
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Figure 3: (a) Diagram of blood-producing bioreactor (Macedo 2011); (b) Cross-section of a 
bioreactor (SEM); (c)(d) Krogh Cyclinder approximation; (e) Poiseuille flow 

In comparison to other perfusion bioreactors for HSCs expansion (Engelhardt et al, 
2011), our solution costs 10x less per cell produced with a 28x reduction in bioreactor 
size; a cell output 18x superior was also achieved (Chaudhuri and Al-Rubeai, 2005). 
Similarly, 2D cultures producing RBCs require 5x more growth factors (6x higher cost) 
and 4000x larger volumes (Neildez-Nguyen et al., 2002).  
From an architectural point of view, the bioreactor is composed of a 3D polyurethane 
scaffold traversed by two different circuits as shown in Fig.3a, (i) a high-uptake 
(“nutrient delivery”) circuit which delivers nutrients and oxygen and removes waste 
through a plastic hollow fiber with very narrow pore size, (ii) a low-uptake (“protein 
delivery”) circuit which circulates the growth factors required for cell differentiation 
towards RBCs through a ceramic hollow fiber with larger pore size, allowing the exit of 
mature RBCs only. 
 
The current bioreactor has also been efficiently applied for in vitro leukemia cultivation, 
therefore serving as an ideal platform for the ex vivo expansion and study of diseased 
blood (Rende et al., 2013). 

4. Bioreactor design optimization 
Experiments in the bioreactor described in 3.2. are typically cost- and labor- intensive; 
in silico optimization strategies for the design and operation of the bioreactor can be 
highly beneficial. While different optimization approaches have previously improved 
individual degrees of freedom in hollow fiber bioreactors (Davidson et al., 2010, 
Shipley et al., 2011), our proposed bioreactor design and bioprocess optimization 
considers multiple design choices and explicitly incorporates uncertainty into the 
framework (Misener et al., 2014).  
Our modeling approach for the bioreactor design reduces the cost of producing one unit 
of RBC while maintaining enough nutrients/growth factors to satisfy the quality 
requirements; operating choices include: (i) external diameter and length (aspect ratio) 
of the cylindrical bioreactor (R4, L); (ii) number of hollow fibers for delivering reactants 
and extracting products and by-products (NHF); (iii) flow rate of nutritious medium 
through the bioreactor (Uz); (iv) medium inlet composition in terms of glucose and 
growth factors (Ck,IN), (v) ambient oxygen concentration (Coxygen,IN): 
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��,��,�,��,���,��,��

U� × N� × N�� × 	� p	 	× 	C	,
�

	

 (1) 

where pk represents the price of the material entering the reactor at concentration Ck,IN 
and flowing at rate UZ through each of the NHF hollow fibres in each of the equivalent 
NR parallel reactors. Modeling occurs across different scales: cellular growth, 
metabolism, fluid dynamics and chemical diffusion. More specifically, perfusion of 
nutrients, oxygen and proteins in the bioreactor is modeled as axial flow within the 
fibers (Fig.3e) following Poiseuille flow, while diffusion in the scaffold occurs radially 
(Fig.3d). In addition, mass exchange is reduced to five representative species: glucose 
corresponds to cellular nutrients; lactate models waste; oxygen stands in for cellular 
metabolism; stem cell factor (SCF) represents cellular expansion; erythropoietin (EPO) 
is mapped to cellular differentiation. The model for cellular growth, proliferation, and 
differentiation is derived from Ma et al. (2012) and Colijn and Mackey (2005). The 
model is implemented in GAMS 24.1 and solved using the MINLP solver ANTIGONE 
1.1 (Misener and Floudas, 2013a; 2013b). The optimized bioreactor would produce 
RBCs at a competitive price compared to rare blood ($1k-3k).  
This approach uses superstructure optimization applied to hollow fiber bioreactors for 
the first time; previous attempts varied individual parameters instead of using 
deterministic global optimization for a simultaneous choice of design and operation. 

5. Design of optimal personalized treatments for AML 
As described in Section 1, chemotherapy in the case of AML involves the use of 
cytotoxic drugs, which interact with cells that are proliferating. More specifically, only 
cells that are in one of the phases of the cell cycle (the process by which cells duplicate) 
will be eliminated. Since healthy cells also proliferate in order to renew the cellular 
material, they will equally be affected; it is very important to keep a balance between 
the number of cancer cells killed and the loss of healthy cells. However, clinical 
treatment protocols ignore the mechanisms behind drug action on the normal and 
abnormal population, which can lead to over- or under- treatment. Here, a more rational 
approach for the design of clinical treatment protocols based on the personalization of 
the chemotherapy schedule for each patient (Pefani et al., 2013) is presented (see also 
Fig.1).  

