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Abstract

Non-adiabatic crossing of symmetry breaking phase transitions results in formation of a

domain structure and topological defects. The average density of domains depends on

the quench rate of the phase transition. Kibble-Zurek mechanism predicts the scaling

of the number of domains with quench rate. Phase transitions are ubiquitous in Nature

and formation of domains and defects occurs in many different systems. One example

of such system is Coulomb crystals of trapped ions, where structural defects can form

as a result of symmetry breaking structural transitions between different crystal config-

urations. In the thesis, we investigate the Kibble-Zurek mechanism using the linear to

zigzag structural phase transition in trapped ion Coulomb crystals. First, we analyse

the equilibrium properties of crystals in the vicinity of the critical point of the linear

to zigzag transition. Next, we show how to derive Kibble-Zurek scaling laws by trans-

forming the equations of motion into a universal form. This mathematical derivation of

the scaling laws is generalized for finite and inhomogeneous systems. Two experiments

measuring the defect scaling in small trapped ion crystals are described, whose results

agree with molecular dynamics simulations. In order to understand and predict defect

dynamics we develop the technique for calculating the effective potential in which the

defects move. Using this technique we show that heavy molecular ions stabilize the

structural defects in zigzag chains and suggest a way of controlling kink motion using

the application of electric fields. Finally, conclusions are drawn and possibilities for

future work are suggested.
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Chapter 1

Introduction

“.... the task of theory is to try and understand the universal aspects of

the natural world; first of all to identify the universals; then to clarify what

they are about, and to unify and inter-relate them; finally, to provide some

insights into their origin and nature.” M. Fisher

The main objective of the present thesis is to contribute to our understanding of

the dynamical non-equilibrium phase transition phenomena. In particular, we will fo-

cus on the process of creation of topological defects following a phase transition. In the

literature, this scenario of defect formation following a dynamic symmetry breaking is

often referred to as the Kibble-Zurek mechanism. One of the main goals of our work

was to provide an experimental verification of Kibble-Zurek theory. This has been done

in collaboration with experimental groups (PTB and the University of Mainz) using

structural phase transitions of Coulomb crystals in ion traps (Chapter 4). The exper-

imental study was carried out on small inhomogeneous systems and the extrapolation

of the results to thermodynamic limit is not trivial. In order to understand the finite

size Kibble-Zurek scaling, we develop a mathematically rigourous perspective on the

physics behind the Kibble-Zurek mechanism (Chapter 3). In the Chapter 5, we de-

velop models for understanding the dynamics of defects in ion crystals - novel collective

structures whose dynamics is yet to be fully explored. In this chapter, we briefly review

the important ideas from the phase transition theory as well as provide the necessary

background information on Coulomb crystals in ion traps.

1.1 Thermodynamics and statistical mechanics

Since ancient times people have observed that different materials have varying proper-

ties and that matter can transform from one state to another. However, a theoretical

understanding of matter and phase transition started to develop only recently. The

understanding of fundamental properties of matter is the subject of statistical physics

developed initially in the second half of the 18th century (for a historical review see
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for example [67]). The main breakthrough at that time was the realization that matter

is composed of a large number of small particles in continuous random motion. These

theory is known as the kinetic model of matter. Using the kinetic model it was possible

to explain many phenomena, for example, liquid to gas phase transitions. Starting with

this work, the theory of matter and phase transition has developed into a collection of

many sophisticated ideas. A wide variety of phases of matter have been predicted and

discovered, for example, ferromagnets, antiferromagnets, superconductors, quantum

Hall phases, Bose-Einstein condensates and many more. Materials in various phases

are put to practical uses - for instance, electric conductors and insulators constitute an

essential part of human economic infrastructure.

A fundamental observation for the development of thermodynamics and statisti-

cal mechanics is that systems with many degrees (ideally infinitely) of freedom flow

irreversibly towards unchanging state of statistical equilibrium. These observation is

encompassed in the second law of thermodynamics - the physical systems tend to the

state of thermodynamic equilibrium or states of maximum entropy. The statistical en-

semble of possible states of a system that is in thermal equilibrium with a heat bath

is called the canonical ensemble. The canonical ensemble is constructed by assigning

a probability of finding a system in a particular microstate j in the small volume of

phase space dΩ by

pj = e−(Ej−F )/kBTdΩ, (1.1)

where Ej is the energy of the jth microstate, kB is the Boltzmann constant, T is the

temperature of the heat bath and F is the free energy. The free energy constant F can

be determined by requiring that all probabilities sum to unity

e−F/kBT =

∫

dΩe−Ej/kBT . (1.2)

In theory, construction and analysis of the canonical ensembles allows one to cal-

culate all of the thermodynamic properties of the system, though this task is often

computationally challenging and necessitates the use of approximate methods.
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1.2 Mean field approximation and Ginzburg-Landau

theory

Matter in systems in thermodynamic equilibrium organizes itself into structures known

as thermodynamic phases. There is a wide variety of possible phases exhibited by

different systems and remarkably the same system can undergo transformation from

one phase into the other when the specific parameters such as pressure are varied. The

existence of distinct phases and phase transitions are studied using statistical mechanics

by analyzing the canonical ensemble. Since matter is composed of a huge number of

interacting particles it is difficult to theoretically predict the topology of the phase

diagram and even more difficult to predict the precise details of the phase diagram such

as locations of critical points. One of the most useful approximations that in most cases

allows one to predict the general features of the phase diagram is the mean field theory.

The idea of the mean field is to describe the effect of all the particles on any given

individual particle by a single approximate quantity. This way the many-body problem

is effectively reduced to a one body problem. Early examples of mean field theories

in the context of phase transitions are van der Waals theory of gases and liquids and

Weiss’s theory of magnetism.

For the construction of a free energy functional it is very useful to consider the

symmetries present in the system. Symmetry considerations are important because

phase transitions are accompanied by changes of symmetries in the system (except

in recently discovered topological phase transitions [84]). For example in the case of

liquid/solid phase transition there is a change in the rotational symmetry of the system.

The observation that each phase transition is a manifestation of symmetry breaking was

exploited very effectively by Lev Landau in the theoretical framework that has become

known as Ginzburg-Landau’s (GL) theory of phase transitions. Landau’s theory writes

the free energy as an integral over space of an order parameter field, which respects the

symmetries of the system. In general, the free energy is of the following form

−F/kBT =

∫
{
Aφ(r) + Bφ(r)2 + Cφ(r)4 +D [∇φ(r)]2 + . . .

}
ddr, (1.3)

where A, B, C, . . . are parameters that depend on the microscopic structure of the

system and the externally imposed conditions, φ(r) is the order parameter, r is the

spatial position and d is the dimensionality of the system. By construction the order

parameter is small in the vicinity of the critical point and therefore near the critical
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point the first several terms of the series expansion (1.3) accurately describe the free

energy of the system. In order to determine the structure of the phase of the system in

a thermal equilibrium for a given set of parameters Q = {A,B,C . . .} one needs to find

φ(r) that minimizes the free energy functional F . Thus by minimizing the functional

(1.3) it is possible to determine the critical points and the nature of the phases for

given Q. It also possible to determine the order of a particular phase transition. The

phase transition is said to be of nth order if (∂nF/∂hn)Q is discontinuous, where h is

the parameter the variation of which induces the phase transition. In practice most

phase transitions are either of first or second order. In the case of the first order phase

transition, the two phases are separated by an energy gap and thus a transition between

them requires an influx of certain amount of energy known as latent heat. Second

order phase transition are continuous and do not require latent heat. Critical points

of the second order phase transition are of particular theoretical interest. The reason

for this is that near the critical point the system exhibits scale invariant properties

with many intriguing implications. One of the implication of the scale invariance are

power divergences of thermodynamic quantities. The correlation length ξ in particular

diverges

ξ = ξ0 |δ|−ν , (1.4)

where the system is in the critical state when δ = 0, ξ0 is a constant that depends

on the microscopic structure of the system and ν is the exponent of divergence of the

correlation length. Divergence of the correlation length indicates a reorganization of

the atoms and generation of long range order.

The exponents characterizing the powerlaw divergences depend intricately on the

symmetries of the order parameter and the dimensionality of space. One of the principle

tasks of the study of phase transition is the determination of the critical exponents. All

of the thermodynamic properties, including critical exponents can be calculated from

the partition function

Z =

∫

Dφe−F [φ]/kBT , (1.5)

where
∫
Dφ denotes a functional integral over all possible order parameter configu-

rations φ(r). The functional integral (1.5) can be done analytically only for specific

functionals F [φ], notably when F [φ] is quadratic in φ. F [φ] can be made quadratic by

considering only the lowest order perturbation theory in fluctuations around the ground
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state. Effectively the lowest order perturbation theory is the mean field theory. The

mean field theory calculation gives the critical exponent of ν = 1/2, which has been

experimentally measured in many physical systems. The details of the derivation of the

mean field exponent ν = 1/2 are presented in Chapter 2.

The beauty of the Landau’s approach is that it connects phase transitions in seem-

ingly unrelated physical systems, since the free energy functional is constructed chiefly

by considering the symmetry properties of the system rather than the specific mi-

croscopic details of the system. For example, it is well known that the liquid/gas

and paramagnetic/ferromagnetic phase transitions can be described by GL free energy

functional of the same form and thus topologically the phase diagrams of these two

completely disparate systems are equivalent. Of course, the detailed structure of these

two phase diagrams is different but in the vicinity of the critical point properties of

the systems and, in particular, the critical exponents are identical. Thus to understand

second order phase transitions it is sufficient to analyze a small set of GL free energies;

the vast majority of phase transitions in real physical systems can then be understood

simply by mapping the system to an appropriate GL theory using symmetry arguments.

Each kind of distinct critical point is characterized by a set of critical exponents and

dictates a particular universality class.

In many cases the mean field theory can accurately describe the behavior of a system.

By construction the Ginzburg-Landau free energy accurately describes the system near

the critical point. For this reason, we may expect that the mean field theory will be

accurate near the critical point but will fail away from the critical point. Surprisingly it

was demonstrated that the mean field theory also fails right at the critical point; in the

close proximity to the critical point the effect of the fluctuations of the order parameter

can be greater than the effect of the average of the order parameter. The failure of

the mean field theory was predicted be analyzing exactly solvable models such as one

dimensional and two dimensional Ising models [7]. Experimentally discrepancies with

the mean field theory predictions were observed in measurements of critical exponents

for specific heat in classical fluids of argon, oxygen and nitrogen [3, 29, 121] (for detailed

review of the experimental measurements of critical exponents in fluids and magnets

see [43]). It can be shown that in dimensions greater than four fluctuations always have

a negligible effect and the mean field is always valid. For the dimensions less than four,

the mean field approximation is only faithful sufficiently far from the critical point.

The regime of validity of the mean field approximation is described by the Ginzburg

criterion [56, 1, 73]. Mean field theory may also be valid for systems of dimensionality
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less than four but containing long range interactions.

Many statistical models do not belong to the mean field universality class and also do

not have a known exact solution. A technique known as the renormalization group have

been developed that allows one to calculate in many instances the critical exponents

without solving the complete model (see [23, 68, 50, 67, 57] for reviews). Renormaliza-

tion group is a refinement of the scaling argument and it involves analyzing the behavior

of the Hamiltonian under scaling transformations.

Phase transitions can occur at zero temperature in which case they are driven by

quantum rather than thermal fluctuations. Such phase transitions are referred to as

quantum phase transitions [122, 114]. In the current thesis we will be concerned with

classical thermal phase transitions, but many of the ideas can be applied equally well

to the quantum phase transitions.

1.3 Computers and numerical methods

The difficulty of applying statistical mechanical theory is that often the constructed

models have no known analytic solutions. A simple example with no known analytical

solution is the three dimensional Ising model which describes magnetism in three di-

mensional materials. In fact, the vast majority of statistical mechanical models cannot

be solved exactly.

The models that have no analytic solutions can, nevertheless, be studied algorith-

mically using computational engines. Early numerical calculations were performed

mentally by teams of humans. The mechanical automation of calculations goes back

to the work of Charles Babbage in the 18th century. More recently, the invention of

transistor and integrated circuits has lead to creation of electronic computers that are

capable of many millions of operations per second. The computational power of modern

computers makes it feasible to explore numerically statistical mechanical models.

One of the most common algorithmic strategies for solving statistical mechanical

problems are the so called Monte Carlo methods. These methods are essentially system-

atized trial and error approaches for solving optimization problems. For instance if one

wants to find a ground state of a particular Hamiltonian, one can try many different trial

configurations and check which particular configuration are the most optimal. Apart

from probabilistic algorithms, there are also extremely useful deterministic algorithms.

For instance, ordinary and partial differential equations can be solved numerically on the

computer by converting the differential equations into systems of difference equations
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and sequentially evaluating them. This way one may compute statics and dynamics of

systems of particles and fields.

It is important to note the limitations of computers. First of all, in the case of

complex optimization problems it may well be that the found solutions are not glob-

ally optimal. In the case of deterministic algorithms as in the solution of differential

equations there are errors coming from the discretization. Thus, one must be careful

and take into account possible errors resulting from the computation. Secondly, even

though computers are powerful they are not sufficiently powerful in many interesting

and important instances. Real materials can easily contain 1023 mutually interacting

components and currently even the most powerful computers could not treat systems

with so many degrees of freedom in an economically viable timeframe. If the system

is quantum mechanical, the number of degrees of freedom that need to be considered

growths very quickly with the number of particles and computational power becomes a

limiting factor fairy quickly.

In order to be able to gain insight into these systems using the available computing

power one limits the number of degrees of freedom to a manageable number. Thus,

instead of considering infinitely many interacting particles one considers a finite cell of

the material and computes the desired quantities on a finite system. Such calculations

lead to artifacts coming from the fact that the number of degrees of freedom is finite

and from the boundaries of the cells. This means that one has to be particularly

careful when interpreting the results of computations on the finite size systems. For

instance, the singularities that should be present at the critical point of the second order

phase transition will no longer be there. The correlation length cannot divergence to

infinity at the critical points as it is limited by the finite size of the sample. Thus all

of the sharp features that are expected at criticality in the thermodynamic limit will

be washed out in the system of finite size (figure 1.1). Strictly speaking there are no

true phase transitions in finite systems since there are no mathematical singularities

in thermodynamic quantities for finite size systems. However, as one increases the

system size there is often a rapid convergence towards the thermodynamic limit and the

computed properties of even moderately sized system could be identical to properties

of infinite systems. When making measurements on a finite size system one has to

make sure that the results are not sensitive to the system size. For this reason, one

typically makes the same measurements for systems of several sizes. The way the results

depend on the system size is not arbitrary and by analysing such results it is possible

to extrapolate the behavior of the system in the thermodynamic limit. For a review of
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Figure 1.1: Cartoon illustrating how the sharp features at a critical point of a phase
transition become smooth in finite size systems. The five curves 1 to 5 show the correlation
length ξ in the vicinity of the critical point for different systems, curve 1 corresponding
to the smallest system and curve 5 corresponding to the largest system.

the finite size scaling theory refer for instance to [19].

1.4 Experiments in atomic physics - model emula-

tion

Recent advanced in quantum optics and atomic physics provide a possibility for studying

phase transition phenomena in a way complementary to the computational investiga-

tions. The key development was the invention of laser cooling and trapping technologies

for the spectroscopic and metrological applications. The clouds of trapped atoms at

ultralow temperatures can organize into a myriad number of phases and can trans-

form from one phase into the other by specific applications of laser light and external

electromagnetic fields. For instance, by using neutral atoms trapped in optical lattices

prototypical models of condensed matter systems such as Bose-Hubbard model can be

realized [14]. The advantage of investigating statistical mechanics in atomic systems is

that in atomic systems it is often possible to engineer Hamiltonians in a clean precise

way and perform measurements that are typically not possible in condensed matter

systems. However, just as in computer calculations the experimental atomic systems

are of finite size. Thus one has to carefully extrapolate the information obtained in

atomic experiments to the thermodynamic limit using the finite size scaling theories.

In trapped atomic systems in addition to the finite size effects there are also often

complications arising from the inhomogeneities of the systems. Typically the atomic

gas is trapped in a harmonic confining potential, which results in a spatial dependence
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of parameters of the Hamiltonian (such as coupling strengths). The artifact of inho-

mogeneity must be considered during the interpretation of the results of such atomic

experiments. The necessity for taking the trapping potential into the account has lead

to the development of the trap-size scaling theory [22, 26, 130, 33, 32, 25, 106, 35].

1.5 Non-equilibrium phase transitions and the coars-

ening problem

The discussion so far was focused exclusively on the approaches to investigate the

structure and thermodynamic properties of systems in thermodynamic equilibrium.

The majority of processes in Nature drive the system out of the thermal equilibrium, and

for this reason it is important to understand non-equilibrium dynamics. The theories

of non-equilibrium thermodynamics are under active development.

One important task in non-equilibrium thermodynamics is to understand how the

system transforms from one phase in a given finite time. A time dependence of a critical

parameter that induces the phase transition is known as quench. If the duration of the

quench is much greater than the inverse of the frequency gap between the ground

state and the first eigenstate then the quench is adiabatic. On the other hand if the

quench is comparable or faster than the inverse of the frequency gap then the quench

is non-adiabatic. Non-adiabatic processes always lead to creation of excitations and

in the case of phase transition these excitations can manifest themselves in forming

topologically stable defect structures. Topological defects are formed in symmetry

breaking phase transitions. In the symmetry broken state there are several possible

ground states and the order parameter can select locally different ground states. When

this happens a domain structure develops with the accompanying topological defects,

whose nature depends on the dimensionality of space and the type of order parameter.

For example, for the Ginzburg-Landau field theory in d dimensions and an n-component

vector parameter field, the defects are domain walls if d = n, strings if d = n − 1 and

monopoles if d = n − 2. The defects are topologically stable because they cannot be

removed by local deformations of the order parameter field [87]. The process of domain

growth during non-equilibrium phase transitions is known as coarsening [21].

Coarsening process is relevant in condensed matter theory and also in cosmology.

The vast majority of phase transitions are non-adiabatic processes and real material

nearly always contain topological defects. The topological defects influence the prop-
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erties of the materials and sometimes even dominate their thermodynamic properties.

For this reason, understanding the process of formation of topological defects and ways

to either enhance or suppress their production is an important problem. In the field of

cosmology certain theories assert that there were symmetry breaking phase transitions

in the fundamental forces during the early stages of the evolution of the universe. If

this is the case than one may expect to see the signatures of these transitions in the

topological defect structures. The defect formation in the context of cosmology was

examined in particular by Tom Kibble [72], but this physics will not be considered

further in the current thesis.

Even though for all non-equilibrium processes the systems are not in global thermo-

dynamic equilibrium (GTE) sometimes they can be in the so-called local thermodynamic

equilibrium (LTE). The system in GTE is a system with all intensive thermodynamic

quantities being homogeneous throughout the whole system. The system in LTE are

system where the intensive parameters vary in space and time throughout the sys-

tem but a selected small part of the system is in the thermodynamic equilibrium with

neighbouring regions. The analysis of many problems and in particular the coarsening

problem is much more manageable if the LTE assumption is invoked. The assump-

tion of LTE leads to generalization of Ginzburg-Landau theory to the description of

dynamic phase transition phenomena [62]. The idea of the approaches reviewed in

[62] is the construction of stochastic differential equations that describe the evolution

of the order parameter in the vicinity of the critical point, given that the system has

to maintain LTE. Such dynamical equations are often referred to as time dependent

Ginzburg-Landau (TDGL) equations of motion. One possible way to construct TDGL

equation is to take the rate of change of the order parameter to be proportional to the

local thermodynamic force

∂φ(x, t)

∂t
= −Γ

δF [φ, t]

δφ(x, t)
+ θ(x, t), (1.6)

where Γ is the constant determining the rate of change of energy between the system

and the reservoir and θ(x, t) a white noise stochastic force with

〈θ(x, t)〉 = 0 (1.7)

〈θ(x, t)θ(x′, t′)〉 = 2ΓkBTδ(x− x′)δ(t− t′). (1.8)
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Dynamics specified by equation (1.6) is known as model A dynamics according

to the classification scheme introduced in [62]. Model A can describe for example

superconductors [82], anisotropic alloys and magnets [62]. Other dynamical models

can be constructed (for example conserved model dynamics) and are reviewed in [62].

These models are usually phenomenological in the sense that they are constructed

using symmetry and conservation law arguments. In certain cases these equations can

be derived from the microscopic description of the system. Once the equations are

constructed they can be analyzed using analytical or numerical methods. Analytically

one can calculate the linear response of the system. The linear response theory allows

one to determine how the system relaxes toward thermal equilibrium after it has been

externally perturbed. The characteristic time scale that determines how long it takes

for the system to equilibrate is known as the relaxation time. It can be shown that the

relaxation time τ has a power law divergence in the vicinity of the critical point

τ = τ0δ
−νz, (1.9)

where at the critical point δ = 0 and the exponent z is the dynamic critical exponent.

The dynamic critical exponents determine the dynamic universality class of the phase

transition. Just as the divergence of correlation length leads to various anomalous

properties of static thermodynamic properties at the critical point, the divergence of

the relaxation time leads to anomalous properties in the dynamic properties such as

the transport coefficients. Linear response theory cannot be used to describe processes

that are far from equilibrium. In particular, formation of topological defects cannot be

accounted for by the linear response theory. In dealing with problems which are far

from equilibrium but still in LTE one often resorts to directly simulating the equations

of motion such as the equation (1.6).

The principle subject of this thesis is the study of coarsening during slow (so that

LTE assumption is valid) but non-adiabatic quenches. The final number of domains

formed as a result of finite rate quench depends on the quench rate 1/τQ, where τQ

is the characteristic quench time. The final number of domains should tend to one as

the quench rate 1/τQ → ∞ and quench dynamics tends to the adiabatic limit. On the

other hand as 1/τQ → 0 (sudden quench limit) the number of defects will tend to a

specific non-zero limit. The coarsening during slow quenches is commonly known as the

Kibble-Zurek scenario, recognizing the work of Tom Kibble in connection to cosmology

and the work of Wojciech Zurek who suggested that the average number of topological
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defects is connected to the quench rate via a simple scaling law [138, 139]. In the next

section, we review Zurek’s argument that predicts the defect scaling with quench rate.

1.6 Kibble-Zurek mechanism

Suppose that the critical parameter δ varies in time such that the system undergoes

a quench from a symmetric phase to the symmetry broken phase. For simplicity we

take the quench to start at t = −∞, crossing the critical point at t = 0 and ending at

t = ∞. At the critical point the quench is taken to be an nth degree power law

δ = −
(
t

τQ

)n

sign(t)δ0 (1.10)

In the initial stages of the quench the order parameter adapts to its equilibrium

value. This is because far from the critical point the relaxation time in the system is

short. On the approach to the equilibrium point the relaxation time increases as given

by equation (1.9) and eventually the system cannot adapt to its equilibrium state. In

KZ theory the time instance when the system falls out of the equilibrium is known as

the freeze-out time t̂. Strictly speaking the freeze-out time does not refer to a particular

instance but rather to a time scale at which the system falls out of the equilibrium. In

Chapter 3 we will show that this time scale makes the equations of motion describing

the coarsening quench independent and hence universal. In KZ theory, the length scale

at the freeze-out time dictates the typical size of the domains after the system settles

to the thermal equilibrium in the symmetry broken phase.

Figure 1.2 illustrates pictorially the idea of KZ theory. KZ theory obtains the freeze-

out time scale by taking it to be the time when the inverse of the relaxation time and

the rate of change of the critical parameter are equal i.e.

