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Abstract 

There is a longstanding debate about the future availability of energy resources, and a 

significant literature has developed around the issues of oil availability in particular. More 

recently, the availability of lesser-known critical metals, such as lithium and indium, has 

been called into question. These metals are key components in low-carbon energy 

technologies and a new evidence base that questions their future availability is emerging. 

Much of this research applies methods and techniques also applied to the analysis of oil 

resources, with the implicit assumption that these resources are in some way analogous. 

However, although there are similarities, there are also structural differences and the 

appropriateness of the assumed analogy has not been sufficiently tested. This thesis 

explores the similarities and differences in the structure of the oil, lithium and indium 

resource systems, examining the likely response of these systems to availability constraints 

and testing the appropriateness of this assumed analogy. 

The systems that define the market for resources are dynamically complex and involve a 

number of different interlinked variables. The way in which these resource systems respond 

to changes in surrounding conditions arises from the structure of these variables and their 

linkages. However, much of the existing analysis of critical metals relies on simplistic 

assumptions regarding the structure and function of these systems. To address this 

knowledge gap, this thesis first presents case studies of the three resource systems. The 

case studies are then used to develop three system dynamics models. 

This thesis finds that, while there are many similarities in the structure of the three resource 

systems modelled, the differences between them have a significant impact on their dynamic 

system behaviour. Analysis which overlooks these differences is likely to draw inaccurate 

conclusions. In particular, the resilience of metals to periods of constrained availability is 

potentially greater than that of oil if metal recycling is taken into account. However, metals 

recovered as by-products are potentially limited in their ability to resist constrained 

availability. 
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Chapter 1:  Introduction 

“The power of population is so superior to the power in the earth to produce 

subsistence for man that premature death must, in some shape or other, visit 

the human race”. 

Thomas Robert Malthus, (1798) 

“Because we can expect future generations to be richer than we are, no 

matter what we do about resources, asking us to refrain from using resources 

now so that future generations can have them later is like asking the poor to 

make gifts to the rich.” 

Julian Simon, (1983) 

This thesis is concerned with the future availability of energy resources and the robustness 

of dynamic resource systems to constraints in resource production capacity. It is reasonable 

to assume that the condition of future society is dependent on the availability of resources. 

However, there is considerable disagreement on whether useful resources will be scarce or 

abundant in the future. The polarity of opinion on this issue is significant, with some 

predicting chronic resource unavailability and societal collapse whilst others predict virtually 

infinite resource availability, economic growth and development. The debate has been 

contentious since the earliest authors of the discourse (Malthus 1798; Hazlitt 1807) and 

though the resources at the centre of the debate may have changed over time, the 

contention of the discourse has remained. In more recent history the pivotal role played by 

fossil fuels in the advancement of society has led the debate in the direction of energy, with 

resources like oil taking centre stage and with a whole spectrum of opinion as to the future 

availability of energy resources (Sorrell et al. 2009). 

In the last decade a host of lesser known metals have become the new focus of the resource 

availability debate due to their role in the manufacturing of technologies, which may be 

used to decarbonise the energy sector. Technologies such as solar photovoltaics (PV), which 

may be used to decarbonise electricity generation, and electric vehicles (EV), which may be 

used to decarbonise transportation, use a host of metals such as indium and lithium with 
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relatively low abundance and relatively low historical demand. However, global trends in 

the adoption of decarbonisation targets have led some to forecast dramatic increases in the 

manufacturing of low-carbon technologies (Angerer et al. 2009b; DCM 2009; McKinsey 

2009; IEA 2010a; Marcus 2010) leading to concern over the availability of the less abundant 

metals used in their manufacture. Metals such as these may be referred to in the literature 

as ‘low-carbon technology metals’, a subset within the wider ‘critical materials’. 

The debate surrounding the availability of critical materials is contentious in a similar way to 

previous incarnations of the resource availability debate. Those with the most pessimistic 

outlook dismiss more optimistic positions (Ehrlich 1968; Tahil 2008) while the optimists 

similarly dismiss pessimists (Simon 1998); both using logic common to the wider resource 

availability debate to defend their positions. This common logic implies that, at a 

fundamental level, resources are the same and that if an argument is sufficient to conclude 

the relative availability of one resource then it is also sufficient to conclude the relative 

availability of another. However,  resources have fundamental differences, and these 

differences may have significant bearing on whether it is appropriate to use one as an 

analogue for another. For example, fossil fuels are destroyed during most of their end uses, 

while metals such as indium are not, and can be recycled (Speirs et al. 2011). Fossil fuels are 

produced for their own economic worth , while indium is typically produced as a by-product 

of the production process of the base metal Zinc (Candelise et al. 2011). Finally, production 

of indium is growing exponentially in response to new applications and end uses (Candelise 

et al. 2011), while fossil fuel markets are more mature, and production rates growing less 

rapidly (IEA 2012). 

This thesis presents three case study chapters. The first describes many of the dynamics 

affecting exhaustible, non-recyclable resources, and oil as an example being an incumbent 

resource which has received significant research effort. The second and third case study 

chapters examine two metals, lithium and indium, representing resources only recently of 

concern to the energy system and about which much less is known. These case studies are 

then used to inform the development of three system dynamic models used to test and 

evaluate these resource systems to examine whether these resources are similar enough to 

be considered analogous when drawing conclusions about their future availability. 
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1.1 Motivation for research and novelty 

There are three key motivations for the research described in this thesis which respond to 

gaps in the current evidence base:  

 The incomplete nature of the current and evolving debate around the assessment of 

critical materials; 

 The lack of explicit recognition of the complex and dynamic structure of resource 

systems; and 

 The lack of evidence for the assumed analogy between historically important 

exhaustible, non-recyclable resources and metals receiving more recent commercial 

attention. 

Aspects of these motivations are discussed below. 

1.1.1 The critical materials debate 

In the past decade a discourse has emerged around the availability of the ‘critical materials’, 

so-called for their perceived criticality to the particular economy of focus (Speirs et al. 

2013b). This debate is often discussed in similar terms to previous resource availability 

topics such as oil availability (Sorrell et al. 2009). The critical materials are often assessed 

using high level comparative metrics, which can then be used to rank materials in order of 

their perceived criticality (Speirs et al. 2013b). These are referred to as ‘criticality 

assessments.’ Several of the materials that appear in these assessments are exotic metals 

perceived to be critical to the manufacture of low-carbon energy technologies. These metals 

are referred to here as the ‘low-carbon technology metals.’ Figure 1.1 presents the results 

of several material criticality assessments, highlighting those materials that appear most 

often. Most of these materials are used in low-carbon energy technologies, including all of 

the most regularly recurring metals. 
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Figure 1.1: Comparison of the critical materials identified in five different studies 

 

Source: NRC (2008) EC (2010) Moss et al. (2011) AEA Technology (2010) Angerer et al. (2009b)  

Notes: Materials ranked by number of studies they appear in, with materials appearing in all five studies 

ranked first. 

The idea that energy technologies are particularly exposed to the availability of critical 

materials has led to a number of further studies which perform similar assessments, but 

focus only on energy technologies and the more scarce metals used in their manufacture 

(DOE 2011; Moss et al. 2011). 

One difficulty with the use of high level comparative metrics is the need to base them on 

simple data available for all materials being considered (Speirs et al. 2013b). This can lead to 

overly simplistic methodologies which fail to capture all the nuance of the respective 
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resource systems, highlighting the need for more ‘narrow and deep’ analysis of individual 

cases to allow for the specific characteristics of each metal to be sufficiently examined. 

In criticality assessments there is an inherent assumption that the low-carbon technology 

metals are fundamentally comparable and that any differences in their respective resource 

systems are small enough to be adequately captured in a single criticality assessment 

methodology. There is also an implication that these metals are comparable with other 

types of resources discussed in the resource availability debate, such as coal and oil 

(Beauchemin 2008). Neither of these apparent assumptions have been examined or tested 

in the existing evidence base. 

This thesis is designed to respond to both knowledge gaps described above: to examine low-

carbon technology metals in sufficient detail to capture their subtleties and characteristics; 

and to conceptually and quantitatively examine the extent to which there is comparability 

within the critical materials, and between them and other resources. 

1.1.2 The dynamics of resource systems 

A range of different techniques have been used to assess the future availability of energy 

resources. When looking at extensively researched resources such as oil, the list of 

techniques applied to their assessment is wide and varied, from the earliest types of 

Hubbert curve analysis, to the scenarios work of Shell, to the ‘megaprojects’ databases of 

Chris Skrebowski (ITPOES 2008). System dynamics has also been applied to the oil resource 

system, allowing for the complex dynamics of the economic and geological aspects of 

resource use to be characterised and examined (Sterman et al. 1988; Sterman 2000).  

The critical materials, however, have not received the same level of analysis. Reports which 

examine these resources tend to exclude key variables and often take a static view of the 

relationship between variables (Candelise et al. 2011; Speirs et al. 2011). In addition, the 

variables selected in these studies are rarely selected systematically, with the result that 

studies using broadly similar methodologies have arrived at entirely different conclusions 

(Candelise et al. 2011; Speirs et al. 2011). Very recent published work begins to apply 

system dynamics methodologies to the assessment of low-carbon technology metals, 

though this approach has not yet been extensively applied (Houari et al. 2013). 
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This thesis examines the availability of resources for the energy sector, and assesses the 

extent to which resources are comparable, the extent to which they are different, and what 

can be learned through making comparisons about the underlying nature of resource 

availability. This approach arises from the fact that there is an assumed analogy between 

resources that are well researched, such as oil, and resources which are less well known, 

such as metals (Beauchemin 2008; Rustad 2012; Vikström et al. 2013). This analogy is 

manifest in the literature, where resource modelling techniques originally developed for oil 

resource analysis are applied to other resources, including metals (Bardi 2005; Cordell et al. 

2009; May et al. 2011; Mohr et al. 2011; Vikström et al. 2013). However, the 

appropriateness of this analogy has not been sufficiently tested, and differences in the 

structure of different resource systems may be as important for their ‘dynamic behaviour’ 

as their similarities. These resources exist within dynamic systems, where many 

interdependent variables and feedback loops define the way in which these systems 

respond to changes in the surrounding conditions. This dynamic behaviour and the 

underlying structure of the system which defines that behaviour are central to 

understanding the likely responses of these systems to availability constraints in the future. 

1.2 Research question and objectives 

The purpose of this research is to examine the conceptual and methodological issues 

surrounding the assessment of resource availability, in particular as it pertains to the future 

energy system and its technologies. The new resource availability concerns highlighted 

above may have a commonality with each other, and the assessment experience of one 

resource may have implications, or ‘shed light,’ on another. Alternatively, the differences 

between resources may be more influential, making the behaviour of one resource 

significantly different from the behaviour of another. 

With this potential commonality in mind the purpose of this research can be summarised by 

the following research question: 

How do the resource systems surrounding exhaustible non-recyclable resources and metal 

resources critical to the future energy system behave in response to constrained 

availability in the future and are these responses similar? 
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In this research question the phrase ‘constrained availability’ can be defined as an 

unforeseen curtailment of a source of supply for a limited defined period of time. 

This question can be further disaggregated into the following component questions: 

 How are the resource systems surrounding energy resources constructed and how 

do they differ? 

 What tools are appropriate to assess and compare these different systems? 

 How similar are the responses of these different systems to future availability 

constraints and what drives those responses? 

To address both the conceptual and quantitative components of the research question 

seven research objectives are pursued through the course of this thesis. 

Objective 1: Create an analytical framework through which the availability of different 

resources can be assessed and compared 

Objective 2: Identify a modelling methodology to both conceptually and quantitatively 

test and compare different resource systems 

Objective 3:  Define the key characteristics of exhaustible, non-recyclable resources 

Objective 4: Define and characterise low-carbon technology metals to make useful 

comparison 

Objective 5: Create conceptual representations of the dynamic structure of these systems 

for conceptual comparison 

Objective 6: Define the mathematical relationships underlying the conceptual structures 

of these systems and test their behaviours to provide quantitative 

comparison 

Objective 7: Test the response of different energy resource systems to constraints in 

future availability and examine these responses for their similarities and 

differences 
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Objective 8: Conclude on the extent to which these resources systems behave similarly or 

differently, their responses to constrained availability, and the effectiveness 

of potential policy responses. 

1.3 Definitions/nomenclature 

Throughout this thesis several terms are used that warrant definition in order to provide 

clarity. This section presents these terms and provides brief explanations of their intended 

meaning. 

The term ‘resource system’ is used to describe the dynamic system surrounding the supply 

of and demand for a resource such as oil, lithium or indium. This includes market variables 

such as price. The term ‘system behaviour’ refers to the response of the resource system to 

changes in its defining parameters. For example, if supply of a resource becomes suddenly 

scarce, the nature of the price response to that scarcity, and any subsequent responses are 

referred to as ‘system behaviour’. 

There are a host of terms used in the literature to refer to the list of metals and other 

materials that are currently part of the debate around non fossil fuel resources that might 

play a critical role in future economic prosperity. These terms are used inconsistently, and 

do not refer to a consistent group of materials. The terms ‘critical materials’, ‘strategic 

minerals’ and ‘strategic metals’ are all found in the literature. In this thesis the term ‘critical 

materials’ is used, and refers to any metal or non-metal resource perceived to be potentially 

critical to future economic development globally, from either a global national or 

commercial/industrial perspective. The term ‘low-carbon technology metal’ is used here to 

distinguish from the critical materials those metals that are of most concern to the future 

manufacturing of low-carbon energy technologies. 

The term ‘resource availability’ is used in preference to the often used ‘resource scarcity’, 

referring to the extent to which the quantity of a resource produced in the future is 

commensurate with the demand for that resource. 

This thesis uses the example of oil to inform the development of a generic resource system 

model, and considers oil to include all liquids currently traded as oil and included in 

commonly gathered statistics. This typically includes crude oil, natural gas liquids and 
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syncrude. However, the modelling discussed in Chapter 7 and 8 is constructed at a high 

generic level and doesn’t differentiate between the different marginal production costs of 

these different oil sources. 

Electric Vehicles (EV) is used her to refer to all vehicles that have a reliance on advanced 

battery technologies, dominated currently by lithium ion chemistries. This therefore 

includes battery electric vehicles, plugin hybrid vehicles, and to a lesser extent other hybrids 

and hydrogen fuel cell vehicles. 

Photovoltaics (PV) are technologies utilising photons from solar radiation to generate 

electricity. In critical metals analysis thin-film PV technologies are of most interest as they 

use materials that are potentially scarce. Copper indium gallium diselenide (CIGS) and 

cadmium telluride (CdTe) are the two thin film technologies most often discussed in critical 

metals literature. Other PV technologies, including first generation crystalline silicon, second 

generation amorphous silicon, and a host emerging PV technologies may all play a role in 

the future PV market. 

 

1.4 Thesis structure 

The structure of this thesis is described here, along with a diagram depicting the chapter 

structure and the relationship between chapters and objectives (Figure 1.2). The relevance 

of these chapters to the conceptual or qualitative aspects of the research is also indicated. 

Chapter 2 sets the context within which this thesis sits. This takes the form of a literature 

review, covering aspects of the historical perspectives around resource availability, from the 

work of Malthus (1798) to the Club of Rome report ‘Limits to Growth’ (1972). The chapter 

then examines the growing concerns around resources and energy, from early concerns 

over fossil fuel energy resources to modern concerns over the availability of low-carbon 

energy technology metals. Finally, Chapter 2 examines some of the conceptual issues 

surrounding the resource availability debate. 

Chapter 3 presents an analytical framework through which the components of the research 

question can be assessed. This includes diagrammatic representation of the proposed 
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approach and discussion of the use and purpose of case studies to examine in detail the 

pertinent factors that characterise a resource system. It also discusses the use of system 

dynamics as a tool to investigate and compare both the conceptual aspects of resource 

system structure and the functional relationships behind those structures which define their 

behaviour. 

Chapters 4, 5 and 6 present three case studies which examine three different resource 

systems. Chapter 4 examines the dynamics of exhaustible, non-recyclable resources to 

inform the design of a generic resource system. Chapter 5 examines the case of lithium, 

focusing on the issues affecting its production, and its use in the batteries of EVs. Chapter 6 

examines the case of the indium resource system, again focussing particularly on the issues 

of its production, and its use in the manufacturing of thin-film PV modules. 

Chapter 7 presents the process of creating and testing three system dynamics models which 

represent each of the three resources systems covered in the case study chapters. This 

chapter includes the development of causal loop diagrams to represent the structure of 

each system, the definition of the functional relationships underpinning the structure, and 

the various tests and model validation performed to defend the models. 

Chapter 8 then tests these models to examine the dynamic behaviour they exhibit when 

subjected to a range of different conditions. This examines the impacts of the different 

model structures on the resultant model dynamic behaviours, the responses of these 

models to constraints in the availability of resources and the response of these models to 

different potential policy measures. 

Finally Chapter 9 concludes the thesis, examining the results of the analysis, drawing 

conclusions on those results in light of the research question, highlighting the limitations of 

the research and presenting recommendations for future work. 
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Figure 1.2: Diagram of the thesis chapter structure, illustrating each chapter’s objectives 

and contribution to conceptual and quantitative insights 
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Chapter 2:  Setting the context 

“Our ignorance is not so vast as our failure to use what we know” 

Hubbert, year unknown 

This chapter presents the context surrounding the central research question outlined in 

Chapter 1. The chapter reviews the relevant existing literature and forms the evidence base 

upon which the research approach is premised (Chapter 3). 

The historical context in Section 2.1 describes the development of the debate around 

resource availability and its transition from arguments of subsistence, to include fossil fuels 

and mineral resources. The chapter then focuses on the energy-specific arguments and the 

modern development of the debate to include issues of critical materials and the low-

carbon technology metals. This debate is less well developed and this is a key motivation for 

the research described in this thesis, as outlined in Chapter 1. The chapter then visits some 

of the key concepts underpinning the arguments common in the resource availability 

debate. A common characterisation of the debate is that of a polarised argument, with one 

side represented by geological arguments and the other side represented by economic 

arguments (Sorrell et al. 2009). This is undoubtedly an oversimplification, though it provides 

a useful structure with which to investigate the issues surrounding the principal 

disagreements in the debate. 

2.1 A history of scarcity 

Before considering the contemporary aspects of resource availability research this section 

examines the long-term historical context within which the modern debate is framed. 

2.1.1 Malthus 

In 1798 Thomas Robert Malthus published his first “Essay on the Principles of Population” 

(Malthus 1798). Concern over unconstrained population growth was not unprecedented at 

this time and several works are likely to have informed Malthus’ interest and opinion on the 

topic (Wallace 1753; Godwin 1793; De Condorcet 1955; Hume 1977). However, the 
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considerable contribution Malthus provided was to begin quantifying the factors thought to 

shape the future improvement of society. 

Malthus central contention was that the tendency of unchecked population growth (driven, 

as Malthus romantically describes it, by “the passion of the sexes”) is always to grow faster 

than human ability to subsist from the earth’s natural resources. This point is presented as 

follows: 

“Population, when unchecked, increases in a geometrical ratio. Subsistence 

increases only in an arithmetical ratio.” 

Malthus (1798) 

Malthus’ calculation was simple. He began by estimating man’s unconstrained population 

growth rate. In most societies of the time, population growth was constrained by a number 

of factors including: disease; famine and starvation; and conflict. Malthus therefore used 

the population growth rate of the United States of America as an analogue. The United 

States had significant population growth at the end of the eighteenth century and, in 

Malthus’ opinion, represented the closest to an unconstrained population growth rate 

available. Malthus stated that the US population appeared to double every 25 years. This 

exponential rate of growth was, Malthus believed, a result of the ample means of 

subsistence arising from the abundance of arable land and the prevalence of early 

marriages. 

Malthus then estimated the maximum speed of growth in agricultural carrying capacity in 

the UK. Malthus assumed that the UK could double the agricultural carrying capacity over a 

25 year period, but that over the next 25 years it would only be able to increase its 

agricultural carrying capacity by the same absolute amount as in the first 25 years, and so 

on. Malthus was describing linear or arithmetic growth in contrast to the exponential 

growth assumed for unchecked population growth. 

The immediate outcome of these assumptions is that population growth, if unchecked, 

tends to grow significantly faster than growth in agricultural productivity (Figure 2.1). 

Malthus postulated that this was the single biggest obstacle to the ‘perfection of society’ 

and that this obstacle was, in his opinion, insurmountable. The result would be that some 
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members of society would inevitably fall into famine and starvation, disease through 

overcrowding and malnourishment, or death through war of conquest, factors Malthus 

classed as ‘misery’. This misery would be the undesirable result of overpopulation and 

would place a fundamental check on future population growth. 

Figure 2.1: Illustration of Malthus’ assumptions regarding unconstrained population 

growth and agricultural carrying capacity 

 

Source: Malthus (1798) 

Malthus’ views were almost immediately contested (Hazlitt 1807), beginning the 

contentious debate between the Malthusians (or Neo-Malthusians), those with a pessimistic 

view of future resource availability, and so called Cornucopians1, those with an optimistic 

view of future resource availability. 

The simple assumptions of Malthus, while an important phase in the evolution of the 

debate, are subject to valid criticism. For instance, Malthus assumes that an unchecked 

population will grow exponentially without some form of ‘misery’ that influences the rate of 

death. However, birth rates have decreased in many countries in the last century (Woolston 

1924), and modern forecasts of global population dynamics typically form asymptotic s-

shaped curves without any increased death rates in their scenarios. The UN Population 

                                                      
1
 From the Greek myth of the ‘Horn of Plenty’ or ‘Cornucopia’. 
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Division publishes reports forecasting the growth in global populations and in recent 

publications has estimated a reference case which stabilises towards the end of this century 

(UN 2013). This scenario assumes a global average fertility rate that converges towards the 

replacement level, which for low mortality countries is approximately 2.1 children per 

woman. This assumption is based on data which are currently tending in this direction, 

though individual country cases vary markedly. After this criticism it is interesting to note 

that the UK agricultural productivity has grown arithmetically over the last 50 years (Figure 

2.2), and UK population appears to have grown only as rapidly as Malthus’ carrying capacity 

assumptions would allow2, though it is likely that this trend has been governed by trends in 

fertility as much as it has been by those factors Malthus labelled ‘misery’. 

Figure 2.2: Historical agricultural productivity in the UK since 1953 

 

Source: Keep (2009) 

Malthus’ assumptions could be considered crude by modern standards; there is no 

acknowledgment of the wider range of variables affecting human subsistence and their 

                                                      
2
 Extension of the agricultural carrying capacity trend in Figure 2.2 gives a population of 66 million in 2011 

while the 2011 census estimated a UK population of 63 million 
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variation over time. This lack of dynamic assumptions has, to a certain extent, been evident 

in many resource availability estimates since the work of Malthus. Though simple metrics 

can be powerful tools, the lack of dynamic and comprehensive inclusion of assumptions is a 

limitation on much of the resource assessment work to date. 

2.1.2 Jevons 

Another significant event in the resource availability discourse was the publishing of William 

Stanley Jevons book entitled “The Coal Question”. Published in 1865, the book marks the 

transition of the resource availability debate into the era of industrialisation, energy, and 

towards the assessment of non-renewable resources. In “The Coal Question” Jevons makes 

many observations still central to the debate on non-renewable resource supply, including 

energy return on energy invested (EROEI), energy taxation and peak supply, a topic at the 

heart of the oil supply debate (see Chapter 4). Interestingly, Jevons also foresaw the 

phenomenon known as the ‘rebound effect’ (Sorrell 2007c), also referred to as the ‘Jevons 

paradox’ in the context of coal demand. 

Jevons noted that coal was highly important to the UK economy. Coal created the steam 

which drove industry and locomotion. Coal also provided the heat to smelt iron and produce 

steel, the fundamental building block of the industrial age. In his words: 

“Coal in truth stands not beside but entirely above all other commodities. It is 

the material energy of the country—the universal aid—the factor in 

everything we do. With coal almost any feat is possible or easy; without it we 

are thrown back into the laborious poverty of early times.” 

Jevons (1865) 

Jevons also noted the rate at which coal was being consumed, and on comparison with the 

known coal resource in the UK, became concerned. 

“But it is at the same time impossible that men of foresight should not turn to 

compare with some anxiety the masses yearly drawn with the quantities 

known or supposed to lie within these islands.” 

Jevons (1865) 
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For Jevons, a man who popularised the quantitative method within economics, the problem 

could be examined by looking at the numbers. In striking similarity to Malthus, Jevons 

developed a simple model, and based its structure on two simple premises: 

1. that coal consumption in the UK would continue to grow at the rate of 3.5% which 

had been observed over the preceding decades; and  

2. that the price of coal would increase as a function of the depletion of the coal 

resource and that those high prices would place some limit on the height of 

prosperity. 

These assumptions lead Jevons to forecast a peak in prosperity, which he defines in this 

way: 

“the absolute amount of coal in the country rather affects the height to which 

we shall rise than the time for which we shall enjoy the happy prosperity of 

progress.” 

Jevons (1865) 

On the basis of this analysis Jevons predicted that production of coal would begin to decline 

within a century, and that, as a result of the high prices and reduced availability of coal, the 

UK economy with coal as its ‘material of energy’ would begin to suffer. Jevons predicted 

that this would lead to the succession of the UK as the leading global economic power, a 

position taken by the oil rich United States. 

Like Malthus before him, Jevons conclusions were criticised (Brown 1931; Wood 1988a; 

Wood 1988b) and did little to extinguish the wider resource availability debate. 

Jevons’ work brought the resource availability discourse to energy and fossil fuels have 

remained amongst the most debated resources to date. While Jevons work lacks a complete 

acknowledgement of the pertinent variables, it does begin to recognise some of the 

dynamic aspects of the issue, including the concept of peak production, and the economic 

consequences of such an event. However, the key feedback loops between coal price, coal 

production and coal demand are not considered in Jevons’ work. 
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2.1.3 Hubbert 

Given that the United States experienced similar economic fortunes to the coal-fired Britain 

of the 19th century, it is unsurprising that a new phase in the debate was fostered there. In 

1956 Marrion King Hubbert presented his paper “Nuclear energy and the fossil fuels” to an 

audience comfortable in the ever increasing US domestic production of oil, the fuel 

powering the first modern superpower economy. In the paper, Hubbert noted that US oil 

production had been following an exponential trend. As he states:  

“...petroleum has been produced in the United States since 1859, and by the 

end of 1955 the cumulative production amounted to about 53 billion barrels. 

The first half of this required from 1859 to 1939, or 80 years, to be produced; 

whereas, the second half has been produced during the last 16 years”. 

Hubbert (1956) 

Hubbert questioned the sustainability of such growth for a non-renewable and finite 

resource such as oil, and conducted the analysis that would give rise to the phrase ‘Hubbert 

Curve’. Hubbert first stated that a non-renewable resource must ultimately decline in 

production after its initial period of growth. 

“in the production of any resource of fixed magnitude, the production rate 

must begin at zero, and then after passing through one or several maxima, it 

must decline again to zero.” 

Hubbert (1956) 

Hubbert recognised that the area under this curve must represent the total volume of 

resource produced over all time, the Ultimately Recoverable Resource (URR). Hubbert 

estimated initial US oil reserves by analysis of the available estimates of regional reserves 

and arrived at a range of estimates from 150 to 200 billion barrels (Gb) of oil, Hubbert’s 

estimate of URR. He then plotted historical data for US production and by what he described 

as an iterative graphical process, fit a bell shaped curve to the data (Figure 2.3). 
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Figure 2.3: Hubbert’s analysis of historical US oil production and forecast production 

based on two separate estimates of URR 

 

Source: Hubbert (1982) 

Hubbert’s choice of curve is contentious, and has given rise to serious debate (Sorrell et al. 

2009). The s-shaped logistic curve, and its first differential, a bell shaped curve, are 

symmetrical, and while the US data fit this curve well, Hubbert did recognise the simplicity 

of his assumption. 

“There is no necessity that the curve…as a function of [time] have a single 

maximum or that it be symmetrical”. 

Though his conclusions incited derision at the time, US oil production did actually reach a 

peak in 1969, surprising many and lending a level of credence to Hubbert’s work, which was 

already being applied in a global context. The debate over the timing of a global peak in oil 

production has since become one of the most active areas of the resource availability 

discourse, reaching new levels of contention (Sorrell et al. 2009). 

In addition to concerns over Hubbert’s choice of curve, a host of other criticisms have been 

raised in the literature. Disagreements over the classification of oil are common, with some 

using a very restrictive classification of crude oil and others including a host of 

unconventional sources of oil (Brandt 2007). This raises the question of substitutability of 

resources, with some clearly considering many conventional and unconventional sources 
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entirely substitutable (P.W. Huber 2005). The question of substitution can be extended past 

liquid fossil fuels to alternative liquid fuels and transport technologies, though some analysis 

indicates the need to begin crash programs significantly in advance of a peak in oil 

production to develop and deliver substitutes in time (Hirsch 2008). 

Other concerns echo Jevons’ work regarding the economic feedbacks, with some authors 

critical of the lack of economic foundation in Hubbert’s analysis (Ryan 1965) (for more 

recent views see (Rehrl & Friedrich 2006) or (Watkins 2006)) though more recently efforts 

have been made to address these gaps (Reynes et al. 2010). 

Through his analysis Hubbert moved the discussion surrounding resource availability 

forward, developing much more sophisticated techniques for resource availability 

estimation than previously applied. However, Hubbert’s analysis still lacked a full account of 

all pertinent variables and their dynamic interactions. 

2.1.4 Limits to growth 

In 1972, Meadows et al. published their book, “The limits to growth”, a report 

commissioned by the global think tank The Club of Rome (Meadows 1972). This report 

brought together the previous resource concerns of population growth and non-renewable 

resources, to study the interlinked issues associated with growth. The report listed five 

world growth trends with which it was concerned: 

 accelerating industrialisation;  

 rapid population growth;  

 widespread malnutrition;  

 depletion of non-renewable resources; and  

 environmental degradation. 

The report then employed a relatively new modelling discipline, system dynamics, in order 

to capture the relationship between each of these issues, and project a likely scenario for 

their temporal development. The resulting model was called ‘World 3’. 

The tools of system dynamics and its conceptual underpinning, systems thinking, provide a 

method by which the interdependence of variables, so-called ‘feedback loops,’ can be 
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characterised and examined. Most dynamic systems contain these loops, and for even very 

basic systems with few loops, unintuitive system behaviour can often arise. Interpreting 

these systems intuitively can therefore lead to significant misinterpretation and one value of 

the formalism of system dynamics is in guiding the modeller past mental biases and 

misinterpretations. Chapter 3 contains a more detailed discussion of system dynamics. 

The ‘World3’ model was developed to capture the system feedback loops surrounding the 

five world growth trends listed above. The full model, dealing with such a wide range of 

variables and global systems in one framework, is necessarily complex and a conceptual 

representation is presented in the causal-loop diagram in Figure 2.4. In the ‘Limits to 

Growth’ report, the model was used to test various assumptions regarding availability of 

resources and the interrelationship between resources, population growth and industrial 

growth. From these model runs, the authors drew some striking conclusions: 

“...under the assumption of no major change in the present system, 

population and industrial growth will certainly stop within the next century, 

at the latest.” 

Meadows (1972) 

In the tradition of historical resource scarcity debate, this conclusion, and the work 

supporting it, received much criticism. However, several limitations of the work are also 

recognised by the authors. In the book ‘groping in the dark’, Donella Meadows lists three 

aspects of the model that were considered by the authors to be lacking (Meadows et al. 

1982). These are: 

 the constant capital-output ratio (which assumes no diminishing returns to capital); 

 the residual nature of the investment function; and 

 the generally ineffective labour contribution to output. 

Other significant criticisms exist and the work has been scrutinised by commentators over 

the last four decades. In the book ‘Models of doom’, Cole (1973) discusses various 

limitations to the work. For instance, the historical data upon which the model is based are 

described as “extremely poor” (Cole 1973) and numerical relationships within the model 

were often estimated indirectly by comparison, particularly where appropriate primary data 
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were not available. A fundamental criticism of the model is highlighted by Freeman (1973), 

who cites the underestimation of the impact of ‘technical progress’. Freeman defines this as 

the economic concept of achievement of greater output for the same input (technical 

efficiency), or the introduction of new products or processes (substitution). This is a similar 

criticism to that levelled at Malthus and has the capacity to dramatically change the 

outcomes of models such as this one. Critics with cornucopian outlooks have even criticised 

the premise that any resource should be considered finite (Aligica 2009; Lomborg 2013). 

This follows the premise that technological progress will deliver substitutes and material 

efficiencies that will overcome rising demand, and population growth can continue 

unhindered long into the future. 

Other critics focussed more on the methodological shortcomings of the modelling approach. 

Smil (2005), for example, criticises the combination of dissimilar physical processes into 

compound variables, something he describes as “particularly meaningless”. 

Development of the model and reporting of its findings has continued with at least two 

books published since the first release of Limits to Growth (Meadows et al. 1992; Meadows 

et al. 2004).  

The Limits to Growth report and its continuing work moved the resource scarcity debate 

forward to consider the interrelated issues arising from resource demand and its links to 

population growth. This included non-fossil fuel mineral resources, something largely 

neglected in the discourse previously. The work also included a comprehensive and dynamic 

methodology, acknowledging the interdependence of variables and the associated 

feedbacks, though criticisms remain regarding aspects of the model’s application. Limits to 

growth can therefore be seen as a step forward in the estimation of future resource 

availability and its impacts. 
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Figure 2.4: Causal-loop diagram of important feedback loops in the World3 system 

dynamics model 

 

Source: Meadows (1972) 

2.1.5 Ehrlich and Simon 

Finally, the Ehrlich-Simon wager focussed the resource scarcity debate on metal resources 

and their economics (Wikipedia 2014b). In 1968 Paul Ehrlich, an ecologist and demographer, 

published a book entitled ‘The population bomb’ (Ehrlich 1968). Ehrlich’s thesis was as 

follows. Global population was forecast to increase dramatically in the coming century. 

Given the link between population and demand for resources, the forecast population 

growth would surely lead to a significant increase in demand for finite commodities such as 

fossil fuels and metals. That resource demand growth would be so significant that supply 

would not be able to keep pace, leading to constrained availability. If resource availability 

was ‘tight’ then the price of these resources would surely rise to historically high levels as a 
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consequence and historically high prices would cause difficulty for a global economy built on 

cheap energy and goods. 

Julian L. Simon, a professor of business administration and noted cornucopian, disagreed 

with the neo-Malthusian nature of Ehrlich’s claims regarding overpopulation. Simon’s 

argument was that population growth would most likely lead to technological development, 

creating substitutes, and efficiencies that would overcome availability constraints, and 

facilitate continued reduction in commodity prices. On this basis Simon challenged Ehrlich 

with a wager which he believed would settle the argument. Simon asked Ehrlich to choose 

any commodity and any date more than a year in the future. Simon would then bet that the 

price of the commodity would be lower on that future date than at the time the bet was 

placed. Ehrlich and some of his colleagues picked five metals: chromium, copper, nickel, tin, 

and tungsten. They proposed that these five metals would increase in price over the decade 

between 1980 and 1990 and they bought, on paper, $200 of each.  

The price of the five metals decreased over the next ten years and Ehrlich lost the bet. 

The value of commodities prices as indicators of scarcity is debated, particularly over short 

time periods, and the result of the wager did not go any way to modifying the positions of 

Ehrlich or likeminded neo-Malthusians. Indeed Simon entered other, similar bets with less 

cornucopian outcomes3, and the same bet over a longer timeframe would have returned a 

different outcome (Grantham 2011). 

2.1.6 Summary of historical debate 

The debate surrounding the future availability of resources has proved contentious for many 

years, and has spread from its beginnings in population and agricultural carrying capacity to 

include energy resources amounts others. The brief history recounted above simplifies the 

discourse and pays particular attention to the more polar aspects of the debate. 

Nevertheless, while much of the existing research examines these polar aspects, the debate 

continues. This thesis aims to step away from the contentious aspects of the scarcity debate 
                                                      
3
 In 1995 Simon entered a bet with David South, a professor in the School of Forestry, Auburn University. 

Simon bet that the inflation adjusted price of pine sawtimber between 1995 and 2000 would decrease. David 

South bet it would increase. Over that period the price per 1000 board feet increased from $224 to $336, a 

50% increase. 
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by examining the response of systems to constrained availability, rather than asking 

whether scarcity is likely, or whether future availability will constrain society’s future goals. 

2.2 Concepts of the scarcity debate 

The debate around the availability of resources is often characterised as an argument 

between geologists, who are assumed pessimists or neo-Malthusian, versus economist who 

are presumed optimists or cornucopians. This is likely a function of the polarity of some 

views in the debate, with geologists such as Hubbert (1982) and Campbell (1997) presenting 

pessimistic views while economists such as Adelman and Lynch (Adelman & Lynch 1997; 

Lynch 1999) present optimistic views. However this is only a characterisation and other 

views exist representing a spectrum of research and debate (Gately 2004). The reality is that 

the dynamics of these resource systems respond to a range of influence including 

economics, geology, physical principles, and politics and government policies (Fantazzini et 

al. 2011)  

For the purposes of this thesis the characterisation of geological and economic arguments is 

helpful to frame some of the key drivers of the dynamics of resource systems. The following 

sections provide exposition of the geological principles and economic theory which define 

resource systems, drawing principally from the literature on oil and highlighting the 

commonalities found in critical metal resource systems. 

2.2.1 Geological perspectives and diminishing return 

“The intrinsic limitations of these laws eventually affect all human activities 

because neither economic incentives nor political will can bend or break these 

laws of nature” 

(Fantazzini et al. 2011) 

The geological concepts, or natural physical laws of resource production, are commonly 

cited by those who take a pessimistic view of the future of resource availability (Campbell 

1997; Laherrère 1999). The central premise is that mineral resources are for all practical 

purposes finite (Hubbert 1982). Though the processes that create and concentrate these 

resources in the earth’s crust are natural, they occur over geological time scales, and their 
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exploitation is likely to be several orders of magnitude shorter4. This fact is often presented 

as self-evident, given that the planet is of a finite volume, the planet’s constituents include 

these resources and therefore these resources must also be finite (Kaufman 2009; Valero et 

al. 2011). The physical implications of this are summarised in the following three 

paragraphs. 

The physical limits of individual deposits 

In an individual well or mine, there is an increasing marginal effort to production i.e. the 

difficulty in producing a unit of the resource increases as the resource is depleted (IEA 2008; 

Yaksic & Tilton 2009; IEA 2013). A common analogy used to explain this is the squeezing of a 

wet sponge. When the sponge is first squeezed water is easily liberated. However, after a 

while it is increasingly difficult to expel water, until such point as the sponge no longer gives 

up any water, though water undoubtedly remains (Fantazzini et al. 2011). In the life of an oil 

well the early period of production, the primary recovery phase, oil flows freely under the 

inherent pressure of the well (Sorrell et al. 2009). After a period this inherent pressure is 

relieved and further production must be encouraged through the application of extra 

pressure, often through pumping water into the reservoir. This is referred to as secondary 

recovery (Sorrell et al. 2009). Finally, the application of water pressure leads to increased 

water percentage in the produced oil (water cut) at which point enhanced oil recovery 

techniques (tertiary recovery) must be applied to increase production, though at an ever 

increasing cost (Babadagli 2007). Similar can be said of metal ore resources, which must be 

extracted at increasing depth or under the increasing top burden, leading to similar 

diminishing returns to effort (Barbier 2013). 

The physical limits of additional deposits 

The producer of a resource, when faced with the challenges of diminishing returns to effort 

in his existing deposits, may look to maintain or increase his production through the 

addition of new deposits. However, there are also physical limits here, and again, increasing 

effort in exploration is rewarded with diminishing returns (Hall & Cleveland 1981). This can 

                                                      
4
 There is some debate as to the exact oil formation mechanism (Höök et al. 2010). However, the rate at which 

oil is created is measured over thousands of years. In contrast, the global oil market is less than 200 years old, 

and over that period a third of estimated recoverable resources have been produced. At current depletion 

rates the next third will be produced in the next 40 years. 
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be demonstrated by examining the quantity of oil discovered against a proxy for exploratory 

effort, often the number of exploratory wells drilled (Meisner & Demirmen 1981; Laherrère 

2003; Inoue 2006). In the early phase of exploration there are many undiscovered fields and 

the probability of finding a deposit is high. In addition, the probability of discovering a large 

deposit is also high, given that large deposits are more conspicuous to most exploration 

techniques (Sorrell et al. 2009). An analogy of this issue is strawberry picking. When a picker 

first enters the field, there are many strawberries and finding the next strawberry is 

relatively easy. The large strawberries are also easier to find than smaller ones, and since 

they are more attractive for several reasons, these tend to be picked first. Once a large 

number of strawberries have been picked, finding the next strawberry is relatively difficult, 

and finding a large strawberry increasingly unlikely. In oil it is recognised that discovery 

peaked in the 1960s and the issues of field size distribution have been well documented 

(Sorrell et al. 2009). The metals lithium and indium are likely to experience similar physical 

limits in terms of the discovery of new deposits, though this is complicated by issues such as 

the difference between brine and mineral deposits of lithium and the by-product nature of 

indium production (see Chapter 5 and Chapter 6). 

The physical limits of marginal resources 

A third physical limit is that the marginal resource tends to be of decreasing quality, i.e. as 

exploration continues and an increasing number of deposits are found, the ease with which 

resources can be extracted from new deposits decreases (Skinner 1976; Cleveland 1991). In 

the early phase of production many high quality deposits exist, and producers choose to 

produce the high quality resources first as they tend to provide the best returns. However, 

once these high quality or high concentration resources have been produced then 

producers are left with lower quality or lower concentration resources, which yield less for a 

given unit of effort (IEA 2008; Wykes & Stockman 2011). These marginal resources are often 

unconventional resources in the fossil fuel markets where new discoveries are often either 

more viscous (heavy), more contaminated (sour), in deeper water, in less porous geology 

(shale oil or gas), or in hard to access geographical locations (polar oil) (Lindholt & Glomsrod 

2012; Chew 2014). In the case of metal resources, where once copper was produced from 

ore containing 12.17% of the metal, it is now produced from ores with an average of close 

to 0.8% metal at significantly increased effort to the producer (Crowson 2012). 



~ 54 ~ 
 

The implication of these three physical principles is that for any fixed definition of a finite 

resource, production is likely to take the form of a bell-shaped curve, with growth in the 

early part of the production cycle as easy, abundant resources are exploited, followed by 

decline in production as these physical principles begin to bear on production rates (Sorrell 

et al. 2009). 

2.2.2 Economic concepts 

The economic arguments surrounding resource availability come to some different 

conclusions to their geological counterparts (Adelman & Lynch 1997; Lynch 1999; Adelman 

2003; Mills 2008), basing these conclusions largely around the market and its response to 

price signals, i.e. when demand increases, so too does price and when demand decreases 

price also follows (Stiglitz & Walsh 2006). The concepts of equilibrium price are explored 

again in the context of resource price formation in Section 4.2.4. 

As price changes several responses are incentivised, all of which serve to bring supply into 

equilibrium with demand. These responses are summarised in the four paragraphs below. 

Price incentives to production and discovery 

When resource prices increase the producers of those resources are incentivised to either 

increase production if there is spare capacity to do so, invest in new production capacity or 

to explore in an attempt to discover more resources to be exploited (Sterman 2000; Ten 

Cate & Mulder 2007; Mohn 2008). In doing so the producer hopes to take advantage of the 

high price by discovering and producing new resources that are economic to produce at this 

new price level. As discussed above, there are physical factors that may influence the costs 

of exploration and production. 

A branch of economic research dating back 50 years examines the process of exploration 

and production of oil resources under these neoclassical economic assumptions of producer 

behaviour (Mohn 2008). This research examines a number of oil regions including the 

United States (Fisher 1964), and the UK Continental Shelf (Pesaran 1990). These studies 

apply econometric modelling techniques to capture a range of factors that underlie 

exploration behaviour, including oil price changes, historical exploration success licencing 
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policies, seismic surveys, depletion and technological progress, with modern studies finding 

a relationship between oil price and exploration behaviour (Mohn 2008). 

Exploration for critical metals deposits also increases in responds to price signals. For 

example, anecdotal evidence suggests that recent high price for rare earth elements (REE) 

has encouraged producers to explore potential deposits in Greenland, the United States, 

and Australia with a view to producing in the near future (Reuters 2009). The general 

neoclassical principles on which this response is based are likely the same as for oil 

exploration, though the specific conditions of licencing policies, exploration techniques, 

historical success and other dependant factors are likely to vary. 

Price incentives to produce unconventional resources 

If a producer is not able to produce or discover more conventional resources in response to 

high prices, he may be incentivised to seek additional production from unconventional 

deposits (Chew 2014). For these marginal deposits, the cost of production is likely higher 

than for conventional resources (Yaksic & Tilton 2009; IEA 2013), and without a sufficiently 

high price it is unlikely that producer would pursue such resources. This concept of a 

‘marginal cost curve’ is common in resource economics (Figure 2.5) and is used to help 

characterise the supply curve for extracted resources, or as an indicator of depletion-

threatened commodities (Tilton 2003). It is also possible that new techniques and 

technologies are needed to produce these marginal resources (Stevens 2010; Weijermars & 

Watson 2011). High prices will typically incentivise the development of such technologies, 

though often policy support is also needed to drive this technological innovation where 

long-term strategic goals are an additional driver (Stevens 2010). 
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Figure 2.5: Marginal resources cost curve for liquid fuels  

 

Source: IEA (2013) 

The development of shale gas and shale oil provide an example of this response. Until the 

2000s there were many known shale gas and shale oil deposits in the United States but little 

incentive to exploit them. In 1980 government support through the Crude Oil Windfall Profit 

Tax Act gave unconventional fuel producers a tax credit, incentivising the development of 

unconventional production technologies (Stevens 2010). However, until the mid-2000s a 

low gas price diminished the profitability of unconventional gas production and supply rates 

grew only slowly (Figure 2.6). In the mid-2000s high spikes in the US wellhead price of 

natural gas coincided with significant increases in US shale gas production, suggesting that, 

while a number of factors lead to the development in shale gas, the profitability brought 

about by high gas prices was a significant driver. Ongoing high prices may also be a driver in 

increased interest in unconventional gas production in Europe (Pearson et al. 2012). The 

current gas price in Europe has diverged from the US price in recent years (Figure 2.7) 

leading some to suggest that shale gas production in Europe will now be profitable, and 

could help to reduce gas prices from their current level (Gosden 2014). However, this is 

contested with some suggesting that the US analogy is not appropriate for Europe given the 
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differing geology, regulatory framework and market conditions (Rathbone & Bass 2013; 

Rogers 2013). 

Figure 2.6: US shale gas production in billion cubic feet per day against monthly wellhead 

price of natural gas in dollars per thousand cubic feet 

 

Source: EIA (2014c), EIA (2014d) 
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Figure 2.7: US and European gas price history, highlighting the recent divergence. 

 

Source: BP (2013) 

Price incentives to efficiency 

A third response to increasing resource price is to decrease demand through efficiency. 

Often, technologies or practices exist that can increase the efficiency of natural resource 

use. However, these technologies and practices often have an associated cost, and they may 

not be economic under existing price conditions. When prices increase the incentive is 

apparent and these technologies and practices are adopted, decreasing demand (Stiglitz & 

Walsh 2006). This relationship between price and efficient use of resources is one of the 

motivations behind resource taxation (Söderholm 2011), which hopes to incentivise the 

efficient use of resources, amongst other goals (Eckermann et al. 2012).  

Klier and Linn (2010) demonstrate this relationship between gasoline price and demand for 

vehicle fuel efficiency. The US vehicle market changed significantly between 2002 and 2007, 

with US manufacturers, and SUVs in particular, selling significantly less. By examining vehicle 

sales data between 1978 and 2007 they, found that nearly half of the decline in sales of 
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these less efficient vehicles was due to the impact of the gasoline price, which is significantly 

influenced by the crude oil price. 

Price incentives to substitution 

A fourth response to high resource price is substitution, where a proportion of a resource’s 

demand is reduced by using a substitute that can provide the same utility (Stiglitz & Walsh 

2006). Many end-uses of resources have substitutes that can displace incumbent end-uses. 

However, these substitutes often come at an increased cost, a sacrifice in performance 

(often translating into cost), or require further costly research to make them viable 

(Bretschger & Smulders 2012). Substitution is usually driven by the relative cost-

effectiveness of adopting substitutes (Cleveland 2003). As the price of a resource increases 

existing substitutes will become more cost effective, or the research needed to develop 

substitute technologies is incentivised (Bretschger & Smulders 2012). The result is a 

decrease in demand for the original resource, and the stabilisation of price. 

An example of this is the battery electric vehicle (BEV). The price of fuel for internal 

combustion engine (ICE) vehicles has increased significantly in recent years. While the 

concept of BEVs have existed for over a century, the development of an BEV to replace the 

ICE vehicle has been hampered by the historically low price of ICE vehicles and the cost 

associated with developing BEVs with comparable utility (Weiss et al. 2012). In recent years, 

with a historically high oil price many manufacturers have been  pursuing BEV designs, with 

several already for sale, and other alternative technologies for sale or in development, such 

as hybrid electric vehicles (HEVs), plug in hybrids (PHEVs) and fuel cell vehicles (FCVs). The 

point at which these technologies become economically competitive is a function of a 

number of factors, most notably the price of fuel, and the learning and resulting cost 

reduction of technological development. While technologies such as HEVs already have 

relatively short payback periods, BEV are likely to take much longer to close the price gap to 

ICEs (Weiss et al. 2012). As a result, substitution from ICEs to BEVs is likely to require policy 

support. 

One key feature of these responses is that they make up a system which is subject to time 

delays, resulting in oscillating cycles (Sterman 2000). As demand increases, price follows 

quickly. However, the price responses highlighted above are slower to appear. To use the 



~ 60 ~ 
 

example of the 1970’s oil shocks (See Chapter 4), by the time price responses and policy 

measures were impacting on the demand for oil, many of the original pressures on supply 

from the Middle East had relaxed. The result was an oil glut, with prices crashing to 

historical lows (Garvin Jr. 1981). The implications of delays in dynamic systems are discussed 

in Chapter 3. 

2.3 Energy and the low-carbon transition 

Energy is critical to the global economy, providing an input to almost all goods and services 

and fuelling economic growth (Stern 2010). However, the energy system faces mounting 

pressure to remain affordable in the face of depleting resources and to decarbonise in 

response to rising atmospheric greenhouse gas concentrations and associated impacts of 

climate change (Stern 2007; Hoggett 2014). While a transition to low-carbon energy 

technologies will relieve the resource pressure on traditional fossil fuels, it is likely to place 

other pressure on the resources needed to deliver this new energy system (Moss et al. 

2011). Understanding the scale of change needed to decarbonise and what resources will 

come under supply pressure as a result, is an important part of planning this transition and 

managing it effectively. 

This section first presents the scale of the future challenge of transitioning to a low-carbon 

energy system and the technologies that will deliver that transition. The section concludes 

by linking these technologies to the metals used in their manufacture, which have been 

described by some as relatively scarce (Andersson 2000; Tahil 2007; Tahil 2008; Angerer et 

al. 2009b). Some fear that this scarcity may leave them potentially incapable of maintaining 

adequate supply, as demand for low-carbon technologies increases dramatically through 

the course of the low-carbon transition (Andersson 2000; Tahil 2007; Tahil 2008). However, 

this narrative is contingent on policy successfully delivering a low carbon transition. The 

scenarios explored in this thesis assume that this is the case but it should be noted that 

there is significant uncertainty around the deployment of low carbon technologies. This 

uncertainty is not explored in this thesis. 
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2.3.1 Energy system change: demand growth and the low-carbon 

transition 

The existing global energy system is clearly both dependent on specific resources and 

indispensable to the global economy. However, that system is predicted to undergo radical 

transformation in the coming decades, as it grows and transitions to low-carbon generation. 

It is important to understand the associated changes to the energy system expected in the 

coming decades as these significantly impact on the quantities and types of resources 

needed to make this transition. 

An increase in global energy demand is the first significant system change expected in the 

near to medium term future. This is independent of any transition to low-carbon 

generation, but is an important determinant of the demand that will be placed on low-

carbon technologies in the future. Some estimates predict that global primary energy 

demand will grow by 16% - 47% between 2010 and 2035 (IEA 2012). 

The second significant global energy system change is decarbonisation. Though there is still 

no ratified global framework towards mitigating the worst effects of climate change, many 

countries are continuing with their own decarbonisation targets and the world’s energy mix 

is likely to develop on a much more low-carbon trajectory than previously. The IEA Energy 

Technology Perspectives (ETP) report presents a global energy system scenario consistent 

with a 50% reduction in GHG emissions by 2050. This is the decarbonisation thought 

necessary to limit global warming to 2 ͦC and avoid the worst effects of global climate 

change in the consensus of scientific evidence (IEA 2010a). In order to achieve such a radical 

decarbonisation, the growth in renewable and low-carbon technologies is likely to be 

significant. 

Given the drive to decarbonise, the proportion of primary energy coming from renewable 

energy sources is expected to rise. Some estimates suggest that renewable energy will grow, 

from 13% of primary energy in 2010, to between 14% and 26% of primary energy in 2035 

(IEA 2012). A number of technologies make up this share of renewable energy. PV currently 

accounts for a small share of global electricity - around 0.6% of global installed capacity (IEA 

2007; EPIA 2010). Nevertheless, cumulative installed capacity is in excess of 39 GW (EPIA 

2011), representing a 27 fold expansion relative to the year 2000 (EPIA 2010). This growth is 
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forecast to continue and the IEA scenario estimates cumulative installed capacity to reach 

3000GW by 2050, providing up to 11% of global electricity (Figure 2.8). 

Figure 2.8: Forecast of cumulative installed capacity of PV to 2050 

 

Source: IEA (2010a) 

EVs are also expected to play a significant role in decarbonising the economy. Growing from 

a low base EV sales are expected to grow significantly, selling hundreds of millions of units 

annually in the coming decades (Speirs et al. 2013a). The IEA ‘BLUE Map’ scenario presents a 

future EV sales trajectory based on a global decarbonisation scenario commensurate with 

maintaining global temperature increases to within 2 Cͦ. This scenario estimates EV sales of 

over 150 million units by 2050 (IEA 2010a) (Figure 2.9).  
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Figure 2.9: IEA Bluemap scenario of electric vehicle uptake to 2050 

 

Source: IEA (2010a) 

Note: This includes hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), battery electric 

vehicles (BEV) and fuel cell vehicles (FCV). 

While these low-carbon technologies do not require fossil fuel resources as a primary 

energy input, they do require resources for their manufacture. The significant growth in the 

demand for these technologies has raised concern for the availability of their constituent 

resources, with some resources in particular rising to the top of the debate. 

There are several different PV technologies, including crystalline silicon (xSi), thin-film 

technologies such as cadmium telluride (CdTe) and copper indium gallium (di)selanide 

(CIGS), as well as a range of other technologies, including dye sensitised and organic cells 

(Speirs et al. 2011). While the resources used in the manufacturing of xSi cells are thought 

to be relatively abundant, several metals used in the manufacture of thin-film cells are cited 

as relatively scarce and potentially constraining to the development of large scale 

manufacturing. These include tellurium used in the manufacture of CdTe cells and indium, 

gallium and selenium used in the manufacture of CIGS cells. These metals are produced in 
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small quantities, are subject to tariffs or are only found in low concentrations and are 

therefore raising concern as to their availability. 

EV designs also incorporate critical metals. Neodymium magnets are used in the electric 

motors powering EVs, while lithium-ion (Li-ion) batteries are typically used for electricity 

storage (Speirs et al. 2013a; Speirs et al. 2014a). Both neodymium and lithium are discussed 

in the academic literature as potentially constraining future demand (Tahil 2008; Yaksic & 

Tilton 2009; Vikström et al. 2013). Both are reasonably abundant metals, though the scale of 

demand implied by the growth in EV demand has caused some concern. 

2.3.2 Critical materials debate 

In response to the concerns over the availability of non-fossil fuel resources, a literature has 

recently emerged in an attempt to assess these materials and the likelihood and impact of a 

shortage in their supply (i.e. their criticality) (Angerer et al. 2009b; Erdmann & Graedel 

2011; Speirs et al. 2013b). The critical materials debate, as it is sometimes referred to, has 

attempted to codify the assessment of these materials in a structured methodology and 

then compare these materials to compile lists of materials in order of their criticality (Speirs 

et al. 2013b). Many methodologies exist and, depending on perspective the outcomes of 

these assessments can be very different (Speirs et al. 2013b). Three criticality assessments 

are compared in Table 2.1, demonstrating the variation in results. 
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Table 2.1: Summary findings of three material criticality assessments 

Angerer1 EC2 Morley & 

Eatherly3 

Gallium Antimony Gold 

Neodymium Beryllium Rhodium 

Indium Cobalt Mercury 

Germanium Fluorspar Platinum 

Scandium Gallium Strontium 

Platinum Germanium Silver  

Tantalum Graphite Antimony 

Silver Indium Tin 

Tin Magnesium Magnesium  

Cobalt Niobium Tungsten 

Palladium PGMs (Platinum 

Group Metals) 

Baryte 

Titanium Rare earths Talc 

Copper Tantalum Bismuth 

Selenium Tungsten Palladium 

Niobium  Nickel 

Ruthenium  Boron 

Yttrium  Andalusite 

Antimony   

Chromium   

Source: Angerer et al. (2009b) EC (2010) Morley and Eatherley (2008) 

Notes: 

1
In order of scarcity, based on projected demand from ‘emerging technologies’ over production of material in 

2006. Based on assessment of 15 materials and 32 emerging technologies. 

2
In alphabetical order, chosen based on minimum score for both economic and supply risk. 

3
Materials scoring >17 in assessment of criticality. Based on 8 risk criteria. 

To understand this variation, several papers have investigated and compared different 

critical materials assessments. Erdmann and Graedel (2011) examine 10 criticality studies, 

including German and Japanese sources. The review highlights the impact on results of 

metric choice, weighting, scope, study focus or perspective (i.e. metals critical to the globe, 



~ 66 ~ 
 

an individual country or an industry etc.) and the number of materials analysed. In addition 

to this paper, recent criticality assessments (DOE 2011; Moss et al. 2011) and discussion 

papers (Schüler et al. 2011; Peiro et al. 2012) review previous methodologies, listing the 

methods used and the materials designated critical. Finally, Speirs et al. (2013b) normalise 

the criticality assessments of 15 studies to examine and compare the variation between 

studies and to investigate its causes. Some of the findings of these works are discussed 

below. 

In the assessment of material criticality, authors typically gather together a range of metrics 

or ‘factors’ representing important variables determining materials future availability. A 

range of metals or other materials are then scored against these factors before aggregating 

scores (with weighting in some cases) to provide a relative measure of criticality. While 

methodologies developed to assess metal criticality vary widely, there are some commonly 

assessed factors. 

Supply factors incorporate measure such as: geological availability (a measure of what is 

physically present); economic availability (a measure of what can be economically 

accessed); and recycling (a measure of the availability of metal recovery from end-of-life 

products). 

Geopolitical factors are used to capture the risks to supply posed by political decisions 

within and across country borders. This includes measures of the impacts of domestic 

policy, measures of the impacts of trade policies such as export quotas and tariffs and 

measures that account for the amount of global production originating in countries with 

adverse political situations.  

Demand factors capture the estimates of future demand and account for the potential of 

substitution to relieve future demand. 

Finally, several other factors are often incorporated into criticality methodologies capturing 

effects such as cost reductions impact on demand, environmental policies and their 

influences on legislation and production and the economic importance of a particular 

material. A more complete review of methodologies is provided by Speirs et al. (2013b). 
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Despite the variation in results of critical materials studies materials critical to the energy 

industry frequently feature in the critical lists of materials criticality assessments. Reflecting 

this fact, studies assessing only those materials critical to the energy sector have emerged. A 

report published by the Joint Research Council (JRC) of the European Commission (EC) 

assesses the risk of supply shortages of critical metals to the low-carbon technologies of the 

SET-plan (Moss et al. 2011)5 The report identifies 14 metals which will be required in 

quantities greater than 1% of current world supply per year in order to deliver the SET-plan. 

These metals are tellurium, indium, tin, hafnium, silver, dysprosium, gallium, neodymium, 

cadmium, nickel, molybdenum, vanadium, niobium and selenium. Though the report 

concludes that the SET-plan is unlikely to be significantly affected by metals availability, it 

does highlight potential concerns if the uptake of thin film PV technologies such as CdTe and 

CIGS increases more than is estimated. 

The US Department of Energy published its Critical Materials Strategy in 2010, with an 

update in 2011 (DOE 2010; DOE 2011). This report highlights EVs, PV, Wind turbines and 

fluorescent lighting as the key low-carbon energy technologies potentially affected by 

interruptions to the supply of low-carbon technology metals. The report highlights the rare 

earth elements in particular, stating that their supply “may affect clean energy technology 

deployment in the years ahead” (DOE 2011). The report also highlights key actions required 

to mitigate critical materials supply disruptions, including funding for strategic research, 

development of a critical materials research plan, international engagement with experts 

and coordination amongst US federal agencies (DOE 2011). 

However, the limitations of high level comparative studies addressing critical materials 

issues means that insights and understanding of these issues are necessarily limited. In 

order to facilitate the consistent use of metrics across all metals covered in criticality 

assessment, only relatively simple metrics may be applied (Speirs et al. 2013b). To assess 

                                                      
5
 The SET-plan is a guidance plan to help European energy policy makers with the goal of: Accelerating 

knowledge development, technology transfer and up-take; Maintaining EU industrial leadership on low-carbon 

energy technologies; Fostering science for transforming energy technologies to achieve the 2020 Energy and 

Climate Change goals; and Contributing to the worldwide transition to a low-carbon economy by 2050 (EC 

2014) 
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the full range and complexity of the issues surrounding these metals, closer study on a case 

by case basis is warranted. 

2.4 Summary 

The concepts of scarcity and the availability of resources have continually developed since 

their early beginnings. The modern debate encompasses a wide range of dynamic factors 

from physical and geological concepts to the economic theory of responses to scarcity. The 

critical metal resources raising availability concern most recently are significantly less well 

understood than resources such as oil that have experienced a sustained period of global 

economic importance, and thus research attention. The assessment of critical metal 

availability, and particularly how their supply and demand might respond to constraints in 

availability, is insufficiently understood given the current level of analysis. The following 

chapter describes the research approach used in this thesis to more fully explore the 

dynamic and interlinked nature of resource systems, and explore the similarities and 

differences in the structure and dynamic behaviour of different resource systems.  
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Chapter 3:  Research approach 

If we knew what it was we were doing, it would not be called research, would it? 

Albert Einstein, date unknown 

Research is what I'm doing when I don't know what I'm doing. 

