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Abstract

Slack variables are utilized in optimisation problems in order to build soft
margin classifiers that allow for more flexibility during training. A robust
binary classification algorithm that is based on the minimisation of the en-
ergy of slack variables, called the Mean Squared Slack (MSS), is proposed
in this paper. Initially, the algorithm is analysed for the linear case, where
the minimum mean squared slack is attained as a separating vector. Next,
the kernel trick is exploited to facilitate computation of non-linear separating
hyperplanes. For this paper, two kernels are tested, namely the radial basis
function (RBF) and the polynomial kernel. In order to ensure a time and
memory efficient system that converges in a few iterations four strategies
are applied so as to withhold just a subset of feature vectors that are mis-
classified during training. Aiming to the automatic optimisation of the ker-
nel parameters a modern combination of particle swarm optimisation (PSO)
with artificial immune system (AIS) is tested. The aforementioned evolu-
tionary methods are combined in a parallel architecture. Four datasets of
diverse nature are exploited for performance evaluation, namely the iris, the
SPECTheart, the vertebral column, and the wine quality datasets. Simu-
lation experiments demonstrate high classification accuracy in a number of
benchmark datasets.
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1. Introduction

Binary classification is a central problem in machine learning. Boser et al.
[1] were the first to use kernels to construct a non-linear estimation algorithm,
which is the hard margin predecessor of Support Vector Machines (SVM) [2].
The substitution of kernels for dot products transforms a linear geometric
algorithm into a non-linear one. This way, hyperplane classifiers evolved to
SVMs [3]. SVMs are binary maximum margin classifiers that try to find the
hyperplane which optimally separates the data. The feature vectors at the
margin are called support vectors and they define the classifier’s hyperplane.
SVMs present the ability to generalize well even with a limited number of
training data. In this paper we employ an SVM alternative which minimises
the energy of the slack variables directly, even though that solution may not
necessarily yield the maximum margin classifier.

With respect to applications, SVMs are commonly used for example in
bio-informatics and natural language processing. This may be partially at-
tributed to the fact that both fields deal with high-dimensional problems,
such as micro array processing tasks, fault diagnosis, and categorisation. Ad-
ditionally, SVMs have been employed in a variety of applications including
speech and speaker recognition, emotion classification, e-learning, database
marketing, intrusion detection, geo- and environmental sciences, finance time
series forecasting, and high energy physics.

Many of the aforementioned fields exploit non-linear SVMs. Non-linear
SVMs transform the feature space into a higher dimension one using a set of
non-linear basis functions. Hopefully, in the higher dimension feature space
the training feature vectors may be separated linearly. An advantage of the
SVM is that it is not necessary to explicitly implement this transformation.
Instead a kernel representation can be used, where the solution is written
as a weighted sum of the values of certain kernel function evaluated at the
support vectors. Most recent methods exploit the idea of constructing kernel
algorithms where the starting point is a linear criterion instead of a linear
algorithm [3]. For example, a linear criterion may be that two samples have
identical means or two random variables present zero covariance. Other al-
ternatives aim to improved scalability by utilizing parallel SVM (PSVM)
[4]. Parallel SVMs loads only essential data to each machine, which reduces
memory use through performing a row-based, approximate matrix factori-
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sation. Additional recent theoretical advances include the bounds gener-
alisation based on Rademacher complexity theory for model selection and
error estimation [5]. Furthermore, probably approximately correct (PAC)
Bayesian theory is utilized to compute a dimension-independent bound of
the generalisation error [6].

This paper presents a binary classification algorithm which is based on
the minimisation of the energy of the slack variables. A slack variable is
defined as zero if the training feature vector is classified correctly and as a
small positive value if the training feature vector is classified incorrectly. A
maximum margin classifier, such as an SVM seeks to put a soft penalty on the
sum of the slack variables, whereas in the approach presented in this paper
we attack directly the slack variables of the misclassified patterns. Since
many patterns may be classified incorrectly during training, four different
strategies are presented in this paper in order to sustain just a subset of
the aforementioned training feature vectors. This way time and memory
efficiency is achieved. The first strategy retains a subset of the misclassified
training feature vectors in a “first come-first kept” approach, the second one
retains those patterns in a stochastic manner, the third aims to retain only
the “worst” patterns, whereas the final one sustains those patterns whose
slack variables attain values within a predefined range.

Next, the kernel trick is utilized in order to facilitate the computation of
non-linear separating hyperplanes. Specifically, 2 types of kernels are tested
for this paper: the radial basis function (RBF) kernel and the polynomial
one. It is widely accepted that the parameters which are related to the
aforementioned kernels -that is σ for the RBF kernel and power/offset for
the polynomial kernel- may have crucial influence on the classification effi-
ciency. Obviously, the optimal classification accuracy is obtained by optimal
parameters setting. Aiming to reach the best performing parameters in an
automatic manner, a evolutionary algorithm is employed. The aforemen-
tioned algorithm is the combination of particle swarm optimisation (PSO)
[7] and artificial immune systems (AIS) [8]. The combination is achieved in
a manner of a parallel network. Specifically, in every iteration a pool of u
memory cells is constructed and their respective affinity (testing accuracy)
is calculated. Best half u/2 of the memory cells are selected and given as
input to PSO and AIS, independently. New memory cells are produced by
each evolutionary algorithm and the best-performing of them are added to
the memory cell pool. Also, at each iteration random memory cells are gen-
erated to ensure that the size of population is u. The evolutionary algorithm
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terminates after a user-defined number of iterations. The proposed approach
is tested on four datasets of different nature to verify its robustness using a
5-fold cross-validation experimental protocol. High classification accuracy is
achieved, 99.2% for the iris dataset, 80.140%, for the SPECTheart dataset,
and 85.769% for the vertebral column dataset.

In summary, our contributions are as follows:

• A novel binary classification algorithm is presented which attacks the
slack variables directly.

• It is demonstrated that in the linearly separable case the minimum
mean squared slack is attained at a separating vector.

• It is proven that the minimiser in the linearly non-separable case is
bounded, but not zero.

• The algorithm is an EM algorithm, so there is convergence, at least in
the local sense. Additionally, the evolutionary nature of the parameter
estimation algorithm facilitates the escape from local minima. More-
over, one of the proposed strategies is based on the stochastic selection
of the subset which also aims at the same direction.

• The algorithm is time and memory efficient since it converges in just a
few iterations.

• The algorithm is stable, regardless of the subset retainment strategy
that is employed.

• A hybrid evolutionary system is tested, as a parallel network of PSO
and AIS in order to select the kernel parameters in an automatic man-
ner.

• The algorithm proves to handle efficiently datasets of highly diverse
nature.

The rest of this paper is organized as follows. In Section 2 the proposed
algorithm is analysed. In Section 4 we extend from the linear case to the ker-
nel case and the subset retainment strategies are detailed. The evolutionary
algorithm for the automatic selection of kernel parameters is detailed in Sec-
tion 5. Experimental evaluation in demonstrated in Section 6, whereas the
presented results are discussed in Section 7. Finally, conclusions are drawn
in Section 8.