τ(t̂) =
δ̇

δ

∣
∣
∣
∣
∣
t=t̂

. (1.11)

Using equations (1.4), (1.9) and (1.10) the condition (1.11) gives

t̂ ∝ τ
νz

1+νz

Q . (1.12)

Inserting (1.12) into (1.4) gives the “freeze-out” correlation length
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Figure 1.2: Graphical illustration of the KZ theory. The coarsening dynamics is split
roughly into three stages - adiabatic dynamics in the symmetric phase, non-adiabatic
dynamics during the non-equilibrium transition and finally adiabatic dynamics in the
symmetry broken phase. The final length scale is dictated by the correlation length at
the freeze-out time t̂, which is obtained by equating the relaxation time to the quench
time scale.

ξ̂ ∝
(

1

τQ

) ν
1+νz

. (1.13)

According to KZ theory the typical size of domains is dictated by ξ̂. The number of

domains (or defects) in d dimensions is thus expected to scale with quench time as

nd ∝ 1

ξ̂d

∝ τ
dν

1+νz

Q . (1.14)

One should note that the scaling (1.14) is expected to fail at fast and slow quenches.

At very fast quenches the defect density will become so high that the defects will

start to deform due to their mutual interactions. The structure of defects and their

interactions are specific to the physical system and are in this sense not universal. KZ

theory does not account for the expected plateau in the scaling at fast quenches. For

very slow quenches the scaling is also expected to flatten. In this case, the reason is

that ξ̂ becomes of the order of the size of the system and hence the non-equilibrium

dynamics will be heavily influenced by the boundaries of the system. This finite size

effect coming from system boundaries is not universal and is not accounted for by the

KZ theory. Note that if the system is truly infinite then the flatting of the KZ scaling
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at slow quenches should not occur.

We have mentioned before that by the Ginzburg criterion many physical systems

will effectively be in a mean field universality class near the critical point. The measured

critical exponent is typically ν = 1/2 and it is often difficult to resolve experimentally

the regime where the fluctuations dominate the dynamics of the system. Thus one may

expect to measure the “mean-field” KZ scaling in numerical simulations and physical

experiments

n
(MF )
d ∝ τ

d
2+z

Q . (1.15)

Very few works have been able to demonstrate KZ scaling beyond mean field regime.

One demonstration of non-mean field scaling is presented in [75], where authors shown

using time-dependent matrix product states (tMPS) calculations that, for quenches in

a finite one dimensional Ising model, the spin-spin correlation function follows the pre-

dictions of KZ theory. More demonstrations of non-mean field KZ scaling law should be

provided to give a more solid support of KZ theory. On the other hand, many papers

demonstrate mean field KZ scaling given by (1.15) albeit the most compelling demon-

strations are provided by computer experiments rather than physical experiments. One

of the principle aims of this thesis is to advance the understanding of KZ theory, which

may eventually lead to either confirmation or rejection of the conjecture (1.14). Our

methodology will be numerical simulations, experiments in ion traps and analytic scal-

ing analysis of the equations of motion. Before moving to the ion trap systems, which

will serve as a model system for exploration of KZ physics let us review existing work

that attempts to verify (1.14).

1.7 Experimental and numerical tests of Kibble-Zurek

mechanism

The derivation of KZ scaling given by equation (1.13) is qualitative and cannot be re-

garded as a rigourous mathematical proof. All physical theories require experimental

verification and even more so when the mathematical framework of the theory is in-

complete such as in the case of KZ theory. Thus much effort has been put into testing

KZ scaling using numerical simulations and physical experiments.

For the real one dimensional φ4 GL theory, the KZ scaling was measured using

numerical simulations for model A dynamics [76] and underdamped dynamics [77].
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KZ scaling was tested for the quench in the complex two dimensional gauged field in

[137]. Quenches inducing Bose-Einstein-Condensation were investigated by numerically

solving the Gross-Pitaevskii equation in [34]. In these three works the scaling was found

to be consistent with (1.14) assuming the mean field critical exponent of ν = 1/2.

Kibble-Zurek physics was also investigated in the quantum Ising model - a proto-

typical model for exploring quantum phase transitions. In [45] an analytic solution for

quench dynamics in a one dimensional quantum Ising model is presented. The scaling

functions extracted from this solution is in agreement with KZ theory. The dynamics

of the one dimensional Ising model was also calculated numerically in [141, 75]. KZ

physics in the context of quantum phase transition is reviewed in [105].

There were many experiments in a wide variety of systems aimed at producing topo-

logical defects and studying KZ scaling laws. For a recent reviews of the experimental

progress refer to [71, 38, 39]. The early experiments investigating Kibble-Zurek mech-

anism were carried out in the liquid crystal systems [31, 18] and liquid 3He [6, 113]. In

these experiments defects were indeed created via quench through a second order phase

transition but a scaling of defects with quench rate was not measured. Quench experi-

ment in 4He was believed to have generated defects, but they were later attributed to

inadvertent stirring [42]; attempts to see quench-generated defects in 4He were so far

unsuccessful. Defects were also created via non-adiabatic quenches in superconducting

films [85, 58]. First experiments in Bose-Einstein condensates [115, 133] confirm defect

production, but not the scaling. KZM scaling was recently measured in multiferroic

materials [59, 27]. Interpretation in terms of KZM is suggestive, but is based on theo-

retical predictions that have not been confirmed by measurement of equilibrium critical

exponents; the authors compare the results with the mean field KZ prediction. In tun-

nel Josephson junctions, scaling of the probability to trap a single flux line has been

measured [92, 90, 91], but with exponents that require additional assumptions (about

e.g. external fields) in order to be consistent with KZ mechanism.

KZ mechanism was also studied experimentally in ion trap system using linear

to zigzag structural transition [108, 129, 49] following a theoretical proposal [37, 30].

Experiments [108, 129] form an integral part of this thesis. All three experiments

[108, 129, 49] have measured the defect scaling as a function of quench rate, however,

as we will see in detail in later chapters the scaling is not of simple KZ scaling form.

The scaling is complicated by the fact that the experiment is done in a harmonic trap

(and hence the phase transition is inhomogeneous). Moreover the experiments were

limited to fairy small ion chains where the finite size effect are expected to play a
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significant role. The same problem of harmonic confinement and finite size is present

in the experiment measuring KZ scaling in the BEC system [78]. The experiments in

BEC are further complicated by the fact that in these experiments phase transition

is induced by varying the chemical potential, which is in practice difficult to do in a

precise fashion. In contrast, in the case of linear to zigzag phase transition in ion trap

the quench functions (which are related to electrode voltages) are measured precisely.

1.8 KZ scaling in inhomogeneous and finite size sys-

tems

Experiments in ultracold atomic and ionic lattices for the purpose of studying phase

transition have advantages and disadvantages as compared to condensed matter ma-

terials. The advantage of studying trapped atomic lattices is that these systems can

be easily engineered in desired ways using quantum optical techniques and tuning the

trap parameters. The atomic lattices are also much cleaner than their solid state coun-

terparts, which may contain impurities and intrinsic lattice defects. The complication

present in trapped atomic lattices is that they are typically smaller than condensed

matter systems and inhomogeneous because of the trapping potential. For the study

of both equilibrium and non-equilibrium critical phenomena the finite size effects and

inhomogeneity of the system must be taken into account.

In the present thesis, we will show that the KZ scaling exponent can be measured

in the finite size system/harmonic traps if at the same time one is allowed to vary the

system size/trap potential [53]. There is also another approach of treating the effect

of inhomogeneity on the KZ scaling suggested in [46]. The idea is to show that even

though a powerlaw KZ scaling will not exist in a harmonic trap for all quench values

there could be a quench range with a specific powerlaw. Moreover, this inhomogeneous

KZ (IKZ) power law will be steeper than the homogeneous power law. The argument

for deriving IKZ powerlaw is qualitative - it states that the defects are produced via

regular KZ mechanism but in the reduced region that is dictated by the phase transition

front velocity. The argument was applied to BECs [140], ion traps [37, 30] and Ising

chains [47, 48]. This approach should be treated with caution since the derivation is

based on physical intuition rather than mathematical rigour. In the present thesis we

will not use this approach to derive any results.
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1.9 Rescaling and the universal equations

Most of the work concerning KZ scaling has been aimed at verifying the scaling given

by (1.14) using numerical simulations or experiments. It is true that the ultimate test

of a physical theory is the experiment. However, in this case the KZ theory is also

a mathematical conjecture which should be possible to prove. Recently, A. Chandran

et al postulated that the scaling on quench rates holds not only for defects but other

thermodynamic quantities [28]. This could be justified by realizing that the equations

of motion during the quench can be mathematically transform into a universal quench

independent equation. We pursue this approach in [53] and Chapter 3. This method

formalizes the KZ problem and can be used to arrive additional results such as finite

size KZ scaling. Both works [28] and [53] concern chiefly the mean field scaling limit,

but the approach has the potential to provide a mathematical proof of the existence of

a non-mean field scaling.

1.10 Model system - repulsive particles in a confin-

ing external potential

We will now introduce the model system that will be used to study non-equilibrium

statistical mechanics and in particular the KZ scenario. Mathematically the system

will consist of a number of particles moving in external confining potential. Each

particle interact repulsively with every other particles and the interaction force scales

as an inverse powerlaw of the separation between particles Fint ∼ r−α; with α = 2 the

interaction follows Coulomb law. If the kinetic energy of the particles is sufficiently

small then the particles organize into crystal-like lattice structures. The structure of

the crystal is influenced by the external potential and thus by varying the external

potential one can induce structural phase transition in the crystal. If the structural

phase transitions are non-adiabatic then lattice defects such as dislocations may form

- a process that we will use for the study of the KZ scenario.

There are a number of physical systems that consist of mutually repulsive particles in

an external potentials, for example, electrons in quantum wires [103], colloidal particles

[127, 124], microfluidic crystals [9, 8], dusty plasmas [93] and trapped ions [117]. In

the electronic system organization into crystal like structures was predicted by Eugene

Wigner [134] and is now known as Wigner crystallization. Wigner crystals are hard

to realize experimentally because the long de Broglie wavelength of electrons implies
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that quantum fluctuations can easily destroy the crystal. In order to observe Wigner

electron crystals the density of electrons has to be extremely low. First experimental

observations of Wigner crystallization was on the surface of liquid Helium [60]. Wigner

crystallization was then realized in GaAs/GaAlAs quantum wells [2] and recently in

carbon nanotubes [40]. Wigner crystal of electrons is an interesting system but the

difficulty in its generation and observation makes this system too challenging for our

present objective of studying KZ mechanism. It is much simpler to obtain crystals

in systems where particles are more massive than electrons and hence have a short

de Broglie wavelength. Such systems may be regarded as purely classical particles

since the quantum corrections to their dynamics can be completely neglected. In the

current work we have chosen to focus on the trapped ion Coulomb crystals. A number

of features makes trapped ions an excellent system for studying KZ mechanism: the

external trapping potentials in this system can be controlled with high precision, the

individual particles are known to have identical masses, particles interact via a precise

Coulomb law and the thermalization is easily achieved via laser cooling. Moreover,

another advantage of ion Coulomb crystals is that in this system it is possible to enter

a regime where the quantum correction to the dynamics of ions become important

[110, 4, 5]. Thus, in the longer term, experiments in ion Coulomb crystals can shed

light onto quantum non-equilibrium dynamics relevant for instance to the quantum

energy transport [12, 97].

1.11 Coulomb crystals in ion traps

It is well known that a static globally confining potential cannot exist (Earnshaw’s

theorem). Traps that confine electrically charged plasmas must either use a time-

varying electric field or a combination of electric and magnetic fields. A trap that

uses a combination of a static electric field and a static magnetic field is known as a

Penning trap [36, 102], and it can be used to successfully trap crystals of ions. In this

thesis however, we will focus on the so-called Paul trap that uses a time varying electric

potential to achieve an effective global harmonic confinement [101].

Let us briefly review how the ion confinement is achieved in Paul trap (for a detail

treatment see for example [55]). Consider a potential of the following form

V (x, y, z, t) = (Ux − V cosΩt)
x2

2r20
− (Uy − V cosΩt)

y2

2r20
+
mω2

z

2
z2. (1.16)
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Equation (1.16) is a potential of an ideal linear quadrupole trap or Paul trap. In the

z-direction the potential is static and in the x and y-direction the potential is oscillatory.

We will often refer to the z-direction as axial direction because the linear ion crystals

considered in the thesis will usually be aligned with the z-axis. The x and y directions

will accordingly be referred to as the radial directions. A single particle of mass m and

charge e moving in the potential (1.16) has the following equations of motion

d2x

dt2
= − e

mr20
(Ux − V cosΩt) x (1.17)

d2y

dt2
=

e

mr20
(Uy − V cosΩt) y (1.18)

d2z

dt2
= −ω2

zz. (1.19)

To see how equations (1.17)-(1.19) can correspond to a particle moving in a globally

confining potential consider a substitution ξ = Ωt/2. With this substitution the equa-

tions (1.17)-(1.19) become

d2x

dξ2
= − (ax − 2q cos 2ξ) x, (1.20)

d2y

dξ2
= (ay − 2q cos 2ξ) y (1.21)

d2z

dξ2
= −

(
2ωz

Ω

)2

z, (1.22)

where ax = 4eUx/mΩ2r20, ay = 4eUy/mΩ2r20 and q = 2eV/mΩ2r20. Equations (1.20)

and (1.21) are Mathieu differential equations that has been extensively analyzed. The

parameter a and q are known as Mathieu parameters. Stable trapping of the charged

particles is achieved for only certain values of a and q and the stability diagram for

Mathieu equations is well known [55]. In the lowest stability zone, for |a| ≪ 1 and

|q| ≪ 1, the solution of equation (1.20) and (1.21) have the approximate form

x(t) = x0 cos (ωxt+ ϕx)
(

1− q

2
cosΩt

)

, (1.23)

y(t) = y0 cos (ωyt+ ϕy)
(

1− q

2
cosΩt

)

, (1.24)
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where x0 and y0 are determined by the initial conditions and

ωx =
Ω

2

√

q2

2
+ ax, (1.25)

ωy =
Ω

2

√

q2

2
+ ay (1.26)

Thus in the x and y directions the motion of the particle is that of a harmonic oscillators

with frequencies ωx and ωy and their amplitude modulated at the frequency Ω. The

rapid oscillatory motion at frequency Ω is known as themicromotion and the oscillations

at frequencies ωx and ωy are known as the secular motions. If the important dynamics

happens on the time scale of secular frequencies than the effect of micromotion can be

neglected i.e. we can assume that the particle moves in an effective pseudo potential

Vp =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2. (1.27)

Now suppose that the trap contains N particles of mass m and charge e. The

equations of motion for the jth particle are given by

m
d2rj
dt2

= −e∇jV +
e2

4πǫ0
∇j

N∑

j 6=k

1

|ri − rk|
, (1.28)

where ∇j ≡
(

∂
∂xj
, ∂
∂yj
, ∂
∂zj

)

and V is given by equation (1.16). The equations of motion

are of the same form as for a single ion but with important difference - there is Coulomb

interaction between the ions which couples the motion of all of the ions in the system.

It can be shown that a stable confinement of N particles in a Paul trap is possible.

The set of Mathieu parameters a and q for which a stable confinement of N ions is

possible is smaller than that for only a single ion. Nevertheless, a stable confinement

is achievable when |a| ≪ 1 and q ≪ 1 and thus a pondermotive approximation can be

used. The potential energy of N charged particles can thus be taken to be

V =
1

2

∑

j

(
mω2

xx
2
j +mω2

yy
2
j +mω2

zz
2
j

)
+

e2

4πǫ0

∑

j<k

1

|rj − rk|
. (1.29)

From now on we will work with the equation (1.29), which ignores the effects of

micromotion. The underlying assumption of all results (apart from the experimental

results) developed in the thesis concerning ion crystals is that the trap parameters are
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a) b) c)

Figure 1.3: a) Linear chain b) two row (zigzag chain) c) three row chain

a)

b)

c)

Figure 1.4: Inhomogeneous Wigner crystals in harmonic confining potential in all three
directions. a) Inhomogeneous linear chain b) Inhomogeneous chain in zigzag phase in the
central region and linear phase in the outer region c) Inhomogeneous chain in three row
phase in the central region and the zigzag phase in the outer region

such that the effect of the micromotion is negligible. This assumption will be justified

in more detail in Chapter 4.

If one minimized the potential energy given by (1.29) with respect to the positions

of the particles, then one will obtain a crystal-like structure whose exact shape depends

on the values of the secular frequencies. For simplicity, let us first consider a case of

periodic boundary conditions in z-direction. In this case if ωx and ωy is large then all

of the particles will lie on the z-axis in a linear chain configuration (figure 1.3a). If

ωx is reduced below a critical value, the system will undergo a structural transition

from linear chain to a two row chain (zigzag chain) shown in figure 1.3b. Three row

(figure 1.3c), four row, etc configurations are also possible if ωy is kept high confining

the structure to the xz-plane. The phase diagram for these structural phase transitions

has been numerically evaluated in [103]. In the limit of infinite rows and infinite extent

in the z-direction the system forms a true triangular lattice. If we start with a planar

triangular lattice and reduce the confining potential, then the structure will undergo a

transition to a three planar triangular lattice, then to a two planar square lattice, then

to a three planar square lattice and so on. In the limit of infinite number of planes the

crystal forms a 3 dimensional body centred cubic (bcc) lattice. Studies of the structural

transition in Coulomb crystals are reviewed in [44].

Periodic boundary conditions can in principle be realized experimentally in ring
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traps but such traps in practice are difficult to implement. The traps that are used

most often are harmonic in all three directions. In such traps the linear chain can be

realized by making the axial confinement much weaker than the radial confinement i.e.

ωz ≪ ωx, ωy. In this case, however, the spacing between ions will not be constant but

will increase from the centre to the edges of the chain (figure 1.4a). The same applies for

the zigzag phase and the three row phase (figure 1.4b-c). The crystals in the harmonic

traps are always inhomogeneous but since they are locally nearly homogeneous, it is

possible to use many of the results for the homogeneous crystals for their analysis.

Coulomb plasma is in the fluid state at high temperatures. Coulomb crystallization

takes place at low temperatures when the correlations between charges increase and

become important. A measure of the strength of the correlations is given by the so-

called plasma parameter

Γ =
e2

akBT
, (1.30)

where a is the Wigner-Seitz radius i.e. 4πNa3/3V ≡ 1. The plasma parameters is

the ratio of the interaction energy between neighbouring charges to the random energy

per degree of freedom. According to [44], for an infinite plasma the first order phase

transition from fluid to a bcc crystal takes place when

Γ ∼ 174. (1.31)

This condition is not very demanding for macroscopic particles such as charged micro-

spheres. In fact, the first experimental demonstrations of Coulomb crystallization in

Paul traps were done for a system of charged aluminum microspheres [136]. To achieve

Wigner crystallization with ions, one has to typically reach mK temperatures. This

has only became possible with the development of Doppler laser cooling [123]. First

observations of Wigner crystallization in Paul traps were reported for small clusters

[41, 135] and then for large crystals [131, 13]. Nowadays ion crystals are routinely cre-

ated in dozens of labs around the world. The linear chain configuration is particularly

well studied and serves as a workhorse for the development of quantum optical tech-

niques - many of the proof-of-principle quantum computing experiments are performed

using the linear ion chain system [61]. Zigzag and more complex configurations are also

attracting an increasing interest in the quantum information community [11].

One should note that for certain values of Mathieu parameters, crystallization may

not be possible even though the ion clouds have a stable confinement. In these cases
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the micromotion destabilizes the crystal and the motion of ions becomes deterministic

but chaotic [79]. In this thesis we will work with Coulomb crystals and so traps are

assumed to have Mathieu parameters where a Coulomb crystal is dynamically stable.

With this background, we will now turn to a detailed examination of the linear to

zigzag phase transition.
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Chapter 2

Linear to zigzag phase transition

In this chapter we will focus on the equilibrium properties of the linear to zigzag struc-

tural phase transition. Later we will use this transition for studying the Kibble-Zurek

(KZ) mechanism. The proposal for studying KZ mechanism using linear to zigzag

phase transition was put forward in [37, 30]. In [37, 30] predictions are made by using

the concept of diverging correlation length, but the critical behaviour was not explicitly

evaluated in [37, 30], in particular finite size effects were not considered. In this chapter,

we will review the Ginzburg-Landau description of the linear to zigzag phase transi-

tion and then proceed to evaluate the correlation length for small chains with periodic

boundary conditions. By evaluating the two point correlation function we uncover the

finite size effects; these finite size effects should be considered when making KZ predic-

tions that rely on the critical exponents that are valid strictly in thermodynamic limit.

It is found that far away from the critical point the divergence of the correlation length

has a mean field critical exponent (unless the correlation length is significantly smaller

than the lattice spacing), but near the critical point the finite size effects dominate. We

will see in the next chapter that the presence of these finite size effects does change the

KZ scaling for very slow quenches but the KZ scaling still remains as predicted by the

theory in thermodynamic limit for a wide range of quench rates.

2.1 Ginzburg-Landau theory for linear to zigzag phase

transition

2.1.1 Ginzburg-Landau theory - a short introduction

Ginzburg-Landau (GL) approach for the study of critical phenomena was briefly dis-

cussed in the previous chapter. We will now recap the idea of GL theory and then

apply it to the linear to zigzag ion chain. GL approach involves three main steps

1. Identifying an order parameter field m(x)
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2. Writing a Ginzburg-Landau free energy function, F [m(x)] that describes the

system near the critical point

3. Extracting thermodynamic properties of the system from the partition function

Z =
∫
Dm exp(−βF [m]).

The order parameter field usually corresponds to a coarse grained quantity. For instance

if we model a paramagnetic to ferromagnetic phase transition we may define m(x) as

an average magnetization over some region of the material, rather than each individual

atomic spin that gives rise to this magnetization. The GL free energy can be written

as a series expansion in m(x)

βF [m] =

∫

dx
[
c1h ·m+ c2m

2 + c3m · ∇m+ c4m
3 + . . .

]
. (2.1)

Since m(x) is small in the vicinity of the critical point only a few lowest terms in (2.1)

need to be considered to analyze critical behaviour. Also often it is possible to use

symmetry arguments to set many of the terms in the series expansion (2.1) to zero. For

instance, in the absence of external magnetic field the energy should be invariant under

rotation of the order parameter i.e. F [m] = F [Rnm], where Rn is a rotation operator.

Invariance under rotations implies that the F [m] can only be a function of even powers

of the order parameter. Once F [m] is reduced to a simple form using the symmetry

argument, one can analyze its partition function using a variety of techniques, such as

mean field analysis, renormalization group and numerical methods [68].

2.1.2 Linear to zigzag phase transition - the order parameter

and symmetry considerations

This phase transition was first studied numerically [116], where it was conjectured that

it is a second order phase transition. Further numerical work showed that the ground

state energy is characterized by a discontinuity in the second derivative with respect to

the particle density [104]. In [51] it was shown analytically that the phase transition

is of second order, and a Ginzburg-Landau free energy for this transition was derived.

The proof was later generalized for the chains in confining potentials of the form rα,

where α is an integer and particle interaction of the form rβ, where β is an integer [54].

Before we quote the GL free energy obtained in [51] it is instructive to use physical

arguments and symmetry considerations to anticipate the result. The system under

consideration is an infinite chain of point charges confined to a line by a harmonic
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Reflection

Figure 2.1: Two possible degenerate zigzag configurations.

potential. The minimum energy configuration of the chain can become a zigzag if the

confining potential is reduced and/or the spacing between the charges is reduced. A

natural order parameter is the transverse displacement of the ions. Suppose yj is the

transverse displacement of the jth ion, then let us define an infinite dimensional vector
~φ with elements φj = (−1)jyj. We define a scalar one dimensional order parameter field

φ(x) such that φ(xj) = φj, where xj is the axial coordinate of the jth ion. The reason

for inverting the sign of the transverse displacement of every odd ion in the definition

of φj is to make the field φ(x) smooth and differentiable.