Wernher von Braun, 1957 

The purpose of this chapter is to describe an approach which addresses the objectives laid 

out in Chapter 1 and ultimately answers the central research question. The chapter begins 

by describing the analytical framework which encompasses all the components of the 

research approach and their relationship to each other. The chapter then describes the two 

separate methodological approaches that make up the analytical framework. First it 

proposes the use of case study to examine the specific cases of three separate resources: an 

exhaustible, non-recyclable resource; and two low-carbon technology metals lithium and 

indium. The chapter then goes on to explore system dynamics and its use here; first as a 

way of describing and comparing the conceptual relationships between the key system 

variables and second as a quantitative methodology that can be used to simulate these 

systems to compare their dynamic behaviours under certain system conditions. 

3.1 Analytical framework 

Many important questions and knowledge gaps arise while researching a topic such as 

resource availability. The key issues arising during this research are captured in Chapter 2. 

The analytical framework described here has been designed to respond to the key 

knowledge gaps and guide the research towards results that address all aspects of the 

research question. A diagram summarising the analytical framework is presented in Figure 

3.1. Justification for the construction of the analytical framework is presented in this 

section. The three phases of the analytical framework are dealt with in turn below. 
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Figure 3.1: Analytical framework for assessing comparability of energy resource systems 

 

3.2 The need for case study 

The need for specific case study arises for two main reasons. First, existing comparative 

methodologies applied to the availability aspects of low-carbon technology metals are 

typically simplistic and broad in order to manufacture sufficient comparability between 

metals (Speirs et al. 2013b). The purpose of this study is to compare the systemic 

differences between resources as much as their similarities. In order to fully capture the 

nuances associated with each resource compared in this research a more ‘narrow and deep’ 

methodology is applied. 

Second, having identified the use of system dynamics within this analytical framework, case 

study provides a way to investigate the nature of systems and their construction. This 

includes examining the system as it currently appears, interpreting this observation into 

causal structure, identifying the initial conditions that might be appropriately applied to 

modelling these systems and identifying the experienced behaviours (reference modes) 

which these models are expected to replicate. Case study is broad enough in its approach to 

capture these issues and provide a basis on which the chosen resource systems can be 

modelled. 
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3.2.1 Case study approach 

The method of case study research is not universally defined. Stake (1998), for example, 

states: 

“As a form of research, case study is defined by interest in individual cases, 

not by the methods of inquiry used” 

Case studies therefore draw on a number of different techniques, with the precise approach 

being defined by the author. The general steps towards case study have been summarised 

by Soy (1997) as: 

1. Determine and define the research questions  

2. Select the cases and determine data gathering and analysis techniques  

3. Prepare to collect the data  

4. Collect data 

5. Evaluate and analyse the data 

The case studies in this thesis follow these steps. The first step is addressed in earlier 

chapters of this thesis, while the fourth and fifth steps are addressed in the case study 

chapters (4, 5 and 6) and the final chapters (7 and 8) respectively. Steps two and three are 

dealt with in Section 3.2.3 and Section 3.2.4. 

3.2.2 Limitations of case study 

Hodkinson and Hodkinson (2001) present eight potential limitations of case study methods. 

These are dealt with in turn below. 

1. Too much data 

Case study approaches can be used to gather large quantities of data, and these quantities 

can become difficult to manage and analyse. However, the case studies in this thesis aim to 

gather pertinent information with which to build system dynamics models. This focus help 

avoid issues of too much data 
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2. Too expensive 

Given the quantities of data case studies deal with the cost of case study projects can 

become problematic. However, the research conducted here builds from existing funded 

research projects, and the nature of doctoral research is necessarily constrained by costs 

from the beginning, meaning that cost problems are unlikely to arise in this instance. 

3. The difficulty of representing complexity 

Case study methods can be used to delve deep into very complex research questions. These 

can often be difficult to represent and communicate effectively since case studies often rely 

on narrative to present results. However, in this thesis case study is followed by quantitative 

modelling and, though representing complexity in models is also challenging, the diversity of 

approaches is designed to improve capacity to represent complex systems. 

4. Difficult to represent numerically 

Hodkinson and Hodkinson (2001) note that some case study research has difficulty in 

maintaining comparability over longditudinal data. This arrises due to the inconsistency of 

the data sets gathered. Energy resource datasets suffer similar issues of data quality and 

while this limitation is acknowledged, efforts have been made to represent these data issues 

and focus on the trends and issues that are least impacted by this limitation. 

5. Not generalisable 

Case studies, which by their nature deal exclusively with specific cases, are difficult to 

generalise. The ability to generalise is a central theme of the research question studied in 

this thesis: do different resources used in the energy system behave similarly to constrained 

availability? As such the three case studies are compared specifically to identify the extent 

to which they can be generalised. 

6. Difficult to maintain objectivity 

Given the inherent case-by-case nature of case study methods, and the lack of a universally 

defined approach as highlighted in Section 1.2.1, it may be difficult for researchers to 

discard biases and remain objective. The original research on which these case studies build 

was conducted using a systematic review methodology, mitigating this issue to an extent. 

Systematic review is a method emerging from Evidence Based Policy and Practice (EBPP) 

that provides a rigorous and repeatable method of evidence gathering designed to avoid 
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biases such as ‘cherry-picking’ and confirmation bias (Sorrell 2007a) (See Section 3.2.3 for 

more discussion of systematic review). 

7. Easy to dismiss 

Hodkinson and Hodkinson (2001) suggest that findings of case study research are easy to 

dismiss if they are unpopular. The reasons given centre around the lack of percieved 

sistematic rigour, e.g. the potential biases of researchers is used as a reason to dismiss 

findings. Again the use of system dynamics in addition to case study is designed to reinforce 

the systematic rigor of the research approach. 

3.2.3 Selection of cases and data collection 

The selection of cases can be based on a number of factors. Cases may be chosen because 

they are of intrinsic interest, or a specific part of the research question. Other cases may be 

selected for desired characteristics and may provide results that can be generalised. Desired 

characteristics of a case may be information richness or uniqueness. They may provide 

extreme examples, or they may provide generic or typical characteristics. Cases may also be 

chosen because they provide easy access to data, or facilitate in some practical way the 

analysis needed to answer the research question (Johansson 2003). 

The first case study addressed in this research is that of a generic, exhaustible, non-

recyclable resource system. One of the central concepts motivating the research question is 

to test the implied hypothesis within the literature that there is comparability between low-

carbon technology metals and more traditional energy resources with a longer history and 

richer literature and discourse. The examination of the dynamics that are common to many 

commodities traditionally considered as energy resources under the heading of a generic 

resource helps to gather the evidence needed to inform a generic resource system model 

that can be tested against other resources.  Oil is used often in this thesis to help inform the 

development of the generic resource model and the choice of oil as an example is 

supported by the following facts. 

Oil is historically one of the most important energy resources. The modern oil market is at 

least 150 years old, representing 41% of global primary energy and at a price of $100 per 

barrel, representing $5.4 trillion (BP 2013). Oil also has a rich literature and oil data are 
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widely available, providing evidence with which to inform the case study. As discussed in the 

previous chapter, the availability of oil has been discussed in the academic literature at least 

as early as the 1950s (Hubbert 1956). This discourse has continued and is as prolific  now as 

it has ever been (Sorrell et al. 2009). Data on historical production, historical reserves and 

historical price are freely available. Finally, oil has been modelled extensively and therefore 

has an evidence base on which to build a system dynamics model. From the earliest simple 

extrapolative models (Hubbert 1956) to more recent and complex models (Sterman 2000; 

IEA 2008) modelling of the oil resource system has been conducted extensively, using a 

range of techniques and for a range of purposes. Though many of these methods have not 

been fully documented and published (IEA 2008), several models have been published in full 

and enough is known about these techniques to learn from and build on them (Sorrell et al. 

2009). 

Two critical metals are chosen as the second and third case studies. Lithium and indium as 

resource systems are significantly less researched, largely as a function of the relative 

economic importance of these metals compared to oil and the burgeoning nature of their 

low-carbon applications. There are enough data on these metals to inform the construction 

of system dynamics models representing their market systems. However, the main purpose 

for including these metals is to provide examples of critical metals that can be critically 

compared to oil. These two metals are used in two key low-carbon technologies central to 

low-carbon transition scenarios: lithium used in electric vehicles and indium used in thin-

film photovoltaics (Candelise et al. 2011; Speirs et al. 2011). They are also diverse, in that 

the nature of their extraction and therefore the structure of their dynamic market systems, 

are different. Lithium is produced for its own value while indium is produced mostly as a by-

product of zinc mining. These two metals therefore allow the comparison of different types 

of critical metals, as well as the comparison of critical metals to oil. 

Systematic review 

The case studies selected draw from research conducted by the author and colleagues for 

the UK Energy Research Centre (UKERC) Technology and Policy Assessment (TPA) theme and 

acknowledged at the beginning of this thesis. The central method of that research is 

systematic review, a form of evidence gathering designed to be exhaustive, robust and 

nonbiased. Due to the divergence in focus between the original TPA research and this thesis 
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the case studies are augmented with data collected outwith the TPA systematic reviews. For 

this reason systematic review is not presented as a central research method of this thesis. It 

is however worth discussing the TPA process briefly, which has informed the evidence-

gathering and assessment in this thesis greatly. 

The TPA approach is informed by a range of techniques referred to as ‘evidence-based 

policy and practice’ (EBPP), including the practice of systematic review (UKERC 2014). This 

aspires to provide more robust evidence for policymakers and practitioners, avoid 

duplication of research, encourage higher research standards and identify research gaps. 

Core features of this approach include exhaustive searching of the available literature and 

greater reliance upon high quality studies when drawing conclusions (Sorrell 2007a). 

Petticrew (2001) sets out a detailed comparison of systematic review and traditional 

narrative reviews, highlighting the areas of improvement that good-quality systematic 

reviews can bring to the process of evidence assessment at each stage of the process. The 

improvements cited include the clear definition of a research question or testable 

hypothesis, the use of defined protocols to allow reviews to be replicable and the 

assessment of study quality in the process of evidence selection (Petticrew 2001). 

Energy policy presents a number of challenges for the application of systematic review and 

the approach has been criticised for excessive methodological rigidity in some policy areas 

(Sorrell 2007a). UKERC has therefore set up a process that is inspired by this approach, but is 

not bound to any narrowly defined method or technique. The process carried out for each 

assessment includes the following components: 

 Publication of Scoping Note and Assessment Protocol. 

 Establishment of a project team with a diversity of expertise. 

 Convening an Expert Group with a diversity of opinions and perspectives. 

 Stakeholder consultation. 

 Systematic searches of clearly defined evidence base using keywords. 

 Categorisation and assessment of evidence. 

 Review and drafting of technical reports. 

 Expert feedback on technical reports. 

 Drafting of synthesis report. 
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 Peer review 

The process of systematic review, which forms the core of this process, is a rigorous method 

for evidence gathering. This process begins with setting out a search strategy in the 

assessment protocol, which is reviewed by experts. This protocol sets out: a) the sources of 

evidence to be searched; and b) the key words and Boolean search logic to be used in those 

searches. Once evidence is collected its inclusion in the analysis is subject to selection 

criteria, also defined in the assessment protocol. These selection criteria can include: 

 The quality of review process the evidence has been subject to (e.g. peer review); 

 The methodological rigour and experiment design; 

 The comparability of evidence; and 

 The applicability of evidence to the specifics of the research question. 

Selection criteria can be highly rigorous, excluding a very large number of studies that do 

not meet the quality threshold. For example Wallace et al. (2004) conducted a systematic 

review into financial support for defaulting homeowners. The final review excluded 97% of 

the evidence uncovered in the initial review, based on their failure to meet the selection 

criteria. 

The influence of systematic review on the evidence included in the case study chapters of 

this thesis improves the robustness of evidence inclusion above that likely through 

traditional narrative analysis. 

3.2.4 Form of the case study chapters 

Each case study chapter is structured in the following way. The first section presents a brief 

history of the resource system in question, covering the history of its discovery and early 

uses, and presenting the available historical data on production and price. The second 

section reviews the evidence on the structure of the resource system, beginning with the 

formation of demand, examining the aspects of production and supply and finally examining 

the formation of the resource price. The final section reviews the efforts to estimate future 

supply and demand of the resource through various techniques. This structure captures the 

full range of information needed to construct and simulate working models of these 
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resource systems, providing an outline around which the three resource models can be 

structured. 

3.3 The need for conceptual comparison 

The objectives of this research identify the need to conceptually compare the resource 

systems studied here. Comparison is at the centre of the research question and by first 

comparing these systems at a conceptual level, focus can be placed on the broad structures 

of the systems. This stage of model development also allows time to be taken over the 

definition of system boundaries and the degree to which aspects of the system are 

aggregated, procedures identified by the founder of system dynamics, Forrester, as “two of 

the most difficult steps in successful modelling.” (Sterman 2000). 

The procedure of creating and comparing causal structure is referred to by Sterman as 

“mapping the system structure” and like any map these causal structures provide a means 

to navigate the research problem. Once these structures have been mapped, the process of 

comparison will highlight the key similarities and differences and provide insight into the 

most interesting things to test when performing quantitative analysis. 

3.4 The need for quantitative analysis 

Ultimately, to answer the research question and, in particular, the need to identify ‘to what 

extent’ these systems are similar, the causal structures must be interpreted into full system 

dynamics models and simulated to test the behaviours of the systems under certain 

conditions in order establish quantitative results. Causal loop diagrams and conceptual 

structures are usually too complex to predict intuitively and even simple structures produce 

unintuitive behaviours (Sterman 2000). Human mental biases and overconfidence in human 

judgment contribute to this error and many of these judgemental errors have been 

documented and examined (Kahneman et al. 1982; Hogarth 1987).  

Quantitative simulation also allows for the identification of mistakes in the causal structure 

and conceptual models. Sterman (2000) stresses the importance of creating a full 

quantitative version of any model as soon as possible to iteratively develop the causal 

structure of models and test the implications of new and adapted structure as the modelling 

proceeds. This allows for the identification of error at the earliest possible stage. 
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Finally, quantitative simulation also allows for the testing of sensitivities in a systematic way. 

The results of such an analysis can be used to help test the model and improve it iteratively. 

Sensitivity analysis can also be used to highlight key assumptions in the model that are 

important to test, helping to target the process of model analysis. 

Previous quantitative approaches 

Resource demand is commonly modelled in resource availability analyses (Sterman 2000; 

IEA 2012). This can be as specific as demand in response to the growth of a particular end 

use (Andersson 2000; Tahil 2007; Tahil 2008) or range of end uses, demand as a function of 

population or macroeconomic factors such as global GDP, or demand as a combination of 

these. However, dealing with demand in isolation from supply is a significant simplification 

of the real world conditions, and models that resolve both supply and demand 

endogenously are likely to be more robust (Sterman 2000). 

Resource supply is a commonly modelled aspect of the resource availability system 

(Fthenakis 2009; Sorrell et al. 2009; Yaksic & Tilton 2009; Houari et al. 2013). It is principally 

concerned with the rate at which resources are produced, but can also incorporate aspects 

of the resource estimates and their change over time, and aspects of the available 

production capacity. 

Resource price is a less commonly modelled aspect of resource systems as it significantly 

increases the dynamic complexity of system models. There are, however, examples of price 

being incorporated into resource system models (Sterman 2000). In fact, depending on the 

purpose of the model, excluding price may render the model and its findings not fit for 

purpose. Sterman (2000) discusses a US energy policy model as an example of the pitfalls of 

placing economics variables such as price outside the boundaries of models. The Project 

Independence Evaluation System model (PIES). The PIES model was designed in the 1970s to 

evaluate US policy measures against a number of criteria, including: their impact on 

alternative energy sources; their impact on economic growth, inflation and unemployment; 

their regional and social impacts; their vulnerability to import disruption; and their 

environmental effects. However, as a result of leaving the economy outside the model 

boundaries the model was inherently contradictory. If the model made investments in one 
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part of the economy, there would be no reciprocal impacts anywhere else. As a result, the 

model proved to be overly optimistic and was abandoned in favour of alternatives. 

Supply, demand and price are all dependent on each other in resources systems, creating 

feedback loops that entirely dictate the behaviours of their systems. If supply becomes 

‘tight’ producers are able to command a higher price. The increase in price signals a demand 

response, to either work with less (efficiency) or work with something else (substitution). 

The high price also encourages other producers to enter the market, or makes marginal 

resources cost effective, and both supply and demand responses serve to bring the price to 

its new equilibrium. Because of these feedbacks the system dynamics modelling 

methodology is well placed to simulate and interrogate these types of system. 

3.5 System dynamics 

Dynamically complex systems are inherently difficult to understand and system dynamics 

has been developed as a tool to aid the process of understanding them. System dynamics 

was developed by Jay Forrester in the 1950s at MIT and is linked to the concepts of systems 

thinking (Richardson 1991; Richmond 1994). The system dynamics approach uses stocks, 

flows, feedback loops and time delays to represent, simulate and study dynamically complex 

systems (see 3.5.2). Reviews of the historical development of system dynamics can be found 

in Lane (1994) and Richardson (1991). 

System dynamics has been applied to a number of different dynamic problems. Initially 

Forrester called the discipline ‘industrial dynamics’, and many of the early applications 

focussed on the dynamics of management and decision-making in engineering businesses 

(Forrester 1961; Lane 1994). Since then the system dynamics approach has been applied 

widely, from medical research including human metabolism and obesity (Giabbanelli et al. 

2011) to, to the nonlinear armament strategies in military arms races between nations 

(Behrens et al. 1997). Two high profile and notable applications of system dynamics are the 

Urban Dynamics model (Forrester 1969), designed to model and test city management 

policies, and the World 3 model, used in the ‘Limits to growth’ report (Meadows 1972). 

System dynamics has also been applied frequently to issues of energy policy, including oil 

resources (Sterman et al. 1988), the decarbonisation of road transport (Contestabile 2010) 

and the availability of critical metal resources for PV manufacture (Houari et al. 2013). 
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It has long been acknowledged that intervention in a system will often have unintended 

consequences, and that policy interventions will often be resisted by the system. Sterman 

(2000) provides a number of examples of ‘the law of unintended consequences.’ In this vein 

Lewis Thomas noted: 

“When you are confronted by any complex social system, such as an urban 

centre or a hamster, with things about it that you’re dissatisfied with and 

anxious to fix, you cannot just step in and set about fixing with much hope of 

helping. This realization is one of the sore discouragements of our 

century….You cannot meddle with one part of a complex system from the 

outside without the almost certain risk of setting off disastrous events that 

you hadn’t counted on in other, remote parts. If you want to fix something 

you are first obliged to understand…… the whole system….Intervening is a 

way of causing trouble.” 

Thomas (1974) 

The goal of learning about the complete nature of dynamic systems is one of the core 

purposes of system dynamics. 

There are manifold reasons behind our inability to understand dynamically complex systems 

intuitively. The human thought process tends to interpret the world as linear, ignoring the 

circularity of feedback loops in favour of a linear concept of action and reaction. This is 

exemplified by commonly used language such as ‘cause and effect’ or ‘side effect’. In reality 

there is no such thing as a linear cause and effect and, as a result, there are no side effects. 

All effects are a direct result of their preceding actions, though they may be classified as 

‘side effects’ depending on whether they were anticipated. Mental models are also used to 

interpret the world around us. These mental models can be very difficult to break, and our 

natural thinking processes provide significant barriers to learning (Kahneman et al. 1982; 

Hogarth 1987). Sterman (2000) lists and discusses a range of these barriers in Chapter 1 of 

his book ‘Business Dynamics’ In the face of these barriers, system dynamics provides a 

structured and formalised process through which these tendencies in thought process can 

be isolated, the fundamental components of a complex system and the underlying 
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relationships pieced together, and the system simulated independently of our mental 

models (Sterman 2000). 

The following sections describe the formal process of system dynamics modelling, including 

the construction of conceptual ‘causal loop diagrams’ and the formulation of stock and flow 

models, representing the second and third stages of the analytical framework. Finally it 

briefly addresses some of the perceived weaknesses of system dynamics. 

3.5.1 Systems thinking: structure and behaviour 

Feedback, the iterative interaction of components of a system, is at the heart of system 

dynamics. The system structure, or the combination of components and their feedback, 

dictates the systems behaviour, meaning the way in which a system reacts to changing 

conditions (see 1.3). All behaviour arises from three basic structures: positive feedback; 

negative feedback; and negative feedback with time delay. Illustrative examples of these 

three basic structures are presented with explanation in the following sections. They are 

illustrative only and do not necessarily represent working models. 

This quick guide to the structural elements of system dynamics is drawn from Sterman 

(2000) but similar expositions of these concepts can be found in Radzicki and Taylor (2008), 

Wolstenholme (1990) and Morecroft (2007). 

Positive/reinforcing feedback and exponential growth 

The positive or reinforcing feedback loop is the first fundamental structure used to define a 

dynamic system. These feedback loops tend to amplify the behaviour in the system. For 

example, in an arms race, the more weapons built by one side of the conflict, the more the 

other side will build in retaliation. The arsenals of the two warring sides will therefore grow, 

and weapons manufacturing in the system will tend to increase exponentially. The loop is 

therefore built of two components (the two warring sides) and their feedback (the effects of 

one side’s behaviour on the other’s). This can be represented by the causal loop diagram in 

Figure 3.2. In this diagram the ‘+’ sign in the centre denotes the ‘positive’ feedback loop. 

This can also be represented by ‘R’ which stands for ‘reinforcing’. The circular arrow at the 

centre denotes the direction of causality, and the ‘+’ sign next to the feedback arrows 

denotes the positive impact of that feedback. 
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Figure 3.2: Positive feedback loop of two warring sides and the resulting behaviour of the 

system 

 

Negative/balancing feedback and goal seeking 

The second fundamental structure in dynamic systems is the negative or balancing feedback 

loop. Negative feedback loops tend to oppose change, seek equilibrium and tend to be self-

limiting. For example, if the price of a commodity increases, one of the responses is that 

demand tends to decrease, though as demand decreases, so too does the price, until 

demand and price stabilise. This loop is therefore made of two components (price and 

demand) and their feedback (the negative influence on price on demand and the positive 

influence of demand on price). This structure and its behaviour can be represented by the 

causal loop diagram in Figure 3.3. The notation in this feedback is similar to Figure 3.2, only 

the ‘-‘ sign denotes the negative feedback, which can also be represented by a ‘B’, for 

‘balancing’. 
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Figure 3.3: Negative feedback loop of commodity price, demand and the resulting 

behaviour of the system 

 

Negative feedback with delays and oscillation 

The third basic feedback structure in system dynamics is the negative feedback loop with 

delay. In any negative feedback loop, the system tends towards a goal. In the example in 

Figure 3.3 the goal is the price at which demand is stable. The system compares its 

conditions to the goal iteratively, and while there is a large discrepancy between condition 

and goal, there is a large response. As the condition tends towards the goal and the 

discrepancy is reduced, the response is also reduced, and the condition tends towards its 

goal asymptotically. If delay is introduced anywhere in that system then the system no 

longer responds to current discrepancy, but to the discrepancy between some previous 

condition and the goal. This leads a system to oscillate. For example, a government may 

want to control its inflation to a specific rate by manipulating interest rates. Unfortunately, 

measuring inflation is a slow process, with data published infrequently. This causes delay, 

which complicates the system. If inflation is below the goal, then the goal seeking policy 

may try to increase it by reducing interest rates. However, by the time policy makers are 

aware of the impact of that interest rate shift, inflation rates may already have met the goal 

and increased above it. Now policy makers will want to increase interest rates to help 

reduce inflation, and again with the delay in inflation rate measurement, the goal may be 

surpassed before policy makers are aware. If this continues then the rate of inflation will 

fluctuate above and below the system goal indefinitely. This system is therefore made up of 
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two components (the inflation rate and interest rate), the feedbacks (the effect of inflation 

rate on interest rate policy and the effect of policy decisions on the interest rate) and a time 

delay (the time it takes for interest rate to be measured and reported back to the policy 

makers). This structure and its behaviour can be represented by the causal loop diagram in 

Figure 3.4. 

Figure 3.4: Negative feedback loop with delay of interest rate and inflation rate, and the 

resulting behaviour of the system 

 

Other behaviours: products of the three structures 

All other behaviour in dynamic systems is derived through a combination of these three 

basic structures. S-shaped or sigmoid growth, for example, is much more common in natural 

systems than the unlimited exponential growth arising from positive feedback loops. At 

some point, natural systems reach limits, which restrict growth. By combining positive and 

negative feedback loops, sigmoid growth can be simulated. Sigmoid growth may be 

experienced in resource discovery. The cumulative discovered resource is likely to grow 

exponentially in the early years, as discovery techniques improve and effort increases. 

However, at some point, discovery begins to get harder and harder as the number of 

undiscovered wells decreases and the exploratory effort needed to add the next discovery 

increases. This leads to goal seeking behaviour which moderates the growth phase, creating 

the sigmoid pattern. 
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If delays are introduced to the negative feedback loop in the structure, sigmoid growth with 

overshoot and oscillation is generated. This might be the case in a population system where 

the goal is the carrying capacity of the habitat, and delay is introduced given the time taken 

for new-born members of the population to grow to adulthood. As the population increases 

more of the habitats resources are used, and population growth slows as resources are used 

up. However, as the population nears the goal there are new-borns who have yet to grow to 

adulthood, at which point they will require more resources to survive. By the time they have 

reached adulthood, the resource demands of the population might have exceeded the 

carrying capacity, and the population will die back. At which point consumed resources may 

have grown back, incentivising population to rise again. 

If a second negative feedback is added, then overshoot and collapse can be generated. The 

fixed goals implied in the previous two examples are replaced in this structure with a goal 

dependent on the components of the system. This produces a bell shaped curve akin to the 

Hubbert curves discussed in Chapter 2. 

Other modes of behaviour include stasis/equilibrium, randomness and chaos. These are 

described in more detail, along with fuller explanations of all the types of structure and 

behaviour, in ‘Business Dynamics’ (Sterman 2000). 

3.5.2 The elements of system dynamics 

Causal loop diagrams are useful tools in communicating the structure of feedback loop 

structures in a clear way. However, causal loop diagrams lack the ability to distinguish 

between stocks and flows, which along with feedback are the centre of dynamic system 

theory. Dynamic behaviour is thought to arise from the Principle of Accumulation, which 

states that all dynamic behaviour occurs when flows accumulate in stocks (Radzicki & Taylor 

2008). In essence, dynamic systems are governed by rates of change, and system dynamics 

models calculate those various rates of change when simulated. The calculation of rates of 

change is in other words, calculus (Sterman 2000), and stock and flow diagrams help us 

separate and simplify the complex equations at the route of dynamic systems. The following 

describes the use of stocks and flows in system dynamics, and their combination to create 

the structure and behaviours discussed above. 
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Stocks and flows: building blocks of system dynamics 

Stocks can be described as accumulations, which characterise the state or condition of the 

system and inform the decisions and actions taken (Forrester 1961). Flows are the rates of 

change of a stock, with inflows accumulating in stocks and outflows depleting them 

(Forrester 1961). A commonly used analogy is the hydraulic metaphor (Sterman 2000; 

Radzicki & Taylor 2008). If the stock was a bathtub, the quantity of water in the bathtub is 

the sum of the accumulation of water flowing in over time, minus the water flowing out 

through the plughole over time.  

Figure 3.5: The bath tub analogy of stocks and flows in system dynamics 

 

Source: Adapted from Sterman (2000) 

In mathematical terms, the stock, or bathtub, integrates inflow and outflow, and can be 

represented as: 

𝑆𝑡𝑜𝑐𝑘(𝑡) = ∫ [𝐼𝑛𝑓𝑙𝑜𝑤𝑠(𝑠) − 𝑂𝑢𝑡𝑓𝑙𝑜𝑤(𝑠)]𝑑𝑠 + 𝑆𝑡𝑜𝑐𝑘(𝑡0)
𝑡

𝑡0

 

3.1 

Stocks critical contribution to dynamic systems can be summarised as follows (adapted from 

(Mass 1980)):  
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1. Stocks represent the state of the system and provide the basis for action: in 

systems, stocks tell the decision makers of the system what the current conditions 

are, upon which the decision makers may act. 

2. Stocks provide inertia and memory: stocks only change if there is an inflow or 

outflow. As such, the past events of a system are recorded in stocks, and their inertia 

means that they can only be changed through changes in the flows. 

3. Stocks form delay: delays are processes whose outflow lags their inflow and, as 

such, they always involve stocks, which are needed to accumulate the difference 

between these temporally separated inflows and outflows. 

4. Disequilibrium is dependent on stocks: most inflow and outflow processes are 

dependent on different factors and rarely equilibrate. Stocks provide for the 

accumulation of the difference between these flows. 

Creating structure through stocks and flows 

Ultimately, stocks and flows are used in system dynamics modelling to capture and simulate 

the structures identified in causal loop diagrams. Since causal loop diagrams do not 

differentiate between stocks and flows, the first challenge is to identify which components 

should be interpreted as stocks and which should be interpreted as flows. Sterman (2000) 

suggests some ways to distinguish. Units of measurement are useful in determining which 

variables should be stocks and which should be flows. Absolute quantity units, such as 

monetary units ($, £ etc), volumes (litres, m3 etc) and weights (tonnes, kilos) are usually 

associated with stocks, while rates are measured in the same unit as the stock per time 

period, such as $ per hour, litre per second or tonnes per year. Another way to distinguish 

between stocks and flows is the ‘snapshot’ method. As previously discussed, stocks record 

the condition of a system. If time could be frozen in a ‘snapshot’, the stocks would be those 

things that had some memory or record of the state of the system. Stocks would therefore 

be the things that could be counted or measured in the snapshot. To return to the hydraulic 

metaphor, a picture of a bath with the tap running would allow you to estimate the volume 

of water in the bath, but would yield no information as to the rate at which it is filling up. 

Once the stocks and flow have been identified, the stock and flow diagram of the system 

can be created. Returning to a previous example, Figure 3.4 represents the stock and flow 

diagram interpretation of the negative feedback with delay causal loop diagram describing 
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the relationship between inflation rate and interest rate. First, the stocks and flows are 

identified. Using the units method of identification, both sides of the causal loop diagram 

are percentage rates, suggesting that both are flows. In this system, the stock would be the 

element of the system that inflation rate flows into. This is also the part of the system 

measured which provides the information on inflation rate to the decision makers who set 

interest rates. Using the UK as an example, the stock would be a ‘reference basket’ of 

products6 and the interest rate would be the Bank of England (BoE) base rate of interest, set 

by the monetary policy committee of the BoE.  

The standard notation in stock and flow diagrams was proposed by Forrester (1961) and is 

presented in Figure 3.7. Stocks are typically drawn as boxes, while flows are drawn as 

straight double lined arrows with an hourglass like ‘tap’ symbol. It is another important 

contribution of the stock and flow diagram that flows of material (in this case inflation) and 

flows of information or effect (in this case the measurement of reference basket, the 

knowledge of the intended goal and the impact of interest rate on inflation) are 

differentiated. Information and effect are drawn as curved arrows. Delay notation in this 

case is the same as causal loop diagrams, though other types of delay notation, such as 

conveyor belt stocks, exist in stock and flow diagrams (Houari et al. 2013). 

Figure 3.6: Stock and flow diagram of the relationship between interest rate and inflation 

 

                                                      
6
 The Consumer Price Index (CPI) and Retail Price Index (RPI) are measures of the changing price of a range 

products, used to calculate the inflation rate of an economy. 

Reference
basket

Inflation

BoE base rate

Goal
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Figure 3.7: Stock and flow notation key 

 

Source: Forrester (1961) 

In addition to stocks and flows, auxiliary variables are also useful when modelling dynamic 

systems. In Figure 3.6, the goal and the BoE base rate are represented by auxiliary variables. 

These can be used to represent constants (such as the goal), simplifications of stock and 

flow elements (such as the BoE base rate) and exogenous variables. Auxiliary variables can 

be eliminated by creating only stock and flow representations, though the benefit of 

auxiliaries is that simplifications of exogenous parts of models can be made and explicit 

statement of variables such as goals can make stock and flow diagrams more easily 

navigated. 

Finally, the underlying mathematical relationship between these stock and flow units must 

be defined. This is done through the software platform used to generate stock and flow 

diagrams. Chapter 7 describes the functional relationships used in the models in this 

research. 

3.5.3 The choice of modelling platform 

Very early in the history of system dynamics, it was recognised that to simulate the system 

dynamics models efficiently, the computational power of computers would be required. 
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Early programming languages, such as SIMPLE, gave way over time to graphical user 

interface programs such as Vensim and Stella. There is also the possibility to recreate 

system dynamics modelling in other modelling software such as Matlab. Modern system 

dynamics programs facilitate the creation of complex systems and allow the user to focus on 

the dynamics and underlying functional relationships without spending undue time on the 

operation and interrogation of complex programming languages. 

Three criteria were considered when choosing modelling software used in the analysis in 

this thesis: 

1. Access and cost: is the software available from and did they have affordable 

licencing agreements; 

2. Ease of use: is the software accessible, intuitive, and practical; and 

3. Functionality: does the software contain useful functions that will be helpful for the 

intended analysis? 

An extensive list of available software can be found online (Wikipedia 2014a) and using the 

criteria above, Vensim PLE plus was chosen as the optimal software for the purposes of this 

research. 

3.5.4 The modelling process 

There are several guides to the system dynamics modelling process, giving detailed step-by-

step instruction (Morecroft 2007; Pejic-Bach & Ceric 2007; Radzicki & Taylor 2008). This 

thesis follows the conventional modelling steps laid out by Sterman (2000), summarised in 

Figure 3.8. Following these steps first provides causal loop diagrams and other system 

mapping tools used for the conceptual comparison, which is the second stage of the 

analytical framework. The final product of these steps is the creation and testing of full 

simulation models of the chosen resource systems, which will provide the quantitative 

analysis defined in the third stage of the analytical framework. 



~ 91 ~ 
 

Figure 3.8: Steps of the systems dynamics modelling process 

 

Source: Adapted from Sterman (2000) 

Problem articulation and boundary definition 

“A clear purpose is the single most important ingredient for a successful 

modelling study” 

Sterman (2000) 

Problem articulation is the first step in developing and using a system dynamics model. This 

involves defining specifically what the problem is and what is interesting about it. It is 

important to be specific and explicit so a testable hypothesis can be derived. In Chapter 1, 

an explicit research question is proposed and its component questions and necessary 

objectives discussed. This is developed into an analytical framework and thesis structure 

designed to respond to the research question. 

Other considerations at this stage include listing the key variables and defining which are 

endogenous and which exogenous to the model. At this stage, it is important to make sure 

all the important variables are included endogenously. There are examples of models with 

key variables dealt with exogenously, limiting the usefulness of the model for its intended 

purpose. Boundary charts are a typical method of defining exogenous and endogenous 

variables and these will be derived in the case study chapters that follow. 

It is also important to define a sensible time horizon that meets the requirements of the 

research question. Reference modes, i.e. examples of the types of behaviour the model 

should be able to replicate, should also be identified and considered. Reference modes are 
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identified in the case study chapters and validation against reference modes and time 

horizon settings are discussed in Chapter 7. 

Formulation of dynamic hypothesis 

In this step, the current knowledge and analysis of a particular problem is examined. This is 

said to represent the ‘initial hypothesis’. The dynamic hypothesis is formed by explaining 

the initial hypothesis using feedback structures. 

System dynamics practitioners often use a host of ‘mapping’ techniques to begin to set out 

the structure of the dynamic system formally. Using these techniques, the modeller can 

work towards a full dynamic explanation of the system to be modelled. Mapping techniques 

include boundary diagrams, subsystem diagrams, causal loop diagrams and stock and flow 

charts. This mapping process should be done iteratively with simulation of a fully working 

model in order to identify mistakes in structure as early as possible. To achieve this Sterman 

recommends creating a fully operational model as soon as possible (Sterman 2000). 

Whilst many elements of the mapping of a dynamic hypothesis appear throughout this 

thesis, the key stages of mapping and dynamic structure development are dealt with in 

Chapter 7. 

Formulation of a simulation model 

Formulating a full working simulation model as a stage of system dynamics modelling can be 

split into two stages. Specification involves the final creating of a stock and flow diagram 

defining the structural aspects of the model. The underlying functional relationships 

between the elements of the structure are then defined.  

Estimation is the process by which the initial conditions of the system are set. This is 

achieved by examining the literature and evidence base surrounding these systems and 

defining appropriate initial values for all variables based on that evidence base.  

Specification and estimation are documented in Chapter 7, with evidence used to derive the 

initial conditions drawn from the case study chapters. 

Testing 

There are a host of model tests and validation techniques used in system dynamics to 

support and defend system dynamics models. Many of these are discussed in the literature 
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(Sterman 2000). Four key tests are utilised in this research (see Chapter 7) and these are 

discussed briefly below. 

Integration error tests or ‘Dt error’ tests are used to eliminate spurious dynamics which 

arise due to integration settings in a model7. System dynamics models are usually solved 

using numerical integration. This is necessary since system dynamics models are based on 

nonlinear ordinary differential equations solved simultaneously in each model time step 

(Sterman 2000)8. For example, a stock in system dynamics is calculated as the integral of all 

the flows connected to it. Numerical integration yields an approximation of the underlying 

continuous dynamics of systems and modellers usually have the choice over both what type 

of numerical integration to use and what time steps the model should be solved in. If the 

time step is too large or the integration method not suitable, then the continuous dynamics 

of the system may change more swiftly than the frequency of calculation (time steps) can 

cope with, resulting in spurious error. This can be tested for by examining the impact of 

reducing the time step on the model solution. If there is a significant difference between the 

results using different time steps, the period of calculation is too long. By continually 

reducing the time step until results are consistent, Dt error can be avoided. Type of 

integration method can also be tested by examining the impact of different methods on the 

model solution. 

The behaviour of the model can also be tested against the behaviour witnessed in reference 

modes. A model of a real world system should be able to approximately replicate the 

behaviour of historical data for that system given the correct input variables. The ‘reference 

mode’ is the name used in system dynamics to refer to this type of data. Reference modes 

can also include widely accepted forecasts of potential future dynamic behaviour in a 

system. By examining the output of system dynamics against these reference modes, the 

model values and structure can be refined and revised in light of any model behaviour which 

obviously conflicts with the reasonable expectations of that system in the real world. 

                                                      
7
 Dt stands for Delta time, and means ‘change over time’ 

8
 More detail on the use of numerical integration in system dynamics models can be found in Annex A of 

Sterman (2000) 
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Models should behave in a realistic fashion under extreme conditions and testing for this 

conformity is a useful way to examine the validity of model structure. For example, if the 

bath tap is off and the plug removed the volume of the bath can only drop to zero and not 

below. If the price of a product increases, at some point demand for the product will reach 

zero. This can be carried out by either inspecting the functions underlying the model 

individually, or by applying extreme input parameters and simulating the model. In this 

thesis, the model was simulated under extreme conditions and results examined. 

Finally, sensitivity analysis can be used to test the models reactions to uncertainty in 

assumptions. Models can be: sensitive numerically, where numerical values of output 

change as assumptions change; behaviourally, were the behaviour of the system changes to 

changes in assumptions; and to policy, where the impacts of policy decisions change the 

functioning structure of the system. Models should be tested across the range of sensible 

assumption uncertainty. 

Details of these tests and their results are set out in Chapter 7. 

Evaluation 

The evaluation of the model is the final analytical stage in the modelling process. From the 

values derived in this stage, it should be possible to address the extent to which the 

research question can be addressed, and useful insights and discussion should arise. The 

first stage in evaluation in this thesis is to examine the behaviour of the models under 

different plausible conditions, or groups of assumptions coherent with a particular narrative 

view of system conditions. This allows the development of a story, or narrative, around the 

choice of assumptions, which can then be explored in terms of its outcomes for model 

behaviour. Packaging up assumptions in this way can help navigate the uncertainty in 

assumptions and allow for useful conclusions to be drawn. 

3.5.5 Criticisms of system dynamics 

System dynamics has received criticism in the past, and its use in high profile research such 

as the Limits to Growth report (Meadows 1972), has attracted particularly detailed critical 

analysis (Cole 1973). Featherston and Doolan (2012) refer to five areas of criticism that 



~ 95 ~ 
 

system dynamists should address when developing and using system dynamics models. 

These criticisms are discussed in brief below. 

The application of system dynamics 

Some system dynamics models attract criticism for their application of the modelling 

methodology. These criticisms are either that the question addressed by the model is not 

suitable, that the application of system dynamics was in some way flawed, that the 

conceptual definition of system dynamics is wrong, or that it encourages unnecessarily large 

models (Barlas 2007; Forrester 2007). These criticisms are not that system dynamics is 

inherently flawed, but that it has not been effectively applied. The criticism of the World 3 

model by Cole (1973) falls under this category. 

These criticisms are put down to a poor level of system dynamics understanding and 

training, leaving some unequipped to apply the methodology correctly (Featherston & 

Doolan 2012). In this thesis, efforts have been made to understand and apply correctly the 

system dynamics method in order to avoid criticism of poor application. 

Mimicry of historical data and validation 

The inability of system dynamics models to replicate real systems accurately is a criticism 

that has been levelled at the discipline historically (Simon 1981; Keys 1990; Hayden 2006). 

When models are evaluated ex-post against historical data and found not to have replicated 

the development of a system accurately this is often seen as a shortcoming. However, 

system dynamics practitioners would argue that the central purpose of the methodology is 

not to forecast the future accurately, but to use models to understand why certain 

behaviour occurs (Forrester 2007; Radzicki & 2007; Featherston & Doolan 2012). 

The focus of this thesis is around the study of dynamic system behaviour and its drivers, and 

not on the forecasting of future states of dynamic resource systems.  

Complexity 

The tendency of system dynamics to oversimplify complex systems is a criticism that has 

been levelled by some authors (Keys 1990; Hayden 2006). Critics suggest that this 

oversimplification takes the form of: reductionism, or describing a system only by its parts 

(Keys 1990); lack of pluralism, or the inability of system dynamics to represent different 
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system perspectives, or the diverse responses of different actors within the system (Keys 

1990); and the inability of system dynamics to deal with the openness of social systems 

(Hayden 2006).  

The criticism of over-simplification in computational modelling is not unique to system 

dynamics (Rossis 1986; Grosholz 2011). However, several attempts have been made to 

improve the application of system dynamics in the light of these criticisms (Newell et al. 

2011), or to defend system dynamics where there are differences of opinion (Radzicki & 

2007). 

This thesis makes every attempt to capture the important aspects of the dynamic systems 

modelled. However, models are necessarily simplifications of real systems (Sterman 2000). 

Where this thesis makes simplifications that are potentially critical to the outcome of the 

thesis conclusions this is highlighted and discussed in the final chapter. 

Determinism 

Determinism is the criticism that system dynamics is deterministic in terms of its disregard 

for human free will, its representation of humans in systems as components (cogs in a 

machine) or its proposition of all-encompassing ‘grand theories’ (Jackson 1991; Lane 2000).  

The system dynamics modelling conducted in this thesis makes no pretence at providing a 

grand theory, and uses system models to examine responses under specific conditions. 

Again, where simplification of human behavioural elements of the model is deemed 

influential to results this is discussed in the final chapter. 

Hierarchy 

Hierarchy in systems modelling is the relationship between subsystems that defines the 

rules, obligations, controls, regulations and limitations in the system (Checkland 1981). 

Some criticise system dynamics for not dealing with the hierarchy of systems explicitly, and 

many of the tools for representing system dynamics models, such as causal loop diagrams, 

have no way to express this hierarchy. This is only reflected in system dynamics models once 

the numerical relationship between sub-systems is defined, which for some is too late in the 

process (Hayden 2006). However, this definition of hierarch seems ‘fuzzy’ and inadequate, 
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and the proposals to deal with this problem are, in result, relatively unconvincing. This is 

reflected in a statement in Featherston and Doolan (2012): 

“Perhaps hierarchy, and maybe Checkland's (1981) other 'basic' system ideas, 

need to be discussed application by application to ensure their consideration 

in modelling, or perhaps system dynamics needs to crystallise its thinking in 

this area and construct formal theories around system hierarchy” 

Based on this exposition it is difficult to ascertain whether the models in this thesis are 

sensitive to issues of hierarchy, though the numerical relationship between important 

aspects of model subsystems is exposed for the reader in Chapter 7. 

3.6 Summary 

This chapter sets out the research approach followed in this thesis, which uses case study to 

inform the creation of three system dynamics models used to conceptually and 

quantitatively compare three different dynamic resource systems. The process of gathering 

evidence in the case studies is exposed, and the system dynamics modelling process is laid 

out in steps. 

The strengths and weaknesses of the approach are discussed. In particular the common 

criticisms of system dynamics are dealt with. The exposure of the models in this thesis to 

the common themes of criticism is presented, and any areas where these criticisms have 

significant bearing will be discussed in the final chapter. 

The following three chapters present the oil, lithium and indium case studies. These 

chapters are followed by Chapter 7 and Chapter 8, which develop the concepts discussed in 

the case study chapters into fully simulating system dynamics models and tests and 

evaluates these models against the objectives set out in Chapter 1. 
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Chapter 4:  Case study – A generic, exhaustible, non-recyclable 

resource  

Precious treasure and oil are in a wise man's dwelling, but a foolish man 

devours it. 

Proverbs 21:20 

 

This chapter describes the range of issues commonly experienced in the demand, discovery, 

production and price formation of exhaustible, non-recyclable resources. This information is 

used to inform the construction of a generic, exhaustible, non-recyclable resource model 

(from this point referred to as the generic resource system model) (See Chapter 7). The 

generic resource is one that is recovered for its own economic value, destroyed in its main 

end-uses and its price discovery process follows the marginal cost of production as 

predicted in neoclassical economic theory (Stiglitz & Walsh 2006). The availability of oil and 

interaction between supply, demand and political factors has been extensively studied. This 

chapter therefore reviews the literature on oil in order to inform the development of the 

generic resource system model. However, this generic, non-recyclable resource is not 

subject to the political factors, market distortions and cartel influences experienced in the 

global oil market (EIA 2014f). 

Oil has historically been one of the most economically important commodities, influencing 

the shape of the energy system, the development of society, and the foreign policy of 

nations (Yergin 1991). As a function of its importance, the oil resource system has been 

examined in more detail than most, and an extensive evidence base exists upon which this 

thesis draws (Sorrell et al. 2009). Oil is therefore an ideal case with which to inform the 

generic resource system model.  

This chapter describes the host of variables that influence the development of resource 

systems, and examines the extent to which these variables have been expressed in the 

existing literature on resource availability modelling. The chapter examines the oil resource 

system as an example, beginning with a brief review of the history of the oil market. This is 
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followed by a discussion of the issues surrounding oil demand. This topic is further 

disaggregated into issues surrounding: the uses of oil; the extent to which it can be 

substituted for alternatives; the use of demand side factors in oil resource modelling; and 

the problems associated with aspects of the demand side. The discovery process and issues 

of reserves and resources are then discussed. Issues surrounding the production of oil are 

then considered before examining the formation of the oil price. The chapter then analyses 

the approaches to modelling the oil resource system. 

The structure of this chapter is replicated in the subsequent two case study chapters, in 

order to provide comparability to the assessment of the three case study resources and to 

provide a systematic framework with which to examine the important variables defining 

these resource systems. 

4.1 The origins of a resource system: the history of oil  

The ‘age of oil’, or the beginnings of the modern oil resource system, is often said to have its 

origins in the 1850s (Yergin 1991). Small levels of petroleum recovery have been recorded 

for over 4000 years, but the commercialisation of the oil market in North America in the 

middle of the 19th century set the foundations of today’s multi-trillion dollar oil industry. 

The main market for this oil was initially for one of its distillates, paraffin, which was used as 

a lamp oil, but a range of new uses for oil quickly proliferated as the understanding of crude 

oil chemistry improved, and distillation techniques created an increasing number of oil 

derived products (Yergin 1991). Kerosene was developed first and demand quickly increased 

through its use in street lighting throughout North America. However, at this time the main 

source of oil for processing into paraffin and kerosene products was from shale rock, 

bitumen and coal. Supply of these sources of hydrocarbon could not keep pace with the 

increasing demand for its products, and discoveries of oil reservoirs that could be drilled to 

produce oil quickly became the dominant source of oil (Yergin 1991). 

The literature is vague on what site should be considered the first modern oil well but small 

projects in North America, Azerbaijan, Poland and Romania are all early contenders 

(Cleveland & Morris 2014a). Some of these wells were hand-dug but some used drilling 

techniques powered by hand or even by steam engine. These early projects began a boom 

in oil discovery and production, helping keep pace with the rising demand for oil products. 
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This boom also led to the development of commercial refineries that utilised recent 

discoveries in petroleum chemistry to produce a number oil derived products (Frank 2005). 

While the oil industry was in its early years of development, internal combustion engines 

were also a burgeoning industry. Many of these early designs ran on fuels derived from coal. 

However, from the 1880s, internal combustion engines designed to run on distillates of oil 

began to emerge. By the beginning of the 20th century, automotive fuels had become the 

major demand for oil products, a position that remains today, more than a century later 

(Yergin 1991). 

The rise of the oil fuelled automotive industry lead to significant increases in oil demand 

incentivising oil producers and prospectors, creating ‘oil booms’ across North America. 

During this period, oil production grew exponentially and despite small interruptions 

resulting from World War I and World War II, this trend continued until 1970s (Figure 4.1). 

Figure 4.1: Historical global oil production since 1850  

 

Source: Sorrell et al. (2009) 
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Notes: Oil in this figure includes crude oil, condensate, natural gas liquids, liquid petroleum gas, heavy oil, and 

synthetic crude oil from oil sands. 

North America, and particularly the United States, dominated global oil production for most 

of the first half of the 20th century (Figure 4.2). However, some saw the exponential growth 

in US oil production as unsustainable trend and Hubbert (1956) developed techniques to 

estimate the point at which US oil production growth might cease, leading to peak 

production and subsequent decline. Though many refuted Hubbert’s argument, US 

production did in fact peak in 1970, very close to his estimated date (see section 2.1.3). This 

decline in US oil production led to the Soviet Union becoming the largest global producer in 

1976, until its own oil production decline under the centrally planned Soviet economy 

(Reynolds & Kolodziej 2008). Significant oil finds were made in the Middle East, and in Saudi 

Arabia particularly, during the late 1940s and early 1950s (Simmons 2005). During the 

period between 1970 and 1990, these finds and the subsequent discovery and development 

of Middle Eastern oil, led to Saudi Arabia becoming the largest global producer of oil 

through the 1990s (Yergin 1991; Simmons 2005). The renewed political stability of the 

Former Soviet Union region improved production rates significantly and, were it still unified, 

it would be the largest oil producer today (Reynolds & Kolodziej 2008; BP 2013) . Saudi 

Arabia may have the capacity to produce more than the Former Soviet Union, but its 

position as ‘swing producer’ means it maintains an element of unutilised spare capacity (EIA 

2014f). As swing producer Saudi Arabia manage their oil production, increasing or 

decreasing it to maintain a desired oil price on global markets. The role of OPEC countries, 

and Saudi Arabia specifically in the management of capacity to stabilise price is discussed in 

more detail in Section 4.2.2. 
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Figure 4.2: Top four oil producing countries since 1965 

 

Source: BP (2013) 

Notes: Oil price based on three separate price indicators: 1861-1944 US average; 1945-1983 Arabian Light 

posted at Ras Tanura; and 1984-2012 Brent dated. 

In the 1970s, two events disrupted the previous trends in oil production, collectively 

referred to as the 1970s oil crises or oil shocks (Yergin 1991). The first of these occurred in 

1973, when the Arab members of the Organisation of Petroleum Exporting Countries (OPEC) 

proclaimed an oil embargo in response to the Western countries support for Israel during 

the Yom Kippur War (Cleveland & Morris 2014b). OPEC was created by exporting countries 

in 1960 to help support the global price of oil by strategically limiting global supply (OPEC 

2014). However, in this instance the organisation attempted to use its control of global 

production to punish supporters of its enemy. The second oil crisis occurred in 1979 as a 

result of the Iranian Revolution (Cleveland & Morris 2014b). The revolutionary protests 

hampered oil production in Iran, and given Iran was a significant exporter, the global oil 

market was affected. The reducing production from Iran can be seen in Figure 4.2. 
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These events are reflected in both historical production (Figure 4.1) and the historical oil 

price (Figure 4.3). The oil price has undergone four broad phases throughout the history of 

the modern oil market. The first and largest phase, from the mid-1800s to the mid-1900s, 

was a period of price reduction and stabilisation. The high and volatile oil price at the 

beginning of this phase is largely a function of the relatively small oil market responding to 

the rapidly increasing demand for oil derived products (Yergin 1991). By the end of the 

1960s the global oil price was near its 100 year low and was significantly less volatile than at 

any other period throughout the previous century. The impact of the 1970s oil crises on 

price was significant, upturning the trend of the previous century and forming the second 

phase in global oil price. However, the high prices of the late 1970s subsided during the 

1980s as countries responded to constrained global production (Goldstein 1985). These 

responses included the utilisation of spare capacity by OPEC countries and the application of 

efficiency incentives to reduce oil demand in oil importing countries. The third phase in 

historical oil price stretches from the late 1990s to the present day. A combination of 

international conflicts such as the Gulf War, the Iraq War and the Arab spring, economic 

growth in the BRICS countries and the increasingly difficult to produce marginal oil resource 

led to rapid and significant price rises to historically high levels (BBC 2008). This is the fourth 

phase of oil price and despite a global economic recession during that period, the global oil 

price is still at a level that can be considered historically high. 
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Figure 4.3: Historical global oil price in 2012 US dollars per barrel since 1860 

 

Source: BP (2013) 

Notes: Oil price based on three separate price indicators: 1861-1944 US average; 1945-1983 Arabian Light 

posted at Ras Tanura; and 1984-2012 Brent dated. 

4.2  The dynamics of resource systems 

4.2.1 Demand 

The development of a resource begins with its demand. A number of factors can drive the 

demand of a resource, including the economic conditions, policy incentives, and 

technological transition. The oil market provides a useful example. 

Transport fuels make up the majority of oil demand, including motor gasoline, distillate fuel 

oil (which includes diesel) and jet fuel (Figure 4.4). Developments in transport markets are 

therefore among the most influential factors in oil demand. Oil consumption has increased 

significantly in the last three decades, largely due economic growth in BRICS countries, 

particularly the Asian markets (Enerdata 2013). In contrast, Europe and North America have 
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seen relatively little demand growth over the same period. This is a function of the impact of 

economic recession in these regions in recent years, coupled with efficiency improvements 

in vehicles (EIA 2014g). 

Figure 4.4: Global oil consumption by end product in 2010 

 

Source: EIA 

Note: Distillate fuel oil includes diesel 
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Figure 4.5: Global oil consumption by region from 1980 to 2012 

 

Source: (EIA 2014b) 

There is a long-recognised relationship between economic growth and oil demand. This 

relationship is demonstrated for non-OECD countries in Figure 4.6. Strong links between 

these two variables can clearly be demonstrated empirically, though the direction of 

causality is still contested (Kaufmann 1992; Narayan & Popp 2012). It is likely that the 

relationship between GDP and oil demand is overly simplistic to explain oil consumption 

trends, with changes in the aggregate activity levels in each major end-use sector; and by 

changes in the structure of activity within each sector likely to provide a more accurate 

predictor of oil consumption (Schipper et al. 1990). However, accounting for these factors 

will necessarily increase the complexity of oil demand estimation. 
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Figure 4.6: Non-OECD liquid fuels consumption and GDP 

 

Source: EIA (2014a) 

Efficiency 

Due to the large role that transport plays in oil demand, the efficiency of motor vehicles is a 

significant factor affecting future demand. However, driving behaviour also impacts 

demand, and should also be considered (see rebound discussion below) (NRC 2002; 

Gallagher et al. 2007). If the oil price is high for an extended period of time, then consumers 

may favour more efficient vehicles, and manufacturers are likely to respond to this 

consumer preference by manufacturing more efficient vehicles. Alternatively, if a 

government thinks there are advantages in increasing the efficiency of its country’s vehicle 

fleet it may introduce policy to incentivise manufacturers to improve efficiency. Examples of 

this kind of policy can be seen in the US Corporate Average Fuel Economy (CAFE) standards 

(NRC 2002; Gallagher et al. 2007; NHTSC 2010). Vehicle efficiency policies may also arise as 

measures to mitigate greenhouse gas (GHG) emissions, as higher fuel efficiency and lower 

CO2 emissions are linked. Vehicle taxation in the UK is an example of a policy aimed at 

incentivising the purchase of vehicles with lower CO2 emissions, resulting in improved 

vehicle efficiency (Brand et al. 2013). 

The progress in vehicle efficiency has a weakening effect on the link between GDP and oil 

demand. Over time it is expected that this might lead to a peak in oil demand (The 
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Electricity Journal 2013), through a process known as ‘absolute decoupling’ and related to 

the economic concept of the Kuznets curve (Bithas & Kalimeris 2013). 

Figure 4.7: Historical progress in vehicle efficiency and forecast impact of future targets by 

country from 2000 to 2025 

 

Source: ICCT (2011) 

Note: 

1. China's target reflects gasoline vehicles only. The target may be higher after new energy vehicles are 

considered.  

2. The U.S. standards are fuel economy standards set by NHTSA, which is slightly different from GHG 

standards due to A/C credits. 

3. Gasoline in Brazil contains 22% of ethanol (E22), all data in the chart have been converted to gasoline 

(E00) equivalent  

4. Supporting data can be found at: http://www.theicct.org/info-tools/global-passenger-vehicle-

standards. 

 

In response to efficiency measures an energy system can experience what is known as the 

rebound effect (Sorrell 2007b). Though this effect is not addressed in this thesis it is worth 

http://www.theicct.org/info-tools/global-passenger-vehicle-standards
http://www.theicct.org/info-tools/global-passenger-vehicle-standards
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exploring briefly its implications. Some of the energy demand reductions associated with an 

efficiency measure can be eroded as reduced demand is likely to make energy cheaper. At a 

lower price consumers may be willing to use more energy, or a firm may become more 

profitable and increase its output, using more energy as a result. This is known as the direct 

rebound effect. Even if direct energy consumption does not rebound, the energy economy 

as a whole may not experience all the expected benefits of efficiency measures due to 

indirect rebound effects. These occur when energy consumers take the additional income 

resulting from cheaper energy prices and spend that income on other goods and services 

that use energy. The overall impact of rebound effects is debated, but a systematic review 

of the evidence concluded that at least 10% of energy efficiency improvements might be 

lost in efficiency measures focussed on transport energy efficiency (Sorrell 2007b). 

Substitution 

Substitution of a resource can also lead to reduction in demand. For oil, substitutions in 

vehicle technologies are likely to have the greatest impact given the role of transport in oil 

demand. As an energy vector, oil can be substituted with coal-to-liquids and gas-to-liquids 

processes, which can synthesise liquid fuels from these non-liquid fossil resources (Hirsch et 

al. 2005). However, this is likely to have an impact only at the margins due to the costs 

involved. Countries with significant coal and gas resources but no oil resources may pursue 

this route (Rong & Victor 2011). These technologies may also have an increased CO2 

intensity and therefore conflict with future climate change policies. Biofuels may also 

substitute for oil, with a significantly decreased CO2 impact. This is a technology being 

pursued in many countries, which is particularly successful in Brazil, where sugarcane is 

abundant and the process to convert it to liquid fuel relatively cheap (De Carvalho Macedo 

1992). At the technology level, electric and hydrogen vehicles remove the need for oil 

derived fuels, and the development of these types of technologies is expected to play an 

increasing role in the future (see Chapter 5). As an intermediate technology, compressed 

natural gas can be used as a transport fuel in suitably modified internal combustion engines. 

The prospect of such a substitution has been boosted in recent years with the increases in 

shale gas production in the United States. The low US gas price has prompted calls to 

develop this type of transport fuel as a way to reduce transport costs and reliance on 

foreign oil and potentially emissions (Mallapragada et al. 2014). However, the progress of 
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these substitute energy vectors or substitute technologies is in its infancy, and the evidence 

is uncertain as to the rate oil can be substituted in the future. 

Another route to oil demand reduction that is additional to efficiency and substitution is the 

encouragement of transport mode shifting. Encouraging passengers to change from private 

transport to public transport options, or to walking or cycling may have a significant impact 

on emissions (Aamaas et al. 2013), and may also reduce oil demand (Noland et al. 2006). In 

addition, switching from vehicular transport to active modes of transport such as walking 

and cycling may have significant physical health benefits (Rabl & de Nazelle 2012), providing 

a potential win-win for policy makers and encouraging this type of oil demand reduction 

policy. 

4.2.2 Resource discovery, reserves and capacity 

Discovery 

Non-renewable resources such as fossil fuels or minerals are discovered before they can be 

produced. The recoverable quantities of those discoveries are often referred to as reserves 

and the production of those reserves is dependent on, amongst other things, the available 

production capacity, which is a capital input into the production process. The dynamics of 

resource discovery, and the capacity to produce discovered reserves, are fundamental to 

the resource availability system. For example, oil discovery begins with exploration and 

production (E&P) companies, who employ surface geological assessment, seismic survey 

techniques and wild cat drilling to identify new oil fields (Sorrell et al. 2009). 

The first trend in this process is seen in the field size distribution of discovered fields where 

the word ‘size’ refers to the Ultimately Recoverable Resource (URR). It is widely assumed 

that the majority of resources are found in a small number of large fields and that these 

fields are typically discovered early in the exploration of an oil producing region. The precise 

distribution varies with region, and is highly disputed (Drew 1997; Kaufman 2005). Ivanhoe 

and Leckie (1993) conducted one of the first studies of field size distribution, which 

demonstrated the relative importance of larger oil fields to the global resource (Table 4.1). 

Fields were divided into 10 size categories based on their estimated URR. The 370 fields with 

URR larger than 500 million barrels (giant fields or larger) represented only 1% of discovered 

fields, but 75% of the volume of all global oil discoveries. This assessment was replicated by 
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Simmons (2002), Robelius (2007), and most recently by the IEA (2008) who estimated that 

of 70,000 fields producing in 2007, the 110 largest produced half of global production, the 

20 largest fields produced 25% and the 10 largest produced 20%. 