4



2. Mean Squared Slack Minimisation

2.1. Problem Formulation

Let us consider the classification task for a set of training data

X = {(x(i), t(i)) | i = 1, · · · , N} (1)

where x(i) ∈ R
n is a feature vector, t(i) ∈ {−1, 1} is the class label of x(i),

and N is the size of X . The classification task is described as the search for
a proper weight vector w ∈ R

n and bias b that solve the set of inequalities:

t(i)y(i) ≥ γ, i = 1, · · · , N (2)

where

y(i) = wTx(i) + b (3)

is the output of the classifier for pattern i.
In general, there may not exist any feasible solution for (2). In this case,

it is useful to define a slack variable ξ(i), associated with pattern i,

ξ(i) = max{γ − t(i)y(i), 0} (4)

so that

ξ(i) = 0 iff t(i)y(i) ≥ γ, (5)

ξ(i) > 0 iff t(i)y(i) = γ − ξ(i) < γ. (6)

Thus, the slack variable is positive only for the misclassified patterns, i.e.
those with output y less than γ. Typically a maximum margin classifier,
such as an SVM, seeks to minimise the norm of the weight vector w while
putting a soft penalty on the sum of the slack variables. Nevertheless, the
computational complexity of the resulting quadratic problem may be high.

An alternative approach would be to attack the slack variables directly
[9]. Since for misclassified patterns ξ is positive, we can, in fact, define a
whole family of cost functions of the form

Jp =
1

2
Ē {ξp | ξ > 0} (7)
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where Ē{X | Y } is the empirical average of the sequenceX(i) under condition
Y :

Ē{X | Y } =
1

NY

∑

all i where
Y is true

X(i) (8)

and NY is the number of instances where Y is true. It is not difficult to see
that for p = 1 we obtain the Perceptron cost function J1 [10, chapter 5].

Defining
S = {i : ξ(i) > 0}, (9)

to be the set of indexes of the patterns with positive margin we obtain

Jp =
1

2|S|

∑

i∈S

ξ(i)p.

For the case of p = 2, we define the Mean Squared Slack (MSS) as [9]:

JMSS =
1

2|S|

∑

i∈S

(

γ − t(i)wTx(i)− bt(i)
)2

(10)

where | · | stands for the cardinality. Note that the average operator in
(10) involves only the patterns which give x(i) > 0 or t(i)(wTx(i) + b) < γ.
This is reasonable, since, in the classification context, only the misclassified
patterns that fail to satisfy inequality (2) should contribute to the cost, while
the correctly classified should not.

Previously [9], it had been shown that if the problem is linearly separable,
then the minimiser of JMSS is a separating vector, otherwise it is a non-zero,
bounded vector. We extend these results here for the more general cost
function Jp:

Lemma 2.1. Consider the cost function Jp defined in (7). The following
statements are true:

(a) if problem (2) is linearly separable, then the minimum Jp = 0 is
attained by ω = [wT , b] iff ω is a separating vector;

(b) if the problem is not linearly separable, then the cost function Jp at-
tains its minimum for some ω = [wT , b] with 0 < ‖ω‖ < ∞.

Proof.
(a) Clearly, if ω = [wT , b] is a separating vector then ∀i ξ(i) = 0, and so

Jp = 0, which is the absolute minimum since Jp ≥ 0. Reversely, if Jp = 0 for
some ω = [wT , b] then ξ(i) = 0 for all i and so ω is a separating vector.
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(b) First we’ll show that the vector ω = 0 cannot be the minimiser of
Jp. To that end, select any vector ω1 = ε[w1, b1] 6= 0. For sufficiently small
ε > 0 we have ξ(i) = γ − εt(i)(wT

1 x(i) + b1) > 0 for all i, and thus we can
write

Jp(0)− Jp(εω1) =

N
∑

i=1

γp − ξ(i)p =

N
∑

i=1

γp −
[

γ − εt(i)(wT
1 x(i) + b1)

]p

= ε
N
∑

i=1

t(i)(wT
1 x(i) + b1)R(i) (11)

where

R(i) =

p−1
∑

k=0

ξ(i)kγp−1−k. (12)

Since ξ(i), γ > 0, we have R(i) > 0. Further, let w1, b1, satisfy

N
∑

i=1

t(i)wT
1 x(i) 6= −

N
∑

i=1

t(i)b1R(i)

(this is always possible, for example, by changing b1, if necessary). Then,
according to (11) either Jp(0)−Jp(εω1) > 0 or Jp(0)−Jp(εω1) < 0 in which
case Jp(0)− Jp(−εω1) > 0. In either case, Jp(0) is not the minimum.

Next we’ll show that the minimum is attained for a bounded vector ω.
Call I+, I− the set of indices, i, for which

t(i)[wT
1 x(i) + b1] > 0, ∀i ∈ I+ (13)

t(i)[wT
1 x(i) + b1] < 0, ∀i ∈ I− (14)

It is always possible to select w1, b1 such that neither set is empty due to the
assumption that the problem is not linearly separable. For example, if I−

were empty, we could shift b1 by a small amount so that t(i)[wT
1 x(i)+b1] < 0,

for some i, without making I+ empty. Then, for any

ε >
γ

mini∈I+{t(i)(w
T
1 x(i) + b1)}

.
= εL1

(15)

we’ll have εt(i)(wT
1 x(i) + b1) > γ so ξ(i) = 0, for all i ∈ I+. It follows that,

Jp(0)− Jp(εω1) =
∑

i∈I+

γp +
∑

i∈I
−

γp − ξ(i)p

=
∑

i∈I+

γp + ε
∑

i∈I
−

t(i)(wT
1 x(i) + b1)R(i) (16)
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with R(i) defined again as in (12). Due to (14) and the fact that R(i) > 0,
we have

∑

i∈I
−

t(i)(wT
1 x(i) + b1)R(i) < 0 (17)

Therefore, for any ε satisfying (15) and

ε > −

∑

i∈I+
γp

∑

i∈I
−

t(i)(wT
1 x(i) + b1)R(i)

.
= εL2

(18)

Eq. (16) yields Jp(0) < Jp(εω1) and εω1 cannot be a minimiser. We conclude
that for any line ω(ε) = ε[w1, b1] the part for ε > max{εL1

, εL2
} does not

contain the minimiser of Jp, so the minimiser must be bounded.

In the sequel, we shall deal with the quadratic cost JMSS, although most
results extend trivially for Jp, p > 2. In order to define the binary classifier
one needs an algorithm to minimise JMSS. To that end, one may exploit the
Karush-Kuhn-Tucker (KKT) conditions ∇wJMSS = 0, ∂JMSS/∂b = 0. The
gradients of JMSS with respect to w and b, can be computed as follows:

gw = Rxw + bmx − γmtx (19)

gb = mT
xw + b− γmt (20)

where:

Rx =
1

|S|

∑

i∈S

x(i)x(i)T , (21)

mtx =
1

|S|

∑

i∈S

t(i)x(i), (22)

mx =
1

|S|

∑

i∈S

x(i), (23)

mt =
1

|S|

∑

i∈S

t(i). (24)

The system of equations that come from the KKT conditions gw = 0 and
gb = 0, is not linear w.r.t. w and b since Rx, mx, mtx, and mt are implicit
functions of w and b through S. Therefore, an iterative solution is proposed.
In each iteration, r, we compute the statistics Rx, mx, mtx, andmt, using the
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values wr−1, br−1, from the previous iteration. Then we treat the statistics
as constants and solve the linear system gw = 0, gb = 0, to obtain

[

wr

br

]

= γ

[

Rx mx

mT
x 1

]+ [

mtx

mt

]

(25)

where + stands for the pseudo-inverse matrix. With the new values for the
weight vector and bias we compute a new set of statistics and the process
is repeated until convergence or until a maximum number of iterations is
reached. The method is summarized in Algorithm 1. For the remainder of
this work, without loss of generality, we set γ = 1.