In the linear phase the order parameter is zero in the ground state i.e. φ(x) = φ0 = 0.

As the phase transition is crossed the order parameter gains a finite value i.e. φ0 = φ̄.

For each given parameter set there are two possible degenerate zigzag configurations,

φ0 = φ̄ and φ0 = −φ̄, which corresponds to a zigzag chain and its reflection about the

chain axis (figure 2.1). The system is indeed invariant under the reflections of the order

parameter about the chain axis i.e. F [φ] = F [−φ]. This automatically rules out the

possibility of odd powers of φ in F [φ], therefore the GL free energy has to be of the

form

βF [φ] =

∫
{
U0 + aφ2 + b (∂xφ)

2 + cφ∂xφ+ dφ3

+eφ3∂xφ+ fφ2(∂xφ)
2 + gφ (∂xφ)

3 + h (∂xφ)
4 + . . .

}
dx. (2.2)

The linear to zigzag phase transition is a symmetry breaking phase transition for

the following reason. Let φ(x) = φ̄+ψ(x) i.e. we express the order parameter field as a

sum of its mean value and fluctuations about this value. In the linear phase, since φ̄ = 0

we have F [ψ(x)] = F [−ψ(x)] - an invariance under reflections of the fluctuations. The

symmetry is broken in the zigzag phase since F [φ̄+ψ(x)] 6= F [φ̄−ψ(x)]. This symmetry

breaking is reminiscent of the paramagnetic to ferromagnetic phase transition. In fact,
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the linear to zigzag phase transition has exactly the same mathematical structure as

the paramagnetic to ferromagnetic phase transition (assuming the axial motion of ions

is negligible); this will become clear in the next section where we consider the GL

Hamiltonian for the linear to zigzag phase transition.

2.1.3 Ginzburg-Landau free energy for linear to zigzag phase

transition

Consider N → ∞ interacting particles placed on an xy-plane. In the x-direction the

particles do not experience an external potential and the systems is unbounded, but

in the y-direction there is a harmonic confining potential. The potential energy of the

systems is given by

V = Vexternal + Vint (2.3)

Vexternal =
N∑

j

1

2
mω2

yy
2
j . (2.4)

Vint =
1

2
Q2

N∑

j

N∑

i 6=j

1
√

(xj − xi)2 + (yj − yi)2
, (2.5)

where Q ≡ e2/4πǫ0 is the Coulomb interaction factor. Equations (2.3)-(2.5) specify

the microscopic structure of the system. In order to derive a GL free energy of the

type (2.2) we must perform a Taylor expansion of (2.2) in φj = (−1)jyj around the

linear chain configuration. Such calculation, carried out in the normal mode basis, is

presented in [51, 30]. Here we simply quote the result

F [φ(x)] =
1

2

m

a

∫
{

δφ(x)2 + h2
(
∂φ(x)

∂x

)2

+Aφ(x)4
}

dx (2.6)

where a is the spacing between ions when they are in the linear chain configuration,

and the parameters h, δ and A are given by the following expressions
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Figure 2.2: Energy density V as a function of average ion displacement φ̄ for three
values of δ: δ > 0 (black line), δ = 0 (red line) and δ < 0 (blue line).

h = ω0a
√

log 2 (2.7)

δ = ω2
y − ω2

c (2.8)

A =
93ζ(5)

32

ω2
0

a2
(2.9)

ωc = ω0

√

7ζ(3)

2
(2.10)

where ω0 =
√

Q2/ma3. The free energy F [φ] given by (2.6) is valid for a system in

thermodynamic limit confined to an xy-plane. The derivation of the GL free energy

is straightforwardly generalized for the case where the ions are allowed to move in the

z-direction; in this case the order parameter becomes a two component vector field

rather than a scalar field.

Now lets examine the GL potential energy given by (2.6). This potential corre-

sponds to the classic φ4 scalar field model. This model exhibits a textbook example of

spontaneous symmetry breaking and is often introduced to explain the paramagnetic

to ferromagnetic phase transition. If we set all of the spatial fluctuations to zero i.e.

φ(x) = φ̄, then the potential energy is given by

V = V0 +
1

2

m

a
δ2φ̄2 +

1

2

m

a
Aφ̄4. (2.11)

Equation (2.11) is the energy density in the zeroth order perturbation theory in

the field fluctuations. The energy density is plotted for three different values of δ in

figure 2.2. For δ > 0 the energy function is a single well with only one minimum, which

corresponds to the linear chain. For δ < 0 the energy function is a double well with two
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degenerate minima, which corresponds to the two possible zigzag configurations. Thus

δ is the critical parameter the variation of which induces the linear to zigzag phase

transition and when δ = 0 the system is in the critical phase. Let’s evaluate the value

of the average transverse displacement of the ions within the zeroth order perturbation

theory in fluctuations. Minimization of the energy given by (2.11) with respect to φ̄

gives

∂V
∂φ̄

=
m

a
δφ̄+

2m

a
Aφ̄3 = 0. (2.12)

Solving for φ̄ gives

φ̄ =







0 for δ ≥ 0,

±
√

−δ
2A
, 0 for δ < 0.

(2.13)

For δ < 0 or by equation (2.8) ωy > ωc, the ground state of the system is a linear chain

or by the analogy with magnetic systems, it is in the paramagnetic state. For δ > 0 or

ωy < ωc the system is in a zigzag phase - it has acquired a net “magnetization” and

is thus in ferromagnetic state. When δ = 0 or ωy = ωc the system is at the critical

point. The frequency ωc given by equation (2.10) is the critical frequency because if

the secular frequency of the radially confining potential is lower than ωc the minimum

energy configuration of the system is the zigzag chain. Above the critical point δ > 0

the order parameter growth as a power law of δ i.e. φ̄ ∝ |δ|β. Exponent β is one of

the critical exponents of the phase transition and from equation (2.13) it is clear that

β = 1/2, which corresponds to the exponent of the mean field universality class. Thus

as expected neglecting the fluctuations of the order parameter corresponds to a mean

field description with its characteristic exponents.

The exponent β = 1/2 can be verified numerically, by finding computationally the

equilibrium configuration of ions for various values of δ. The equilibrium configuration

of ions is given by a nonlinear algebraic system of equations

∂q1V = 0, (2.14)

. . .

∂q2NV = 0,
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where q = (q1, q2...q2N ) ≡ (x1, ..., xN , y1, ..., yN ) are all of the positional degrees of

freedom of a chain of N ions in two dimension, and V is the potential energy given

by equation (2.3). The system of equations (2.14) can be solved by initializing the

ions around the zigzag configuration with some arbitrary small transverse displacement

i.e. xj = ε(−1)j and then solving dynamical problem of overdamped particle motion.

The equations of motion are solved using Runge-Kutta 4th order method and the

system evolves towards a steady state which is the equilibrium configuration for a given

transverse confinement frequency and hence δ. The result of this numerical computation

is shown in figure 2.3. The calculation was done for a system of 20 Ca+ ions with

10 µm spacing and periodic boundary conditions. Calculations are carried out for

various values of ωy from which the critical parameter δ is calculated using the formula

δ = ω2
y − ω2

c , where ωc is given by equation (2.10). From the graph it is clear that the

critical point is at δ ≈ 0. The accuracy of the linear fit of φ̄2 vs −δ in the vicinity

of the critical point confirms the validity of the mean field exponent β = 1/2. Note

that for large −δ the linear fit is no longer accurate. The reason for this is that to

derive β = 1/2 only the terms up to O(φ4) where considered in the free energy, but

higher order terms become important when the transverse displacement is large. If one

wishes it is possible to calculate higher order corrections and predict the φ̄ further from

the critical point. Finally, we should note since the calculation is done for 20 particles

then one should see deviations from the case of thermodynamic limit where the number

of particles is infinite. Indeed in the thermodynamic limit at the critical point of the

second order phase transition the derivative ∂φ̄/∂δ is discontinuous but as is evident

from the inset in figure 2.3 this is not the case for the finite system. The discontinuity

is smoothed out in the finite system and as the system becomes larger the discontinuity

becomes sharper.

2.2 Fluctuations and divergence of the correlation

length

In the previous section we have presented the GL free energy which is obtained by a se-

ries expansion of the microscopic energy function in transverse displacement. We have

shown that the system undergoes a phase transition from a linear to a zigzag configu-

ration if the transverse secular frequency is reduced below the critical value. This was

done analytically by ignoring all possible fluctuations of the transverse displacement
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Figure 2.3: Square of the average transverse displacement vs the critical parameter
δ = ω2

z −ω2
c calculated numerically for 20 particles. ωc is the critical transverse frequency

for the system in thermodynamic limit of infinite number of particles, ω0 ≡
√

Q2/ma3 is
the characteristic frequency scale in the system and a is the lattice spacing. For −δ > 0
the system is in the zigzag phase and φ̄2 ∝ |δ| as demonstrated by a linear fit. The inset
shows that near the critical point the change from φ̄2 = 0 to φ̄2 ∝ |δ| is smooth. The
reason for the continuity of the derivative of φ̄ is the finite size of the system.

and minimizing the potential energy. Neglecting the fluctuations amounts to zeroth

order mean field calculation and the resulting critical exponent of the average “magne-

tization” is found to be β = 1/2, which was also verified numerically. It is well known

that fluctuations in the systems become large in the vicinity of the critical point. It

is important to consider the effect of the fluctuations as they can modify the critical

exponents and sometimes even the order of the phase transition [65]. In this section,

we evaluate the two point correlation function for a linear chain in the vicinity of the

critical point using second order perturbation theory in the fluctuations of the field.

Recall that all of the static properties of the system in thermal equilibrium can be

obtained from the partition function

Z =

∫

Dφ(x)e−βF [φ,δ,h], (2.15)

where β ≡ 1/kBT . The functional (2.15) can be evaluated only if the potential is

quadratic in φ. In our case the potential is not quadratic since it has the φ4 term and

for this reason we can only evaluate the functional perturbatively. The method works

well when the fluctuations are small. Lets expand the field φ into a sum of the ground

state value and the fluctuations

φ(x) = φ̄+ ψ(x). (2.16)
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The potential energy is given by

F =

∫ ∞

−∞

{

1

2
aφ2 +

1

2
c

(
∂φ

∂x

)2

+
1

4
gφ4

}

dx, (2.17)

where we have renamed the parameters appearing in (2.6) for notational simplicity.

We would like to consider the effect of the fluctuations ψ(x) to quadratic order in the

system where a > 0 i.e. in the linear phase. Substituting (2.16) into (2.17) and keeping

up to the quadratic order in ψ(x) we get

V =
1

2
a
(
φ̄+ ψ

)2
+

1

2
c

(
∂ψ

∂x

)2

+
1

4
g
(
φ̄+ ψ

)4

= V0 +
1

2
aφ̄ψ +

1

2
aψ2 +

1

2
c

(
∂ψ

∂x

)2

+
1

4
g
(
4φ̄3ψ + 6φ̄2ψ2

)
+O(ψ4) (2.18)

= V0 +
1

2
aψ2 +

1

2
c

(
∂ψ

∂x

)2

+O(ψ4), (2.19)

where to go from the second to last line we have made use of the fact that φ̄ = 0 for

a ≥ 0. Now the potential energy functional given by (2.18) is quadratic in field ψ(x)

i.e. it is of the form

F =
1

2

∫

dx

∫

dx′ψ(x)G−1(x, x′)ψ(x′) +
1

2

∫

dxq(x)ψ(x), (2.20)

where G−1(x, x′) is an operator kernel and the linear term q(x)φ(x) is included for

generality. The two point correlation function is defined by

〈φ(x)φ(x′)〉 =
〈(
φ̄+ ψ(x)

) (
φ̄+ ψ(x′)

)〉
, (2.21)

where 〈. . .〉 indicates ensemble average. If the system is in the symmetric phase (linear

chain phase), then φ̄ = 0 and the two point correlation function is 〈ψ(x)ψ(x′)〉. The

two point correlation function can be extracted from the partition function (2.14) using

the cumulant expansion

〈ψ(x)ψ(x′)〉 = − ∂2

∂q2
lnZ

∣
∣
∣
∣
q=0

= G(x, x′), (2.22)
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where G(x, x′) satisfies

∫

dx′G−1(x, x′)G(x, x′′) = δ(x′ − x′′). (2.23)

Thus in order to evaluate the two point correlation function we must first diagonalize

the functional (2.18) to find G−1(x, x′) and then we must invert G−1(x, x′). The energy

functional (2.18) is diagonal in the Fourier basis. The Fourier representation is given

by

ψ(x) =

∫ ∞

−∞

dq

2π
ψ̃(q)e−iqx, (2.24)

ψ̃(q) =

∫ ∞

−∞

dxψ(x)e−iqx. (2.25)

The orthogonality relations are given by

∫ ∞

−∞

dxei(q+q′)x = 2πδ(q + q′), (2.26)

∫ ∞

−∞

dq

2π
e−i(q+q′)x = δ(x+ x′). (2.27)

Substituting (2.24) into (2.18) and making use of (2.27) gives

F =

∫ ∞

−∞

dq

2π

(
ξ−2 + q2

)
ψ̃(q)ψ̃(−q)dq (2.28)

where ξ−2 = a/c. The expression for potential energy (2.28) is diagonal and the inverse

of the two point correlation function is G−1(q) = ξ−2 + q2. The two point correlation

function in Fourier space is thus G(q) = 1/(ξ−2 + q2). To find the two point correlation

function in real space we perform the inverse Fourier transform

G(x, x′) =

∫ ∞

−∞

dqG(q)eiq(x−x′)

=

∫ ∞

−∞

dq
eiq(x−x′)

ξ−2 + q2

=
1

δξ
e−|r|/ξ, (2.29)
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where r = x − x′. Thus the correlations decay exponentially with the characteristic

length ξ =
√

c/a. In the vicinity of the critical point it is expected that the correlation

length should diverge with a critical exponent ν i.e. ξ ∝ |a|−ν . By accounting for the

fluctuations to the second order we have shown that ν = 1/2, which corresponds to the

mean field universality class. Higher order corrections from the fluctuations will alter

the value of the critical exponents. There are no known exact techniques of evaluating

the critical exponents of the one dimensional φ4 model, although there is a range of

approximate methods [74]. Even though the true mean field critical exponents might

differ from the mean field theory values, the Ginzburg criterion restores much of the

credibility to the mean field theory. Ginzburg criterion states that mean field critical

exponents are valid whenever one is sufficiently far from the critical point and always

for system of dimensions d ≥ 4. Thus for the case of linear to zigzag chain it may well

be that Ginzburg region is difficult to resolve and instead one can take ν = 1/2. We can

check if this is the case by performing numerical simulations at realistic temperatures

and extracting the correlation length from the correlation function. Since the ion chains

are particularly small systems we are more likely to encounter the finite size effects on

the correlation length than the higher order effects of the fluctuations.

Knowledge of the nature of the divergence of the correlation length near the critical

point and the critical exponent ν is essential for the Kibble-Zurek theory. Since we are

interested in ultimately testing KZ theory in a finite ion trap system in the next section

we examine the finite size effect on the two point correlation function for the system in

the vicinity of the critical point.

2.3 Finite size effects

If the system is of size L then the correlation length ξ can no longer diverge to infinity

near the critical point since it is limited by the size of the system. Thus on the approach

towards the critical point one may expect that ξ → L. In general, the sharp features

such as divergences of thermodynamic quantities and discontinuities that are character-

istic of phase transitions in the thermodynamic limit will be smoothed out. Figure 1.1

in Chapter 1 shows a cartoon of how one might expect the correlation length to look

like for different system sizes. It was mentioned in Chapter 1 that the finite size effects

have to be accounted for when the critical properties of the system are evaluated using

a computer or experiments in mesoscopic systems. To extrapolate the results obtained

in finite size system to the thermodynamic limit one can make use of a set of results
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collectively known as the finite size scaling theory [19]. Typically one has to measure

the critical properties for systems of several different size L - the way the results change

as the system size is varied is not arbitrary but depends on the critical exponents of

the transition in the thermodynamic limit. In our case, we assume that the critical

exponent is ν = 1/2 but we would like to obtain an estimate of the finite size effect on

the correlation length near the critical point of the linear to zigzag phase transition. It

is important to get an idea of the magnitude of the finite size effects since later the KZ

experiments will be carried out in small systems of 16 to 30 ions.

For periodic boundary conditions on a finite interval of size L, we can perform an

exact mean field analysis of the φ4 model. The potential energy of the φ4 field for a

system of size L is given by

F =

∫ L

0

{

1

2
aφ2 +

1

2
c

(
∂φ

∂x

)2

+
1

4
gφ4

}

dx (2.30)

As before we express the field as a sum of its ground state and fluctuations, φ(x) =

φ̄ + ψ(x), and keep up to the quadratic order in the fluctuations in the expression for

the potential energy. The mean field expression for the potential energy is

V =

∫ L

0

{

1

2
aψ2 +

1

2
c

(
∂ψ

∂x

)2

+
1

4
gψ4

}

dx (2.31)

The potential energy given by (2.31) is diagonalized as before in the Fourier space.

Since the systems is finite, this time we introduce the Fourier series instead of the

Fourier transform

ψ(x) =
∑

q

ψ̃qe
iqx (2.32)

ψ̃q =
1

L

∫ L

0

dxψ(x)e−iqx, (2.33)

where the Fourier elements take values qi = 2πm/L, where m is an integer and L is the
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size of the system. In this representation we have

F [ψ] =

∫ L

0

dx

{

a

2
ψ2 +

c

2

(
∂ψ

∂x

)2
}

(2.34)

=

∫ L

0

dx
∑

q

∑

q′

[a

2
ei(q+q′)xψqψq′ − qq′

c

2
ei(q+q′)xψqψq′

]

. (2.35)

Making use of the identity
∫ L

0
dxe−i(q+q′)x = Lδq,−q′ we have

F [ψ] = L
∑

q

∑

q′

δq,−q′

[a

2
ψqψq′ − qq′

c

2
ψqψq′

]

(2.36)

=
L

2
aξ2
∑

q

[
ξ−2 + q2

]
|ψ|2, (2.37)

where ξ−2 ≡ a/c. Thus in Fourier space the propagator is given byG(q) = 1
h
(ξ−2 + q2)

−1
.

In real space the correlation function is given by

G(x, x′) ≡ 〈ψ(x)ψ(x′)〉 =
∑

q

eiq(x−x′)G(q)

=
1

aξ2

∑

q

eiq(x−x′)

ξ−2 + q2
. (2.38)

The sum in (2.38) can be evaluated analytically in terms of special functions. Figure

2.4 shows plots ofG(x, x′) for several different values of a. Since the boundary conditions

are periodic the two point correlation function must satisfy G(r) = G(L− r), which is

clear from the figure 2.4. If ξ/L ≪ 1 then the two point correlation function closely

matches the two point correlation function for the system in thermodynamic limit

(figure 2.4). The finite size effects become important when ξ/L is of the order of unity.

From the two point correlation function we may extract the correlation length and

investigate its behaviour near the critical point. Since the two point correlation function

does not have the simple form of an exponential decay, we must first find an appropriate

definition of the correlation length for finite size systems. A commonly used definition

of the correlation length is [19]
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Figure 2.4: G(x, x′) for a finite size system for three different values of δ. Parameters
chosen for the calculation were L = 1 and h = 1.
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Figure 2.5: a) Finite size scaling of the correlation length for three different values of ξ.
b) Collapse of the three curves when plotted in scaled units ξL/L vs δL1/ν with ν = 1/2.

ξL =

√
√
√
√

∫ L

0
r2G(r)dr

∫ L

0
G(r)dt

. (2.39)

It can be readily verified by inserting equation (2.29) into (2.39) that limL→∞ ξL = ξ.

The plots of ξL as a function of δ are shown in figure 2.5a for several different values

of L. For large δ, ξ scales with δ with a mean field exponent of 1/2. At small δ there

are plateaus that arise because of the finite size of the system. It is interesting to note

that according to the finite size scaling hypothesis

ξL
L

= gξ(aL
1/ν) (2.40)

i.e. the correlation length is a homogeneous function of L. Thus if we plot ξL/L versus
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L1/ν for different values of L all graphs should align onto one universal function gξ.

Figure 2.5b demonstrates this - the behaviour of ξL near the critical point in systems

of various size L can be predicted from the knowledge of the function gξ. The result

(2.40) is general for all finite size systems but the specific form of the function gξ is

determined by the details of the system and the boundary conditions.

We have carried out an analytic calculation of the correlation length for a finite size

periodic φ4 model using the mean field approximation. This captures well the expected

properties of the linear chain near the critical point. However, the GL free energy does

not describe the ion chain system exactly and thus we will also evaluate numerically

the two point correlation function for the ion chain system. Our calculation method is

based on molecular dynamics simulations. The dynamics of N ions in contact with a

heat bath of temperature T can be modelled using Langevin equations. For the jth ion

the Langevin equation of motion reads

m
d2rj
dt2

= −∇jV − η
drj
dt

+ ~θj(t) (2.41)

where V is the potential energy of the system which includes the contribution from the

harmonic confinement and the interaction between the ions; −ηṙj is the friction force

and ~θj(t) = (θxj , θ
y
j , θ

z
j ) is the stochastic force having the following statistical properties

〈θj(t)〉 = 0 (2.42)
〈

θαj (t)θ
β
k (t)

〉

= 2ηkBTδjkδ(t− t′). (2.43)

The noise and friction forces are such that the fluctuation dissipation theorem is satisfied

and hence the effect of those forces is to bring the system into a thermal equilibrium

with a reservoir at temperature T . Performing Langevin dynamics simulations n times

generates a sample of n configurations from a canonical ensemble. The statistical

quantities such as two point correlation function can be estimated using the sample

since 〈O〉 = limn→∞ 〈O〉n where O denotes an observable quantity.

The two point correlation function for a system of N ions is given by a matrix with

the following elements

Gij = 〈xixj〉 , (2.44)

where xi and xj are the transverse displacements of the ith and jth ion respectively.
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Figure 2.6: a) Numerically evaluated two point correlation function Gij for a) 31 ions
and b) 30 ions. c) Numerically evaluated correlation length as a function of critical
parameter δ. Calculations were carried out by performing statistical averaging over ap-
proximately 2000 molecular dynamics simulations.

The numerically evaluated two point correlation function is shown in figure 2.6 for a

system of 30 and 31 ions and periodic boundary conditions. The form of the two point

correlation function is exponential decay. Thus even though there is a distinct length

scale associates with the distances between the individual ions the important length

scale near the critical point is indeed the correlation length. There is a qualitative

difference between the two point correlation functions for chains with an odd number

of ions and for chains with an even number of ions. In chains with an odd number of ions

(e.g. in a chain with 31 ions shown in figure 2.6a) the distant regions are anticorrelated,

whereas in chains with an even number of ions (e.g. in a chain with 30 ions shown in

figure 2.6b) the distant regions have positive correlation. This observation can be

accounted by the fact that chains with even and odd number of ions have effectively

different boundary conditions. In terms of the field theory when the number of ions is

even the boundary conditions are periodic φ(0) = φ(L) and when the number of ions

is odd the boundary conditions are twisted periodic φ(0) = −φ(L). These different

topologies imposed by the boundary conditions have an important consequence - in the

zigzag phase the chain can have only an odd (even) number of topological defects if

it consists of odd (even) number of ions. The topological defects will be considered in

detail in the next chapter.