Table 4.1: Ivanhoe and Leckie’s estimates of the size distribution of the world’s oilfields 

Category Estimated URR 

(million barrels) 

Number globally 

Megagiant >50,000 2 

Supergiant 5,000-50,000 40 

Giant 500-5,000 328 

Major 100-500 961 

Large 50-100 895 

Medium 25-50 1109 

Small 10-25 2128 

Very small 1-10 7112 

Tiny 0.1-1 10,849 

Insignificant <0.1 17,740 

Total  41,164 

Source: Ivanhoe and Leckie (1993) 

To understand the distribution of field sizes in a region analysts typically infer the underlying 

distribution from the distribution of known fields. Arps and Roberts (1958) were among the 

first to observe that the frequency distribution of the logarithm of known field sizes 

resembled a normal distribution Figure 4.8. This observation was repeated subsequently in 

several studies (Kaufman 1963; Drew & Griffiths 1965). The understanding of field size 

distribution lead to the development of sophisticated discovery process models, designed to 

improve the estimation of YTF (Kaufman 1975; Lee & Wang 1983; Forman & Hinde 1985).  
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Figure 4.8: Oil and gas field size distribution for the Denver basin in 1958 

 

Source: Adapted from Arps and Roberts (1958) and Drew (1997) 

The observed distribution likely under represents small fields that are relatively less 

economic to develop, referred to as economic truncation (Arps & Roberts 1958; 

Schuenemeyer & Drew 1983; Attanasi & Drew 1984; Drew et al. 1988). The underlying 

distribution is thus expected to take a ‘power-law’ form, with the modal size of the 

observed fields decreasing over time as these smaller fields become economic to produce, 

and the observed distribution slowly transitions to the underlying distribution (Figure 

4.9)(Drew 1997). The result of this is that the size of discovered fields is expected to be large 

in the initial years and diminishing over time. 
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Figure 4.9: How the undersampling of small fields may lead to a lognormal frequency 

distribution of the size of discovered field size  

 

Source: Drew (1997) 

Note: Green line indicates ‘power-law’ size distribution of the population of fields. Blue line indicates the 

approximately lognormal size distribution of the sample of discovered fields at time t0. Red line indicates size 

distribution of the sample of discovered fields at t1>t0 when changes in economics and technology have 

lowered the size threshold for economically viable fields. 

Reserves and resources 

Once discovered, resources must be assessed, with those proportions that are economically 

recoverable designated reserves. The definition and classification of reserves and resources 

is one of the most difficult aspects of the resource systems. Confusing and misleading 

statements commonly arise through the misinterpretation of reserve and resource 

estimates or a lack of transparency in reporting them (Bentley et al. 2007; Sorrell et al. 

2009). 

First, reserves must be distinguished from resources. In the example of oil, reserves can be 

defined as:  
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“quantities of oil in known fields which are considered to be technically …. 

And economically feasible to extract under defined conditions” 

Sorrell et al. (2009) 

Resources on the other hand can be defined as: 

“the total quantities estimated to exist, including those in known fields which 

are not considered economically feasible to extract as well as those in 

undiscovered fields” 

Sorrell et al. (2009) 

 

The relationship between reserves and resources, and other resource classifications, is 

commonly illustrated by the diagram in Figure 4.10, known as a McKelvey Box. 

Figure 4.10: The McKelvey Box, illustrating the relationship between oil reserves and 

resources 

 

Source:McKelvey (1972) 

Reserve estimates are inherently uncertain, relying on assumptions about oilfield geology, extraction 

technology, economics of production, and the variation of these factors over time. To reflect this 

reserve estimates are often quoted to three levels of uncertainty. Proved reserves, also known as 1P, 
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refers to reserve estimates with a high probability of being produced. 1P reserve estimates are often 

equated to P90 estimates, which state a 90% probability that the reservoir will produce more oil 

than stated in the reserve estimate. This is therefore a very conservative estimate and is often the 

preferred approach in the investment community to prevent the overstatement of reserves by 

companies seeking investment (SEC 2009). Proved and probable reserves, also known as 2P, refers 

to reserves estimates with a medium probability of being produced. 2P estimates are often equated 

to P50 estimates, which state a 50% probability that the reservoir will produce more oil than stated 

in the reserve estimate; i.e. the median estimate. Proved, probable and possible reserves, also 

known as 3P, refers to reserve estimates with a low probability of being produced. 3P reserve 

estimates are often equated to P10 estimates, which state a 10% probability that the reservoir will 

produce more oil than stated in the reserve estimate. Though often equated to 1P, 2P and 3P, 

probabilistic estimates (P90, P50 and P10) must be estimated through the development of 

probability distributions of the possible outcomes of reserve estimates (Schulyer 1999) (Figure 

4.11). 

Table 4.2: Deterministic and probabilistic terminologies associated with oil reserves 

estimation. 

Qualitative estimates Probabilistic estimates Definition 

Proved 1P P90 
High or 90% 

probability 

Proved and probable 2P P50 
Medium or 50% 

probability 

Proved, probable and 

possible 
3P P10 

Low or 10% 

probability 
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Figure 4.11: Probability and cumulative probability distribution of recoverable reserves 

 

Source: Sorrell et al. (2009) 

Note: The probability density function (red line) represents a statistical distribution which in this example is 

skewed to the left. In the context of reserve estimates, there is no probability of there being a negative volume 

of oil, but there is a high probability of reserves being somewhere between 0.5 and 2 units, and a small 

probability of there being a much large amount. The P90, P50 (median) and P10 estimates all represent points 

on the cumulative distribution function (blue), which is the integral of the probability density function. The 

vertical scale refers solely to the cumulative distribution. 

Reserve estimates may be changed over time in a number of ways. Production of a resource 

reduces reserves for a region or corporation, while new discoveries increase them. Reserves 

may also be revised as geological knowledge improves, extraction technologies develop, or 

other changes occur in economic conditions or reporting practices (Sorrell et al. 2009). 

Another measure of resources, known as Ultimately Recoverable Resources (URR) and 

commonly used in oil resource assessment, attempts to account for these variations. URR is 

defined as: 

“the amount of [a non-renewable commodity]] that is estimated to be 

economically extractable […] over all time” 
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Sorrell et al. (2009) 

In the oil example, to capture the range of variables influencing future recovery, URR 

estimates consist of four components (Figure 4.12). Cumulative production represents the 

total volume of oil produced from a field or region. Reserves, as discussed above, are those 

resources estimated to be recoverable both technically and economically. Together these 

can be referred to as ‘cumulative discoveries’, and their time series can be used in the 

estimation of URR as discussed below. 

 Figure 4.12: The components of ultimately recoverable resources (URR) 

 

Source: Sorrell et al. (2009) 

Reserve growth can be defined as:  

 “...the commonly observed increase in recoverable resources in previously 

discovered fields through time.” 

Klett and Schmoker (2003) 
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Reserve growth accounts for the majority of reserve additions and is expected to do so in 

the future, though it has historically been a controversial and misunderstood topic (Sorrell 

et al. 2009).  

There are several sources of reserve growth. Geological factors include any additions to 

reserves arising through improved geological knowledge of reservoirs. This might include 

improved knowledge of the shape, volume and characteristics of reservoirs, or the merging 

of smaller fields initially thought to be separate (Drew 1997). Technological factors include 

any additions to reserves arising from improved technology that increases the proportion of 

oil recoverable from a reservoir (the recovery factor). It is typical to distinguish between: 

Primary recovery, where oil is recovered under its own pressure; secondary recovery, where 

oil pressure is raised artificially using pumps or injection of gas or fluid; and tertiary recovery 

or enhanced oil recovery (EOR) where thermal or chemical techniques are employed to 

change the behaviour of oil in the reservoir and improve recovery. Definitional factors that 

may create reserve additions include the change in reserve classification schemes, changes 

in reporting practices, and variations in economic conditions such as production costs and 

oil price.  

Future discoveries are the final component of URR estimates, and are often referred to as 

Yet To Find (YTF). As shown in Figure 4.13 global discoveries of oil have followed an 

approximate bell shaped trend, and though discoveries appear to have peaked sometime in 

the early 1960s, there appears to be scope for future discoveries following the apparent 

trend. Any estimate of URR will change depending on the total volume of oil discovered 

over all time and therefore these estimates must make some account of future discoveries. 
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Figure 4.13: Global trends in backdated discoveries and cumulative discoveries 

 

Source: IHS Energy 

Note: Includes crude oil, condensate, NGL, LPG, heavy oil and syncrude. Based upon backdated 2P reserve 

estimates. 

Estimates of URR are influential in the forecasting of future oil production, with large URR 

estimates used to support the more optimistic forecasts of future production. However, the 

wide range of different classifications of oil (conventional, biofuels, oil sands, shale oil), the 

range of different data used, and the range of different techniques all contribute to the wide 

range of URR estimates, and the on-going lack of consensus. 

Since the earliest estimates of global oil URR (White 1920), URR estimates have tended to 

increase. At least 100 estimates have been published since then and the general trend in 

these is demonstrated in Figure 4.14.  
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Figure 4.14: Global URR estimates over the last 70 years 

 

Source: Sorrell et al. (2009) 

Most of the recent estimates are in the range of 2000 Gb to 3000 billion barrels, which 

compares to cumulative production to 2011 of over 1200 Gb (IEA 2008; BP 2013). Two 

influential contemporary estimates are the United States Geological Survey (USGS) World 

Petroleum Assessment (WPA) (USGS 2000) and the IEA World Energy Outlook (WEO) (IEA 

2008). 

The USGS WPA (USGS 2000), held as the most comprehensive assessment of global oil URR, 

uses a combination of methods, taking a bottom-up approach, and is the product of 100 

person years of effort by 41 geoscientists over a period of five years (USGS 2000; Ahlbrandt 

2002). The resulting estimate is bigger than previous estimates conducted by the USGS and 

has attracted criticism over its validity (Laherrère 2001), though it underpins several 

authoritative estimates of future oil production (EIA 2008; IEA 2008). The assessment 

estimated resources with the potential to be added to reserves between 1996 and 2025 

using existing technology. The study examined seven regions further disaggregated to 937 

‘petroleum provinces’, though 528 of these were not assessed, presumably because they 
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were unlikely to contribute to global oil supply during the timeframe. Reserve growth was 

estimated by estimating a reserve growth function for US fields and applying that to all 

fields considered in the assessment. This obviously only includes fields discovered before 

1996 and no estimate of reserve growth was applied to undiscovered fields. Undiscovered 

resources were estimated through a combination of geological assessment and discovery 

process modelling, the results of which informed a Monte Carlo analysis used to generate 

probability distributions of the likely volume of undiscovered resource. The mean estimate 

for the global conventional URR was 3345 Gb, of which 3021 Gb were conventional oil and 

the remainder natural gas liquids (NGLs). This was 47% greater than previous USGS 

estimates, the result in part of the inclusion of reserve growth and the increase in the 

estimated NGL resource. The full breakdown of mean results is presented in Table 4.3. 

Table 4.3: USGS 2000: mean estimates of global URR for conventional oil (billion barrels) 

 US conventional 

oil 

World (non-US) 

crude oil 

World (non-US) 

NGLs 

World total 

conventional oil 

Cumulative 

production 
171 539 7 717 

Remaining 2P 

reserves 
32 859 68 959 

Reserve growth 76 612 42 730 

Undiscovered 

resources 
83 649 207 939 

URR 362 2659 324 3345 

Remaining 

recoverable 

reserves 

191 2120 317 2628 

Source: USGS (2000) 

Note: All figures refer to January 1996. 

The USGS evaluated the on-going ‘accuracy’ of their assessment through to December 2003 

(Klett 2005) and found that, assuming a linear rate of discovery, less than half the oil 

expected had actually been discovered. Reasons for this may include the lack of access to 
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promising regions including Iraq, Iran and Libya, the low oil price in the 1990s (Klett 2005), 

and the lack of adjustment to undiscovered resources for reserve growth (Sorrell et al. 

2009). The evaluation found that reserve growth additions appear to be meeting the 

estimates of the USGS WPA (USGS 2000). 

In 2008, the IEA published its latest edition of the WEO, which included an update to the 

USGS WPA (USGS 2000) work, examining the timeframe from 2007 to 2030. Using data from 

IHS Energy, an updated evaluation of the USGS WPA assessment (Klett et al. 2007), and 

additional analysis from USGS and IEA databases a new collection of global URR estimates 

was generated (Table 4.4). The result of this assessment is a global conventional oil URR 

estimate of 3577 Gb, 6.9% greater than the USGS estimate (USGS 2000). However, the IEA 

WEO (2008) also provides a ‘long-term oil-supply cost curve’ which provides slightly more 

optimistic figures, and if added to cumulative production, implies a URR of 4276 Gb.  

Table 4.4: IEA WEO (2008): mean estimates of global URR for petroleum liquids (Billion 

barrels) 

 OECD Non-OECD World % diff from 

USGS (2000) 

OECD as % of 

total 

Cumulative 

production 
363 765 1128 32.20% 57.30% 

Remaining 2P 

reserves 
95 1147 1241 7.70% 29.40% 

Reserve 

growth 
27 375 402 6.70% -44.90% 

Undiscovered 

resources 
185 620 805 23.00% -14.30% 

URR 670 2907 3577 18.70% 6.90% 

Remaining 

recoverable 

reserves 

307 2142 2448 24.70% -52.80% 

Source: IEA (2008) 
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In 2013 the IEA WEO presented new oil resources estimates, focusing on sources of 

unconventional oil (IEA 2013). This work built on the original estimates of conventional oil 

established by the USGS, and shows a modest increase from the 2008 estimate from 2,448 

billion barrels to 2,668 billion barrels in 2013. However, the unconventional contribution to 

global resources in this new estimate is significant. Approximately 3,300 billion barrels of oil 

are estimated to be recoverable, more than doubling the estimate of remaining recoverable 

resources. 

Table 4.5: Remaining recoverable oil resources and proven reserves, 2012 (billion barrels) 

 

Source: IEA (2013) 

Notes: Proven reserves (which are typically not broken down by conventional/unconventional) are usually 

defined as discovered volumes having a 90% probability that they can be extracted profitably. EHOB is extra-

heavy oil and bitumen. The IEA databases do not include NGLs from unconventional reservoirs (i.e. Associated 

with shale gas) outside the United States, because of the lack of comprehensive assessment: unconventional 

NGLs resources in the United States are included in conventional NGLs for simplicity. 

 

Capacity and strategic reserves 

To produce a resource there must be an investment in capital equipment capable of 

extraction. For exhaustible resources this extraction equipment has a maximum rate at 
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which it can produce the resource, termed the production capacity. To increase this more 

investment is needed. The dynamics governing the rate at which capacity can be built and 

the rate at which it decreases through age and wear determine the responsiveness of 

resource production to its drivers (See Section 4.2.3 ). 

Often the rate at which production capacity can be increased is limited due to capacity build 

rates and other planning, building, financing and commissioning issues. Strategic reserves of 

several different commodities are therefore held by countries or economic regions in order 

to buffer the impacts of potential constraints in building additional capacity. The issues of 

capacity building and strategic reserves are highlighted below in the case of oil. 

Global oil production capacity is greater that global production, the balance termed ‘spare 

capacity9. Currently spare capacity is almost exclusively held by OPEC countries, and the 

level of this spare capacity is often used as a measure of the tightness of global oil supply 

(EIA 2014f). OPEC’s ongoing mission is to maintain the oil price at a level to support the 

industry, and this is achieved by maintaining and exercising spare capacity. If the global oil 

price is seen as too high and damaging to the global economy, then spare capacity will be 

utilised. If the oil price is judged too low to support the industry, then production will be 

constrained. Some have argued that the OPEC countries are limited in the modern day in 

terms of their capacity to play ‘swing producer’. However, analysis of the historical data 

presents compelling evidence that until very recently the impact of OPEC production quotas 

on the global oil price was significant (Figure 4.15). 

                                                      
9
 EIA defines spare capacity as “the volume of production that can be brought on within 30 days and sustained 

for at least 90 days” (EIA 2014f) 
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Figure 4.15: Changes in OPEC production targets and the West Texas Intermediate (WTI) 

oil price 

 

Source: EIA, Thompson Reuters 

Note: Updated quarterly with last update 31
st

 December 2013 

In recent years, OPEC has maintained in the order of 2 to 4 million barrel per day of spare 

production capacity. However, between 2003 and 2009, spare capacity was below 2.5 

million barrels, an event which has been linked to the oil price spike experienced in 2008 

(Figure 4.16). Under a Hotelling view of exhaustible resource economics (Hotelling 1931; 

Hotelling 1991), privately owned oil companies prevalent in the western world are unlikely 

to be incentivised to keep spare capacity. OPEC’s production capacity is largely owned by 

the national oil companies of its members and is therefore more susceptible to incentives 

than purely profit taking. 
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Figure 4.16: OPEC spare production capacity and WTI crude oil price 

 

Source: EIA, Thompson Reuters 

Note: Updated quarterly with last update 11th February 2014 

Building new production capacity is a difficult process given the physical and financial scale 

of these operations and the environments in which they are often installed. A typical 

offshore oil rig can take 18 to 36 months to construct. However, the time taken from the 

financial commitment to rig delivery can be significantly longer than this due to shipyard 

backlogs (Kaiser & Snyder 2012). As production moves into marginal resources in deeper 

waters or Polar Regions, the first of a kind nature of many of these projects is likely to 

extend rig delivery times further. This can have a significant effect on the oil resource 

system’s ability to respond to extended periods of tight supply. 

Given the economic implications of tight oil supply, many countries and regional political 

organisations store quantities of oil as a ‘strategic reserve’. These reserves can be 

strategically released onto the global oil market in response to capacity constraints which 

affect global oil supply, such as weather events that force rig closures, or civil or 

international conflicts which affect oil producing regions. Approximately 4.1 billion barrels is 

held globally, with the majority organised and operated the US Strategic Petroleum Reserve 

and the 28 members of the International Energy Agency (IEA 2007; Reuters 2011). This 

volume is equivalent to ~45 days of supply at consumption of 90 million barrels per day.  
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4.2.3 Resource production 

During the production of a resource physical and economic forces have some influence on 

the rate of production. Often the marginal resource is more difficult to produce and 

economically rational producers are likely to produce the ‘easiest’ resources first. This has 

an impact on the production profile of discrete areas of production (say a mine or well) and 

knock-on impacts on the production of wider geographical regions of production. Many of 

these issues are well illustrated in the example of global oil production, and these are 

discussed below. 

The Oil Production Cycle 

The production cycle of an oil field has a characteristic shape and while this shape varies 

between individual fields, the fundamental characteristics are consistent. At the aggregated 

global level, the shape of field production cycles influences the shape of the global 

production cycle, as well as future production volumes. 

The first phase of oil production is known as ‘build-up’. During this phase investment is 

made in the expansion of production capacity. This typically involves drilling wells, 

fabricating and installing capital equipment, and training and installing labour. Once 

production capacity has been increased to a maximum, production will be maintained at 

‘plateau’ until the reservoir pressure has decreased and production begins to ‘decline’. The 

decline phase is typically the longest phase of the production cycle and the rate of decline is 

an important determinant of the URR for that well. Once the field production rate has 

declined below economic feasibility, the well is abandoned, sometimes referred to as 

economic truncation. 
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Figure 4.17: Stylised production cycle of an oil field 

 

Source: Sorrell et al. (2009) 

Since build-up is typically faster than decline, many fields exhibit a left skewed shape. 

Brandt (2007) examines the shape of oil production curves by attempting to fit different 

curve functional forms to historical oil production data for 74 post-peak regions. First Brandt 

tested the assumption that regional oil production data typically follows a bell shaped curve 

by applying a Gaussian curve, and two more simple, non-bell shaped models: an exponential 

model and a linear model. Brand then applied Asymmetric versions of each of these models 

to test the symmetry of these data sets. Brandt’s (2007) results suggest that, while the 

goodness of fit is marginal between different models, the asymmetric models tend to fit 

better than their symmetrical counterparts, and that median rate of decline is 5% less than 

the median rate of increase, supporting the fact that oil production tends to be left skewed. 

Decline rate 

The rate of decline may impact significantly on the future production of a group of fields. 

Estimating the aggregate decline rate for a group of fields is often a key component of oil 

production forecasts, with decline rates varying significantly depending on location, geology 

and development (Sorrell et al. 2009) (Figure 4.18). However, despite significant work in 

recent years to consolidate understanding of oil field decline rates (CERA 2008; IEA 2008; 

Höök et al. 2009a) confusion is still evident in some of the emerging literature (Maugeri 

2012). 
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Figure 4.18: Production from four UK oil fields fitted by three exponential decline models 

 

Source: Department of Energy and Climate change (DECC) 

The term ‘decline’ can be applied to various levels of aggregation. When applied to a 

regional level, it is important to distinguish between the overall decline rate, which includes 

all fields, including those yet to pass their peak, and the post-peak decline rate, which refers 

to the subset of fields of a region that are in decline. A third category, the ‘natural’ decline 

rate, is sometimes used; it excludes the effects of capital investment. 

The decline rate of a field or region may be modelled using either exponential or harmonic 

decline in a technique known as decline curve analysis (DCA) (Figure 4.19). 

Modelling of decline rates began in the early 20th century (Sorrell et al. 2009), though 

modern DCA is built on the work of Arps (1945) who defined three variables through which 

decline curves could be expressed: (i) the initial rate of production (Q(t0)); (ii) the decline 

rate (λ); and (iii) the curvature of decline (ß). These are combined the in hyperbolic 

equation: 
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𝑄′(𝑡) =
𝑄′(𝑡0)

(1 + 𝜆𝛽(t − 𝑡0)1/β
 

4.1 

In the case where b=0 this can be simplified to the exponential equation: 

𝑄′(𝑡) = (𝑡0)𝑒−𝜆(𝑡−𝑡0) 

4.2 

More recently decline models have developed to include linearised curves(Li & Horne ; 

Spivey ; Luther 1985) and econometrics (Chen 1991). Decline curve models are often used to 

estimate URR of a field. 

Figure 4.19: Three types of curve used in Decline Curve Analysis (DCA) 

 

Source: Sorrell et al. (2009) 

Towards the end of the last decade, three studies examined decline rates in a sample of 

individual fields in order to estimate global aggregate decline rates (CERA 2008; IEA 2008; 

Höök et al. 2009a). These studies use different field samples (though all include giant fields 
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which constitute half of global oil production), different definitions, and different methods 

of production weighting (Sorrell et al. 2009). Nevertheless, their estimates of the aggregate 

decline rate of post peak fields are reasonably consistent: 5.1%/year (IEA); 5.5%/year (Hook 

et al.); and 5.8%/year (CERA) (Table 4.6). The three studies also agree on three points: 

 The average decline rate is greater than the production-weighted decline rate, since 

larger fields decline more slowly than smaller fields (Table 4.7). This is particularly 

the case in the large fields in the Middle East. 

 OPEC fields decline more slowly than other fields, partly reflecting the large field size 

in OPEC countries and partly through quota restrictions and disruptions to 

production due to political conflict 

 Offshore fields tend to decline more quickly than other fields, reflecting the higher 

rate of production demanded at these fields in order to recover the higher fixed 

costs. This tends to lead to higher production peaks, and steeper resulting decline 

Table 4.6: Estimates of production-weighted aggregate decline rates for samples of large 

post-peak fields (%/year) 

Parameter IEA Höök, et al. CERA 

Onshore 4.3 3.9 - 

Offshore 7.3 9.7 - 

Non-OPEC 7.1 7.1 - 

OPEC 3.1 3.4 - 

Total 5.1 5.5 5.8 

Source: IEA(2008), CERA (2008) and Höök, et al.(2009). 

Note: Studies use different data sets, definitions and methods of production weighting. Details missing for 

CERA since access to the full study is not available. 
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Table 4.7: IEA estimates of aggregate production-weighted decline rates for different sizes 

of post-peak field (%/year) 

 Total Supergiant Giant Other 

Onshore 4.3 3.4 5.6 8.8 

Offshore 7.3 3.4 8.6 11.6 

Non-OPEC 7.1 5.7 6.9 10.5 

OPEC 3.1 2.3 5.4 9.1 

All Fields 5.1 3.4 6.5 10.4 

Source: IEA (2008) 

Note: The production-weighted decline rate is 1.4% in decline phase 1, 3.6% in decline phase 2 and 6.7% in 

decline phase 3. The production-weighted average for phase 1 is strongly influenced by Ghawar. The 

production-weighted sample average for post-plateau fields is 5.8%. 

Importantly, two of these decline rate studies find that decline rates appear to be increasing 

over time or, rather, newer fields tend to have steeper decline rates (IEA 2008; Höök et al. 

2009a). This aligns with the findings of all three studies in that newer fields tend to be 

smaller (see 4.2.2) and/or offshore. The results of these studies are also likely to be 

underestimates given that the average size of fields in their samples is likely to be greater 

than the average size of all fields globally10. Given this, the IEA estimate the global decline 

rate for post peak fields at 6.7%/year, optimistically assuming that smaller fields are not in 

their sample decline at the same rate as ‘large’ fields (10.4%/year). Since some fields 

currently producing are in ‘build-up’, the decline rate of all fields is less than the decline rate 

of post-peak fields, possibly between 4.1 and 4.5%/year (CERA 2008; Sorrell et al. 2009). 

Depletion Rate 

Not to be confused with decline rate, depletion rate is a measure of the rate at which the 

recoverable resources of a field or region are being produced. The depletion rate of a field is 

defined as the ratio of annual production to an estimate of resources. When the resource 

estimate is proved reserves, the depletion rate is simply the inverse of the more common 

reserve production (R/P) ratio. However, depletion rates can also be calculated using more 

                                                      
10

 Data sets of field sizes are likely to be biased towards larger fields since smaller fields are impractical to 

record, often impractical to produce, and difficult to detect. 
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inclusive resource estimates such as proved and probable reserves or URR. In contrast to 

decline rate estimates, depletion rate estimates rely on inherently uncertain and variable 

estimates of resources, and with higher estimates of resource comes lower estimates of the 

depletion rate. 

The depletion rate typically follows the profile of production increasing rapidly during the 

build-up phase, reaching a maximum rate near peak production, and slowly decreasing as 

production declines. Höök et al. (2009b) demonstrate that the maximum depletion rate for 

giant oil fields (defined as those producing more than 100,000 barrels of oil per day) falls 

within a relatively narrow range, with a production weighted average of 7.2% per year. The 

concepts of depletion and decline rates are linked. For fields that are depleted very quickly, 

very high peak production may be achievable, but this will create steeper decline rates. This 

has been used in the past as a way to confine the range of possible assumptions in oil 

production forecasts (Sorrell et al. 2009). It is therefore possible to use these measures to 

critique the plausibility of oil production models, though care must be taken to make fair 

comparison (McGlade 2014). 

4.2.4 Formation of the resource price 

The price of a resource or commodity is commonly taken to be one of two things: the price 

paid  for immediate delivery, known as the ‘spot price’; or, the price paid on the 

commodities trading exchanges for the commodity to be delivered at a predetermined point 

in the future, known as the ‘futures price’. Other types of trading products exist, such as 

options or spreads, but these are not considered further in this analysis (Newell 2011). 

Futures price data is more commonly referenced since this information is published by the 

commodities exchanges that they are traded on while the spot price is harder to obtain as it 

is an aggregate of all the prices paid by refiners, who do not collate this data. 

Economics of resource price formation 

Price formation is typically a function of the supply/demand balance. As previously 

mentioned, supply of a resource is a function of price, among other related variables, and as 

price rises, so too does the quantity of supply. The price at which supply and demand are 

balanced is known as the equilibrium price. Figure 4.20 demonstrates this as understood in 

microeconomic theory (Stiglitz & Walsh 2006). As demand increases, shown as the shift in 
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demand curves from D1 to D2, then the price at which supply and demand are in 

equilibrium also increases. The quantity of output will also increase under these conditions, 

as shown on the x axis in Figure 4.20. 

Figure 4.20: Supply and demand curves indicating the changing equilibrium price with 

changing demand 

 

Source: Adapted from Stiglitz and Walsh (2006) 

Notes: Demand and supply curves indicate the level of demand or supply for any given price. The equilibrium 

price (where supply and demand are in balance) occurs at the intersection between supply and demand curves 

(P1). As demand increases, indicated by the shift from demand curve D1 to D2, then the equilibrium price also 

shifts, moving from P1 to P2. This shift also increases the quantity of commodity supplied, moving from Q1 to 

Q2. 

A number of issues in the resources markets are likely to interfere with the functioning of 

price formation as described above. Traders are unlikely to know the equilibrium price 

exactly. In practice, traders in commodities first form an expectation about the price level 

needed to clear the market11, and base their trades on that expectation (Sterman 2000). 

                                                      
11

 The ‘market clearing price’ is the price at which the quantity supplied equals the quantity demanded. This is 

synonymous with the equilibrium price. 
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That expectation is likely to be wrong and is adjusted in subsequent transactions, as traders 

examine the market responses, particularly the actual price (Sterman 2000). This process of 

anchoring a price and then adjusting it iteratively is known as ‘price discovery’(Garbade & 

Silber 1983). Traders’ expected price will respond to changes in the apparent 

supply/demand balance (inventories), changes in the apparent cost associated with 

producing a resource and any other information that may lead traders to expect price to be 

changing, such as news of developments in oil extraction technologies, or geopolitical issues 

in oil producing countries(Newell 2011). The time it takes traders to discover the actual 

equilibrium price creates a delay in the price discovery feedback loop, which can create 

some lag in the response to a changing equilibrium price (Sterman 2000). These, and other 

system delays, create the conditions for price volatility and oscillation, a common feature of 

historical commodities price. This volatility is particularly apparent when examining the 

historical oil price on a daily frequency (Figure 4.21). 

Figure 4.21: Daily oil price from 1995 to 2014  

 

Source: EIA (2014e) 
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The availability of spare capacity is another factor influencing the functioning of price 

discovery (Carollo 2012). A simple supply and demand price formation model, as presented 

in Figure 4.20, assumes that: 

1. There is always spare producing capacity; and 

2. There is always spare refining capacity. 

Since neither of these is necessarily true the impact of these assumptions is worth 

considering in the example of oil. First, spare producing capacity has fluctuated significantly 

in recent years, and the oil price has responded to that spare capacity, particularly when 

spare capacity is very low (see Figure 4.16). This response reflects the markets’ fear that low 

spare capacity leads to unserved demand. Second, the refinery business traditionally has 

very tight profit margins (CME Group 2013). Refinery operators are therefore reluctant to 

build significant quantities of spare capacity. In addition, shifts in the types of crude 

available to the spot market mean that refiners have to upgrade their plant periodically to 

accommodate changes in viscosity and sulphur content (Cross et al.). This means that it is 

very difficult for refinery capacity to keep pace with changing market conditions, impacting 

on the availability of capacity (CME Group 2013). Literature on the implication of these 

production and refinery capacity issues suggests that as much as $27 of the price increases 

seen between 2004 and 2006 can be attributed to tight production and refining capacity 

(Kaufmann et al. 2008). 

In the wake of the oil price peak of 2008, research began to examine the extent to which 

traders could influence the spot price through its trading in the futures market (Kaufmann & 

Ullman 2009; Silvério & Szklo 2012). The concern expressed by several commentators was 

that traders sought to profit by increasing their trading in futures contracts, which the 

market would perceive as increased demand, resulting in increased price. It has often been 

argued that traders have little influence on the price of commodities, and that the market 

fundamentals of supply and demand are the only important factor. Research suggests that 

recent price increases in the oil market may have been based on these fundamentals, but 

exacerbated by oil trading (Kaufmann & Ullman 2009). Further, it has been suggested that 

the influence of traders on the spot market has been increasing over time (Silvério & Szklo 

2012). 
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Regional prices 

Until now this section has been referring to ‘price’, implying the global market price. 

However, many resources are subject to regional variations in price. For example, while oil is 

traded globally, there are some regional characteristics to the oil market, and this is 

reflected in price. Oil around the world is produced in different qualities, usually measured 

in terms of the viscosity (light crudes are low viscosity and heavy crudes are high viscosity) 

or the level of sulphur (sweet crudes have low sulphur content while sour crudes have high 

sulphur content). These different crude oils have different prices since the light sweet 

crudes are traditionally easier to refine and therefore in higher demand. Benchmark crude 

oils are used to provide reference price information for buyers and sellers. West Texas 

Intermediate (WTI) a North American benchmark, and Brent Blend in the UK, are two 

examples of benchmarks, useful as reference as they are both light and sweet, though Brent 

Blend is slightly heavier and sourer (Fattouh 2010). Dubai and OPEC reference basket are 

two other another oil price benchmarks, representing prices more relevant to the heavier 

and sourer crudes coming from the middle east (OPEC 2005; Fattouh 2010). Given the 

differences in these benchmarks, WTI historically traded at a premium to these other 

crudes. However, WTI has been discounted significantly against Brent Blend in recent years, 

conflicting with the expected market response to oil quality (Kao & Wan 2012). A number of 

factors may influence these changing regional price differences. US refiners have upgraded 

their capacity for refining sour crudes in response to the increased production and trading in 

these types of oil. As a result, the sweet WTI crude is in less demand. This has also led to 

increasing inventories of WTI, further impacting on price (Kao & Wan 2012). 
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Figure 4.22: The monthly WTI and Brent oil price history in dollars per barrel between 

1995 and 2014 

 

Source: EIA (2014e) 

Note: This time series shows the slight premium commanded by WTI from 1995 until 2010, at which point WTI 

is discounted against Brent significantly for the remainder of the time series. 

Price elasticity of supply and demand 

For most goods or services, demand decreases as the price increases. The relationship 

between a change in price and the resulting change in demand is referred to as the price 

elasticity of demand (Stiglitz & Walsh 2006). Understanding the percentage change in 

demand given a one percent change in price is a difficult task and price elasticity is a 

function of a number of variables (Hamilton 2008). First, the availability of substitutes 

significantly affects demand elasticity. If there are easily available and close substitutes, 

then demand is likely to decrease significantly as price increases and consumers switch to 

these substitute goods. For oil, substitutes, while available, are not close substitutes, are 

more expensive and are not widely available. The proportion of average income spent on a 

good or service also impacts on its demand elasticity (Stiglitz & Walsh 2006). If the 

proportion is low, then consumers can accept large price rises without experiencing 
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significant changes in their personal finances. For oil, this is a regionally specific variable, as 

the proportion of income spent on oil derived products varies significantly by region. 

Countries have varying taxes on oil and its derived products, varying trends in the usage of 

important oil products such as transport fuel and, above all, varying incomes. Countries such 

as the US pay much less for their oil than Western Europe, though much of the difference is 

a result of tax in European countries. While the lower price in the US might suggest that 

demand should be less elastic there, the high taxes in Europe mean that large changes in oil 

price result in much smaller changes in the pump price of petrol or diesel. It is therefore 

difficult to unpick the various factors influencing elasticity of demand. Price elasticity of 

demand is also difficult to measure directly and aggregating to the global level is therefore 

also problematic. 

Historically, oil demand was thought to be relatively inelastic, as its utility and lack of 

substitutes meant that consumers were willing to experience significant price rises before 

reducing demand through switching modes of transport, or car journeys. However, the price 

of oil has increased significantly in recent years, at a much faster rate than wages. This has 

prompted some revaluation of the relationship between oil demand and oil price.  

Price also has an impact on supply, which is referred to as the price elasticity of supply, again 

determined by a number of factors. First, the time delay between price change and the 

industry’s ability to respond is critical. Given the long time-delays associated with bringing 

on new capacity, oil demand can be very inelastic in the short-run where responsiveness is a 

function of the spare capacity. In the long run, new capacity can be built, but this relies on 

long term price certainty. In recent years, where oil price has become more volatile, the 

response of producers has been more muted than would be expected given the very large 

rise in average price in the last decade. 

4.2.5 The distorting impacts of Cartel on resource systems. 

This chapter begins to build evidence to inform the generic resource system model and is 

largely informed by the experience of the oil market. However, to simplify this model and 

provide a robust base-case resource model with which to compere to other resources it is 

not subject to the cartel influences experienced in the global oil market. The Organisation of 

Petroleum Exporting Countries (OPEC) provides the cartel influence in the global oil market 
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and OPEC’s impact is to distort many of the aspects of the resource system from the 

expected behaviour under perfect market conditions (Gately 2004; Hamilton 2008; Carollo 

2012; EIA 2014f). 

OPEC members, in particular Saudi Arabia, act as swing producer, increasing or decreasing 

production through a centrally coordinated quota system in order to manipulate global oil 

prices (EIA 2014f; OPEC 2014). The aim of this is to maintain prices within a band which 

provides sufficient profit to support producers while limiting higher prices which might 

erode demand (EIA 2014f; OPEC 2014).  

The impact of this market distortion is that marginal production costs do not necessarily 

correspond to price. OPEC spare capacity is low price and does not respond to market 

conditions directly, but through the quota system, which is controlled within the 

organisation. The generic resource system does not seek to replicate this mechanism and 

therefore is distinguished from the oil resource system by this significant market dynamic. 

 

4.3 Modelling resource systems 

The modelling of resource systems is an active area of resources research, with a range of 

different approaches and modelling techniques used to capture these systems. The oil 

resource system has proved a particularly attractive subject matter, with many different 

models focusing on different aspects of the system. This section examines some modelling 

efforts in order to shed some light on the important aspects of resource system modelling. 

The approaches used to model commodity production can be grouped in four categories:  

 simple models, such as reserve-to-production ratios and curve fitting; 

 system simulation models, which simulate the underlying economic or physical 

processes governing discovery and extraction; 

 bottom-up models, which build up regional supply forecasts from well or field level; 

and 
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 economic models, which tend to ignore physical processes and focus on the effects 

of oil price and the impacts of investment12 (Sorrell et al. 2009). 

The relative merits of these approaches are contested and the results based on one type of 

model often differ from the results of another. These model types and the issues 

surrounding them are discussed below. 

4.3.1 Simple models 

Simple models include reserve to production or R/P ratios and curve fitting techniques akin 

to Hubbert’s (1982) forecasting methods. R/P ratios simply take the known reserves of a 

given company, region or for the world, and divides by the current production rate for the 

same region. The result is an estimate of the number of years of remaining production 

before reserves are depleted. This may be useful for measuring the future prospects of one 

company against another, but is less reliable when used to predict the number of years a 

region can continue to produce.  

First, the R/P ratio assumes that reserves are fixed. However, as noted in Section 4.2.2 

reserves are traditionally a conservative estimate and likely to grow over time. Second, R/P 

ratios assume that production rates are fixed and maintainable until the last unit is 

produced. As Section 4.2.3 notes, production is subject to exponential increases in the early 

phase of production, entering a phase of decline towards the end of production. This 

decline can be slowed through investment in enhanced recovery techniques, but these 

techniques are unlikely to provide the kind of production profile assumed in an R/P ratio. 

If trying to estimate the future production profile of a resource producing region, the R/P 

ratio is likely to be unreliable for the reasons laid out above. Figure 4.23 presents the R/P 

ratio for oil from 2000 to 2007 calculated for three oil producing regions: The United States, 

Norway and the UK. Each of these regions has experienced a peak in oil production, with a 

subsequent period of decline13. The R/P ratios provide no indication of this historical 

                                                      
12

 A Technical Report (Bentley et al. 2009) and annex to Chapter 7 of the Global Oil Depletion report (Sorrell et. 

al. 2009) provide more detail on oil supply models. 

13
 US oil production has rebounded significantly in recent years in response to unconventional oil production. 

This is not reflected in R/P ratio behaviour. 
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production trend. A more legitimate application of the R/P ratio is to invert it and present it 

as a ‘depletion rate’, as discussed in Section 4.2.3 (Sorrell et al. 2009). 

Figure 4.23: R/P ratios - example of proved reserve to production ratios for the United 

States, Norway and the UK 

 

Source: Sorrell et al. (2009) 

Note: Oil production in the United States peaked in 1970, Norway in 2001 and in the UK in 1999 

Curve fitting models provide a slightly more sophisticated approach to modelling future 

resource production (Figure 4.24). These techniques vary but a general methodology can be 

summarised as follows: 

1. Decide on the shape of the future production cycle, defined as a mathematical 

function; 

2. Include constraints such as URR to improve the model fit; and 

3. Fit the constrained mathematical function to the historical production data and 

project into the future. 
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These methods build on the work of Hubbert (1956), as discussed in Section 2.1.3. While 

these techniques provide relatively accessible and transparent supply forecast 

methodologies, they are subject to a number of difficulties.  

Figure 4.24: Types of curve-fitting technique 

 

 

Curve-fitting models are constrained by assumed URR estimates. However, URR has 

traditionally been underestimated through a combination of inadequate techniques and 

exclusion or underestimation of future reserve growth. This results in an underestimate of 

future supply, though the magnitude of this effect is disputed (Sorrell et al. 2009). 

Another problem is the assumption of curve functional form. No robust theoretical 

mechanism exists to select the curve function that most accurately predicts the future 

performance of particular resource production. The sensitivity of curve-fitting techniques to 

assumptions of functional form have been demonstrated to be significant (Sorrell et al. 

2009). The most commonly assumed function, the logistic function, is symmetrical. 

However, there is no strong evidence to suggest that oil production, for example, follows a 
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symmetrical path, and separate analyses by Sorrell et al. (2009) and Brandt (2007) suggest 

that oil production is more likely to be positively skewed. 

Simple models of future resource production, while accessible and transparent, are subject 

to a number of limitations which limit their usefulness for many supply modelling purposes. 

4.3.2 System simulation models 

System simulation models seek to represent the physical and/or economic mechanisms that 

govern the process of discovery and extraction. The rate of production is then a function of 

the discovery process, rather than an assumed production profile over time as seen in curve 

fitting. These models range from simple models akin to curve-fitting to complex system 

dynamics models which fully incorporate economics of investment and the resulting 

economic influence on URR. An early example of a simulation approach predicted a peak in 

US oil production between 1964 and 1973 (Davis 1958). Later oil simulation models 

incorporate the modelling of substitutes and therefore predict the smooth transition 

between substitutes as price of depleting oil increases (Greene et al. 2004). 

Two problems are encountered in simulation models. First, the many relationships and 

correlations between variables in a system simulation model are hard to quantify in the face 

of limited, conflicting or non-existent data. For example Davidsen et al. (1990) includes a 

function representing the quantity of undiscovered oil that will be discovered in the future. 

This is considered a function of the cumulative investment in exploration technology. Ideally 

this relationship would be derived from empirical evidence, though in reality the data on 

which to base such a relationship is unlikely to be available.  

Second, these models are often so sensitive to their variables that they become unstable, 

with small variations in the input parameters creating significant differences in results. The 

fine balance between negative and positive feedback in these models makes it difficult to 

set initial values, creating uncertainty in their results. 

4.3.3 Bottom-up models 

Bottom-up models start with project, field or regional production and build up production 

forecasts for larger regions. This approach has become more prominent in recent years, but 
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relies on detailed field-by-field data, often proprietary and confidential (Bentley & Boyle 

2008).  

Bottom-up approaches can be divided into three categories. Regional models such as 

Campbell’s (Campbell 1995; Campbell 1996; Campbell 2004) build up oil production 

forecasts for separate regions and aggregate them, often to a global level. Campbell’s 

approach involves curve fitting techniques and has produced several very pessimistic 

estimates of a date of peak global oil supply. Simple mid-point peaking assumptions, a 

narrow definition of crude oil and the tendency of curve fitting techniques to underestimate 

URR all contribute to this pessimistic bias (Sorrell et al. 2009). 

Field level oil models such as Smith’s (2008) disaggregate this process further to provide 

more robust results (Sorrell et al. 2009). Smith’s model includes decline rates, forecasts of 

enhanced oil recovery impacts and estimates of reserve growth. However, as the granularity 

of these models increases, so too does the data requirement. These models work well over 

short timeframes, but the increasing quantities of data and number of assumptions needed 

compromise their ability to forecast over longer timeframes. 

Skrebowski provides a third approach in the ‘megaprojects’ database (Skrebowski 2004; 

Skrebowski 2005; Skrebowski 2006; Skrebowski 2007). This model aggregates the future 

production of very large oil extraction projects. Since these have long lead times and 

produce the majority of new oil supply they can provide significant insight into future supply 

trends. These megaprojects’ oil production rates are combined with estimates of the decline 

in existing fields to give a forecast of total production. While this is insightful over the 3 to 5 

year period due to lead times, medium to long term forecasts are difficult with this type of 

modelling. 

4.3.4 Economic models 

Economists approach resource supply modelling differently, focusing on investment 

pathways and price effects rather than the physical phenomena discussed above. Optimal 

depletion theory (ODT) models and econometric models represent two types of economics 

approaches, which are expanded on below. 
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ODT builds on Hotelling’s (1931, 1991) insight that rational resource producers should 

equate the value of their resource in the ground to the profit of a produced resource 

invested. This suggests that the value of a resource minus extraction costs should rise at the 

rate of interest. In their simplest form, ODT models predict that extraction begins at its 

maximum, and reduces over time due to the declining present value of future production. 

This produces a production curve very different from the empirically observed one (Figure 

4.17). ODT methods have been extended in various ways, improving the comparability 

between the model forecasts and measured production rates in practice (Holland 2008). 

ODT models are, however, limited by the lack of empirical grounding and the assumption 

that resource producers have full knowledge about the extent and distribution of 

undiscovered resources (Sorrell et al. 2009).  

Econometric models are data rich statistical models that forecast future production largely 

through economic variables (Sorrell et al. 2009). There are numerous variants and the 

technique has improved over time. Early econometric models did not include any geological 

parameters and often produced unrealistic magnitudes or signs (Walls 1992). Later ‘hybrid’ 

models improved this by including a small number of noneconomic factors (Moroney & Berg 

1999), or augmenting curve fitting models with economic variables (Kaufmann & Cleveland 

2001). Econometric models are better empirically grounded than ODT methods. However, 

they have a poor record in predicting future production over anything other than very short 

time periods (Lynch 2002). 

Sterman (2000) presents a third type of economic model, built using system dynamics and 

entitled the Generic Commodity Market Model. A simple causal loop diagram of this model 

is shown in Figure 4.25. This model, like other economics models, excludes many of the 

geological principles found in the other model types, focusing more on the feedbacks 

between supply, demand, price and the capacity investments needed to deliver production. 

If adapted to represent the oil market for example, the omission of geological variables is 

likely to limit the usefulness of this model to forecast long run supply trends. However, due 

to the detailed nature of the feedback loops representing investment behaviour in response 

to price and the inherent delays, the model provides a good way to test market responses to 

changes in market conditions in the short to medium term. In order for the model to 

represent the kinds of peak behaviour expected, whether driven by supply or demand, it 
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requires adaptation, particularly to the model subsystems concerned with demand, which 

as it stands has no geological constraint on future production. 

Figure 4.25: Sterman’s generic structure of commodity markets 

 

Source: Adapted from Sterman (2000) 

Note: Feedbacks with double strikethrough indicate delay 

4.4 Summary 

This chapter covers a range of the issues governing commodity resource systems, which are 

summarised in the following points: 

 Since its early beginnings oil has become one of the most important resources in the 

global economy. The dynamic system that governs its dynamic responses to system 

change has many elements, and provides a good example with which to explore the 

important aspects of generic resource system dynamics. 

 Demand is a function of end uses. For oil the most important of these is transport 

fuel. Many have linked the demand for oil products to GDP, with raising affluence 

leading to increased consumption. Opportunities for increasing efficiency and to 

develop substitutes can reduce resource demand, and these measures are 
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increasingly sought in recent years, leading to a decoupling of the relationship 

between GDP and demand. 

 Resource supply is a function of the available resource, the capacity to use that 

resource, and the utilisation of that capacity. There are also physical factors that are 

thought to govern the rate at which a resource can be produced, and the rate at 

which production declines. 

 The formation of resource price is a function of traders’ expectations about the 

market, including the availability of inventory to cover demand. Inventory is defined 

as oil produced but as yet not supplied to the market. It can be contained in tanks, 

pipelines, tankers or other types of oil storage. While inventory is stable, supply is 

sufficient to meet demand, and the price is unaffected. However, if supply is not 

sufficient to meet demand, inventories will decrease, and traders will increase their 

price expectations in the face of the increased potential for availability constraints. 

Increased price feeds back to demand through the price elasticity function, creating 

one of the significant feedback loops in resource systems. 

 Resource system modelling as an active area of research. A great deal of research is 

undertaken to develop models of various aspects of the oil resource system. 

However, these models use a range of different modelling approaches, and their 

results often disagree. 

This chapter has highlighted some important aspects of resource systems including the links 

between demand and economic growth, the potential impact of marginal costs on resource 

extraction and price, and nature of the price formation process. The concepts refered to in 

this chapter are used in Chapter 7 to inform the construction of a generic resource 

model.The following chapters present case studies of two metals: lithium in Chapter 5, 

followed by indium in Chapter 6, which are also used to contribute to the modelling in 

Chapter 7. 
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Chapter 5:   Case study – Lithium and electric vehicles 

“I think that cars today are almost the exact equivalent of the great Gothic 

cathedrals: I mean the supreme creation of an era, conceived with passion by 

unknown artists, and consumed in image if not in usage by a whole 

population which appropriates them as purely magical objects” 

Roland Barthes, 1972 

Lithium is a metal found in both rock ore and dissolved in brine deposits. Lithium is one of 

the most abundant elements on earth though economic accumulations of lithium in the 

lithosphere are less common and lithium has historically had relatively few uses. However, 

lithium’s use as a component of li-ion battery chemistries has the potential to significantly 

increase its demand, particularly given the low-carbon uses of these batteries in electric 

vehicles (EVs). 

This chapter describes the host of variables that influence the development of lithium 

resources and examines the extent to which these variables have been expressed in the 

existing literature. Unlike fossil fuels such as oil, the future production of lithium has not 

been modelled extensively in the literature. First, a brief history of lithium and its 

exploitation is presented. The chapter then examines the lithium resource system, 

beginning with issues of demand, then exploring the lithium resource, the production of 

that resource and the formation of the lithium price. Finally, the chapter examines the 

existing estimates of future lithium production. The evidence base surrounding future 

lithium availability is limited, reflecting the relatively recent development of the lithium 

battery market and the resulting concern over future supply. 

5.1 A brief history of lithium 

In 1817 Johan August Arfwedson discovered a new element in the ore petalite. The new 

metal was named lithium after the Greek word lithos meaning stone, to reflect its discovery 

in a solid mineral. The commercial production of lithium did not begin until the 1920s, and 

lithium’s fist significant use came shortly after, as a component of greases used in aircraft in 

the Second World War. Lithium has subsequently had a host of other uses including in the 
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production of nuclear fusion weapons during the cold war and as an additive in glass to 

decrease the melting temperature. 

At the end of the cold war lithium demand began to decrease, a trend reversed by the 

development of Li-ion batteries for the consumer electronics industry. Now batteries are 

the dominant use for lithium, a trend set to continue as the consumer electronics industry 

grows and as new uses are developed for lithium based batteries. This growth in demand is 

reflected in the historical production of lithium, which presents some volatility, but largely 

follows an exponential growth over the past century (Figure 5.1). 

One potentially significant new use of lithium batteries is in electric vehicles (EVs). The high 

energy densities achievable make these battery chemistries the most promising technology 

for electricity storage onboard EVs, and the majority of new EV designs incorporate lithium-

based batteries. However, the increasing debate on the availability of critical metals raises 

questions regarding the feasibility of manufacturing Li-ion batteries at scale (DOE 2010; Kara 

et al. 2010; DOE 2011). Large quantities of lithium will be needed to manufacture enough 

automotive Li-ion batteries to meet 2050 decarbonisation scenarios (CCC 2008; IEA 2009; 

IEA 2010a) and some doubt has been cast over the mining sector’s ability to satisfy this 

demand. 

The lithium price has tended to decrease over the past 60 years (Figure 5.2). However, if 

recent demand increases are sustained and decarbonisation targets drive the uptake of 

electric vehicles, the lithium price is likely to experience inflationary pressure. Whether 

future production can offset this high demand to maintain price is dependent on a number 

of supply and demand side factors, each with a significant element of future uncertainty. 
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Figure 5.1: World annual lithium ore and carbonate production, 1925-2011 

 

Source: USGS 

Notes: No US data after 1954. No data for Rhodesia (Zimbabwe) and other African countries between 1966 

and 1967 
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Figure 5.2: Lithium price between 2950 and 2011, presented in 1998 dollars 

 

Source: USGS 

Notes: The Consumer Price Index conversion factor, with 1998 as the base year, was used to adjust the unit 

value in current U.S. dollars to unit value in constant 1998 U.S. dollars. 

5.2 The lithium resource system 

5.2.1 Demand 

The lithium resource system has very different demand drivers to traditional energy 

resources. Demand for Li-ion batteries is a major and increasing end-use demand for lithium 

currently and, whilst this demand is currently driven largely by consumer electronics, 

electric vehicles are likely to become the largest end-use demand in the future (Figure 5.3). 

The electric vehicle market will largely be driven by decarbonisation targets for some time, 

making lithium demand policy-driven, rather than market driven. The issues arising from 

electric vehicle demand and its implications for lithium are discussed below. 
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Figure 5.3: Distribution of end-uses for lithium in 2011. 

 

Source: USGS (2012) 

Lithium in electric vehicle batteries 

The calculation of future lithium demand from EVs involves several factors and is subject to 

significant uncertainty. However, the common elements typically considered are: 

 the number of EVs forecast to be manufactured in the future; 

 the size of EV batteries in kWh; and  

 the lithium intensity per KWh of battery. 

There are several scenario studies, presenting a range of different outlooks of the future EV 

market. To illustrate the range of scenarios found in the literature, Speirs et al. (2013a) 

compare several studies (DCM 2009; McKinsey 2009; Angerer et al. 2009b; IEA 2010; 

Marcus et al. 2010), disaggregated by vehicle type and over a range of time horizons, the 

earliest beginning in 2008 and the longest projecting to 2050. For example, in scenarios to 

2050, global Plug-in Hybrid Electric Vehicle (PHEV) sales estimates range from 10 to 79 

million vehicles per year and Battery Electric Vehicle (BEV) sales estimates range from 12 to 

84 million vehicles per year in 2050. However, of those studies, the International Energy 

Agency (IEA) scenarios (IEA 2010a) are of specific interest, because they: 

 provide estimates of vehicle sales in 2050, a key year in terms of climate goals; and 
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 are based on an internally consistent scenario to half global CO2 emissions by 2050 

compared with 2005 levels14. 

Implications for the EV market in 2050 based on the IEA scenarios are summarised in Table 

5.1. 

Table 5.1: Annual vehicle sales (millions) in 2050 under the IEA ‘Blue Map’ and ‘Blue EV 

shifts’ scenarios 

 HEV PHEV BEV FCV 

Blue Map 14 62 47 34 

Blue EV shifts 6 20 104 0 

Source: (IEA 2010a) 

Current EV designs commonly use Li-ion batteries (Rosenberg and Garcia 2010). As 

discussed below, a number of Li-ion and Li-metal chemistries are currently being developed 

and it is likely that Li-based batteries will continue to dominate the EV market for the 

foreseeable future. The lithium intensity (i.e. the weight of lithium per vehicle) must be 

estimated before any estimates of future EV lithium demand can be made based on the EV 

uptake scenarios. 

Deriving lithium intensity for Li-ion batteries ideally requires knowledge of: 

 the nominal voltage of the battery (volts, V); 

 the specific capacity of the battery chemistry (Ampère-hours per gram, Ah/g); and 

 the concentration of lithium in the active materials of the battery when this is 

assembled (weight percent, wt%). 

While large Li-ion batteries are required for BEV and PHEV designs, smaller batteries of the 

order of 1 to 1.5 kWh are generally sufficient for Hybrid Electric Vehicles (HEVs) and Fuel 

Cell Vehicles (FCVs), where they allow storing of energy generated on board via regenerative 

braking and shaving the peaks and troughs of fuel cell duty cycles. Since the capacity of 

PHEV and BEV batteries is likely to be 10 to 20 times that of HEV and FCV batteries, and 

                                                      
14

 According to the Intergovernmental Panel on Climate Change (IPCC 2007) this is the minimum necessary to 

maintain temperature rises to within 2°C to 3°C 
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since HEVs and FCVs make up a relatively small proportion of the total vehicle market in 

2050 based on the IEA scenarios presented in Table 3.1 above, the total lithium demand 

from HEVs and FCVs is likely to be negligible. 

The amount of lithium contained in an EV battery is a function of the size and chemistry of 

the battery, its construction and its rated performance. However, it is very difficult to define 

with certainty the amount of lithium that each individual EV battery will require.  

The calculation of the global lithium demand for EVs in year y (DLi,y) can be summarised by 

the following equation: 

 𝐷𝐿𝑖,𝑦 = (𝑀 × 𝑆 × 𝐼)𝐵𝐸𝑉 + (𝑀 × 𝑆 × 𝐼)𝑃𝐻𝐸𝑉 5.1 

Where M is the market size (annual vehicle sales) of BEVs/PHEVs in year y, S is the average 

size (kWh) of a BEV/PHEV battery in year y, and I is the average intensity (amount of lithium 

per unit energy capacity (kWh) of a BEV/PHEV battery in year y.). 

A similar approach has been taken implicitly or explicitly in a number of relevant studies 

(Speirs et al. 2013a).  

The rated energy of the battery, expressed in kWh, is one of the main parameters 

determining the all-electric range (AER) of a BEV or PHEV. It is often declared by the 

manufacturer and as such its relationship with the lithium content is not transparent. The 

actual energy stored in an EV battery (and hence its true lithium content) is usually 

significantly higher than its rated energy would suggest, for reasons discussed below. Here 

the average rated energy of EV batteries is referred to as battery size for simplicity. 

In principle there is no standard battery size for BEVs and PHEVs. Automotive Original 

Equipment Manufacturers (OEMs) may decide to manufacture different types of BEV or 

PHEV with very different AER capabilities and therefore different battery sizes. In reality, 

trade-offs exist between AER on the one hand and cost, weight and volume of the battery 

on the other. This constrains the extent to which battery size can vary across different 

models of BEVs and PHEVs. In particular for PHEVs, research carried out at Imperial College 

London reinforces this point by demonstrating that from a pure economic perspective the 
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optimum battery size is to be found in a relatively narrow range (5-15 kWh), independently 

of the size of the car (Contestabile et al. 2011). 

BEV models currently being commercialised generally use Li-ion batteries capable of storing 

in the region of 16-35 kWh, depending on the size of the car, delivering maximum ranges in 

the order of 120-160 km (Table 5.2). 

Table 5.2. Key technical specifications of BEV models on the market in the UK as of July 

2013  

BEV model Battery energy 

(kWh) 

Range 

(km) 

Max Speed 

(km/h) 

Smart fortwo electric drive 16.5 140 100 

Citroen C-Zero 16 130-160 130 

Puegeot iOn 16 150 130 

Mitsubishi i-MiEV 2012 16 150 130 

Nissan Leaf 24 160 140 

Renault Fluence Z.E. 22 160 135 

Renault Zoe 22 160 135 

Mia electric 12 120 100 

Source: DECC (2013), OEM websites, Car Magazine website. 

Today’s plug-in hybrid vehicles (PHEVs) also use Li-ion batteries; however, compared to 

BEVs, their size varies significantly across vehicle models. This is due to the fact that 

different powertrain architectures are possible, which are suited to using different modes of 

operation and to achieving different all-electric ranges. In particular, the Toyota Prius plug-

in has been designed to have limited all-electric operation capabilities and hence has a small 

battery pack (in the order of 4.3 kWh). On the other hand, range-extended electric vehicles 

such as the Chevrolet Volt are capable of delivering high performance while operating in EV 

mode and hence have a significantly larger battery pack (16 kWh, see Table 5.3)  
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Table 5.3. Key technical specifications of PHEV models on the market in the UK as of July 

2013  

Vehicle model Battery energy 

(kWh) 

EV range 

(km) 

Max EV speed 

(km/h) 

Toyota Prius Plug-in 

Hybrid 

4.3 20 100 

Chevrolet Volt 16 60 190 

Vauxhall Ampera 16 60 N/A 

Volvo V60 11.2 50 120 

Sources: DECC (2013), OEM websites, Green Car Congress website. 

The amount of lithium required per kWh of battery is an important determinant of total 

demand for lithium in electric vehicles. However, its estimation is far from straightforward, 

contributing to the wide range of figures reported in the literature. There are different 

methods used to derive these estimates, each with its own limitations, discussed below 

(Rade & Andersson 2001; Angerer et al. 2009b; Tahil 2010; Gruber et al. 2011; Kushnir & 

Sandén 2012). 

Estimating material intensity in batteries requires knowledge of the voltage that the battery 

is capable of delivering while in operation, its specific capacity15 and the chemical 

composition of its active materials. However, this information is only readily available to the 

battery manufacturers. One method of estimating material intensity (labelled method ‘A’ in 

Table 5.4) is to quote industry data where available. This is done in several of the studies 

cited in Table 5.4. Alternatively, in principle, it is possible to measure voltage and specific 

capacity of a battery, then disassemble it and analyse its composition in a laboratory. This 

process (labelled ‘B’), sometimes referred to as “reverse engineering”, is often not practical 

as it is expensive and results obtained for one particular type of cell would not be of general 

validity. The two remaining options are: (i) to use published data for battery voltage and 

specific capacity and then make assumptions on its composition (labelled ‘C’); or (ii) to 

estimate the amount of Li required by starting from the theoretical value required under 

ideal conditions and then adding to it in order to take into account real operation conditions 

                                                      
15

 The total current that the battery can deliver when discharged per unit weight of the battery. 
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(labelled ‘D’). The following discussion takes the latter approach and enables the ‘sense 

checking’ of the figures found in the literature. 

There are three key factors which vary and must be accounted for in an assessment of 

lithium intensity in Li-Ion batteries: 

 Variation in lithium intensity between different battery chemistries 

 Impact of losses on lithium intensity 

 Impact of over-specification on lithium intensity 

First, the amount of lithium used per kWh depends on the stoichiometry of the 

electrochemical reaction for the battery considered16 and on its corresponding 

electromotive force (E0)17. Based on Faraday’s laws, the theoretical Li demand per kWh can 

be calculated as: 

 
𝐼 =

𝑚. 103

𝐸0𝑎𝑐
 

5.2 

where I is the lithium intensity in g/kWh, m is the molar mass of lithium in g/mol, E0 is the 

electromotive force in volts, 𝑎 is the fraction of lithium available and c is the charge of 1 mol 

of lithium ions in Ah/mol. 

Using the appropriate values: 

 

 

𝐼 =
6941

𝐸0𝑎.
96,485

3,600

 
5.3 

For example, the conventional Li-ion chemistry (originally commercialised by Sony) is based 

on the following redox process:  

                                                      
16 The degree to which specific anode and cathode materials can make available the Li that they 

contain is a factor which should be accounted for, as this varies significantly across Li-ion battery 

electrode materials and depends on their ability to release the Li contained without their microscopic 

structure being affected. 

17 For more detail on these and other electrochemistry concepts, refer to relevant textbooks (Hamann 

et al. 2007; Atkins 2009). 
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 6C + LiCoO2 ↔ Li0.5C6 + Li0.5Co02   E0 ≈ 4 V 5.4 

Where the cathode material LiCoO2 can only exchange roughly half of its lithium content, 

hence the fraction of lithium available (𝑎) would be 50%. Entering these values in the 

formula the theoretical amount of Li needed per kWh of a conventional Li-ion battery would 

be 129.5g18. 

Another relevant Li-ion chemistry uses lithium iron phosphate (LiFePO4) cathodes and 

lithium titanium oxide (Li4Ti5O12) anodes; this chemistry is inherently safer than the one 

previously discussed and hence potentially more suited to EVs. The electromotive force (E0) 

of this system is ≈ 2V. Assuming that 100% of the Li contained in LiFePO4 and 75% of the Li 

contained in Li4Ti5O12 can be made available19, the theoretical amount of Li needed per kWh 

will be 172.6g. The two examples provided clearly illustrate that Li intensity is not the same 

for different chemistries.  