3. Relation with the EM algorithm

The quadratic cost function JMSS in (10) can be expressed as a likelihood
function of the “bad” patterns. To see that, let us first define

x̄(i)
def
= t(i)[x(i)T , 1]T and ω

def
= [wT , b]T .

A pattern x̄ will be labelled “bad” if x̄T
ω < 1, otherwise it will be labelled

“good”. Consider the probability distribution function

p(x̄ ;ω) = Z exp

{

−
1

2

[(x̄T
ω − 1)2

σ2
+ ‖x̄‖2

]

}

= Z exp

{

−
1

2
(x̄− µ)TΣ−1(x̄− µ)

}

(26)

where Σ−1 = [σ−2
ωω

T + I], Z =
[

(2π)−(n+1)|Σ−1|
]1/2

, and µ is any vector
such that µT

ω = 1 (e.g. µ = ω/‖ω‖2). It is easy to see that the eigenvalues
of Σ−1 are: λ1 = σ−2‖ω‖2 + 1, and λ2 = · · · = λn+1 = 1, hence, the
determinant is |Σ−1| = (σ−2‖ω‖2 + 1).

Consider now the likelihood function

L =
∑

i

p(x̄(i), bad ;ω)

=
∑

i

p(x̄(i) ;ωk)p(bad | x̄(i) ;ω) (27)
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Clearly,

p(bad | x̄(i) ;ω) = prob(x̄(i)Tω < 1 | x̄(i) ;ω)

=

{

1 x̄(i)Tω < 1
0 x̄(i)Tω ≥ 1

= Ix̄(i)Tω<1(x̄(i)) (28)

where Ix̄(i)Tω<1(x̄(i)) is the indicator function for the condition x̄(i)Tω < 1
which is equivalent to the condition ξ(i;ω) > 0. The EM algorithm can be
employed for the maximization of L. At iteration r, the algorithm makes the
following two steps

Expectation step: Compute the expectation

Q(ω ;ωr) =
∑

i

p(bad | x̄(i) ;ωr) ln p(x̄(i), bad ;ω)

=
∑

i

Ix̄(i)Tωr<1(x̄(i)) ln
[

p(x̄(i) ;ω)Ix̄(i)Tω<1(x̄(i))
]

=
∑

i: ξ(i;ωr)>0

ln
[

p(x̄(i) ;ω)Iξ(i;ω)>0(x̄(i))
]

(29)

Maximization step:

ωr+1 = argmax
ω

Q(ω ;ωr) (30)

The expectation functionQ will contain terms equal to−∞ when Iξ(i;ω)>0(x̄(i)) =
0 and ξ(i;ωr) > 0. For this reason it is convenient to ignore those cases and
focus on maximizing the following function

Q̃(ω ;ωr) =
∑

i: ξ(i;ωr)>0

ln p(x̄(i) ;ω) ≥ Q(ω ;ωr) (31)

Obviously S = {i : ξ(i;ωr) > 0} so we can write

Q̃(ω ;ωr) = lnZ +
∑

i∈S

−
1

2σ2

[

(x̄(i)Tω − 1)2 + ‖x̄‖2
]

=
1

2
ln
(

‖σ−1
ω‖2 + 1

)

+ ω
T
∑

i∈S

x̄(i)

− ω
T
∑

i∈S

x̄(i)x̄(i)Tω + other terms (32)
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where “other terms” stands for terms that are not functions of ω, hence
irrelevant to the optimization. For large σ, the term lnZ can be ignored
(zero-order approximation) leading to the function:

Q̃0(ω ;ωr) = mω − ω
TRω (33)

where

m =
∑

i∈S

x̄(i) = |S|

[

mtx

mt

]

(34)

R =
∑

i∈S

x̄(i)x̄(i)T = |S|

[

Rx mx

mT
x 1

]

. (35)

The maximization of Q̃0 in the M-step yields the same results as (25) (with
γ = 1). Therefore, the proposed algorithm is an approximate EM procedure
maximizing the probability of the “bad” data, assuming that the patterns
follow a normal distribution as described by (26). We get an insight why such
an optimization works by noting that the classifier output y(i) is Gaussian
with mean equal to the corresponding target t(i). Indeed, according to (26)
the variable t(i)y(i) = x̄T

ω follows the Gaussian distribution with mean
µ

T
ω = 1. Therefore, the maximization of the probability for the “bad”

patterns pushes t(i)y(i) towards 1, ie. it attempts to turn the “bad” patterns
into “good”.

4. The Kennel Trick

4.1. Problem Formulation

The “kernel trick” can be applied with the help of a non-linear mapping
Φ from the input space Rn to a higher dimensional space Rm (m > n or even
m = ∞). This way the computation of non-linear separating hyperplane is
facilitated. We shall avoid the explicit computation of Φ() using the scalar
kernel function

K(x,y) = Φ(x)TΦ(y). (36)

Then, (25) becomes [9]
[
∑

i∈S Φ(x(i))Φ(x(i))T
∑

i∈S Φ(x(i))
∑

i∈S Φ(x(i))T |S|

]

·

[ ∑

j∈GΦ(x(j))a(j)

b

]

=

[
∑

i∈S t(i)Φ(x(i))
∑

i∈S t(i)

]

. (37)
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Call
Kij = K(x(i),x(j)) (38)

and define the row vectors

kT
i = [Kij ]j∈G ∀i = 1, · · · , N. (39)

Then we have [9]
[
∑

i∈S Φ(x(i))kT
i

∑

i∈S Φ(x(i))
∑

i∈S k
T
i |S|

] [

a

b

]

=

[
∑

i∈S t(i)Φ(x(i))
∑

i∈S t(i)

]

(40)

The novelty of the kernel extension is that we retain a subset G of S
[11]. Actually, |G| may be much smaller that |S|. Our goal is to find the
best strategy for selecting G so that execution is accelerated and use of
memory is minimised without compromising performance. To that end, we
shall fix an upper limit to |G|. Remember that in SVM theory the number
of support vectors is typically much smaller than |S|. The advantages of the
aforementioned approach are two-fold:

• Less computational time is needed since the size of the linear system
to be solved in each iteration is smaller.

• Less memory is needed, a feature especially important when handling
large-scale problems.

We take the separating vector w in R
m as a linear combination of the

mapped inputs [11]

w =
∑

j∈G

a(j)Φ(x(j)) (41)

where the summation is over a subset G of S. This is a well justified approach
since only a few terms in (41) are enough to form a solution. Therefore, the
output y(i) = wTΦ(x(i)) + b reads

y(i) =
∑

j∈G

K(x(i),x(j))a(j) + b. (42)

Thus, next we assume that the parameters Rx, mtx, mx, mt, in (25) are
produced by summation over the set G (rather than S). So (40) may be
simplified into
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[

ΦG

1T

]

[K 1]

[

a

b

]

= γ

[

ΦG

1T

]

tG (43)

where
a = [a(i)]i∈G ∈ R

|G|×1, (44)

ΦG = [Φ(x(i))]i∈G ∈ R
m×|G|, (45)

K = [Kij ]i∈G,j∈G = [ki]
T
j∈G ∈ R

|G|×|G|, (46)

1 = [1, · · · , 1]T ∈ R
|G|×1, (47)

and
tG = [t(i)]i∈G ∈ R

|G|×1. (48)

It is sufficient, that [9]

[K 1]

[

a

b

]

= γtG (49)

hence
[

a

b

]

= γ [K 1]+ tG. (50)

For this particular paper, we simplify the model by setting b = 0 (and γ
equal to 1, as it is already stated). Under this setup, Eq. (25) in conjunction
with Eq. (41) becomes

a = K+tG, (51)

4.2. Strategies for forming G

There is a range of ways one may form G. Below we examine four specific
approaches for forming the subset G.