Figure 2.6c shows a plot of ξL for 30 ions evaluated numerically for several different

values of δ. The correlation length ξ is obtained by fitting the evaluated two point

47



correlation function to G(|j − k|a) ∼ exp(−|j − k|a/ξ). Far away from the critical

point the divergence of the correlation length follows the mean field critical exponent

of ν = 1/2. In the vicinity of the critical point the correlation length saturates at a

finite value because of the finite size of the system.

2.4 Chapter conclusions

In this chapter we have examined in detail the classical linear to zigzag structural phase

transition of Coulomb crystals trapped in a harmonic potential. The Ginzburg-Landau

theory for this transition in the thermodynamic limit was presented. The mean field

analysis was reviewed and applied to the calculation of the exponent of the divergence

of the correlation length. The finite size effects for this transition were considered by

treating the continuum field theory on a finite interval using mean field approach and

also numerically using an actual system of 30 and 31 ions.

The main points of this chapter are that mean field critical exponents are appropriate

for the linear to zigzag phase transition if the system is relatively far away from the

critical point. The finite size effects modify the critical behaviour when the systems

is in close proximity of the critical point. This means that the theoretical predictions

which make use of the critical exponents, in particular, the Kibble-Zurek theoretical

predictions [138] should be treated with caution because of the presence of the significant

finite size effects. In the next chapter, we will consider the process of generation of

topological defects via a non-adiabatic quench from the linear to zigzag phase. We

review the Kibble-Zurek theory and present a new approach consistent with KZ theory

but which is also easily generalized to inhomogeneous system. It will be shown that

the scaling of topological defects with the quench rate holds even for small systems

consisting of 30 ions for a wide range of quench rates.
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Chapter 3

Universality of the equations of

motion

Traditionally the KZ scaling of topological defects with quench rate is derived using

intuitive physical arguments of diverging correlation length and critical slowing down.

This KZ argument was reviewed in Chapter 1. In this chapter, we show that in essence

KZ theory identifies a time scale t̂ and a length scale ξ̂ such that if the equations

of motion are written in these units the dynamics becomes quench independent and

hence universal. In the KZ theory this time scale and this length scale are referred to

as “freeze-out” time and “freezed-out” correlation length respectively. We will argue

that instead of using the equilibrium calculation of divergence of correlation length and

relaxation time to find t̂ and ξ̂ one can find this quantities by analyzing the equation of

motion directly. The advantages of this approach is that first of all it may be considered

a mathematical proof rather than a physical argument and secondly it can be used to

derive finite size KZ scaling laws. The last point is particularly important since the

linear to zigzag phase transition will be realized in small Coulomb crystals where one

will measure the finite size KZ scaling. In this chapter, we derive the KZ scaling for

model A and model B field theories as well as for the ion traps. The KZ scaling is

tested numerically in the system of 30 ions with periodic boundary conditions and

underdamped dynamics.

3.1 Topological defects

In general after the process of spontaneous symmetry breaking the vacuum state (ground

state) is not unique but is a degenerate manifold. If in spatially separated regions the

order parameter assumes different values from the vacuum manifold then topological

defects may form. Topological defects are field configurations, such that their presence

can be detected by looking at the values of the field far away from the defect. In other

words, topological defects cannot be removed by local deformations of the field. As an
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Figure 3.1: One dimensional φ4 soliton.

example, lets consider the scalar one dimensional φ4 field theory discussed in chapter 2.

In the symmetry broken phase the mean field potential energy has a double well struc-

ture shown in figure 2.2 and the vacuum manifold is {−φ0, φ0}. The field configuration

that interpolates between φ = −φ0 and φ = φ0 contains a Z2 defects or kink. In the φ4

theory the kink configuration φK(x) can be found analytically in terms of a hyperbolic

tangent (see Chapter 5 for details of the solution). Figure 3.1 shows the form of the φ4

kink. We can define the topological “charge” of the field by

Q =

∫

∂xφdx = φK(x = −∞)− φ(x = +∞). (3.1)

The charge of a single Z2 kink is either +1 or 1 depending on whether the field inter-

polates between −φ0 and φ0 or between φ0 and −φ0. Multiple kinks can be removed

by bringing kinks of opposite charges next to one another. Field theories in higher

dimensions and with vector order parameters can result in more complex defect struc-

tures. In general, the type of defect can be predicted from the dimensionality and the

number of components of the order parameter vector field using homotopy theory [87].

In this chapter, we will be dealing with the scalar φ4 theory since it is the simplest and

describes the linear to zigzag phase transition but the results can easily be generalized

to more complex field theories.

3.2 Equations of motion for the field - model A and

model B dynamics

In Chapter 1 we have introduced the notion of local thermodynamic equilibrium (LTE)

and phenomenological equations that can describe the dynamics of various systems in
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LTE. There are a number of possible dynamical equations and they are labeled model

A to J by Halperin and Hohenberg in [62]. Just as the Ginzburg-Landau free energy the

various generators of dynamics should be regarded as phenomenological constructions

motivated by physical arguments such as conservation laws. The dynamical equations

must be constructed such that they accurately describe the dynamics of the order

parameter in the vicinity of the critical point. Analysis of the linear response of these

models allows one to calculate dynamic critical exponents for each model in the vicinity

of second order phase transitions. We will use these phenomenological field equations

to derive defect scaling laws. Making use of these equations for the purpose of studying

defect formation is reasonable since often the defects form in the initial stages of the

quench when higher order corrections to the free energy and dynamical generators are

negligible.

We will focus on two commonly used dynamical models: model A and model B.

Model A is constructed by postulating that the rate of change of the order parameter

is proportional to the local thermodynamic force δF [φ]/δφ. The equations of motion

for model A are given by

∂φ(x, t)

∂t
= −Γ

δF [φ]

δφ
+ θ(r, t), (3.2)

where θ(x, t) is the stochastic white noise satisfying

〈θ(x, t)〉 = 0, (3.3)

〈θ(r, t)θ(r′, t′)〉 = 2ΓkBTδ(r− r′)δ(t− t′). (3.4)

The system following the equations of motion given by (3.2) will flow along the energy

gradient until it reaches a local minimum. The noise term simulates the equilibration

of the system with a heat bath at temperature T . Real systems that are commonly

described by model A dynamics include superconductors [82] and anisotropic alloys and

magnets [62].

When the order parameter is locally conserved, such as in the process of separation

of binary fluids the equations of motion of model B are employed [21]. In the case of

conserved dynamics the order parameter obeys the continuity equation

∂φ

∂t
+∇ · j = 0. (3.5)
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The current j is proportional to the gradient of the chemical potential, which is in turn

proportional to the local thermodynamic force. Hence model B takes the form

∂φ

∂t
= −Γ∇2 δF [φ]

δφ
+ θ(r, t). (3.6)

Equations (3.2) and (3.6) without the white noise term are known in the literature as the

time dependent Ginzburg-Landau equation and the Cahn-Hillard equation respectively

[21]. They can also be used to study the process of dynamic phase transitions and

coarsening dynamics. The role of the white noise is mainly to provide random initial

conditions; the noise itself does not significantly influence the coarsening process.

3.3 Rescaling and the universal equation

The principle idea of our approach of deriving the defect scaling laws is to show that one

can find a linear transformation of variables in the equations of motion that eliminates

their dependence on quench rate. This results in a quench independent and hence

universal equations of motion - all of the spatial scaling information is contained within

the coefficients of the linear transformation.

We will use a φ4 GL free energy functional in equations of motion of model A and

model B given by equations (3.2) and (3.6)

F [φ] =

∫ (
1

2
δφ2 +

1

2
c (∇dφ)

2 +
1

4
gφ4

)

ddr, (3.7)

where the order parameter φ is a scalar real field and d is the dimensionality of the

system. We take the order parameter field to be real and scalar for simplicity - gen-

eralization to vector fields and complex field is trivial. As was discussed in detail in

Chapter 2, for δ > 0 the system is in the symmetric phase, for δ < 0 the system is

in the symmetry broken phase and for δ = 0 the system is in the critical state. Now

suppose that δ changes with time such that at some instance it crosses the critical value

of δ = 0. We take this quench function to be of power law form

δ(t) = −
(
t

τQ

)n

δ0sign(t), (3.8)

where, τQ is the quench timescale. The system crosses the critical point at t = 0; for

t < 0 the system is in the symmetric phase and for t > 0 the system is in the symmetry

broken phase. Any function δ(t) can be expanded as Taylor series near the critical point
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δ = 0 and usually in the experiments the linear term will have the greatest contribution.

However, for generality we keep n to be an integer, which does not necessarily need to

equal to one.

3.3.1 Model A dynamics

With GL free energy given by (3.7) and the quench function given by (3.8) the model

A equation of motion is

∂φ

∂t
= −

(
t

τQ

)n

sign(t)φ+∇2
dφ+ gφ3 +

√
Tθ(r, t), (3.9)

where now we have switched to natural units so that constants c, a0 do not appear in

the equation for notational simplicity and the nonlinear coupling strength g is dimen-

sionless. The stochastic noise obeys the following statistical relationships

〈θ(t)〉 = 0 (3.10)

〈θ(r, t)θ(r′, t′)〉 = 2ΓkBδ
d(r− r′)δ(t− t′). (3.11)

Quench can be terminated when the energy barrier between the two minima of the

double well potential is much greater than kBT - this prevents spontaneous creation

and annihilation of defects via thermal fluctuations. Now consider the following linear

transformation of variables

~ξ = βr, η = αt, ϕ = γφ, T̃ = σT, (3.12)

with

β =

(
1

τQ

) n
2(n+1)

, (3.13)

α =

(
1

τQ

) n
n+1

, (3.14)

γ = τ
n

2(n+1)

Q , (3.15)

σ = βd−4. (3.16)

Substituting equations (3.12)-(3.16) into the equations of motion (3.9)-(3.11) gives

53



∂ϕ

∂η
= −ηnsign(η)ϕ+∇2

dϕ+ gϕ3 +
√

T̃ θ(~ξ, η), (3.17)

with

〈θ(t)〉 = 0 (3.18)
〈

θ(~ξ, η)θ(~ξ′, η′)
〉

= 2ΓkBδ
d(~ξ − ~ξ′)δ(η − η′). (3.19)

Equations (3.17)-(3.19) do not depend on τQ - all τQ dependence has been absorbed by

the coefficients of the linear transformation given by (3.13)-(3.16). The linear trans-

formation given by (3.12)-(3.16) transform the original equations of motion into the

universal frame of reference where the dynamics does not depend on quench rate.

Without solving this universal equations we can immediately say that in the original

frame of reference all of the spatial properties of the system will scale with τQ according

to equation (3.13). Thus, for instance, if topological defects form then we expect that

the typical distance between them ξ̂ must scale according to the equation (3.13)

ξ̂ ∝
(

1

τQ

) n
2(n+1)

. (3.20)

Now let us compare the result (3.20) to the KZ “freeze-out” correlation length which

was given by equation (1.13) in Chapter 1. Equation (1.13) stated that

ξ̂KZ ∝
(

1

τQ

) ν
1+νz

. (3.21)

If we take the linear quench n = 1 as was done in the KZ argument in Chapter 1,

and use mean field critical exponents for the model A dynamics with the Landau free

energy z = 1, ν = 1/2 then both methods give the same result

ξ̂MF ∝
(

1

τQ

) 1
4

, (3.22)

where the subscript MF emphasizes the fact that the scaling is obtained using the

mean field critical exponents.

The timescale given by equation (3.14) corresponds to the “freeze-out” time in the

KZ argument
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t̂ ∝
(

1

τQ

) n
n+1

. (3.23)

For the linear quench n = 1 we have

t̂MF ∝
(

1

τQ

) 1
2

, (3.24)

where again the subscript MF emphasizes that the results is obtained using the mean

field critical exponents.

Thus we have mathematically proven by transforming the equations of motion to a

universal frame of reference that the distances between defects will scale as (1/τQ)
1/4 as

predicted by the mean field KZ argument. The reason why the transformation methods

seems to only predict the mean field KZ scaling is connected to the fact that according

to equations (3.12)-(3.16) one has to rescale the temperature in order to obtain the

full universality. In the KZ scenario, however, only the quench rate is varied and not

the temperature. The necessary temperature rescaling given by equations (3.12) and

(3.16), T → Tβd−4 = Tτ
2(n+1)(d−4)/n
Q affects the initial conditions and also changes the

amount of thermal energy introduced into the system during the quench. When d = 4

the temperature dependence on quench rate disappears and equations (3.9)-(3.11) are

completely universal. Now let us consider how the temperature affects quench dynamics

for systems with d 6= 4. In order for the initial conditions to be completely independent

of temperature and hence quench rate, the equations of motion must not contain a

non-linear term. If the nonlinear term can be neglected then the order parameter field

can simply be rescaled in such as way as to remove the temperature dependence. If the

initial condition are independent of quench rate and we assume that the temperature

is sufficiently low that the stochastic term in (3.17) can be neglected during the quench

then the dynamics is universal and KZ scaling is ξ̂ ∝ (1/τQ)
1/4. From (3.17) the

nonlinear term can be neglected if

|ηn0φ| ≫ |gφ3|. (3.25)

The magnitude of the order parameter field scales with
√

T̃ i.e. |φ| ∼
√

T̃ = σ1/2 =

β(d−4)/2, and substituting this expression in (3.25) gives
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|η0|n ≫ |gβd−4|
|η0| ≫ A (3.26)

A ≡
∣
∣
∣
∣
∣
g1/n

(
1

τQ

) d−4
n+1

∣
∣
∣
∣
∣

(3.27)

Thus as long as the condition (3.26) is valid the mean field KZ scaling ξ̂ ∝ (1/τQ)
1/4

holds. Let us consider in which cases the condition (3.26) is violated. Since KZ theory

is concerned primarily with defect scaling at slow quenches we examine the slow quench

limit. If the quench rate 1/τQ is reduced then A decreases for d > 4 and increases for

d < 4. Thus in the case d ≥ 4 the condition (3.26) is always satisfied for slow quenches

and the KZ scaling is always mean field ξ̂ ∝ (1/τQ)
1/4. In the case of d < 4 the condition

(3.26) will eventually be violated and the fluctuations will start to influence the KZ

scaling. By analogy with the equilibrium thermodynamics we may regard dimension

d = 4 as an upper critical dimension above which KZ scaling always assumes the mean

field form.

We have shown that it is possible to eliminate the τQ dependence from the equations

of motion and the initial conditions for d ≥ 4 and when conditions (3.26) holds. The

method predicts the mean field KZ scaling. Using the simple linear transformation

we were not able to eliminate τQ for all quench rates but had to impose an addition

condition (3.26). When (3.26) does not hold the scaling is expected to alter from the

mean field value. It seems that when the mean field approximations are not valid

it may be much harder to predict the KZ scaling laws. In the case of equilibrium

thermodynamics we encounter the same problem - it is much harder to characterize

critical behaviour right at the critical point where thermal fluctuations dominate the

dynamics of the system. It is an open question whether the non-mean field scaling

limit suggested by KZ theory and given by equation (1.13) will hold. It is difficult to

measure a non-mean field KZ scaling because of the finite size effects. For very slow

quenches the correlation length will become very large during quench and may reach

the order of the system size in finite size simulations. If this is the case, the boundaries

will start to influence the scaling and can easily obscure any corrections to the mean

field KZ scaling coming from the non-linear term in the GL free energy. We will look

in more detail on how to deal with the finite size effect and inhomogeneities in the next

section but first, to illustrate the power of the our technique let us apply it to model B
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dynamics.

3.3.2 Model B dynamics

With GL free energy given by (2.3) and the quench function given by (3.8) the model

B equation of motion is

∂φ

∂t
= −

(
t

τQ

)n

sign(t)∇2
dφ+∇4

dφ+ g∇2
dφ

3 +
√
Tθ(r, t), (3.28)

where now we have switched to natural units so that constants c, a0 do not appear

in the equation of motion for notational simplicity and the nonlinear coupling g is

dimensionless. The stochastic noise obeys the statistical relationship given by (3.10)-

(3.11).

To eliminate the dependence of the equation (3.28) on τQ we can use the following

linear transformation

~ξ = βr, η = αt, ϕ = γφ, T̃ = σT, (3.29)

with

β =

(
1

τQ

) 2n
1+2n

, (3.30)

α =

(
1

τQ

) 2n
4(1+2n)

, (3.31)

γ = τ
2n

4(1+2n)

Q , (3.32)

σ = β(d−6)/4. (3.33)

Substituting equations (3.29)-(3.33) into the equation of motion (3.28) gives

∂ϕ

∂η
= −ηnsign(η)∇2

dϕ+∇4
dϕ+ g∇2

dϕ
3 +

√

T̃ θ(~ξ, η), (3.34)

with

〈θ(t)〉 = 0 (3.35)
〈

θ(~ξ, η)θ(~ξ′, η′)
〉

= 2ΓkBδ
d(~ξ − ~ξ′)δ(η − η′). (3.36)
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Equations (3.34)-(3.36) are τQ independent and hence universal. For model B the

scaling of the typical distance ξ̂ between topological defects is given by equation (3.30)

ξ̂ ∝
(

1

τQ

) 2n
1+2n

. (3.37)

For linear quench n = 1 we have

ξ̂ ∝
(

1

τQ

) 2
3

. (3.38)

By the same argument as was given for model A equation (3.37) gives the mean

field KZ scaling, that is always valid above the upper critical dimension which in this

case is du = 6. The mean field scaling is also valid for sufficiently large 1/τQ.

We have derived the expected scaling of the number of topological defects with

quench rate to illustrate the general applicability of our method. In exactly the same

way we can analyze other dynamical models. To the best of our knowledge the scaling

law given by (3.30) was not verified in computer simulations.

3.4 Scaling of topological defects in finite size and

inhomogeneous systems

In the previous section, we have shown that τQ can be eliminated from the equations

of motions for spatially unbounded fields. If we consider the same equations of motions

in a bounded region of space then the transformations do not completely eliminate the

τQ dependence from the equations of motion. The reason for this is that τQ will enter

in the boundary conditions.

For concreteness lets consider a field following model A dynamics with periodic

boundary conditions in a cell of dimensions L× ...× L
︸ ︷︷ ︸

d times

∂φ

∂t
= −

(
t

τQ

)n

sign(t)φ+∇2
dφ+ gφ3 +

√
Tθ(r, t), (3.39)

with
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φ(L/2, 0, ..., 0) = φ(−L/2, 0, ..., 0), (3.40)

φ(0, L/2, ..., 0) = φ(0,−L/2, ..., 0), (3.41)

. . .

φ(0, 0, ..., L/2) = φ(0, 0, ...,−L/2). (3.42)

If we carry out the linear transformation given by (3.12)-(3.16) then the equation

of motion becomes τQ independent

∂ϕ

∂η
= −ηnsign(η)ϕ+∇2

dϕ+ gϕ3 +
√

T̃ θ(~ξ, η), (3.43)

but the boundary conditions now depend on τQ

φ(βL/2, 0, ..., 0) = φ(−βL/2, 0, ..., 0), (3.44)

φ(0, βL/2, ..., 0) = φ(0,−βL/2, ..., 0), (3.45)

. . .

φ(0, 0, ..., βL/2) = φ(0, 0, ...,−βL/2), (3.46)

β =

(
1

τQ

) n
2(n+1)

. (3.47)

In order to eliminate τQ from the boundary conditions (3.44)-(3.47) we have to rescale

the size of the system according to

L̃ = χL, (3.48)

χ = β. (3.49)

The meaning of the rescaling (3.48)-(3.49) is the following. If we perform a measurement

of KZ scaling on a finite system then strictly speaking we have to vary the size of the

system. The factor by which we have to vary the size of the system depends on τQ as

given by equation (3.49). Thus for n = 1 if we change the quench rate by a factor of q

then we have to change L by a factor of q1/4 in order to get a universal scaling. This

parallels the equilibrium finite size scaling theory which tells us how to extract scaling
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laws in thermodynamic limit from measurements on finite size systems. Naturally if

the size of the system is large L → ∞ then varying the system size will not affect the

defect density significantly. It is only when the maximum correlation length is of the

order of L then we have to start worrying about the finite size effects.

Now let us consider model A dynamics for a field in an external potential. An

external potential, which could be for example harmonic trapping as in the case of

trapped BECs, results in an inhomogeneous field. Similar to the case of finite homoge-

neous system, the transformation (3.12)-(3.16) will not remove the τQ dependence from

the equations of motion completely. The equation of motion for a field with model A

dynamics in an external potential is given by

∂φ

∂t
= −

(
t

τQ

)n

sign(t)φ+ Vext(r, L)φ+∇2
dφ+ gφ3 +

√
Tθ(r, t), (3.50)

where we have assumed that only the quadratic part of GL free energy is spatially

dependent. The parameter L was introduced in the spatial dependence and it can

play a role for instance of the length scale associated with the external potential. For

concreteness let us consider the following external potential

V (r, L) = −
∣
∣
∣
r

L

∣
∣
∣

m

. (3.51)

Then the rescaled equations of motion are given by

∂ϕ

∂η
= −

(

ηnsign(η) +
1

α

∣
∣
∣
∣
∣

~ξ

βL

∣
∣
∣
∣
∣

m)

ϕ+∇2
dϕ+ gϕ3 +

√

T̃ θ(~ξ, η). (3.52)

Equation (3.52) is independent of τQ provided we add an additional rescaling

L̃ = χL, (3.53)

χ = βα1/m. (3.54)

Thus to obtain a KZ scaling in an experiment in a trapped system we must vary

the trapping parameter L according to equations (3.53)-(3.54). This is similar to the

case of finite size homogeneous system; in fact we can view the external potential

as a way to alter the boundary conditions of the system. We have considered the

power law confining potential as it is a particularly simple and physically realistic

potential. However, it can be shown that as long as V (r, L) is invertible it is possible
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Figure 3.2: Kink and an antikink in the zigzag chain of 17 particles with periodic
boundary conditions.

to find a transformation that eliminates τQ from the equations of motion, though this

transformation may in general be non-linear.

3.5 Linear to zigzag phase transition and topologi-

cal defects

Having considered defect scaling in abstract field theories we will now apply the same

ideas to the linear to zigzag structural phase transition. If we induce a non-adiabatic

quench from a linear to zigzag configuration by reducing the strength of transverse

confinement at a finite rate 1/τQ then there is a finite probability of defect creation.

The defect in the zigzag chain has a structure of Z2 kink as shown in figure 3.2. We

are interested in predicting the scaling of the average number of kinks with quench rate

1/τQ.

The scaling of defects in zigzag chains was studied theoretically in [37, 30]. A crit-

ical review of these papers is necessary before we proceed with our derivation. In [37]

the authors consider the problem of defect scaling in a chain of 50 ions trapped in a

3 dimensional harmonic potential. In order to derive the scaling it is argued that the

critical exponents are known by virtue of the mapping to the GL theory [51] and KZ

theory can be applied. Since the system considered in [37] is in a harmonic trapping

potential the system is inhomogeneous and direct KZ theory is not applicable. Never-

theless, by considering an interplay between the speed of sound and the front velocity

a modified scaling limit is derived (the argument parallels exactly the case of soliton

creation in BEC [140]). The numerical molecular dynamics simulations in [37] provide

additional quantification of the scaling law for the linear to zigzag phase transition.