Calculating g(Li)/kWh in this way provides a theoretical minimum and not the actual Li 

intensity of real EV batteries. However, starting from the theoretical value is useful, not 

least because it shows that lithium intensity changes from one battery chemistry to another 

simply as a result of the different electrochemical processes involved. Actual lithium 

intensity will be higher than the theoretical value for two main reasons, discussed below. 

Impact of losses on lithium intensity 

The voltage of a Li-ion battery when operating is significantly lower than its electromotive 

force E0, the difference being a result of resistance within the battery. When the cell is 

operating, its actual voltage, ∆V (the difference in potential between the electrodes), can be 

expressed as: 

 ∆𝑉 = 𝐸0 − (𝑖𝑅𝐼) 5.5 

Where i is the current being drawn from the cell and RI is the internal resistance of the cell. 

RI is the result of the ohmic resistance of the electrolyte and electrodes as well as the 

                                                      
18 Or 689g of lithium carbonate using a conversion factor of 5.33. 

19 These are commonly made assumptions based on the structure of the materials. 
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resistance due to the kinetics of charge transfer at the interface between electrodes and 

electrolyte. In summary the difference between E0 and ∆V, usually referred to as 

overpotential, is a function of both how the cell is operated (i.e. how fast the cell is 

discharged) and how it is constructed (i.e. chemical composition of the electrodes, their 

density, thickness and size of the particles of active material; the concentration of the 

lithium salt used as electrolyte and the chemical composition of the solvents used). Hence 

substituting E0 with ∆V in equation 5.2), Li demand per kWh will be higher than the 

theoretical value because ∆V is always smaller than E0. The difference between E0 and ∆V is 

too complicated to be estimated theoretically from first principles for any battery chemistry; 

its experimental measurement on the other hand is straightforward. However the values 

obtained for a specific battery model cannot be generalised, not even to batteries using the 

same chemistry. 

Impact of over-specification on lithium intensity 

Manufacturers often ‘over-specify’20 batteries, typically for two reasons: (i) to offset the 

expected degradation through use; and (ii) to improve the rated cycle life, which is typically 

calculated as the number of charge-discharge cycles achievable before energy capacity falls 

below 80% of the rated value. In many cases the over-specification of the battery is quite 

substantial, and the depth of charge-discharge cycles is constrained to avoid full discharge 

and resulting degradation21. The extent to which the battery is over-specified and the level 

to which discharge depth is constrained can vary greatly across manufacturers, chemistry 

and intended use of the battery. As a consequence the actual amount of Li present in the 

battery can increase by as much as a factor of two22. 

                                                      
20 i.e. to manufacture batteries  that can perform significantly better than the rated values. 

21 Fully discharging the battery mechanically stresses the electrode materials and generally results in 

faster degradation. 

22 See for example Eberle and von Helmolt (2010), where the authors report that despite the 16kWh 

nominal energy of the battery of the new Chevrolet Volt PHEV,it is operated at 50% maximum depth of 

discharge and hence the actual usable energy is only 8kWh. 
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Table 5.4. Estimates of Lithium Carbonate (Li2CO3) usage per kWh found in the literature. 

Source Vehicle Application 

Material 

intensity (kg Li/ 

kWh) 

Methodology a 

Chemetall GmbH                                                                          

(Engel-Bader 2010) 

BEV (25 kWh) 0.165 

A PHEV (16 kWh) 0.176 

HEV (1 kWh) 0.375 

Meridian International Research                             

(Tahil 2007)  
0.300 A 

Meridian International Research                             

(Tahil 2010)  
0.563 D 

Kushnir and Sanden (2012) 
Average for four 

chemistries 
0.160 D 

Rade and Andersson (2001) 

Li-ion (Mn) 

0.140 D Li-ion (Ni) 

Li-ion (Co) 

Argonne National Laboratory                                    

(Gaines & Nelson 2009) 

HEV4 (1.2 kWh) 0.308 

C  
PHEV20 (6 kWh) 0.244 

PHEV40 (12 kWh) 0.246 

EV100 (30 kWh) 0.246 

Gruber et al (2011) Li-ion (Co, Mn, Ni) 0.114 D 

Evans (2009) 
 

0.113 A 

Evans cited by Reuters                                                 

(Rosenberg & Garcia 2010) 

Chevrolet Volt (16 

kWh) 
0.158 A 

Engel (2007) 
 

0.050 A 

Fraunhofer ISI                                                                  

(Angerer et al. 2009a) 

LiCoO2 0.180 
D 

LiFePO4 0.120 

Dundee Capital Markets (DCM 

2009)  
0.080 A 

National Renewable Energy 

Laboratory (Neubauer 2011) 

HEV (1.7 kWh) 0.100 
Internal modelling 

study (C or D) 
PHEV12 (5.6 kWh) 0.108 

PHEV35 (17.5 kWh) 0.110 
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BEV75 (29.5 kWh) 0.112 

BEV150 (67kWh) 0.112 

 

Potential for lithium weight shedding 

The focus of research and development in li-ion batteries is currently aimed at increasing 

safety, lowering cost, increasing energy density and improving cycle life, with a long-term 

view towards low environmental impact (Ritchie 2004; Armand & Tarascon 2008). Raw 

lithium contributes only 1-2% of final battery cost (Kushnir & Sandén 2012)23. Accordingly, 

little discussion about reductions in lithium content can be found in the literature. Rade and 

Andersson (2001) provide one of the few estimates of future lithium intensity of Li-ion 

batteries based on the improvement of active material utilisation (the amount of lithium 

content in the anode and cathode that can be made available in the reaction) from a current 

50% to 60-80% depending on chemistry, leading to intensity reductions of 21-34%. Whether 

or not these developments can be realised is uncertain. 

Given that lithium has historically contributed only a small percentage of total battery costs 

it may seem unintuitive that lithium availability has received so much attention in the 

literature. However, if lithium costs increase significantly they may become a greater 

proportion of costs. Given the significant potential for lithium demand growth in electric 

vehicle manufacturing future lithium price could increase in the future. 

The cost of lithium batteries is currently one of the barriers to the wider adoption of EVs 

and reducing battery costs is a priority for many EV manufacturers (Gallagher & Nelson 

2014). Trends that may interfere with cost reductions, such as escalating lithium costs, are 

therefore of concern. Given the significant volumes of lithium needed to supply forecast 

electric vehicle demand, and the limitations in substitution options, electric vehicle 

manufactures will have limited potential to insulate themselves from the impacts of 

increasing lithium price. 

                                                      
23

 Though this is a relatively low proportion of vehicle cost it is a larger share of battery costs and will rise as a 

proportion if lithium price increases in response to tight supply conditions. Given this apparently low cost it is 

conceivable that vehicle manufacturers may try to protect themselves from future supply constraints by 

stockpiling lithium. However, vehicle manufacturers may not be as concerned as some in the discourse over 

the future availability of lithium. 
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Two alternative lithium-based chemistries currently being developed are lithium-air 

(Armand & Tarascon 2008) and lithium-sulphur (Hassoun et al. 2012). Both of these 

technologies have higher energy density and thus ability to dramatically improve the driving 

range of electric vehicles compared to Li-ion batteries currently on the market. 

Improvements associated with these technologies may increase both the market share of 

lithium batteries as well as the average size (kWh) of EV batteries, resulting in an overall 

increase in annual demand for lithium as per Equation 5.3. In order to reduce lithium 

demand in EV applications it may therefore be necessary to substitute lithium completely 

from EV batteries. 

Potential for substitution 

Early BEVs such as the General Motors EV1 used lead acid batteries and more recently the 

Think City used Sodium/Nickel Chloride (also known as ZEBRA) batteries. However, lithium 

based batteries have significant advantages over these two battery types and it is unlikely 

that they will be used in future BEVs and PHEVs. Since lithium is the lightest metal and has 

an extremely negative electrode potential, lithium-based batteries have much higher 

gravimetric energy density than lead-acid batteries, allowing EVs to achieve acceptable 

ranges without imposing a high weight penalty. Unlike ZEBRA batteries which use molten 

Sodium at 300-350  ̊C, lithium batteries operate at room temperature and because they 

don’t need preheating they are always available for use, which is a very desirable 

characteristic for vehicles with no fixed usage patterns, such as passenger cars. These 

favourable characteristics, together with the high power density and long cycle life, explain 

why Li-ion batteries are the current technology of choice for BEVs and PHEVs. Moreover, 

lithium batteries are a much younger technology than lead acid batteries, and as such it is 

expected that they still have significant margin for improvement. 

Other non-lithium chemistries are being researched at present which may compete with 

lithium-based batteries. However, alternatives to lithium are limited, because prospective 

systems need to have high energy density and achieving this requires using light metals such 

as Sodium, Magnesium and Aluminium. 

Battery systems currently under investigation include Magnesium/Sulphur and Aluminium/ 

Graphite Fluoride. However, the practical viability of these systems has not been 
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demonstrated and their future use in electric vehicles depends on the occurrence of 

significant technological improvement (Armand & Tarascon 2008). Metal air chemistries 

such as sodium air and zinc air are also possible alternatives to lithium air. Sodium air 

batteries in particular have the potential to mitigate some of the problems of Li/air 

technology but significant technological improvement is still needed before this technology 

may be considered for practical applications (Peled et al. 2011). 

To summarise, alternatives to lithium-based batteries exist. However in the short to 

medium term, lithium-based chemistries seem favoured, while in the long term other 

options may become competitive, giving rise to potential substitution. However, alternative 

technologies are currently far from mature and technological improvement is still needed. It 

is also possible that the current research focus on Li-ion may constrain the funding for 

research and development in non-lithium alternatives, further slowing their technological 

development. 

Lithium in other end-uses 

Lithium is used in many applications other than EV batteries (Figure 5.3). The most 

important of these are ceramics and glass, and consumer electronics batteries, making up 

approximately 55% of demand in 2011. A number of other end-uses make up the rest of 

demand, although these are unlikely to increase significantly in the future. These include 

nuclear fusion control rods, lubricants, polymers and pharmaceuticals. 

The development of consumer electronics demand is likely to play an ongoing role in 

determining future lithium demand, and it is uncertain to what extent this demand might 

grow in the future or whether suitable substitutes or opportunities for material efficiency 

might offset any growth in future consumer electronics demand. 

Future lithium demand 

Speirs et al. (2013a) present estimates of future lithium demand based on assumptions in 

the literature around three demand influencing variables: 

 The battery capacity used in PHEV and BEVs; 

 The lithium intensity per kWh of battery; and 

 The annual vehicle sales in 2050. 
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The result of this analysis is a range of demand in 2050 of between 180,000 and 1,000,000 

tonnes of lithium per year. This is a very wide range and appears very challenging in 

comparison to recent production estimates, which were only 35,000 tonnes in 2013 (USGS 

2014a). However, the maximum of this range assumes large battery sizes and high lithium 

intensity in these batteries Table 5.5. In addition the estimate is a simple calculation and is 

not dynamic in terms of changing variables over time, the impact of rising price on demand, 

and the resulting incentives to reduce or substitute lithium under high price scenarios. The 

maximum estimate for lithium demand in 2050 can therefore be seen as a worst case, which 

is unlikely to be realised. 

Table 5.5: Estimates of future lithium demand from electric vehicles in 2050 

Variable Value 

 Low case High case 

Vehicle type PHEV BEV PHEV BEV 

Battery capacity (kWh) 9 16 35 

Lithium intensity (g/kWh) 190 380 

Annual vehicle sales 62 47 62 47 

Total lithium demand 184,000 989,000 

Source: Speirs et al. (2013a) 

5.2.2 The lithium resource 

Lithium is an alkali group metal and is the lightest metal in the periodic table. It is highly 

reactive and corrodes on contact with moist air. Due to this reactivity, lithium metal does 

not occur freely in nature and is instead found in four main deposit types: Minerals, brines, 

sedimentary rocks and seawater. Minerals and brines constitute the world’s source of 

lithium today. Lithium minerals are typically coarse-grained intrusive igneous rocks known 

as pegmatites, such as spodumene, petalite, lepidolite, amblygonite and eucryptite (Gruber 

et al. 2011). Lithium brines are currently the largest and cheapest sources of lithium (Yaksic 

& Tilton 2009) and are mostly found in dry lakes such as the Salar de Atacama in Chile, as 

well as geothermal deposits and oil fields. The third source of lithium is in sedimentary 

rocks, notably clays such as hectorite and lacustrine evaporates, such as the newly 
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discovered jadarite (Clarke & Harben 2009; Gruber et al. 2011). Finally, lithium is found in 

diffuse but very large quantities in seawater, where there is potentially 44.8 billion tonnes of 

recoverable lithium (Yaksic and Tilton (2009). The economic viability of lithium recovery 

from sedimentary rocks or sea water is uncertain but likely to be uneconomic for some time. 

Lithium is not mined in its elemental form but is produced as lithium carbonate, lithium 

hydroxide, lithium chloride and other forms, shown in Figure 5.4. Different forms of lithium 

are used in different applications, with lithium carbonate typically used in Li-ion battery 

manufacture. 

Figure 5.4. Sources and chemical forms of lithium and their major applications 

 

Source: Yaksic and Tilton (2009) 

Of the major producers of lithium by content (see Figure 5.9), Chile and Argentina both 

produce Lithium Carbonate from brine, while Australia produces lithium in minerals 

recovered from spodumene deposits. China’s production is split between mineral 
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production and lithium carbonate production from brine, with lithium minerals representing 

35% of China’s reserves and brines representing 65%. 

Mineral Ores 

Lithium containing spodumene ores are recovered by quarrying or open cast mining of veins 

of the ore, which are often only a few meters thick. Concentration of the ore can be carried 

out by hand-sorting of raw ore. Further separation of ore mineral from waste material is 

achieved by froth flotation. 

A number of authors have reviewed the processing of lithium (Averill & Olson 1978; Bale & 

May 1989). The ore is first roasted, which improves milling into the powder required for the 

flotation process. Roasting is carried out at 1050-1100˚C for 15-30 minutes. When cool, the 

material is crushed to a grain size less than 0.1 mm. This powder is fed to floatation tanks 

containing anionic fatty acids in alkaline solution or sulphonated oils in acid. Concentration 

by 70% is achieved. 

The powder is treated with an excess of 93% sulphuric acid at elevated temperature in a 

lined rotary furnace. Lithium sulphate solution is produced, which is leached out of the 

remaining inert solids with hot water. The liquor is treated with soda lime to remove 

calcium, magnesium and iron, filtered, then neutralised with more sulphuric acid. The liquor 

is then transferred to an evaporation vessel and concentrated to 200-250 g/L Li2SO4. Lithium 

is often converted to LiCO3 by addition of sodium carbonate. 

In turn, lithium carbonate can be used to produce lithium metal. The carbonate is re-

dissolved in hydrochloric acid. The chloride solution is concentrated in a vacuum evaporator 

and dried. The product, mixed with potassium chloride to lower the melting point, is fused 

in an electrolytic cell similar to the Downs cell used for sodium production. Electrolysis 

produces lithium metal and chlorine gas. The metal is used in sacrificial anodes in lithium 

batteries. (Averill & Olson 1978; Bale & May 1989). 

Brines 

Economically treatable brines are found in South America, particularly Argentina, Bolivia and 

Chile and also in the USA and China. Production of lithium carbonate from brines begins 

with the concentration of brine, often through solar evaporation. This increases the 
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concentration of lithium chloride and precipitates out certain impurities. The concentration 

process is particularly effective because lithium chloride is highly soluble.  Yields are 

reduced, however, because of the presence of other metals, particularly magnesium.  The 

magnesium can be removed during concentration by treatment with lime. However, this 

leads to loss of a proportion of the lithium content. The concentration of lithium in lithium 

chloride liquor rises to about 6%, at which point it is treated with soda ash to precipitate 

lithium as the carbonate.  As above in this form the lithium metal can be produced by 

electrolysis (Averill & Olson 1978) 

Resources and reserves 

Metal resource classification, as with oil, is a source of confusion and misunderstanding. 

However, there is a paucity of data and analysis of metal resources in comparison to the 

available literature on other energy resources. While a range of different resource and 

reserve terms exist for minerals (see Figure 5.10) the USGS tends to report three different 

types of resource estimate: 

 Reserves - the quantity of the resource that can be economically extracted or 

produced at the time of determination; 

 reserve base - those parts of the resources that have a reasonable potential for 

becoming economically available within planning horizons beyond those that assume 

proven technology and current economics; and 

 resources - all discovered quantities including identified resources that do not meet 

the economic criteria of reserves (paraphrased from Appendix C of USGS (2013)) 

Reserves of lithium can be considered loosely equivalent to reserves of oil, in that they are 

similarly conservative and likely to be exceeded in the future. They both consider only those 

resources producible given current technology and economics. Reserve base is a term not 

referred to in oil reserve classification, but has a lower probability of being exceeded in the 

future than reserve estimates. This may mean it is more comparable to a 2P or 3P estimate 

of oil resources, though no probabilistic comparison of these estimates is available. The 

term ‘resources,’ in mineral classification is likely to be comparable with the technically 

recoverable resource in oil reserve classification, as they both discount economic 

constraints. 
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Wellmer (2008) presents a modified version of the McKelvey box for metal resources, 

reflecting the similarity between oil and metal resource classification (Figure 5.5). The 

format of this modified version is somewhat simplified for the non-expert, though this level 

is appropriate given the lack of available evidence and estimates for metal resources. The 

total area of the box represents the total resource available over all time, equivalent to the 

URR in oil resource classification. 

Figure 5.5: Simplified version of the McKelvey Box 

 

Source: Wellmer (2008) 

No URR estimates exist for lithium. It is unlikely that sufficient geological and economic 

evidence exists to create an estimate of URR for lithium, but it is likely that more than 

currently stated lithium reserves will be produced in the future. 

As indicated in Figure 5.5, the boundaries between economic reserves, uneconomic 

resources and future resources are dynamic and will change over time in response to 

changes in production costs, resource price and future discoveries. However, the rate at 

which resources and new discoveries can be booked as reserves is hard to estimate, and is a 

function of a number of variables. Skinner (1976) suggests that there are two different types 

of metals - the geologically abundant metals and the geologically scarce metals. He argues 

that the distribution of these metals in the earth’s crust is different, with the abundant 
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metals having a normal distribution of ore concentrations, while the scarce metals are 

characterised by a bimodal distribution of ore concentrations in the earth’s crust (Figure 5.6 

and Figure 5.7). The result of this bimodal distribution is, that for the scarce metals, the 

marginal ore concentration drops precipitously early in the metal’s production lifecycle. This 

will have significant implications for the marginal cost of metals conforming to Skinner’s 

definition of geologically scarce.  

Figure 5.6: Skinner’s characterisation of the ore grade distribution of geologically 

abundant metals 

 

Source: Skinner (1976) 
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Figure 5.7: Skinner’s characterisation of the ore grade distribution of geologically scarce 

metals 

 

Source: Skinner (1976) 

The marginal production cost curve for lithium resources is estimated by (Yaksic & Tilton 

2009)(Figure 5.8)24. This figure demonstrates the very large quantity of reserves available at 

high costs, reflecting the very abundant but low concentration lithium resource found in 

seawater. 

                                                      
24

 Yaksic & Tilton (2009) refer to this as the ‘cumulative availability curve’. 
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Figure 5.8: Marginal production cost curve for lithium  

 

Source: Yaksic & Tilton (2009) 

Known reserves of lithium exist and are produced in a number of countries, the relative 

distribution of which is presented in Figure 5.9. The largest share of reserves belongs to 

Chile, which recovers lithium from brine pools located in salt flats. 
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Figure 5.9: Distribution of lithium reserves in 2012 

 

Source: USGS (2013) 

Note: USGS do not disclose US production data 

Figure 5.10 presents several different lithium reserve and resource estimates. This figure 

presents a number of different classifications of resources, and these are acknowledged in 

the notes below. Where reserve classifications differ, estimates are not directly comparable. 

This issue is compounded by the fact that explicit descriptions of reserve classifications are 

not always provided by authors. 

The USGS presents figures for reserves and reserve base, although reserve base reporting 

was discontinued after 2009. Roskill (cited in Engel-Bader (2010)) also presents reserve data 

for 2009. In 2004, disaggregated reserve figures are presented by Garrett (2004). Reserve 

and reserve base estimates from Tahil (2007; Tahil 2008) are presented in years 2005 and 

2007. In year 2008 reserve and ‘in situ’ data from Evans (2008a; Evans 2008b) are 

presented. Finally Yaksic and Tilton (2009) provide estimates of recoverable resources and 

in situ resources in 2009, which are also included. These data present a considerable range 

of estimates, with the largest estimate in 2009, being over 700% greater than the smallest. 



~ 174 ~ 
 

This can in part be explained by the differing natures of reserve classifications, but this also 

reflects the range of opinion regarding the future prospects for lithium production. It is also 

worth mentioning that the USGS refers to additional “resources” for several countries, 

including Bolivia, which the USGS (2012) estimates to have nine million tonnes of resources, 

although it as yet has no recorded production or reserves. What prevents any of these 

resources from being reported as reserves by the USGS is not apparent in the USGS 

documentation (USGS 2012). The USGS (2012) estimates world resources at 34 million 

tonnes, over twice the reserve estimate in the 2012 issue of the Mineral Commodity 

Summaries, but still less than half the in situ estimate in 2009. 
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Figure 5.10: USGS annual reported reserves and other available estimates from existing 

literature 

 

Notes:  

a. Reserves 

b. Recoverable resources 

c. Broad based reserves 

d. Reserve base 

e. In Situ resources 

f. Ultimate global reserve base 

g. Identified Resources 

5.2.3 Lithium production rate 

Primary production 

Figure 5.1 presents lithium production data published by the USGS. Data are in metric 

tonnes of gross product of lithium minerals and brine. Since 1967, lithium production was 

reported as ‘ore and ore concentrates’ from mines and lithium carbonate from brine 

deposits. Calculating the lithium metal weight in lithium carbonate is relatively simple. 
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However, calculating the metal content of ore and ore concentrate is problematic, given 

that the composition of these ores and concentrates is unknown. 

Despite inconsistencies in data, Figure 5.1 appears to present a resource which is being 

exploited through an exponential phase of production and displays no indication of a 

slowing production rate. 

The distribution of lithium production is presented below in Figure 5.11. This shows the 

significant role played by China, Australia and Chile. This closely mirrors the distribution of 

resources presented in Figure 5.9. 

Figure 5.11: Geographical distribution of lithium production in 2013 

 

Source: (USGS 2014b) 

As a finite resource, many consider the generic lithium production profile to have 

similarities to that of oil. Several authors have examined the use of bell curve functional 

forms to model the production of minerals, (Bardi 2005; Cordell et al. 2009; May et al. 2011; 

Mohr et al. 2011), including the use of logistic curves and their application to lithium 

specifically Kushnir and Sandén (2012) and Vikström et al. (2013). However, curve fitting 
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methodologies for lithium production forecasting are likely to suffer the same issues as 

curve fitting in oil production forecasting. Specifically, the lack of theoretical basis for the 

choice of functional form and the uncertainty around the URR are likely to limit the 

usefulness of curve fitting techniques. (Vikström et al. 2013) applied three different 

functional forms in order to examine the impact of curve functional form on forecasts of 

future lithium production and concluded that the logistic curve produces the most rapid 

growth phase and the highest production level at peak production. 

Recycling 

Historically, recycled lithium has been insignificant (USGS 2011). The United Nations 

Environment Programme estimates lithium end-of-life recycling rates at less than 1% (UNEP 

2011). However, there has been an increase in use recently due to battery applications, and 

in particular the laws regulating the disposal of waste batteries: in Europe, Member States 

are obliged to collect 25% of end-of-life batteries by 2012 and 45% by 2016 (European 

Parliament 2006). This legislation does not necessarily imply nor mandate the recycling of 

lithium metal content. For example, the recently built Umicore battery recycling facility in 

Belgium recycles cobalt and nickel hydroxides but not lithium, which instead is removed as 

slag (Buchert et al. 2009).  

Nevertheless, the potential for recycling of lithium from end-of-life batteries is estimated to 

be significant. Gaines and Nelson (2009) estimate that over 40,000 tonnes of contained 

lithium could be recycled in the US by 2050, assuming 100% recycling rates and a 10-year 

battery life. In the modelling study by Gruber et al (2011), recycled lithium constitutes 

between 50 and 63% of cumulative demand over the 2010-2100 period, assuming recycling 

rates of 90-100%. Buchert et al (2009), however, note that while the large growth in battery 

production implies a significant recycling potential, there is currently a lack of economic 

incentive to recycle lithium given its relatively low price25. 

A primary issue in recycling lithium from end-of-life batteries is the sorting of collected 

waste batteries. Not all collected batteries will be Li-ion batteries, e.g. in the automotive 

sector many will still be NiMH, and not all Li-ion batteries have the same chemistry. In order 

                                                      
25 Lithium price is often reported as the price of lithium carbonate. In 2011, the average price of 

lithium carbonate was approximately $4.3/kg (Jevons 1865).  
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to develop an efficient recycling process, it is necessary to know the composition of the 

batteries to be treated (Contestabile et al. 1999). A number of automatic sorting systems 

have now been developed for waste batteries, using magnetic or electrodynamic sensors, 

photo recognition of the label and x-ray imaging, all resulting in varying levels of purity in 

the separated fractions (Bernardes et al. 2004). 

There are a number of existing Li-ion battery recycling processes, mostly hydrometallurgical 

(Bernardes et al. 2004), although many of these are primarily focused on recycling cobalt 

due to its high concentration and price incentive (Lain 2001; Sloop 2008). Other metals are 

also recycled due to flammability or toxicity concerns (Castillo et al. 2002; Bernardes et al. 

2004). For example, the Sony process, named after the company to which the patent is 

assigned, does not recover lithium (Lain 2001; Bernardes et al. 2004). On the other hand, 

the Toxco process (McLaughlin 1994) uses cryogenic processes followed by mechanical 

shredding and mixture with water to produce lithium hydroxide as a main product. This is 

then converted to lithium carbonate. More recently, processes have focused on lithium and 

lithium carbonate recovery (Castillo et al. 2002; Kondás et al. 2006). Xu et al (2008) review 

the processes available for recycling Li-ion batteries and list six treatment methods for the 

processing of Li-ion cathode materials, further divided into two distinct groups. Physical 

treatment methods are mechano-chemical, thermal or dissolution processes, while 

chemical processes involve acid leaching, bioleaching or solvent extraction (Xu et al. 2008). 

If future lithium availability constraints were to arise, processes that recover lithium (Toxco) 

are likely to be favoured over those that do not (Sony). 

The recovery of lithium from spent batteries remains a niche market (Buchert et al. 2009), 

and the battery industry does not currently produce batteries using recycled material 

(Kotaich & Sloop 2009). For recycled lithium to contribute half of future supply as suggested 

by Gruber et al (2011) appears likely to be difficult to achieve without more targeted 

legislation or a clear economic incentive. 

In addition, it has been proposed that automotive Li-ion batteries could be reused after 

their useful life in electric vehicles. The National Renewable Energy Laboratory (Neubauer & 

Pesaran 2011) is investigating the potential revenue and BEV/PHEV cost reductions 

achievable through the use of end-of-life electric vehicle batteries in secondary applications 
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for utility energy storage, such as storage for wind and solar power. However, this form of 

recycling would extend the delay in availability of recycled material for new EV battery 

manufacture. 

The impact of recycling on future metal availability is subject to a number of factors. First, 

the lifetime of a product delays the availability of its components to the recycling market. Li-

ion batteries for example, may be expected to last for 10 - 20 years (2009; Chris Brandrick 

2010; BBC 2014), with post electric vehicle uses of batteries likely to extend this lifetime to 

the upper end of this range (Neubauer & Pesaran 2011; BBC 2014). Access to recycle the 

critical metals contained within those modules is therefore delayed by the same period of 

time. In most cases the recyclable quantity of this metal will be less than 100%, and 

estimating the future recovery rate26 is difficult given that it is likely to be a function of 

technical capability and economic factors 30 years in the future. The relative contribution of 

recycling during different phases of the production cycle is also important. While production 

is growing, the quantity of recyclable material is always a fraction of what is produced from 

mines in any given year. This is due to the recovery rate, and the product lifetime delay. 

Where the rate of production growth is steep, the relative proportion of recyclable material 

is likely to be smaller than periods where the production rate plateaus. This means that 

periods where demand is growing most quickly coincide with periods where recycling can 

contribute a smaller proportion relative to production. 

Despite these limitations, there is an incentive for countries or regions that are net 

importers of critical metals to encourage recycling as a means to reduce the relative level of 

imports. This may mean incentivising the design of products to be easily recycled, and policy 

support and regulation for recycling capability. 

                                                      
26

 The recovery rate is defined as the percentage of a metal that can be recycled from the total metal container 

in end of life products. 
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Figure 5.12: The relative impact of recycling during exponential growth and plateau 

phases of critical metal production. 

 

Source: Adapted from Speirs et al. (2014b) 

5.2.4 The lithium price 

Lithium is not traded on exchanges like oil as it has no futures market (FDC 2013). The price 

is therefore established through bilateral trading between producers and industrial 

consumers. Third party investment in lithium it therefore confined to trading of stocks in 

lithium companies or  through exchange traded funds. Other than this difference, price 

discovery happens through a similar process to that described for oil above. Companies who 

extract lithium either refine it themselves, or sell to refineries where consumers of lithium 

such as battery manufacturers buy it. The refiners will offer a lithium price based on their 

expectation of the market conditions, including how much lithium they believe is available 

on the market and how high demand is for lithium at any given time. However, these 

expectations are subject to imperfect and delayed information and the actual price is 

discovered iteratively based on buyers’ response to the refiners expected price (Metal-

Pages Ltd 2014). 

The lack of transparency in pricing information potentially delays the price discovery 

process, although there are efforts to collate price data and improve price transparency. 

Price canvasing of market participants is often conducted by industry associations and 

commercial organisations, although comparability and other issues affect these efforts 
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(Metal-Pages Ltd 2014). The pricing methodology adopted by such companies is often 

explicitly stated, and involves ‘the detailed canvasing of buyers and sellers at set periods by 

reporters, who specialise in the markets they are pricing (Metal Bulletin 2011). Spot price 

trades involve metals of different quality, different chemical and physical forms, different 

quantities and different delivery and warehousing conditions. Producers and consumers are 

also likely to manipulate the price information they give to canvassing agencies to their own 

benefit. Editorial judgement is therefore used in collating price information but this 

subjective measure is also a source of inaccuracy. There are a number of proposals to 

improve this situation, such as establishing commodities exchanges for all metals, and 

creating a regulatory agency to cover all metals, though these are as yet not implemented 

(Metal-Pages Ltd 2014). 

5.3 Estimates of future supply 

There is a lack of lithium supply or resource system models, largely a function of the 

relatively small economic importance of lithium when compared to commodities such as oil. 

A number of estimates of future supply exist, though these are not explicitly linked to 

modelling efforts and do not integrate the assessment of all the dynamic aspects of 

resource systems. 

Figure 5.13 presents estimates of both future production and future resource availability. 

These estimates are in the order of ~60 to ~110 kt/y of lithium metal production in 2020 and 

~2 to ~20 Million tonnes (Mt) of lithium metal available over the century to 2100 or over all 

time. The methods used to calculate these values and the values themselves are discussed 

below. 
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Figure 5.13: Available estimates of future annual production and future cumulative 

availability of lithium 

 

Source: (Speirs et al. 2013a) 

The future production chart in Figure 5.13 contains estimates from three sources. A report 

by Dundee Capital Markets (DCM 2009) presents their projection for lithium supply to 2020. 

This data is subdivided into lithium production from brines, lithium production from 

spodumene minerals, and lithium from new production capacity forecast to come onstream 

from 2012. These data are represented by the red bars in Figure 5.13 and forecast lithium 

production of ~110 thousand tonnes per year (kt/y). Anderson (2011) presents a similar 

supply forecast to 2020, with slightly more conservative lithium production figures of 
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~75kt/y. Finally, Tahil (2008) presents two spot estimates for future lithium production, 

estimating 44kt/y in 2015 and 58kt/y in 2020. 

The future resource availability chart in Figure 5.13 presents estimates from six sources. 

Tahil (2008) provides an estimate of the lithium he considers producible. This figure is based 

on the USGS reserve figure for lithium in that year. This can therefore be viewed as a 

conservative estimate since reserves estimates are likely to increase for a range of reasons 

(Clarke 2010). As presented in Figure 5.10, USGS reserve estimates have grown in more 

recent years and, by 2011, reserves were estimated at 13Mt, over three times the Tahil 

(2008) estimate. 

In an earlier report, Tahil (2007) estimated future availability by calculating an URR27 of 

lithium at 35Mt of lithium carbonate (or 6.6Mt of lithium metal). This figure is derived by 

applying a 50% recovery factor to estimates of lithium resource to arrive at a value of 

33.55Mt lithium carbonate which is rounded up to 35Mt. This figure excludes any 

spodumene ore deposits which the author describes as ‘not economically or energetically 

viable for Li-ion batteries’. 

Ebensperger (2005) presents two estimates of future availability, 3.4Mt and 9Mt, both 

taken from Crowson (2001). These are presented in Figure 5.13, with the higher of the two 

estimates represented by the black outline. 

Andersson and Rade (2001) present a low and high estimate of future availability, 1.5Mt to 

17.34Mt, which represents a significant range. This value is derived by assuming a quantity 

of metal available from the earth’s crust, adding the availability from future recycling of 

lithium and subtracting the lithium used by markets competing with the BEV market. As 

such this estimate represents the material available to automotive battery markets and not 

the total metal available. This is a relatively sophisticated methodology for calculating future 

availability, although the range presented covers a large proportion of the range of all 

estimates in Figure 5.13. 

                                                      
27

 The concept of URR is described in UKERC (2009) 
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Gruber et al (2011) present a figure for the minimum recoverable resource of 19.34 Mt. This 

is derived by summing the in-situ resources from known brines, pegmatites and 

sedimentary rock deposits, and applying a 50% recovery factor. This provides one of the 

largest estimates in Figure 5.13. 

Finally, Yaksic & Tilton (2009) present a cumulative availability curve for lithium (Figure 5.8). 

This curve presents a range of marginal resources, their estimated quantity and the price of 

lithium needed to make them economic. This therefore presents an increasing quantity of 

lithium available as the price of lithium increases. This curve describes a low cost and a high 

cost scenario which give a narrow range of lithium price per unit weight. Given a lithium 

price of $2/lb lithium carbonate the curve suggests a lithium availability of ~22Mt. However, 

the curve also suggests that at higher prices, the availability increases significantly. If the 

lithium carbonate price rose to $7.20, about 44.8Mt of lithium would become available 

according to the authors28. This, they suggest, is an unlimited supply for all practical 

purposes. 

Vikström et al. (2013) provide one of the few examples of lithium production modelling by 

applying a Hubbert-esque curve fitting approach to lithium production forecasting. Based on 

the available literature on available resources they develop a base case and a high case for 

ultimately recoverable lithium resources. Historical production was then curve-fit using 

three separate curve functional forms and constrained by the two URR cases. The results 

are presented in Table 5.6. These results show the trade-off between delaying the peak and 

maximum production rate, a result of the assumption of a bell-shaped production profile. 

Table 5.6: Peak year and maximum production in thousand tonnes (kt) of lithium for the 

different curve functional forms and URR cases 

 Base case: 15.5Mt High case: 30.5Mt 

 Logistic Gompertz Richards Logistic Gompertz Richards 

Peak year 2074 2098 2078 2088 2129 2095 

                                                      
28

 At this price, the authors estimate that lithium extraction from seawater will become economic, producing 

the high estimate. 
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Maximum 

production (kt) 
208 81 165 403 134 305 

Source: Vikström et al. (2013) 

5.4 Summary 

Lithium demand has increased significantly in recent years in response to the growing 

consumer electronics market where it is used in Li-ion batteries. However, Li-ion batteries 

are also the likely technology to be used in electric vehicle technologies. Future demand for 

electric vehicles is forecast by many to be significant, and the size of batteries in these 

vehicles will be significantly larger than those used in consumer electronics. These facts lead 

many to forecast significant lithium demand growth in the coming decades. 

Lithium resources and production are similar in many respects to the other energy 

resources, with similar definitions of resources, similarly increasing marginal production 

costs, and a similar production trajectory. However, lithium can also be recycled, providing 

an additional source of supply in the future as recycling rates improve and Li-ion batteries 

reach the end of their useful lifespans. 

The formation of the lithium price is also similar, though the market is less sophisticated, 

with only spot metal trades between lithium producers and lithium consumers. 

The estimation of future lithium supply, demand and price through modelling receives 

significantly less effort than similar estimations of oil resources. Lithium modelling is 

commonly limited to simplistic techniques and analysis rarely considers supply, demand and 

price in one integrated framework. 

Important concepts discussed here, such as the impact of demand driven by low-carbon 

policies, and the impact of recycling on production are used in Chapter 7 to develop an 

indium resource system model, differentiated in these ways from a generic resource system 

model. The following chapter presents a case study of the resource system issues 

surrounding indium, which is used in Chapter 7 to develop an indium resource system 

model. 
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Chapter 6:  Case study – Indium and thin-film photovoltaics 

"I’d put my money on the Sun and Solar Energy, what a source of Power! I 

hope we don’t have to wait until oil and coal run out, before we tackle that." 

Thomas Edison 

“"I have no doubt that we will be successful in harnessing the sun's energy. If 

sunbeams were weapons of war, we would have had solar energy centuries 

ago."  

George Porter 

Indium is a soft and malleable metal, and is relatively rare. It was discovered in 1863 but did 

not become widely used until the 1990s, where it became a component of flat screen 

display technologies. Its use as a component of the photoelectric material in some thin film 

PV technologies has triggered concerns regarding its future availability, and indium appears 

in many ‘metal criticality assessments’ where it is highlighted as a metal that may 

experience availability constraints in the future. 

In this chapter the various issues surrounding the future supply of and demand for indium 

are explored. First, this chapter presents a brief history of indium, from its discovery to its 

modern uses and the emerging concerns regarding its availability for future PV 

manufacturing. The chapter then examines the range of factors that characterise the indium 

resource system. This section begins by examining indium demand, then indium production, 

finishing with a brief overview of indium price formation. The last section of this chapter 

reviews the approaches to modelling the indium resource system. 

6.1 Brief history of indium 

Indium is a group 13 metallic element, with an atomic weight of 114.82. It has an estimated 

crustal abundance of 0.1ppm (Suess & Urey 1956), comparable to that of silver (0.05-

0.1ppm). It was discovered in 1863 by F. Reich and T. H. Richter while conducting 

spectrometric analysis of sphalerite ores, an important source of the metal today (Felix 

2000). Indium was named after the indigo blue spectral lines which led to its identification.  
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Until the mid-20th century there were relatively few industrial applications for indium. In 

1924 it was discovered that indium had a stabilising effect when alloyed with nonferrous 

metals (French 1934). Subsequent end-uses were developed throughout the 20th century, 

including light emitting diodes, bearing coatings and semiconductors. Indium was used in 

nuclear control rods from the 1970s, and its use as a coating in liquid crystal displays 

became the dominant end-use by the early 1990s (Schwarz-Schampera 2002). In the future, 

many expect that the thin film solar photovoltaic technology copper indium gallium 

diselenide (CIGS) will become the most significant end-use of indium, driven by 

decarbonisation policy and the uptake of solar electricity generation (Speirs et al. 2011). 

Indium does not occur in its native state and is found in trace amounts in various ore types. 

Sphalerite, one of the most important for modern production, is mined primarily for the 

base metal zinc. It contains widely varying concentrations of indium, from typical 

concentrations of 10-20 ppm to around 10,000 ppm (1% by weight) in some extreme cases. 

These concentrations are considered high relative to other indium containing ore (Table 

6.1). Indium is therefore most commonly associated with zinc production, though copper, 

tin, lead and other base metal bearing ores also contain indium (Table 6.1). In this thesis 

indium is referred to as a by-product metal, with the associated base metal referred to as 

the host metal. 
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Table 6.1: Minerals associated with indium 

Mineral Composition Indium content 

  Ppm 

Sphalerite ZnS 0.5–10,000 

Galena PbS 0.5–100 

Chalcopyrite CuFeS2 0–1500 

Enargite Cu3AsS4 0–100 

Bornite Cu5FeS4 1–1,000 

Tetrahedrite (Cu,Fe)12Sb4S13 0.1–160 

Covellite CuS 0–500 

Chalcocite Cu2S 0–100 

Pyrite FeS2 0–50 

Stannite Cu2FeSnS4 0–1,500 

Cassiterite SnO2 0.5–13,500 

Wolframite (Fe,Mn)WO4 0–16 

Arsenopyrite FeAsS 0.3–20 

Source: Felix (2000) 

Historical production of indium was relatively low and flat throughout the 1970s and 1980s 

as the nuclear industry was one of its few uses (Figure 6.1). The use of indium in flat screen 

displays began to drive demand significantly from the 1990s and from this period, 

production data shows a significant rate of growth. This rapid growth rate has been 

sustained by the new uses in thin film PV, which has contributed to demand over the last 

decade.  

The historical indium price is volatile, likely due to a combination of rapidly changing 

demand drivers and the relative inflexibility of the by-product nature of its recovery (Figure 

6.2). A significant price spike in the 1970s likely represents the new indium use in the 
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nuclear sector, while the subsequent volatility is likely a response to the development of the 

flat screen display and thin film PV markets. 

Figure 6.1: Historical production of indium from 1972 to 2013 

 

Source: USGS (2013) 
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Figure 6.2: Global indium price in 1998 dollars between 1950 and 2011 

 

Source: USGS (2013) 

6.2 Indium resource system 

6.2.1 Indium demand 

In this thesis demand for CIGS thin film PV is considered the most significant driver of 

demand in the future. This topic is discussed first. Other demands such as thin film displays 

are then considered separately below. 

Demand for indium in CIGS thin film PV 

The PV sector has grown significantly in the past decade, largely driven by the global 

decarbonisation agenda, and increasing emissions reduction targets. This growth is forecast 

to continue (Figure 6.3), with PV generation becoming a significant contributor to the global 

energy mix in the future29. Several PV technologies are expected to contribute: 1st 

generation crystalline silicon (c-Si); 2nd generation inorganic thin film; and 3rd generation 

                                                      
29

 PV is forecast to contribute 11% of global electricity by 2050 (IEA 2010b) 
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technologies including organic PV and other technologies relatively far from 

commercialization. Due to their low cost and relative technological readiness, 2nd generation 

inorganic thin film technologies are expected to take an increasing share of the PV market in 

the future (Figure 6.4). CIGS is included in this group of thin film technologies, and the 

impact on indium demand of this growth in thin film technologies is therefore dependant on 

the relative proportion of CIGS in the future PV energy mix, as well as the quantity of indium 

used per watt of CIGS PV cell produced. 

Figure 6.3: IEA PV Roadmap 

 

Source: IEA (2010a) 
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Figure 6.4: IEA estimate of future PV market share 

 

Source: IEA (2008) 

The indium material intensity in thin film PV modules depends on a range of variables 

relating to, amongst other things, the components of thin film PV cells. The structure of 

those cells is therefore relevant to the calculation of material demand. Figure 6.5 presents 

typical structure of CIGS thin film PV cells. The top contact layer is a Transparent Conductive 

Oxide (TCO) and the bottom contact layer is molybdenum. Other layers exist to provide 

these functions though this is assumed to have no bearing on the analysis here. The active 

layers consist of Cu In(x)Ga(1-x)Se2 which is an alloy consisting of copper indium diselenide 

(CIS) and copper gallium diselenide (CGS). The relative weight of indium in a layer of Cu 

In(x)Ga(1-x)Se2, is therefore related to the relative quantities of CIS and CGS in the alloy. 

Differing alloy compositions exist, therefore impacting indium demand. The ratio is 

represented in the chemical notation by x, which is an integer between 0 and 1, with 0 

representing pure CGS and 1 representing pure CIS. In practice this number is usually 

between 0.5 and 0.85. 
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Figure 6.5: Typical structure of CIGS PV cells 

 

Note: these diagrams are for illustration only, and do not represent any specific commercially available cell 

design. 

The active layer thickness also impacts on the demand for indium and minimising the 

thickness of this layer, while maintaining efficiency, is one of the key challenges faced by PV 

manufacturers. There are several different deposition techniques used by thin film PV 

manufacturers to deposit active layer materials. Vacuum based processes dominate current 

thin film PV manufacturing, including sputtering and chemical vapour deposition (currently 

used by First Solar (NREL 2010)). Other deposition techniques exist, such as roll-to-roll 

processes, where active materials are deposited on rolls of substrate (such as aluminium 

foil) using a system analogous to ink-jet printing (Kessler et al. 2005). The efficiency with 

which active layers are deposited and recycled within the manufacturing process is referred 

to here as utilisation. In sputtering for example, a substrate is placed in a vacuum chamber 

adjacent to a ‘target’ made from the active layer material. The chamber is then bombarded 

with charged particles, which collide with the target material, aerosolising particles of the 

target. These particles then settle on the substrate, forming a thin layer. Figure 6.6presents 

a generic representation of the sputtering process. Particles also settle on the chamber wall 

and a large quantity of active layer material is left in spent targets. Some of these materials 

are recovered from the chamber wall and through the reprocessing of spent targets. A 
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quantity of material is usually left however, and the efficiency of this recovery process may 

have a significant impact on the utilisation rate of PV manufacturing. 

Figure 6.6: Generic description of sputtering process 

 

The yield rate is another variable in the manufacturing process which impacts on the 

demand for materials. Some produced cells will not reach the market due to quality control 

issues. These cells may be reprocessed in order to recover the component materials but 

recovering 100% of materials is unlikely. Finally, the finished cell has a measured efficiency, 

defined as the single junction efficiency of converting light to electricity under standard test 

conditions (1000W/m2). The efficiency impacts on the material demand per unit of energy 

capacity. The relationship between these variables is discussed below. 

The range of variables relevant to the demand for materials from PV technologies can be 

summarised as: 

 Density of active material, in this case either CIGS or CdTe; 

 Thickness of active layer, measured in microns (µm); 

 % of material in layer, in this case measuring the share of Indium in CIGS and 

calculated by formula weight; 

 Utilisation, a measure of efficiency of material use in the manufacturing process  
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 Yield, a measure of the material lost due to faulty cells; and 

 Efficiency, a measure of the amount of energy captured per square meter under 

standard test conditions (STC), being an energy intensity of 1000W/m2. 

These estimates can be combined in the following mathematical relationship: 





UYS

F
M R   

6.1 

where MR is the material requirement in g/Wp, ρ is the density of the active layer material, F 

is the % of material in layer, μ is the thickness of the layer in microns (μm), U is the 

utilisation factor, Y is the yield, S is the insolation under standard conditions (1000W per m2) 

and η is the electrical conversion efficiency of the PV cell. 

By multiplying MR by an assumed annual PV manufacturing rate, the total annual demand 

for a specific material can be determined. Conversely, by assuming a total annual material 

availability and dividing this by MR,a total achievable PV manufacturing rate can be 

estimated. 

There are several studies examining the future demand for indium from thin film PV 

(Andersson 2000; Keshner & Arya 2004; Fthenakis 2009; Wadia et al. 2009). Many 

assumptions for the variables listed above are discussed in these studies and these are 

presented in Table 6.2. Since most authors do not discuss yield separately, it is assumed to 

be 100% in all cases. 

Some authors present assumptions that appear conservative given the current state of 

development (Andersson 2000; Fthenakis 2009). Other authors present highly optimistic 

assumptions based on theoretical limits that are unlikely to be achieved (Wadia et al. 2009). 

This variability in assumptions results in a range of material intensity assumptions from 

0.0002 to 0.0382g/Wp, two orders of magnitude variation. Identifying the likely range of 

future PV demand is therefore not transparent based on the available literature. 
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Table 6.2: Assumptions on indium requirement in CIGS manufacturing 

Author Density 

(g/cm3) 

Thickness 

(µm) 

% In in 

layer 

Utilisation 

(%) 

Efficiency 

(%) 

Material 

Requirement 

(g/Wp) 

Andersson 

(2000) Base 

Case 

5.51 2 26.55 100 10 0.0291 

Andersson 

(2000) 2020 

Expansion 

potential   

5.51 0.5 18.36 100 14 0.0036 

Fthenakis2 

(2009) 

Conservative 

5.83 1.2 207  90 14 0.011 

Fthenakis2 

(2009) Most 

likely 

5.83 1 207 90 15.9 0.0081 

Fthenakis2 

(2009) 

Optimistic 

5.83 0.8 207 90 16.3 0.0063 

Keshner & 

Arya (2004) 

Current 

production 

5.8 2 308 75 12 0.0382 

Wadia (2009) 5.6 0.05 241,9 100 33 0.0002 

Note: 

1
Back calculated using stated assumptions and the relationship in Equation 6.1 

2
Fthenakis estimates for 2020

 

3
Not stated by Fthenakis (2009). Assumed from Keshner & Arya (2004) 

4
Based on data extracted using Engauge digitizer 

5
CuIn(x)Ga(1-x)Se2 assumption x=0.75 

6
 CuIn(x)Ga(1-x)Se2 assumption x=0.5 
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7
 CuIn(x)Ga(1-x)Se2 assumption x=0.55 

8
 CuIn(x)Ga(1-x)Se2 assumption x=0.85 

9
 CuIn(x)Ga(1-x)Se2 assumption x=0.67 

10
Andersson (2000) states that 7GWp is the constrained annual production possible with 290 tonnes of indium 

annual production. However, with a stated metal requirement of 2.9g/m
2
, an efficiency of 10% and a 

manufacturing rate of 7GW/y the demand for materials would be ~204t/y. The paper does not explain this 

disparity. 

Speirs et al. (2011) take a range of material intensity cases based on the range of 

assumptions found in the literature and derive a low material intensity case of 0.0032 g/Wp 

and a high material intensity case of 0.0464 g/Wp. As a result of this analysis Speirs et al. 

(2011) concluded that despite uncertainties about future demand, if the CIGS PV market 

were 20GW/y this could account for 12% to 170% of the current production of indium. 

Whether the CIGS market will ever reach this level of manufacturing, or how long that 

would take, is uncertain. 

Table 6.3: Range of potential indium intensities in grams per watt peak based on the 

range of variable assumptions in the literature 

Variable Lowest material use Highest material use 

Layer Thickness (μm) 0.5 2 

Utilisation (%) 100 75 

Efficiency (%) 16.3 10 

Indium Content (%) 18 30 

Indium intensity (g/Wp) 0.0032 0.0464 

Source: Adapted from Speirs et al. (2011) 

Notes: Yield is assumed to be 100% 

Other demand 

There are several end uses other than thin film photovoltaics that have some bearing on 

indium demand. Some reflect indium’s properties as a conductor or semiconductor, others 

its physical properties. The significant rise in indium production presented in Figure 6.1 

appears largely driven by growth in demand for indium tin oxide (ITO), a transparent 

conductive oxide used in flat panel displays (USGS 2009a; USGS 2011). The growth in flat 
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panel display technologies like LCD TV screens and flat screen computer monitors has driven 

ITO demand and therefore demand for indium (USGS 2009a; USGS 2011).  

Other uses of indium include: in its metallic form in vacuum seals for low temperature 

sealed storage containers; in the electrolyte of zinc alkali batteries; ITO in sodium vapour 

lamps for improved efficiency; and in LED applications such as fibre optic communication 

technologies and to a lesser extent in LED displays (USGS 2011). Indium is also a constituent 

of several low melting point alloys used in a variety of industrial applications and consumer 

products. 

Data on end-use consumption is not widely available, but Figure 6.7 presents some 

indicators of the trend in indium consumption in the United States. US consumption over 

the period 1975-2006 shows significant growth in indium demand in coatings applications, 

including ITO coatings in flat panel display technologies. Over this period, coatings as a share 

of total indium consumption in the US grew from 31% to 66%.  

Figure 6.7: US indium consumption by end use 
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Source: USGS 

Note: Coatings includes ITO  

Data on PV market share in demand for indium are not common. Current estimates suggest 

photovoltaic use of indium accounts for an estimated 2-5% of the primary indium 

production, with use of ITO in flat panel displays accounting for 65% of annual indium 

production and around 30% used in other electrical and industrial applications (Fthenakis 

2009; Shon-Roy 2009). 

Efficiency 

Efficiency of indium use in CIGS thin film PV modules is an integral part of PV manufacturers’ 

ongoing drive to reduce costs. Reduction of layer thickness, increasing efficiency, increasing 

utilisation rate and increasing yield are all components of this drive to reduce costs, and all 

of those factors will also reduce indium intensity. Since the range of CIGS indium intensities 

discussed above includes both relatively contemporary estimates and theoretical maxima, 

the full extent of potential efficiencies in indium use have already been explored. The likely 

minimum indium intensity achievable is significantly greater than the theoretical limits 

explored by Wadia et al. (2009) however. Realistic future indium intensities are likely to lie 

in the order of the midpoint between these values and the current values for electrical 

efficiency, utilisation and layer thickness or approximately 0.02 grams per watt. 

Substitution 

The potential for substitution of indium in PV applications is significant. In the composition 

of CIGS active layer material the quantity of indium can be varied by increasing the relative 

proportion of copper gallium diselenide in the alloy (Speirs et al. 2011). However, reducing 

indium from CIGS below commonly used proportions is likely to negatively impact electrical 

efficiency, cancelling out any indium intensity improvements. However, other thin film 

technologies like amorphous silicon or cadmium telluride could both substitute for CIGS 

with no use of indium, assuming that their transparent top contact is not an indium 

compound (see 6.2.1 ). Moreover, 1st generation crystalline silicon cells, and future 

technologies such as organic PV could also substitute for CIGS. The range of potential 

substitution impacts could therefore range extremely from CIGS representing all new PV, to 

CIGS representing a vanishingly small proportion of future PV manufacturing. 
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6.2.2 Indium production 

Historical indium production is presented in Figure 6.1, showing the approximate 

exponential production growth. The geographical distribution of production in 2013 is 

presented in Figure 6.8. This demonstrates the significant contribution China makes to 

global production. This geographical distribution closely follows zinc given the host/by-

product relationship between zinc and indium. China is the largest producer of zinc, making 

up approximately 35% of global production (USGS 2014b). 

Figure 6.8: Geographical distribution of indium production in 2013 

 

Source: (USGS 2014b) 

By-product indium production 

Indium is a by-product metal, meaning that it is not recovered for its own economic value, 

but as a by-product of the extraction and refining of a host base metal. Indium is a by-

product of zinc refining. The vast majority (~95%) of zinc mined is from sulphide ore 

deposits in which the sphalerite (ZnS) is mixed with sulphides of Cu, Pb and Fe. Zinc content 

is usually between 3 and 10%. Direct mining of indium may be possible at prices of $500,000 

and above, but previous brief periods above this price have not initiated this type of 

production (Green 2009). 
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There are many different processes used to recover indium from zinc or other base metal 

ores. Some of these are described in Felix (2000), demonstrating the variety and complexity 

of refining processes. 

Indium recovery processes typically have low extraction efficiency, which may incentivise 

end of life recycling in the future. Given this complexity, low efficiency, and the low 

concentrations relative to the host metal, the economics of by-product metal extraction are 

more complicated than other mineral resources. The incentive to produce indium is not only 

driven by the indium price, but also by the price of zinc, value of other trace elements and 

the type of ore extracted, as well as the cost of the production processes used. 

Though absolute concentrations of indium can be measured in the ore it is recovered from 

(see Table 6.1), not all of this material will be produced. Some of these ores are processed at 

refineries that have no indium recovery capability. The indium in these ores is therefore 

discarded in tailing and other wastes. For those refineries that have indium recovery 

capability the extraction of indium is subject to a recovery factor of less than 100%, with the 

remaining indium also discarded. The Indium Corporation estimates that currently only 30% 

of indium extracted in zinc ore is produced, with the remaining 70% discarded in wastes 

(Mikolajczak 2009). Wastes containing indium are difficult to treat but may potentially be 

used as a resource of indium in the future (Mikolajczak 2009), though the economics of this 

recovery are likely to be less favourable than exploitation of more conventional resources. 

Authors have estimated indium recovery factors from zinc processing concentrates at 

between 50% and 80%, though the literature does not explain this variation, or how much 

this recovery factor can be increased in the future (Fthenakis 2009; Mikolajczak 2009). The 

examination of potential increase in recovery rate, particularly the potential to recover 

indium from tailings, is an important area for future research. 

Finally, the produced indium, often at concentrations of between 95% and 99.9% purity, 

must be refined to purities of 99.9999% for many semiconductor uses. This typically involves 

electro refining, where indium electrodes are placed in an electrolyte through which electric 

current is passed. Impurities collect in anode slimes, where they are isolated and extracted. 

This process is repeated until the desired purity is reached. 
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Recycling 

Large quantities of material are wasted in many of the common industrial processes which 

utilise indium, creating a significant opportunity for recycling to improve process utilisation. 

However, this is typically considered a process efficiency issue, represented by the 

‘utilisation’ variable in Section 6.2.1 . The process used to deposit ITO on flat panel displays 

is a particular example, with most of the indium remaining in unused target material in 

overspray and other wastes. Only 30% of the ITO target is actually deposited on the 

substrate (USGS 2011). An estimated 60 – 70% of the target is recycled (Hsieh et al. 2009; 

Mikolajczak 2009; USGS 2009b). Often the user returns this recovered material to the 

supplier who reprocesses it into new indium targets, closing the material supply loop. 

Around 1000 tonnes per annum of indium is recovered in this way (Mikolajczak 2009) and is 

additional to mined metal supply. The result is that more indium circulates in this industrial 

resource loop than is demanded in mine produced indium. For simplicity, however, the 

mine produced indium into this industrial process is considered equal to the weight of 

indium leaving the system on flat panel displays, plus the quantity of material lost during the 

process. Based on the data above, the material lost may be between 5% and 10% in the case 

of flat panel display manufacturing. This experience may indicate the potential for process 

recycling in CIGS manufacturing, which has similarly low utilisation in the 30%-50% range30 

(Fthenakis 2009). 

Given the complex nature of indium primary extraction and refining processes and the 

inherent low efficiency of the process, recycling of indium from end-of-life products 

containing the metal is likely to be incentivised for economic and environmental reasons. 

However, details on the recycling market and its future potential are scarce. The USGS state 

that there is a process to recover indium directly from used displays, though no details are 

provided on the quantities of recyclates produced. Lab based efficiencies of 92% have been 

reported for such recycling processes (Hsieh et al. 2009). In principle waste flat screens 

using ITO could also become a significant source of indium, given the relatively short life of 

many consumer electronic products this may emerge within the next ten years. Recycling 

                                                      
30 In the case of two stage selenization deposition process based on sputtering, one of the 

deposition techniques currently mostly used in CIGS manufacturing.  
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rates for other end-uses of indium are not known, but are expected to be small given the 

size of those markets. 

The potential to recover indium from end of life PV modules is uncertain. The similarity 

between the structure of flat panel displays and PV modules may indicate that high 

recycling efficiencies are possible and some authors include end of life recycling estimates of 

80%, comparable to current ITO end of life recycling (Fthenakis 2009; Hsieh et al. 2009). 

6.2.3 The indium price 

The formation of the indium price follows a similar path to that of lithium. Indium has no 

futures market, with all indium traded for instant delivery (the spot market). Indium is 

produced in smaller quantities and is significantly more expensive than lithium per tonne. 

Indium has experienced significant price pressure from ITO demand, which has driven 

significant recovery efficiency improvements (Green 2009). However, the production of 

indium for its own economic value has not yet been forthcoming despite this price pressure, 

highlighting the economic issues associated with by-product metals. 

6.3 Modelling the indium resource system 

Simple metrics 

Again, efforts to model the indium resource system are scarce. At their most simple, efforts 

to project future availability of indium involve simple metrics akin to the R/P ratio. 

One type of estimate for the future production of these metals uses current production as a 

metric against which estimates of future demand for the metal from the PV market are 

compared (Andersson 2000; Keshner & Arya 2004; Wadia et al. 2009). However, while this 

type of comparison may provide an interesting illustration, it does not convey any useful 

information regarding the future supply potential of a material. 

Another approach is to present some form of reserve estimate, assume that this is a fixed 

stock and estimate the future PV production potential if a given proportion of that reserve 

were used to manufacture PV cells under different PV demand assumptions (Andersson et 

al. 1998; Andersson 2000; Feltrin & Freundlich 2008; Wadia et al. 2009). This approach: a) 

ignores the rate at which this reserve can be produced; b) assumes that current knowledge 
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of the discovered reserves is accurate; and c) assumes that no reserves will be discovered in 

the future. These assumptions are unlikely to hold true, undermining the value of this type 

of future availability assessment. 

Simple forecasts 

A more sophisticated approach is to formulate an estimate of future production based on 

assumptions which influence the change in annual production rate over time (Andersson 

2000; Keshner & Arya 2004; Fthenakis 2009). These can be relatively simple assumptions or 

more detailed time series models. 

Four studies present ‘future production’ based estimates of indium availability (Andersson 

2000; Keshner & Arya 2004; Fthenakis 2009; Wadia et al. 2009). Anderson (2000) provides 

an estimate of annual availability achievable by 2020, while Fthenakis presents two 

scenarios for availability between 2008 and 210031. Keshner & Arya (2004) and Wadia et al 

(2009) present future availability potential without specifying the time horizon. Andersson 

(2000) and Keshner & Arya (2004) also present an availability figure based on production in 

the year their studies were published. 

Anderson (Andersson 2000) presents two figures for CIGS PV manufacturing potential, 

based in part on two separate assumptions of future indium availability. The first, used in 

Andersson’s ‘Base Case’, assumes annual material availability of 290 t/y, based on indium 

production in 1997. The origin of this data is not clear since USGS data for 1997 is only 

230t/y and Andersson notes that “Refinery data for all metals, except for [...] indium, are 

taken from the US Geological Survey.” Andersson does not state which other source is used 

to derive the indium figure, though Crowson (1994) is a source cited for production data of 

other materials. 

The second figure, used in Andersson’s ‘Expansion Potential’ case, is an estimate of 

availability in 2020 based on increased mining of primary metal (in this case zinc) and 

increased recovery of indium from those ores. By increasing overall availability by a factor of 

1.2, indium availability is increased to 348t/y in 2020.  

                                                      
31

 Only the scenario data to 2050 is presented. 
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The two estimates presented by Andersson are very conservative in view of modern 

production rates. In the 13 years since Andersson’s work, indium production has increased 

to approximately three times the base case estimate and twice the expansion potential 

case. 

Keshner and Arya (2004) provide two assumptions of future indium availability, designated 

‘current production’ and ‘potential production’. The first assumption is based on production 

of indium in 2000, estimated by the USGS as 335t/y. The potential production assumption is 

based on indium availability of 26,143t/y, two orders of magnitude greater than production 

in 2000. This estimate is arrived at based on a fixed percentage of crustal abundance 

estimates, though the percentage, or crustal abundance assumed, is not disclosed. 

However, basing estimates on crustal abundance does not account for variability in ore 

concentration and the resulting economic viability of production. The appropriateness and 

usefulness of this estimate is therefore questionable. 