4.2.1. The “first come-first kept” approach

For this case we retain the first Za training feature vectors that are mis-
classified [11]. In other words, the cardinality of G is Za. Here, Za initially
equals n and it may reach a maximum value Za max through a scale up
factor Za scale.

The respective algorithm is summarized in Algorithm 2.
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Algorithm 1 Slack minimisation algorithm (linear case)

Input: MAX ITERATIONS
{INITIALISATION}
Initialize w0, b0 to random values
{TRAINING}
for r = 1 : MAX ITERATIONS do

yr−1(i) = wT
r−1x(i) + br−1, i = 1, · · · , N

Sr−1 = {i : 1 > t(i)yr−1(i)}
{UPDATE RULES}
Xr = [x(i), i ∈ Sr−1]
tr = [t(i), i ∈ Sr−1]
lr−1 → length of Sr−1

Rx = 1
lr−1

[Xr 1][Xr 1]
T

mx = 1
lr−1

[Xr 1]tr
res = R+

xmx

wr = res(1 : n)
br = res(n+ 1)
{TERMINATING CONDITION}
if (misclassified=0 or lr−1=0 or ‖wr‖ ≥ threshold) then

break
end if

end for

{TESTING (r = MAX ITERATIONS)}
yr(i) = wT

r x(i) + br, i = 1, · · · , N
return yr
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Algorithm 2 Slack minimisation algorithm (kernel case) - The “first come-
first kept” approach

Input: MAX ITERATIONS, Za max, Za scale
{INITIALISATION}
Initialize a0 = 0, b=0, and Za=n
{TRAINING}
for r = 1 : MAX ITERATIONS do

Gr−1 = [ ]
for p=1 TO N do

kT (p,r−1) = [Kpi], i = 1, · · · , N
y(p)r−1 = kT (p,r−1)ar−1 + b
S(p,r−1) = {pr−1 : 1 > tr−1(p)yr−1(p)}
if S(p,r−1) is true then

lS(p,r−1) → length of S(p,r−1)

if lS(p,r−1) ≤ Z(a,r−1) then

G(p,r) = [G(p,r−1) pr−1]
else

increaseZaflag = true
end if

end if

end for

Compute Kr = [Kij]i∈Gr ,j∈Gr

if increaseNZaflag = true then

Za,r = min((Za scale× Z(a,r−1)), Za max)
end if

{UPDATE RULES}
ar = K+

r t(G,r)

{TERMINATING CONDITION}
if (misclassified=0 or l(S,p,r−1)=0 or norm(ar) ≥ threshold) then

break
end if

end for

{TESTING (r = MAX ITERATIONS)}
K′

r = [Kij]i∈N,j∈N

yr = K′
rar + b

return yr
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4.2.2. Stochastic formulation of G

This strategy is stochastic in the sense that it produces at each iteration
a random number rand num which is compared to a user defined parameter
retain prob. For a training feature vector to be retained at G there are two
prerequisites.

• First, the current training feature vector should be “worse” that the
one encountered at the previous iteration, i.e.

t(i)y(i) < t(i− 1)y(i− 1). (52)

It is reminded that both training feature vectors belong to S.

• Second,
rand num > retain prob. (53)

In other words we retain a training feature vector that belongs to S
with probability rand num given that (52) is true.

The proposed algorithm is summarized in Algorithm 3.

4.2.3. Retaining the “worst” patterns

In this case a user-defined parameter idx max determines the maximum
number of training feature vectors that satisfy t(i)y(i) < 1 and may be
retained. That is the the cardinality of G is idx max. Initially we retain
the first idx max ones, so as it holds f = {1, . . . , idx max} training feature
vectors that belong to S along with their corresponding values

ty = [t(1)y(1) . . . t(idx max)y(idx max)]. (54)

Let as also define maxf = max(ty) and minf=min(ty). In case a new train-
ing feature vector j arrives that has a value of t(j)y(j) which is greater that
the maxf it substitutes the training feature vector whose index corresponds
to minf . In other words, we retain the idx max training feature vectors
which are closer to the separating hyperplane. The proposed algorithm for
the kernel case is summarized in Algorithm 4.
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Algorithm 3 Slack minimisation algorithm (kernel case) - Stochastic for-
mulation of G
Input: MAX ITERATIONS, Za max, Za scale, retain prob
{INITIALISATION}
Initialize a0 = 0, b=0, and Za=n
{TRAINING}
for r = 1 : MAX ITERATIONS do

Gr−1 = [ ]
for p=1 TO N do

kT (p,r−1) = [Kpi], i = 1, · · · , N
y(p)r−1 = kT (p,r−1)ar−1 + b
S(p,r−1) = {pr−1 : 1 > tr−1(p)yr−1(p)}
if S(p,r−1) is true then

if rand numr−1 < retain prob AND tr−1(p)yr−1(p) < tr−1(p −
1)yr−1(p− 1) then
lS(p,r−1) → length of S(p,r−1)

if lS(p,r−1) ≤ Z(a,r−1) then

G(p,r) = [G(p,r−1) pr−1]
else

increaseZa,r−1flag = true
end if

end if

end if

end for

Compute Kr = [Kij]i∈Gr ,j∈Gr

if increaseZa,r−1flag = true then

Za,r = min((Za scale× Za,r−1), Za max)
end if

{UPDATE RULES}
ar = K+

r t(G,r)

{TERMINATING CONDITION}
if (misclassified=0 or l(S,p,r−1)=0 or norm(ar) ≥ threshold) then

break
end if

end for

{TESTING (r = MAX ITERATIONS)}
K′

r = [Kij]i∈N,j∈N

yr = K′
rar + b

return yr
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4.2.4. Retaining those patterns that belong to a range

For this case, we retain those training feature vectors that satisfy t(i)y(i)
∈ [MIN,MAX ]. The idea is that if ξ(i) is small enough, then those training
feature vectors are closer to the separating hyperplane, and can be chosen to
be retained. In other words, possible outliers that have very large ξ(i) are
dismissed.

The respective algorithm is summarized in Algorithm 5.

5. Automatic parameter selection

It is a fact that utilizing a kernel prerequisites the tuning of its parameters.
For this work we apply the RBF kernel, as well as the polynomial kernel.
Thus, the corresponding parameters are σ for the RBF kernel and power and
offset for the polynomial kernel. The tuning of those parameters has proven
to have a high impact on the classification accuracy, since their selection
has an effect on the learning and generation performance. To tune these
parameters 20% of the data are utilised. Utilizing the grid algorithm to
obtain the optimal classification performance through exhaustive searching
would be out of question, since this method is computationally inefficient
with respect to time and memory. Accordingly, much research has been
devoted to find an automatic way to select parameters in a more efficient
way [12].

For the proposed hybrid PSO-AIS model, the slack minimisation algo-
rithm parameters are dynamically and concurrently optimized via a parallel
network [13]. PSO is an evolutionary computation, population-based search,
iterative optimisation algorithm that is initialized with a population of ran-
dom solutions. It is biologically inspired by social behaviour among individ-
uals, such as birds flying towards a rewarding position. It has been widely
successfully utilized before in order to optimise SVMs parameters [7].