A related paper [30] repeats the same arguments but also adds an additional numer-

ical result of defect scaling in a homogeneous chain with overdamped dynamics. The
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theoretically predicted scalings in [37, 30] are: for the inhomogeneous chain 4/3 (un-

derdamped), 1 (overdamped) and for the homogeneous chain 1/3 (underdamped), 1/4

(overdamped). Even though the authors claim that there is an agreement between the

numerical simulations and theoretical prediction, a more detailed examination indicates

that the agreement is not at all clear. The reason for this is the following. The scal-

ing plots in [37, 30] display ln 〈ndefects〉 vs ln (1/τQ). For a chain with open boundary

conditions the number of domains relates to the number of defects via

ndomains = ndefects + 1. (3.55)

Thus if ndefects ≫ 1 then ndomains = ndefects and for the purpose of measuring the KZ

scaling both plots ln 〈ndefects〉 vs ln (1/τQ) and ln 〈ndomains〉 vs ln (1/τQ) will give the same

results. However if ndefects . 1 then since ln (x+ 1) 6= lnx there will be a big difference

between plotting the logarithms of defects vs quench rate and the logarithms of domains

vs quench rate. Clearly as 1/τQ → 0, ndefects → 0 and ln(ndefects) → −∞ and the graph

ln 〈ndomains〉 vs ln (1/τQ) is a curve that becomes ever steeper on the approach to 0.

Since KZ theory predicts a characteristic length scale ξ̂ which is related to the number

of domains, ndomains ∝ 1/ξ̂, then one should plot the number of domains vs the quench

rate rather than the number of defects as was done in [37, 30]. In [37, 30] the authors

extracted the scaling from the wrong plot but found it consistent with the prediction

only because the fit was done in a selected region of the curve that gives the expected

result. We will now perform an independent analysis of the scaling in a periodic chain

with underdamped dynamics - a regime which was not studied numerically in [37, 30].

In the previous chapter we have introduced the GL theory for the linear to zigzag

phase transition. The dynamics of the system near the critical point of the phase

transition is well described by the following field theoretical equations

∂2φ

∂t2
= δ(t)φ+ h

∂2φ

∂x2
+Aφ3, (3.56)

where φ(ja) = (−1)jzj, h, A are parameters that depend on the spacing between the

ions a and δ(t) is the critical parameter given by

δ = ω2
z(t)− ω2

c . (3.57)

Equation (3.56) describes underdamped dynamics where the frictional force that is

linear in particle velocity and stochastic force have been neglected. The other case is
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the overdamped limit where the frictional force dominates and the inertial force can be

neglected. We will focus on the underdamped case since it is experimentally relevant

for trapped ions. Now suppose that the system undergoes a linear quench and the

equations of motions are

∂2φ

∂t2
= − t

τQ
sign(t)φ+ h

∂2φ

∂x2
+Aφ3. (3.58)

In order to eliminate the τQ dependence from the equation (3.58) we use the following

linear transformation

ξ = βx, η = αt, ϕ = γφ, (3.59)

with

β =

(
1

τQ

) 1
3

, (3.60)

α =

(
1

τQ

) 1
3

, (3.61)

γ =

(
1

τQ

) 1
3

. (3.62)

Substituting equations (3.59)-(3.62) in (3.58) gives

∂2ϕ

∂η2
= −ηsign(η)ϕ+ h

∂2ϕ

∂ξ2
+Aϕ3. (3.63)

Equation (3.63) is τQ independent and hence universal. The universal length scale and

hence the scaling of the domains size ξ̂ with quench rate is obtained from equation

(3.60)

ξ̂ ∝
(

1

τQ

) 1
3

. (3.64)

The 1/3 KZ scaling for fields in the underdamped regime was first predicted and verified

numerically in [77]. For the case of linear to zigzag phase transition the result was

derived (but not numerically verified) using KZ theory in [37, 30].

Now we would like to verify equation (3.64) using molecular dynamics simulations.

The potential energy of the system is given by
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V = Vh + Vc, (3.65)

Vh =
1

2
m

N∑

j=1

ω2
xx

2
j , (3.66)

Vc =
Q2

2

∑

j

∑

k 6=j

(

1

r
(1)
jk

+
1

r
(2)
jk

)

, (3.67)

r
(1)
jk =

√

(xj − xk)2 + (zj − zk)2, (3.68)

r
(2)
jk =







√

(xj − xk)2 + (−2L+ zj − zk)2 , for j < k
√

(xj − xk)2 + (2L+ zj − zk)2, for j > k
(3.69)

where zj is the axial coordinate of the jth ion, xj is the transverse coordinate of the

jth ion, ωx is the transverse confinement frequency, Q ≡ e2/4πǫ0 and L is the size of

the simulation cell. The term Q2
∑

j

∑

j 6=k 1/r
(2)
jk is needed to create periodic boundary

conditions in the z-direction. According to Newton’s laws the dynamics of the system

having potential energy (3.65)-(3.69) is given by the following equations of motion

∂2xj
∂t2

= −ω2
x(t)xj +

Q2

m

∂

∂xj
Vc, (3.70)

∂2zj
∂t2

=
Q2

m

∂

∂zj
Vc. (3.71)

We take the ωx(t) to be a linear function of t

ωx(t) =







−ωi−ωf

τQ
t+ ωi for 0 ≤ t < τQ

ωf for t ≥ τQ.
(3.72)

The linear time dependence of the radial frequency does not result in strictly linear

time dependence in the critical parameter δ(t) in the GL theory. However, if one

Taylor expands the resulting δ(t) around the instance of the transition then one finds

that the linear term has the greatest contribution. For this reason we assume that

equation (3.72) produces a linear quench with a quench rate proportional to 1/τQ. The

reason for taking the linear variation in ωx(t) is that it is more realistic to produce such

quench in the experiment. It is possible to induce non-linear quenches and if the quench

is a power law in t then the KZ scaling law can be predicted. However, if the quench
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function is some polynomial in t then it is not known how to predict a precise KZ

scaling law. For this reason we assume that near the critical point the quench function

is almost linear and any corrections to the scaling law due to a small non-linearity of

the quench function are neglected.

To measure the average number of defects produced after a quench with a given

quench rate 1/τQ, we simply numerically evaluate the equations of motion many times,

each time starting with random initial conditions. The initial conditions must corre-

spond to a system configuration taken from the canonical ensemble. In order to produce

such initial conditions we may evolve the system using Langevin stochastic dynamics

given by the following equations

m
∂2xj
∂t2

= −mω2
x(t)xj +Q2 ∂

∂xj
Vc + Γ

∂xj
∂t

+ θx(t), (3.73)

m
∂2zj
∂t2

= Q2 ∂

∂zj
Vc + Γ

∂xj
∂t

+ θz(t), (3.74)

with

〈θα(t)〉 = 0, (3.75)

〈θα(t)θβ(t′)〉 = 2ΓkBTδαβδ(t− t′). (3.76)

There are a number of numerical algorithms that can be used to evaluate equations

(3.73)-(3.76). We use Langevin impulse method [120]. The system is initialized in

a linear chain configuration and then evolved for a time t0 during which the chain

thermalizes with a reservoir at temperature T . In the thermalized system equipartition

theorem is satisfied 1/2m 〈v2〉 = 3/2kBT and the two point correlation function assumes

the equilibrium form. Once the system is equilibrated we simulate the quench dynamics.

In order to simulate the system in the underdamped regime one can either use the

Langevin equations of motion (3.73)-(3.76) with small Γ or the Newton’s laws (3.70)-

(3.71). In our simulations we evaluate the whole quench dynamics using the Langevin-

Impulse integrator. We use a simple algorithm to count the number of kinks. If two

adjacent ions have the same sign of the transverse displacement, xjxj+1 > 0 then

we assume that there is a kink around the location j. The total number of “kinks”

counted using this method is denoted by ndefects. Strictly speaking this does not always
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Figure 3.3: Quench experiment in the linear to zigzag phase transition and two point
correlation functions at various instances during quench. (Top left) The characteristic
length scale ξ̃ as a function of time. (A−E) Two point correlation functions at instances
A−E, which are marked at the top left graph. The data was calculated by averaging the
results of ∼ 2000 simulation runs. Simulation was done for 31 Yb+ ions with a = 12.9
µm, ωi/(2π) = 500 kHz and ωf/(2π) = 140 kHz. The time of the quench is t1 = 96 µs.

correspond to the true number of topological defects because this method does not

remove the influence of thermal fluctuations. However, at the later stages of evolution

when the system is in the zigzag phase, the thermal fluctuations are unlikely to move an

ion vertically from one row to the other and in this case ndefects does correspond to the

number of kinks in the chain. We carry out the simulation in the system with periodic

boundary conditions and 31 ions. In such system the number of kinks is equal to the

number of domains i.e. ndomains = ndefects. From the number of domains we evaluate

the characteristic length scale in the system ξ̃ = L/ndomains.

Figure 3.3 shows the non-equilibrium correlations extracted from the molecular dy-

namics simulations at one particular quench rate. The top left of the figure shows the

calculated ξ̃ as a function of time. The region filled in blue, t1, indicates the time

interval when the ωx was reduced linearly from its initial value ωi to its final value.

During the initial stages of the evolution 0 < t . 10 µs one can see that ξ̃ fluctuates.

The reason for these initial fluctuations is that during this time the system thermalizes.
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Figure 3.4: KZ scaling measured for the homogeneous linear to zigzag structural phase
transition in the system with 31 and 91 ions. The two lines have slope of 1/3 and are
drawn to visualize how closely the measured scaling matches the theoretical prediction of
1/3.

Once the system have thermalized, ξ̃ changes only slowly, adapting to the changing ωx.

Snapshot A shows the two point correlation function during the initial stages of the

quench when the system still adjusts to its equilibrium state. Between 80 . t . 100

the system crosses the critical point, falls out of the equilibrium and assumes a domain

structure. Note that initially the correlation length starts to diverge with a critical

exponent of ν = 1/2 (cf figure 1.2), but eventually the system can no longer adjust to

its equilibrium state and topological defects can form. At time instances D and E in

figure 3.3 the system is out of equilibrium.

To measure the KZ scaling we perform ∼ 2000 simulations for different quench rates

1/τQ and measure the average number of kinks in the end of the evolution. To check

that the measured scaling is not influenced by finite size effects we perform two sets

of simulations: simulations for chains with 31 ions and for chains with 91 ions. The

parameters of the simulations are as follows: separation between ions in linear chain

configuration, a = 12.9 µm, ωi/(2π) = 500 kHz, ωf/(2π) = 140 kHz, T = 5 mK, Γ =

1.5×10−20 kg s−1 and ions mass ism = 172 a.m.u., which corresponds to Yb+ ions. The

above parameters were chosen since they approximate well the physically realistic Yb+

traps (apart from the fact that the chain in physical experiments would normally have
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open boundary conditions). Figure 3.4 shows the results of the simulations. Both graphs

have approximately linear form with similar slopes. The two lines that have slopes of

1/3 and are drawn to check how well the data matches the theoretical prediction. As

we can see there is a good agreement between the computer experiment and the theory.

To be more quantitative, the linear regression analysis of the results of simulations

with 31 ions gives a line of slope 0.3267 with regression coefficient of 0.9988. The

linear regression analysis of the results of simulations with 91 ions gives slope of 0.3417

with regression coefficient of 0.9957. Both results give a scaling within 2.5 % of the

theoretically predicted value.

We believe that figure 3.4 provides a strong evidence for the existence of mean field

KZ scaling with an exponent of 1/3. One should note that these simulations have a

significant difference to the previous numerical tests of KZ theory. Here, we simulate the

microscopic equations of motion and extract numerically the KZ scaling exponents. The

theoretical prediction is made using an analytic mapping to the field theory followed by

a transformation that eliminates τQ from the field theoretic equations of motion. These

approaches are very different but give the same scaling of 1/3. On the other hand in

many works (e.g. [76, 77]), both the theoretical analysis and the numerical analysis is

carried out on the same field theoretic equations of motion.

3.6 Chapter conclusions

In this chapter, we have presented an alternative method of deriving the scaling of the

average number of topological defects formed in non-adiabatic phase transition as a

function of quench rate. Whereas KZ theory relies on the knowledge of the equilib-

rium critical exponents of the phase transition and an intuitive physical argument, the

presented method does not use equilibrium critical exponents and is mathematically

rigorous. We use this method to derive the defect scaling law for a field obeying model

A equations of motion and find it in agreement with existing predictions that are based

on KZ theory. To demonstrate the general applicability of our approach we also derive

the defects scaling for the field theory obeying model B equations of motion. We also

show that using our method it is possible to naturally generalize the scaling laws to

finite size systems. Finally, we apply the theory to linear to zigzag phase transition and

obtain the scaling exponent of 1/3 for the underdamped dynamics. This prediction is

confirmed using molecular dynamics simulations.
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Chapter 4

Experimental generation of kinks

This chapter focuses on experimental measurement of KZ scaling using structural lin-

ear to zigzag transition in the trapped ion system. The experiments were done in

Physikalisch-Technische Bundesanstalt (PTB, Germany) using Yb+ ions [108] and in

the University of Mainz (Germany) using Ca+ ions [129]. The experimental results

agree very well with the results of molecular dynamics simulations and quantify pre-

cisely the defects scaling in small inhomogeneous crystals. More data will be needed to

extrapolate these finite size scaling measurements to the thermodynamic limit.

4.1 General experimental considerations

Ideally for the measurement of the KZ scaling we should impose periodic boundary

conditions (PBC) onto the ion crystal. We have seen in the previous chapter that

with PBC the KZ scaling in a small system consisting of just 31 ions was identical

to the scaling expected in the thermodynamic limit. In principle, periodic boundary

conditions could be realized using ion storage rings [131, 13] or octupole traps. To the

best of our knowledge, at the moment there are no groups working with ion crystals

in storage rings. Laser cooling and structural organization in octupole traps has been

observed only recently [66] and is currently under investigation [86]. For this reason,

we have to resort to studying KZ mechanism in inhomogeneous crystals produced in

linear Paul traps. The inhomogeneity of the phase transition will affect the measured

scaling. To extrapolate the measurements to the homogeneous thermodynamic limit

one would have to vary the size of the system as described in Chapter 3, but in this

thesis we will only measure finite size inhomogeneous scaling leaving this extrapolation

for future work.

From a practical point of view creating kinks via a structural phase transition in

small inhomogeneous chains poses a problem of kink losses at the boundaries of the

chain. In order to minimize kink losses one either has to dissipate energy quickly via

laser cooling, use longer chains or find a parameter regime where kinks are attracted
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to the centre of the chain rather then the edges of the chain. The rate of dissipation is

limited by the available laser power. The number of trapped ions in a crystal is often

limited by the fact that to trap many ions in a linear chain necessitates the use of low

axial secular frequencies at which it is difficult to maintain low ion temperatures. The

trap in PTB can easily hold 30 Yb+ ions but longer chains become increasingly difficult

to obtain. The trap in Mainz could easily hold 16 Ca+ ions and with difficulty up to

22 Ca+ ions. On the other hand the numerical simulations in the theoretical proposal

paper [37] were done for 50 Ca+ ions. Thus it is important to determine whether it

is at all possible to measure defect scaling in chains of as little as 16 ions or will the

kink losses be too great. Using molecular dynamics (MD) simulations we have observed

that the two dimensional kinks used in the original proposal are always lost in chains

of 16 ions. To stabilize the kinks one has use a small radial asymmetry of the trap

(ωx/ωy . 1.1), such that the kink can transform into a quasi 3-dimensional structure.

The quasi 3-dimensional kinks are lowest in energy when they are in the centre of the

chain [89] and thus they move to the centre where they stabilize. For a chain of 30 ions

used in PTB experiments, the MD simulations indicate that it is possible to obtain two

dimensional Z2 kinks (cf Chapter 3) and use them to measure defect scaling with the

quench rate. However, if the quench is performed sufficiently deeply then as was first

noted in [81] these kinks are transformed into “extended” kink structures where one

row of the zigzag has an excess of one ion. Similarly to the quasi 3-dimensional kinks,

these extended kinks are attracted to the centre of the chain. Kinks can be regarded

as collective particles moving in an effective potential known as the Peierls-Nabarro

potential. The technique for calculating the PN potential and hence predicting the

stable locations of the kinks will be presented in Chapter 5.

4.2 Molecular dynamics simulations

Molecular dynamic simulations are important both in the design stage of the experi-

ments and for the interpretation of the experimental results. During the experimental

design MD simulations help to choose the optimal experimental parameters. For the

analysis of the results the MD simulations provide information about the dynamics of

the system during the quench - due to the long camera exposure time the experimental

results only provide kink statistics in the end of the dynamical evolution.

We have tried to keep the simulation model as simple as possible whilst capturing

the essential features of the dynamics. In particular, we ignore trap micromotion, the
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non-linear nature of the laser cooling force and we approximate the time dependence

of the trap frequencies. We take the potential energy of N ions to be given by

V (t) = Vh(t) + Vc,

Vh =
N∑

j=1

1

2
m
(
ω2
x(t)x

2
j + ω2

y(t)y
2
j + ω2

z(t)z
2
j

)

Vc =
Q2

2

N∑

i 6=k

N∑

j=1

1
√

(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2

where the secular frequencies ωx, ωy and ωz have a possible time dependence that

induces the structural transition of the ion chain from a linear to zigzag configuration.

The dynamics of the system is modeled by the Langevin equation. The equations of

motion for the jth ions are given by

d2xj
dt2

+ ω2
x(t)xj + η

dxj
dt

+
∂

∂xj
Vc = ξxj(t) (4.1)

〈ξxj(t)〉 = 0 (4.2)

〈ξαj(t)ξβk(t′)〉 = 2ηkBTδαβδjkδ(t− t′), (4.3)

where α, β = x, y or z. Equations for the y an z degrees of freedom are of the same

form as equations (4.1)-(4.3). By the fluctuation dissipation theorem the effect of the

frictional force Fη = −ηẋ and the stochastic force ξj(t) is to thermalize the ions at a

temperature T .

4.2.1 Validity of modelling approximations

The simulation model outlined above contains several approximations and free param-

eters. The first approximation is the ponderomotive or pseudopotential approximation,

which approximates the time varying potential of the Paul trap by a time independent

harmonic confining potential. Secondly, the model uses the Langevin dynamics approx-

imation, which simplifies the description of atom-laser interaction. Finally, there are

two parameters in the model, whose true experimental values are only approximately

71



known. These are the values of the friction coefficient and the temperature.

It is important to make sure that the KZ scaling law is not sensitive to the free

parameters and the modelling assumptions at least for some range of parameters. If

a small change in parameters affects the measured scaling then it is not possible to

claim that a universal scaling law has been measured. Moreover, to have a meaningful

comparison of simulation results and experimental data one has to make sure that the

choice of the parameters and the modelling simplifications do not significantly influ-

ence the simulation results. We now individually consider the effect of each modelling

assumption.

Pseudopotential approximation and micromotion

The use of pseudopotential theory (PPT) significantly reduces the computational dif-

ficulty of the simulations. The reason for this is that the the integration time step in

the PPT simulations can be much greater than the integration time step in the time

dependent trap model. In this section we briefly review linear Paul trapping theory

and PPT. Then we discuss the limitations of PPT and argue why it is nevertheless

appropriate for modelling defect creation in linear to zigzag phase transition.

The equations of motion of a jth ion in a Paul trap are given by

d2xj
dξ2

= − (a− 2q cos (2ξ)) xj −
e2

4πǫ0

d

dxj

∑

j<k

1

|rj − rk|
(4.4)

d2zj
dξ2

= −
(
2ωz

Ω

)2

zj −
e2

4πǫ0

d

dxj

∑

j<k

1

|rj − rk|
, (4.5)

where a = 4eU/mΩ2r20, q = 2eV/mΩ2r20, U and V are static and dynamic voltage

magnitudes on the electrodes, Ω is rf driving frequency on the trapping electrode,

r0 is the distance between the centre of the trap and the electrodes, ξ ≡ tΩ/2 and

rj = (xj, zj) denotes the coordinate of the jth ion. Here for simplicity we consider

the motion of the ion in the xz-plane, ignoring the motion in the radial y-direction.

If the cloud of ions is very dilute then the Coulomb interaction term in equations

(4.4) and (4.5) can be neglected since the ions are unlikely to be close enough to

each other to experience significant mutual repulsion. In this case, the equations of

motions for a transverse coordinates of each ion are simply Mathieu equations. For

small Mathieu parameters |a| ≪ 1 and |q| ≪ 1 the system is stable and the cloud will
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remain indefinitely confined to a finite region of space. In this non-interacting limit,

the ion coordinates in the transverse direction obey

xj(t) = x0 cos (ωxt+ φx)
(

1− q

2
cos (Ωt)

)

+O

(
q2

4

)

, (4.6)

where ωx = 1
2
Ω
√

q2

2
+ a is the secular transverse frequency. In equation (4.6) the

term x0 cos(ωxt+ φx) is the secular motion of the ion and the term q
2
cos(Ωt) describes

the small amplitude rapid modulation of the secular motion, which is known as the

micromotion.

At low temperatures the ions have less kinetic energy and the density of the clouds

reduces. Consequently, the ions start to interact and eventually crystallize. The ion

crystal is not a static structure but is a periodic solution with ions oscillating at the

rf frequency Ω, about a well-defined average locations. The ion coordinates in the

transverse direction obey

xj(t) = x̄j

(

1− q

2
cos(Ωt)

)

+O

(
q2

4

)

. (4.7)

The pseudopotential (PPT) or ponderomotive approximation replaces the time-

dependent trapping potential in the transverse direction with the harmonic potential

at secular frequency ωx. This approximation accurately reproduces the secular motion

of non-interacting ions but looses the micromotion and can lead to inaccuracies in the

dynamics of interacting particles. The full time dependent theory of trapped interacting

particles and the PPT can potentially disagree on 1) the equilibrium positions of ions

in the crystal and 2) the normal modes of the crystal [80]. Both of these points are

relevant for the KZ experiments, since the theory of the linear to zigzag structural phase

transition and hence the KZ critical exponents were derived using PPT.

The equilibrium positions of the ions in a crystal are found in PPT by initializing the

ions approximately near their expected equilibrium locations and solving numerically

the overdamped equations of motion. The ions move along the energy gradient until

they reach a configuration that minimizes the potential energy. In order to obtain the

periodic crystal solution in the time dependent trap, one solves the equations of motion

with friction and then slowly the friction is turned off giving numerically the oscillating

solution. It was verified in many works that the linear crystal with its axis of symmetry

along the z-direction has essentially the same structure in PPT and full time dependent

trap (see, for example, [89] and [70]). In [89] it was shown that the structures of zigzag
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chains of 20-60 trapped Mg+ ions (possibly containing kinks) are essentially identical

with and without micromotion. Similarly, the agreement has been found between the

equilibrium positions found using PPT and time dependent trap calculations for zigzag

crystals composed of 6 to 17 trapped Ca+ ions. These results encourage the use of

the PPT for modelling the linear to zigzag phase transition but do not fully justify

its use, since it is also necessary to determine the effect of micromotion on the normal

modes of the crystal. One should note that it is not immediately obvious that PPT

would accurately predict the equilibrium positions, and in fact counter examples have

been found - crystals whose shape cannot be obtain using the PPT and, which, for this

reason, have been named “peculiar” crystals [80].

In order to fully justify the use of the PPT as a starting point for the derivation

of the Ginzburg-Landau theory of the linear to zigzag phase transition and hence also

KZ scaling, it must also be shown that the transverse modes of the crystal and their

frequencies are identical within the PPT and the full time dependent theory. In [80] it

is shown analytically that if the crystal is in linear chain configuration and lies along

the axis of symmetry (the z-axis) then the PPT transverse modes and their frequen-

cies are indeed identical to the full time dependent solutions. A good agreement has

also been found between the location of the critical point in the PPT calculations and

full time dependent calculations [70]. On the other hand, in the zigzag configuration

the true modes and their frequencies may significantly deviate from the PPT calcu-

lations, as was demonstrated in [70] using Floquent-Lyapunov theory calculations [79]

and experimental measurements. The Ginzburg-Landau theory is only applicable in the

vicinity of the linear to zigzag phase transition and thus the partial failure of the PPT

in describing the crystal dynamics deep within the zigzag regime has no bearing on the

critical properties of the phase transition and hence on the Kibble-Zurek mechanism.