5.1. Model overview 
As shown in Fig.4, the model is composed of two main sections: pharmacokinetics 
(PK), which describe the elimination of the drug by organs, and pharmacodynamics 
(PD), which account for the effects of the drug on the cells in the BM, where the tumor 
resides.  
The main input to the system is the treatment inflow; it is calculated according to the 
administration route and the injection rate. The resulting drug concentration then 
reaches the body through the blood streams, delivering it to the organs, which absorb it 
at different rates. Mass balances are performed in each of these organs, giving the drug 
concentration profiles. The drug concentration profiles calculated in the PK model are 
the main input for the PD model, in which the effect of the drug on the normal and the 
cancer cells is computed according to cell cycle kinetics of each population. Two 
separate models are used for each of them.  
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Figure 4: Design of clinical treatment protocols 

Because most of the cancer cells are proliferating, the cell cycle model in this case 
incorporates 3 compartments in which the cells are non-resting. Each of them is 
described by the mass balance between compartments (including cell death by drug 
action if applicable). The transition rates are dependent on cell cycle times and natural 
apoptosis rates in each of the phases (Basse et al., 2003). The normal cell population 
model considers a proliferative population and a resting population that can move into a 
proliferative state. In both cases, the cell cycle kinetics are modeled through a set of 
Ordinary Differential Equations (ODEs) (one per compartment y): 

dPy

dt
= ky−1(Ty−1) ⋅ Py−1 − ky(Ty) ⋅ Py − effectj ⋅ Py  (2) 

where Py and Py-1 are the number of cells in compartments y and y-1, ky(Ty) and ky-1(Ty-1) 
are the transition rates from compartment y and y-1 respectively (dependent on the 
duration of the corresponding phases, Ty and Ty-1) and effectj is the effect of drug j in the 
compartment.  
A more refined cell cycle model based on the work of García Münzer et al. (2013, 2014) 
has been developed consisting of a multi-stage population balance model (MS-PBM). It 
is distributed on cell cycle progress-related events (sy: protein expression, DNA). Cell 
cycle kinetics are tracked not only between compartments but also within them. The 
transition rates ky(sy) are now dependent on the state variable level (the drug effects are 
not considered): 

∂Py

∂t
+

∂Py

∂sy

= ky−1(sy−1) ⋅ Py−1 dsy−1

sy−1,0

sy−1,max

∫ − ky(sy) ⋅ Py  (3) 

The MS-PBM is discretized in the state variable space using a fully stable upwind 
scheme; it has been proven to accurately predict experimental data (Section 6.1.).  

5.2. Model analysis and optimization 
The output of the optimization section is an improved determination of patient-specific 
drug dosage and infusion duration. The decision box ensures that clinically mandatory 
constraints are satisfied, informing a new chemotherapy cycle of the effect of the  
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Figure 5.: Comparison of experimental (squares) and predicted (lines) kinetics of the G1 phase % 
population over time (x-axis: time in hours; y-axis: % G1 phase cells) for four different cell lines. 

previous one and suggesting a better treatment. Remarkably, treatments suggested by 
the tool use similar drug dosages to those used clinically but, for instance, the 
scheduling is different; based on the predicted patient response to both protocols given 
by the model, the optimized treatment would have much better outcomes (Pefani, 2014). 
Global sensitivity analysis was performed on the original model following the method 
described in Kiparissides et al. (2009); the most critical parameters affecting the model 
output were found to be the cell cycle times (Pefani, 2013).  

6. Model parameters derived from experiments 
Sensitivity analysis identified cell cycle kinetics as one the key factors affecting 
treatment outcomes (Section 5.2). Hence, it was deemed necessary to direct our 
experimental efforts towards (i) the determination of the duration of each of the cell 
cycle phases, (ii) the impact of environmental factors, such as oxygen and glucose 
concentration as these factors highly affect the leukemic kinetics and, consequently, the 
pharmacokinetic profile of the BM compartment of our model (Section 5.1) as well as 
the cell cycle evolution.  