Qualitative, for the PSO algorithm a potential solution to the problem is
called a particle. Particles follow the currently optimum particles and also
take into account the global best solution. To achieve so, each particle keeps
a memory of its previous best position along with its corresponding velocity.
At each iteration, each particle’s velocity is computed as a combination of
the previous particle velocity, the position of the currently optimum particle
(that is the best value obtained so far by any particle in that particle’s
neighborhood), and the position of the global optimum particle. The latter
considers the the entire population to be topological neighbors of this specific
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Algorithm 4 Slack minimisation algorithm (kernel case) - Retaining the
“worst” patterns

Input: MAX ITERATIONS, idx max
{INITIALISATION}
Initialize a0 = 0 and b=0
{TRAINING}
for r = 1 : MAX ITERATIONS do

Gr−1 = [ ]
for p=1 TO N do

kT (p,r−1) = [Kpi], i = 1, · · · , N
y(p)r−1 = kT (p,r−1)ar−1 + b
S(p,r−1) = {pr−1 : 1 > tr−1(p)yr−1(p)}
if S(p,r−1) is true then

if |G(p,r−1)| <= idx max then

tr−1(p)yr−1(p) = [tr−1(p)yr−1(p) t(p,r)(i)y(p,r)(i)]
[maxf(p,r−1), maxidx(p,r−1)] = max(tr−1(p)yr−1(p))
[minf(p,r−1), minidx(p,r−1)] = min(tr−1(p)yr−1(p))

else

t(p)r−1y(p)r−1 = ty− {minf(p,r−1)}
⋃

{maxf(p,r−1)}
G(p,r) = G(p,r−1) − {minidx(p,r−1)}

⋃

{maxidx(p,r−1)}
end if

end if

end for

Compute Kr = [Kij]i∈Gr ,j∈Gr

{UPDATE RULES}
ar = K+

r t(G,r)

{TERMINATING CONDITION}
if (misclassified=0 or l(S,p,r−1)=0 or norm(ar) ≥ threshold) then

break
end if

end for

{TESTING (r = MAX ITERATIONS)}
K′

r = [Kij]i∈N,j∈N

yr = K′
rar + b

return yr
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Algorithm 5 Slack minimisation algorithm (kernel case) - Retaining those
patterns that belong to a range
Input: MAX ITERATIONS, MIN , MAX
{INITIALISATION}
Initialize a0 = 0, b=0
{TRAINING}
for r = 1 : MAX ITERATIONS do

Gr−1 = [ ]
for p=1 TO N do

kT (p,r−1) = [Kpi], i = 1, · · · , N
y(p)r−1 = kT (p,r−1)ar−1 + b
G(p,r−1) = {pr−1 : MAX > tr−1(p)yr−1(p) > MIN}

end for

Compute Kr = [Kij]i∈Gr ,j∈Gr

{UPDATE RULES}
ar = K+

r t(G,r)

{TERMINATING CONDITION}
if (misclassified=0 or l(S,p,r−1)=0 or norm(ar) ≥ threshold) then

break
end if

end for

{TESTING (r = MAX ITERATIONS)}
K′

r = [Kij]i∈N,j∈N

yr = K′
rar + b

return yr
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particle. Next, the calculated velocity is used to compute a new position for
the particle. This way, all particles share information about the search space
by any particles in the swarm.

To put is in more strict mathematical terms, let χi,d be the ith particle.
Here, t stands for the index of the iteration (also can be considered as time
index), d stands for the dimension (that is for RBF kernel d = 1, whereas
for the polynomial case d = 2). The best position of the aforementioned
particle is denoted by pi,d, whereas the global best position discovered by
any particles in the swarm is denoted by pg,d. The current velocity at time t
is defined as:

vi,d(t) = ωvi,d(t− 1) + q1r1(pi,d − χi,d(t− 1)) +

q2r2(pg,d − χi,d(t− 1)) (55)

where ω is a weight, q1 is the personal learning rate, q2 is the social learning
rate, and r1 and r2 are random numbers. It is true that r1, r2 ∈ [0, 1]. The
new position of the particle is defined as:

χi,d(t + 1) = χi,d(t) + vi,d(t + 1). (56)

Literature has proved that each particle converges to a weighted average of
its personal best and neighborhood best position. The maximum number of
iterations is user defined.

AIS is an emerging soft computing method and accordingly there are lim-
ited examples in the literature of SVM classifiers which employ AIS in order
to optimize their parameters [8]. AIS is inspired by he natural immune sys-
tem which is a remarkable information processing and self learning system.
Qualitative, in AIS, an antibody is produced as a mean to deal with an anti-
gen i.e. a foreign substance. When an antibody encounters an antigen is for
the first time, it takes a long to be constructed. However, when this happens
for the second time, the antibody is produced faster in greater quantities.
Also, when an antibody is produced, a concentration of it remains into the
body. This is equal to mature mutation. This way, the algorithm can escape
the local critical points to find the globally best solution.

AIS operators comprise the selection operator, the mutation operator and
the crossover operator. The selection operator refers to the way an antibody
ϕi(t) produces its offspring ϕi(t+1). The higher the affinity of the antibody,
the more effective the antibody (i.e. the better the solution), and the greater
the possibility the antibody will be selected. Mutation allows the parameters
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in the antibody to alter. The mutation rate mr of antibody i is inversely
proportional to the antibody’s affinity with an antigen α(i). In specific, it is
defined as:

mr(i) = ϑ exp−α(i), (57)

where ϑ determines the shape of the mutation rate. The mutated antibody
is produced according to:

ϕi(t+ 1) = ϕi(t) + r3mr(i), (58)

where r3 denotes a random number that is normally distributed in the range
from 0 to 1. Crossover is a mechanism for exchanging parameters between two
antibodies randomly. Here, we apply the one point crossover. For example,
if ϕi(t) is an antibody with two parameters, i.e. ϕi(t) = [ϕi1(t) ϕi2(t)] and
ϕj(t) is a second antibody so that ϕj(t) = [ϕj1(t) ϕj2(t)], then it crossover
is defined as:

ϕi(t + 1) =

{

[ϕi1(t+ 1) ϕj2(t+ 1)], if c > cr(i)

ϕi(t+ 1), otherwise
(59)

where cr(i) is the crossover rate and c is a randomly generated number in
the range [0, 1].

The proposed PSO-AIS system is initialized with a pull of random solu-
tions, i.e. random antibodies and particles, jointly called memory cells. To
begin with, we consider u such memory cells. The user defines the range for
the parameters that we seek to minimise, i.e. σ for the case of the RBF kernel
and offset and power for the case of the polynomial kernel. The procedure
of the proposed PSO-AIS evolutionary approach is as follows:

For each iteration

Step 1 Compute the affinity for the memory cells.

Step 2 Consider the best u/2 memory cells with respect to classification
accuracy as particles. The same memory cells also construct a
population of u/2 antibodies.

Step 3 For all particles compute their personal best position as well as
the global best position for each dimension.
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Step 4 For all particles compute the corresponding velocity according to
(55) for each dimension.

Step 5 Revise the position of all particles using (56).

Step 6 If the new position is outside the predefined range, then project
it to the matching boundary, i.e. if the new position is greater
than the maximum value, set it equal to the maximum value.
Accordingly, for the minimum value.

Step 7 Compute the affinity of the updated particles.

Step 8 Move the u/2 best particles to the pool of memory cells.

Step 9 For every antibody calculate its respective mutation rate accord-
ing to (57).