Fthenakis (2009) presents the most sophisticated basis for assumptions on future 

availability of indium using the simple forcasting methods, giving a time series of production 

from 2008 to 2100. Two cases are presented: a ‘conservative case’ and a ‘most-likely’ case32. 

For indium, Fthenakis derives these cases by first assuming future zinc supply. Fthenakis 

notes that zinc extraction has grown at 3.2% between 1910 and 2002 and that growth in the 

last one to two decades is consistent with the historical average (Gordon et al. 2006; USGS 

2008). Fthenakis takes the average refinery production between 2007 and 2008 to be 

545t/y and then applies to this a growth rate of 3.2%, with a peak in production in 2025 for 

the conservative case and 2055-2060 in the most likely case. This peaking profile is assumed 

based on the similarities Fthenakis draws between zinc and copper33, and reflects the 

copper/tellurium scenario adopted in reference to Fthenakis’ CdTe analysis. A recovery 

efficiency of 70%-80% is stated, though Fthenakis does not state his assumption for indium 

content in zinc ores. Finally Fthenakis assumes that current competing uses, such as flat 

                                                      
32

 An ‘optimistic’ case is also referred to, though the material availability profile is not presented. 

33
 Fthenakis cites a similar reserves to production (R/P) ratio between zinc and copper as justification for 

assuming the same production profile. However, authors have written previously about the inadequacy of R/P 

ratios for analysis of future production (Bentley et al. 2007; Sorrell et al. 2009), suggesting that this may not be 

the best basis to defend this analogy. 
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panel displays, will increase in the future and therefore allocates only 50% of future indium 

production growth to the PV market (Figure 6.9).  

Figure 6.9: Fthenakis’ conservative and most likely estimates of future indium availability 

for thin film PV including recycling  

 

Fthenakis applies a level of sophistication to availability assumptions which is not replicated 

by many other authors. However, not all of the assumptions needed to derive these figures 

are entirely explicit, and it is not possible to judge in all cases whether those assumptions 

are optimistic, conservative or otherwise.  

Finally, Wadia et al (2009) estimates CIGS production possible given annual production of 

indium in 2006. USGS production data were used, which estimated global indium 

production to be 588t/y. Again this is not an estimate of future production potential and as 

set out previously it is unlikely that this will prove representative of indium production in 

the future. 
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System dynamics  

The modelling methodologies presented above are simplistic in many respects and there is a 

lack of more sophisticated approaches applied to modelling any aspects of indium resource 

system. System dynamics has been used to model the interaction of the thin film PV market 

and the development of tellurium resources (Houari et al. 2013), and this resource system 

has many similarities to the indium resource system in that: 

 tellurium is recovered as a by-product of base metal extraction and refining; 

 tellurium is traded in small volumes for a relatively high price; 

 direct mining of tellurium is possible, but not yet economic in significant quantities; 

and 

 tellurium is recyclable, but is not recovered from end-of-life products in any 

significant quantities commercially. 

In this model, supply variables include the growth in host metal production (copper), the 

recovery rate of tellurium from copper refining, the contribution of direct mining of 

tellurium, and the contribution of recycling, including PV module lifetime delays on access 

to end-of-life CdTe modules. The model also includes demand side variables including the 

rate of technological development of CdTe modules and its effect on tellurium intensity. 

Though the values for each of these variables are specific to tellurium, the structure of the 

dynamics is entirely appropriate for modelling the indium resource system. 
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Figure 6.10: Causal loop diagram of tellurium resource recovery and demand for tellurium 

including CdTe demand and its development over time. 

 

Source: Houari et al. (2013) 

6.4 Summary 

Indium demand has increased in recent years due to the demand for flat-screen displays in 

which indium is used. However, future indium demand increase is expected as a result of its 

use in thin-film PV cells. The demand increase in the future could be significant depending 

on the development of the solar PV market, and the CIGS thin-film market in particular. 

Indium production is similar to lithium in many respects with one significant exception. The 

vast majority of indium is produced as a by-product of zinc mining, and the future 

production capacity of indium and zinc are therefore linked. Zinc production is expected to 

grow in the future, but if that growth is slower than the demand growth anticipated for 

indium then indium capacity will likely be a constraint on the indium resource system.  

The formation of the indium price is similar to that of lithium, with only a spot market 

through which the price discovery process occurs. 



~ 209 ~ 
 

The level of research examining future estimates of the indium resource system is similar to 

that of lithium, with relatively unsophisticated estimation methods common in the 

literature. System dynamics has been used to examine the critical metal tellurium, which 

has many of the same features as indium, including uses in thin-film PV technology and a by-

product production process. However, indium has largely been overlooked by those 

conducting quantitative modelling of metal resource systems. 

Important concepts discussed here, such as the impact of demand driven by low-carbon 

policies, the impact of recycling on production and the impact of capacity constrained by the 

link between host and by-product metals are used in Chapter 7 to develop a lithium 

resource system model, differentiated in these ways from a generic resource system model. 
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Chapter 7:  A system dynamics model comparison of energy resources 

“All models are wrong. Some are useful” 

George Box, 1987 

This chapter describes the mapping, construction and testing of three system dynamics 

models: the generic resource system model; the lithium resource system model; and the 

indium resource system model. The models are designed to test how these systems respond 

to changes in their input variables. In particular, Chapter 8 evaluates the way these models 

behave in response to short term constraints in capacity, varying contributions of recycling, 

the impact of by-product constraints on capacity and the impact of varying marginal 

extraction costs. The models are also used to investigate the impact of increased inventory 

material substitution. These models are not designed to make forecasts of future system 

conditions, but to shed light on the types of dynamic behaviour these systems exhibit.  

In Chapter 4 the evidence base surrounding common aspects of resource systems is 

gathered, and these aspects are used here to inform the development of the generic 

resource system model, including appropriate model elements, the structure of the 

relationship between those elements, and appropriate exogenous values to set as initial 

conditions. Chapter 5 and Chapter 6 gather evidence specific to the resource systems of 

lithium and indium respectively. This evidence highlights several structural differences in 

resource systems, including differing drivers of demand, recyclability, and by-product/host 

relationships in resource recovery. This evidence is used here to inform the adaptation of 

the generic resource system model into a lithium resource system model, and indium 

resource system model respectively. 

The chapter begins by presenting the key variables and other aspects of problem 

articulation in Section 7.1. The high-level, conceptual structure of the models is then 

described in section 7.2. This involves explicit boundary definition using boundary diagrams 

and the mapping of the specific systems through use of subsystem diagrams and causal loop 

diagrams. The chapter then describes in more detail the model structure for each of the 

three models, starting with the generic resource system model and developing similar 
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model structures to accommodate the differences of both the lithium and indium resource 

systems. This includes stock and flow diagrams, which present the detailed structure of the 

various model elements, and equations representing the underlying mathematical 

relationships defining this structure. These models are then tested in Section 7.4 and 

subsequently evaluated against the objectives of this thesis in Chapter 8. This structure 

follows the five steps of the system dynamics modelling process, laid out in Figure 3.8, 

namely: 1) problem articulation; 2) developing a dynamic hypothesis; 3) model formulation; 

4) model testing; and 5) model evaluation. 

7.1 Problem Articulation 

The first stage of the modelling process involves the definition of the models’ subject 

matter, its key variables, the time horizon over which the model should operate, and its 

reference modes, meaning the existing data which describes the types of system behaviour 

the model is designed to replicate. The theme of this modelling effort is clearly defined in 

the opening chapters of this thesis. The remaining issues are discussed below. 

7.1.1 Key variables 

The key variables motivating resource system behaviour can be summarised in several 

subsystems. The majority of these subsystems are common to all three models and where 

subsystems are specific to a particular model, this is indicated. The structure of these 

subsystems is described in greater detail in Section 7.2. 

Supply 

The function of a resource system is to supply that resource to its consumers. Issues of 

supply and related variables are therefore central to the development of any resource 

system model.  

There are several parts of the supply subsystem (Figure 7.1). First, supply and production 

can be separated to represent the difference between extracting a resource and supplying it 

to the market. By separating these, it is also possible to represent the existing inventory as a 

variable. Inventory is a useful variable to include as its fluctuation reflects the extent to 

which supply and demand are in equilibrium. Inventory represents the quantity of produced 

resource that exists above ground but yet to be supplied to the market. This includes 
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quantities of commodity existing between the well/mine and the refinery, and analogous to 

oil existing in pipelines and tankers but yet to reach the first consumer (refinery). However, 

it excludes politically managed quantities of oil such as strategic reserves. The model uses 

this stock to simulate the buffering effect common to the ‘up-stream’ side of many resource 

systems. 

Figure 7.1: The elements of the supply subsystem 

 

Capacity 

Resource systems typically suffer delay in the feedback of information (Sterman 2000). A 

significant driver of this delay is the inertia of production capacity. To increase production 

capacity of a resource requires significant capital investment, which can take in the order of 

several years (Kaiser & Snyder 2012). This is a critical feature defining the behaviour of the 

resource system and is therefore a necessary variable to include in a resource system 

model. The capacity subsystem includes variables for the level of production capacity, the 

utilisation of that capacity and the desired capacity needed in the future (Figure 7.2). 

Capacity utilisation reflects the proportion of existing capacity used for production at any 

given time. Decreasing commodity price impacts on the profitability of capacity and under 

these conditions the operators of capacity in a real system may choose to halt some 

proportion of production. Since increasing or decreasing capacity is either time consuming 

or economically problematic it is common for resources systems to tend towards some level 

of spare capacity, and subsequently deal with short term demand and profitability 

fluctuations by managing the utilisation of existing capacity. The capacity utilisation 

subsystem simulates this type of system behaviour. National strategic reserves also play a 

role in responding to changing demand, but quantities of resource such as this are not 

captured in the capacity subsystems. 

• Production 

• Inventory 

• Supply 

Supply 

• Generic resource 
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Desired capacity is the variable which communicates the need to increase or decrease the 

available capacity, based on the expected profitability of building new capacity. If all the 

capacity is being used, then demand increases will go unserved and price will increase. That 

price increase will increase the perceived profitability of building new capacity. If capacity is 

underutilised, then all demand is being served and profitability of building new capacity will 

be low. The model will not build new capacity under these circumstances. Profitability is 

calculated as the ratio of production costs to commodity price.  

Figure 7.2: The elements of the capacity subsystem 

 

Demand 

Demand for resources may be driven by a number of things. For example, the demand for 

oil has long been linked to global GDP (Kaufmann 1992), though recent studies have 

contested the direction of causality between the two (Narayan & Popp 2012). In addition, 

the relationship between oil demand and GDP is expected to weaken over time, decoupling 

the two through some combination of technological change and substitution effects 

(Kaufmann 1992). Alternatively, a peak in the availability may precipitate a peak in oil 

demand through dramatically increasing price (Sorrell et al. 2009). Demand for critical 

metals is expected to be driven by a very small number of end uses, such as low-carbon 

technologies (Angerer et al. 2009b). This demand growth is expected to slow as installation 

of these technologies flattens. Demand is also influenced by the market price of the 

commodity through the price elasticity of demand (Stiglitz & Walsh 2006). When the price 

of metal goes up, consumers may be influenced to use less or to develop more efficient 

ways to use it, decreasing demand. Conversely if the price decreases, demand is likely to 

increase. 
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Figure 7.3: The elements of the demand subsystem 

 

Price 

As discussed above, commodity price has a significant influence on resource systems, and 

representing that price formation within the model is important. Price is defined by three 

main variables. First is expected price, which represents the market’s expectation of the 

resource price in the future. This variable allows for the time delays in price formation and 

the market’s need to make price based decisions in the very short term. This therefore 

allows the model to represent the kinds of price volatility associated with price uncertainty 

that are common in resource systems. The effect of resource extraction costs is also 

important in the price formation process. While companies can produce resources at a cost 

below market price in the short term, over the medium term the market price is likely to be 

linked to the marginal cost of production (Mankiw 2011)34. An estimate of the cost of 

production and the effect of that cost on the commodity price are included to incorporate 

these effects. The extent to which supply and demand are in equilibrium affects the market 

price of commodities, with markets experiencing rising demand or falling supply, subject to 

price inflation, and markets with falling demand or rising supply experiencing price deflation 

(Stiglitz & Walsh 2006). This equilibrium is captured by inventory coverage. Where the 

proportion of inventory over demand is falling, price will rise, and where the proportion of 

inventory over demand is rising, price will fall. 

                                                      
34

 The quantity of product that a competitive firm is willing to supply to the market is the quantity where 

marginal cost and marginal revenue are equal for any given price. An upshot of this is that a firms marginal 

cost curve becomes its supply curve, hence price and marginal cost are linked. 
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Figure 7.4: The elements of the price subsystem 

 

Recycling 

While previous subsystems have applied to all three resources discussed in this thesis, the 

recycling subsystem is specific to the metal resource systems, as the generic resource is not 

recyclable. This is the first significant structural difference between the three resource 

systems modelled.  

The recycling subsystem is defined by three main variables. The lithium or indium is 

assumed to be incorporated in low-carbon products or other consumer products, which can 

be recycled at the end of their useful life. The product lifetime defines how long that period 

is and therefore how long after the metal was originally recovered from a mine it will be 

available for recycling. Not all of the metal contained in these products will be recycled. 

Some products will not reach recycling facilities, and those that do will be subject to a 

recycling process which will recover less than 100% of the metal contained in the product. 

This is captured by the recycling rate. Whether recycling happens at all is a function of the 

cost of recycling and the market price of metal. In the absence of regulation, metal will only 

be recycled if it is economical to do so (Speirs et al. 2013a).  

Figure 7.5: The elements of the recycling subsystem 
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By-product 

The final subsystem defines the by-product nature of indium recovery. This is another 

structural difference between the resource systems modelled and applies only to the indium 

resource system. The subsystem assumes that the majority of indium is recovered as a by-

product of zinc production (a small subsystem also allows for primary indium production to 

be modelled). This parent metal capacity is therefore endogenous to the model. The 

quantity of indium by-product contained is included as a fixed variable, while the recovery 

rate improves over time, tending towards a defined maximum asymptotically. 

Figure 7.6: The elements of the by-product subsystem 

 

7.1.2 Time horizon 

The models described in this chapter are designed to run over a 100 year time period. This 

relatively long time scale was chosen for two critical reasons. First, a number of the 

feedbacks in resource systems are affected by delays in the rate of response. These 

feedback delays are discussed in the case study chapters above. An illustrative example of 

this is the time delay experienced in the oil resource system between the decision to 

increase oil production capacity and the availability of that capacity for production. This is a 

function of the time it takes to invest in and construct the large infrastructure projects 

associated with oil production capacity (Kaiser & Snyder 2012). The construction time for 

such projects can take in the order of several years and the effect of this delay on the 

system’s response to change can influence the behaviour of variables for significantly longer 

than the delay period. The 100 year model time horizon allows for these time delays to be 

reflected fully. 

Second, climate change mitigation is typically measured on decadal timescale, and the 

targets driving uptake of low-carbon technologies are often set at the year 2050. The 100 
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year time horizon allows for the impacts of these targets on future resource demand to be 

fully examined. 

Finally, any modelling over such long timescales is subject to significant uncertainty, and it 

becomes increasingly hard to reasonably validate models as the time horizon increases.  

7.1.3 Reference modes 

In system dynamics modelling the expected behaviour of the system being modelled is 

examined to provide guidance as to realistic types of expected behaviour, and to validate 

the model to the extent that this is possible (Sterman 2000) (see Section 7.4 ). The evidence 

used to inform expectations of model behaviour is typically time series data on key system 

variables of interest such as price, or supply rate. These time series are referred to as 

reference modes. It is possible to use either recorded historical trends, or widely expected 

future forecasts as reference modes depending on the purpose of the modelling effort 

(Sterman 2000; Contestabile 2012). 

Historical price and historical supply are readily available data sets for lithium and indium 

and provide appropriate historical reference modes. The reference modes of oil are used as 

a proxy for the generic resource system (Figure 7.7, Figure 7.8, Figure 7.10, Figure 

7.11,Figure 7.13 and Figure 7.14). In addition to the historical reference modes, there are 

also some forecasts representing possible futures which can inform the modelling process 

based on the types of dynamic behaviours expected (Figure 7.9 and Figure 7.12). Both of 

these types of modes are discussed for each of the resources in turn below. 

Oil as a proxy for the generic resource system 

The historic global production of oil is dominated by two main phases over the past 60 

years. In the period to 1970 oil production appears to have grown at an exponential rate. 

This is followed by a period of oscillation, with an underlying growth trend which appears 

more linear. In system dynamics this first trend can be replicated by a reinforcing feedback 

loop, while the second trend is likely to be represented by a balancing feedback loop 

containing a delay. 

The historical oil price (Figure 7.8) has exhibited significant volatility over the past 60 years. 

This behaviour can be replicated by a balancing feedback with delay. The extreme nature of 
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some of the oscillations seen in this reference mode can be replicated by making the delay 

sufficiently long. 

Figure 7.7: Global oil production between 1950 and 2007 

 

Source: (Sorrell et al. 2009) 
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Figure 7.8: Global oil price in 2012 US dollars per barrel 

 

Source: BP (2013) 

Notes: Oil price based on three separate price indicators: 1861-1944 US average; 1945-1983 Arabian Light 

posted at Ras Tanura; and 1984-2012 Brent dated. 

Available forecasts of future prospects for oil production tend to fall into three main 

categories: peak; plateau; or growth (Hughes & Rudolph 2011) (Figure 7.9). Peak production 

is forecast to follow the bell-shaped curve described by Hubbert (1982). While peak oil 

theory states that this peak will be driven by a peak in oil production, others have suggested 

that a peak in oil demand should be expected, delivering a similar outcome in terms of bell-

shaped supply profile, but with very different macroeconomic implications. 

Plateau production is likely to oscillate around an average within a +/- 15% range, though 

there are different definitions of plateau in the literature (Sorrell et al. 2009). This system 

behaviour is likely dominated by the influence of a balancing feedback loop with delay. After 

the period of plateau, future oil demand is expected to decrease, following an exponential 
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decline similar to the decline in the peak oil production profile. This decline is likely to be 

dominated by a balancing feedback loop. 

Finally the growth production forecast projects oil production to increase into the future. 

While those that forecast such growth tend not to look further than mid-century, their 

forecasts show no period of decline (Sorrell et al. 2009). This kind of growth can be 

represented through a combination of reinforcing and balancing feedback loops, with the 

relative contribution of each determining the shape of growth. 

Figure 7.9: Illustrative example of three possible oil production futures 

 

Source: Hughes and Rudolph (2011) 

Lithium 

Historical production of lithium approaches exponential growth, though there is significant 

oscillation and volatility within that trend (Figure 7.10). The growth trend can be 

represented by a reinforcing feedback loop, with the additional oscillation and ‘noise’ in the 

data replicated by the combination of reinforcing feedback and balancing feedback with 

delay.  
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Conversely, the historical price of lithium has declined exponentially since the 1950s. This 

decline is also subject to the kinds of oscillation and volatility seen in lithium production. A 

balancing feedback loop with delay can represent that type of system behaviour. 

Figure 7.10: Global lithium production between 1950 and 2011 

 

Source: USGS (2013) 
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Figure 7.11: Global lithium price in 1998 dollars between 1952 and 2011 

 

Source: USGS (2013) 

Forecasters of future lithium production have used very similar techniques to those applied 

to future oil forecasting, often following a Hubbert-type curve fitting method. This approach 

can produce multiple types of future production profile depending on the functional form of 

the extrapolative curve used (Figure 7.12). The resultant forecast production profiles range 

from a steep curve peaking in the 2060s (logistic curve), to a slow, consistent growth curve 

with no peak before 2100 (Gompertz curve). These outcomes can be replicated in system 

dynamics models using a combination of reinforcing and balancing feedback loops, with the 

reinforcing feedback loop dominating in the early phase and the balancing feedback loop 

dominating in the later phase of the curve. 
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Figure 7.12: Illustrative example of three possible critical metal production futures 

 

Source: Vikström et al. (2013) 

Indium 

The indium historical reference modes are much the same as those of oil in the most 

general terms. Indium production appears to have grown exponentially in the last few 

decades, while its price has been highly volatile over the same period. These system 

behaviours can therefore be replicated in the same way as for oil, with reinforcing feedback 

replicating growth, and balancing feedback with delay replicating oscillation and volatility.  
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Figure 7.13: Global indium production between 1972 and 2011 

 

Source: USGS (2013) 
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Figure 7.14: Global indium price in 1998 dollars between 1950 and 2011 

 

Source: USGS (2013) 

Indium production forecasts are broadly similar to those for lithium, with future prospects 

from continuous growth, to peaking production within the next 50 years (Fthenakis 2009). 

7.2 Dynamic hypothesis 

The next stage in the system dynamics modelling process is to develop a stock and flow 

structure which describes the dynamic system to be modelled. This is often referred to as 

developing a dynamic hypothesis: dynamic, as it must explain the dynamic behaviour of the 

system and hypothetical, as it is always subject to testing and revision based on developing 

understanding of the system throughout the modelling process. This section breaks down 

the two significant stages of dynamic hypothesis formulation. It begins by examining the 

boundary of the system modelled, listing the variables in the model that are endogenous 

(defined internally by the model dynamics), those that are exogenous (introduced to the 

model as external input variables) and those that are excluded (not included in the model at 

any level). The broad interactions between groups of variables (subsystems) are then 
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examined using subsystem diagrams, allowing high level characterisation of the system 

structure and examination of the structural differences between resource systems. 

7.2.1 Endogenous focus 

The goal of system dynamics modelling is to find endogenous explanations for phenomena 

witnessed in the behaviour of complex systems. By seeking to explain the system behaviour 

through mostly endogenous variables, it is possible to test the system and begin to 

understand the links between the structure and rules of the system, and its behaviour 

(Sterman 2000). In contrast, models that describe systems largely through exogenous 

variables say little about the relationship between system structure and system behaviour, 

as the structure of the model is largely influenced by inputs that are exogenously assumed 

(Sterman 2000). Ultimately it is impossible to draw strong conclusions from this type of 

modelling as there is no way to understand what influenced the variables that have most 

influence on the model. For this reason it is important to define the most important 

variables and ensure that they are endogenous to the model structure. To explicitly examine 

which variables are endogenous, what is exogenous and what is excluded, boundary 

diagrams are presented below for each of the three resources (Table 7.1). 
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Table 7.1: Boundary diagrams for each of the three resource models. 

Generic resource Model 

Endogenous Exogenous Excluded 

Production Costs Finance 

Consumption Resources Taxes 

Price GDP Human Resources 

Inventory Policies Spatial  

Demand   

Capacity acquisition an 

utilisation 

  

 

Lithium Model 

Endogenous Exogenous Excluded 

Production Costs Finance 

Consumption Resources Taxes 

Price Policies Human Resources 

Inventory EV market Spatial  

Demand   

Capacity acquisition an 

utilisation 

  

Recycling    

 

Indium Model 

Endogenous Exogenous Excluded 

Production Costs Finance 

Consumption Resources Taxes 

Price Policies Human Resources 
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Inventory PV market Spatial  

Demand Co-production capacity  

Capacity acquisition an 

utilisation 

  

Capacity limitations   

Recycling   

 

7.2.2 Mapping the subsystems 

The key variables have been previously presented in their various subsystems for each of 

the three resource systems. Below, these subsystems are presented, with the linkages 

between them explicitly expressed (Figure 7.15, Figure 7.16 and Figure 7.17). This gives an 

impression of the overall architecture of each of the three resource models. The specific 

structure, and nature of the linkages between these subsystems is discussed in detail in 7.3 . 

Figure 7.15: Generic resource (GR) model subsystem diagram, showing the linkages 

between subsystems 
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Figure 7.16: Lithium model subsystem diagram, showing the linkages between subsystems 

and highlighting the recycling subsystem not found in the generic resource model 
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Figure 7.17: Indium model subsystem diagram, showing the linkages between subsystems 

and highlighting the recycling subsystem not found in the generic resource model, and the 

parent zinc capacity subsystem, specific to the indium model 

 

7.2.3 Conceptual comparison 

At the conceptual level the three models represented in the subsystem diagrams are 

structurally similar. All models have a demand subsystem which is driven by endogenous 

price and an exogenous assumption regarding the wider economic and market drivers of 

demand (GDP, EV market or PV market). Supply is driven by the requirement to meet 

demand, and the availability of production capacity. Price is influenced by the ratio of 

inventory to the rate of supply (inventory coverage) which indicates the ability of supply to 

replace inventory used; the supply/demand balance. The three aspects of capacity 

(production capacity, desired capacity and capacity utilisation) are all linked, with the 

desired capacity and capacity utilisation decided as a function of production cost versus 

price, and the production capacity a function of capacity acquisition and decommissioning.  
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The first significant difference is the recycling subsystem in both lithium and indium 

resource system models and not included in the generic resource model. It provides a level 

of additional supply in future years based on the quantity of metal already produced, the 

lifetime of products containing the metal, the efficiency of recycling processes, and the 

expected profitability of recycling. This can contribute significant additional metal supply in 

future years; though the dynamics of this subsystem are not always intuitive (see Chapter 

5). 

The second difference between the models is the parent zinc capacity subsystem, found 

only in the indium model. This subsystem expresses the by-product nature of indium 

production, linking it explicitly to assumptions regarding the production of its parent metal 

zinc. The subsystem places constraints on the recoverable quantity of indium, and includes a 

smaller component of primary indium production, which responds to the ratio between 

price of indium and the costs of primary extraction. 

By including these differences endogenously in the models it is possible to test the 

implications of these differences and achieve results that go beyond the testing of 

assumptions, exploring the underlying dynamic system behaviours. 

7.3 Defining the structure 

The following sections present the model structure, broken down by subsystem theme, 

including detail of the formulae underpinning the model structure. Complete versions of the 

models in Vensim file type are available online35, and full model documentation can be 

found in Appendix C to Appendix E. The process of model development began by adapting a 

‘generic commodity market model’ developed by John Sterman in his book “Business 

Dynamics” and further detail on many of the elements describe below can be found there 

(Sterman 2000). The model was first adapted to provide a generic resource system model. 

This model was then further adapted to represent the lithium and indium resource systems, 

including their differentiating subsystems. For brevity, the model subsystems will be 

presented generically, and the differentiating subsystems will be described for each model 

separately. 

                                                      
35

 https://www.dropbox.com/sh/u69p8m6hsdzrw2r/4JFJKKavJ0 
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Each of the model diagrams below represents a ‘page’ of the Vensim model they are taken 

from. The model is split into pages to make the model more manageable. The variables in 

boxes are stocks, the variables adjacent to the  symbol are flows, and other variables are 

auxiliary. The variables in chevrons (e.g. <Production capacity>) are shadow variables, and 

help link the model structure between different pages. 

The following model description includes equations representing the underlying 

relationships of the model structure presented in Figure 7.18 . Table 7.2 to Table 7.8 present 

the variables and the symbols used to represent them in the following equations. Symbols 

starting in upper case represent endogenous variables while those starting in lowercase are 

exogenous. In those equations δs is a change in time s anytime between initial time (t0) and 

current time (t). Several Vensim ‘off-the-shelf’ functions are used in the equations below, 

which are described in Appendix C. These functions are ‘DELAY FIXED’, ‘DELAY3’, ‘SMOOTH’ 

‘MIN’ and ‘MAX’. 

7.3.1 Production and capacity utilisation 

The diagram below (Figure 7.18) presents the first page36 of the generic resource model. 

The page is common to all three resource system models , though it is modified slightly in 

the lithium and indium models with the insertion of a shadow variable representing recycled 

material feeds into the inventory stock variable (Figure 7.19). 

                                                      
36

 Modern system dynamics software such as Vensim separates models into ‘pages’ in order to simplify the 

modelling process. 
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Figure 7.18: The model diagram representing production and capacity utilisation in the 

generic resource model. 

 

Figure 7.19: The model diagram representing production and capacity utilisation in the 

lithium resource model 

 

This page is made up of two distinct sections: the two-stock chain representing the 

production of the commodity and found in the top half of Figure 7.18; and the collection of 

auxiliary variables leading to the capacity utilisation stock in the bottom half.  
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Table 7.2: The variables present in the ‘Production and capacity’ page of the three 

resource system models 

Variable Symbol Model Units 

Endogenous    

Expected 
variable costs 

Ce 
Generic, 
lithium, 
indium 

$/tonne 

Inventory I 
Generic, 
lithium, 
indium 

Tonnes 

Inventory 
coverage 

Is 
Generic, 
lithium, 
indium 

Years 

Order 
fulfilment ratio 

O 
Generic, 
lithium, 
indium 

Dimensionless 

Production rate P 
Generic, 
lithium, 
indium 

Tonnes/year 

Cumulative 
production 

Q 
Generic, 
lithium, 
indium 

Tonnes 

Supply rate S 
Generic, 
lithium, 
indium 

Tonnes/year 

Desired supply 
rate 

Sd 
Generic, 
lithium, 
indium 

Tonnes per 
year 

Max supply 
rate 

Smax 
Generic, 
lithium, 
indium 

Tonnes/year 

Capacity 
utilisation 

U 
Generic, 
lithium, 
indium 

Dimensionless 

Indicated 
capacity 
utilisation 

Ui 
Generic, 
lithium, 
indium 

Dimensionless 

Expected price Ve 
Generic, 
lithium, 
indium 

$/tonne 

Expected profit Ye 
Generic, 
lithium, 
indium 

Dimensionless 

Exogenous     

Variable Symbol Model Exogenous value Units 
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Delay to form 
expected 
variable costs 

c 
Generic, 
lithium, 
indium 

1 years 

Minimum order 
processing time 

omin 
Generic, 
lithium, 
indium 

0.1 Years 

Production 
delay time 

p 
Generic, 
lithium, 
indium 

0.5 years 

Utilisation 
adjustment 
time 

u 
Generic, 
lithium, 
indium 

0.5 years 

Delay to form 
expected price 

ved 
Generic, 
lithium, 
indium 

1 years 

Shadow 
Variable 

Symbol Model Cross 
reference 

Variable Cost Cv 
Generic, 
Lithium, 
Indium 

7.3.4 

Demand D 
Generic, 
Lithium, 
Indium 

7.3.2 

Reference 
inventory 
coverage 

i 
Generic, 
Lithium, 
Indium 

7.3.3 

Production 
capacity 

PCap 
Generic, 
Lithium, 
Indium 

7.3.4 

Recycled 
resource 

R 
Lithium, 
Indium 

7.3.5 

Price V 
Generic, 
Lithium, 
Indium 

7.3.3 

 

Inventory 

The inventory is a stock which accumulates the produced commodity until it is delivered to 

market through the supply flow. The production rate into the inventory stock is defined by 

the total available production capacity, the capacity utilisation and a time delay for that 

process (production delay time) (Equation 7.1). 
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𝐼(𝑡) = ∫ (𝑃(𝑠) − 𝑆(𝑠))𝛿𝑠 + (𝑖𝑟𝐷(𝑡0))
𝑡

𝑡0

 

7.1 

Supply rate 

 

The supply rate is a function of the desired supply rate and the order fulfilment ratio. The 

supply rate is a flow which leaves the inventory stock, at a rate defined by the desired 

supply rate, and constrained by the maximum supply rate (Equation 7.2, 7.3 and 7.5) 

 

𝑆(𝑡) = 𝑆𝑑(𝑡)𝑂(𝑡) 

 7.2 

 

Order fulfilment ratio 

 

The order fulfilment ratio is the ratio between desired supply rate and the actual supply rate. 

It is constrained by the maximum supply rate, which is in turn defined by the available 

inventory and the minimum time taken to process a delivery of supply (a form of delay). 

𝑂(𝑡) = 𝑓1(
𝑆𝑚𝑎𝑥(𝑡)

𝑆𝑑(𝑡)
) 

 7.3 

Where f1 is a function defined by an exogenous lookup table presented below as ‘table for 

order fulfilment’ (Figure 7.20), and 

𝑊(𝑡) =
𝑆𝑚𝑎𝑥(𝑡)

𝑆𝑑(𝑡)
 

7.4 

Maximum supply rate 
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𝑆𝑚𝑎𝑥(𝑡) =
𝐼(𝑡)

𝑜𝑚𝑖𝑛
 

 7.5 

 

Figure 7.20: Table for order fulfilment 

 

Source: Based on Sterman (2000) 

Production rate 

The production rate (Equation 7.6) is the rate of production of the commodity from 

available capacity into inventory. It is modelled as a 3rd order exponential delay (using the 

DELAY3 function which is native to vensim)37. This reflects the fact that delays in the 

production rate are not always the same, and will vary slightly over time. The concept of 3rd 

order delays is common in system dynamics modelling (Kirkwood 1998). The equation 

below provides a reasonable distribution of delays around an average. 

𝑃(𝑡) = 𝐷𝐸𝐿𝐴𝑌3(𝑃𝐶𝑎𝑝(𝑡)𝑈(𝑡), 𝑝) 

                                                      
37

 3
rd

 order exponential delay varies the actual delay time of delayed units (in this case tonnes of commodity). 

The variation in delay time of individual units creates a ‘smoothed’ curve of throughput equivalent to a 3
rd

 

order exponential curve (Kirkwood 1998). The system dynamics software package VENSIM contains an ‘off the 

shelf’ function ‘DELAY3’, which creates this smoothed 3
rd

 order exponential delay based on two inputs: the 

input variable to be delayed; and the delay time. 
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 7.6 

Capacity utilisation 

Capacity utilisation captures the intensity of production at any given time (Equation 7.7). 

There is always a given production capacity, and given the time it takes to add new capacity, 

the market will tend to keep some unutilised capacity in order to respond to demand 

increases in the short term. Over the longer term additional capacity can be added to the 

system, as discussed below.  

𝑈(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝑈𝑖(𝑡), 𝑢(𝑡)) 

7.7 

Capacity utilisation is decided based on the expected profit, which is the ratio between 

expected costs and expected price. There is also a delay between calculating the expected 

profit and establishing the capacity utilisation, reflecting the time it takes to coordinate an 

adjustment to capacity utilisation. A rise in expected profit is an indication of an increase in 

expected demand. To respond to that demand increase the capacity utilisation will increase. 

The magnitude of the response is determined by a look-up table, the graph of which is 

below (Figure 7.21) and the relationship defined in Equation 7.8. 

 

Indicated capacity utilisation 

𝑈𝑖(𝑡) = 𝑓2(𝑌𝑒(𝑡)) 

 7.8 

Where f is a function defined by an exogenous lookup table presented below as ‘table for 

effect of markup on utilisation’ (Figure 7.21). 
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Figure 7.21: Table for effect of markup on utilisation 

 

Depletion rate is also modelled as an outcome of the supply rate (Figure 7.22, Equation 7.9). 

Depletion rate provides a way to sense check the rate of production against the estimated 

resources of a commodity (see Section 4.2.6 and Section 7.4.6). Table 7.3 presents the 

variables used in the ‘Depletion rate’ page and the associated symbols used to represent 

them in the equations below. 

Figure 7.22: The model diagram representing depletion rate. 

 

Table 7.3: The variables present in the ‘Depletion rate’ page of the three resource system 

models 

Variable Symbol Model Units 

Endogenous    

Resources

depletion

initial resources <supply rate>

depletion rate
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Depletion (supply 

rate) 

Xd Generic, 

Lithium, Indium 

Tonnes/year 

Resources X Generic, 

Lithium, Indium 

Tonnes 

Depletion rate Xs Generic, 

Lithium, Indium 

Dimensionless 

Exogenous     

Variable Symbol Model Values Units 

Initial resources x0 Generic, 

Lithium, Indium 

G=3,500 

L=1.3e+7 

I=300,00 

Tonnes 

Shadow Variable Symbol Model Cross reference 

Supply rate S Generic, 

Lithium, Indium 

7.3.1 

 

Depletion rate 

Depletion Rate is calculated as the inverse of the Reserves/Production ratio, where the rate 

of production (depletion) is divided by the remaining resources (Equation 7.10). Resources 

are calculated as the integral of the production rate (depletion) leaving the stock of 

resources. 

 

𝑋𝑠(𝑡) =
𝑋𝑑(𝑡)

𝑋(𝑡)
100 

7.9 

Resources 



~ 241 ~ 
 

𝑋(𝑡) = ∫ (−𝑋𝑑(𝑠))𝛿𝑠 + 𝑥0

𝑡

𝑡0

 

7.10 

7.3.2 Demand 

The demand page is structured in two parts. The first part establishes a reference demand 

based on changing market drivers. This differs between the three resource models. The 

second part introduces the modifications to demand based on price effects. This is the same 

across all three models. 

In the generic resource model the reference demand is established based on estimated 

global GDP growth, and a Kuznets-like decoupling of demand from GDP growth (Figure 

7.23). This provides a peak in demand, defined by a look-up table that represents the profile 

of decoupling (Figure 7.24). Table 7.4 presents the variables used in the ‘Depletion rate’ 

page and the associated symbols used to represent them in the equations below. 

Figure 7.23: The model diagram representing generic resource demand. 

 

 

GDP
GDP growth
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+
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Table 7.4: The variables present in the ‘Demand’ page of the three resource system 

models 

Variable Symbol Model Units 

Endogenous    

Demand curve 

slope 
B 

Generic, 

Lithium, Indium 
Dimensionless 

Demand D 
Generic, 

Lithium, Indium 
Tonnes/year 

Demand growth Dg Generic Dimensionless 

Indicated demand Di 
Generic, 

Lithium, Indium 
Tonnes/year 

Latent demand Dl 
Generic, 

Lithium, Indium 
Tonnes/year 

EV lithium 

demand or PV 

indium demand 

Dlm Lithium, Indium Tonnes/year 

Reference 

demand 
Dr 

Generic, 

Lithium, Indium 
Tonnes/year 

GDP G Generic Trillion $ 

GDP growth Gg Generic Dimensionless 

GDP impact Gi Generic Dimensionless 

Decoupling K Generic Dimensionless 

Fractional rate or 

fractional CIGS 

growth rate 

Lr Lithium, Indium Dimensionless 

Annual EV sales or 

Annual CIGS sales 
Ls Lithium, Indium Vehicles 

Annual EV sales 

growth or Annual 

CIGS sales growth 

Lsg Lithium, Indium Dimensionless 
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Exogenous    

Variable Symbol Model Exogenous value Units 

Demand 

adjustment delay 

d Generic, 

Lithium, Indium 

0.5 Years 

Maximum 

consumption 

dmax Generic, 

Lithium, Indium 

G=1000 

L=1000 

L=1e+8 

Tonnes 

Other demand dom Lithium, indium L=35,000 

I=500 

Tonnes/year 

Reference 

demand elasticity 

ed Generic, 

Lithium, Indium 

0.5 Dimensionless 

GDP growth rate g Generic 0.01 Dimensionless 

Max EV market 

growth rate or 

max CIGS growth 

rate 

lgmax Lithium, Indium L=0.2 

I=0.1 

Dimensionless 

Max EV annual 

sales or max CIGS 

annual sales 

lsmax Lithium, Indium L=3e+7 

I=140 

L: Vehicles 

I: GW/year 

Lithium intensity 

or indium 

intensity 

mi Lithium, Indium L=0.00798 

I=0.0248 

L: 

tonnes/vehicle 

I: grams/Wp 

Reference price v Generic, 

Lithium, Indium 

G=100 

L=5000 

I=600,000 

$ 

Shadow Variable Symbol Model Cross reference  

Price V Generic, 

Lithium, Indium 

7.3.3  

 

GDP impact 
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The GDP impact on demand is a factor which captures the impact of growing GDP on 

generic commodity demand, and the decoupling of that relationship over time (Equation 

7.11). The rate that this relationship decouples is defined by a lookup table, demonstrated 

in Figure 7.24, and the decoupling factor shown in Equation 7.12. 

𝐺𝑖(𝑡) = 0.1𝐺𝑟(𝑡) − 0.1𝐺𝑟(𝑡)𝐾(𝑡) 

7.11 

Decoupling 

𝐾(𝑡) = 𝑓3(𝐺(𝑡)) 

7.12 

Where f3 is a function defined by an exogenous lookup table presented below as ‘table for 
decoupling’ (Figure 7.24). 
 

Figure 7.24: Table for decoupling of resource demand from GDP. 

 

Note: Assumed as an approximation of logistic sigmoid growth. 

In the lithium resource model the reference demand is established as a function of the 

future market for electric vehicles, with a smaller additional demand representing the other 

uses of lithium (Figure 7.25). A combination of feedback loops creates a logistic growth 

function representing the growth of lithium based electric vehicles (Annual EV sales, 
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Equation 7.13). The value of 100,000 vehicles is used in this equation to approximate 

current EV sales. The lithium intensity (Li intensity) per vehicle is then used to calculate the 

growth in lithium demand (EV Li demand, Equation 7.14). The elements in the equation 

creating EV sales growth profile (Annual EV sales growth and fractional rate) are presented 

in Equation 7.15 and Equation 7.17. 

Figure 7.25: The model diagram representing lithium demand. 

 

Annual EV sales 

𝑳𝒔(𝒕) = ∫ 𝑳𝒔𝒈(𝒔)𝜹𝒔 + 𝟏𝟎𝟎𝟎𝟎𝟎
𝒕

𝒕𝟎

 

7.13 

EV lithium demand 

 

𝐷𝑙𝑚(𝑡) = 𝐿𝑠(𝑡)𝑚𝑖 

 

7.14 

Annual EV sales growth 
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𝑳𝒔𝒈(𝒕) = 𝑳𝑺(𝒕)𝑳𝒓(𝒕) 

7.15 

Fractional rate  

 

𝐿𝑟(𝑡) = 𝐿𝑔𝑚𝑎𝑥(𝑊1(𝑡)) 

7.16 

Where  

𝑊1(𝑡) = 1 −
𝐿𝑠𝑔(𝑡)

𝑙𝑠𝑚𝑎𝑥
 

7.17 

In the indium resource model the reference demand is established in a very similar way to 

that of lithium (Figure 7.26). The structure and equations are the same as those above for 

lithium. The only difference is that the market driving indium demand is assumed to be 

Copper Indium Gallium (di)Selenide thin film PV and not EVs. The differing exogenous 

assumptions between the lithium and Indium models reflect the different drivers of demand 

(Table 7.4). 

Figure 7.26: The model diagram representing indium demand. 
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The second part of the demand page (the left of Figure 7.26) defines the effect of price on 

demand. The reference demand (or latent demand) variable establishes the demand under 

conditions where price has no effect. This reference demand is then modified based on the 

price of the commodity, and the price elasticity of demand. This process also includes a 

delay in the time it takes price and cost to influence demand (demand adjustment delay). 

Demand curve slope 

The demand curve slope defines the elasticity of demand (Equation 7.18). The indicated 

industrial demand represents the demand once the impact of price is taken into account 

(Equation 7.19). Demand, Li demand or In demand represents the price adjusted demand 

once the time delay has been taken into account (Equation 7.20). 

 

𝐵(𝑡) =
−𝐷𝑟(𝑡 )𝑒𝑑

𝑣
 

7.18 

Indicated Industry Demand  

 

𝑫𝒊(𝒕) = 𝑴𝑰𝑵(𝑫𝒎𝒂𝒙, 𝑫𝒓)𝑴𝑨𝑿 (𝟎, 𝟏 + 𝑩
𝑽(𝒕) − 𝒗

𝑫𝒓
) 

7.19 

 

Demand, Li demand or In demand38 

  

𝐷(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝐷𝑖(𝑡), 𝑑(𝑡), 𝐷𝑟(𝑡)) 

 

                                                      
38

 The SMOOTH function is an ‘off the shelf’ function in the system dynamics software VENSIM that is used to 

‘smooth’ the delay of an input (in this case indicated demand in tonnes) so that the output of a step in input is 

smoothed as an exponential curve, with the beginning of the curve equal to the delay time. 
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7.20 

 

7.3.3 Price 

The page representing price in the model begins with an initial price, which is modified by 

cost and by the ability of supply to meet demand (inventory coverage). Cost influences price 

via an auxiliary variable which combines the expected costs with a sensitivity factor. 

Inventory coverage affects price, first by being measured against reference inventory 

coverage, and then combined with a sensitivity factor. These two price modifiers are then 

multiplied and applied to price, with a MAX function to prevent price dropping below zero in 

extreme conditions (Equation 7.21). Price is modelled in the same way in each of the three 

resource models. Table 7.5 presents the variables used in the ‘Price’ page and the associated 

symbols used to represent them in the equations below. 

Figure 7.27: The model diagram representing price39  

 

                                                      
39

 In the diagram the ‘B’ indicates a balancing loop, the ‘R’ indicates a reinforcing loop, and the ‘+’ and ‘-‘ 

indicate the positive or negative impact of the incoming variable. 
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Table 7.5: The variables present in the ‘Price’ page of the three resource system models 

Variable Symbol Model Units 

Endogenous    

Perceived 
inventory 
coverage 

Isp 
Generic, 
Lithium, 
Indium 

Years 

Relative 
inventory 
coverage 

Iρ 
Generic, 
Lithium, 
Indium 

Years 

Price V 
Generic, 
Lithium, 
Indium 

$/tonne 

Sensitivity of 
price to cost 

vcp 
Generic, 
Lithium, 
Indium 

Dimensionless 

Traders 
expected price 

Ve 
Generic, 
Lithium, 
Indium 

$/tonne 

Change in 
trader’s 
expected price 

Vec 
Generic, 
Lithium, 
Indium 

$/tonne/year 

Indicated price Vi 
Generic, 
Lithium, 
Indium 

$/tonne 

Effect of 
inventory 
coverage on 
price 

Vis 
Generic, 
Lithium, 
Indium 

Dimensionless 

Minimum price Vmin 
Generic, 
Lithium, 
Indium 

$/tonne 

Exogenous     

Variable Symbol Model Exogenous 
value 

Units 

Coverage 
perception time 

is Generic, 
Lithium, 
Indium 

0.167 Years 

Reference 
inventory 
coverage 

ir Generic, 
Lithium, 
Indium 

0.2 Years 

Time to adjust 
traders 
expected price 

vd Generic, 
Lithium, 
Indium 

1 Years 
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Sensitivity of 
price to 
inventory 
coverage 

vis Generic, 
Lithium, 
Indium 

-1 Dimensionless 

Initial price V(t0) Generic, 
Lithium, 
Indium 

G=100 
L=5,000 
I=600,000 

$/tonne 

Shadow 
Variable 

Symbol Model Cross 
reference 

Unit cost Cu Generic, 
Lithium, 
Indium 

7.3.4 

Expected 
production cost 

Cpe Generic, 
Lithium, 
Indium 

7.3.4 

Inventory 
coverage 

Is Generic, 
Lithium, 
Indium 

7.3.1 

 

Price 

Price is the product of the trader’s expected price, the effect of cost on price and the effect 

of inventory coverage on price (Equation 7.21). As the cost of production increases this has 

an inflationary impact on price, simulating the typical response of commodities to cost 

inflation. If the relative level of inventory decreases over time this also has an inflationary 

impact on price, as inventory coverage is used as an indicator of tightness in supply. The 

equation also makes use of a MAX function, which makes sure that price cannot drop below 

zero. The equations describing effect of cost on price and effect of inventory coverage on 

price are presented in Equation 7.23 and Equation 7.24. 

 

𝑉(𝑡) = 𝑀𝐴𝑋(0, (𝑉𝑒(𝑡)𝑉𝑖𝑠𝐼(𝑡)𝑉𝑐𝑝(𝑡))) 

7.21 

Effect of cost on price 

 

𝑽𝒄𝒑(𝒕) = 𝟏 + 𝒗𝒄𝒑(𝑾𝟐(𝒕) − 𝟏) 

7.22 

Where 
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𝑊2(𝒕) =
𝑪𝒑𝒆(𝒕)

𝑽𝒆(𝒕)
 

7.23 

Effect of inventory coverage on price 

 

𝑽𝒊𝒔(𝒕) = (𝑰𝝆(𝒕))𝒗𝒊𝒔 

7.24 

Relative inventory coverage 

The relative inventory coverage  (Equation 7.25) measures the perceived inventory coverage 

against the reference inventory coverage. A drop in relative inventory coverage indicates 

that current production is not sufficient to meet current demand. This increases price 

through the effect of inventory coverage on price variable as it might in a real market where 

it became apparent that supply was insufficient. The indicated price variable prevents price 

dropping below the unit costs of production (Equation 7.26). 

 

 

𝑰𝝆(𝒕) =
𝑰𝒔𝒑(𝒕)

𝒊𝒓
 

7.25 

Indicated price 

  

𝑉𝑖(𝑡) = 𝑀𝐴𝑋(𝑉min(𝑡), 𝑉(𝑡)) 

7.26 

 

In a real commodity market the price is set by people making deals to buy and sell quantities 

of the commodity, whether a physical market, or a paper market. However, the price 

discovery process is iterative, and those making deals do not necessarily have all the 

information needed to reflect a fair price. Once evolving issues around the costs of 
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production and the available inventories are established traders may need to reassess their 

expected price estimates. 

Traders' Expected Price 

The stock Traders’ expected price (Equation 7.27) allows for this delayed, iterative price 

discovery process to be represented in the model. This variable integrates the flow of 

Change in traders’ expected price (Equation 7.28), which in turn reflects the indicated price, 

allowing for a time delay. 

𝑉𝑒(𝑡) = ∫ 𝑉𝑒𝑐(𝑠)𝛿𝑠 + 𝑉(𝑡0)
𝑡

𝑡0

 

7.27 

 

Change in traders’ expected price 

 

𝑽𝒆𝒄(𝒕) =
𝑽(𝒕𝟎) − 𝑽𝒆(𝒕)

𝒗𝒅
 

7.28 

7.3.4 Capacity 

Capacity is dealt with across three different pages in the resource system models. Capacity 

utilisation has already been discussed, and is found on the ‘production and capacity 

utilisation’ page. Two further pages deal exclusively with capacity issues: ‘capacity’ and 

‘desired capacity’. Capacity keeps stock of the balance between capacity building, and 

capacity decommissioning. Desired capacity defines the amount of new capacity needed.  

Capacity is dealt with differently between the generic resource model, lithium and indium, 

due to the existence of the parent ‘zinc capacity’ subsystem. The generic resource and 

lithium model capacity pages capture capacity in a two loop system (Figure 7.28). The 

capacity stock is the product of new capacity building (capacity acquisition) and capacity 

decommissioned due to age (discard rate). The acquisition rate is informed by the need to 

replace the discarded capacity, and the need to adjust capacity based on expected future 
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demand (desired capacity). The discard rate is simply based on an assumption regarding the 

useable lifetime of capacity. Table 7.6 presents the variables used in the ‘Capacity’ page and 

the associated symbols used to represent them in the equations below. 

Figure 7.28: The model diagram representing capacity 

 

Table 7.6: The variables present in the ‘capacity’ page of the three resource system 

models 

Variable Symbol Model Units 

Endogenous    

Acquisition rate A 

Generic, 

Lithium, 

Indium 

Tonnes/year/year 

Desired 

acquisition rate 
Ad 

Generic, 

Lithium, 

Indium 

Tonnes/year/year 

Capacity stock Cap Generic, Tonnes/year 
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Lithium, 

Indium 

Zn capacity Hcap Indium Million Tonnes/year 

Net zinc 

capacity change 
Hcapc Indium 

Tonnes/year 

In recovery 

change 
Hrc Indium 

Dimensionless 

Difference 

between 

current and 

goal In recovery 

Hrg Indium 

Dimensionless 

In recovery rate Hrr Indium Dimensionless 

Discard rate J 

Generic, 

Lithium, 

Indium 

Tonnes/year/year 

Expected 

discard rate 
Je 

Generic, 

Lithium, 

Indium 

Tonnes/year/year 

Max In capacity 

limit 
Mcapmax Indium 

Tonnes/year 

Production 

capacity 
PCap 

Generic, 

Lithium, 

Indium 

Tonnes/year 

Primary 

production 

capacity 

Pp Indium 

Tonnes/year 

Adjustment for 

capacity 
Ζ 

Generic, 

Lithium, 

Indium 

Dimensionless 

Exogenous     

Variable Symbol Model Value Units 
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Average life of 

capacity 

capL Generic, 

Lithium, 

Indium 

20 Years 

Capital 

productivity 

capp Generic, 

Lithium, 

Indium 

1 Dimensionless 

Cost of primary 

production 

cPp Indium 600,000 $/tonne 

Zn market 

growth rate 

hg Indium 0.015 Dimensionless 

Max In recovery 

rate 

Hrmax Indium 0.9 Dimensionless 

Time to max In 

recovery rate 

hrmaxd Indium 20 Years 

Indium 

contained 

hmc Indium 9e-005 Dimensionless 

Initial In 

recovery rate 

ℎ𝑟𝑡0
 Indium 0.8 Dimensionless 

Max primary 

production 

capacity 

ppmax Indium 500 Tonnes/year 

Capacity 

adjustment 

time 

tcap Generic, 

Lithium, 

Indium 

3 Years 

Shadow 

Variable 

Symbol Model Cross reference 

Desired capacity Capd 

Generic, 

Lithium, 

Indium 

7.3.4 

Reference 

demand 
Dr 

Generic, 

Lithium, 
7.3.2 
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Indium 

Indicated 

capacity 

utilisation 

Ui 

Generic, 

Lithium, 

Indium 

7.3.1 

Price V 

Generic, 

Lithium, 

Indium 

7.3.3 

 

Acquisition rate 

The flow acquisition rate (Equation A(t)=Ad(t) 

7.29) is equal to the desired acquisition rate (Equation 7.30), which is the sum of the 

expected discard rate and the adjustment for capacity (Equation 7.31), using a MAX function 

to ensure that the acquisition rate is never negative. The adjustment for capacity variable 

measures the difference between existing capacity (capacity stock) and desired capacity 

(discussed below) and includes a delay to represent the time taken for the market to adjust 

capacity stocks. 

 

A(t)=Ad(t) 
7.29 

Desired acquisition rate 

  

𝐴𝑑(𝑡) = 𝑀𝐴𝑋(0, 𝐽𝑒(𝑡) + 𝑍(𝑡)) 

7.30 

 

Adjustment for capacity 

𝑍(𝑡) =
𝐶𝑎𝑝𝑑(𝑡) − 𝐶𝑎𝑝(𝑡)

𝑡𝑐𝑎𝑝
 

7.31 

Discard rate (equal to the expected discard rate and presented in Equation 7.32) is a 

function of an exogenously assumed average life of capacity. 
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Discard Rate 

𝐽(𝑡) =
𝐶𝑎𝑝(𝑡)

𝐶𝑎𝑝𝐿
 

7.32 

 

Indium capacity is dealt with slightly differently given that the indium capacity page contains 

the parent zinc capacity subsystem (Figure 7.29). The two loop capacity system described 

above is still present in the indium model (right hand side of Figure 7.29). This system is 

then augmented by some small feedback systems culminating in a maximum indium 

capacity (Maximum In Capacity Limit, Equation 7.33). The system first creates a trajectory 

for zinc production. The rate of indium recovery from zinc ore is then modelled in a simple 

balancing feedback loop. Direct production of indium is also modelled. 

Figure 7.29: The model diagram representing indium capacity 
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Maximum In Capacity Limit 

The Maximum In Capacity Limit (Equation 7.33) sets the maximum quantity of indium 

producible at any point in time. This is limited by the total Zn capacity (Equation 7.34), the 

quantity of indium contained in a unit of zinc production (an exogenous assumption) and the 

In recovery rate (Equation 7.36) , which improves over time through an iterative loop that 

creates asymptotic growth towards a max In recovery rate (exogenous). 

 

𝑀𝑐𝑎𝑝𝑚𝑎𝑥(𝑡) = 𝑃𝑝(𝑡) + 𝐻𝑐𝑎𝑝(𝑡)𝐻𝑟𝑟(𝑡)ℎ𝑚𝑐 

7.33 

Zn Capacity 

The level of parent zinc capacity is represented in the indium resource model as a stock, 

which integrates the flow of net zinc capacity change (Equation 7.35), governed by an 

exogenously assumed Zn market growth rate. This was calibrated in the model to closely 

represent expected zinc production forecasts, as discussed in Chapter 6. 

𝐻𝑐𝑎𝑝(𝑡) = ∫ 𝑍𝑐𝑎𝑝𝑐(𝑠)𝛿𝑠 + (1.1 ∗ 107)
𝑡

𝑡0

 

7.34 

Net zinc capacity change 

 

𝑯𝒄𝒂𝒑𝒄(𝒕) = 𝑯𝒄𝒂𝒑(𝒕)𝒉𝒈 

7.35 

In Recovery Rate 

The recovery rate of indium from zinc production is expected to increase in the near future 

in response to rising demand (Chapter 6). This is represented in the model by a stock named 

In recovery rate (Equation 7.36), which integrates the flow In recovery change (Equation 

7.37). That flow is in turn a product of the difference between current and goal In recovery 

Equation 7.38) and a time delay in the feedback loop reaching the maximum recovery rate 

(time to max In recovery rate). Both the goal recovery rate (max In recovery rate) and the 

time delay are exogenous assumptions. The result of this feedback loop is an asymptotic 
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growth in indium recovery rate to a maximum recovery rate based on the expected recovery 

efficiencies discussed in the literature (Chapter 6). 

 

𝐼𝑛(𝑡) = ∫ (𝐻𝑟𝑐(𝑠))𝛿𝑠 + ℎ𝑟𝑡0

𝑡

𝑡0

 

7.36 

 

 

In recovery change  

𝐻𝑟𝑐(𝑡) =
𝐻𝑟𝑔(𝑡)

𝐻𝑟𝑚𝑎𝑥𝑑
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 7.37 

Difference between current and goal In recovery 

 

𝐻𝑟𝑔(𝑡) = ℎ𝑟𝑚𝑎𝑥 − 𝐻𝑟𝑟(𝑡) 

 

7.38 

Primary Production Capacity 

There is also a small contribution to indium capacity from primary indium production not 

associated with parent zinc production (Primary production capacity, Equation 7.39). This is 

a small quantity, either available or not depending on whether or not the indium price is 

above the cost of production from this source (cost of primary production). The ‘IF THEN 

ELSE’ function switches primary production on when price divided by the cost of production 

is greater than one. 

 

𝑷𝒑(𝒕) = 𝑰𝑭 𝑻𝑯𝑬𝑵 𝑬𝑳𝑺𝑬(
𝑽(𝒕)

𝑪𝑷𝒑
> 𝟏, 𝑷𝒑𝒎𝒂𝒙, 𝟎) 

7.39 

Desired capacity (Equation 7.40) is dealt with in the same way in each of the three resource 

models. It is based on the expected profitability of new investment (Equation 7.42), which is 

in turn defined by the difference between expected production cost and long run expected 

price (Equation 7.43). Expected price is taken from the price page, with a delay introduced 

to represent the time taken for entities building capacity to interpret price indicators. 

Expected cost is derived from a cumulative availability curve (an exogenous lookup table). 

Different cumulative availability curves are applied to each of the different models. Where 

the expected profit is high then desired capacity increases, forcing capacity acquisition in 

the ‘capacity’ page. Where the expected profit is low, acquisition is reduced. Table 7.7 

presents the variables used in the ‘desired capacity’ page and the associated symbols used 

to represent them in the equations below. 
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Figure 7.30: The model diagram representing desired capacity 

 

Table 7.7: The variables present in the ‘desired capacity’ page of the three resource 

system models 

Variable Symbol Model Units 

Endogenous    

Desired capacity Capd 
Generic, 

Lithium, Indium 
Tonnes/year 

Expected 

Production Costs 
Cpe 

Generic, 

Lithium, Indium 
$/tonne 

Unit cost Cu 
Generic, 

Lithium, Indium 
$/tonne 

Variable costs Cv 
Generic, 

Lithium, Indium 
$/tonne 

Long Run 

Expected Price 
Vel 

Generic, 

Lithium, Indium 
$/tonne 

Expected 

Profitability of 
Ycap 

Generic, 

Lithium, Indium 
Dimensionless 

Desired Capacity

Expected Profitability

of New Investment

Long Run
Expected

Price

Time to Adjust Long

Run Price Expectations

+

Effect of Expected Profit

on Desired Capacity

Table for Effect of
Expected Profit on Desired

Capacity

+

+

Unit Costs

Time to Adjust

Expected Costs

Sensitivity of
Investment to Exp

Profit

+

<Capacity Stock>

+

<price>

cumulative

availability curve

variable costs variable cost

fraction

Expected
Production

Costs

<Cumulative

Production>

price minus cost
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New Investment 

Effect of Expected 

Profit on Desired 

Capacity 

Ycapd 
Generic, 

Lithium, Indium 
Dimensionless 

Exogenous     

Variable Symbol Model Values Units 

Sensitivity of 

Investment to Exp 

Profit 

capdy Generic, 

Lithium, Indium 

1 Dimensionless 

Time to Adjust 

Expected Costs 

ce Generic, 

Lithium, Indium 

2 Years 

Variable cost 

fraction 

cvu Generic, 

Lithium, Indium 

0.4 Dimensionless 

Time to Adjust 

Long Run Price 

Expectations 

vel Generic, 

Lithium, Indium 

2 Years 

Shadow Variable Symbol Model Cross reference 

Capacity stock Cap 
Generic, 

Lithium, Indium 
7.3.4 

Cumulative 

production 
Q 

Generic, 

Lithium, Indium 
7.3.1 

Price V 
Generic, 

Lithium, Indium 
7.3.3 

 

Desired capacity 

Desired capacity (Equation 7.40) is defined by the existing capacity stock multiplied by two 

factors representing the impact of expected profit (effect of expected profit on desired 

capacity (Equation 7.41)) and the sensitivity of investment to that impact (sensitivity of 

investment to exp profit). The effect of expected profit on desired capacity is defined by an 

exogenous lookup table that responds to the expected profitability of new investment 

(Figure 7.31).  
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𝑪𝒂𝒑𝒅(𝒕) = 𝑪𝒂𝒑(𝒕)(𝟏 + 𝑪𝒂𝒑𝒅𝒚(𝒀𝒄𝒂𝒑𝒅(𝒕) − 𝟏)) 

7.40 

Effect of expected profit on desired capacity 

𝒀𝒄𝒂𝒑𝒅(𝒕) = 𝒇𝟒(𝒀𝒄𝒂𝒑(𝒕)) 

Where f is a function defined by an exogenous lookup table presented below as ‘table for 

effect of expected profit on desired capacity’ (Figure 7.31). 