The combined evidence provided by the works [80], [70] and [89] suggest that indeed

the PPT is a justified approximation in describing the dynamics in the vicinity of

linear to zigzag phase transition, since the crystal structure, the mode spectrum and

the location of the critical point are shown to be accurately described by the PPT.

One may, however, still suspect that the micromotion oscillations directly influence

the defect creation mechanism or the stability of the resulting defects. This would be

surprising since micromotion is a driven synchronous motion, which takes place on the

timescale which is at least an order of magnitude faster than quench rate. Nevertheless,

in order to make sure that the micromotion has no effect on statistics of defect formation,

we have carried out simulations to test KZ mechanism using PPT and the full time
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Figure 4.1: Average density of defects 〈d〉 vs the logarithm of quench rate log(1/τQ).
The data was averaged over 178 runs. The simulations were done with and without
micromotion.

dependent equations of motion. The simulation were done for crystals of 40 Ca+ ions.

Trap parameters were taken to be U = 0, Ω/2π = 12 MHz and ωz/2π = 55 kHz. The

Mathieu parameters were a = 0 and q was varied linearly from q = 0.13 to 0.05. These

values of q correspond to voltages V of the order of 100 V. In the pseudopotential

approximation this corresponds to quench from the secular frequency ωx/2π = 551 kHz

to 212 kHz. The friction coefficient was taken to be the optimal for the laser cooling

4S1/2 − 4P1/2 transition. The results of these simulations are shown in figure 4.1. The

results do not indicate any significant statistical difference between simulations with

and without micromotion. These simulations provide further empirical evidence for

the validity of PPT for modelling dynamic linear to zigzag phase transition and defect

formation.

Langevin dynamics

The simulation model utilizes stochastic Langevin equation for emulating the interac-

tion of the ions with a heat bath. Particles undergoing Langevin dynamics will execute

a random walk around their equilibrium positions; the mean squared displacement of

the walk and the mean squared velocity are related to the temperature and the fric-

tion coefficient via the fluctuation dissipation theorem. Previous numerical work on

KZ mechanism in linear to zigzag phase transition have also used Langevin thermostat

model [30, 37]. What is the justification for this modelling approach and when does it

fail to describe accurately the dynamics of ions undergoing Doppler cooling?

During Doppler cooling ions in the electronic ground state absorb photons from the
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laser beam with red detuning and the excited ions emit photons in random directions.

The rate of photon absorption is given by a Lorentzian function in the velocity of the

ions

Rs =
Γ

2

Ω2/2

(ω − ω0 + k · v)2 + Ω2/2 + Γ2/4
, (4.8)

where Γ is the rate of spontaneous emission for the electronic transition, ω is the

frequency of the laser, ω0 is the frequency of the transition, Ω is the Rabi frequency,

k = (kx, ky, kz) is the wavevector of the laser beam and v = (vx, vy, vz) is the velocity

of the ion. The laser beam is typically oriented at 45◦ to the trap axis so that an ion

can experience radiative pressure and ultimately cooling in all three directions. When

an ion moves towards the laser beam it is more likely to absorb a photon since due

to the Doppler effect the ion comes closer to resonance with the beam. Conversely,

when the ion moves away from an ion beam it is less likely to absorb a photon. An

ion confined in a trap undergoes oscillatory motion, reversing its direction of motion

in every period of the oscillation, thus the ion will experience a net slowing down force

from the laser. If velocity v is small, then by Taylor expanding equation (4.8), it can

be shown that the rate of photon absorption in one oscillation cycle is approximately

linearly proportional to v and thus the frictional force is inversely proportional to v as

in the Langevin dynamics. The stochastic force on the ion arises due to the spontaneous

emission of photons in a random direction. Thus when the velocity of ions is small the

ions undergo approximately Langevin dynamics.

Simulation of laser cooling using the Lorentzian distribution (4.8) for describing

ion-laser interaction have shown that the cloud of ions can crystallize and reach ther-

modynamic equilibrium [24]. In the state of thermodynamic equilibrium and at low

temperatures, the dynamics is essentially Langevin. Since in the KZ experiments the

ion crystal is close to the thermodynamic equilibrium and Doppler cooling limit, we are

justified to use the Langevin dynamics model. Note that at high quench rates the sys-

tem is driven far from the thermodynamic equilibrium and in this regime the Langevin

dynamics model is likely to fail. However, at high quench rate, KZ mechanism breaks

down due to non-universal defect losses and thus this regime is of little interest to the

investigations of KZ mechanism.
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Friction coefficient

The dynamics of the trapped ions interacting with the cooling laser contains both the

inertial and the friction forces. Recall from previous chapters or reference [30] that the

time dependent Ginzburg-Landau model for the linear to zigzag phase transition in the

homogeneous chain is given by

∂ttφ− h2∂xxφ+ η∂tφ+ δ(t)φ+ 2Aφ3 = θ(x, t), (4.9)

where h = ω0a
√
log 2, A = 93ζ(5)ω2

0/(32a
2), ω0 =

√

Q2/ma2, a is the spacing between

the ions, δ(t) is the quench function, η is the friction coefficient, θ(x, t) is the stochastic

white noise and φ(x = aj) = (−1)jyj is the order parameter with yj being the transverse

displacement of the jth ion. θ(x, t) obeys the following statistical relations

〈θ(x, t)〉 = 0 (4.10)

〈θ(x, t)θ(x, t′)〉 = 2ηkBTδ(t− t′)δ(x− x′). (4.11)

Since equation (4.9) contains both the second and the first time derivatives of the or-

der parameter there are two different time scales associated with equation (4.9). Thus,

there are two dynamic universal exponents associated with equation (4.9): z = 1 cor-

responding to the overdamped dynamics and z = 2 corresponding to the underdamped

dynamics. KZ scaling laws can be derived by neglecting either the friction or inertial

term. Neglecting the inertial term results in the overdamped KZ scaling and neglecting

the friction term results in the underdamped KZ scaling. The formation of defects and

KZ mechanism in a system with the dynamics given by equation (4.9) was analyzed

in [77]. In [77] it was shown using qualitative KZ arguments that in the overdamped

limit the domain length scale is ξ̂ ∝ (τQ/η)
1/4 and in the underdamped limit ξ̂ ∝ τ

1/3
Q .

There are two notable features of the results presented in [77]: 1) that the KZ scaling is

different in the overdamped and underdamped regimes and 2) that in the overdamped

regime the number of domains depends on the friction coefficient whereas in the under-

damped regime it is independent of the friction coefficient. These two predictions were

corroborated in [77] using numerical simulations. The numerical simulations involved

measuring the KZ scaling for a range of different values of η. It was observed that at

low η the number of defects produced at a given quench rate looses its sensitivity on

the friction coefficient η. The fact, that when the friction is small the density of defects
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Figure 4.2: Defect formation vs. quench rate. The blue markers correspond to η =
2.5 × 10−21 kg s−1 (circles), η = 3.0 × 10−21 kg s−1 (triangles), η = 4.0 × 10−21 kg
s−1 (inverted triangles) and η = 6.0 × 10−21 kg s−1 (pentagons). The black markers
correspond to the experimental results. The black line gives the measured scaling and
was fitted only in the green region which is free of losses.

is independent of η, is very convenient for the KZ experiments in ion traps, since in

the ion trap system it is only known that the frictional force is small compared to the

inertial force and the precise value of η is unknown. This implies that η is not a fitting

parameter when it comes to comparing the results of the simulations and experiments.

To verify that the simulations in the underdamped regime are not sensitive to the

friction coefficient η we have performed simulations with η ranging from 2.5× 10−21 kg

s−1 to 6.0× 10−21 kg s−1. The simulations were done for crystals of 30 Yb+ ions with a

linear quench in radial secular frequency with the following parameters, ω
(i)
x /(2π) = 500

kHz, ω
(f)
x /(2π) = 140 kHz, ω

(i)
y /(2π) = 517 kHz, ω

(f)
y /(2π) = 206 kHz and ωz/(2π) =

24.6 kHz. The temperature in the simulations was set to T = 5 mK. The results of

the simulations are shown in figure 4.2. The figure also contains experimental data

taken in the PTB group; the details of the experiment will be described in the later

parts of the chapter. The simulation results for the four different friction coefficients

and the experimental results closely match for quench rates ln(1/(νzτQ)) . −1.9. At

faster quench rates there is a plateau in the KZ scaling and a high sensitivity on the

friction coefficient. This behaviour was also observed in previous work, for example, in

[76, 77]. The reason for this is that when the quench rate is fast the system gains a large

amount of kinetic energy, which does not have time to dissipate. This kinetic energy

results in high mobility of kinks and consequently large kink losses due to annihilation

of kinks and losses at the boundaries of the chain. Kink motion and annihilation

processes are not universal and result in the deviations from the KZ scaling law. We
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may expect poor agreement between the simulation results and the experimental results

at high quench rates due to the sensitivity of the results to the friction coefficient in

this regime. However, in the regime of slow quenches, which is the important regime

for the observation of KZ mechanism, there should be a good agreement between the

results of the simulations and experiments since there the results are independent of

the friction coefficient. This is corroborated by the simulations results shown in figure

4.2.

Temperature

The magnitude of the stochastic force in the Langevin dynamics simulations is related

by the fluctuation dissipation to the friction coefficient η and the temperature T . The

temperature of the trapped ion crystal is only approximately known and therefore it is

important to make sure that the KZ scaling is not sensitive to temperature.

The primary role of the stochastic force in the KZ simulations is to randomize the

system and to simulate the interaction of the system with a heat bath. The correlations

in the system are determined by the internal structure of the system and not on the

magnitude of the temperature. For this reason, it is plausible that the “freeze-out”

correlation length, that dictates the size of the domains, should not depend on the

temperature magnitude. Of course, the stochastic force should be a white noise, as

coloured noise would affect the correlations in the system and potentially the KZ scal-

ing. Numerous simulations at different temperatures confirm the KZ scaling thereby

providing empirical evidence for the lack of sensitivity of KZ scaling on the tempera-

ture. However, it is also observed that at sufficiently high temperatures the scaling can

be disrupted. One reason for this is that the thermal fluctuations may be large enough

to flip a domain thereby destroying the defects. Thermal noise can also induce diffu-

sion of defects, which can results in their mutual annihilation. The process of defect

annihilation is not universal since KZ mechanism only describes the creation of defects.

Motion of the defects (domain walls) is less energetically demanding than a sudden flip

of the whole domain and for this reason it is likely to be the dominant mechanism for

the loss of defects. In order for a defect to move by one lattice site along the chain

it needs to overcome an energetic barrier known as the Peierls-Nabarro (PN) barrier

EPN (see Chapter 5 for detail discussion of the PN barrier and its calculations). If the

thermal kinetic energy has a similar value to EPN or is greater than EPN , then a high

defect diffusion rate is expected.

As long as the temperature is low enough to strongly suppress kink diffusion the
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Figure 4.3: Probability that a reared extended kink remains in the crystal after 200 µs
with increasing temperature.

effect of temperature on the final density of defects should be negligible. In the PTB

experiments, Yb+ ions are laser cooled on the 2S1/2 −2 P1/2 transition and for realistic

trap parameters the estimate of the Doppler cooling temperature is 0.5 mK. Typically

in such ion trap experiments the temperature may be an order of magnitude higher

than the Doppler cooling limit. In order to test whether the thermal fluctuations can

induce kink motion and cause loss of kinks from the trap, we conducted the following

simulations. A chain was initialized in an extended kink configuration (see next section

for the definition of extended kink). This configuration was chosen to closely match

the parameters of the trap in the end of quench that was ultimately used in the PTB

experiment. The system was then evolved for 200 µs using Langevin-Impulse method

at different temperatures and the temperatures ranged from 1 mK to 15 mK. In the

end of each simulation the number of kinks present in the chain was evaluated. The

simulations were repeated a number of times in order to measure the probability of kink

being lost from the chain in 200 µs. The plot of kink loss probability versus temperature

of the crystal is shown in figure 4.3. We can see that below ∼ 7 mK kink losses are

strongly suppressed. For temperatures T & 7 mK the kink losses are considerable.

Extended kink is stable in the centre of the chain and its loss is caused by the thermal

fluctuations that excite the motion of the kink, enabling it to reach the edge of the

crystal. The potential energy that the simulated kink must overcome in order to reach

the edge of the crystal is around 20 mK/kB as will be shown in calculations in Chapter

5. The results shown in figure 4.3 are qualitatively consistent with this calculation.

The results shown in figure 4.3 provide a level of confidence that the scaling measured

in PTB experiment would not be influenced by post quench losses of kinks induced by

the thermal fluctuations. The post quench time is given by the camera exposure times,

which in the PTB experiments ranged from 50 to 200 ms. Nevertheless, since the
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temperature in the crystal is likely to be smaller than 7 mK the probability of the loss

of kink due to the action of the stochastic thermal forces is small. The kinks are more

likely to escape from the crystal not because of thermal effects but rather because of

the kinetic energy that they gain during the quench and the rare collision events with

the molecules of the residual gas in the vacuum chamber.

4.3 PTB experiments

The trap used in PTB is a microfabricated trap designed for metrological application.

The apparatus is dedicated to the trapping of Yb+ ions. The details of the operation

and construction of the trap can be found in [109]. Using preliminary MD simulations

we have identified

• that ∼ 30 ions is a sufficient number of ions for generation of kinks in the trap

with an experimentally realistic secular frequencies,

• the size of the asymmetry factor ωx/ωy that confines the kink structure to two

dimensions is ∼ 1.3,

• the range of quench times for which a KZ scaling can be observed is from about

40 µs to 400 µs.

Kinks were generated using the radial quench as was suggested in the theoretical pro-

posal [37].

4.3.1 Numerical simulations

Quench is achieved experimentally by the modulation of the radio frequency (rf) driving

signal. The signal itself can be precisely measured and the secular frequencies can be

calculated as a function of time. In general, the quench of the secular frequencies is not

a linear function in time. Nevertheless to simplify the modelling we will take the quench

function to vary linearly between the initial and final values of the secular frequencies

ωx(t) =







ω
(i)
x for t < 0

− t
τQ

(

ω
(i)
x − ω

(f)
x

)

+ ω
(i)
x for 0 ≤ t ≤ τQ

ω
(f)
x for t > τQ,

(4.12)
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where ω
(i)
x is the initial secular frequency, ω

(f)
x is the final secular frequency and τQ is the

time of the quench. The quench in the radial y direction has the same form as given by

equation (4.12) only with different values of ω
(i)
y and ω

(f)
y . We assume that it is the rate

of change of the secular frequency in the vicinity of the critical point that is important

for the production of defects. The experimental quench function is approximately linear

near the critical point of the linear to zigzag phase transition. For this reason in the

simulations we use a linear quench function with the slope corresponding to the slope

of the experimental quench near the critical point.

The optimal parameters were found to be ω
(i)
x /(2π) = 500 kHz, ω

(f)
x /(2π) = 140 kHz,

ω
(i)
y /(2π) = 517 kHz, ω

(f)
y /(2π) = 206 kHz, ω

(i)
z /(2π) = 24.6 kHz and ω

(f)
z /(2π) = 24.6

kHz. Setting the trap asymmetry ωx/ωy ∼ 1.3 squeezes the configuration to the zx

plane. The temperature of the crystal in the trap is not easy to measure and was not

possible at the time of the experiment. The temperature can, however, be estimated.

Yb+ ions are laser cooled on the 2S1/2−2P1/2 transition at a wavelength of 370 nm. The

Doppler cooling limit for this transition is 0.5 mK. The temperature of a the crystal of

30 ions is likely to be somewhat higher - in the simulation we use 5 mK.

For the laser cooling of the ions a single traveling wave leads to the following greatest

possible coefficient of the optical cooling force [88]

η =
2s

(2 + s)2
~k2, (4.13)

where s is the saturation of the cooling transition, k is the wave vector of the cooling

laser. Equation (4.13) gives the friction coefficient when the laser detuning is ∆ = −Γ/2,

where Γ is the linewidth of the transition. The transverse beam profile is focused down

to horizontal and vertical waist sizes of 8.8 mm and 80 µm. For a laser power of 630

µW this results in an estimated experimental friction coefficient of η = 4 × 10−21 kg

s−1, along a single axis. In reality the friction coefficient is smaller and we performed

simulations for a range of different η, applying the same friction coefficient in all three

directions. We expect to find that as long as the system is underdamped and the inertial

term dominates the dynamics there should be no influence of the friction coefficient on

the scaling of defects. Friction coefficient can influence the observed number of defects

at fast quench rates, since in the regime of slow rate of energy dissipation resulting

kinks can have high kinetic energy and escape the chain at the boundaries.

Figure 4.4 shows snapshots of simulated dynamics illustrating the creation and

trapping of a defect. As the radial confinement is weakened the linear chain undergoes
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(a) (b)

Figure 4.4: a) Creation of one kink and its stabilization via the transition into extended

kink structure. The trap parameters were be ω
(i)
x /(2π) = 500 kHz, ω

(f)
x /(2π) = 140

kHz, ω
(i)
y /(2π) = 517 kHz, ω

(f)
y /(2π) = 206 kHz, ω

(i)
z /(2π) = 24.6 kHz, ω

(f)
z /(2π) = 24.6

kHz and τQ = 140 µs. b) Formation of two defects during quench and their ultimate
annihilation. The trap parameters are the same as in a) except τQ = 60 µs.
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a structural phase transition. The phase transition is inhomogeneous - first it occurs in

the centre of the chain and the zigzag phase continuously grows as the quench progresses.

Since the quench is rapid there is a possibility of kink creation; a nascent kink is visible

in figure 4.4a2. This type of kink is similar to the soliton of the φ4 model and was used

in the previous chapter in the study of KZ mechanism for linear to zigzag transition

with periodic boundary conditions. This type of kink propagates along the chain by

the transverse movement of ions. Since the system gains the kinetic energy from the

quench, the kink moves and its motion is typically directed towards the edges of the

chain (figure 4.4a3-a7). If the kink continues its progress towards the edge of the zigzag

region, it will be eventually lost from the chain. However, at some critical value of ωx

the kink undergoes a structural transition into an extended kink. The structure of this

kink is such that the top or bottom row has an excess of ion. The motion of this type

of kink is via the axial movement of ions. This type of kink is attracted to the centre of

the chain as will be discussed in detail in Chapter 5. After a brief oscillation the kink

settles in the centre. The kink stabilization mechanism via structural transition to the

extended structure is useful since it increases the chance of a kink being observed in

the experiment.

Figure 4.4b shows a simulation where two kinks are created. After the kinks are

created they move towards the opposite edges and eventually transform into extended

structures. The extended kinks then annihilate one another (figure 4.4b5-b6). In prin-

ciple, it is possible to create chains with multiple extended kinks, but this would require

the use of more ions, specifically engineered trapping potentials or addition of ions of

different mass. In our set up the chains in the end of the evolution will always have

either no kinks or one kink.

Figure 4.5 shows the results of simulations for the number of defects produced

as a function of quench rates for several different values of friction coefficients. The

number of defects can be calculated at all times during the quench. This provides the

information about the kink losses that can come from the annihilation of defects or

losses at the edges of the zigzag. In figure 4.5 the open markers indicate the domains

counted shortly after the system underwent the structural transition. The filled markers

indicate the number of domains after some time has elapsed after quench. One can see

that for ln(1/ωxτq) & −2.1 the number of created defects is significantly larger than

the number of surviving defects. There are two reasons for this: firstly, at fast quench

rates the system acquires more kinetic energy and the defects have a higher chance

to escape the chain at the edges, and secondly at high quench rates there is a higher
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Figure 4.5: Scaling of the average number of domains in the zigzag phase as a function of

quench rate in an inhomogeneous crystal of 30 ions. The trap parameters were ω
(i)
x /(2π) =

500 kHz, ω
(f)
x /(2π) = 140 kHz, ω

(i)
y /(2π) = 517 kHz, ω

(f)
y /(2π) = 206 kHz, ω

(i)
z /(2π) =

24.6 kHz, ω
(f)
z /(2π) = 24.6 kHz Open markers indicate the number of defects shortly

after quench. Filled markers indicate the final number of defects. Red diamond markers
are experimental results.

chance of creating a pair of defects that would annihilate one another. Note also that

the structure of the observed plateau at high quench rates is sensitive to the friction

coefficient. This is because the rate of energy dissipation influences the amount of

kinetic energy in the system remaining after quench and hence the probability of kink

loss. For −2.4 . ln(1/ωxτq) . 2.1 the number of created defects is very close to the

number of surviving defects. For this quench range the probability of formation of two

defects is very small and thus there are very few annihilation events. The quench is also

slow and the amount of kinetic energy in the system in the end of the quench is small

and hence few defects are lost at the edges. The dependence on the friction coefficient

η is weak in this quench range. For low quench rate ln(1/ωxτq) . −2.4 the number of

created defects is visibly larger than the number of surviving defects. The reason for

this is that for very slow quenches the kinks can move faster than the phase transition

front and thus can escape the chain before they have a chance to transform to extended

structures.

4.3.2 Experimental results

The details of the experimental implementation can be found in [108] and Appendix A.

Figure 4.6 shows experimental images of odd and extended kinks obtained by a
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Figure 4.6: Pictures of experimentally realized kink configurations. Top: Odd kink,
dominant for shallow quenches (νt/2π = 500 kHz to 204 kHz). Bottom: Extended kink,
dominant for deep quenches in radial frequency from νt/2π = 500 kHz to 140 kHz. Expo-
sure times are 50 ms and 200 ms, respectively. The Coulomb crystals consist of 29±2 ions

and the phase transition sets in at ν
(c)
t /2π ≈ 275 kHz. For the statistics measurements,

we use the extended kink configuration to preserve and stabilize the created localized odd
kinks. [The picture was taken from [108].]

non-adiabatic quench from linear configuration to zigzag configuration. These kink

were obtained by performing a radial quench from ωx/2π = 500 kHz to 204 kHz in the

case of odd kink and νt/2π = 500 kHz to 140 kHz in the case of extended kinks. An

ellipticity of 30% was induced to confine the ions to a plane i.e. ωy = 1.3ωx.

The experimental results are shown in figure 4.5 (red diamond markers). Each point

is obtained by averaging around 2000 experimental images. There is a good agreement

between the experimental results and the simulations. These data constitute an accu-

rate quantification of the KZ scaling in a finite system. In order to extrapolate the

scaling to the thermodynamic limit more experiments would be needed. In particular,

as was explained in Chapter 3, one should make the same measurement for chains in

traps at different values of axial confining frequency ωz. However, this is beyond the

scope of the present work.

4.4 Mainz experiments

The Mainz experiment differs from the PTB experiment in several aspects

• chains of 16 Ca+ ions are used,

• linear to zigzag phase transition is induced via axial compression rather than the

radial relaxation,

• quasi 3d-kinks are produced rather than extended kinks.
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The outcomes of the Mainz experiment are similar to the outcomes of the PTB ex-

periment: both experiments produce for the first time kinks via structural transition;

the results of both experiments agree with molecular dynamics simulations and both

experiments quantify finite size KZ scaling.

In the remaining part of the chapter we present the details of Mainz experiment,

which is based on [129].