Step 10 Construct the mutated antibodies using (58).

Step 11 Sort the antibodies in a descending order with respect to their
affinity. Let the list of the sorted antibodies be: V = [ϕ1(t)ϕ2(t)...ϕu/2(t)].

Step 12 Apply crossover to all the consecutive pairs of V , i.e. [ϕ1(t) ϕ2(t)]
... [ϕu/2−1(t) ϕu/2(t)].

Step 13 Compute the affinity of the new crossed over antibodies.

Step 14 Select the u/2 best antibodies and move them to the pool of mem-
ory cells.

Step 15 Produce a new random population of u/2 memory cells and add
them to the memory pool.

Step 16 Goto Step 2.

Until end of iterations

Alternatively, the flowchart of the proposed evolutionary algorithm is
depicted in Figure 1.

6. Experimental Evaluation

6.1. Databases

For our experiments we used 3 datasets of radically different nature. All
three datasets are available at the UCI machine learning repository [14]. The
first dataset is the benchmark iris dataset [14] available at the UCI machine
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Figure 1: The flowchart of the evolutionary algorithm by means of a parallel network

Table 1: Experimental results for slackmin algorithm (linear kernel)

Dataset
Train Set

time elapsed (s) accuracy(%) PRC(%) RCL(%) F1(%)
iris 0.002±0.001 73.833±3.416 63.923±3.4323 49.461±6.345 55.654±5.029

SPECTheart 0.013±0.010 91.103±1.567 93.516±1.187 95.383±1.249 94.438±1.093
vertebral column 0.006±0.003 85.565±1.004 77.136±2.077 78.405±2.023 77.756±1.802

Test Set
iris 0.001±0.0004 72.667±12.338 61.591±16.338 57.419±29.638 55.660±17.252

SPECTheart 0.007±0.006 80.140±3.215 87.952±4.509 86.898±4.644 87.300±2.565
vertebral column 0.007±0.006 84.839±3.534 76.324±14.443 77.881±9.639 75.925±6.788
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Table 2: Experimental results for slackmin algorithm kernel case - first come first served
(i.e. Algorithm 2) for the RBF kernel.

Dataset
Selected Parameter Train Set

σ time elapsed (s) accuracy(%) PRC(%) RCL(%) F1(%)
iris 1.269 0.009±0.002 99.833±0.373 99.487±1.147 100±0 99.740±0.581

SPECTheart 13 0.062±0.020 86.679±1.271 93.456±0.944 89.478±0.902 91.423±0.846
vertebral column 3 0.098±0.073 89.794±1.458 93.973±2.894 93.264±3.495 93.538±1.013

Test Set
iris 1.269 0.002±0.0006 88±3.801 81.299±5.851 80.619±13.913 80.542±8.429

SPECTheart 13 0.015±0.002 77.561±6.762 84.915±7.949 87.644±7.184 85.949±4.843
vertebral column 3 0.007±0.001 83.818±2.553 73.185±10.255 78.631±9.836 75.019±5.739

Table 3: Experimental results for slackmin algorithm kernel case - first come first served
(i.e. Algorithm 2) for the poly kernel.

Dataset
Selected Parameters Train Set

power, offset time elapsed (s) accuracy(%) PRC(%) RCL(%) F1(%)
iris 2, 11 0.006 ±0.001 97.333±1.087 94.245±2.163 98.029±1.113 96.096±1.616

SPECTheart 4, 5 0.113±0.115 79.400±0.961 79.400 ±0.961 100±0 88.515±0.595
vertebral column 2, 8 0.010 ±0.001 87.419±0.776 81.351±1.713 78.674±4.693 79.946±2.975

Test Set
iris 2, 11 0.001±0.001 96.667 ±4.083 93.604±6.300 98.462±3.440 95.925±4.586

SPECTheart 4, 5 0.041±0.025 79.385±3.865 79.385±3.865 100±0 88.466±2.435
vertebral column 2, 8 0.003±0.0004 84.839±5.657 76.433±18.339 76.680±8.200 75.361 ±10.283

learning repository. The dataset contains 3 classes of 50 instances each,
where each class refers to a type of iris plant. We form a binary problem by
attempting to separate class “Versicolor”, that counts a total of 50 samples,
against the other two classes combined (“Virginica” and “Setosa”) which
contain 100 samples. A total of 4 features is available for each sample.

The second dataset refers to the diagnosis of cardiac Single Proton Emis-
sion Computed Tomography (SPECT) heart images. Each patient is clas-
sified into one of two categories: normal (212 patients) and abnormal (55
patients). That is the SPECTheart dataset has 267 instances that are de-
scribed by 44 features.

An additional dataset, related to classification of pathologies of the ver-
tebral column is considered. The dataset contains values for 6 biomedical
features derived from the shape and orientation of the pelvis and lumbar
spine. The aforementioned biomedical features are utilized to classify or-
thopaedic patients into 2 classes normal (100 patients) or abnormal (210
patients). The dataset is one of the most recent additions to UCI machine
learning repository.
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Table 4: Experimental results for slackmin algorithm kernel case - stochastic formulation
of G (i.e. Algorithm 3) for the RBF kernel.

Dataset Selected Parameter
Train Set

σ time elapsed (s) accuracy(%) PRC(%) RCL(%) F1(%)
iris 0.971 0.003±0.001 73.833±3.416 63.923±3.432 49.461±6.345 55.654±5.029

SPECTheart 2.877 0.062±0.020 86.679±1.271 93.456±0.944 89.478±0.902 91.423±0.846
vertebral column 3 0.0196±0.002 95.565±0.638 93.224±2.784 92.978±1.215 93.074±1.227

Test Set
iris 0.971 0.002 ±0.0001 86.667±6.667 78.452±19.195 89±15.166 80.975±9.524

SPECTheart 2.877 0.018±0.011 73.244±10.103 86.056±6.924 78.660±8.626 82.099±7.298
vertebral column 3 0.007±0.001 83.818±2.553 73.185±10.255 78.631±9.836 75.019±5.739

Table 5: Experimental results for slackmin algorithm kernel case - stochastic formulation
of G (i.e. Algorithm 3) for the polynomial kernel.

Dataset Selected Parameter
Train Set

power, offset time elapsed (s) accuracy(%) PRC(%) RCL(%) F1(%)
iris 2, 6 0.008±0.002 95±1.954 87.109±4.731 100±0 93.057±2.631

SPECTheart 12, 12.121 0.096±0.056 85.398±6.466 92.418±8.481 90.232±10.245 90.656±4.553
vertebral column 2, 7 0.014±0.003 87.177±0.721 81.360±2.611 78.297±2.623 79.743±1.156

Test Set
iris 2, 6 0.004±0.004 93.333±3.333 82.400 ±9.297 100±0 90.122 ±5.619

SPECTheart 12, 12.121 0.033±0.009 75.290±8.054 86.586±5.530 80.987±10.951 83.358±6.767
vertebral column 2, 7 0.003±0.0007 85.484±2.550 78.014±7.674 78.704±9.541 77.704±2.907

6.2. Experimental Protocol

As a prerequisite to classification, normalisation takes place. Feature
normalisation improves the features generalisation ability, guarantees that
all the features obtain the same scale, and helps to address the problem of
outliers. All features are subject to mean and variance normalisation, that
is each feature vector is transformed to present zero mean and unit variance
hereafter.