6.1. Obtaining parameters for an MS-PBM of the cell cycle 
The cell cycle times of four different leukemia cell lines (K-562, HL-60, MEC-1 and 
MOLT-4) were determined experimentally by following the timings of entry and exit 
events of a subpopulation of cells to and from each of the phases under 2D conditions at 
a first step. In parallel, protein and DNA production rates were recorded and assumed to 
be constant. The kinetics of the subpopulation counterpart were then simulated and 
compared to the experimental (independent) results (Fuentes-Garí et al., 2014). Good 
agreement was observed in all four cell lines, especially in the first cycle (Fig.5: G1 
(gap 1) phase; the kinetics of the other phases matched similarly well with experimental 
data (not shown)). 

6.2. Tackling parameters that incorporate the impact of environmental stress 
Fluctuations of the oxygen and glucose concentration in the different body 
compartments (in the BM) and the peripheral blood or the liver, and between AML 
patients (individual cases of hypoglycemia, hyperglycemia) may lead to a different 
stress adaptation of the leukemic population. The latter will most likely affect the cancer 
growth and inactivation kinetics as well as the response to a chemotherapeutic drug in 
vivo.  
We monitored and compared in vitro the proliferation, cell cycle and metabolic 
evolution of an AML model system in our 3D micro bio-reactor (Section 3.1) and in a 
conventional 2D culture for different oxygen and glucose conditions close to 
physiological (in vivo) levels (Velliou et al., 2013; 2014a; 2014b). More specifically, K-
562 cell line was cultivated in the 3D micro bio-reactor as well as in 2D suspension 
cultures in 5% (hypoxia) as well as 20% (normoxia) oxygen and for three different  
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Figure 6:  K-562 growth in the 3D micro-bioreactor and the 2D suspension culture, at different 
oxygen levels, i.e., 20% and 5% O2. Different colors represent different glucose levels: (�) 4.3 
g/L (�) 1.6 g/L, (�) 0.3 g/L.��  

glucose levels, i.e., 4.3 g/L (optimal level generally applied in laboratory growth 
media), 1.3 g/L (highest human physiological level in vivo) and 0.6 g/L (lowest human 
physiological level in vivo) for 2 weeks.  
The experimental results presented in Fig.6 show that there are significant differences in 
the K-562 proliferation in the 3D micro-bioreactor and the 2D culture. The lower 
proliferation in the 3D system can be attributed to (1) possible nutrient and oxygen 
transfer limitations in certain parts of the micro-bioreactor, especially after the 
formation of cell bulks and (2) the consumption of cellular energy for the interaction 
with the collagen matrix, i.e., production of signaling molecules such as shock proteins 
and chemokines. In both the 2D and the 3D system, glucose is identified as the limiting 
factor that highly affects the kinetic evolution of K-562 only under hypoxic conditions. 
These observations are of importance when applying chemotherapy in vitro. Most 
chemotherapy agents generally applied for the treatment of patients with AML are 
targeting highly proliferative cells. Therefore, under oxidative or glucose stress or in a 
3D microenvironment, cells with a slower proliferation may be less susceptible to 
chemotherapeutics.  
This quantitative information can be readily incorporated in the 
pharmacokinetics/pharmacodynamics and the cell cycle part of our model. 

7. Conclusions and future perspectives  
An integrated framework was presented for the optimal design of chemotherapy 
treatment strategies in leukemia, featuring ex vivo, in vivo, in vitro and in silico 
components. A predictive tool for the optimization of chemotherapy delivery was 
developed which a priori suggests patient-specific treatments with outcomes better than 
those resulting from current clinical protocols. The application of our established GSA 
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framework emphasized the need to determine accurately cell cycle parameters. 
Experimental monitoring of the cell cycle kinetics in vitro provided the most significant 
parameters needed in silico to predict growth kinetics in leukemia. With regards to the 
production of healthy blood, a self-contained bioreactor with promising RBC expansion 
capabilities in vitro was constructed. In preparation for large scale artificial blood 
production, optimization of the bioreactor superstructure defined the optimal physical 
bioreactor layout in order to minimize the cost of producing one unit of blood.  
Future work will focus on elucidating key mechanisms/factors of genetic or 
proteomic/metabolomics that affect the evolution of normal and abnormal blood 
expansion. Quantitative information on these key mechanisms will serve as an 
appropriate input for the construction of more detailed predictive models for the in 
silico description of healthy and diseased blood evolution. Quantification of appropriate 
intra-cellular biomarkers that are related to the blood in vitro kinetics can enable the 
combination of macroscopic kinetics with microscopic information leading to the 
construction of more detailed models of grey or white box nature.  
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