7.41 

Figure 7.31: Table for effect of expected profit on desired capacity 

 

Source: Based on Sterman (2000) 
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Expected profitability of new investment 

Expected profitability of new investment (Equation 7.42) is a function of the balance 

between expectations of future production cost (long run expected price (Equation 7.43)) 

and future commodity price (expected production costs (Equation 7.44)). If price increases 

relative to costs then expectations of profitability increase, increasing desired capacity 

(Equation 7.40). The unit cost is a function of the cumulative availability curve, which takes 

the form of a lookup table defining the marginal cost curve of the resource. Each resource 

has an individual cumulative availability curve, presented in Figure 7.32, Figure 7.33 and 

Figure 7.34 

𝒀𝒄𝒂𝒑(𝒕) =
𝑽𝒆𝒍(𝒕) − 𝑪𝒑𝒆(𝒕)

𝑽𝒆𝒍(𝒕)
 

7.42 

Long run expected price 

 

𝑽𝒆𝒍(𝒕) = 𝑺𝑴𝑶𝑶𝑻𝑯(𝑽(𝒕), 𝒗𝒆𝒍) 

 7.43 

Expected production costs 

 

𝑪𝒑𝒆(𝒕) = 𝑺𝑴𝑶𝑶𝑻𝑯(𝑪𝒖(𝒕), 𝒄𝒆) 

 7.44 

Unit costs 

𝐶𝑢(𝑡) = 𝑓8(𝑄(𝑡)) 

7.45 

Where f8 is a function defined by an exogenous lookup table presented below as 
‘cumulative availability curve’ (Figure 7.32,Figure 7.33 and Figure 7.34) 
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Figure 7.32: Cumulative availability curve for the generic resource 

 

Source: Based on an approximation of IEA (2008) 

Figure 7.33: Cumulative availability curve for lithium 

 

Source: Based on an approximation of Yaksic & Tilton (2009) 
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Figure 7.34: Cumulative availability curve for indium 

 

Source: Based on Mikolajczak (2009) 

7.3.5 Recycling 

Recycling is the final page and is only present in the lithium and indium models. The 

quantity of recycled lithium or indium (recycled Li or recycled In) is a function of the amount 

of material recycled in two different streams: metal contained in low-carbon products 

(either CIGS or EVs); and metal contained in other products. Both of these streams operate 

in exactly the same way. The amount of metal available for recycling in each of the streams 

is a function of the metal in products (taken from the demand page) after a delay based on 

the average lifetime of those products, and an assumed efficiency of the recycling process, 

called the recycling rate. Whether this is recovered is a function of the assumed cost of 

recycling, and the current price of the metal. As potential profit from recycling increases, the 

quantity of recycling undertaken by the model increases. Table 7.8 presents the variables 

used in the ‘recycling’ page and the associated symbols used to represent them in the 

equations below. 
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Figure 7.35: The model diagram representing lithium recycling 

 

Table 7.8: The variables present in the ‘recycled’ page of the lithium and indium resource 

system models 

Variable Symbol Model Units 

Endogenous    

CIGS In end of life 

or EV Li end of life 

M Lithium, Indium Tonnes/year 

Effect of 

estimated profit 

on EV recycling or 

Effect of 

estimated profit 

on CIGS recycling 

Ry Lithium, Indium Dimensionless 

EV recycling or 

CIGS recycling 

Rm Lithium, Indium Tonnes/year 

Recycled Li or 

Recycled In 

R Lithium, Indium Tonnes/year 

Other Li end of 

life or other In 

end of life 

O Lithium, Indium Tonnes/year 

Other demand Ro Lithium, Indium Tonnes/year 
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recycling 

Effect of 

estimated profit 

on other recycling 

Roy Lithium, Indium Dimensionless 

Exogenous     

Variable Symbol Model Values Units 

CIGS lifetime or 

EV lifetime 

eol Lithium, Indium L=20 

I=30 

Years 

Other lifetime o Lithium, Indium 10 Years 

Cost of other 

recycling 

oc Lithium, Indium L=9,000 

I=700,000 

$/tonne 

Other recycling 

rate 

or Lithium, Indium 0.6 Dimensionless 

Recycling delay 

time 

r Lithium, Indium L=0.5 

I=1 

Years 

Cost of EV 

recycling or Cost 

of CIGS recycling 

rc Lithium, Indium L=9000 

I=700,000 

$/tonne 

EV Recycling rate 

or CIGS recycling 

rate 

rr Lithium, Indium L=0.6 

I=0.8 

Dimensionless 

Shadow Variable Symbol Model Cross reference 

EV Li demand or 

PV In demand 

Dm Lithium, Indium 7.3.2 

Other demand Do Lithium, Indium 7.3.2 

Expected price Ve Generic, 

Lithium, Indium 

7.3.1 

 

Recycled lithium or recycled indium 

Recycled metal (Equation 7.46) is a function of recycled metal from both low carbon and 

other end-of-life sources. The delivery of recycled metal is smoothed using the ‘DELAY3’ 
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function to simulate the non-uniform time delay in availability of recycled metal (See Annex 

D)37. The metal recycled (Equation 7.47) is a function of the metal available in EV or CIGS 

end-of-life products, multiplied by the estimated recycling rate (exogenous) and the effect 

of estimated profit on recycling (Equation 7.49). This effect of profit on recycling is a 

function of a look-up table (Table for effect of perceived profit on recycling, Figure 7.36). The 

contribution of recycled metal from end-of-life products other than EVs or CIGS is calculated 

in exactly the same way, and feeds into recycled metal as described in Equation 7.46. 

 

𝑅(𝑡) = 𝐷𝐸𝐿𝐴𝑌3((𝑅𝑚(𝑡) + 𝑅𝑜(𝑡)), 𝑟) 

 7.46 

EV recycling or CIGS recycling 

𝑅𝑚(𝑡) = 𝑀(𝑡)𝑅𝑦(𝑡)𝑟𝑟 

 7.47 

EV lithium or CIGS indium end of life 

𝑀(𝑡) = 𝐷𝐸𝐿𝐴𝑌 𝐹𝐼𝑋𝐸𝐷(Dlm(t), eol,0) 
7.48 

Effect of estimated profit on EV recycling or CIGS recycling 

𝑹𝒐𝒚(𝒕) = 𝒇𝟕(𝑾𝟑(𝒕)) 

7.49 

Where f7 is a function defined by an exogenous lookup table presented below as ‘table for 
effect of perceived profit on recycling’ (Figure 7.36) and 

𝑊3(𝑡) =
𝑉𝑒(𝑡)

𝑅𝑂(𝑡)
 

7.50 
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Figure 7.36: Table for effect of perceived profit on recycling 

 

7.4 Model testing and settings 

Models are simplified representations of real systems. Once a model is created it is 

important to understand whether it performs appropriately for its purpose. The phrase 

‘model validation’ is often used in relation to this process, but this phrase is misleading since 

it is impossible to validate something which is by definition an imperfect representation of a 

real system. As Forrester (1961) wrote  

“Any ‘objective’ model-validation procedure rests eventually at some lower 

level on a judgment or faith that either the procedure or its goals are 

acceptable without objective proof.”  

For this reason the phrase ‘model testing’ is used here. In this section, several model tests 

are carried out to establish the models performance under various conditions. This helps 

establish that the dynamic system behaviours exhibited by the model are consistent, or at 

least not in conflict with, the types of behaviour expected in the real system being 

modelled. Through this process the modeller can begin to build confidence in the model 

structure, and revise any aspects of the model that clearly conflict with the observed 

behaviour of the real system being modelled. 
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First the initial conditions for each model are established. These are the initial values 

assumed for each of the variables exogenously input into the model. The models have been 

created to establish relative difference between system behaviours, and not as a forecasting 

tool for absolute behaviour. The initial conditions used for each model are important 

however, and the source or justification for the assumptions discussed. 

Delta t error tests are then carried out to establish that the correct model settings have 

been applied. System dynamics models are typically solved using some form of numerical 

integration method, often Euler’s integration. Since computers must operate in discrete 

steps of calculation, this type of approximation works well with computer modelling 

platforms. The discrete steps of calculation can be defined in the model settings of 

programs like Vensim, and are often called time steps. However, Euler’s approximation 

assumes that values of an equation essentially remain the same over the period of one time 

step. If the time step is set too long then this assumption is likely to be invalid, and 

significant errors can occur. Delta t error tests are used to establish an appropriate length of 

time step. 

The model can then be evaluated against the identified reference modes. By examining the 

types of dynamic system behaviour exhibited by the real system, and trying to replicate 

those behaviours using the model, the appropriateness of the models structure can be 

judged. 

Extreme conditions testing is then carried out, to examine for illogical model behaviour in 

response to extreme input variables. For example, regardless of how low demand for a 

product is, the price for that product cannot become negative. There may be examples for 

some products where this can be the case for very short periods of time, but for 

commodities this is implausible. 

Finally, sensitivity testing is conducted to highlight variable that are very sensitive to the 

input assumptions, and therefore interesting from an analytical point of view. 

7.4.1 Initial conditions 

Full details of the initial conditions values can be found in the model documentation in 

Appendix C to Appendix E. However, for brevity, only a few of the most interesting initial 
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conditions are discussed here. As these models are built on Sterman’s generic commodity 

market model many of the initial conditions are taken from that earlier work (Sterman 

2000). However, several modifications have been made to this model to create useful 

representations of the three commodities systems modelled in this thesis. The initial 

conditions of these parts of the models are discussed here. 

Generic resource model 

The initial price is set in the model at $100 per tonne. For the objectives of the modelling 

exercise conducted in this thesis the initial price is less important than the trends in price 

resulting from different stimulus. The value of $100 per tonne is therefore sufficient for the 

purposes of this thesis. 

Demand is modified from the original (Sterman 2000) model to incorporate a Kuznets style 

decoupling between GDP and generic resource demand. The model assumes GDP growth of 

1%, a conservative figure based on recent events and trends (Bank 2014). The rate of 

decoupling is set so that demand peaks between 55 and 60 years into the model time 

horizon, at 31.4 billion tonnes per year. This ignores any possibility of a supply side peak 

happening in a shorter time frame. However, it represents a conservative plateau-like future 

(Hughes & Rudolph 2011). 

The cumulative availability curve is another addition to the original Sterman model as a way 

to represent the cost pressures associated with seeking the marginal tonne of resource. The 

concept is common in resource economics particularly where evaluating issues of future 

availability (IEA 2008; Yaksic & Tilton 2009; IEA 2013). The initial curve applied to the generic 

resource system model (see Appendix C) is based on current estimates of remaining oil 

resources (Sorrell et al. 2009), approximation of current oil production costs (IEA 2008; IEA 

2013), and expected future cost trends (IEA 2008; IEA 2013). 

Delays associated with adjustment of expected prices or other markets issues are initially 

set to either one year or half a year (Appendix C). Delays associated with adjustments of 

physical capital (i.e. capacity adjustments) are initially set to two or three years, reflecting 

the challenges associate with capital investment in resource extraction.  
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Lithium model 

Initial lithium price in the model is set to $5000/ tonne as an approximation of the historical 

lithium price (USGS 2013). 

In contrast to the generic resource model, demand in the lithium model40 is driven by 

demand for electric vehicles, and the lithium intensity of these technologies. The important 

initial values are therefore the growth rate of electric vehicles and the quantity of metal 

contained per electric vehicle (lithium intensity). The growth rate is based on a logistic s-

curve, governed by two variables: maximum electric vehicle growth and maximum electric 

vehicle sales. Maximum growth is initially set to 20% while maximum sales are set to 30 

million. These values were chosen to closely emulate IEA electric vehicle growth scenarios 

(Speirs et al. 2013a). Lithium intensity is initially set to 0.00798 tonnes per vehicle, based on 

380 grams of lithium per kWh of battery and 21 kWh average battery capacity per vehicle 

(Speirs et al. 2013a). 

The cumulative availability curve for lithium is an approximation of data in Yaksic & Tilton 

(2009) 

In the recycling model page the lifetime of EVs is set to 20 years, while the lifetime of other 

uses of lithium (e.g. consumer electronics) is set to 10 years. This reflects current rough 

estimates of future product lifetimes (Speirs et al. 2013a). The lithium recycling rate is set to 

60% (Speirs et al. 2013a). 

Indium model 

Initial indium price in the model is set to $600,000/tonne as an approximation of recent 

indium price trends (USGS 2013). 

By-product related initial values in the indium model are based on the findings of (Speirs et 

al. 2011). Zinc market growth rate is set to 1.5 percent to emulate growth estimated in the 

literature (Fthenakis 2009). The indium contained in a unit of Zn is initially set to a factor of 

0.00009 (Speirs et al. 2011). The rate of recovery of that indium is based on an initial indium 

                                                      
40

 The indium model follows the same general demand structure, though it is the future PV market driving 

demand rather than the future EV market 
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recovery rate (80%), a maximum indium recovery rate (90%) which is reached 20 years from 

the start of the model timeframe (Speirs et al. 2011). 

Primary indium production, without reliance on host metal production, is defined by a 

maximum primary indium production capacity (500 tonnes per year (Speirs et al. 2011)) and 

the indium at which this is profitable is set to $600,000 per tonne. This is set based on the 

fact that primary production of indium is already a burgeoning market, suggesting that at 

current the indium price close primary production is viable (Speirs et al. 2011). 

The initial values for the growth rate in CIGS uptake are based on the PV trajectory 

presented by the IEA (2010a). This is an optimistic assumption on the future growth rate for 

CIGS since other PV technologies will likely take some proportion of the IEAs trajectory. 

However, this optimistic assumption allows for the evaluation of by-product constraints. As 

discussed in Chapter 8 the by-product constraints begin to impact on the model at the 

demand growth rates tested. 

7.4.2 Delta t error test and time step 

System dynamics models are commonly solved by numerical integration in discrete time 

steps. Sometimes when solving these models errors develop relating to the length of these 

discrete time step. These errors are known as integration error, or delta t error (dt error). 

Because the integration methods used to solve these models approximate the results in 

‘chunks’ of time, the longer these chunks are the more likely these approximations will be 

wrong. However, solving system dynamics models with vanishingly small time steps is 

impractical given the increasing computational power needed to solve models with 

increasing number of model iterations. Choosing a time step is therefore important, and 

needs a ‘goldilocks’ approach to determine a time step small enough to avoid integration 

error, but big enough to limit the computational power needed to solve the model. 

In addition to time step, many models offer a choice of differing integration methods. Euler 

integration method is commonly used but alternatives like Runge-Kutta (RK4 Auto) are often 

also available. In some cases model solutions can be sensitive to the choice of integration 

method and this is another error to be avoided. 
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In order to test for both of the potential errors described above the outputs for six variables 

were recorded at four points in model time. The model was run using several different time 

steps, and with both types of numerical integration method (Table 7.9). 

Table 7.9: Outputs recorded, point in model timeframe, time step and numerical 

integration method used during delta t error test. 

Outputs recorded Points in model 

time (years) 

Time steps tested 

(days) 

Numerical 

integration methods 

Supply rate 0 0.007813 Euler 

Demand 25 0.015625 RK4 Auto 

Price 50 0.03125  

Capacity utilisation 100 0.0625  

Production capacity  0.125  

Desired capacity  0.25  

  0.5  

  1  

 

This process was conducted for each model, and the results recorded and plotted to 

establish the presence of any error. Uniformly the results suggested that there were no 

errors associated with any of the models. This is demonstrated for the case of the generic 

resource model, where the supply variable in year 100 shows only very slight variation 

between time step and integration method (Figure 7.37). 

Given the apparent absence of errors the time step 0.03125 days was chosen as it was less 

than a day, but did not significantly affect the length of time taken to solve the model, or 

limit the number of iterations saveable based on the limitations of the model platform 

Vensim. The Euler integration method was retained as it appeared to return the more 

consistent results over different time steps, though this benefit is clearly marginal. 
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Figure 7.37: DT error test presenting the impact on generic resource supply in year 100 of 

the model from time-step 0.015625 days to 0.25 days across both Euler and RK4 Auto 

integration types 

 

 

7.4.3 Consistency with reference modes 

As discussed in Section 7.1.3 , reference modes are typically time series data that 

demonstrate some kind of system behaviour in the system being modelled. It is common in 

system dynamics to examine these reference modes, and test model behaviour to see if it is 

consistent with these reference modes. In Section 7.1.3 reference modes representing 

historical production, historical price, and forecast production for each of the three 

resources modelled are presented. The underlying behaviours exhibited in these reference 

modes were used to inform the construction of the models, and therefore it is reasonable to 

assume that the models are able to replicate these behaviours. This assumption was tested 

by changing the input variable of the models and comparing the resulting outputs to the 

reference modes. In all instances an approximation of the expected behaviour was achieved 

by the respective models. To provide an example, Figure 7.38 presents three separate runs 
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of the generic resource system model manipulating the input variables to recreate the types 

of behaviour witnessed in the reference mode for supply rate forecasts. These three runs 

were created by manipulating the production time delay, cumulative availability curve and 

table for decoupling variables to provide growing, peaking and oscillating production 

simulations. The simulation run representing growth is most likely in a world where future 

cost of extraction does not increase significantly, and the rate of decoupling of demand 

from GDP is minimised. The simulation representing peaking behaviour is most likely in a 

world where either future supply peaks due to physical constraints on capacity, or future 

demand decreases due to a combination of decoupling of demand from economic growth, 

and increasing cost of marginal recovery (this simulation represents the latter). The plateau 

dynamic behaviour simulated is most likely in a world where demand is maintained in a 

reasonably steady state, but the time delays in the response mechanisms of the system are 

increased for some reason. This could be the case in a world where the time taken to build 

capacity, or to respond to demand signals is lengthened due to increasing engineering 

challenges associated with marginal production or decreasing confidence in industrial 

intelligence and information. 
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Figure 7.38: Output of three different simulations in the Generic resource system model 

representing the types of supply rate behaviour found in the reference modes 

 

Note: Adjustments from initial values –  

Growth: table for decoupling set to zero for all levels of GDP and cumulative availability curve 

flattened at $100/b 

Peak: table for decoupling set to double the rate of decoupling and cumulative and cumulative 

availability curve delayed 

Plateau:  production delay time increased from 0.5 to 4 years and cumulative availability curve 

flattened at $100/b 

7.4.4 Extreme conditions test 

In system dynamics modelling it is common to test the robustness of a model using extreme 

conditions testing. In this type of testing a model input variable is assume to take a sudden 

and dramatic shift to an implausibly high or low value. The response of the model is 

examined to see if any implausible behaviour arises from these extreme input variables. For 

example, regardless of how high the price of a commodity rises, demand cannot drop below 

zero. If this is a result witnessed during extreme conditions testing then the model structure 

is likely to need adjustment to improve its robustness.  
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The three models describe here were tested under extreme conditions by systematically 

setting each input variable to zero and 1010. The responses to this were recorded and 

examined for unrealistic behaviour. All models were deemed to have exhibited plausible 

behaviour. 

7.4.5 Sensitivity test 

Sensitivity of a model to variation in input assumptions can be carried out in a number of 

ways. Here the models are exposed to two main types of analysis: Multivariate Monte Carlo 

simulation, and univariate simulation. The former tests the impact of varying a number of 

different inputs simultaneously, while the latter varies inputs individually. In both cases 

variables were assigned an initial value (see 7.4.1 ), and a maximum and minimum range 

over which they could be varied. The model then randomises the values for these variables 

over a set number of iterations, based on a stated probability distribution. In this case the 

range was set to +/-50% for each initial value, the number of iterations was set to 100 and a 

random uniform distribution was selected given lack of evidence for the true underlying 

distribution for most of the model variables. The results of sensitivity analysis for the three 

models are presented in turn below. 

The figures below are sensitivity percentile graphs, providing information about both the 

range of outcomes and the distribution of those outcomes when subject to changing inputs. 

The blue line at the centre of the range of outcomes represents the response of the model 

to the initial values. The yellow, green, blue and grey portions of these figures represent the 

50th percentile, 75th percentile, 95th percentile and 100th percentile of the sensitivity analysis 

outcomes. For example, of the 100 iterations of the sensitivity analysis in each graph, 95 of 

those iterations produced an outcome that stayed within the blue portion of the graphical 

output. 

The generic  resource system model 

The variables included in the generic resource model sensitivity analysis, and the range of 

values used is presented in Table 7.10. Below the results of multivariate analysis are 

presented, before focusing on some of the interesting findings of univariate analysis. 
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Table 7.10: Model inputs varied during the generic resource model sensitivity analysis 

including their units, initial values and variable range 

Variable Units Initial 

value 

Minimum 

(-50%) 

Maximum 

(+50%) 

Production delay time Years 0.5 0.25 0.75 

GDP growth rate Factor 0.01 0.005 0.015 

Demand adjustment delay Years 0.5 0.25 0.75 

Reference demand elasticity Factor 0.5 0.25 0.75 

Sensitivity of price to costs Factor 0.5 0.25 0.75 

Time to adjust traders expected price Years 1 0.5 1.5 

sensitivity of price to inventory coverage Factor -1 -0.5 -1.5 

Capital Productivity Units/year 1 0.5 1.5 

Average life of capacity Years 20 10 30 

Minimum order processing time Years 0.1 0.05 0.15 

 

Multivariate analysis 

The results of the multivariate analysis are presented below in Figure 7.39 to Figure 7.43. 

The impacts of the sensitivity analysis are presented for the output of five key aspects of the 

model: 

 supply rate (Figure 7.39) 

 demand (Figure 7.40) 

 price (Figure 7.41) 

 production capacity (Figure 7.42); and 

 Desiredproduction capacity (Figure 7.43) 

The following points are worth highlighting with reference to the multivariate analysis 

outputs below: 

 First, supply and demand show very similar sensitivity responses. This is intuitive as 

one of the functions of the model is to balance supply and demand. In both cases the 

initial values produce a model response which is reasonably flat initially, and then 
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begins to decrease in response to both decoupling of demand from GDP, and 

increasing marginal cost of production. 

 Price shows only modest sensitivity to varied inputs in 95% of the multivariate 

sensitivity iterations. However in the most extreme 5% of model iterations price 

varies significantly, showing significant oscillations. These oscillations are positively 

biased, suggesting that the models response to more extreme model inputs is more 

likely to produce a higher generic resource price than a lower one. The initial values 

create an price that largely follows the marginal cost, as one might expect in a 

rational economic system. 

 Production capacity follows a similar trend to supply and demand, though its 

response to variation appears greater, creating a broader range. The centre of the 

range is above the centre of the supply rate range, given that the model favours 

maintaining spare capacity (see 7.3.1 ). 

 Desired capacity shows a much greater range than actual production capacity. This is 

a function of the fact that desired capacity defines the goal and can change more 

quickly than production capacity, which is constrained by additional delay. 
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Figure 7.39: Generic resource model sensitivity analysis based on multivariate Monte 

Carlo simulation showing the impact on supply rate of varying inputs +/- 50% (Tonnes/y) 
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Figure 7.40: Generic resource model sensitivity analysis based on multivariate Monte 

Carlo simulation showing the impact on demand of varying inputs +/- 50% (Tonnes/y) 

 

Figure 7.41: Generic resource model sensitivity analysis based on multivariate Monte 

Carlo simulation showing the impact on price of varying inputs +/- 50% ($/b) 
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Figure 7.42: Generic resource model sensitivity analysis based on multivariate Monte 

Carlo simulation showing the impact on production capacity of varying inputs +/- 50% 

(Tonnes/y) 
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Figure 7.43: Generic resource model sensitivity analysis based on multivariate Monte 

Carlo simulation showing the impact on desired capacity of varying inputs +/- 50% 

(Tonnes/y) 

 

Univariate analysis 

Below are the results for univariate sensitivity analysis of the generic resource system 

model. The impacts of the univariate analysis are only presented for supply rate for brevity. 

In the initial values case the model output trajectory is relatively stable. As such the model 

in this state is not very sensitive to variation of individual variables representing some form 

of delay. These variables determine how quickly the model responds to change, and these 

delays are often characterised by oscillation in model outputs. Therefore, only those 

variables that do respond with interesting sensitivities are presented here. 

Varying the GDP growth rate creates a small range in the supply rate, represented in Figure 

7.44. Varying the reference demand elasticity, however, has a more significant impact 

(Figure 7.45). When comparing this sensitivity with that shown for the multivariate 

sensitivity test impact on supply rate (Figure 7.39) it is clear that the majority of the 

sensitivity of this model can be explained by reference demand elasticity alone. Therefore, 
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assumptions regarding the slope of the generic resource demand curve are very important 

to the behaviour of the generic resource system model. 

Figure 7.44: Generic resource model sensitivity analysis based on univariate simulation 

showing the impact on supply rate of varying GDP growth rate +/- 50% (Tonnes/y) 
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Figure 7.45: Generic resource model sensitivity analysis based on univariate simulation 

showing the impact on supply rate of varying reference demand elasticity +/- 50% 

(Tonnes/y) 

 

The lithium resource system model 

As previously, the variables included in the lithium model sensitivity analysis and the range 

of values used, are presented in Table 7.11. Below the results of multivariate analysis are 

presented, before focusing on some of the interesting findings of univariate analysis. 

Table 7.11: Model inputs varied during the lithium model sensitivity analysis including 

their units, initial values and variable range 

Variable Units Initial 

value 

Minimum 

(-50%) 

Maximum 

(+50%) 

Other Demand Tonnes/yr 35000 17500 52500 

demand adjustment delay Yrs 0.5 0.25 0.75 

ref Li demand elasticity Dimensionless 0.5 0.25 0.75 

Li intensity t/vehicle 0.00798 0.00399 0.01197 

Sensitivity of price to costs Dimensionless 0.5 0.25 0.75 

Time to adjust traders expected price Yrs 1 0.5 1.5 
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sensitivity of price to inventory coverage Dimensionless -1 -0.5 -1.5 

Capital Productivity Tonnes/yr/capacity 1 0.5 1.5 

Average life of capacity Yrs 20 10 30 

EV lifetime Yrs 20 10 30 

EV recycling rate Factor 0.6 0.3 0.9 

cost of EV recycling $/tonnes 6000 3000 9000 

 

Multivariate analysis 

The multivariate analysis for the lithium model was conducted in the same manner as for 

the generic resource model above. However, this time an extra model output, recycling is 

also recorded. The following points of this analysis are notable: 

 Again the supply (Figure 7.46) and demand (Figure 7.47) outputs behave in broadly 

similar ways, for the same reasons as discusses for the generic resource model 

above. The initial values case grows exponentially over the first few decades as the 

growing demand from electric vehicles encourages commensurate production 

increase. Between year 25 and year 50 of the model time horizon this trend abates 

and the outputs both peak and then begin a slow decline. This is in response to the 

asymptotic nature of electric vehicle demand and the increasing contribution of 

recycling (Figure 7.51). As the model reaches this period of peaking the 100th 

percentile case begins to exhibit oscillating behaviour as the model struggles to 

balance this changing demand under increasingly eccentric input values. 

 The initial values case creates an initial oscillation in price (Figure 7.48) before the 

model settles down to a steadily growing trend, driven by the growing marginal cost 

of production assumed in the cumulative availability curve. The lithium model 

exhibits similar oscillations in the 100th percentile case as in the generic resource 

model multivariate analysis. However, the lithium model also exhibits a wide range 

of outcomes in the 50th and 75th percentile cases. 

 Both production capacity (Figure 7.49) and desired capacity (Figure 7.50) peak and 

decline at the same time as demand and supply, in response to the growing 

contribution of recycling and the plateau in electric vehicle demand. Neither shows a 
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great deal of oscillation but desired capacity appears more unstable in the years 

post-peak in comparison to production capacity. 

Figure 7.46: Lithium model sensitivity analysis based on multivariate Monte Carlo 

simulation showing the impact on supply rate of varying inputs +/- 50% (t/y) 
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Figure 7.47: Lithium model sensitivity analysis based on multivariate Monte Carlo 

simulation showing the impact on lithium demand of varying inputs +/- 50% (t/y) 

 

Figure 7.48: Lithium model sensitivity analysis based on multivariate Monte Carlo 

simulation showing the impact on lithium price of varying inputs +/- 50% ($/t) 
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Figure 7.49: Lithium model sensitivity analysis based on multivariate Monte Carlo 

simulation showing the impact on production capacity of varying inputs +/- 50% (t/y) 

 

Figure 7.50: Lithium model sensitivity analysis based on multivariate Monte Carlo 

simulation showing the impact on desired capacity of varying inputs +/- 50% (t/y) 
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Figure 7.51: Lithium model sensitivity analysis based on multivariate Monte Carlo 

simulation showing the impact on recycled lithium of varying inputs +/- 50% (t/y) 

 

Univariate analysis 

As with the generic resource model analysis above, only the results of univariate sensitivity 

analysis demonstrating significant sensitivity are presented below. From the graphical 

outputs below two notable findings arise. First, a large proportion of the sensitivity range 

found in the multivariate analysis can be explained by the response of the lithium intensity 

variable (Figure 7.52). As the assumed lithium intensity of electric vehicles increases or 

decreases it has a multiplicative effect on total lithium demand, and as that demand rises or 

falls, the supply curve aims to meet that demand.  

Second, the oscillation exhibited by the multivariate test supply rate output is largely 

explained by demand adjustment delay (Figure 7.53) and reference lithium demand 

elasticity (Figure 7.54). Demand adjustment delay is the length of time it takes to adjust 

demand to the changing conditions of price and other demand drivers. As this delay 

increases the ability of demand to equilibrate is compromised, creating oscillation. 

Reference demand elasticity, as in the generic resource model, plays a significant part here. 

In the lithium model, however, it is responsible for creating oscillation. This is due to the 

models response to very low assumptions for elasticity of lithium demand, which makes it 
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difficult for demand to respond to small changes in price, resulting in the overshoot and 

overcompensation seen in Figure 7.54. 

The remaining figure below represents the impact of varying the electric vehicle recycling 

rate on the supply rate (Figure 7.55). This variable has an increasing impact in the later years 

of the model as the in-use stock of vehicles grows and ages to end-of-life. However, this 

trend happens late in the model life and does not significantly drive the sensitivity of the 

model. 

Figure 7.52: Lithium model sensitivity analysis based on univariate simulation showing the 

impact on supply rate of varying lithium intensity +/- 50% (t/y) 
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Figure 7.53: Lithium model sensitivity analysis based on univariate simulation showing the 

impact on supply rate of varying demand adjustment delay +/- 50% (t/y) 

 

Figure 7.54: Lithium model sensitivity analysis based on univariate simulation showing the 

impact on supply rate of varying reference lithium demand elasticity +/- 50% (t/y) 
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Figure 7.55: Lithium model sensitivity analysis based on univariate simulation showing the 

impact on supply rate of varying electric vehicle recycling rate +/- 50% (t/y) 

 

 

The Indium resource system model 

Once again the variables included in the indium model sensitivity analysis, and the range of 

values used is presented in Table 7.12. Below the results of multivariate analysis are 

presented, before focusing on some of the interesting findings of univariate analysis. 
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Table 7.12: Model inputs varied during the indium model sensitivity analysis including 

their units, initial values and variable range 

Variable Units Initial 

value 

Minimum 

(-50%) 

Maximum 

(+50%) 

minimum order processing time yrs 0.1 0.05 0.15 

production delay time yrs 0.5 0.25 0.75 

Other Demand tonnes/y 500 250 750 

demand adjustment delay Yrs 0.5 0.25 0.75 

ref In demand elasticity Dimensionless 0.5 0.25 0.75 

In intensity g/Wp 0.0248 0.0124 0.0372 

Sensitivity of price to costs Dimensionless 0.5 0.25 0.75 

Time to adjust traders expected price Yrs 1 0.5 1.5 

sensitivity of price to inventory coverage Dimensionless -1 -0.5 -1.5 

max primary In production capacity tonnes/y 500 250 750 

cost of primary indium production $/tonnes 600000 300000 900000 

indium contained in zinc Factor 0.00009 0.000045 0.000135 

Capital productivity t/y/capacity 1 0.5 1.5 

Average life of capacity Yrs 20 10 30 

CIGS lifetime Yrs 30 15 45 

CIGS recycling rate Factor 0.8 0.4 1.2 

cost of CIGS recycling $/tonnes 700000 350000 1050000 

 

Multivariate analysis 

The multivariate analysis for the indium model was conducted in the same manner as for 

the lithium model above including recording the recycling model output. The following 

points of this analysis are notable: 

 The initial values case produces a reasonably stable output for supply and demand 

(Figure 7.56 and Figure 7.57), though supply does not appear to grow in the 

exponential way that would be demanded under common assumptions regarding 

the growth rate of CIGS PV manufacturing. This is the result of the production 

capacity constraints placed on the model by the assumed host metal production 

trajectory. Again the supply and demand outputs behave very similarly to the 
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multivariate sensitivity analysis, though the indium model appears more volatile in 

the 100th percentile case than in either of the previous two models. This volatility is 

again largely a response to the constrained production capacity. 

 In response to the constrained production capacity, indium price (Figure 7.58 and 

Figure 7.59) in the initial values case dramatically increases in the early years of the 

model time horizon, nearly doubling over a 30 year period. In the 30th year of the 

model run price enters a phase of slow decline. This behaviour coincides with the 

assumed lifetime of CIGS PV modules (30 years). Recycling is therefore a significant 

driver of this price stabilisation and decline, helping make up the supply deficit 

resulting from constrained production capacity. The extreme volatility in the 100th 

percentile masks the underlying behaviour of the initial values case. To highlight the 

underlying behaviour the initial values case is presented on its own (Figure 7.59). 

This extreme volatility is again driven by the constrained production capacity, which 

prevents supply from responding quickly enough to limit this oscillation. 

 The production capacity and desired capacity outputs show a similar relationship to 

each other as seen in the previous model sensitivity analyses (Figure 7.60, Figure 

7.61). The initial value case shows a steadily growing production capacity, following 

the trend of the underlying host metal production. This trend is halted with a peak in 

capacity near the 75th model year, driven by the combination of recycling, plateauing 

PV demand, and production capacity catching up to latent demand. The range of 

outcomes grows significantly in the later years of the model time horizon, though 

this range does not seem to include significant oscillation or instability. The growing 

range is largely driven by the growing range of recycled indium over the same time 

period 

 Recycled indium appears very sensitive to the multivariate analysis, and exhibits a 

significant range in the later years of the model (Figure 7.62). This range is due to the 

range of indium price generated in the multivariate analysis, which is either below 

the cost of recycling, pushing recycling to zero, or above the cost of recycling, 

incentivising the maximum level of recycling possible. Since the cost of recycling is 

also varied in this analysis the impacts of this price/cost relationship are 

accentuated. 
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Figure 7.56: Indium model sensitivity analysis based on multivariate Monte Carlo 

simulation showing the impact on supply rate of varying inputs +/- 50% (t/y) 

 

Figure 7.57: Indium model sensitivity analysis based on multivariate Monte Carlo 

simulation showing the impact on indium demand of varying inputs +/- 50% (t/y) 
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Figure 7.58: Indium model sensitivity analysis based on multivariate Monte Carlo 

simulation showing the impact on indium price of varying inputs +/- 50% ($/t) 

 

Figure 7.59: The initial values case for indium price ($/t) 
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Figure 7.60: Indium model sensitivity analysis based on multivariate Monte Carlo 

simulation showing the impact on production capacity of varying inputs +/- 50% ($/t) 

 

Figure 7.61: Indium model sensitivity analysis based on multivariate Monte Carlo 

simulation showing the impact on desired capacity of varying inputs +/- 50% ($/t) 
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Figure 7.62: Indium model sensitivity analysis based on multivariate Monte Carlo 

simulation showing the impact on recycled indium of varying inputs +/- 50%($/t) 

 

Univariate analysis 

As with the analyses above, only the results of univariate sensitivity analysis demonstrating 

significant sensitivity are presented below. Based on the outputs presented in the figures 

below there are two points of note. First, reference demand elasticity (Figure 7.64) is again 

an important variable, as it has been shown in the analysis for the two previous models. 

Second, the variables that appear to describe the majority of the sensitivity presented in the 

multivariate analysis all respond to the central driver of that behaviour; i.e. the models 

constrained production capacity due to host metal interactions. These variables are: the 

indium intensity of CIGS modules (Figure 7.64); the indium contained in zinc ore (Figure 

7.65); the productivity of indium producing capacity (Figure 7.66); and the cost of CIGS 

recycling (Figure 7.67). While the indium intensity has a significant impact on demand, the 

indium contained in zinc ore, the productivity of capital, and the cost of recycling all have an 

impact of indium supply. By comparing these figures to the multivariate analysis output for 

supply rate (Figure 7.60) it is clear that a large proportion of the sensitivity of this model can 

be explained by these four variables. 
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Figure 7.63: Indium model sensitivity analysis based on univariate simulation showing the 

impact on supply rate of varying reference demand elasticity +/- 50% ($/t) 

 

Figure 7.64: Indium model sensitivity analysis based on univariate simulation showing the 

impact on supply rate of varying indium intensity +/- 50% ($/t) 
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Figure 7.65: Indium model sensitivity analysis based on univariate simulation showing the 

impact on supply rate of varying indium contained in zinc +/- 50% (t/y) 

 

Figure 7.66: Indium model sensitivity analysis based on univariate simulation showing the 

impact on supply rate of varying capital productivity +/- 50% ($/t) 
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Figure 7.67: Indium model sensitivity analysis based on univariate simulation showing the 

impact on supply rate of varying CIGS recycling +/- 50% ($/t) 

 

7.4.6 Depletion rate test 

To examine the plausibility of the models behaviour in terms of geological availability the 

model calculates the rate at which resources are depleted. The URR estimate for the generic 

resource uses the example of oil, and is based on the evidence analysis in Sorrell et al. 

(2009), the lithium resource estimate is based on the estimates in Yaksic and Tilton (2009) 

excluding sea water resources, and indium reserves based on Mikolajczak (2009) estimates. 

In general the models appear to behave in a plausible manner with reasonable depletion 

rates and leading to long time horizons for the available resources. However, there are the 

following caveats: 

 The most extreme iterations in the indium model expend the total quantity of 

resources by the very end of the model time horizon.  
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forecasts of the future but tools to test future conditions. The depletion rate tests 
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should not therefore be viewed as an estimate of when these resources will ‘run 

out’. 

 This depletion rate test is to sense check the rate at which resources are depleted by 

the model runs, and is not a comprehensive examination of the geological aspects of 

resource systems. The use of cumulative availability curves to define production 

costs covers aspects of the geological system. However, in order to capture the 

geological aspects of resource systems more sophisticated treatment of the 

geological processes of resource discovery and exploitation should be included in 

resource system models. 

Below are the results of the depletion rate test for the generic resource (Figure 7.68), 

lithium (Figure 7.69) and (Figure 7.70). 

Figure 7.68: Generic resource model sensitivity analysis of reserve depletion based on 

multivariate Monte Carlo simulation varying inputs +/- 50% (Tonnes) 
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Figure 7.69: Lithium model sensitivity analysis of reserve depletion based on multivariate 

Monte Carlo simulation varying inputs +/- 50% (tonnes) 

 

Figure 7.70: Indium model sensitivity analysis of reserve depletion based on multivariate 

Monte Carlo simulation varying inputs +/- 50% (tonnes) 
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7.5 Summary 

This chapter documents the construction of three system dynamics resource system models 

covering three resources: the generic resource, lithium and indium. The chapter then 

presents the results of several model tests designed to build confidence in the models 

structure and validity. These tests examine the models response in respect to changing time 

step (Dt error tests), the historical and forecast reference modes, extreme initial conditions, 

depletion rate, and the sensitivity of the model to varying inputs. The model structures were 

iterated over during this testing and the models documented here are robust in response to 

these tests. 

The sensitivity tests provide insight into the variables that have most influence on the 

models. In the generic resource model these are 

 GDP; and 

 Price elasticity of demand 

In the lithium model these are: 

 Lithium intensity in electric vehicles; 

 The delay time in adjusting demand to changing system conditions; 

 Price elasticity of demand; and 

 The future recycling rate in electric vehicles. 

In the indium model these are: 

 Price elasticity of demand; 

 The indium intensity in CIGS PV; 

 The assumed indium contained in zinc ores 

 The productivity of production capital; and 

 The future rate of CIGS PV recycling. 

In the following chapter the three resource models documented here are evaluated to 

examine their behaviour in various system conditions, in particular their response to periods 

of capacity constraint. 
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Chapter 8:  Model evaluation 

“Since the measuring device has been constructed by the observer … we have 

to remember that what we observe is not nature itself but nature exposed to 

our method of questioning” 

Werner Karl Heisenberg, 1958 

The previous chapter presented three resource market models, described their structures 

and highlighted the conceptual differences between them. This chapter explores the impact 

of those differences on the models’ responses to constrained future availability. The central 

motivation of this thesis is to determine whether or not the resources studied here respond 

in similar ways to constraints in future supply. The chapter is structured to examine each of 

the main areas where there are significant distinctions between the models. First, recycling 

and by-product metal issues are explored given that these are the significant structural 

differences between the three models. The impacts of differences in marginal cost are then 

explored. Marginal cost is likely to influence price significantly under traditional views of 

economic systems, and the potential differences between the marginal cost curves of the 

three resources may have interesting implications for the future behaviour of these 

systems. Finally, the impacts of potential policy responses to scarcity are examined to 

explore whether these resource system models can inform the development of sensible 

material availability policies. 

8.1 Impact of recycling 

This section exposes the three models to a ‘capacity constraint event’ at three different 

points in the model timeframe (year 25, year 50 and year 75) and examines the impact of 

recycling on the models’ response. The capacity constraint event is a period of one year 

where 5% of capacity is made unavailable. In a real world scenario this type of event might 

represent a period where a geopolitical event such as civil conflict, export embargo or cartel 

activity constrained capacity for a short period of time. The lithium and indium models are 

exposed to these capacity constraint events under conditions of both low and high recycling 

costs. By assuming a very high cost of recycling the models will not recycle lithium or 
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indium. This run can then be compared to model runs using a low recycling cost where 

metal recycling will occur. This isolates the impact of recycling on the models’ responses to 

the capacity constraint event. Table 8.1 presents the different model cases applied to each 

model, including the key inputs varied in each case. 

Table 8.1: The model cases applied to the generic, lithium and indium models to 

investigate the effects of recycling and constrained availability 

 Case Cost of recycling 

($) 

Timing of 5% capacity 

constraint event (year) 

Generic Base case N/A 0 0 0 

 Capacity constraints N/A 25 50 75 

Lithium Base case 6000 0 0 0 

 Capacity constraints 6000 25 50 75 

 Capacity constraints high 

recycling cost 

60000 25 50 75 

Indium Base case 700000 0 0 0 

 Capacity constraints 700000 25 50 75 

 Capacity constraints high 

recycling cost 

7000000 25 50 75 

 

8.1.1 The generic resource models response to availability constraint 

The generic resource model has no recycling subsystem, and therefore responds to the 

impacts of capacity constraint through the effects of price on capacity and its utilisation. 

Figure 8.1 presents the impacts of the capacity constraint events on supply rate, and Figure 

8.2 presents the impact on price. In each case the supply rate initially decreases, with the 

unserved demand producing an increase in price. As price rises the supply rate begins to 

increase back towards the previous trajectory, but overshoots due to the impacts of the 

models delay. This oscillation takes approximately 10 years to stabilise, and at its greatest 

supply fluctuates by approximately +/-5%. The price response generating this oscillation also 

takes approximately 10 years to stabilise. However, price fluctuates by approximately +/- 
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10% in the year 25 capacity constraint event, twice the impact experienced by supply. The 

impact reduces in absolute terms between the three cases in response to decreasing supply 

rate, meaning that the impact on price in the year 75 capacity constraint event is less, at 

approximately +/-7%. This is due to the capacity constraint event being a percentage of 

supply, and not an absolute number. The oscillation in price decreases over time despite the 

increase in price over the time period of the model as the oscillation is relative to the supply 

rate rather than the price. 

These capacity constraint events may seem small in comparison to the inventory that exists 

in the model, which the model seeks to keep at 20 percent of demand. However, since price 

in the model responds to even slight changes in relative inventory coverage even small 

unforeseen, instantaneous constraints in available capacity should have an impact on the 

model. 

Figure 8.1: Impact of capacity constraint on the generic resource model supply rate 
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Figure 8.2: Impact of capacity constraint on the generic resource model price 

 

8.1.2 The lithium models response to availability constraint under variable 

recycling cost 

The lithium model was run under three different cases: one case reflects the base case 

assumptions using the initial values; once case exposes the initial values to the same 

capacity constraint events as described above, with capacity reduced by 5% for one year in 

year 25, year 50 and year 75; and finally one case exposes the model to both the capacity 

constraint events and a high recycling cost. This high recycling cost means that the model is 

unlikely to undertake any recycling, and the effect that recycling has on the model can 

therefore be deduced by comparison of this case with the first two. The results of these runs 

are presented in Figure 8.3 and Figure 8.4. 

In the early years of the three model cases there is some oscillation, particularly in lithium 

price (Figure 8.4). By comparison of the base case with the high recycling cost case it 

appears that recycling alters this oscillation, reducing it to an extent. The underlying reason 

for the oscillation is difficult to isolate but likely to be an artefact of the difference between 

the models initial values and the supply demand equilibrium in the early years. However, 
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between year 25 and year 30 this oscillation subsides, and all three models follow a very 

similar path as supply rate increases dramatically in line with rapidly rising demand for 

electric vehicles. This follows expectations regarding the impact that recycling can have 

during a period a dramatic supply increase (see section 5.2.3). These issues are discussed in 

more detail in Chapter 9. 

After supply peaks and begins to decline the model cases begin to diverge. This highlights 

two important factors of the models response to metal recycling. First, recycling does begin 

to produce a noticeable impact on the supply rate where the supply rate is no longer 

increasing dramatically, or indeed decreasing over time. Again this is in line with 

expectations of the impact of recycling. This is also reflected in price, where the availability 

of recycled material helps to keep the price of metal below that expected in the absence of 

recycled metal. Second, the impact of the capacity constraint events is significantly 

diminished where recycled material is available. In year 50 the oscillation in supply rate in 

the ‘capacity constraints’ case is approximately half that seen in the ‘capacity constraints 

high recycling cost’ case. Assuming that the constraint in supply comes from an event 

affecting only primary production the recycled proportion of metal is unaffected by the 

constraint event, and helps to mitigate the effects of the capacity constraints. Since 

recycling can happen in any number of different countries, and at small and well distributed 

scale, it is reasonable to assume that a capacity constraint event as described above would 

not affect recycling availability. The impact on lithium price is similarly diminished in these 

models, given that price responds to the supply deficit which has been mitigated by 

recycling. 
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Figure 8.3: Impact of capacity constraint on the lithium model supply rate under both high 

recycling costs and base case recycling cost values 
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Figure 8.4: Impact of capacity constraint on the lithium model price under both high 

recycling costs and base case recycling cost values 

 

8.1.3 The indium models response to availability constraint under variable 

recycling cost 

The indium model behaves slightly differently to the lithium model when exposed to similar 

assumptions regarding the costs of recycling, and capacity constraint events (Figure 8.5 and 

Figure 8.6). The model produces slightly more metal under the ‘capacity constraints’ and 

‘base case’ model runs than in the ‘capacity constraints high recycling cost’ case, but the 

difference is not as significant as in the later years of the lithium model. The impact of 

recycling on the effect of capacity constraint events is also muted, with little difference seen 

in the oscillations in years 25, 50 and 75. This difference is a result of the fact that the 

indium model supply growth is constrained by the availability of indium due to the by-

product nature of its production. This constraint keeps indium production below the 

reference demand for the majority of the model time period. Indium price is similarly 

affected, with little differentiation of price throughout the model, and similar responses to 

the capacity constraint events across the model cases. 
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An interesting point in the indium model is in year 80, where the model runs invert, and 

there is a change in trend in the model cases, with supply peaking and going into decline, 

and price reaches a floor and begins to climb. The constraint in supply due to the by-product 

nature of indium production induces a high and rising price of indium in the early years of 

the model as demand for PV outstrips supply of indium. As growth in demand for PV slows, 

and the rate of recycling increases the indium price begins to decrease back towards the 

rising marginal cost of production, defined by the cumulative availability curve. In year 80 

the price of indium and the marginal cost of production intersect, and price follows the 

marginal cost from that point forward. The inversion in model runs is unintuitive, but is a 

result of the oscillations caused by the capacity constraint event in year 75. The model runs 

converge as they approach year 100, correcting this inversion to a more intuitive position. 

Figure 8.5: Impact of capacity constraint on the indium model supply rate including under 

a high cost of recycling 
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Figure 8.6: Impact of capacity constraint on the indium model price including under a high 

cost of recycling 

 

In summary, the effect of recycling can have a significant effect on both supply and response 

to sudden constraint events. However, this effect is least potent when supply is growing 

significantly. Further, where supply might be constrained by by-product metal production 

the effects of recycling are likely to be muted. 

8.2 Impact of by-product metal production and its constraint on production 

growth 

To isolate the impact of by-product indium production from the effects discussed above the 

indium model was run again under conditions which relax the by-product related supply 

constraints. By running the model under the assumption that zinc ore contains an 

unrealistically high quantity of indium, production is unconstrained by the rate at which zinc 

is produced (Table 8.2). The result of this run, along with the base case and capacity 

constrains cases presented in the previous section, are seen below (Figure 8.7 and Figure 

8.8). 
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Table 8.2: The model cases applied to the indium model to investigate the impact of by-

product production and capacity constraint events 

 Case Indium contained 

in zinc ore 

Timing of 5% capacity 

constraint event (year) 

Indium Base case 0.009% 0 0 0 

 Capacity constraints 0.009% 25 50 75 

 High indium contained 1% 25 50 75 

 

The impact of by-product indium production on the supply rate is quite significant, exposing 

a large quantity of unserved reference demand, shown by the differential between the 

‘capacity constraints’’ case and the ‘high indium contained’ case in Figure 8.7. This is also 

reflected in the indium price, which is significantly reduced in the early years of the model if 

by-product constraints are removed (Figure 8.8). 

The impact of capacity constraints appears relatively unaffected by the by-product nature of 

indium production. The oscillations resulting from the capacity constraint events appear 

larger in the ‘high indium contained’ case, but are very similar as a percentage of the 

underlying supply rate. 

In summary, by-product indium production has a significant effect on supply rate, but 

relatively little effect on the models response to capacity constraint events. 
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Figure 8.7: Impact of capacity constraint on the indium model supply rate including under 

conditions of high indium content in zinc ore. 
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Figure 8.8: Impact of capacity constraint on the indium model price including under 

conditions of high indium content in zinc ore. 

 

8.3 Impact of marginal cost 

The cumulative availability curve dictates the increasing cost associated with production of 

the marginal resource. Since the marginal cost of production is a strong factor in the 

establishment of price then variations in this input can have significant impacts on the 

model outputs. In order to examine the impact that marginal cost has on the response of 

the three resource models each was run with a flat cumulative availability curve (Table 8.3). 

In the figures below the ‘base case’ and ‘capacity constraints’ model runs are also presented 

for comparison. 
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Table 8.3: The model cases applied to the generic resource, lithium and indium models to 

investigate the impact of the cumulative availability curve and capacity constraint events 

 Case Cumulative 

availability curve 

Timing of 5% capacity 

constraint event (year) 

Generic 

resource 

Base case Initial values 0 0 0 

 Initial values cumulative 

availability curve 

Initial values 25 50 75 

 Flat cumulative availability 

curve 

Flat: $100/tonne 25 50 75 

Lithium Base case Initial values 0 0 0 

 Initial values cumulative 

availability curve 

Initial values 25 50 75 

 Flat cumulative availability 

curve 

Flat: 

$2,200/tonne 

25 50 75 

Indium Base case Initial values 0 0 0 

 Initial values cumulative 

availability curve 

Initial values 25 50 75 

 Flat cumulative availability 

curve 

Flat: 

$600,000/tonne 

25 50 75 

 

8.3.1  The generic resource model response to availability constraint under 

static marginal cost 

The generic resource  model initial values assume that the cost of extracting the resource 

increases by $10 with every 500 billion tonnes produced. This assumption is based on 

marginal resource cost curves published by the (IEA 2008; IEA 2013). However, some 

envisage a future where the extraction of marginal resources is actually relatively low cost, 

largely due to the advent of horizontal drilling and hydraulic fracturing technologies 

(Maugeri 2012). In this type of future the marginal cost of production might be relatively 

static, or ‘flat’. Figure 8.9 and Figure 8.10 present the results of applying a flat cumulative 
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availability curve of $100 per tonne to the ‘capacity constraints’ model run for both supply 

rate and price. The ‘base case’ and ‘capacity constraints’ model runs are also presented for 

comparison. 

First, the rising marginal cost in the ‘base case’ and ‘capacity constraints’ cases appears to 

be largely responsible for the decline in supply seen in these model runs (Figure 8.9). When 

a static cumulative availability curve is applied to the model supply grows very slightly in the 

first half of the time horizon, peaking round year 50 and declining for the remainder of the 

time horizon. In this ‘flat cumulative availability curve’ case the initial growth in supply is 

driven by growth in demand due to rising GDP. The subsequent peak and decline is a result 

of the decoupling assumed in the model run, reflecting the fact that through 

decarbonisation and efficiency measures it is increasingly possible for GDP to grow without 

also increasing demand for energy. Supply in the ‘flat cumulative availability curve’ case is 

therefore significantly above that seen in the capacity constraints case. This is intuitive as a 

lower resource price (Figure 8.10), driven by a lower marginal cost of production, is likely to 

increase demand.  

The response to the capacity constraint events is modified slightly by the change in 

cumulative availability curve. The oscillation in supply rate resulting from these events 

creates larger oscillations in the ‘flat cumulative availability curve’ case, but these 

oscillations appear to be similar in magnitude relative to the underlying supply rate. 

However, the duration of the oscillation, and the time period until the oscillation subsides 

appears to be longer than in the ‘capacity constraints’ case. This appears again to be due to 

the fact that the higher supply rate in the ‘flat cumulative availability curve’ case creates 

larger oscillations which take longer to return to equilibrium. 
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Figure 8.9: Impact of capacity constraint on the generic resource model supply rate 

including under conditions of static marginal cost of production. 
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Figure 8.10: Impact of capacity constraint on the generic resource model price including 

under conditions of static marginal cost of production. 

 

8.3.2  The lithium model response to availability constraint under static 

marginal cost 

The base case for the lithium model again assumes that the marginal cost of production is 

increasing, from an initial value of $2,200 per tonne, to $22,000 per tonne at cumulative 

production of 32,000,000 tonnes. This assumption is based on academic literature 

estimating the slope of this cumulative availability curve (Yaksic & Tilton 2009). In Figure 

8.11 and Figure 8.12 the base case and capacity constraints cases are presented, and a third 

case where the cumulative availability curve is set at a static $2,200 per tonne of metal.  

Lithium supply rate grows more quickly under static assumptions on the marginal cost of 

lithium production (Figure 8.11). However, once supply approaches the plateau of lithium 

reference demand (approximately 275,000 tonnes per year) it enters a phase of significant 

oscillation. This oscillation is also reflected in lithium price (Figure 8.12) and remains for the 

rest of the model time horizon. The ongoing low cost of lithium production drives the 

magnitude of this oscillation, creating the conditions for the supply of metal to approach the 
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reference demand plateau too steeply, making it difficult for the model to reach equilibrium 

due to the model delays. This level of oscillation is unlikely in the real world and probably 

reflects some level of unrealism in the models assumptions on delay in interpreting the 

equilibrium price. The oscillation also masks the impact of the capacity constraint events, 

making it difficult to interpret the models response to these events under static 

assumptions on marginal cost of production. 

Figure 8.11: Impact of capacity constraint on the lithium model supply rate including 

under conditions of static marginal cost of production. 
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Figure 8.12: Impact of capacity constraint on the lithium model price including under 

conditions of static marginal cost of production. 

 

8.3.3  The indium model response to availability constraint under static 

marginal cost 

In the early phase of the indium model (approximately 0 to 50 years) the cumulative 

availability curve has little impact since the demand for indium is not constrained by the 

price but rather by the constrained supply due to by-product indium production. However, 

once the inflection point in year 80 is reached the model runs diverge, and the ‘flat 

cumulative availability curve’ case continues to increase, while the base case and ‘capacity 

constraints’ cases decline. At this point in the model the driver of dynamic behaviour in the 

‘base case’ shifts from the capacity constraint of by-product indium production to the rising 

marginal cost of production, and resulting rising price (Figure 8.14).  

There is also very little difference between the model runs in terms of their response to the 

capacity constraint. Even in the year 75 where there is already some convergence between 

the capacity constraints’ and flat cumulative availability curve cases there appears to be 

little difference in the oscillations associated with capacity constraint event. 
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Figure 8.13: Impact of capacity constraint on the indium model supply rate including 

under conditions of static marginal cost of production. 
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Figure 8.14: Impact of capacity constraint on the indium model price including under 

conditions of static marginal cost of production. 

 

8.4 Impact of response measure 

The generic, lithium and indium resource models can be used to test the impact of some of 

the policy measures that may be employed in response to capacity constraint, and provide 

some insight into their relative effectiveness. There are a number of possible policy 

responses to constraints in resource availability. Policy makers may seek to modify demand 

for a constrained resource by incentivising resource efficiency such as fuel efficiency 

standards for vehicles (NHTSC 2010). Demand may also be influenced by encouraging the 

research and development of substitute technologies or materials (CBO 1982). 

A number of supply side measures may also be taken in response to constrained resource 

availability. Governments can choose to support domestic exploration and production 

activities in order to create additional resource production (HCST 2010). Strategic reserves 

of certain resources may also be maintained in order to mitigate sudden availability 

constraints and provide some level of reassurance to the resource market (CBO 1982; IEA 

2007). Policy makers may also wish to explore supply options through international 
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diplomacy to secure bilateral agreements with foreign exporters (CBO 1982). Recycling can 

also mitigate supply constraints, and policy makers may wish to encourage recycling 

through legislation, financial incentive, and design-for-recycling standards (UNEP 2011). 

Given the structure of the models it is difficult to simulate the impact of the country specific 

measures such as bilateral import agreements or support for domestic exploration and 

production. However, three particular types of resource policy measure can be examined: 

 The management of strategic reserves 

 Support for the development of substitutes; and 

 Recycling incentives. 

The impact of increased recycling is examined in Section 8.1 where it was found that for 

metals with no production constraints recycling can have an impact on both the quantity of 

metal produced and the severity of the oscillations in supply and price in response to 

capacity constraint events. This is particularly the case where primary metal production has 

plateaued. The impacts associated with strategic reserves and substitution are tested below. 

8.4.1  The effect of strategic reserves on resource availability 

Strategic reserves of oil and certain metals are held in a number of countries and economic 

regions (IEA 2007; Areddy 2011). To test the impact of strategic reserves on responses to 

capacity constraint events the ‘reference inventory coverage’ in each of the three models 

was varied. The reference inventory coverage dictates the quantity of resource that the 

model aims to keep in inventory as a proportion of supply. In the base case the reference 

inventory coverage is set to 20% of the annual supply rate. In the analysis below two 

additional cases are run which modify the reference inventory coverage to 30% and 50% of 

the supply rate to test the impact of increasing inventory on the model outputs and their 

response to capacity constraint events (Table 8.4). 

In reality, a strategic reserve of a commodity will be utilised as a policy decision, and the 

decision making process is as much a political one as it is a rationally economic one. As such 

it is very difficult to model the ‘draw down’ decision making process. Using the inventory 

coverage as a proxy for strategic reserve as described above assumes that this draw down 

decision making process is an economically rational one, and that the reserve is utilised in 
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direct proportion to the shortfall between capacity utilisation and demand. This approach 

therefore misses the dynamics of politically motivated draw down of strategic reserves, the 

implications of which are examined in Chapter 9. 

Table 8.4: The model cases applied to the generic, lithium and indium resource models to 

investigate the impact of cumulative availability costs and capacity constraint events 

 Case Reference 

inventory 

coverage 

Timing of 5% capacity 

constraint event (year) 

Generic 

resource 

Capacity constraints (20% 

inventory) 

Initial values 

(20%) 

25 50 75 

 30% inventory 30% 25 50 75 

 50% inventory 50% 25 50 75 

Lithium Capacity constraints (20% 

inventory) 

Initial values 

(20%) 

25 50 75 

 30% inventory 30% 25 50 75 

 50% inventory 50% 25 50 75 

Indium Capacity constraints (20% 

inventory) 

Initial values 

(20%) 

25 50 75 

 30% inventory 30% 25 50 75 

 50% inventory 50% 25 50 75 

 

The generic resource model response to availability constraint under increased 

inventory 

The generic resource models response to changing inventory coverage is presented below in 

Figure 8.15 and Figure 8.16. First, as inventory increases the magnitude of oscillation in 

supply and price in response to capacity constraint events decreases. In the 50% inventory 

case supply oscillates 4.4% from the base case, while the initial values case oscillates 5.7%. 

The impact on price is greater, with the 50% inventory oscillating 8% and the initial values 

case oscillating 11%. This model response is due to the mitigating effect of ‘drawing down’ 

from an inventory during times of constrained supply. However, as the inventory is 
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increased the time the model takes to return to equilibrium increases. For example, the 

generic resource supply takes 12 years to return to equilibrium in the ‘capacity constraints’ 

case while the model returns to equilibrium in 14 years in the 50% inventory case. This 

extended period of oscillation is due to a combination of the increased demand associated 

with ‘buying back’ the inventory used in response to the capacity constraint, and the 

possible overshoot and oscillation in re-establishing the desired level of inventory. 

The impact of increasing inventory on the generic resource models response to capacity 

constraint events is limited given the quantity of inventory needed to change the response 

of the model by only small amounts. For example, current global strategic inventories of oil 

total approximately 4.1 billion barrels (Reuters 2011). This is only 7.5% of annual 

production. To increase this to 50% of annual production would mean storing an additional 

11 billion barrels of oil. This would be a significant financial and logistical challenge, and may 

not deliver significant mitigation for capacity constraint events based on the conditions 

tested here. 

Figure 8.15: Impact of capacity constraint on the generic resource model supply rate 

including under conditions of increased inventory. 
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Figure 8.16: Impact of capacity constraint on the generic resource model price including 

under conditions of increased inventory 

 

The lithium model response to availability constraint under increased inventory 

The lithium model response to capacity constraint events under changing inventory 

coverage are presented in Figure 8.17 and Figure 8.18. In the early years of the models the 

background oscillations in supply rate (Figure 8.17 ) and price (Figure 8.18) mask the impact 

of the capacity constraint event in year 25. In the later years the impact of recycling appears 

to mitigate the impacts of capacity constraint to the extent that there is very little difference 

between the model cases. In year 50, both supply rate and price appear to behave in a 

similar way to the generic resource model outputs (Figure 8.15 and Figure 8.16), though the 

response is diminished, and there is very little measurable difference between the model 

runs. In the year 75 constraint event the impact is negligible, owing to the contribution of 

recycled metal. 

Based on the analysis above it appears then that the maintenance of a strategic reserve is 

unlikely to have a significant impact on response to capacity constraint events for metals 
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that have either dramatic supply growth with volatility, or a proportion of supply through 

recycling. This is explored further in Chapter 9. 