4.4.1 Numerical simulations

Numerical simulations were essential for the design of the experiment and the inter-

pretation of the experimental results. The molecular dynamics simulation method was

the same as for the PTB experiment, namely, the pondermotive approximation was

used and the Langevin-Impulse integrator was used to evaluate the dynamics of the

ions. The transition is induced by increasing the axial confining frequency. Recall that

from the Ginzburg-Landau analysis (Chapter 2) the critical parameter for the linear to

zigzag is

δ = ω2
x − ω2

c (4.14)

where ωx is the radially confining frequency and ωc is the critical frequency of the tran-

sition. According to [96, 95], for finite number of ions the critical transition frequency

is given by

ωc ≈
3Nωz

4
√
logN

. (4.15)

where ωz is the axially confining frequency. The system is at a critical point when

δ = 0 or in other words when ωx = ωc. Since ωc ∝ ωz it is possible to induce the phase

transition by axial trapping frequency ωz rather than the radial confining frequency ωx.

The axial trapping frequency is determined by the voltage amplitudes on the end cap

electrodes of the rf Paul trap. It is possible to measure the axial frequency as a function

of the applied endcap voltage (figure 4.7) and the endcap voltage can be measured

accurately using an oscilloscope. Thus the functional form of the time dependence of

the axial frequency is known to a high degree of accuracy. This quench function is used

in the molecular dynamics simulations and the radial frequencies are kept at constant

values. Care had to be taken to make sure that the endcap voltage variation (figure 4.7)

is a smooth function. Sharp features in the quench function can excite breathing modes

of the chain and even result in melting of the crystal. For example, a constant-linear-
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constant quench function used in modelling the PTB experiments results in melting

of the crystal. Figure 4.7 (bottom) shows the simulated axial trajectories of the ions

during the quench with a smooth sigmoid function. We can see that during the phase

transition the chain undergoes a smooth compression and the breathing mode is only

excited at the late stages of the dynamics, when the chain is already in zigzag phase.

The radial aspect ratio used in the simulations and experiments was ωx/ωy between

1.03 and 1.07. This aspect ratio is much smaller than 1.3 - the aspect ratio used in the

PTB experiment. The radial confinement is almost symmetric but the small asymmetry

is enough to confine the zigzag configuration without kink to the zx-plane. The kinks

in such a system assume a 3 dimensional structure - the ions in the kink region will

move in y-direction to minimize the energy of the system. Such kink structures were

studied in detail in [89], where they were spontaneously created in chains of Ca+ ions

by chance collisions of the zigzag chain with the background gas. In [89] the authors

have shown that quasi 3-dimensional kink structures have the lowest energy when the

kink is in the centre of the chain. So just as the extended kinks, quasi 3-d kinks have

a global minimum in the Peierls-Nabarro potential which is located at the centre. In

the Mainz experiment, quasi 3-d kinks are used in order to stabilize the kinks in the

chain. Indeed, numerical simulations have indicated that restricting the 16 Ca+ system

to a single plane results in total loss of the kinks during the quench (for the given

temperature and final values of secular frequencies).

4.4.2 Experimental results

The details of the experimental implementation can be found in [129] and Appendix A.

Figure 4.8 shows experimental photographs of the linear, zigzag and quasi 3-dimensional

kink configurations. These kinks were obtained via axial quench as explained in the

previous section. The numerical and experimental results for the scaling of the average

number of kinks versus the quench rate are shown in figure 4.9. The constant offset

visible at lower ramping rates stems from background gas collisions at a base pressure

of 1× 10−9 mbar. The scaling was measured at two trap anisotropies: at ωx/ωy = 1.03

and at ωx/ωy = 1.05. At higher anisotropy, more defects are lost but the scaling re-

mains the same. These higher losses can be explained by the fact that kinks have a

larger energy density at higher trap anistropies and hence are more likely to escape the

crystal. There is a good agreement between the experimental results and the results of

the simulation indicating that the molecular dynamics simulations accurately describe
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Figure 4.7: a) Measured voltage (left y-axis) applied to the end-caps (black line). The
dashed line shows the separation between the two structural phases at an axial trap
frequency of ωax/(2π) = 201.7 kHz and a radial trap frequency of ωrad/(2π) = 1394.1
kHz. Inset: dependence of the trap frequency ωax/(2π) on the applied end-cap voltage.
(b) Axial positions of the 16 ions during the ramp as extracted from simulation results.
Diamonds indicate the onset, if any, of the local phase transition for each ion, which
are reached at different times because of the inhomogeneous charge density. The dashed
line indicates the time when the middle ions reach the critical point. The corresponding
crystal configuration is shown before and after the ramp. [The diagrams were take from
[129].]
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a)

b)

c)

d)

e)

f)

Figure 4.8: Fluorescence images of a 16 ion crystal. a) Linear ion crystal before ramping
the axial potential; b) and c) zigzag configuration after the ramp; d) and e) single quasi-
3d defects; and f) double defect configuration. The line clarifies the configuration of the
crystals. The width of one pixel corresponds to 1.7 µm. [The picture was taken from
[129].]

the system. The measured scaling is the finite size KZ scaling and an extrapolation to

the thermodynamic limit requires more measurements.

4.5 Chapter conclusions

In this chapter we have presented two ion trap experiments [108, 129] that generate

structural defects and investigate KZ mechanism. These experiments were the first

to produce kinks in the zigzag chains via spontaneous symmetry breaking. For the

successful generation of kinks in small Coulomb crystals, it was necessary to understand

kink dynamics at realistic experimental parameters. This was done using extensive

molecular dynamics simulations. The dependence of the average number of defects

on the quench rate was quantified experimentally and in numerical simulations. The

experiments provide an important step towards accurate verification of KZ theory.

Nevertheless, in order to extrapolate the KZ scaling measured in small inhomogeneous

crystals to thermodynamic limit more experiments are needed, in particular, one should

also measure the scaling in crystals of various sizes.

After the experiments were carried out, a group in Simon Fraser University per-

formed an experiment, which confirmed the findings of the PTB experiment [49].
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Figure 4.9: Double-logarithmic plot of the measured density of defects d versus the rate
of change γ of the axial trap frequency at the critical point. The fitted function of the
form d ∝ γd (red line) gives an exponent of β = 2.68 ± 0.06. Square markers represent
the rate of defects measured with a higher trap anisotropy of 1.05, showing a reduced
number of defects but a similar fitted exponent of β = 2.62 ± 0.15 (dotted line). Solid
data points are used for the fits. The uncertainty in γ is deduced from the scatter of
repeated recordings of voltage ramps, whereas the uncertainty in d is the s.d. of the
measurements. The blue stars depict the result of MD simulations. [The graph was taken
from [129].]
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Chapter 5

Kinks as discrete solitons

Previous chapters were focused on non-equilibrium phase transitions and the Kibble-

Zurek scenario. The stable topological defects are produced in phase transition because

of the non-linear term in the GL free energy. In one dimensional φ4 theory defects can

be identified as soliton waves, which are localized packets produced by the interactions

of dispersive and non-linear effects. Kinks in the zigzag chains are examples of dis-

crete solitons. Discrete solitons occur in many other physical systems, for example,

in solids, non-linear optics and polymer molecules [69]. Discrete solitons exhibit rich

nonlinear dynamics and are extensively studied [20]. In this chapter we will focus on

some dynamical features of kinks in the zigzag chain. In particular, we will present a

method for calculating the Peierls-Nabarro (PN) potential - the potential in which the

kink moves. The method will be used to calculate the PN potential for the kinks in the

PTB experiment and thereby demonstrate how the stability of the kink is influenced

by the radial confining frequency. We also show that the heavy molecular ions, which

can spontaneously form by chemical reactions with the background gas, produce a dip

in the PN potential and therefore can act as kink “traps”. A method for moving kinks

using heavy ions and applied electric field is suggested. Finally we sketch out a way the

equations of motion can be derived for the kink using the collective variable formalism.

5.1 Solitons and discrete kinks

As was discussed in Chapter 2 when the transverse extent of the zigzag is small com-

pared to the inter-ion spacing, the system can be described by the following Hamiltonian

H =

∫ [
m

2
(∂tφ)

2 +
δ

2
φ2 +

h

2
(∂xφ)

2 +
g

4
φ4

]

dx. (5.1)

The equation of motion for the field is

m∂ttφ− δφ− h∂xxφ+ gφ3 = 0. (5.2)
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Changing units to t′ = t/
√
m, x′ = x/

√
h and dropping primes for notational simplicity

gives

∂ttφ− ∂xxφ+ λ(φ2 − η2)φ = 0, (5.3)

where λ = 1/g and η =
√

δ/g. The solutions φ(x, t) = η and φ(x, t) = −η have

vanishing energy density and are the trivial vacua solutions. There exist also solutions

with non-vanishing energy density that satisfy φ(t,−∞) = −η and φ(t,∞) = η. By

continuity there must be a point x0 such that φ(t, x0) = 0, and in vicinity of this point

the energy density is not zero. Such solution is known as the Z2 kink. It is possible to

show that the Z2 static kink solutions have the following form

φK(x) = ±η tanh
(√

λ

2
ηx

)

. (5.4)

One can Lorentz boost this solution to get a solution describing the kink propagating

at a constant velocity

φK(t, x) = ±η tanh
(√

λ

2
η
x−X√
1− v2

)

, (5.5)

where X = vt is the centre of the kink and v is the velocity of the kink.

It is easy to show that translation of the kink does not affect the energy of the system.

Moreover, one has a Lorentz invariance in the system i.e. there exist soliton solutions

traveling with constant velocity. Such traveling kinks do not excite the phonon modes

of the system i.e. they do not radiate and hence the energy always remains localized

at the soliton - one of the defining features of the soliton systems. The soliton solution

(5.5) exactly satisfies the equations of motion of the field (5.3). However, if one wishes

to solve the partial differential equation (5.3) numerically one must discretize in space.

The discretized version of equation (5.3) is given by

φ̈n =
φn+1 − 2φn + φn−1

a2
+ f(φn−1, φn, φn+1). (5.6)

Equation (5.6) no longer has translational and Lorentz invariance and in general we

should not expect traveling dissipationless kinks to exist (although in special instances

this may be possible [99]). There are several different ways to discretize the non-linearity

f(φn−1, φn, φn+1). Most commonly a one-site discretization is used
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f(φn−1, φn, φn+1) =
1

2
φn(1− φ2

n). (5.7)

It is known that equations (5.6) and (5.7) with boundary conditions

lim
n→−∞

φn(t) = −1, lim
n→+∞

φn(t) = +1, (5.8)

admit only a countable set of stationary kink solutions. Physically, this implies that the

kinks are located in an effective Peierls-Nabarro potential which is a periodic potential

with the period given by the lattice spacing. Half of the stationary kinks are centred on

the maxima of the PN potential - these are metastable kinks; half of the stationary kinks

are centred on the minima of the PN potential - these are stable kinks. The height of the

PN potential is the Peierls-Nabarro barrier, which is physically the minimum amount

of energy that is needed to move a kink by one lattice site. In some very special types

of discretization it is possible to have translationally invariant kinks and moreover it

can be proven that there can also exist kink solutions that travel without radiation,

but this can only be true for special values of kink velocity [99].

In vast majority of cases the discretization of the soliton leads to the PN potential

with a finite PN barrier and also to the coupling of the motion of the kink and the

phonon modes of the system. For this reason, whenever one has a traveling discrete kink

one should expect it to gradually lose its kinetic energy and eventually be trapped in one

of the PN potential wells. Much of the interest in the field of discrete soliton physics is

to analyze the phenomena of kink motion, phonon radiation and kink trapping (see [20]

for a comprehensive review). Many papers focus their analysis on discrete kink arising

in idealized mathematical models, for example, in φ4 model and in Sine-Gordon model.

In the next section we develop a general technique for evaluating the PN potential,

which can be applied to any type of kink including the kinks in zigzag ion chains.

5.2 Method for calculating the PN potential

Let the vector u = {u1, u2, u3 . . . uN} describe the state of a system with N degrees of

freedom. This can for instance describe the state of the field of the discrete φ4 model,

in which case N → ∞. Suppose that there is a kink in the system that is in state u.

The kink can be in different locations and we can introduce a variable X ∈ R that will

denote the position of the kink. To calculate X we must define some function g : u → R

such that X = g(u). The definition of g(u) has to be physically motivated. Let V [u]
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be the function denoting the potential energy of the system. We can now define the

PN potential as a solution to the following optimization problem

UPN(X) = minuV [u] subject to g(u) = X. (5.9)

This optimization problem can be solved using the method of Lagrange multipliers.

The problem (5.9) is equivalent to

UPN(X) = min
u,λ

(V [u] + λ (g(u)−X)) . (5.10)

The minimization (5.10) can be done by solving the following set of simultaneous

algebraic equations

∂u1 {V [u] + λ (g(u)−X)} = 0, (5.11)

. . .

∂uN
{V [u] + λ (g(u)−X)} = 0, (5.12)

∂λ {V [u] + λ (g(u)−X)} = 0. (5.13)

If we know approximately the solution of these equations then using the gradient

descent numerical algorithms it is easy to find an accurate solution for u and hence the

Peierls-Nabarro potential.

5.3 PN potential for kinks in the zigzag ion chains

5.3.1 Types of kinks and definition of kink centre

In order to calculate the PN potential for kinks in zigzag ion chains we must first

understand the structure of the kink and assign the function g(u) which represents the

kink centre. Consider a chain of N ions in 3 dimensional space. The location of jth ion

is specified by a coordinate (zj, xj , yj) and the state of the whole system is specified by

a vector u = (z1, . . . zN , x1 . . . xN , y1 . . . yN). Let z-axis be the axis along which lies the

crystal and x and y-axes lie in radial directions. The labeling of the ions is ordered such

that z1 ≤ z2 . . . zN . Figure 5.1a shows the chain that is in the linear configuration. The

weakening of the harmonic confining potential below the critical value leads to a phase

transition into a zigzag and a possibility of kink creation; this is shown in figure 5.1b.
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Figure 5.1: a) Linear chain configuration. b) “Odd” kink configuration. c) “Extended”
kink configuration. Structural transitions from a) to b) to c) are induced by reducing
the strength of the harmonic confining potential relative to the strength of the Coulomb
repulsion in the system.

Just below the critical point the system can be well described by the discrete φ4 model.

The kink divides the system into two domains - in one domain the coordinate of each ion

is given by rn = (na, (−1)nb) and in the other domain it is given by rn = (na,−(−1)nb)

where b is the radial distance of the ion from the z-axis and a is the spacing between

ions. The kink centre should be located somewhere in the region where one domain

interpolates into the other domain. If the transverse confining potential is reduced

further the domains themselves do not change their structure but the kink will change.

As the confining potential is reduced and the ratio a/b decreases, the propagation of

the kink increasingly involves the axial motion of the ions. In other words the coupling

between the radial and axial motions becomes more and more significant. At some

point, the axial motion of ions is so great that the ions start to swap places i.e. the

z-ordering of the ions is disrupted. We identify three types of kinks on the basis of the

disruption of the z-ordering during their propagation

Odd kink z-ordering is not disrupted; movement of kink is due to the radial motion

of the ion.

Extended kink z-ordering changes whenever a kink moves by one lattice site; move-

ment of kink is due to the axial motion of the ions.

Intermediate kink z-ordering changes once when a kink moves by two lattice sites;

movement of kink is due to the radial and axial motions of the ions.
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(zk,xk)

(zk+1,xk+1)

(zk+1,xk+1)(zk-1,xk-1)

(X,0)

(zk+1,-xk+1)

(zk,-xk)

Figure 5.2: Graphical meaning of the kink centre X. The point (X, 0) is an intersection
of the line connecting points (zk,−xk) and (zk+1, xk+1) where xkxk+1 > 1.

The terms “odd” and “extended” kink is taken from the nomenclature introduced in

[81]. In the extended kink the two rows of the zigzag have a different number of ions.

The extended kink is shown in figure 5.1c. The intermediate kink looks like an odd kink

at the local minima of the PN potential and like extended kink at the local maxima of

the PN potential (see next section for more detailed description).

One of the reason for identifying the three type of kinks is that all three may require

different definition of the kink centre g(u). Lets consider the odd kink first. Odd kink

arises as φ4 kink and we can use the analogy between the two kinks to suggest a function

g(u). In the case of φ4 soliton the kink centre is normally taken to be the point where

the field is zero i.e. φK(X) = 0. In the case of the odd kink, we know that there must

be two adjacent ions in the chain that are both either above the z-axis or below, that

is ∃xk : xkxk+1 ≥ 0. The kink centre should be somewhere between those ions i.e.

X ∈ [zk, zk+1] and by analogy with the φ4 model we can take it to be the point where

the line connecting points (zk,−xk) and (zk, xk+1) intersects the z-axis. Graphically

the meaning of the kink centre is shown in figure 5.2. A simple exercise in elementary

geometry gives

g(u) =
xk+1zk + xkzk+1

xk + xk+1

, (5.14)

xkxk+1 ≥ 0 (5.15)

The reason for a possible equality in the condition (5.15) is that it is possible for an ion

that is involved in kink structure to lie exactly on the z-axis.

It is not hard to see that the definition of kink centre given by (5.14) and (5.15) is

such that it parametrizes the location of the odd kink continuously - as one moves a

kink from one end of the chain to the other, X = g(u) varies continuously. If, however,
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one tries to apply the same definition to extended kinks then one will find that X will no

longer be a continuous function. The reason for this is due to the fact that the ordering

of ions swaps which would require their relabeling and the relabeling will introduce

the discontinuities. To define the centre of the extended kink we will make use of the

following observation: an extended kink structure involves an extra ion either at the

top row or the bottom row of the zigzag and hence a local increase of charge density.

Let us denote the spacing between the ions by the following function ψ(z̄j) = zj+1− zj,

where z̄j ≡ (zj+1 + zj)/2. We know that if the chain is homogeneous than inside the

domain ψ(z̄) is constant but it varies in the region where the two domains interpolate

into one another. We define the centre of the kink as the weighted average of the

function characterizing the spacing between ions

g(Q) =

∑N−1
j z̄

[

ψ(z̄j)− ψ(0)(z̄
(0)
j )
]2

∑N−1
j

[
ψ(z̄j)− ψ(0)(z̄0j )

]2 , (5.16)

where ψ(0)(z̄(0)) denotes the ion spacing function when no kink is present in the chain.

The function ψ(0)(z̄(0)) is introduced in order to remove any contribution to the variation

of the spacing between ions that arises from the inhomogeneity of the crystal rather

than the presence of the kink.

The motion of the intermediate kink involves changes of z-ordering and we define

the centre of the intermediate kink in the same way as for the extended kink using

equation (5.16).

5.3.2 PN potential for kinks in chains trapped in a harmonic

potential

We now consider the case of finite chains trapped by a harmonic potential in all three

directions. We will focus first on the 2 dimensional case that is relevant when the ratio

ωy/ωx is sufficiently large to confine ions to the xz-plane. The potential energy of the

system is given by

V (u) =
N∑

j=1

1

2
m
(
ω2
xx

2
j + ω2

zz
2
j

)
+Q2

N∑

i<j

1
√

(xi − xj)
2 + (zi − zj)

2
. (5.17)

The structure of the kink in potential (5.17) depends only on one parameter, namely
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the ratio α ≡ ωx/ωz. This can be seen by putting the equation (5.17) into dimensionless

units. Setting xj = lx̃j and zj = lz̃j , where l = (Q2/mωz)
1/3

we get

Ṽ (u) =
N∑

j=1

1

2

(
α2x̃2j + z̃2j

)
+

N∑

i<j

1
√

(x̃i − x̃j)
2 + (z̃i − z̃k)

, (5.18)

where α ≡ ωx/ωz and Ṽ (u) = V (u)/ (ma2ω2
z). Figure 5.3 shows the PN potential for

kinks corresponding to several different values of α. We performed the calculations for

a system of 30 Yb+ ions in a trap with experimentally realistic parameters.

The PN potential for the odd kinks is shown in figure 5.3. One can see that for

odd kinks the PN potential is lower at the edges of the chain. Thus odd kinks have a

tendency to move from the centre toward the edges where they can be lost. In addition

there is a periodic variation of the potential which comes from the discreteness of the

lattice. The local minima in the potential that arise because of the discreteness of

the system allow for a stable trapping of the odd kinks. Thermal fluctuations can

move a kink from one local minimum of the PN potential to the adjacent minimum

inducing kink diffusion. The stable trapping of odd kinks is achieved when T < Ea/kB

i.e. the thermal energy has to be less than the height of the barrier separating the

two adjacent minima (the Peierls-Nabarro barrier). The PN barrier increases when the

radially confining potential is reduced. For ωt/(2π) = 336 kH the PN barrier is less

than 1 mK/kB and for these trapping parameters the kinks would not be stable in

practice since in the experiments the temperature of the chains is around 5 mK. For

ωt/(2π) = 204 kHz the PN barrier between the two adjacent local minima in the centre

of the chain is around 10 mK. In this case, the kinks would be stable with respect to

physically realistic thermal fluctuations; the experimentally obtained image in figure

4.6 corresponds to ωt/(2π) = 204 kHz. Traces of the adiabatic trajectory of the kink

are shown on the right side of figure 5.3. We can see that odd kink propagates via

the transverse motion of ions as we have already discussed. Note that the motion is

not purely transverse but involves an axial component. The reason for this is that

the transverse and axial modes are coupled by the Coulomb interaction and the axial

translational symmetry is broken by the harmonic confinement. The axial component

of motion increases with decreasing ωt and eventually this leads to a different type of

kink transport exhibited by “intermediate” and “extended” kinks, where adjacent ions

can swap and alter the z-ordering.

The PN potential for the extended kinks is shown in figure 5.3b. For extended kinks
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Figure 5.3: PN potentials and adiabatic trajectories for several kinks in a chain of
30 ions in a harmonic confining potential. PN potential is shown for a) odd kinks b)
extended kinks c) intermediate kinks. The diagrams on the right show the kink structures
corresponding for several different values of X. The red traces indicate the movement of
the ions as kink moves from current point to the next point e.g. from A to B. The pink
trace indicate the motion of the ions as kink moves from point A to D. The blue arrows
indicate the lowest frequency mode that is localized at the kink.
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the PN potential increases towards the edges of the chain and the global minimum is

in the centre of the chain. Thus the extended kinks are attracted towards the centre

of the chain and are easier to stabilize and observe in the experiment. For this reason,

extended kinks were used to measure the KZ scalings in the PTB experiment [108] (see

Chapter 4). There is also a visible periodic variation of the PN potential which comes

from the discreteness of the lattice. The height of the barrier between adjacent local

minima decreases with increasing radial confining frequency ωx. For ωx/(2π) = 171

kHz the kink can be located at distinct local minima but already for ωx/(2π) = 155

kHz the PN barrier is zero and the kink will always slide towards the centre of the

chain. The depth of the PN well for the extended kinks with ωx/(2π) = 140 kHz is

around 25 mK/kB which is more than enough for experimental trapping of the kink.

The experimental image of extended kink shown in figure 4.6 corresponds to the radial

trapping frequency of ωx/(2π) = 140 kHz. From the traces of the adiabatic trajectory on

the right of figure 5.3, it is clear that the extended kinks propagate via the longitudinal

motion of the ions, which does not conserve the z-ordering.

The transition from an odd kink that propagates via the transverse motion of ions

to an extended kink that propagates via the longitudinal motion of ions happens via the

intermediate kink configuration. The PN potential and the adiabatic trajectory traces

of an intermediate kink is shown in figure 5.3c. It is clear that for the propagation

of intermediate kink both the transverse and longitudinal motions of ions are equally

important. Intermediate kinks were experimentally observed in [49].

The calculated adiabatic trajectory for the kinks and the Peierls-Nabarro potential

are consistent with the observation obtained by numerical simulations and experimental

data. The PN potential predicts correctly for which trap parameters we may expect

stable kink confinement. The mode of kink propagation is consistent with results of

MD simulations and the blurring of experimental images.