All the experiments are carried out on on a 2.00 GHz processor with 4GB
of RAM, with a Windows-7 32 bit operating system. The software platform
exploited is MATLABrR2011b [15]. For all the experiments presented in
this Section, a 5-fold cross validation strategy is applied. Cross-validation
helps up to verify the stability of the proposed classification method, whereas
it is assured that all the feature vectors in the dataset are eventually used
for both training and testing.

Classifier performance is evaluated through several sets of figures of merit
to capture diverse aspects of efficiency. Let us define as tp as true positive,
fn as false negative, fp as false positive, and tn as true negative. Then, is
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Table 6: Experimental results for slackmin algorithm kernel case - retaining the “worst”
patterns (i.e. Algorithm 4) for the RBF kernel.

Dataset Selected Parameter
Train Set

σ time elapsed (s) accuracy(%) PRC(%) RCL(%) F1(%)
iris 0.007 0.003±0.001 73.833±3.416 63.923±3.432 49.461±6.345 55.654±5.029

SPECTheart 15.471 0.059±0.024 97.847±0.967 98.936±0.967 98.352±0.484 98.641±0.608
vertebral column 2.293 0.013 ±0.0003 99.677±0.180 99.012±0.553 100±0 99.503±0.2782

Test Set
iris 0.007 0.002 ±0.0002 98.750±2.795 100±0 96±8.944 97.778±4.969

SPECTheart 0.016±0.004 79.413±3.385 85.197±2.611 89.636±3.543 87.326±2.388
vertebral column 2.293 0.003±0.002 85.754±3.146 76.039±4.280 82.804±10.528 78.880±5.035

Table 7: Experimental results for slackmin algorithm kernel case - retaining the “worst”
patterns (i.e. Algorithm 4) for the polynomial kernel.

Dataset Selected Parameter
Train Set

power, offset time elapsed (s) accuracy(%) PRC(%) RCL(%) F1(%)
iris 2, 15 0.006 ±0.0004 97.500±1.021 94.732±1.917 98.035±1.100 96.352±1.452

SPECTheart 10, 15 0.124±0.007 99.064±0.330 99.527±0.265 99.293±0.262 99.409±0.209
vertebral column 5, 0.0001 0.086 ±0.014 99.597±0.285 98.792 ±0.842 100±0 99.391±0.426

Test Set
iris 2, 15 0.001 ±0.0003 96.667±2.357 92.000±8.367 98.462±3.440 94.873±3.982

SPECTheart 10, 15 0.045±0.014 72.663±3.097 87.007±4.721 77.300±3.953 81.740±2.393
vertebral column 5, 0.0001 0.075±0.066 85.759±3.313 73.742±2.852 85.442±10.272 79.040±5.977

Table 8: Experimental results for slackmin algorithm kernel case - retaining those patterns
that belong to a range (i.e. Algorithm 5) for the RBF kernel.

Dataset Selected Parameter
Train Set

σ time elapsed (s) accuracy(%) PRC(%) RCL(%) F1(%)
iris 0.009 0.010 ±0.006 1 100±0 100±0 100±0 100±0

SPECTheart 2.702 0.043±0.006 100±0 100±0 100±0 100±0
vertebral column 5 0.018 ±0.004 100±0 100±0 100±0 100 ±0

Test Set
iris 0.009 0.001 ±0.0006 99.200±1.789 100±0 98±4.472 98.947±2.354

SPECTheart 2.702 0.015±0.004 73.890±5.636 85.652 ±7.022 80.400±3.380 82.839±4.194
vertebral column 5 0.008±0.006 85.769±5.725 76.596±8.642 82.596±10.582 78.990±6.131

Table 9: Experimental results for slackmin algorithm kernel case - retaining those patterns
that belong to a range (i.e. Algorithm 5) for the polynomial kernel.

Dataset Selected Parameter
Train Set

power, offset time elapsed (s) accuracy(%) PRC(%) RCL(%) F1(%)
iris 2, 10 0.005 ±0.0006 97.333±0.697 93.895±1.540 98.420±1.443 96.094±0.956

SPECTheart 15, 10 0.035±0.007 100±0 100±0 100±0 100±0
vertebral column 3, 15.312 0.027 ±0.0005 89.597±1.319 84.366±1.641 83.228±2.0767 83.784±1.582

Test Set
iris 2, 10 0.002 ±0.001 96.667±4.083 88.962±15.461 100±0 93.532±9.580

SPECTheart 15, 10 0.025±0.009 72.690±4.243 87.068±5.493 77.611±5.324 81.827±2.353
vertebral column 3, 15.312 0.009±0.001 84.516±4.785 74.616±3.628 78.701±7.005 76.480±4.266
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is true that

accuracy = 100× (tp+ tn)/(tp+ tn + fp+ fn)

PRC = 100× tp/(tp+ fp)

RCL = 100× tp/(tp+ fn)

F1 = (2× PRC ×RCL)/(PRC +RCL).

Linear case RBF kernel Polynomial kernel
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Figure 2: Best accuracies per dataset and per method (i.e. linear or kernel) achieved by
the slack minimisation algorithm. The strategy which accomplish the best accuracy is also
stated.

.

Experimental results for the linear case of proposed slack minimisation
algorithm, i.e. Algorithm 1 are detailed in Table 1. The reported figures of
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(a) The misclassification error as a function of
the iterations for the iris dataset for the slack
minimisation algorithm - Stochastic formula-
tion of G.
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(b) The misclassification error as a function
of the iterations for the iris dataset for the
slack minimisation algorithm - Retaining the
“worst” patterns.
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(c) The misclassification error as a function of
the iterations for the SPECTheart dataset for
the slack minimisation algorithm - Stochastic
formulation of G.
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(d) The misclassification error as a function of
the iterations for the SPECTheart dataset for
the slack minimisation algorithm - Retaining
the “worst” patterns

Figure 3: The way the classification error develops with respect to the number of iterations
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merit are averaged over the 5 folds, whereas the standard deviation is also
provided for each figure of merit. Also, the execution time is provided to ver-
ify the fact that the slack minimisation algorithm presents a low execution
time. For the kernel cases, the parameters selected by the PSO-AIS evolu-
tionary algorithm are stated, as well. The respective results for Algorithm 2
are depicted in Table 2 for the RBF kernel and in Table 3 for the polynomial
kernel. For Algorithm 3, the corresponding results are shown in Tables 4-5.
For Algorithm 4 the results for the RBF kernel are shown in Table6 and
for the polynomial case in Table 7. Finally, the results for Algorithm 5 are
demonstrated in Table 8 for the RBF kernel and in Table 9 for the kernel
case.

7. Discussion

7.1. Discussion on the results of the proposed method

To provide a concise overview of the reported results along the three
datasets the best accuracy per method (i.e. linear and kernel - RBF and
polynomial) is depicted in Figure 2. For the kernel case, we confine ourselves
to the best performing strategy. In general, it seems that the retaining the
“worst” patterns as well as those that belong to a range leads to improved
classification accuracy. This is in line with the intuition that the closer the
misclassified training feature vectors are to the boundary, i.e. the closer ξ
is to 0, the more discriminating power those specific training feature vector
have. Specifically, the strategy of retaining the “worst” patterns determined
how many training feature vectors to chose, whereas the strategy of selecting
those patterns that belong to a range specifies the “width” of the separating
hyperplane.