Figure 8.17: Impact of capacity constraint on the lithium model supply rate including 

under conditions of increased inventory 
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Figure 8.18: Impact of capacity constraint on the lithium model price including under 

conditions of increased inventory 

 

The indium model response to availability constraint under increased inventory 

The impact of changing inventory coverage in the indium model is presented in Figure 8.19 

and Figure 8.20. The impact on supply rate (Figure 8.19) of changing indium inventory 

coverage appears to follow a similar pattern to the generic resource model outputs in the 

year 75 capacity constraint event, with oscillations in response to capacity constraints 

reducing in magnitude with increasing inventory, but having longer duration. However, the 

variation between model runs is minimal. In the year 25 and year 50 capacity constraint 

events the underlying volatility affects the models response, altering the expected 

relationship seen in year 75. In year 25 the model supply rate and price outputs do not 

appear to vary significantly with increasing inventory coverage. In year 50 the supply and 

price outputs clearly vary with increasing inventory coverage, though unexpectedly the 50% 

and 30% inventory cases appear to react more to the capacity constraint event than the 

20% inventory ‘capacity constraints’ case, though this effect appears marginal. This is the 

case for both supply rate and price (Figure 8.20). 
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Given the results of this analysis it is possible to conclude that, under these model 

conditions, with both by-product constraints in supply, and recycling, unintuitive responses 

to increasing inventory coverage can occur. In this instance increasing inventory has no 

impact on response to capacity constraints at best, and at worst, actually increases the 

supply and price volatility associated with these capacity constraint events. 

Figure 8.19: Impact of capacity constraint on the indium model supply rate including 

under conditions of increased inventory 
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Figure 8.20: Impact of capacity constraint on the indium model price including under 

conditions of increased inventory 

 

8.4.2 The effect of substitution 

Technological and material substitution has a significant potential to reduce the demand for 

particular resources. Given this potential seeking to incentivise substitution is a legitimate 

policy approach and has been pursued successfully in the past (CBO 1982). In order to 

simulate the effect of substitution an additional element was inserted into each of the three 

models. This substitution subsystem (Figure 8.21) substitutes a given proportion of demand 

(the ‘substitution level’) over a 50 year time frame, using a logistic progression (defined in a 

lookup table in the model called ‘table for substitution’ (Figure 8.22)). After the first 50 

years of the model the substitution has proceeded to completion, and the remainder of the 

timeframe is governed by the remaining dynamics of the system. A logistic rate of 

substitution is used based on evidence in the literature on the nature of technological 

substitution, though the political and regulatory drivers of substitution in the cases below 

may alter the trajectory of any substitution process in the real world (Foster 1986; McGrath 

1998). The subsystem was used to create two new cases to compare with the ‘capacity 
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constraints’ case. These are the ‘25% substitution’ case, and the ‘50% substitution’ cases. 

These cases are presented in Table 8.5. 

Figure 8.21: The substitution subsystem 

 

Figure 8.22: Table for substitution 

 

Reference Oil

Demand

Substitution effect

Table for

substitution

Substitution level

<Time>
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Table 8.5: The model cases applied to the generic, lithium and indium resource models to 

investigate the impact of cumulative availability costs and capacity constraint events 

 Case Substitution level Timing of 5% capacity 

constraint event (year) 

Generic 

resource 

Capacity constraints 0% 25 50 75 

 25% substitution 25% 25 50 75 

 50% substitution 50% 25 50 75 

Lithium Capacity constraints 0% 25 50 75 

 25% substitution 25% 25 50 75 

 50% substitution 50% 25 50 75 

Indium Capacity constraints 0% 25 50 75 

 25% substitution 25% 25 50 75 

 50% substitution 50% 25 50 75 

 

The generic resource model response to availability constraint under increased 

substitution 

Substitution in the generic resource model represents any effort to limit the demand for a 

resource through development of new technologies. In the example of oil transport fuel is a 

significant proportion of oil demand, and substitution technologies include electric vehicles, 

vehicle drivetrain hybridisation and hydrogen fuel cell vehicles. Substitution is implicitly 

included in the decoupling component of the demand subsystem but separating additional 

substitution in this subsystem allows for fair comparison across the three resource models. 

The generic resource model responds to increased levels of substitution in a relatively 

intuitive way. Supply (Figure 8.23) decreases as substitution level increases, with the most 

significant reductions happening in the first 30 years of the model. There appears to be little 

impact on the response to capacity constraint events, with the oscillation decreasing 

proportionally to the level of supply. 

Resource price (Figure 8.24) decreases with increasing substitution. However, in year 100 a 

21% reduction in supply between the ‘capacity constraints’ and ‘25% substitution’ cases 
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there is only an 11% reduction in price. There is an increased amount of price volatility 

associated with the very steep reductions in supply in the early years of the model time 

horizon. The oscillation resulting from the steep supply decline is, however, significantly 

smaller than the oscillation associated with the capacity constraint events. 

In summary under the conditions defined in the generic resource model demand and 

resulting supply can be significantly reduced through substitution. However, there is a much 

less significant reduction in price resulting from this substitution. This is primarily because 

price is more sensitive to the marginal cost of production, defined by the cumulative 

availability curve. The response to availability constraints in both supply and price is not 

significantly affected by substitution other than the fact that the oscillation response is 

proportional to the level of supply, and as supply decreases through substitution, so too 

does the magnitude of the oscillation. 

Figure 8.23: Impact of capacity constraint on the generic resource model supply rate 

including under conditions of increased substitution 
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Figure 8.24: Impact of capacity constraint on the generic resource model price including 

under conditions of increased substitution 

 

The lithium model response to availability constraint under increased substitution 

Lithium demand in the lithium resource model is largely defined by the growth in use of 

lithium as a battery component in low-carbon vehicles. Lithium substitution in this context 

could therefore represent other low-carbon vehicle types which use less, or no lithium, such 

as fuel cell vehicles, or vehicles using non-lithium battery chemistries. 

Lithium supply (Figure 8.25) is reduced significantly by the increasing substitution level by 

year 50 in the time horizon, and from that point the three different model cases converge. 

The ‘capacity constraints’ and ‘25% substitution’ cases converge almost completely by year 

100, whereas the ‘50% substitution’ case remains significantly lower. This is because the 

50% substitution case does not reach the price threshold needed to trigger full lithium 

recycling while the other cases do. 

The volatility in price (Figure 8.26) in the early years of the model time frame masks the 

impact of the substitution. However, once this volatility subsides price in the three cases 
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diverges considerably, with a much more significant difference in price than exhibited in the 

generic resource model substitution analysis. 

The response to capacity constraint events does not appear to be significantly impacted by 

the level of substitution in any of the three cases tested. Oscillations around the capacity 

constraint events are limited in all cases as the impact of recycling masks the impact of 

these events, as discussed above in Section 8.1 . 

Figure 8.25: Impact of capacity constraint on the lithium model supply rate including 

under conditions of increased substitution 
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Figure 8.26: Impact of capacity constraint on the lithium model price including under 

conditions of increased substitution 

 

The indium model response to availability constraint under increased substitution 

Demand for thin-film PV is the primary driver of indium demand in the indium resource 

model. However, other thin-film technologies, and non-thin-film technology alternatives 

exist, and these can substitute for CIGS PV modules, reducing indium demand. 

Indium supply (Figure 8.27) increases until approximately year 80 in the ‘capacity 

constraints’ case, at which point supply peaks and begins to decrease. As substitution 

increases the point at which supply peaks and begins to decline is sooner in the model time 

horizon. Towards the end of the model time horizon there is approximately 500 tonnes of 

indium per year between each of the three model cases (or a sixth of peak indium supply in 

the ‘capacity constraints’ case. 

Indium price (Figure 8.28) and its response to increasing substitution can be summarised in 

three stages. In the early stage (approximately 0 to 20 years) price increases significantly in 

response to the by-product capacity constraint and all three cases follow a very similar 

trajectory before the substitution levels begin to differentiate. In the central stage 
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(approximately 20 to 70 years) the price trajectories of the three model cases differentiate 

themselves significantly as the level of substitution reduces the extent to which demand 

exceeds the by-product constrained demand. In the final phase (approximately 70 to 100 

years), price in the three cases converges as the cumulative availability curve intersects with 

the by-product capacity constraint, and price in all cases follows the marginal cost. 

The response to the capacity constraint events appears to be relatively unaffected by the 

changing levels of substitution as in the case of the generic resource and lithium models. 

Figure 8.27: Impact of capacity constraint on the indium model supply rate including 

under conditions of increased substitution 
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Figure 8.28: Impact of capacity constraint on the indium model price including under 

conditions of increased substitution 

 

8.5 Summary 

This chapter has explored the three models responses to sudden constraints in availability 

of production capacity. First, the model runs suggest that resources that can be recycled 

may benefit from this source of supply under periods of unanticipated production capacity 

constraint. The availability of recycled material which is unaffected by the supply constraint 

events helps to reduce the supply deficit, buffering the resulting oscillation in both supply 

and price. This effect is most potent when annual demand is relatively stationary, and in 

periods when demand and supply are growing this effect is diminished. However, if by-

product supply issues are already placing a constraint on capacity then recycled metal is 

unlikely to be sufficient and the impacts of capacity constraint events will go relatively 

unmitigated. 

The modelling suggests that by-product metal supply can place a significant constraint on 

availability, causing significant price rises. This is most likely under circumstances where the 

demand growth for the by-product metal is significantly greater than the growth in supply 
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of the host metal. However, real world demand may not grow as aggressively as modelled 

here given the optimistic assumptions in the model on CIGS uptake. 

Marginal cost is also an important variable with significant implications for the dynamic 

behaviour of resource systems. In the case of the generic resource model, reducing the 

marginal cost increases demand, and the increasing marginal cost assumed in the base case 

is a significant driver of demand and supply decline in the future. In the case of lithium the 

marginal cost is shown as an important constraint of future production in the model, and 

assuming a flat marginal cost allows the model to increase production more quickly than the 

model can establish equilibrium given the model delays. In the case of indium the by-

product supply constraints dominate the model outcomes until late in the model timeframe, 

where assumptions about marginal cost begin to influence the models dynamic behaviour. 

At this point reducing marginal cost increases supply. 

The impact of strategic reserves is marginal. However, increasing strategic reserves reduces 

the magnitude of oscillation caused by constraint events, and increases the time period over 

which the oscillation occurs. 

Reducing demand through substitution reduces the oscillations associated with capacity 

constraint. These reductions are in in proportion to the reduction in demand and supply, 

given that the magnitude of oscillation is a function of the absolute level of supply. 

These points and their wider implications are discussed in more detail in the next chapter 

and Table 8.6 presents them and the section where they are discussed in Chapter 8. 
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Table 8.6: Summary of key points from model evaluation 

Effect Model Section 

Generic 

resource 

Lithium Indium 

Recycling  Reduces 

commodity 

price and the 

impact of 

capacity 

constraint 

events 

Impact of 

recycling 

suppressed by 

by-product 

constraints on 

production 

8.1 

By-product   Supply 

constrained 

significantly by 

zinc production 

rate. 

8.2 

Marginal cost Reducing 

marginal cost 

increases supply 

Reducing 

marginal cost 

increases supply 

and creates 

oscillation 

Reducing 

marginal cost 

has no impact 

until late in the 

model 

8.3 

Strategic 

reserve 

Marginally 

reduces 

oscillation of 

constraint event 

Marginally 

reduces 

oscillation of 

constraint event 

Marginally 

reduces 

oscillation of 

constraint event 

8.4.1 

Substitution Reduces 

magnitude of 

oscillation of 

constraint event 

Reduces 

magnitude of 

oscillation of 

constraint event 

Reduces 

magnitude of 

oscillation of 

constraint event 

8.4.2 
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Chapter 9:  Discussion of the research results and conclusions 

In Chapter 1 the research question proposed for this thesis was: 

How do the resource systems surrounding fossil fuel and metal resources critical to the 

future energy system behave in response to constrained availability in the future and are 

these responses similar? 

Three resource systems have been explored in detail in Chapters 4, 5 and 6 and three 

system dynamics models representing these resource systems were created. These models 

were then tested Chapter 7 and evaluated Chapter 8 to examine their dynamic responses to 

different initial conditions. These tests and evaluations were designed specifically to 

examine the models in the context of the research question, examining the similarities and 

differences between their responses. 

In light of the results of this thesis the following conclusions can be made. 

1. While there are significant similarities in the structure of the generic resource, 

lithium and indium resource systems modelled, the structural differences between 

these systems has a significant impact on both the future trajectories of supply, 

demand and the response of these systems to constrained availability in the 

future. These structural differences are: 

a. The differing nature of the drivers of demand; 

b. The recyclability of metals in contrast to non-recyclable resource; and 

c. The by-product nature of indium recovery. 

2. The differing demand drivers are likely to create significant growth in lithium and 

indium demand, while demand for mature resources like fossil fuels is more likely 

to plateau. 

3. The recyclability of metals can mitigate the impacts of constraints in primary 

supply. However, if by-product constraints are also present the benefits of 

recycling will be diminished. 
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4. Strategic reserves need to be very large to have only small impact on the response to 

constraints in supply, suggesting that this is an ineffective way to mitigate the effects 

of capacity constraint. 

5. Reducing demand through substitution does not have a significant effect on the 

models response to capacity constraints, but reducing the demand significantly 

reduces indium price where by-product constraints would otherwise force prices 

higher 

This chapter brings together the findings of the previous chapters. First, this chapter 

examines the structural similarities and differences between the systems. The structure of 

these systems is very similar, but there are several features that distinguish them from each 

other. Next, the similarities in the dynamic behaviours of these three models are examined. 

As discussed in Section 3.3, the dynamic behaviour of a system is a result of its underlying 

structure and the impact of the differences in structure on the dynamic behaviour of these 

models is therefore examined. The chapter then discusses the limitations of the work and 

recommendations for future research before summarising these findings in the light of the 

research question. 

9.1 Structural similarities and distinctions between the resource system models 

9.1.1 Similarities 

The creation of the three resource system models is documented in Chapter 7, including 

details of the conceptual structure of these models, with subsystem and causal loop 

diagrams. There are many similarities between the three resource systems and these 

similarities have been represented in the structure of the three models. There are four main 

similarities in the structure of the three models, summarised in the following points: 

 Supply is dealt with similarly in each of the models, being a function of the available 

capacity, the level of capacity utilisation and the level of demand. This is true of 

many resource systems, where in the short run capacity is fixed, and the utilisation 

of that capacity accounts for any short run production dynamics. The quantity of 

resource in inventory provides a buffer over this short run, and in the three models 
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the changing level of inventory is used as a proxy for the equilibrium between supply 

and demand, which is fed back into price formation. 

 The available capacity and its utilisation is a function of expected profit in all three 

models, with the expected profit being measured by the difference between price 

and cost. The quantity of capacity therefore responds to price in all three models, 

with additional capacity being built in response to rising price, and subject to 

significant delay representing the time it takes to finance, build and make 

operational new  mining projects. The utilisation of this capacity also responds to the 

difference between price and cost, and operates with considerably less delay, 

making adjustments in utilisation a short run response, while adjustments in capacity 

represent long run responses to expected profit. This structure for capacity and its 

utilisation overlooks some of the geological factors that dictate future production, 

such as the discovery process, and the maximum rate at which capacity can be 

brought on stream. Neither of these factors are constrained in the model, though in 

the real world these factors have finite, yet hard to measure, limits. To counter this 

inadequacy, extraction cost is represented through a marginal extraction cost curve 

(see below) and a depletion rate calculator is included, which can measure the rate 

at which reserves are depleted. The depletion rates measured look at least plausible, 

though the length of the time horizon, and the limited sophistication of this metric, 

mean that these models should not be considered forecasts of long term depletion 

trajectories. 

 Price in all three models is formed as a function of the cost of extraction and the 

balance between supply and demand. The cost of extraction is represented through 

a marginal cost curve which responds to the depletion rate and can be set to 

represent any profile. By increasing costs as a function of marginal resource 

depletion, some of the geological dynamics of the discovery process and depletion 

can be represented, but this model structure explicitly assumes that all constraints 

to production are economic, and that fundamental physical barriers to depletion 

rate are never experienced. The balance between supply and demand is measured 

through the inventory coverage, which is the ratio of inventory to demand. The price 

component has a reference inventory coverage against which the inventory 

coverage is benchmarked. 
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 Demand in all models is influenced by price through an elasticity factor. The price 

elasticity factor represents the impact that a change in price has on demand, with an 

increase in price typically decreasing demand. 

9.1.2 Differences 

The three resource models have several differences, not just between the generic resource 

and metals models but also between the metals themselves. The three main differences in 

the structure of the three models are presented in the following summary points: 

 Although demand in all models is influenced by price in the same way, each model 

has a distinct type of demand driver. Demand in the generic resource model is driven 

by economic growth and the demand-reducing influence of the decoupling of the 

demand/GDP relationship. Demand for metals is a function of the growth of their 

respective low-carbon technologies. This is in some way linked to the concept of 

decoupling traditional energy resource demand, as growth in these low-carbon 

technologies will help reduce demand for oil. As a result of these differing drivers of 

demand, the generic resource model is likely to produce a peaking or decreasing 

demand trajectory, while the metals models are likely to have significantly increasing 

demand during the early years of the model. 

 Recycling is another factor which leads the models to differ. Exhausible resources 

such as fossil fuels have no potential for future recycling in most of their uses while 

the metals do, and this potential source of future supply is represented in the lithium 

and indium models. This second source of supply responds to price, along with other 

variables including the recovery rate of metal from recyclates, and the low-carbon 

technology lifetime, which creates a significant delay between a metal’s primary 

production and its recovery as recycled metal. The impact of this difference is that 

recycled material can mitigate the impacts of a capacity constraint event, as this 

source of supply is separate from primary supply and not subject to the capacity 

constraint event.  

 Finally, the by-product nature of indium’s extraction creates a difference between 

the capacity structure of the indium model and the structure found in the lithium 

and generic resource models. The result of this difference is that under very high 
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indium demand conditions the available capacity might become a constraint as zinc 

capacity grows more slowly than indium demand and limits the rate of indium 

capacity growth. This growth is a function of the zinc capacity and the content of 

indium in zinc. Improving the recovery rate of indium from zinc can only play a minor 

role, as the model already assumes indium recovery of between 80% and 90%. This 

constraint means that indium is not as free as the resources in the other models to 

respond to price signals, with the potential that the indium model may generate very 

high prices due to the inelasticity of indium supply in the face of increasing demand. 

9.2 Behavioural similarities and distinctions 

In Chapter 7, the dynamic behaviour of the three resources models was tested using 

extreme conditions testing and sensitivity analysis. The models were then evaluated in 

Chapter 8 to examine their dynamic behaviour in response to constraints in available 

capacity. The behaviours in the models are in some respects similar, but notable differences 

in dynamic behaviour arise in response to the differing structures between the three 

models. These similarities and differences in dynamic behaviour are examined in the 

following paragraphs. 

9.2.1 Similarities 

The following three dynamic model behaviours are examined in all three models: 

 Capacity constraint events initially cause a reduction in supply, which is 

compensated for after a period of time, leading to an oscillation lasting a number of 

years in the model time horizon. The models then tend back towards an equilibrium 

state. 

 In response to this constrained supply and the resulting reduction in inventory, the 

price increases in all three models. This price increase leads to a reduction in 

demand through the price elasticity of demand function. 

 These demand and price dynamics are what lead the three models back to an 

equilibrium state after capacity constraint events. 

These similarities are very broad, and within these general trends there are significant 

differences in the three models’ dynamic behaviour. 
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9.2.2 Differences 

The differences between the dynamic behaviour of each of the three models is discussed 

below, starting with the generic resource model behaviour and then contrasting that case 

with the lithium and indium models in turn. 

The generic resource model 

The difference in the structure of the demand subsystems in the three models drives 

differing dynamic behaviour of demand. Under the initial variable assumptions, the generic 

resource model demand peaks quickly and declines until the end of the model time horizon. 

This trend is also reflected in the supply trajectory, given the model’s goal to balance supply 

and demand. This trend is a function of the assumed growth in GDP, the rate of decoupling 

of the GDP/generic resource demand relationship, and the rising marginal cost of generic 

resource extraction. The nature of the generic resource model demand trajectory reflects 

the maturity of traditional energy resources and their uses. For example, given that 

transport is the major end use of oil, increasing oil demand more quickly than the rate of 

GDP growth would involve some heroic assumptions regarding the growth of internal 

combustion engine (ICE) sales and usage. At the same time, an increasing array of policy 

measures and incentives are aimed at decoupling the relationship between GDP and 

demand. These policies and measures try to exploit a range of mechanisms to achieve 

decoupling, including increasing ICE efficacy, replacing ICEs with electric, hybrid, and 

hydrogen fuel cell technologies and incentivising transport mode shifting. The historically 

high oil price from 2008 to 2014 has also encouraged consumers to pursue lower use of oil 

products. Relaxing the assumptions on marginal cost of oil production to reduce the model’s 

future price trajectory leads to much greater oil demand in the later years of the model. 

Whether the oil price will decrease in the future remains to be seen, but some suggest that 

developments in unconventional oil could lead to a lower future oil price (Maugeri 2012). In 

this event it is plausible that oil demand may begin to increase, though this would then be 

dependent on, the progress of decarbonisation of the global economy, amongst other 

variables. 

In the generic resource model the magnitude of oscillation in response to the capacity 

constraint events decreases as the supply rate decreases, due to the capacity constraint 
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events being a percentage of supply. However, constraints in available capacity are likely to 

arise in the traditional energy resource  markets due to things like weather events or 

conflicts in  countries producing these resources and these constraints are unlikely to be a 

function of total global supply. Nevertheless, reducing demand in the generic resource 

model is still likely to have a beneficial effect on resilience to capacity constraint events as 

this will limit the exposure of the global economy to unexpected changes in production 

capacity. Some of the measures that may be implemented to reduce impact of capacity 

constraints are tested in Chapter 8 and discussed in more detail below. 

Lithium model 

Demand in the lithium model is structured as a function of the demand for its end-uses, 

particularly in electric vehicle batteries. Since demand for these vehicles is expected to 

increase significantly in the coming years, this is likely to lead to significant increase in 

demand for lithium, and the lithium model replicates this behaviour. This is in contrast to 

the generic resoruce model and highlights the mature nature of  demand for traditional 

energy resources such as oil and gas, versus the burgeoning demand for lithium in the global 

transition to a low-carbon future economy. 

The lithium model is also distinguished from the generic resource model as a result of its 

recycling subsystem. Though lithium is not currently recycled at any great scale, a future 

market with significant quantities of lithium in use, and a pressure for lithium supply is likely 

to recover significant quantities of recycled lithium from end-of-life products. This recycled 

lithium is a separate supply stream from primary lithium production and is unlikely to be 

subject to the same capacity constraint events that primary lithium production is subject to, 

creating some security of supply chains through diversity of supply. 

Recycling in the early years of the model has only a limited capacity to mitigate any capacity 

constraints in primary production, since the recyclable indium is delayed by the lifetime of 

in-use products. The current lifetime of lithium-ion electric vehicle batteries is short, but 

manufacturers hope to improve that in the future to the point where batteries might last in 

the order of 20 years. Proposed uses for these batteries after their useful life in EVs is likely 

to extend the time period before batteries are available for recycling (see Section 5.2.3). 

Given this significant time lag, demand is likely to remain significantly greater than the 
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available recycled material until demand growth plateaus, allowing the quantity of 

recyclable lithium to ‘catch up’ that time delay. 

Once the demand plateau is reached, recycling appears to significantly mitigate the volatile 

response to capacity constraint events. Given that this supply stream is not affected by the 

capacity constraint event, recycling supply can make up the deficit in primary supply, 

helping to maintain the inventory coverage and smoothing the impact of the event. This 

suggests that incentivising recycling is a legitimate policy response to increasing a country’s 

resilience to resource capacity constraint events. This is a significant departure from the 

responses exhibited by the generic resoruce model, which has no recycling capacity and is 

limited to its price balancing mechanism as a way to respond to capacity constraints. 

Indium model 

Demand in the indium model is subject to similar subsystem structure of lithium, with latent 

demand increasing as demand for CIGS thin film PV increases. However, the indium model 

contains the by-product capacity subsystem, an additional subsystem not found in either 

the lithium or generic resource system models. The by-product subsystem limits the 

maximum indium production capacity, based on the production rate of its host metal zinc, 

and an assumed maximum recovery rate. Given the high CIGS growth rate assumed in the 

model runs, the by-product constrained indium capacity is insufficient to meet latent 

demand in the early years of the model time horizon. A proportion of indium is available 

from mines developed for indium production specifically, but this quantity is assumed to be 

small and is insufficient to make up the deficit between by-product production and latent 

demand. The by-product constraints on production capacity, and the significant impact on 

inventory coverage as a result, forces significant price rises, which in turn limit demand 

through the price elasticity of demand.  

The by-product constrained capacity and its impacts dominate the dynamic behaviour of the 

model and significantly impair the system’s capacity to deal with unforeseen capacity 

constraint events. Unlike the lithium model, recycled indium is insufficient to compensate 

for the reduced production during a capacity constraint event. The combined impact of both 

the ongoing by-product capacity constraints and the additional capacity constraint events is 

significant. The deficit between the available supply and the level of demand the model 
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would seek with no constraints overwhelms the additional metal available through 

recycling. The capacity constraint events therefore create large oscillations, more similar to 

those seen in the generic resource model than those of the lithium model. 

The assumption on the growth of CIGS PV modules is ambitious, and though this growth 

rate may be too optimistic, it does help to illustrate the dynamic behaviour experienced 

when by-product constraints impinge on the ability to meet future demand. Reducing the 

level of demand is likely to relieve the symptoms of by-product capacity constraints, as 

demonstrated in Figure 8.7. If these constraints were experienced in a real world resource 

system, then demand could be reduced through reducing the material intensity, or 

increasing substitution of CIGS PV.  

Given the findings of the indium and lithium models the implications of capacity constraint 

events seem very different. Where recycling provides a sufficient buffer for capacity 

constraint events in the lithium model, it is insufficient to offset the combined capacity 

constraints of the indium model. This leads to the conclusion that where policy might be 

applied to improve resilience to capacity constraint events, those policy measures should be 

tailored to the specific structure of the resource system in question. For a resource system 

like lithium, where ongoing capacity constraints are not an issue, recycling may be sufficient 

to offset short, unforeseen capacity constraint events. However, where a long-term ongoing 

capacity constraint issue exists, as in the case of the by-product recovery of indium, 

recycling efforts are unlikely to be sufficient to offset the limitations of capacity, and 

measures aimed at reducing demand are more likely to be effective. 

9.3 Reflections on the resource availability debate 

The resource availability debate is often characterised as a polar debate between those who 

predict future resource supply scarcity and prescribe policy intervention, and those who 

expect the economic mechanisms of resource systems to overcome the challenges of supply 

constraints, assuming that policy intervention will only disrupt this feedback system. This 

thesis highlights this aspect of the debate in Chapter 2. However, the modern debate 

contains a spectrum of analysis and opinion, reflecting the range of approaches and 

positions in this field of research. 
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The analysis in this thesis does not focus on absolute questions of whether the availability of 

exhaustible, non-recyclable resources, lithium or indium will impact the security of 

civilisation in the future, but it does examine the responses of resource systems to short 

term unforeseen constraints in capacity. One thing that is apparent from these models is 

that the ability of the economic feedbacks in resource systems to balance supply and 

demand, even during periods of unforeseen capacity constraints, is significant. What this 

does not address is whether accurately anticipating these constraints and taking policy 

measures in advance could significantly reduce the economic cost of resource system 

response to scarcity. The very high price resulting from constraint and the time lag in the 

systems response through efficiency or substitution or other routes to demand reduction 

means that an economy will pay a price to adapt to scarcity. However, policy measures 

taken as proactive responses to future scarcity will also have a cost, which may entirely 

offset any gains resulting from accurate anticipation and reaction to scarcity. It is the 

author’s opinion that this choice between policy intervention and pure market response is 

at the heart of the resource availability debate. Resolving this debate, however, is outside 

the scope of this thesis. 

9.4 Implications for policy 

A number of policy measures may be introduced with the intention of improving the 

resilience of resource systems to unforeseen constraints in capacity. Two of these measures 

are examined in Chapter 8: 

 The use of a strategic reserve; and 

 The encouragement of substitution away from the constrained commodity. 

These are discussed in turn below. 

9.4.1 Strategic reserve 

Many countries and regions maintain a quantity of commodity in reserve, to be released to 

the market in the event that capacity constraints limit supply. In Chapter 8 tests suggest that 

increasing the quantity of commodity held in inventory has only a small impact on the 

response to unforeseen capacity constraints. However, the tests conducted assume that this 

reserve is utilised in an economically rational way, with the strategic reserve being 
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immediately released when inventory is reduced and price begins to rise. In real commodity 

markets, where strategic reserves are maintained, the release of reserves is a political 

decision, and not necessarily taken on a purely economic basis. How these dynamics should 

be best represented, and how this would change the model results, is unknown. 

In the context of the models tested here, the large quantities of reserve needed to create 

only a small impact on the response to capacity constraint events suggests that this is a 

relatively inefficient way of increasing system resilience. For traditional energy resources 

such as oil or gas, the very large quantities consumed on a daily basis means that to 

physically store a reserve capable of covering even relatively short periods of capacity 

constraint is a significant undertaking. For metals such as lithium and indium this is likely to 

be less challenging as their physical quantities are likely to be much smaller, and their solid 

form is easier to store. Nevertheless, the benefits of managing a strategic stockpile of 

lithium or indium are unlikely to be significant unless those stockpiles are of a very 

significant quantity. 

9.4.2  Substitution 

In the model evaluation conducted in Chapter 8 the impact of substitution on resource 

systems and their response to capacity constraints is tested. This evaluation suggests that 

while substitution reduces demand, the capacity constraint event is still a function of the 

background level of supply.  

As discussed in Chapters 4, 5 and 6, there are technological substitutes that could reduce 

demand for commodities. However, not all resources are equally substitutable. For 

example, given the volumes of oil consumed daily and the difficulty in producing a 

substitute for the ICE that provides similar utility at similar cost, it is likely that oil is harder 

to substitute for than either lithium or indium. Given the relatively undeveloped nature of 

the low-carbon uses of those metals, and their relatively low economic importance in 

comparison to oil, the challenge of replacing them is likely to be less significant. The relative 

difference in  the substitutability of different resources may mean that the levels of 

substitution tested in Chapter 8 are not equally achievable for all types of resources. 
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The potential for disruptive innovation to drive the substitution of one or all of the 

commodities is not tested in this thesis. It is plausible that a development in technology 

could rapidly increase the rate of substitution of any of the resources examined here. 

However, when such a substitute might arise, how how quickly that substitution event 

would propagate, or what impact that event would have on other resource demand is 

difficult to predict and is therefore not modelled here.  

Resources that are easily substituted have a significantly greater price elasticity of demand 

than those that are less easily substituted, and the concept of price elasticity of demand is 

linked to substitution elasticity such as the cross price elasticity of demand (Stiglitz & Walsh 

2006). As the sensitivity analysis conducted in Chapter 7 shows, the price elasticity of 

demand can have a significant impact on the outcome of the model under conditions of 

changing price. However, the ideas of substitutability and elasticity of demand are not 

formally linked in the models in this thesis. 

9.5 Limitations of work and usefulness of the approach 

The use of system dynamics in the examination of different dynamic resource systems has 

provided a way to both conceptually and quantitatively compare them. However, it is worth 

discussing a number of issues that are not addressed by the application of this approach. 

9.5.1 Geological limitations 

First, while the economic and market aspects are reasonably well covered in the three 

resource models, the geological aspects of resource recovery are underrepresented. The 

process of resource discovery and the rate at which those resources are depleted are 

endogenous variables in other types of models, though it was considered impractical to 

attempt to create similar model structure in this thesis. The result of this could be that the 

models attempt to increase production capacity at an unrealistic rate Attempts have been 

made to identify this exogenously and correct assumptions where necessary. 

9.5.2 Technological limitations 

In the lithium and indium models, the assumptions relating to the quantity of metal used in 

low-carbon technologies have a significant impact on metal demand. However, although 
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these variables are tested in the sensitivity analysis in Chapter 7, they are not examined in 

any detail in Chapter 8. In addition these variables are expected to change over time as 

technological learning opens up cost saving measures, which have knock-on impacts for 

metal intensity of products. These learning rates are not reflected in the structure of the 

lithium and indium models, and the assumptions on metal intensity are static through the 

model time horizon. For example, in the indium model a single, fixed assumption is made 

for indium intensity in CIGS PV modules, which helps to maintain simplicity in the demand 

subsystem. However, the material intensity of indium in CIGS modules is a function of a 

number of factors that are likely to improve over time as researchers and manufacturers 

improve knowledge (see Section 6.2.1). Although material intensity assumptions that have 

been used to represent plausible future conditions this does not allow for the dynamic 

variability of these variables over time. This use of a single aggregated assumption for 

intensity also prevents any analysis of which variables are most interesting for future 

research. However, this omission is unlikely to dramatically alter the broad trends emerging 

from the model evaluation (Chapter 8). 

9.5.3 Economic limitations 

The three resource models capture a number of the economic elements that define 

resource market systems. However, it is worth discussing a number of economic functions 

that the three resource models don’t capture. First, the sensitivity analysis in Chapter 7 

highlights the sensitivity of the three models to the price elasticity of demand. Price 

elasticity of demand was not evaluated independently in Chapter 8. This is in part due to the 

focus on aspects of the model that are structurally different, and partly due to the difficulty 

in finding evidence on which to base assumptions of elasticity for lithium and indium. The 

demand elasticity for each of these resources is assumed to be the same. However, in reality 

they are liklely to be different. If demand elasticity of one of these resources is 

overestimated relative to others then demand for that resource is likely to be 

underestimated. 

The relationship between substitutability, price and demand discussed above highlights 

another economic aspect of these models that could be examined in more depth. For 

example, in the indium model the by-product constrained capacity leads to significant price 
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increases as the model struggles to maintain inventory coverage. In a real-world system a 

period of high price would incentivise the improvement of material efficiency in the 

manufacturing of indium-containing products, and the development of suitable substitutes. 

However, in the models described here price, is not linked to material intensity in any way, 

and is linked to substitutes only by the static assumptions on price elasticity of demand. This 

helps to maintain the simplicity of the models, though the omission likely results in 

overestimation of material intensity in periods of high price. 

9.5.4 Policy limitations 

In Chapter 8, some potential policy responses are tested. However, this analysis is brief, and 

a number of aspects of the policy response to capacity constraint could be further 

researched. First, when examining the use of strategic reserve to mitigate the impacts of 

unforeseen capacity constraints, the models assume that a maintained inventory is used in 

an economically rational way, with any reduction in inventory coverage immediately 

triggering a proportion of strategic reserve release. However, strategic reserves are 

managed by policymakers, who may decide on the release of strategic reserves for reasons 

other than purely economic ones. For example, policy makers may decide to suffer price 

rises for a period of time to test the normal market responses to capacity constraints, and 

decide to release strategic reserves only when the market responses fail to reduce price. In 

addition, traders who base their expected price on a system with full strategic reserves may 

become significantly less confident in the market if strategic reserves are being depleted 

and this might significantly affect their price setting process. However, introducing these 

components to system dynamics models such as these would be challenging, and it is 

unknown whether they would create a significant bias in the current model results. 

To test the implications of increased substitution, the model assumes decreased demand 

through an assumed declining s-curve to varying degrease of substitution. However, a 

number of policy initiatives may be used to encourage substitution and these are not 

modelled. Policy initiatives might include increased or targeted funding for research and 

development of substitute technologies, subsidy to encourage the deployment of substitute 

technologies approaching commercial readiness, or the taxation of incumbent technologies 
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to incentivise the market towards substitutes. Initiatives like these will have broad and 

unintuitive impacts on dynamic systems, including the macroeconomic conditions. 

The macroeconomic and cost implication of these possible policy measures are not 

represented in the three resource models. Although the maintenance of strategic reserves, 

the funding of research and development, the cost of subsidy and the macroeconomic 

impacts of taxation will all have implications for the behaviour of the dynamic systems 

examined here. Ignoring them potentially underrepresents the impacts of policy decisions, 

and might lead to a overestimation of the effectiveness of using these policy measures. 

However, incorporating the full range of issues was impractical in this thesis, given the main 

research objectives laid out in Chapter 1. 

9.5.5 Spatial limitations 

The three resource system models are focused on global level dynamics. This was the only 

practical approach, since levels of special disaggregation add significant levels of complexity. 

However, a number of issues have a spatially disaggregated dimension and it is important to 

recognise these. 

Different countries have very different resources, and countries with the largest quantities 

of resources are not necessarily the countries with the highest demand. This leads to a 

distinction between exporters and importers. Countries with such different levels of net 

export are likely to respond in very different ways to capacity constraint in the global 

market, and these kinds of divergent behaviours cannot be represented in the models 

examined here. 

Strategic reserves of different commodities are also conducted at a regional level, and 

release of these reserves is not necessarily coordinated internationally. This may mean that, 

depending on the nature of capacity constraints, and the different policymakers’ sensitivity 

to them, only a proportion of the total global strategic reserve will likely be made available 

to the market. This uncertainty will likely affect actors in the resource market such as 

traders. 
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The demand for resources is also spatially heterogeneous. This heterogeneity is influenced 

by a range of factors including regional levels of economic development, regional subsidy 

and taxation regimes, and the regional price differentials of commodities. 

The incentives to recycle are also likely to be regional. Countries with significant endowment 

of a particular metal resource are unlikely to pursue recycling unless it becomes a cheaper 

source of that resource than primary production. However, countries that import the 

majority of their metal resources might be greatly incentivised to foster recycling supply 

chains to help reduce their regional price and help mitigate the impacts, particularly price 

impacts, of capacity constraints. 

9.5.6 Usefulness of the approach 

This thesis uses case study and system dynamics to address the question laid out in Chapter 

1. The limitations and criticisms of both case study and system dynamics are presented in 

Chapter 3. This section deals briefly with the usefulness of both of these research methods. 

The use of case study to assess the wide and varied aspects of resource systems has 

provided a significant level of detail with which to inform the construction of system 

dynamics models. For the critical metals, analysis of the issues around their availability is 

often restricted to very high level comparative multi-criteria analyses. These assessments 

are too shallow and broad to capture all of the important aspects of these systems, and too 

generic to capture the metal-specific aspects that are so important in defining the structure 

of these resource systems. A small number of studies do assess specific metals but these 

assessments often have very limited scopes and simplistic analysis techniques. Case study 

has therefore been a suitably broad and inclusive approach to evidence gathering. 

The use of system dynamics in this thesis has allowed the analysis of complex and dynamic 

resource systems, combining both aspects of supply and demand. Resource models often 

treat these aspects separately, and this integrated approach is therefore additional. This is 

particularly the case for critical metals, which have until recently only received very 

simplistic analysis methods. The economic aspects of critical metal supply, specifically price 

and its feedbacks, is largely lacking from the existing literature. Given the significant impact 
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that these economic factors have on the behaviour of these subsystems their omission is a 

significant issue for much of the existing critical metals analysis. 

The research here has also highlighted unanswered research questions that can be pursued 

in future research. A number of these are addressed below. 

9.6 Recommendations for future research 

The various limitations discussed above give rise to a number of opportunities for future 

research, which are discussed below. 

9.6.1 Future research into geological issues 

Two aspects of the geological nature of resource systems could be further explored in future 

research. First, the discovery process modelling literature might provide a way to better 

represent geological factors in resource system models. This could potentially provide some 

endogenous geological limitations to production growth rates.  

Another approach might be to better characterise the cumulative availability curves for 

resources being modelled. This research would require efforts to understand the costs of 

production in different geological areas, therefore necessitating collaboration with the 

extractive industries. Sufficient cooperation from such companies may not be forthcoming 

as they may be sensitive to the sharing of proprietary information. However, accurate and 

comprehensive characterisation of cumulative availability curves could significantly improve 

the accuracy of estimates of marginal production costs and help improve future supply 

estimates. 

9.6.2 Future research into technological variables 

The technological variables that define material intensity are aggregated in resource models 

in this thesis to a single static assumption. In the future it may be useful to disaggregate 

these in the model and allow for their dynamics over time. This could include their response 

to changing resource price and their reduction in line with existing learning curves. This 

approach has been used in other models and examples of this approach could be adapted 

for incorporation into the resource system models described in this thesis. 
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Another technological aspect of these models is the recycling subsystem. Aspects of this 

subsystem create dynamic behaviour that is discussed in Chapter 8, but some issues are not 

addressed and could possibly be examined in more detail in the future. One factor worth 

examining in greater depth is the expected product lifetime. The length of useful life of low-

carbon technology delays the availability of its components for recycling by the same time 

period. The greater this period, the more likely it is that valuable resources will be 

unavailable when most needed. However, given the burgeoning nature of these 

technologies there is significant uncertainty regarding their useful lifespan. Examining the 

impact of varying the assumptions could highlight whether this uncertainty is a significant 

issue for future resource availability assessment. 

9.6.3 Future research into economic factors 

If future examination of these models was to further examine the economic aspects of 

resource systems, then more analysis could be undertaken of the implications of price 

elasticity of demand and its implications for model outputs. The sensitivity analysis in 

Chapter 7 identified this as a sensitive variable but the topic is not explored further in this 

thesis. Detailed examination of the impact of changing elasticity could better characterise 

the sensitivity of these models to that particular assumption. Deeper examination of the 

relationship between price and demand in the historical data of specific resources could also 

help define the sensible boundaries for varying these assumptions in the model. 

The relationship between price elasticity of demand and substitution is interesting and 

worth further investigation. In particular it would be worth investigating whether changing 

assumptions of price elasticity would be sufficient to fully address the relationship between 

these two factors, or whether a new model structure needed to represent the relationship 

between elasticity and substitution. 

9.6.4 Future research into policy responses 

The enhanced modelling of strategic reserves and their use to mitigate the impacts of 

capacity constraints could provide some very interesting insights. The challenge is to 

incorporate both spatial and non-economic decision-making protocols into the modelling of 

strategic reserve management. An agent-based modelling approach might provide the 
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opportunity to represent the different strategic reserves managed by different governments 

and their differing decision making protocols and approaches. There are examples of 

incorporating agent based modelling into system dynamics, making it possible to adapt the 

existing models described in this thesis if desired. 

This thesis also touches on the link between future success of decarbonisation policy and 

the resulting impact on critical metals demand. Significant uptake of electric vehicles and 

solar PV to generate the electricity that powers them will have a decreasing impact on oil 

demand. However, decreased demand for oil will reduce its price, changing the economics 

of deploying decarbonised technologies. This is a feedback loop that could be testable 

through system dynamics and linking the lithium and indium models to the oil market in 

some form may provide a tool to examine this premise and explore its impacts. 

Finally, a very interesting area of research that this thesis only touches on is whether well 

timed policy responses in anticipation of supply constraints could significantly reduce the 

economic costs of market responses and corrections in the face of unforeseen resource 

scarcity. This is a fundamental question to the wider scarcity debate and is likely hard to 

resolve. To address such a question would involve a model with greater economic detail 

than the models described here. 

9.7 Summary conclusions in reflection on the research question 

In response to the central research question the three resource systems investigated here 

are sufficiently different in structure that their resulting behaviour in response to capacity 

constraints is very likely to be different. Therefore the development of systems thinking, 

models and resulting forecasts of future resource behaviour should always seek to 

represent the detailed specifics of individual resource systems. Relying on analogy to inform 

judgments on the likely future of resource systems will lead to flawed heuristics or 

formalised resource models which will poorly represent the structure and behaviour of 

resource systems.  

The structural differences between the models examined here produce significantly 

divergent behaviours when projected into the future. The most important of these are: 

 The difference in fundamental drivers of demand between the three models; 
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 The recyclability of metals in comparison to non-recyclable nature of the generic 

resource model; and 

 The by-product nature of indium production in comparison to the lithium and 

generic resource models, both produced for their own economic value. 

The differences in behaviour of the three resource systems are critical for policymakers and 

should be accounted for in any attempt to respond to availability concerns through policy. 

The results of this thesis suggest that different resoruces are likely to have very different 

demand futures, and very different responses to capacity constraint. Any analysis that 

explicitly or implicitly assumes analogy between resources, and does not account for these 

differences is likely to form the wrong conclusions. 

In response to the objectives laid out in Chapter 1, Table 9.1 presents summary comments. 
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Table 9.1: The objectives laid out at the beginning of this thesis against the section of the 

thesis that addresses that objective and any summary comments on that objective’s 

outcomes. 

Objective Section Summary comments 

1: Create an analytical 

framework 

3.1 Approach: Case studyConceptual comparison 

Quantitative comparison 

2: Modelling methodology 3.3 System dynamics: Provides a platform for both 

conceptual and quantitative analysis. Feedbacks 

represent economics of supply and demand well. 

3: Key characteristics of 

generic resource system 

4 and 

7.2.2 

Supply - function of demand and capacity 

Demand - function of GDP and price 

Price - function of cost and equilibrium price 

Capacity - function of expected profit 

4: Key characteristics of 

lithium and indium 

5, 6 and 

7.2.2 

Distinguished from generic resource by: 

Demand function of decarbonisation and price 

Supply also function of recycling 

Indium capacity also function of zinc capacity 

5: Dynamic structure of 

generic, lithium and indium 

resource systems 

7.2.2 

and 7.3 

Causal loop diagrams presented in Section 7.3 

6: Define the model 

formulae and test 

7.3 and 

7.4 

Functional relationships underlying the model 

structure detailed in Section 7.4 

7: Evaluate the models 8 Models suggest that significantly different 

behaviour arises from the small differences in 

model structure 

8: Conclusions 9 Set out in this chapter 
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Appendix A: Glossary 

AER All-Electric Range 

BEV Battery Electric Vehicle 

BoE Bank of England 

BRICS Brazil, Russia, India, China, South Africa 

CAFE Corporate Average Fuel Efficiency 

CCC Committee on Climate Change 

CdTe Cadmium Telluride 

CERA Cambridge Energy Research Associates 

CGS Copper Gallium(di)Selenide 

CIGS Copper Indium Gallium (di)Selenide 

CIS  Copper Indium (di)Selenide 

DCA Decline Curve Analysis 

DOE Department of Energy 

E&P Exploration and Production 

EC European Commission 

EIA Energy Information Administration 

EOR Enhanced Oil Recovery 

EV Electric Vehicle 

FCV Fuel Cell Vehicle 

Gb Giga Barrels or billion barrels 

GDP Gross Domestic Product 

HEV Hybrid Electric Vehicle 

ICE Internal Combustion Engine 

IEA International Energy Agency 

In Indium 

ITO Indium Tin Oxide 

JRC Joint Research Centre 

LCD Liquid Crystal Display 

LED Light Emitting Diode 
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li Lithium  

li-ion Lithium-ion 

LPG Liquid Petroleum Gas 

NGL Natural Gas Liquids 

NiMH Nickel Metal Hydride 

ODT Optimal Depletion Theory 

OEM Original Engine Manufacturer 

OPEC 

Organisation of Petroleum Exporting 

Countries 

PHEV Plug-in Hybrid Electric Vehicle 

PV Photovoltaic 

R/P Reserve to Production ratio 

REE Rare Earth Elements 

SUV Sports Utility Vehicle 

TCO Transparent Conductive Oxide 

UN United Nations 

UNEP United Nations Environment Programme 

URR Ultimately Recoverable Resource 

USGS United States Geological Survey 

WEO World Energy Outlook 

WPA World Petroleum Assessment 

WTI West Texas Intermediate 

xSi Crystalline Silicon 

YTF Yet-to-find 
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Appendix B: Units 

b Barrels (sometimes BBLS) 

kb Thousand barrels 

Gb Giga barrels or billion barrels 

b/d Barrels per day 

t tonne 

kt  Kilotonne 

Mt Million tonnes 

kt/y Kilotonnes per year 

µm Micrometres 

ppm Parts per million 

km Kilometres 

km/h Kilometres per hour 

Ah/g Ampere-hours per gram 

V volts 

kWh KiloWatt hour 

g/Wp grams per watt peak 
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Appendix C: The generic resource model - Full model equations and 

initial conditions 

The variables referred to in this annex are defined in the variable tables in Chapter 7, 

Section 3. This and the following two appendices use Vensim ‘off-the-shelf’ functions, 

described in the footnotes here. 

Production and capacity utilisation 

Stocks 

 Inventory= INTEG (production rate-supply rate,Reference Inventory 

Coverage* Demand) 

 Units: Tonnes 

 

 

𝐼(𝑡) = ∫ (𝑃(𝑠) − 𝑆(𝑠))𝛿𝑠 + (𝑖𝑟𝐷(𝑡0))
𝑡

𝑡0

 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 Cumulative Production= INTEG (supply rate, 0) 

 Units: Tonnes 

 

𝑄(𝑡) = ∫ (𝑆(𝑠))𝛿𝑠 + 𝑄(𝑡0
𝑡

𝑡0
) 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 

Flows 

 

 production rate= 
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  DELAY341((Production Capacity*capacity utilisation),production delay time) 

 Units: **undefined** 

 

𝑃(𝑡) = 𝐷𝐸𝐿𝐴𝑌3((𝑃𝐶𝑎𝑝(𝑡)𝑈(𝑡)) , 𝑝) 

 

 supply rate=desired supply rate*order fulfilment ratio 

 Units: Tonnes/y 

 

𝑆(𝑡) = 𝑆𝑑(𝑡)𝑂(𝑡) 

 

 

Auxiliaries 

 

 max supply rate= 

  Inventory/minimum order processing time 

 Units: Tonnes/y 

 

𝑆𝑚𝑎𝑥(𝑡) =
𝐼(𝑡)

𝑜𝑚𝑖𝑛
 

 

 order fulfilment ratio= 

  table for order fulfilment(max supply rate/desired supply rate) 

                                                      
41

 DELAY3 is an ‘of the shelf’ function used in system dynamics to return a third order exponential delay of an 

input variable for a specific delay time. This is used to vary the delivery time of delayed inputs in order to 

‘smooth’ the delayed inputs availability. This function is equivalent to the equations below, as stated in the 

VENSIM user manual. Further discussion of this function can be found in Kirkwood (1998) 

DELAY3=LV3/DL 

LV3=INTEG(RT2-DELAY3,DL*input) 

RT2=LV2/DL 

LV2=INTEG(RT1-RT2,LV3) 

RT1=LV1/DL 

LV1=INTEG(input-RT1,LV3) 

DL=delay time/3 
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 Units: Dimensionless 

 

𝑂(𝑡) = 𝑓1(
𝑆𝑚𝑎𝑥(𝑡)

𝑆𝑑(𝑡)
) 

Where f is a function defined by an exogenous lookup table presented below as ‘table for 

order fulfilment’ (Figure 7.20), and 

𝑊(𝑡) =
𝑆𝑚𝑎𝑥(𝑡)

𝑆𝑑(𝑡)
 

 

 desired supply rate=Demand 

 Units: Tonnes/y 

 

𝑆𝑑(𝑡) = 𝐷(𝑡) 

 

 Inventory Coverage=Inventory/supply rate 

 Units: Years 

 

𝐼𝑠(𝑡) =
𝐼(𝑡)

𝑆(𝑡)
 

 

 capacity utilisation= 

  SMOOTH42(indicated capacity utilisation,utilisation adjustment time) 

 Units: Dimensionless 

 

𝑈(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝑈𝑖(𝑡), 𝑢(𝑡)) 

 

 indicated capacity utilisation= 

                                                      
42

 SMOOTH is an ‘off the shelf’ function that is used in system dynamics to create exponential smoothing of a 

time delay process. This delivers a smooth transition in the time that delayed inputs are available as output. 

This is equivalent to the equation below as stated in the VENSIM user manual. More information on the 

smooth function can be found in Kirkwood (1998) 

𝑈(𝑡) = ∫ (𝑈𝑖(𝑠) − 𝑈(𝑠)/𝑢(𝑠))𝛿𝑠 + 𝑈𝑖(𝑡0) 
𝑡

𝑡0
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  table for effect of markup on utilisation(expected profit) 

 Units: Dimensionless 

 

𝑈𝑖(𝑡) = 𝑓2(𝑌𝑒(𝑡)) 

 

Where f2 is a function defined by an exogenous lookup table presented below as ‘table for 

effect of markup on utilisation’ 

 

 expected profit= 

  Expected Price/Expected variable costs 

 Units: Dimensionless 

 

𝑌𝑒(𝑡) =
𝑉𝑒(𝑡)

𝐶𝑒(𝑡)
 

 

 Expected Price= 

  SMOOTH(price,delay to form expected price) 

 Units: $/Unit 

 

𝑉𝑒(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝑉(𝑡), 𝑣𝑒𝑑) 

 

 Expected variable costs= 

  SMOOTH(variable costs,delay to form expected variable costs) 

 Units: **undefined** 

 

𝐶𝑒(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝐶(𝑡), 𝑐) 

 

Exogenous variables 

 

 minimum order processing time 

omin=0.1 

 Units: Years 
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 table for order fulfilment ([(0,0)-(4,1)],(0,0),(0.2,0.2),(0.4,0.4),(0.6,0.58), 

(0.8,0.73),(1,0.85),(1.2,0.93),(1.4,0.97),(1.6,0.99),(1.8,1),(2,1),(2,1),(4,1)) 

 Units: Dimensionless 

 

 table for effect of markup on utilisation ([(0,0)-(5,1.2)],(0,0),(0.5,0), 

(0.75,0.05),(1,0.5),(1.25,0.68),(1.5,0.75),(1.75,0.8),(2,0.84),(2.25,0.87),(2.5,0.9),(2.75,0.93),(3

,0.96),(3.25,0.985),(3.5,0.995),(4,1),(4.5,1),(5,1)) 

 Units: Dimensionless 

  

 production delay time 

p=0.5 

 Units: Years 

  

 utilisation adjustment time 

 

u=0.5 

 Units: Years 

  

 delay to form expected price 

 

ve=1 

 Units: Years 

  

 delay to form expected variable costs 

 

ce=1 

 Units: Years 

 



~ 408 ~ 
 

Demand 

Stocks 

 

 Latent Demand= INTEG (demand growth,30) 

 

𝐷𝑙(𝑡) = ∫ 𝐷𝑔(𝑠)𝛿𝑠 + 30
𝑡

𝑡0

 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 Units: Tonnes 

 

 GDP= INTEG (GDP growth,63) 

 

𝐺(𝑡) = ∫ 𝐺𝑔(𝑠)𝛿𝑠 + 63
𝑡

𝑡0

 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 Units: **undefined** 

 

Flows 

 

 demand growth=Latent Demand*GDP impact 

 

𝐷𝑔(𝑡) = 𝐷𝑙(𝑡)𝐺𝑖(𝑡) 

 Units: **undefined** 

 

 GDP growth=GDP*GDP growth rate 

 

𝐺𝑔(𝑡) = 𝐺(𝑡)𝑔(𝑡) 

 Units: **undefined** 
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Auxiliaries 

 

 decoupling=table for decoupling(GDP) 

Units: **undefined** 

 

𝐾(𝑡) = 𝑓3(𝐺(𝑡)) 

 

Where f3 is a function defined by an exogenous lookup table presented below as ‘table for 

decoupling’. 

 

 GDP impact=(GDP growth rate*0.1)-(GDP growth rate*0.1*decoupling) 

 

𝐺𝑖(𝑡) = (𝐺𝑟(𝑡)0.1) − (𝐺𝑟(𝑡)0.1𝐾(𝑡)) 

 Units: **undefined** 

 

 Demand=SMOOTHI(Indicated Demand,Demand Adjustment Delay,Reference 

Demand) 

 

𝐷(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝐷𝑖(𝑡), 𝑑(𝑡), 𝐷𝑟(𝑡) 

 Units: Units/Year 

 Industry demand adjusts to the indicated demand with a delay,  

   representing the time required for consumers of the good to find  

   substitutes or change their consumption after a change in price. 

 

 Reference Demand=Latent Demand 

 

𝐷𝑟(𝑡) = 𝐷𝑙(𝑡) 

 Units: Units/Year 

 Initial value of customer orders. 

  



~ 410 ~ 
 

 Indicated Demand=MIN43(Maximum Consumption,Reference 

Demand)*MAX44(0,1+Demand Curve Slope*(price-reference price)/Reference 

Demand)) 

 

𝐷𝑖(𝑡) = 𝑀𝐼𝑁(𝐷𝑚𝑎𝑥 , 𝐷𝑟)𝑀𝐴𝑋 (0,1 + 𝐵
𝑉(𝑡) − 𝑣

𝐷𝑟
) 

 

 Units: Units/Year 

 The indicated demand for the commodity given the current price.  

   Indicated demand is the demand consumers would like given the  

   current price. Actual demand adjusts to indicated demand with a  

   delay. The demand curve is linear, with slope set so that the  

   elasticity of demand at the reference price is equal to the  

   reference industry demand elasticity, set by the user. 

 

 

 Demand Curve Slope= (-Reference Demand*Reference Demand 

Elasticity)/(reference price) 

 

𝐵 = (−𝐷𝑟𝑒𝑑)/𝑣 

 Units: Unit*Units/($*Year) 

 The slope of the industry demand curve, as a function of the  

   price elasticity at the reference price level 

 

Exogenous variables 

 

 reference price 

 

                                                      
43

 ‘MIN’ is an ‘off the shelf’ function that returns the lowest of two values A and B in the form MIN (A,B) 

44
 ‘MAX’ is an ‘off the shelf’ function similar to ‘MIN’ that returns the highest of two values A and B in the form 

MAX(A,B) 
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𝑣 = 100 

 Units: **undefined** 

 

 

 GDP growth rate 

 

𝐺𝑟 = 0.01 

 Units: **undefined** 

 

 

 table for decoupling([(63,0)-(200,2)],(63,0),(73,0.036),(83,0.094),(93,0.238), 

(103,0.538),(113,1),(123,1.462),(133,1.762),(143,1.906),(153,1.964),(163,1.986),(173,2), 

(200,2)) 

 Units: **undefined** 

 

 Demand Adjustment Delay 

d=0.5 

 Units: Years 

 The average time required for consumer demand to respond to a  

   change in price. 

 

 Maximum Consumption 

Dmax=1000 

 Units: Units/Year 

 The maximum demand for the commodity, no matter how low price  

   goes. 

 

 Reference Demand Elasticity 

ed=0.5 

 Units: Dimensionless 

 Demand elasticity at the reference price 
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Price 

Stocks 

 

 Traders' Expected Price= INTEG (Change in Traders' Expected Price, 

   initial price) 

 

𝑉𝑒(𝑡) = ∫ 𝑉𝑒𝑐(𝑠)𝛿𝑠 + 𝑉(𝑡0)
𝑡

𝑡0

 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 

 Units: $/Unit 

 The price market makers and traders believe would clear the  

   market if demand and supply were in balance, and no other  

   pressures to change price existed. 

 

Flows 

 

 Change in Traders' Expected Price=(indicated price - Traders' Expected 

Price)/Time to Adjust Traders' Expected Price 

 

𝑉𝑒𝑐(𝑡) =
𝑉(𝑡0) − 𝑉𝑒(𝑡)

𝑣𝑑
 

 Units: $/Unit/Year 

 Traders' beliefs about the underlying equilibrium price adjust  

   in response to the gap between the indicated price and the  

   current belief. Expected underlying price adjusts via  

   first-order adaptive expectations to the actual price,  

   constrained to be greater than a minimum level. 
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Auxiliaries 

 

 Effect of Costs on Price=1+Sensitivity of Price to Costs*((Expected Production 

Costs/Traders' Expected Price)-1) 

 

𝑽𝒄𝒑(𝒕) = 𝟏 + 𝒗𝒄𝒑(𝑾𝟐(𝒕) − 𝟏) 

Where 

𝑊2(𝒕) =
𝑪𝒑𝒆(𝒕)

𝑽𝒆(𝒕)
 

 Units: **undefined** 

 

 indicated price=MAX(Minimum Price,price) 

 

𝑉𝑖(𝑡) = 𝑀𝐴𝑋(𝑉min (𝑡), 𝑉(𝑡)) 

 Units: **undefined** 

 

 price=MAX(0,(Traders' Expected Price*Effect of Inventory Coverage on 

Price*Effect of Costs on Price)) 

 

𝑉(𝑡) = 𝑀𝐴𝑋(0, (𝑉𝑒(𝑡)𝑉𝑖𝑠𝐼(𝑡)𝑉𝑐𝑝(𝑡))) 

 Units: $/Unit 

 

 Effect of Inventory Coverage on Price=Relative Inventory 

Coverage^Sensitivity of Price to Inventory Coverage 

 

𝑉𝑖𝑠(𝑡) = 𝐼𝜌(𝑡)𝑣𝑖𝑠   

Units: Dimensionless 

 Price rises when inventory coverage is less than normal, and  

   falls when it is greater. The Sensitivity of Price to Inventory  

   Coverage controls the magnitude of the response. 
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 Relative Inventory Coverage= Perceived Inventory Coverage/Reference 

Inventory Coverage 

 

𝐼𝜌(𝑡) =
𝐼𝑠𝑝(𝑡)

𝑖𝑟
 

 

 Units: Dimensionless 

 Perceived inventory coverage relative to the normal level needed  

   to ensure desired service levels in the market. 

 

 Perceived Inventory Coverage= 

  SMOOTH(Inventory Coverage,Coverage Perception Time) 

 

𝐼𝑠𝑝(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝐼𝑠(𝑡), 𝑖𝑠(𝑡)) 

 Units: Years 

 Perceived coverage is formed by smoothing actual coverage. It  

   takes time to recognize changes in coverage. 

 

 

 Minimum Price=Unit Costs 

 

𝑉𝑚𝑖𝑛(𝑡) = 𝑌(𝑡) 

 Units: $/Unit 

 Trader's do not believe prices can fall below the variable cost  

   per unit of production. 

 

Exogenous Variables 

 

 

 initial price=100 

𝑉𝑡0 = 100 
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 Units: **undefined** 

 

 Sensitivity of Price to Costs 

𝑉𝑐𝑝 = 0.5 

 Units: Dimensionless 

 Controls the response of price to discrepancies between the  

   expected price and the expected cost of production. 

 

 Time to Adjust Traders' Expected Price=1 

𝑣𝑑 = 1 

 Units: Years 

 Trader's belief about the underlying equilibrium price adjust to  

   actual prices over this period. 

 

 Sensitivity of Price to Inventory Coverage= 

𝑉𝑖𝑠 = −1 

 Units: Dimensionless 

 Controls the response of price to inventory coverage. Must be  

   negative for high inventory to lead to lower prices. Higher  

   absolute values lead to greater price changes for any given  

   inventory coverage level. 

 

 Coverage Perception Time 

𝑖𝑠 = 0.167 

 Units: Years 

 The average time required to perceive and react to inventory  

   coverage. 

 

 Reference Inventory Coverage 

𝐼𝜌 = 0.2 

 Units: Years 
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 The normal inventory coverage required to ensure desired levels  

   of service (the desired ability to fill orders). 

  

Capacity 

Stocks 

 

 Capacity Stock= INTEG (acquisition rate-Discard Rate,(Reference 

Demand/indicated capacity utilisation)/Capital Productivity) 

 

𝐶𝑎𝑝(𝑡) = ∫ (𝐴(𝑠) − 𝐽(𝑠))𝛿𝑠 +

𝐷𝑟(𝑡)
𝑈𝑖(𝑡)⁄

𝐶𝑎𝑝𝑝

𝑡

𝑡0

 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 

 Units: Capacity Units 

 The capital stock accumulates acquisitions less discards.  

   Initialized to the initial equilibrium level. 