5.3.3 Effect of heavy ions on PN potential

Usually the trapped ion crystal consists of ions of the same type. Mixed species crystals

are also of interest and are used for example for sympathetic cooling [83]. Mixed species

ion crystals can be created either by deliberately loading different ions or by chance in

situ chemical reactions of the ions with the background gas. We will refer to an ion

with a mass which is different from the rest of the ions in the chain as a mass defect. A

mass defect in the pondermotive potential of a Paul trap experiences a different radial
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Figure 5.4: Experimental images of kinks with molecules (indicated by the red circles).
(Top) Extended kink with a light molecule (m ≈ 188). (Middle) Extended kink with
a heavy molecule (m ≈ 220) located at the kink. (Bottom) Extended kink with the
heavy molecule moved by one lattice site. Comparing the distortion of the crystal with
numerical simulations allows us to distinguish between light and heavy molecules. [The
photograph was taken from [100].]

confinement than the rest of the ions, since the secular frequency ωx ∝ 1/m where m

is the mass of the ion. Because of this, the mass defect changes the configuration of

the crystal and deforms the PN potential, consequently affecting the dynamics of the

kinks. This modification of the PN potential depends on the location and the mass of

the impurity species and the type of kink.

In the PTB experiments the 172Yb+ ions occasionally react with the background gas

forming heavier molecular ions. In a fluorescence image of the chain, a molecular mass

defect appears as a dark ion. The 172Yb+ ions can react with water to produce YbO+,

Yb(OH)+ and other molecules [125, 126, 112]. By performing parametric excitation

of two to four ions including a mass defect, the ions have been measured primarily

as YbO+ or Yb(OH)+; the addition of hydrogen was not resolvable by this method.

Since these heavy masses distort the crystal as well as the kink configurations, the

amount of distortion can be used as an alternative method of estimating the mass of

the molecule by comparing the experimental images with crystal configurations inferred

from molecular dynamics simulations. This analysis indicates the presence of even

heavier molecules with one to three oxygen atoms involved. In the simulations, we

investigate mass defects with representative masses m = 188 (YbO+) and 220 (YbO+
3 ),

consistent with the observations in the experimental system (figure 5.4).

Experimental measurement of the KZ scaling indicates that the mass defects modify

the dynamics and the stability of the kink. Figure 5.5 shows a measured scaling for

chains with no mass defects, one mass defect and two mass defects. The mass defects

are randomly distributed in the chain. As we can see, at low quench rates, a higher

kink density is observed when mass defects are present. Thus the mass defects must
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Figure 5.5: Scaling of measured kink density with the quench parameter τQ, with no
molecules (blue), one molecule (red) and two molecules (green) present in the crystal.
The vertical error bars include the s.e.m. as well as the statistical uncertainty assuming
a binomial distribution. Horizontal error bars indicate uncertainty in the axial trapping
frequency and a nonlinear distortion of the applied ramp. [The graph was taken from
[100].]

influence either the defect creation probability, defect surviving probability or both.

In order to understand the effect that the heavy mass defects have on the dynamics

of the kinks we evaluate the Peierls-Nabarro potential for kinks in chains with mass

defects. Figure 5.6a shows the results of the calculation for the extended kink with

m = 220 mass defect at various positions of the chain. We can see that the PN potential

is lowered in the vicinity of the mass defect. The well created by the mass defects acts

as a kink trap that can stabilize the defects. Note, however, that when the mass defects

are located near the edge of the chain, such as at positions 5 and 7, they lower the PN

barrier created by the inhomogeneity of the chain. In these cases we would expect that

the kinks would be more easily lost from the chain and this prediction is confirmed by

the molecular dynamics simulations and experimental observations [100]. If there are

two mass defects placed on both sides of the chain centre (e.g. positions 11 and 19)

then it is possible to fit two extended kinks into a 30 ion chain as shown in figure 5.6b.

A two kink configuration in chain with two mass defects was observed experimentally

in [100]. Such kink configurations may be of interest as they may allow an investigation

of kink-kink interactions. Figure 5.6c shows a PN potential for an odd kink in a chain

with a mass defect at position 11. The depth of the potential well created by the mass

defect is around 20 mK/kB. This potential well can act as kink trap that reduces kink

losses that can come from kink motion towards the left edge of the chain.

In experiments the camera exposure time is of the order of milliseconds whereas
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kinks are generated in quenches lasting dozens of microseconds (see Chapter 4). This

means that the camera does not provide information about the kink dynamics during

the quench - it only provides information about the final configuration of the chain. In

order to obtain information about kink dynamics during quenches we had to resort to

molecular dynamics simulations. In particular, the PN potential calculation provides

qualitative predictions of the effect of mass defects on kink dynamics, which can be

verified using molecular dynamics simulations.

First, we consider the case of the created kinks in figure 5.7a. For fast quenches the

molecule has no effect on kink creation, but for slow quenches, the kink density exhibits

a strong position dependence. When the molecule is in the centre (e.g. positions 13

or 15), kink formation is suppressed for slow radial quenches. Because the molecule

is less bound radially than the rest of the crystal, it breaks out of the linear chain

earlier and initiates the phase transition sooner than in a pure crystal. This leads to

a prolonged time period in which the phase transition spreads out, suppressing defect

formation for sufficiently slow quenches [37, 30]. At intermediate sites (e.g. positions 9

and 11), the kink density is enhanced. Here, in addition to the quench induced phase

transition, which always begins at the crystal centre due to its inhomogeneity, a second

phase transition is initiated at the molecule’s position. This occurs because of the

lower radial confinement of the mass defect and the higher charge density close to the

centre pushing the molecule out of the chain. These two phase transitions take place

independently, bringing about an enhanced probability of kink formation due to the

possible conflict when the phase fronts meet. With the molecule at the edges of the

chain (positions 1-7), the kink density is unaffected by the presence of the molecule.

In the outer parts of the crystal the molecule does not experience a sufficient repulsion

in this region of lower charge density to initiate an independent phase transition. The

influence of molecule position on kink creation behaviour is reduced at faster ramp

times and eventually has no effect (i.e. for τQ < 30 µs). In this regime the system

behaves as a homogeneous system (the phase front is faster than the speed of sound),

and this characteristic dominates the kink creation dynamics.

The case of experimentally accessible kinks is shown in figure 5.7b. The density of

kinks remaining after 400 µs is mainly governed by the altered rate of kink creation

shown in figure 5.7a and not by a modified loss rate, with two exceptions. Firstly, in

positions 9–11, the losses from the crystal are strongly reduced for slower ramps. For

these intermediate positions, the PN potential at the molecule provides a very strong

confinement that traps kinks formed at the centre as they start to move out of the
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Figure 5.6: Kink-confining PN potentials for crystals with mass defects. (a) PN poten-
tial calculated for the extended kink case with a molecule of mass m = 220 located at
different positions in the crystal (ωz = 24.6 kHz and ωx = 140 kHz). (b) Comparison of
PN potentials with mass defects of m = 220 and 188. The depth of the PN potential in-
creases with the mass of the defect. Also shown is the case of two heavy molecules located
at positions 11 and 19 (black line) creating a double well potential. (c) PN potential for
an odd kink with transverse trapping frequency ωx = 220 kHz (ωz = 24.6 kHz) and a
molecule with m = 220 at position 11. The open squares on the left correspond to the
vertical lines indicating the kink centre in the configurations on the right.
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Figure 5.7: Simulated kink density scaling with ramp time for a molecule of mass
m = 220 at various positions in a chain of 30 ions. (a) Density of kinks created during
the ramp. (b) Density of kinks still present 400 µs after the ramp started and energy is
dissipated (experimentally accessible kinks). [The graphs were taken from [100].]

crystal, reducing losses. Secondly, at position 5, high losses occur. When the molecule

is around position 5, it is easy for the kink to be lost due to the reduced barrier of the

PN potential caused by the molecule, as seen in figure 5.6a.

Heavy mass defects experience a weaker radial confinement than the main ions in the

chain. This means that the dynamics of the system can be influenced by the application

of static electric field. When a static electric field is applied in the transverse direction

the heavier ions will experience a greater transverse displacement than the lighter ions.

Effectively the “mass” of the heavy ion can be tuned by the application of electric field

and in turn the depth of the PN well induced by the mass defect can be controlled.

Thus when the chain has mass defects the dynamics of kinks can be controlled using

static electric fields. In [100], several examples of kink manipulations using elective

fields were presented, namely, deterministic creation of one kink, deterministic creation

of two kinks, displacement of a kink and displacement of a mass defect.

Figure 5.8 shows an example of the experimental sequence with a molecule of m ≈
188. After a quench of length τQ, a series of pictures is taken with exposure times of 20

ms, with 20 ms between exposures. After a kink has been created by the ramp (figure

5.8i), the electric field is increased linearly over 60 ms (figure 5.8ii). In figure 5.8iii

the entire ion chain is heated by reducing the detuning of the cooling laser by a few

MHz. This causes the kink to oscillate in the confining PN potential, until it reaches

the position of the molecule. As the kink gets trapped at the molecule it pushes the
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(i)

(ii)

(iii)

(iv)

Figure 5.8: Time series demonstrating control of a kink and molecule using an electric
field (20 ms exposures). Image (i) shows a kink in the centre of the crystal after the
radial quench. Image (ii) shows the crystal after the adiabatic application of an electric
field in the plane of the zigzag (downward in the image). In (iii) the laser cooling light
is shifted a few MHz closer to resonance, heating the Coulomb crystal and providing the
kink with motional energy. In this image, motion during the exposure is visible when the
kink begins to oscillate in the PN potential, gets trapped by the mass defect, and returns
to the centre with the molecule. The kink and molecule then stabilize (iv). [The pictures
were taken from [100].]

molecule further out of the crystal where it is free to move to the centre of the axial

potential. When the molecule changes its position, the PN potential minimum and the

kink trapped therein moves along with it. The kink and molecule finally stabilize at

the centre of the crystal (figure 5.8iv). We have verified that for the parameters used,

the molecule does not move in the crystal without the presence of a kink.

5.4 Equations of motion for the kink

The PN potential predicts some qualitative features of kink dynamics, such as trapping

and losses of kinks at the boundaries. By itself the PN potential does not provide

quantitative dynamical information such as the frequency with which a kink oscillates

around a local minimum of the PN potential. To obtain such dynamic information

it is necessary to derive the effective equation of motion for the kink centre. This

can be done, for example, using the collective variable formalism developed in [128,

15, 17, 16]. The equations of motion of all particles are known - they simply follow

Newton’s equations of motion. However, a priori it is not clear how the motion of the

particles generates an effective motion of the kink centre. The idea of the collective

variable formalism is to clarify this by making a change in canonical coordinates that

preserves the Hamiltonian equations of motion (Q,P, t) → (X,Π,q,p, t), where Q and
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P are vectors containing the particle position degrees of freedom and their canonical

momenta, X and Π are the variables denoting kink centre, and its canonical momentum

and q and p are the variables denoting the fluctuations of the system around the kink

configuration. The introduction of the two dynamical degrees of freedom, X and Π,

requires an addition of two constraints, which are normally chosen to minimize the

fluctuations around the kink. The canonical transformation is an exact procedure - the

dynamics of the system in the new coordinates is equivalent to the dynamics of the

system in the old coordinates. The solution of the resulting equations of motion may

be even more demanding numerically than the original equations of motion. The virtue

of performing the transformation is that in principle it allows one to perform physically

motivated approximations and extract information of interest such as effective masses,

momentum and kinetic energy of kinks. In the future it is possible to extend our work

in this direction.

5.5 Chapter conclusions

In this chapter we have shown that methods developed in the field of discrete soliton

physics can be used to study the dynamics of kinks in the zigzag ion chains. We have

shown how to calculate the PN potential for various types of kinks and predict their

stability. This type of calculations may prove useful when designing novel ion trap

experiments with kinks. The effect of mass defects on kink dynamics was examined

using a combination of the PN potential calculation, experimental results and numerical

simulations.

In the future it may be possible to study in ion traps various discrete soliton phe-

nomena such as kink-kink and kink-phonon interactions.
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Chapter 6

Conclusions and further work

In the thesis a number of interrelated ideas are developed with an underlying theme,

namely, the use of linear to zigzag phase transition in ion crystals to study non-

equilibrium dynamics. The main focus is on the possibility to accurately measure

the Kibble-Zurek (KZ) scaling law - the scaling law that predicts the dependence of the

average number of defects produced in non-adiabatic phase transition on the quench

rate. One can summarize the achievements of the work as follows

1. We show that the KZ scaling can be derived by finding a transformation that

eliminates the quench rate from the equations of motion. Using this method, we

generalize KZ scaling law to finite size systems (Chapter 3).

2. We predict and verify numerically the KZ scaling for the linear to zigzag phase

transition in homogeneous crystals with periodic boundary conditions (Chapter

3).

3. In collaboration with experimental groups, structural defects are for the first

time produced using non-adiabatic phase transition. The KZ scaling is measured

in small ion crystals. The experimental results agree very well with extensive

molecular dynamics simulations (Chapter 4).

4. A technique for evaluating the Peierls-Nabarro potential for the kinks is developed

and used to evaluate the stability of several experimentally realistic kinks (Chapter

5).

One can view ion crystals as rough analogues of solid state lattices and thus certain

physical phenomena that are relevant to condensed matter systems can be studied in

ion traps. In contrast to atoms in solids, the ions interact via Coulomb interaction. For

this reason the distances between particles in ion crystals are very large, of the order

of several micrometers, and thus the whole crystal can be imaged using an optical

microscope. The structural organization of ion crystal is very much influenced by the

trapping potentials and thus can be easily controlled in the experiment. These two
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points, ease of imaging and control of crystal structure, make ion trap system very

attractive for studies of physics of equilibrium and non-equilibrium phase transitions,

heat transport, dislocation dynamics, friction and other phenomena.

The experiment that uses linear to zigzag phase transition to study KZ mechanism

is an excellent illustration of this fact - a one row crystal lattice is transformed by a

precise control of trap parameters into a two row crystal lattice whilst being directly

imaged to measure the probability of the creation of structural defect. The experimen-

tal measurements presented in the thesis can be regarded as one of the most accurate

quantifications of KZ scaling to date. The results of these experiments, however, come

with a caveat: the measurements were carried out on small inhomogeneous ion crys-

tals. We show that in such small crystals the correlation length is affected by the finite

size effects and KZ theory has to be modified. In order to find a way of extrapolating

the scaling measured in finite inhomogeneous systems to the thermodynamic limit, we

develop a technique for deriving the KZ scaling by directly analyzing the equations of

motion. Our analysis indicates that in the ion trap experiments additional measure-

ments are needed in order to verify the KZ scaling in the thermodynamic limit. This

is one of the open problems raised in the thesis. In future theoretical and experimental

investigations it will be also desirable to explore quantitatively the effect of the molec-

ular dynamics modelling approximations that were used in the thesis, in particular, the

effect of pseudopotential approximation on the linear to zigzag structural phase transi-

tion. Even though it was argued in Chapter 4 that the statistics of produced defects is

not affected by micromotion, it is likely that the dynamics of the produced defects is af-

fected by micromotion since it modulates periodically the Coulomb interaction between

the ions in the chain. This is a subject for future investigations.

The structural defects or kinks in the Coulomb crystal lattice are examples of dis-

crete soliton systems. In the thesis, we establish a connection between the fields of ion

trapping and the field of discrete soliton physics. This connection is important since

there is a considerable gap between theoretical and experimental studies of discrete

soliton physics with theory leading. Coulomb crystal in ion trap could potentially be

used to explore the unintuitive dynamics of discrete solitons. We have provided a start-

ing point for such investigations by numerically evaluating the potential in which such

collective the structures move - the Peierls-Nabarro potential.

A unique feature of ion trap crystals, which drastically differentiate them from

colloidal Coulomb crystals or dusty plasmas, is that ion crystals can be cooled to a

point where quantum mechanics is important for the dynamics of the system. Various
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quantum optical techniques make it possible to reach ultralow temperatures, where

discrete levels associated with the motional and electronic degrees of freedom of the

crystal are spectroscopically resolved. This means that, in the future, one may study

non-linear and non-equilibrium physics in quantum dynamical regimes. Quantum linear

to zigzag phase transition has already been studied theoretically in a number of works

[4, 5, 118, 119]. The fact that it is possible to control the electronic degrees of freedom of

the ions implies the possibility of a whole range of fascinating ion crystal experiments

that are not explored in the thesis. For example, one direction in this area that is

pursued by several groups is to study quantum spin chains using ion crystals [64, 52].

In the world of technology there is clear trend of miniaturization of devices. Ma-

chines with nanoscale gears and nanoscale wires may exist in the near future but for this

to become reality much basic science still remains to be done. Our understanding of

physics at the nanoscale is far from complete, for example, many well studied phenom-

ena such as friction, thermal and electrical conductivity will require a new theoretical

description at the nanoscale. Coulomb crystals in ion traps provides a convenient model

system where many theoretical ideas can be tested. Nano-friction and thermal conduc-

tivity in ion crystal has already been explored theoretically in several recent works

[10, 107, 12, 97, 111]. In the future, one may look forward to more ion trap experiments

clarifying physical theories that will be ultimately applied in nanoscale engineering.
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Appendix A

Experimental methods

A.1 PTB experiment

The ion trap is a three dimensional segmented linear radio frequency (rf) Paul trap.

It offers full control to compensate stray fields in 3D and, in particular, has low axial

micromotion over a large range of several hundreds of micrometers [109]. The ions

are trapped in a loading segment via photoionization and then shuttled to a spec-

troscopy segment, which is protected from the atomic beam. Avoiding contamination

of the electrodes makes it possible to perform measurements with highly reproducible

experimental parameters. The axial and radial secular frequencies in this segment were

measured repeatedly, and a maximum deviation of respectively 0.5 kHz and 1 kHz over

several weeks was observed. For a linear crystal of 29±2 ions with length ∼ 300 µm the

maximum axial rf field component along the crystal is as low as 500 V/m, whereas the

radial field does not exceed 200 V/m, corresponding to a total micromotion amplitude

of only 12 nm. The ion crystal is imaged with a lens system optimized for minimum

aberrations onto an EMCCD camera with a magnification of 28 and an experimentally

estimated resolution of about 1.5 µm over the full ion chain length of 300 µm. At the

given axial trap frequency, about 30 ions can be imaged in the zigzag configuration.

The rf voltage driving the radial confinement is amplitude modulated by a control sig-

nal using an rf mixer. Its actual amplitude on the ion trap electrodes is monitored

by a short antenna inside the helical resonator (Umon) which impedance matches the

amplified rf voltage Urf to the trap capacitance [109]. By observing parametric heating

of the ions the radial as well as axial secular frequencies are measured directly as a

function of the trap voltages with a relative precision of 10−3. To drive quenches of the

radial confinement, a linear function, shown schematically figure A.1a, is applied as a

control signal to the rf mixer. Due to the characteristics of the mixer, the measured

slope of the ramp deviates from the ideal slope and therefore is fitted manually to the

monitored signal Umon, see figure A.1b, to obtain the effective quench time used in

simulations. The characteristic time constant of the resonant circuit of 7 µs limits the
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(a) (b)

Figure A.1: a) Experimental sequence of the radial quench. The radial trapping
potential is steered by a linear ramp on the trapping voltage Urf. The ramp of length 2τQ
starts at t = 0. Immediately after the quench an image of the Coulomb crystal is taken
with an exposure time of 40 ms, then νt returns to its initial value. The ions are laser
cooled and fluoresce throughout the whole sequence. After 1 second the cycle is repeated.
b) Record of the monitored rf signal during the radial quench. The linear control signal
(red line) has a ramp time of 105 µs. The actual rf voltage ramp (light gray line) deviates
from this due to the non-linearity of the rf mixer. Its slope is determined by a manual fit
(blue line) and corresponds to an effective ramp time of 88.4 µs. Also shown is the region
of the linear to zigzag transition (area between the horizontal grey lines) for N = 29± 2
ions. [The diagrams were taken from [108].]

fastest possible quench time, but its effect on the ramps used in this work is negligible.

A.2 Mainz experiment

Segmented linear Paul trap

The experiments are performed in an X-shaped micro-fabricated segmented Paul trap

based on four gold-coated laser-cut alumina chips, each with 11 electrodes (see figure

A.2) with a thickness of 125 mm. The segment width is 200 µm with isolating gaps of

30µm. The radial distance of the segmented electrodes to the center of the trap measures

960 µm, whereas the length of the whole trap is 2.9 mm. The radial confinement is

generated by applying a radiofrequency voltage of ∼450 Vpp at a drive frequency of

Ω/(2π) = 22 MHz, resulting in a relevant radial trap frequency of ωrad/(2π) = 1.4

MHz. The axial potential is generated by a superposition of static potentials applied

to these segmented electrodes and variable voltages applied to the conical end-cap

electrodes allowing for axial frequencies (ωax/(2π) within a range of 167–344 kHz. The

base pressure in the vacuum chamber is 1 × 10−9 mbar. Optical detection is achieved
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Figure A.2: Photograph of the segmented ion trap with gold-coated alumina chips and
conical endcaps. On the right-hand side, one sees a direct current (DC) electrode with
voltage supplies for the individual segments. On the top an radio frequency electrode is
shown, segmented for symmetry reasons. The angle of view corresponds to the direction
of the cooling laser beam. [The photograph was taken from [129].]

using an electron-multiplying charge-coupled device camera with a 10 ms exposure time,

oriented at 45o to the planar structure of the crystal. The camera has an optical chip

with 128 × 128 pixels and a pixel size of 24 × 24 µm2. An objective lens leads to an

effective pixel size in the acquired images of 1.7 µm.

Experimental sequence and set-up.

To allow for high statistics and a large number of data points in maintainable time, a

high repetition rate of the whole experimental sequence was ensured by implementing

a fully automated real-time experimental control system. A field programmable gate

array (FPGA) controls the timing of the lasers [63, 132], the electron multiplying charge

coupled device (EMCC) camera and the AFG, which has 16-bit amplitude resolution at

a sample rate of 200 M samples per second for fast and glitch-free voltage ramps with

variable time constants. The experimental sequence starts with the loading of ions.

For this purpose, Ca atoms in a thermal atom beam cross the centre of the trap and

are ionized with resonantly enhanced two-photon ionization at wavelengths of 423 and

375 nm. The cloud of trapped ions is Doppler-cooled by laser radiation red detuned to

the cycling dipole transition 2S1/2 −2 P1/2, leading to a condensation of the ions into a

linear crystal. To drive the cooling transition, we use a diode laser near 397 nm with a

power of 0.15 mW and a beam direction that has a projection on all three trap axes.

The cooling laser is switched on during the whole sequence of the experiment, and the
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resonance fluorescence is used for the image acquisition. Ion losses can occur because

of background gas collisions and possible losses during the relaxation ramp. With the

fully automated sequence, we reach a repetition rate of one experiment per second. To

achieve automated control, a first image is taken and the number of ions in the chain is

evaluated. If the count is lower than 16, another pulse of the ionization lasers increases

the number of ions. In the case where the number of ions is higher than 16, the axial

trapping potential is temporarily lowered to reduce the ion number. Only if the number

of ions in the chain is exactly 16, does the sequence continue with the ramp of the axial

confining potential. The FPGA then triggers the AFG, which controls the ramp of the

voltage at the endcaps and thus increases the axial trap frequency. Because of noise

on external signal filters, we observe a temporal jitter of the start of the voltage ramp

of about 80 ms. To guarantee that the images are taken after the ramp, the image

acquisition exposure of 10 ms starts with a delay of 100 ms. Subsequent to the ramp

and the image acquisition, the axial potential is ramped back slowly to the initial value,

such that the crystal relaxes again into a linear configuration. Another image is taken

to verify the number of ions. If the number still equals 16, the ramping sequence is

started again. Otherwise, the sequence continues with reloading.
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