One advantage of the proposed algorithm is the fact that the accuracy is
high even for the simple linear case (with the exception of the iris dataset),
which is less computationally demanding and requires no parameter tuning.
A second advantage is the high efficiency of the algorithm for diverse datasets
as well as its suitability for biomedical datasets, which in principle exhibit
great inter-subject variability. Such datasets are the SPECTheart and the
vertebral column. Slack minimisation algorithm generalises well even when a
limited amount of training data is available, which is an additional advantage
since obtaining more datapoints for biomedical datasets is often expensive or
impractical.
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Another advantage of the proposed algorithm that it manages to con-
verge after a few iterations. It is remineded that the algorithm, as an EM
algorithm, is certain to converge. Aiming to visualize the way the classifica-
tion error develops with respect to the number of iterations, we provide the
reader with Figure 3. The aim of the aforementioned Figure is to provide
visual proof of the way that the misclassification error reduces as the number
of iterations increases. To illustrate that we confine ourselves to two datasets
and two strategies (since the exhaustive combination of dataset, strategies,
and kernels would produce an excess of figures). In specific Figure 3(a) and
3(b) refer to the iris dataset, whereas the remaining figures are related to
SPECTheart dataset. The two tested strategies are the stochastic formula-
tion of G as well as the retaining of the “worst” patterns. From the afore-
mentioned Figures it is clear that that the misclassification error is reduced
in a high rate within just a few iterations (typically less than 5), whereas
for the remaining iterations the misclassification error tends to remain at the
reduced level. In other words, the proposed algorithm has the advantage
of converging in just a few iterations. This is also verified by Tables 1-9.
For the iris dataset for example, the maximum training time equals 0.010 s
whereas the minimum training time is 0.002 s. It worth noticing that the
minimum times are achieved for the tuning free linear case, since it requires
less computations than the kernel case. The maximum execution times are
observed for the RBF kernel case, since its quadratic form is computationally
most demanding.

7.2. Comparison with SVM

For comparison reasons we compare the performance of our approach to
standard SVM algorithm, as it is implemented at MATLABrbioinformatics
toolbox [15]. The exact same protocol is applied, which means that a 5-
fold cross validation is applied, whereas the kernel parameters are selected
automatically by the evolutionary algorithm, which means that the two ap-
proached may conclude to different parameters after tuning. In short, for all
but one cases, as can be seen in Table 10 the proposed algorithm achieves a
better classification accuracy that its SVM counterpart. Also, in the same
table the results of the equivalent soft margin SVM are demonstrated, where
the slack penalty coefficient is set to a very large number, as proposed by
MATLABrbioinformatics toolbox [15]. In that case the proposed algorithm
consistently outperforms the standard SVM approach. No convergence indi-
cates that at least one fold failed to converge. With respect to execution
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Table 10: Comparison of accuracy with the standard SVM
dataset standard SVM

accuracy(%)
SVM accuracy
with large
penalty(%)

selected pa-
rameters

proposed
algorithm
accuracy(%)

selected pa-
rameters

Linear
iris 72.000 ±7.674 No conver-

gence
- 72.667±12.338 -

SPECT
heart

76.408± 4.678 No conver-
gence

- 80.140±3.215 -

vertebral
column

85.161±4.174 No conver-
gence

- 84.839±3.534 -

RBF kernel
iris 95.333± 1.825 93.333± 0.333 2.022 99.200±1.789 0.009
SPECT
heart

78.686± 4.476 79.406± 1.793 1.161 79.413±3.385 15.471

vertebral
column

84.193± 5.275 No conver-
gence

3.862 85.769±5.725 5

Polynomial kernel
iris 95.334±1.826 94.000±2.789 2, 0 96.667±2.357 2, 15
SPECT
heart

67.470± 8.587 75.653± 5.730 2, 0 79.385±3.865 4, 5

vertebral
column

84.193± 2.103 No conver-
gence

2, 0 85.759±3.313 5, 0.0001

time, the proposed method presents consistently smaller execution times
when compared to SVM and soft margin SVM, as is obvious from Table 11.

7.3. Expanding to larger datasets

To check the proposed algorithm’s efficiency on larger datasets, we ex-
ploited an additional dataset from the UCI machine learning repository [14],
namely the wine quality dataset. The dataset contains 10 classes unbalanced
classes that correspond to the quality of the wine. For this paper, we consider
2 classes, 1 for those wines that achieve a score less or equal to five and the
second one for those that are attributed a score greater than 5. The number
of features is 12 and the number of samples equals 4898.

With respect to the proposed algorithm’s efficiency, for the linear case it
equals 74.203 ± 0.001%. With respect to the “first come-first kept” strategy,
for the RBF kernel accuracy is 69.288± 0.736%, for the stochastic formula-
tion of G accuracy equals 70.458± 1.875%, for retaining the “worst” patterns
accuracy rises to, 73.600± 1.177% and for retaining those patterns that be-
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Table 11: Comparison of execution time with the standard SVM (time refers to the training
of one fold)

dataset standard SVM (s) SVM with large penalty (s) proposed algorithm (s)
Linear

iris 0.242 No convergence 0.003
SPECT heart 1.201 No convergence 0.017

vertebral column 0.843 No convergence 0.006
RBF kernel

iris 0.076 2.065 0.006
SPECT heart 0.358 0.586 0.019

vertebral column 0.148 No convergence 0.008
Polynomial kernel

iris 0.030 1.625 0.001
SPECT heart 0.040 0.6832 0.045

vertebral column 0.206 No convergence 0.065

long to a range accuracy equals 74.214± 1.257%. For the polynomial kernel
the respective figures are: 66.677 ± 1.368%, 74.726 ± 1.020%, 74.188 ±
1.142%, and 64.676 ± 3.916%.

The standard SVM algorithm, as it is implemented at MATLABrbio-
informatics toolbox [15] achieves no convergence for the linear and the poly-
nomial case, whereas for the RBF kernel accuracy equals 76.496± 0.002%.
For the soft margin SVM, no convergence is achieved for the linear, RBF and
polynomial kernel case.

8. Conclusions

This paper presents the slack minimisation algorithm, a binary classifi-
cation algorithm which minimises the energy of the slack variables to allow
for a more flexible separating hyperplane. It is proven that in the linearly
separable case the minimum mean squared slack is attained at a separating
vector, that the minimiser in the linearly non-separable case is bounded, but
not zero; and that the algorithm belongs to the EM family. Additionally, the
kernel case is analysed, and specifically the RBF as well as the polynomial
kernel is tested. The algorithm is computationally efficient and fast, since it
manages to converge in just a few iterations. Additional time and memory
efficiency is achieved by selecting a limited subset of misclassified training
feature vectors via four distinct strategies. Automatic optimisation of kernel
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parameters is attained via an evolutionary approach. Specifically, a com-
putational efficient parallel combination of AIS and PSO is examined that
dynamically tunes the kernel parameters for each method concurrently. hree
datasets of radically different nature have been utilised namely the iris, the
SPECTheart, and the vertebral column dataset to verify the high efficiency
as well as the proposed approach robustness and stability. The efficiency of
the algorithm is verified in terms of figures of merit as well as execution time.

In the future, the proposed system can be exploited as a base classifier
of an ensemble system. Additionally, more datasets may be tested, so as to
study the performance of the proposed algorithm for diverse classification
problems. Furthermore, more sophisticated kernels, such as those that are
based on wavelets could be tested. Alternative powers of the slsck variable ξ
may be analysed to further handle the shape of the separating hyperplane.
Finally, the nature of the algorithm and specifically the fact that each mis-
classified training feature vector is chosen independent of the others renders
the algorithm suitable for parallel programming.
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