 

Flows 

 

 acquisition rate=Desired Acquisition Rate 

A(t)=Ad(t) 

 Units: **undefined** 

 

 Discard Rate=Capacity Stock/Average Life of Capacity 

 

𝐽(𝑡) =
𝐶𝑎𝑝(𝑡)

𝐶𝑎𝑝𝐿
 

 Units: Capacity Units/Year 

 The average life of capacity determines the rate at which it  
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   decays and is discarded. 

 

Auxiliaries 

 

 Production Capacity=Capacity Stock*Capital Productivity 

 

𝑃𝐶𝑎𝑝(𝑡) = 𝐶𝑎𝑝(𝑡)𝐶𝑎𝑝𝑝 

 Units: Gt/y 

 Production capacity is determined by total capital stock in  

   service and its productivity. 

 

 Adjustment for Capacity=(Desired Capacity - Capacity Stock)/Capacity 

Adjustment Time 

 

𝑍(𝑡) =
𝐶𝑎𝑝𝑑(𝑡) − 𝐶𝑎𝑝(𝑡)

𝑡𝑐𝑎𝑝
 

 Units: Capacity Units/Year 

 Producers seek to close the gap between desired and actual  

   capacity over the Capacity Adjustment Time 

 

 Desired Acquisition Rate=MAX(0, Expected Discard Rate + Adjustment for 

Capacity) 

 

𝐴𝑑(𝑡) = 𝑀𝐴𝑋(0, 𝐽𝑒(𝑡) + 𝑍(𝑡)) 

 Units: Capacity Units/Year 

 The rate at which new capacity should be acquired, given the  

   expected discard rate and the adjustment to bring the stock of  

   capacity in line with the desired stock. 

 

 Expected Discard Rate=Discard Rate 

 

𝐽𝑒(𝑡) = 𝐽(𝑡) 
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 Units: Capacity Units/Year 

 The expected discard rate is assumed to equal the actual discard  

   rate. 

 

Exogenous variables 

 

 Capital Productivity 

Capp=1 

 Units: Unit/Year/Capacity Units 

 The productivity of capital is assumed exogenous and constant.  

   One unit of capital is defined as the capital stock required to  

   generate one unit of output per year (at normal utilization), so  

   productivity =1. 

 

 Average Life of Capacity 

CapL=20 

 Units: Years 

 The average life of capacity. 

 

 Capacity Adjustment Time 

tcap=3 

 Units: Years 

 The average time over which producers seek to close the gap  

   between desired and actual capacity. 

 

Desired capacity 

Auxiliaries 

 

 Desired Capacity= 

  Capacity Stock*(1+Sensitivity of Investment to Exp Profit*(Effect of Expected 

Profit on Desired Capacity-1)) 
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𝐶𝑎𝑝𝑑(𝑡) = 𝐶𝑎𝑝(𝑡)(1 + 𝐶𝑎𝑝𝑑𝑦(𝑌𝑐𝑎𝑝𝑑(𝑡) − 1)) 

 

 Units: Capacity Units 

 Desired capital stock is based on current capital, adjusted up  

   or down according to the expected profitability of new  

   investment. 

 

 Effect of Expected Profit on Desired Capacity=Table for Effect of Expected 

Profit on Desired Capacity(Expected Profitability of New Investment) 

Units: Dimensionless 

𝑌𝑐𝑎𝑝𝑑(𝑡) = 𝑓4(𝑌𝑐𝑎𝑝(𝑡)) 

 

Where f4 is a function defined by an exogenous lookup table presented below as ‘table for 

effect of expected profit on desired capacity’ 

  

 Desired capacity is adjusted above or below current capacity in  

   response to the expected profitability of new investment. 

 

 Expected Profitability of New Investment=(Long Run Expected Price - 

Expected Production Costs)/Long Run Expected Price 

 

𝑌𝑐𝑎𝑝(𝑡) =
𝑉𝑒𝑙(𝑡) − 𝐶𝑝𝑒(𝑡)

𝑉𝑒𝑙(𝑡)
 

 Units: Dimensionless 

 The expected profitability of new investment is the difference  

   between long run price expectations and expectations for the  

   unit costs of new investment, including fixed and variable  

   costs. Fixed cost includes the normal profit margin required.  

   The expected profit is normalized by price to give a  

   dimensionless measure of profit, analogous to the percentage  
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   return per unit. 

 

 Long Run Expected Price=SMOOTH( price,Time to Adjust Long Run Price 

Expectations) 

 

𝑉𝑒𝑙(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝑉(𝑡), 𝑣𝑒𝑙) 

 Units: $/Unit 

 Long run price expectations are formed by first-order  

   exponential smoothing (adaptive expectations). 

 

 

 Expected Production Costs=SMOOTH(Unit Costs,Time to Adjust Expected 

Costs) 

 

𝐶𝑝𝑒(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝐶𝑢(𝑡), 𝑐𝑒) 

 Units: **undefined** 

 

 Unit Costs=cumulative availability curve(Cumulative Production) 

Units: $/Unit 

𝐶𝑢(𝑡) = 𝑓5(𝑄(𝑡)) 

 

Where f5 is a function defined by an exogenous lookup table presented below as 

‘cumulative availability curve’ 

 

  Unit costs including fixed and variable costs. 

 

 variable costs=Unit Costs*variable cost fraction 

 

𝐶(𝑡) = 𝐶𝑢(𝑡)𝐶𝑣𝑢 

 Units: **undefined** 
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Exogenous variables 

 

 Sensitivity of Investment to Exp Profit 

Capdy=1 

 Units: Dimensionless 

 The Sensitivity of Desired Capacity to expected profit. 

 

 Table for Effect of Expected Profit on Desired Capacity([(-1,0)-(1,2)],(-1,0),(-

0.75,0.1),(-0.5,0.3),(-0.25,0.67),(0,1),(0.25,1.25),(0.5,1.45),(0.75,1.6),(1,1.7)) 

 Units: Dimensionless 

 The adjustment of desired capacity above or below the current  

   level depends on this function of the expected profitability of  

   new investment.\!\!\! 

 

 Time to Adjust Long Run Price Expectations 

vel=2 

 Units: Years 

 The time required to update long-run price expectations. 

 

 Time to Adjust Expected Costs 

ce=2 

 Units: Year 

 The time required for market participants to glean information  

   about costs and adjust their beliefs to the new information.  

   Since cost information is difficult to get, unreliable, and  

   differs from producer to producer, expected costs adjust slowly. 

 

 cumulative availability curve( [(0,0)-(3500,200)],(0,100),(500,110),(1000,120), 

(1500,130),(2000,140),(2500,150),(3000,160),(3500,170)) 

 Units: $/t 
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 variable cost fraction 

Cvu =0.4 

 Units: **undefined** 

 

Depletion Rate 

Stock 

 

 Resources= INTEG (-depletion,initial resources) 

 

𝑋(𝑡) = ∫ (−𝑆(𝑠))𝛿𝑠 + 𝑥0

𝑡

𝑡0

 

 Units: **undefined** 

 

Flow 

 

 depletion=supply rate= desired supply rate*order fulfilment ratio 

 

𝑆(𝑡) = 𝑆𝑑(𝑡)𝑂(𝑡) 

 

 Units: Tonnes/y 

 

Auxiliaries 

 

 depletion rate=depletion/resources*100 

 

𝑋𝑠(𝑡) =
𝑆(𝑡)

𝑋(𝑡)
100 

 Units: **undefined** 

 

Exogenous variables 

 

 initial resources 
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𝑥0 = 3500 

 Units: **undefined** 
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Appendix D: The lithium model - Full model equations and initial 

conditions 

The variables referred to in this annex are defined in the variable tables in Chapter 7, 

Section 3. 

 

Production and capacity utilisation 

Stocks 

 Inventory= INTEG (production rate + recycled Li)-supply rate,Reference 

Inventory Coverage* Demand) 

 Units: Gt 

 

 

𝐼(𝑡) = ∫ ((𝑃(𝑠) + 𝑅(𝑠)) − 𝑆(𝑠))𝛿𝑠 + (𝑖𝑟𝐷(𝑡0))
𝑡

𝑡0

 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 Cumulative Production= INTEG (supply rate, 0) 

 Units: Tonnes 

 

𝑄(𝑡) = ∫ (𝑆(𝑠))𝛿𝑠 + 𝑄(𝑡0
𝑡

𝑡0
) 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 

Flows 

 

 production rate= 
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  DELAY345((Production Capacity*capacity utilisation),production delay time) 

 Units: **undefined** 

 

𝑃(𝑡) = 𝐷𝐸𝐿𝐴𝑌3((𝑃𝐶𝑎𝑝(𝑡)𝑈(𝑡)) , 𝑝) 

 

 supply rate=desired supply rate*order fulfilment ratio 

 Units: Tonnes/y 

 

𝑆(𝑡) = 𝑆𝑑(𝑡)𝑂(𝑡) 

 

 

Auxiliaries 

 

 max supply rate= 

  Inventory/minimum order processing time 

 Units: Tonnes/y 

 

𝑆𝑚𝑎𝑥(𝑡) =
𝐼(𝑡)

𝑜𝑚𝑖𝑛
 

 

 order fulfilment ratio= 

  table for order fulfilment(max supply rate/desired supply rate) 

                                                      
45

 DELAY3 is an ‘of the shelf’ function used in system dynamics to return a third order exponential delay of an 

input variable for a specific delay time. This is used to vary the delivery time of delayed inputs in order to 

‘smooth’ the delayed inputs availability. This function is equivalent to the equations below, as stated in the 

VENSIM user manual. Further discussion of this function can be found in Kirkwood (1998) 

DELAY3=LV3/DL 

LV3=INTEG(RT2-DELAY3,DL*input) 

RT2=LV2/DL 

LV2=INTEG(RT1-RT2,LV3) 

RT1=LV1/DL 

LV1=INTEG(input-RT1,LV3) 

DL=delay time/3 
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 Units: Dimensionless 

 

𝑂(𝑡) = 𝑓1(
𝑆𝑚𝑎𝑥(𝑡)

𝑆𝑑(𝑡)
) 

Where f is a function defined by an exogenous lookup table presented below as ‘table for 

order fulfilment’ (Figure 7.20), and 

𝑊(𝑡) =
𝑆𝑚𝑎𝑥(𝑡)

𝑆𝑑(𝑡)
 

 

 desired supply rate=Demand 

 Units: Tonnes/y 

 

𝑆𝑑(𝑡) = 𝐷(𝑡) 

 

 Inventory Coverage=Inventory/supply rate 

 Units: Years 

 

𝐼𝑠(𝑡) =
𝐼(𝑡)

𝑆(𝑡)
 

 

 capacity utilisation= 

  SMOOTH46(indicated capacity utilisation,utilisation adjustment time) 

 Units: Dimensionless 

 

𝑈(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝑈𝑖(𝑡), 𝑢(𝑡)) 

 

 indicated capacity utilisation= 

                                                      
46

 SMOOTH is an ‘off the shelf’ function that is used in system dynamics to create exponential smoothing of a 

time delay process. This delivers a smooth transition in the time that delayed inputs are available as output. 

This is equivalent to the equation below as stated in the VENSIM user manual. More information on the 

smooth function can be found in Kirkwood (1998) 

𝑈(𝑡) = ∫ (𝑈𝑖(𝑠) − 𝑈(𝑠)/𝑢(𝑠))𝛿𝑠 + 𝑈𝑖(𝑡0) 
𝑡

𝑡0
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  table for effect of markup on utilisation(expected profit) 

 Units: Dimensionless 

 

𝑈𝑖(𝑡) = 𝑓2(𝑌𝑒(𝑡)) 

 

Where f2 is a function defined by an exogenous lookup table presented below as ‘table for 

effect of markup on utilisation’ 

 

 expected profit= 

  Expected Price/Expected variable costs 

 Units: Dimensionless 

 

𝑌𝑒(𝑡) =
𝑉𝑒(𝑡)

𝐶𝑒(𝑡)
 

 

 Expected Price= 

  SMOOTH(price,delay to form expected price) 

 Units: $/Unit 

 

𝑉𝑒(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝑉(𝑡), 𝑣𝑒𝑑) 

 

 Expected variable costs= 

  SMOOTH(variable costs,delay to form expected variable costs) 

 Units: **undefined** 

 

𝐶𝑒(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝐶(𝑡), 𝑐) 

 

Exogenous variables 

 

 minimum order processing time 

omin=0.1 

 Units: Years 



~ 428 ~ 
 

 

 table for order fulfilment ([(0,0)-(4,1)],(0,0),(0.2,0.2),(0.4,0.4),(0.6,0.58), 

(0.8,0.73),(1,0.85),(1.2,0.93),(1.4,0.97),(1.6,0.99),(1.8,1),(2,1),(2,1),(4,1)) 

 Units: Dimensionless 

 

 table for effect of markup on utilisation ([(0,0)-(5,1.2)],(0,0),(0.5,0), 

(0.75,0.05),(1,0.5),(1.25,0.68),(1.5,0.75),(1.75,0.8),(2,0.84),(2.25,0.87),(2.5,0.9),(2.75,0.93),(3

,0.96),(3.25,0.985),(3.5,0.995),(4,1),(4.5,1),(5,1)) 

 Units: Dimensionless 

  

 production delay time 

p=0.5 

 Units: Years 

  

 utilisation adjustment time 

 

u=0.5 

 Units: Years 

  

 delay to form expected price 

 

ve=1 

 Units: Years 

  

 delay to form expected variable costs 

 

ce=1 

 Units: Years 
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Demand 

Stocks 

 

 Annual EV sales= INTEG (annual EV sales growth,100000) 

 

𝐿𝑠(𝑡) = ∫ 𝐿𝑠𝑔(𝑠)𝛿𝑠 + 100000
𝑡

𝑡0

 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 Units: vehicles 

 

 

Flows 

 

 

 annual EV sales growth=Annual EV sales*fractional rate 

 

𝐿𝑠𝑔(𝑡) = 𝐿𝑆(𝑡)𝐿𝑟(𝑡) 

 Units: **undefined** 

 

 

Auxiliaries 

 

 

 Li Demand=SMOOTHI(Indicated Li Demand,Demand Adjustment 

Delay,Reference Li Demand) 

 

𝐷(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻𝐼(𝐷𝑖(𝑡), 𝑑(𝑡), 𝐷𝑟(𝑡) 

 Units: Units/Year 

 Industry demand adjusts to the indicated demand with a delay,  

   representing the time required for consumers of the good to find  
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   substitutes or change their consumption after a change in price. 

 

 Reference Li Demand=Latent Li Demand 

 

𝐷𝑟(𝑡) = 𝐷𝑙(𝑡) 

 Units: Units/Year 

 Initial value of customer orders. 

  

 Indicated Li Demand=MIN(Maximum Consumption,Reference Li 

Demand*MAX(0,1+Demand Curve Slope*(Li price-reference price)/Reference 

Li Demand)) 

 

𝐷𝑖(𝑡) = 𝑀𝐼𝑁(𝐷𝑚𝑎𝑥 , 𝐷𝑟)𝑀𝐴𝑋 (0,1 + 𝐵
𝑉(𝑡) − 𝑣

𝐷𝑟
) 

 

 Units: Units/Year 

 The indicated demand for the commodity given the current price.  

   Indicated demand is the demand consumers would like given the  

   current price. Actual demand adjusts to indicated demand with a  

   delay. The demand curve is linear, with slope set so that the  

   elasticity of demand at the reference price is equal to the  

   reference industry demand elasticity, set by the user. 

 

 

 Demand Curve Slope= (-Reference Demand*Reference Demand 

Elasticity)/(reference price) 

 

𝐵(𝑡) = (−𝐷𝑟(𝑡 )𝑒𝑑)/𝑣) 

 Units: Unit*Units/($*Year) 

 The slope of the industry demand curve, as a function of the  

   price elasticity at the reference price level 
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 EV Li demand= 

  Annual EV sales*Li intensity 

 

𝐷𝑙𝑚(𝑡) = 𝐿𝑠(𝑡)𝑚𝑖 

 Units: tons/y 

 

 fractional rate=max EV market growth rate*(1-Annual EV sales/max EV 

annual sales) 

 

𝐿𝑟(𝑡) = 𝐿𝑔𝑚𝑎𝑥(𝑊1(𝑡)) 

Where  

𝑊1(𝑡) = 1 −
𝐿𝑠𝑔(𝑡)

𝑙𝑠𝑚𝑎𝑥
 

 Units: **undefined** 

 

 

 

 latent Li demand=EV Li demand+Other Li Demand 

 

𝐷𝑙(𝑡) = 𝐷𝑙𝑚(𝑡) + 𝐷𝑜𝑚(𝑡) 

 Units: **undefined** 

 

 

Exogenous variables 

 

 reference price 

 

𝑣 = 5,000 

 Units: **undefined** 

 

 Demand Adjustment Delay 

d=0.5 



~ 432 ~ 
 

 Units: Years 

 The average time required for consumer demand to respond to a  

   change in price. 

 

 Maximum Consumption 

dmax=1000 

 Units: Units/Year 

 The maximum demand for the commodity, no matter how low price  

   goes. 

 

 Reference Demand Elasticity 

ed=0.5 

 Units: Dimensionless 

 Demand elasticity at the reference price 

 

 Max EV annual sales 

𝑙𝑠𝑚𝑎𝑥 = 3𝑒 + 7 

 Units: vehicles 

 Max EV market growth rate 

𝑙𝑔𝑚𝑎𝑥 = 0.2 

Units: **undefined** 

 Other Li Demand 

dom=35000 

 Units: tons 

 

 Li Intensity 

mi=0.00798 

Units: Tonnes per vehicle 

Price 
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Stocks 

 

 Traders' Expected Price= INTEG (Change in Traders' Expected Price, 

   initial price) 

 

𝑉𝑒(𝑡) = ∫ 𝑉𝑒𝑐(𝑠)𝛿𝑠 + 𝑉(𝑡0)
𝑡

𝑡0

 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 Units: $/Unit 

 The price market makers and traders believe would clear the  

   market if demand and supply were in balance, and no other  

   pressures to change price existed. 

 

Flows 

 

 Change in Traders' Expected Price=(indicated price - Traders' Expected 

Price)/Time to Adjust Traders' Expected Price 

 

𝑉𝑒𝑐(𝑡) =
𝑉(𝑡0) − 𝑉𝑒(𝑡)

𝑣𝑑
 

 Units: $/Unit/Year 

 Traders' beliefs about the underlying equilibrium price adjust  

   in response to the gap between the indicated price and the  

   current belief. Expected underlying price adjusts via  

   first-order adaptive expectations to the actual price,  

   constrained to be greater than a minimum level. 

 

Auxiliaries 
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 Effect of Costs on Price=1+Sensitivity of Price to Costs*((Expected Production 

Costs/Traders' Expected Price)-1) 

 

𝑽𝒄𝒑(𝒕) = 𝟏 + 𝒗𝒄𝒑(𝑾𝟐(𝒕) − 𝟏) 

Where 

𝑊2(𝒕) =
𝑪𝒑𝒆(𝒕)

𝑽𝒆(𝒕)
 

 Units: **undefined** 

 

 indicated price=MAX(Minimum Price,price) 

 

𝑉𝑖(𝑡) = 𝑀𝐴𝑋(𝑉min (𝑡), 𝑉(𝑡)) 

 Units: **undefined** 

 

 price=MAX(0,(Traders' Expected Price*Effect of Inventory Coverage on 

Price*Effect of Costs on Price)) 

 

𝑉(𝑡) = 𝑀𝐴𝑋(0, (𝑉𝑒(𝑡)𝑉𝑖𝑠𝐼(𝑡)𝑉𝑐𝑝(𝑡))) 

 Units: $/Unit 

 

 Effect of Inventory Coverage on Price=Relative Inventory 

Coverage^Sensitivity of Price to Inventory Coverage 

 

𝑉𝑖𝑠(𝑡) = 𝐼𝜌(𝑡)𝑣𝑖𝑠   

Units: Dimensionless 

 Price rises when inventory coverage is less than normal, and  

   falls when it is greater. The Sensitivity of Price to Inventory  

   Coverage controls the magnitude of the response. 
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 Relative Inventory Coverage= Perceived Inventory Coverage/Reference 

Inventory Coverage 

 

𝐼𝜌(𝑡) =
𝐼𝑠𝑝(𝑡)

𝑖𝑟
 

 

 Units: Dimensionless 

 Perceived inventory coverage relative to the normal level needed  

   to ensure desired service levels in the market. 

 

 Perceived Inventory Coverage= 

  SMOOTH(Inventory Coverage,Coverage Perception Time) 

 

𝐼𝑠𝑝(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝐼𝑠(𝑡), 𝑖𝑠(𝑡)) 

 Units: Years 

 Perceived coverage is formed by smoothing actual coverage. It  

   takes time to recognize changes in coverage. 

 

 

 Minimum Price=Unit Costs 

 

𝑉𝑚𝑖𝑛(𝑡) = 𝑌(𝑡) 

 Units: $/Unit 

 Trader's do not believe prices can fall below the variable cost  

   per unit of production. 

 

Exogenous Variables 

 

 

 initial price=100 

𝑉𝑡0 = 100 

 Units: **undefined** 



~ 436 ~ 
 

 

 Sensitivity of Price to Costs 

𝑉𝑐𝑝 = 0.5 

 Units: Dimensionless 

 Controls the response of price to discrepancies between the  

   expected price and the expected cost of production. 

 

 Time to Adjust Traders' Expected Price=1 

𝑣𝑑 = 1 

 Units: Years 

 Trader's belief about the underlying equilibrium price adjust to  

   actual prices over this period. 

 

 Sensitivity of Price to Inventory Coverage= 

𝑉𝑖𝑠 = −1 

 Units: Dimensionless 

 Controls the response of price to inventory coverage. Must be  

   negative for high inventory to lead to lower prices. Higher  

   absolute values lead to greater price changes for any given  

   inventory coverage level. 

 

 Coverage Perception Time 

𝑖𝑠 = 0.167 

 Units: Years 

 The average time required to perceive and react to inventory  

   coverage. 

 

 Reference Inventory Coverage 

𝐼𝜌 = 0.2 

 Units: Years 

 The normal inventory coverage required to ensure desired levels  
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   of service (the desired ability to fill orders). 

  

Capacity 

Stocks 

 

 Capacity Stock= INTEG (acquisition rate-Discard Rate,(Reference 

Demand/indicated capacity utilisation)/Capital Productivity) 

 

𝐶𝑎𝑝(𝑡) = ∫ (𝐴(𝑠) − 𝐽(𝑠))𝛿𝑠 +

𝐷𝑟(𝑡)
𝑈𝑖(𝑡)⁄

𝐶𝑎𝑝𝑝

𝑡

𝑡0

 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 

 Units: Capacity Units 

 The capital stock accumulates acquisitions less discards.  

   Initialized to the initial equilibrium level. 

 

Flows 

 

 acquisition rate=Desired Acquisition Rate 

A(t)=Ad(t) 

 Units: **undefined** 

 

 Discard Rate=Capacity Stock/Average Life of Capacity 

 

𝐽(𝑡) =
𝐶𝑎𝑝(𝑡)

𝐶𝑎𝑝𝐿
 

 Units: Capacity Units/Year 

 The average life of capacity determines the rate at which it  

   decays and is discarded. 
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Auxiliaries 

 

 Production Capacity=Capacity Stock*Capital Productivity 

 

𝑃𝐶𝑎𝑝(𝑡) = 𝐶𝑎𝑝(𝑡)𝐶𝑎𝑝𝑝 

 Units: Gt/y 

 Production capacity is determined by total capital stock in  

   service and its productivity. 

 

 Adjustment for Capacity=(Desired Capacity - Capacity Stock)/Capacity 

Adjustment Time 

 

𝑍(𝑡) =
𝐶𝑎𝑝𝑑(𝑡) − 𝐶𝑎𝑝(𝑡)

𝑡𝑐𝑎𝑝
 

 Units: Capacity Units/Year 

 Producers seek to close the gap between desired and actual  

   capacity over the Capacity Adjustment Time 

 

 Desired Acquisition Rate=MAX(0, Expected Discard Rate + Adjustment for 

Capacity) 

 

𝐴𝑑(𝑡) = 𝑀𝐴𝑋(0, 𝐽𝑒(𝑡) + 𝑍(𝑡)) 

 Units: Capacity Units/Year 

 The rate at which new capacity should be acquired, given the  

   expected discard rate and the adjustment to bring the stock of  

   capacity in line with the desired stock. 

 

 Expected Discard Rate=Discard Rate 

 

𝐽𝑒(𝑡) = 𝐽(𝑡) 

 Units: Capacity Units/Year 
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 The expected discard rate is assumed to equal the actual discard  

   rate. 

 

Exogenous variables 

 

 Capital Productivity 

Capp=1 

 Units: Unit/Year/Capacity Units 

 The productivity of capital is assumed exogenous and constant.  

   One unit of capital is defined as the capital stock required to  

   generate one unit of output per year (at normal utilization), so  

   productivity =1. 

 

 Average Life of Capacity 

CapL=20 

 Units: Years 

 The average life of capacity. 

 

 Capacity Adjustment Time 

tcap=3 

 Units: Years 

 The average time over which producers seek to close the gap  

   between desired and actual capacity. 

 

Desired capacity 

Auxiliaries 

 

 Desired Capacity= 

  Capacity Stock*(1+Sensitivity of Investment to Exp Profit*(Effect of Expected 

Profit on Desired Capacity-1)) 
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𝐶𝑎𝑝𝑑(𝑡) = 𝐶𝑎𝑝(𝑡)(1 + 𝐶𝑎𝑝𝑑𝑦(𝑌𝑐𝑎𝑝𝑑(𝑡) − 1)) 

 Units: Capacity Units 

 Desired capital stock is based on current capital, adjusted up  

   or down according to the expected profitability of new  

   investment. 

 

 Effect of Expected Profit on Desired Capacity=Table for Effect of Expected 

Profit on Desired Capacity(Expected Profitability of New Investment) 

Units: Dimensionless 

𝑌𝑐𝑎𝑝𝑑(𝑡) = 𝑓4(𝑌𝑐𝑎𝑝(𝑡)) 

 

Where f4 is a function defined by an exogenous lookup table presented below as ‘table for 

effect of expected profit on desired capacity’ 

  

 Desired capacity is adjusted above or below current capacity in  

   response to the expected profitability of new investment. 

 

 Expected Profitability of New Investment=(Long Run Expected Price - 

Expected Production Costs)/Long Run Expected Price 

 

𝑌𝑐𝑎𝑝(𝑡) =
𝑉𝑒𝑙(𝑡) − 𝐶𝑝𝑒(𝑡)

𝑉𝑒𝑙(𝑡)
 

 Units: Dimensionless 

 The expected profitability of new investment is the difference  

   between long run price expectations and expectations for the  

   unit costs of new investment, including fixed and variable  

   costs. Fixed cost includes the normal profit margin required.  

   The expected profit is normalized by price to give a  

   dimensionless measure of profit, analogous to the percentage  

   return per unit. 
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 Long Run Expected Price=SMOOTH( price,Time to Adjust Long Run Price 

Expectations) 

 

𝑉𝑒𝑙(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝑉(𝑡), 𝑣𝑒𝑙) 

 Units: $/Unit 

 Long run price expectations are formed by first-order  

   exponential smoothing (adaptive expectations). 

 

 

 Expected Production Costs=SMOOTH(Unit Costs,Time to Adjust Expected 

Costs) 

 

𝐶𝑝𝑒(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝐶𝑢(𝑡), 𝑐𝑒) 

 Units: **undefined** 

 

 Unit Costs=cumulative availability curve(Cumulative Production) 

Units: $/Unit 

𝐶𝑢(𝑡) = 𝑓6(𝑄(𝑡)) 

 

Where f6 is a function defined by an exogenous lookup table presented below as 

‘cumulative availability curve’ 

 

  Unit costs including fixed and variable costs. 

 

 variable costs=Unit Costs*variable cost fraction 

 

𝐶(𝑡) = 𝐶𝑢(𝑡)𝐶𝑣𝑢 

 Units: **undefined** 

 

Exogenous variables 
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 Sensitivity of Investment to Exp Profit 

Capdy=1 

 Units: Dimensionless 

 The Sensitivity of Desired Capacity to expected profit. 

 

 Table for Effect of Expected Profit on Desired Capacity([(-1,0)-(1,2)],(-1,0),(-

0.75,0.1),(-0.5,0.3),(-0.25,0.67),(0,1),(0.25,1.25),(0.5,1.45),(0.75,1.6),(1,1.7)) 

 Units: Dimensionless 

 The adjustment of desired capacity above or below the current  

   level depends on this function of the expected profitability of  

   new investment.\!\!\! 

 

 Time to Adjust Long Run Price Expectations 

vel=2 

 Units: Years 

 The time required to update long-run price expectations. 

 

 Time to Adjust Expected Costs 

ce=2 

 Units: Year 

 The time required for market participants to glean information  

   about costs and adjust their beliefs to the new information.  

   Since cost information is difficult to get, unreliable, and  

   differs from producer to producer, expected costs adjust slowly. 

 

 cumulative availability curve [(0,0)-

(4e+008,40000)],(0,2200),(3.2e+007,22000),(4e+008,22000) Units: $/t 

 

 variable cost fraction 

Cvu =0.4 

 Units: **undefined** 
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Recycling 

Auxiliaries 

 

 effect of estimated profit on EV recycling=table for effect of perceived profit 

on recycling(Expected Price/cost of EV recycling) 

 

𝑅𝑦(𝑡) = 𝑓7

𝑉𝑒(𝑡)

𝑟𝑐
 

Where f7 is a function defined by an exogenous lookup table presented below as ‘table for 

effect of perceived profit on recycling’ 

 

Units: **undefined** 

 

 effect of estimated profit on other recycling=table for effect of perceived 

profit on recycling(Expected Price/cost of other recycling) 

 

𝑹𝒐𝒚(𝒕) = 𝒇𝟕(𝑾𝟑(𝒕)) 

Where f7 is a function defined by an exogenous lookup table presented below as ‘table for 
effect of perceived profit on recycling’ and 

𝑊3(𝑡) =
𝑉𝑒(𝑡)

𝑅𝑂(𝑡)
 

  

Units: **undefined** 

 

 EV Li end-of-life=DELAY FIXED47 (EV Li demand,EV lifetime,0) 

 

𝑀(𝑡) = 𝐷𝐸𝐿𝐴𝑌 𝐹𝐼𝑋𝐸𝐷(Dlm(t), eol,0) 

                                                      
47

 DELAY FIXED is an ‘off the shelf’ function which returns the value of the ‘input’ delayed by the ‘delay 

time’.  The ‘input’ is the value of the variable on the left-hand side of the parentheses.  The ‘delay time’ is the 

central constant in parentheses. On the right of the equation is the ‘initial value’, in this case 0. 



~ 444 ~ 
 

 Units: **undefined** 

 

 

 EV recycling=EV Li end-of-life*effect of estimated profit on EV recycling* EV 

recycling rate 

 

𝑅𝑚(𝑡) = 𝑀(𝑡)𝑅𝑦(𝑡)𝑟𝑟 

 Units: **undefined** 

 

 other demand recycling=other LI end-of-life*other recycling rate*effect of 

estimated profit on other recycling 

 

𝑅𝑜(𝑡) = 𝑀(𝑡)𝑜𝑟(𝑡)𝑅𝑜𝑦 

 Units: **undefined** 

 

 other LI end-of-life=DELAY FIXED(Other Li Demand,other lifetime,0) 

 

𝑂(𝑡) = 𝐷𝐸𝐿𝐴𝑌 𝐹𝐼𝑋𝐸𝐷(𝐷𝑜(𝑡), 𝑜, 0) 

 Units: **undefined** 

 

 recycled Li=DELAY3((EV recycling+other demand recycling),recycling delay 

time) 

 

𝑅(𝑡) = 𝐷𝐸𝐿𝐴𝑌3((𝑅𝑚(𝑡) + 𝑅𝑜(𝑡)), 𝑟) 

 Units: **undefined** 

 

 

Exogenous variables 

 

 cost of EV recycling 

rc =9000 
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 Units: $/ton 

 

 cost of other recycling 

oc =9000 

 Units: $/ton 

 

 

 EV lifetime 

eol=20 

 Units: **undefined** 

 

 EV recycling rate 

rr=0.6 

 Units: **undefined** 

 

 Other lifetime 

o=10 

Units: **undefined** 

 Other recycling rate 

or=0.6 

Units: **undefined** 

 Recycling delay time 

r=0.5 

Units: **undefined** 

 table for effect of perceived profit on recycling([(0,0)-

(1,1)],(0,0),(0.5,0),(0.7,0.65),(0.82,0.85),(0.92,0.95),(0.98,0.99),(1,1),(10,1)) 

 Units: **undefined** 
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Depletion Rate 

Stock 

 

 Resources= INTEG (-depletion,initial resources) 

 

𝑋(𝑡) = ∫ (−𝑆(𝑠))𝛿𝑠 + 𝑥0

𝑡

𝑡0

 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 Units: **undefined** 

 

Flow 

 

 depletion=supply rate= desired supply rate*order fulfilment ratio 

 

𝑆(𝑡) = 𝑆𝑑(𝑡)𝑂(𝑡) 

 

 Units: Tonnes/y 

 

Auxiliaries 

 

 depletion rate=depletion/resources*100 

 

𝑋𝑠(𝑡) =
𝑆(𝑡)

𝑋(𝑡)
100 

 Units: **undefined** 

 

Exogenous variables 
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 initial resources 

𝑥0 = 3𝐸 + 7 

 Units: **undefined** 
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Appendix E: The indium model - Full model equations and initial 

conditions 

The variables referred to in this annex are defined in the variable tables in Chapter 7, 

Section 3. 

Production and capacity utilisation 

Stocks 

 Inventory= INTEG (production rate + recycled Li)-supply rate,Reference 

Inventory Coverage* Demand) 

 Units: Gt 

 

 

𝐼(𝑡) = ∫ ((𝑃(𝑠) + 𝑅(𝑠)) − 𝑆(𝑠))𝛿𝑠 + (𝑖𝑟𝐷(𝑡0))
𝑡

𝑡0

 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 Cumulative Production= INTEG (supply rate, 0) 

 Units: Tonnes 

 

𝑄(𝑡) = ∫ (𝑆(𝑠))𝛿𝑠 + 𝑄(𝑡0
𝑡

𝑡0
) 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 

Flows 

 

 production rate= 

  DELAY348((Production Capacity*capacity utilisation),production delay time) 

                                                      
48

 DELAY3 is an ‘of the shelf’ function used in system dynamics to return a third order exponential delay of an 

input variable for a specific delay time. This is used to vary the delivery time of delayed inputs in order to 
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 Units: **undefined** 

 

𝑃(𝑡) = 𝐷𝐸𝐿𝐴𝑌3((𝑃𝐶𝑎𝑝(𝑡)𝑈(𝑡)) , 𝑝) 

 

 supply rate=desired supply rate*order fulfilment ratio 

 Units: Tonnes/y 

 

𝑆(𝑡) = 𝑆𝑑(𝑡)𝑂(𝑡) 

 

 

Auxiliaries 

 

 max supply rate= 

  Inventory/minimum order processing time 

 Units: Tonnes/y 

 

𝑆𝑚𝑎𝑥(𝑡) =
𝐼(𝑡)

𝑜𝑚𝑖𝑛
 

 

 order fulfilment ratio= 

  table for order fulfilment(max supply rate/desired supply rate) 

 Units: Dimensionless 

 

                                                                                                                                                                     
‘smooth’ the delayed inputs availability. This function is equivalent to the equations below, as stated in the 

VENSIM user manual. Further discussion of this function can be found in Kirkwood (1998) 

DELAY3=LV3/DL 

LV3=INTEG(RT2-DELAY3,DL*input) 

RT2=LV2/DL 

LV2=INTEG(RT1-RT2,LV3) 

RT1=LV1/DL 

LV1=INTEG(input-RT1,LV3) 

DL=delay time/3 
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𝑂(𝑡) = 𝑓1(
𝑆𝑚𝑎𝑥(𝑡)

𝑆𝑑(𝑡)
) 

Where f1 is a function defined by an exogenous lookup table presented below as ‘table for 

order fulfilment’ (Figure 7.20), and 

𝑊(𝑡) =
𝑆𝑚𝑎𝑥(𝑡)

𝑆𝑑(𝑡)
 

 

 desired supply rate=Demand 

 Units: Tonnes/y 

 

𝑆𝑑(𝑡) = 𝐷(𝑡) 

 

 Inventory Coverage=Inventory/supply rate 

 Units: Years 

 

𝐼𝑠(𝑡) =
𝐼(𝑡)

𝑆(𝑡)
 

 

 capacity utilisation= 

  SMOOTH49(indicated capacity utilisation,utilisation adjustment time) 

 Units: Dimensionless 

 

𝑈(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝑈𝑖(𝑡), 𝑢(𝑡)) 

 

 indicated capacity utilisation= 

  table for effect of markup on utilisation(expected profit) 

 Units: Dimensionless 

                                                      
49

 SMOOTH is an ‘off the shelf’ function that is used in system dynamics to create exponential smoothing of a 

time delay process. This delivers a smooth transition in the time that delayed inputs are available as output. 

This is equivalent to the equation below as stated in the VENSIM user manual. More information on the 

smooth function can be found in Kirkwood (1998) 

𝑈(𝑡) = ∫ (𝑈𝑖(𝑠) − 𝑈(𝑠)/𝑢(𝑠))𝛿𝑠 + 𝑈𝑖(𝑡0) 
𝑡

𝑡0
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𝑈𝑖(𝑡) = 𝑓2(𝑌𝑒(𝑡)) 

 

Where f2 is a function defined by an exogenous lookup table presented below as ‘table for 

effect of markup on utilisation’ 

 

 expected profit= 

  Expected Price/Expected variable costs 

 Units: Dimensionless 

 

𝑌𝑒(𝑡) =
𝑉𝑒(𝑡)

𝐶𝑒(𝑡)
 

 

 Expected Price= 

  SMOOTH(price,delay to form expected price) 

 Units: $/Unit 

 

𝑉𝑒(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝑉(𝑡), 𝑣𝑒𝑑) 

 

 Expected variable costs= 

  SMOOTH(variable costs,delay to form expected variable costs) 

 Units: **undefined** 

 

𝐶𝑒(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝐶(𝑡), 𝑐) 

 

Exogenous variables 

 

 minimum order processing time 

omin=0.1 

 Units: Years 

 

 table for order fulfilment ([(0,0)-(4,1)],(0,0),(0.2,0.2),(0.4,0.4),(0.6,0.58), 
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(0.8,0.73),(1,0.85),(1.2,0.93),(1.4,0.97),(1.6,0.99),(1.8,1),(2,1),(2,1),(4,1)) 

 Units: Dimensionless 

 

 table for effect of markup on utilisation ([(0,0)-(5,1.2)],(0,0),(0.5,0), 

(0.75,0.05),(1,0.5),(1.25,0.68),(1.5,0.75),(1.75,0.8),(2,0.84),(2.25,0.87),(2.5,0.9),(2.75,0.93),(3

,0.96),(3.25,0.985),(3.5,0.995),(4,1),(4.5,1),(5,1)) 

 Units: Dimensionless 

  

 production delay time 

p=0.5 

 Units: Years 

  

 utilisation adjustment time 

 

u=0.5 

 Units: Years 

  

 delay to form expected price 

 

ve=1 

 Units: Years 

  

 delay to form expected variable costs 

 

ce=1 

 Units: Years 

 

Demand 

Stocks 
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 Annual CIGS sales= INTEG (annual CIGS sales growth,30) 

 

𝐿𝑠(𝑡) = ∫ 𝐿𝑠𝑔(𝑠)𝛿𝑠 + 30
𝑡

𝑡0

 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 Units: GW/y 

 

 

Flows 

 

 

 annual CIGS sales growth=Annual CIGS sales*fractional rate 

 

𝐿𝑠𝑔(𝑡) = 𝐿𝑆(𝑡)𝐿𝑟(𝑡) 

 Units: **undefined** 

 

 

Auxiliaries 

 

 

 In Demand=SMOOTHI(Indicated In Demand,Demand Adjustment 

Delay,Reference In Demand) 

 

𝐷(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻𝐼(𝐷𝑖(𝑡), 𝑑(𝑡), 𝐷𝑟(𝑡) 

 Units: Units/Year 

 Industry demand adjusts to the indicated demand with a delay,  

   representing the time required for consumers of the good to find  

   substitutes or change their consumption after a change in price. 
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 Reference In Demand=Latent In Demand 

 

𝐷𝑟(𝑡) = 𝐷𝑙(𝑡) 

 Units: Units/Year 

 Initial value of customer orders. 

  

 Indicated In Demand=MIN(Maximum Consumption,Reference In 

Demand*MAX(0,1+Demand Curve Slope*(In price-reference price)/Reference 

In Demand)) 

 

𝐷𝑖(𝑡) = 𝑀𝐼𝑁(𝐷𝑚𝑎𝑥 , 𝐷𝑟)𝑀𝐴𝑋 (0,1 + 𝐵
𝑉(𝑡) − 𝑣

𝐷𝑟
) 

 

 Units: Units/Year 

 The indicated demand for the commodity given the current price.  

   Indicated demand is the demand consumers would like given the  

   current price. Actual demand adjusts to indicated demand with a  

   delay. The demand curve is linear, with slope set so that the  

   elasticity of demand at the reference price is equal to the  

   reference industry demand elasticity, set by the user. 

 

 

 Demand Curve Slope= (-Reference Demand*Reference Demand 

Elasticity)/(reference price) 

 

𝐵(𝑡) = (−𝐷𝑟(𝑡 )𝑒𝑑)/𝑣) 

 Units: Unit*Units/($*Year) 

 The slope of the industry demand curve, as a function of the  

   price elasticity at the reference price level 

 

 CIGS In demand= 

  Annual CIGS sales*In intensity 
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𝐷𝑙𝑚(𝑡) = 𝐿𝑠(𝑡)𝑚𝑖 

 Units: tons/y 

 

 fractional rate=max CIGS market growth rate*(1-Annual CIGS sales/max CIGS 

annual sales) 

 

𝐿𝑟(𝑡) = 𝐿𝑔𝑚𝑎𝑥(𝑊1(𝑡)) 

Where  

𝑊1(𝑡) = 1 −
𝐿𝑠𝑔(𝑡)

𝑙𝑠𝑚𝑎𝑥
 

 

 Units: **undefined** 

 

 

 

 latent In demand=EV In demand+Other In Demand 

 

𝐷𝑙(𝑡) = 𝐷𝑙𝑚(𝑡) + 𝐷𝑜𝑚(𝑡) 

 Units: **undefined** 

 

 

Exogenous variables 

 

 reference price 

 

𝑣 = 600,000 

 Units: **undefined** 

 

 Demand Adjustment Delay 

d=0.5 

 Units: Years 
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 The average time required for consumer demand to respond to a  

   change in price. 

 

 Maximum Consumption 

dmax=100,000,000 

 Units: Units/Year 

 The maximum demand for the commodity, no matter how low price  

   goes. 

 

 Reference Demand Elasticity 

ed=0.5 

 Units: Dimensionless 

 Demand elasticity at the reference price 

 

 Max CIGS annual sales 

𝑙𝑠𝑚𝑎𝑥 = 140 

 Units: GW/y 

 Max CIGS market growth rate 

𝑙𝑔𝑚𝑎𝑥 = 0.1 

Units: **undefined** 

 Other In Demand 

dom=500 

 Units: tons 

 

 In Intensity 

mi=0.0248 

Units: g/Wp 

 

Price 
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Stocks 

 

 Traders' Expected Price= INTEG (Change in Traders' Expected Price, 

   initial price) 

 

𝑉𝑒(𝑡) = ∫ 𝑉𝑒𝑐(𝑠)𝛿𝑠 + 𝑉(𝑡0)
𝑡

𝑡0

 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 Units: $/Unit 

 The price market makers and traders believe would clear the  

   market if demand and supply were in balance, and no other  

   pressures to change price existed. 

 

Flows 

 

 Change in Traders' Expected Price=(indicated price - Traders' Expected 

Price)/Time to Adjust Traders' Expected Price 

 

𝑉𝑒𝑐(𝑡) =
𝑉(𝑡0) − 𝑉𝑒(𝑡)

𝑣𝑑
 

 Units: $/Unit/Year 

 Traders' beliefs about the underlying equilibrium price adjust  

   in response to the gap between the indicated price and the  

   current belief. Expected underlying price adjusts via  

   first-order adaptive expectations to the actual price,  

   constrained to be greater than a minimum level. 

 

Auxiliaries 
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 Effect of Costs on Price=1+Sensitivity of Price to Costs*((Expected Production 

Costs/Traders' Expected Price)-1) 

 

𝑽𝒄𝒑(𝒕) = 𝟏 + 𝒗𝒄𝒑(𝑾𝟐(𝒕) − 𝟏) 

Where 

𝑊2(𝒕) =
𝑪𝒑𝒆(𝒕)

𝑽𝒆(𝒕)
 

 Units: **undefined** 

 

 indicated price=MAX(Minimum Price,price) 

 

𝑉𝑖(𝑡) = 𝑀𝐴𝑋(𝑉min (𝑡), 𝑉(𝑡)) 

 Units: **undefined** 

 

 price=MAX(0,(Traders' Expected Price*Effect of Inventory Coverage on 

Price*Effect of Costs on Price)) 

 

𝑉(𝑡) = 𝑀𝐴𝑋(0, (𝑉𝑒(𝑡)𝑉𝑖𝑠𝐼(𝑡)𝑉𝑐𝑝(𝑡))) 

 Units: $/Unit 

 

 Effect of Inventory Coverage on Price=Relative Inventory 

Coverage^Sensitivity of Price to Inventory Coverage 

 

𝑉𝑖𝑠(𝑡) = 𝐼𝜌(𝑡)𝑣𝑖𝑠   

Units: Dimensionless 

 Price rises when inventory coverage is less than normal, and  

   falls when it is greater. The Sensitivity of Price to Inventory  

   Coverage controls the magnitude of the response. 
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 Relative Inventory Coverage= Perceived Inventory Coverage/Reference 

Inventory Coverage 

 

𝐼𝜌(𝑡) =
𝐼𝑠𝑝(𝑡)

𝑖𝑟
 

 

 Units: Dimensionless 

 Perceived inventory coverage relative to the normal level needed  

   to ensure desired service levels in the market. 

 

 Perceived Inventory Coverage= 

  SMOOTH(Inventory Coverage,Coverage Perception Time) 

 

𝐼𝑠𝑝(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝐼𝑠(𝑡), 𝑖𝑠(𝑡)) 

 Units: Years 

 Perceived coverage is formed by smoothing actual coverage. It  

   takes time to recognize changes in coverage. 

 

 

 Minimum Price=Unit Costs 

 

𝑉𝑚𝑖𝑛(𝑡) = 𝑌(𝑡) 

 Units: $/Unit 

 Trader's do not believe prices can fall below the variable cost  

   per unit of production. 

 

Exogenous Variables 

 

 

 initial price=100 

𝑉𝑡0 = 100 

 Units: **undefined** 
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 Sensitivity of Price to Costs 

𝑉𝑐𝑝 = 0.5 

 Units: Dimensionless 

 Controls the response of price to discrepancies between the  

   expected price and the expected cost of production. 

 

 Time to Adjust Traders' Expected Price=1 

𝑣𝑑 = 1 

 Units: Years 

 Trader's belief about the underlying equilibrium price adjust to  

   actual prices over this period. 

 

 Sensitivity of Price to Inventory Coverage= 

𝑉𝑖𝑠 = −1 

 Units: Dimensionless 

 Controls the response of price to inventory coverage. Must be  

   negative for high inventory to lead to lower prices. Higher  

   absolute values lead to greater price changes for any given  

   inventory coverage level. 

 

 Coverage Perception Time 

𝑖𝑠 = 0.167 

 Units: Years 

 The average time required to perceive and react to inventory  

   coverage. 

 

 Reference Inventory Coverage 

𝐼𝜌 = 0.2 

 Units: Years 

 The normal inventory coverage required to ensure desired levels  
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   of service (the desired ability to fill orders). 

  

  

Capacity 

Stocks 

 

 Capacity Stock= INTEG (acquisition rate-Discard Rate,(Reference 

Demand/indicated capacity utilisation)/Capital Productivity) 

 

𝐶𝑎𝑝(𝑡) = ∫ (𝐴(𝑠) − 𝐽(𝑠))𝛿𝑠 +

𝐷𝑟(𝑡)
𝑈𝑖(𝑡)⁄

𝐶𝑎𝑝𝑝

𝑡

𝑡0

 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 Units: Capacity Units 

 The capital stock accumulates acquisitions less discards.  

   Initialized to the initial equilibrium level. 

 

 Zn Capacity= INTEG (net zinc capacity change,1.1e+007) 

 

𝐻𝑐𝑎𝑝(𝑡) = ∫ (𝑍𝑐𝑎𝑝𝑐(𝑠)) 𝛿𝑠 + (1.1 ∗ 107)
𝑡

𝑡0

 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 Units: mt 

 

 

 In Recovery Rate= INTEG (In recovery change,Initial In recovery rate) 
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𝐼𝑛(𝑡) = ∫ (𝐻𝑟𝑐(𝑠))𝛿𝑠 + ℎ𝑟𝑡0

𝑡

𝑡0

 

 Units: Units 

 The state of the system accumulates its net inflow rate. 

 

Flows 

 

 acquisition rate=Desired Acquisition Rate 

A(t)=Ad(t) 

 Units: **undefined** 

 

 Discard Rate=Capacity Stock/Average Life of Capacity 

 

𝐽(𝑡) =
𝐶𝑎𝑝(𝑡)

𝑐𝑎𝑝𝐿
 

 Units: Capacity Units/Year 

 The average life of capacity determines the rate at which it  

   decays and is discarded. 

 

 net zinc capacity change=Zn Capacity*Zn market growth rate 

 

𝐻𝑐𝑎𝑝𝑐(𝑡) = 𝐻𝑐𝑎𝑝(𝑡)ℎ𝑔 

 Units: **undefined** 

 

 In recovery change=difference between current and goal In recovery/time to 

max In recovery rate 

 

𝐻𝑟𝑐(𝑡) =
𝐻𝑟𝑔(𝑡)

𝐻𝑟𝑚𝑎𝑥𝑑
 

 Units: Units/Period 

 The net inflow a fraction of the discrepancy between the desired  

   and actual state each period. The adjustment time determines  
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   what fraction of the gap is corrected each period. 

 

 

Auxiliaries 

 

 Production Capacity=Capacity Stock*Capital Productivity 

 

𝑃𝐶𝑎𝑝(𝑡) = 𝐶𝑎𝑝(𝑡)𝐶𝑎𝑝𝑝 

 Units: Gt/y 

 Production capacity is determined by total capital stock in  

   service and its productivity. 

 

 Adjustment for Capacity=(Desired Capacity - Capacity Stock)/Capacity 

Adjustment Time 

 

𝑍(𝑡) =
𝐶𝑎𝑝𝑑(𝑡) − 𝐶𝑎𝑝(𝑡)

𝑡𝑐𝑎𝑝
 

 Units: Capacity Units/Year 

 Producers seek to close the gap between desired and actual  

   capacity over the Capacity Adjustment Time 

 

 Desired Acquisition Rate=MAX(0, Expected Discard Rate + Adjustment for 

Capacity) 

 

𝐴𝑑(𝑡) = 𝑀𝐴𝑋(0, 𝐽𝑒(𝑡) + 𝑍(𝑡)) 

 Units: Capacity Units/Year 

 The rate at which new capacity should be acquired, given the  

   expected discard rate and the adjustment to bring the stock of  

   capacity in line with the desired stock. 

 

 Expected Discard Rate=Discard Rate 
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𝐽𝑒(𝑡) = 𝐽(𝑡) 

 Units: Capacity Units/Year 

 The expected discard rate is assumed to equal the actual discard  

   rate. 

 

 Primary Production Capacity=IF THEN ELSE50(In price/cost of primary 

production>1,max primary production capacity,0) 

 

𝑃𝑝(𝑡) = 𝐼𝐹 𝑇𝐻𝐸𝑁 𝐸𝐿𝑆𝐸(
𝑉(𝑡)

𝐶𝑃𝑝
> 1, 𝑃𝑝𝑚𝑎𝑥 , 0) 

 

 Units: **undefined** 

 

 Maximum In Capacity Limit=Primary Production Capacity+(Zn 

Capacity*Indium contained*In Recovery Rate) 

 

𝑀𝑐𝑎𝑝𝑚𝑎𝑥(𝑡) = 𝑃𝑝(𝑡) + (𝐻𝑐𝑎𝑝(𝑡)𝐻𝑟𝑟(𝑡)ℎ𝑚𝑐) 

 

 Units: **undefined** 

 

 difference between current and goal In recovery= 

  max In recovery rate - In Recovery Rate 

 

𝐻𝑟𝑔(𝑡) = ℎ𝑟𝑚𝑎𝑥 − 𝐻𝑟𝑟(𝑡) 

 Units: Units 

 The gap between the desired and actual state of the system. 

 

 

                                                      
50

 ‘IF THEN ELSE’ is an ‘off the shelf’ conditional statement function. It returns one of two values depending on 

whether the conditional statement is satisfied or not. In parentheses the first formulation is the conditional 

statement, the next is the value returned if the conditional statement is satisfied, and the final is the value 

returned if the conditional statement is not satisfied. 
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Exogenous variables 

 

 Capital Productivity 

Capp=1 

 Units: Unit/Year/Capacity Units 

 The productivity of capital is assumed exogenous and constant.  

   One unit of capital is defined as the capital stock required to  

   generate one unit of output per year (at normal utilization), so  

   productivity =1. 

 

 Average Life of Capacity 

CapL=20 

 Units: Years 

 The average life of capacity. 

 

 Capacity Adjustment Time 

tcap=3 

 Units: Years 

 The average time over which producers seek to close the gap  

   between desired and actual capacity. 

 

 Zn market growth rate 

hg=0.015 

 Units: **undefined** 

 

 max primary production capacity 

ppmax=500 

 Units: tons/y 

 

 cost of primary production 

cPp=600,000 
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 Units: $/t 

 

 

 Indium contained 

hmc=9e-005 

 Units: undefined 

 

 

 Initial In recovery rate 

Hrt0=0.8 

 Units: Units 

 The initial quantity in the stock. 

 

 max In recovery rate 

Hrmax=0.9 

 Units: Units 

 The desired, or goal state for the system. 

 

 time to max In recovery rate 

hrmaxd=20 

 Units: Period 

 The time period over which discrepancies between the desired and  

   actual state of the system are corrected. 

 

Desired capacity 

Auxiliaries 

 

 Desired Capacity= 

  Capacity Stock*(1+Sensitivity of Investment to Exp Profit*(Effect of Expected 

Profit on Desired Capacity-1)) 
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𝐶𝑎𝑝𝑑(𝑡) = 𝐶𝑎𝑝(𝑡)(1 + 𝐶𝑎𝑝𝑑𝑦(𝑌𝑐𝑎𝑝𝑑(𝑡) − 1)) 

 Units: Capacity Units 

 Desired capital stock is based on current capital, adjusted up  

   or down according to the expected profitability of new  

   investment. 

 

 Effect of Expected Profit on Desired Capacity=Table for Effect of Expected 

Profit on Desired Capacity(Expected Profitability of New Investment) 

Units: Dimensionless 

𝑌𝑐𝑎𝑝𝑑(𝑡) = 𝑓4(𝑌𝑐𝑎𝑝(𝑡)) 

 

Where f4 is a function defined by an exogenous lookup table presented below as ‘table for 

effect of expected profit on desired capacity’ 

  

 Desired capacity is adjusted above or below current capacity in  

   response to the expected profitability of new investment. 

 

 Expected Profitability of New Investment=(Long Run Expected Price - 

Expected Production Costs)/Long Run Expected Price 

 

𝑌𝑐𝑎𝑝(𝑡) =
𝑉𝑒𝑙(𝑡) − 𝐶𝑝𝑒(𝑡)

𝑉𝑒𝑙(𝑡)
 

 Units: Dimensionless 

 The expected profitability of new investment is the difference  

   between long run price expectations and expectations for the  

   unit costs of new investment, including fixed and variable  

   costs. Fixed cost includes the normal profit margin required.  

   The expected profit is normalized by price to give a  

   dimensionless measure of profit, analogous to the percentage  

   return per unit. 
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 Long Run Expected Price=SMOOTH( price,Time to Adjust Long Run Price 

Expectations) 

 

𝑉𝑒𝑙(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝑉(𝑡), 𝑣𝑒𝑙) 

 Units: $/Unit 

 Long run price expectations are formed by first-order  

   exponential smoothing (adaptive expectations). 

 

 

 Expected Production Costs=SMOOTH(Unit Costs,Time to Adjust Expected 

Costs) 

 

𝐶𝑝𝑒(𝑡) = 𝑆𝑀𝑂𝑂𝑇𝐻(𝐶𝑢(𝑡), 𝑐𝑒) 

 Units: **undefined** 

 

 Unit Costs=cumulative availability curve(Cumulative Production) 

Units: $/Unit 

𝐶𝑢(𝑡) = 𝑓8(𝑄(𝑡)) 

 

Where f8 is a function defined by an exogenous lookup table presented below as 

‘cumulative availability curve’ 

 

  Unit costs including fixed and variable costs. 

 

 variable costs=Unit Costs*variable cost fraction 

 

𝐶(𝑡) = 𝐶𝑢(𝑡)𝐶𝑣𝑢 

 Units: **undefined** 

 

Exogenous variables 
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 Sensitivity of Investment to Exp Profit 

Capdy=1 

 Units: Dimensionless 

 The Sensitivity of Desired Capacity to expected profit. 

 

 Table for Effect of Expected Profit on Desired Capacity([(-1,0)-(1,2)],(-1,0),(-

0.75,0.1),(-0.5,0.3),(-0.25,0.67),(0,1),(0.25,1.25),(0.5,1.45),(0.75,1.6),(1,1.7)) 

 Units: Dimensionless 

 The adjustment of desired capacity above or below the current  

   level depends on this function of the expected profitability of  

   new investment.\!\!\! 

 

 Time to Adjust Long Run Price Expectations 

vel=2 

 Units: Years 

 The time required to update long-run price expectations. 

 

 Time to Adjust Expected Costs 

ce=2 

 Units: Year 

 The time required for market participants to glean information  

   about costs and adjust their beliefs to the new information.  

   Since cost information is difficult to get, unreliable, and  

   differs from producer to producer, expected costs adjust slowly. 

 

 cumulative availability curve [(0,400000)-

(600000,1e+006)],(0,600000),(200000,1e+006),(600000,1e+006)  

 

Units: $/t 

 

 variable cost fraction 
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Cvu =0.4 

 Units: **undefined** 

 

 

Recycling 

Auxiliaries 

 

 effect of estimated profit on CIGS recycling=table for effect of perceived 

profit on recycling(Expected Price/cost of CIGS recycling) 

 

𝑅𝑦(𝑡) = 𝑓7

𝑉𝑒(𝑡)

𝑟𝑐
 

Where f7 is a function defined by an exogenous lookup table presented below as ‘table for 

effect of perceived profit on recycling’ 

 

Units: **undefined** 

 

 effect of estimated profit on other recycling=table for effect of perceived 

profit on recycling(Expected Price/cost of other recycling) 

 

𝑹𝒐𝒚(𝒕) = 𝒇𝟕(𝑾𝟑(𝒕)) 

Where f7 is a function defined by an exogenous lookup table presented below as ‘table for 
effect of perceived profit on recycling’ and 

𝑊3(𝑡) =
𝑉𝑒(𝑡)

𝑅𝑂(𝑡)
 

  

Units: **undefined** 

 

 CIGS In end-of-life=DELAY FIXED51 (CIGS In demand,CIGS lifetime,0) 

                                                      
51

 DELAY FIXED is an ‘off the shelf’ function which returns the value of the ‘input’ delayed by the ‘delay 

time’.  The ‘input’ is the value of the variable on the left-hand side of the parentheses.  The ‘delay time’ is the 

central constant in parentheses. On the right of the equation is the ‘initial value’, in this case 0. 
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𝑀(𝑡) = 𝐷𝐸𝐿𝐴𝑌 𝐹𝐼𝑋𝐸𝐷(Dlm(t), eol,0) 

 Units: **undefined** 

 

 

 CIGS recycling=CIGS In end-of-life*effect of estimated profit on CIGS 

recycling* CIGS recycling rate 

 

𝑅𝑚(𝑡) = 𝑀(𝑡)𝑅𝑦(𝑡)𝑟𝑟 

 Units: **undefined** 

 

 other demand recycling=other In end-of-life*other recycling rate*effect of 

estimated profit on other recycling 

 

𝑅𝑜(𝑡) = 𝑀(𝑡)𝑜𝑟(𝑡)𝑅𝑜𝑦 

 Units: **undefined** 

 

 other In end-of-life=DELAY FIXED(Other In Demand,other lifetime,0) 

 

𝑂(𝑡) = 𝐷𝐸𝐿𝐴𝑌 𝐹𝐼𝑋𝐸𝐷(𝐷𝑜(𝑡), 𝑜, 0) 

 Units: **undefined** 

 

 recycled In=DELAY3((In recycling+other demand recycling),recycling delay 

time) 

 

𝑅(𝑡) = 𝐷𝐸𝐿𝐴𝑌3((𝑅𝑚(𝑡) + 𝑅𝑜(𝑡)), 𝑟) 

 Units: **undefined** 

 

 

Exogenous variables 
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 cost of CIGS recycling 

rc =700,000 

 Units: $/ton 

 

 cost of other recycling 

oc =700,000 

 Units: $/ton 

 

 

 CIGS lifetime 

eol=30 

 Units: **undefined** 

 

 CIGS recycling rate 

rr=0.6 

 Units: **undefined** 

 

 Other lifetime 

o=10 

Units: **undefined** 

 Other recycling rate 

or=0.6 

Units: **undefined** 

 Recycling delay time 

r=0.5 

Units: **undefined** 
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 table for effect of perceived profit on recycling([(0,0)-

(1,1)],(0,0),(0.5,0),(0.7,0.65),(0.82,0.85),(0.92,0.95),(0.98,0.99),(1,1),(10,1)) 

 Units: **undefined** 

 

Depletion Rate 

Stock 

 

 Resources= INTEG (-depletion,initial resources) 

 

𝑋(𝑡) = ∫ (−𝑆(𝑠))𝛿𝑠 + 𝑥0

𝑡

𝑡0

 

 

Where (s) represents any time between initial time t0 and the current time t. 

 

 Units: **undefined** 

 

Flow 

 

 depletion=supply rate= desired supply rate*order fulfilment ratio 

 

𝑆(𝑡) = 𝑆𝑑(𝑡)𝑂(𝑡) 

 

 Units: Tonnes/y 

 

Auxiliaries 

 

 depletion rate=depletion/resources*100 

 

𝑋𝑠(𝑡) =
𝑆(𝑡)

𝑋(𝑡)
100 

 Units: **undefined** 
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Exogenous variables 

 

 initial resources 

𝑥0 = 300,000 

 Units: **undefined** 

 

 

 

 

 


