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ABSTRACT  

The ability to sense and initiate a response to situations of nitrogen-limitation is essential for 

bacterial survival. In extensively investigated organisms, the nitrogen-stress response consists 

of changes in intracellular metabolite levels, post-translational modification of proteins (such as 

metabolic enzymes) and a transcriptomic response mediated by a global response regulator. 

However, in mycobacteria the nitrogen stress response has not been comprehensively 

investigated. In this study mycobacterial nitrogen limiting conditions were optimised and the 

mechanism of GlnR activation investigated; M. smegmatis GlnR requires a highly conserved 

aspartate residue (D48), corresponding to a putative phosphorylation site, for function. In 

addition, a ChIP-seq approach combined with global expression analyses, permitted 

characterisation of the GlnR mediated global transcriptomic response stimulated during 

nitrogen.  

In M. smegmatis, 52 GlnR binding sites were identified, controlling the expression of at least 103 

genes in response to nitrogen limitation. The majority of GlnR regulated genes were involved in 

nitrogen uptake and nitrogen scavenging. A consensus GlnR DNA binding motif was identified 

and AC-n9-AC DNA residues shown to be essential for GlnR:DNA binding. In M. tuberculosis 36 

GlnR binding sites were identified in nitrogen limitation, however no consensus GlnR:DNA 

binding motif could be determined. Initial analysis suggests GlnR may be involved in a general 

stress response in M. tuberculosis, rather than mediating a nitrogen scavenging response as 

observed in M. smegmatis.  

This study provides the first global analysis of nitrogen limitation in mycobacteria and identifies 

GlnR as the main nitrogen response regulator. From this analysis it appears that the role of GlnR 

is different in M. tuberculosis compared to M. smegmatis, which may provide key insights into 

how pathogenic and non-pathogenic species survive nutrient limiting conditions. 
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1.1 Mycobacteria 

Mycobacterial pathogens are known to cause severe human disease, and include the causative 

agents of leprosy, Mycobacterium leprae, and Mycobacterium tuberculosis, the etiological agent 

of tuberculosis. These prominent human diseases, tuberculosis and leprosy, have been 

documented since antiquity. Furthermore, tuberculosis has been named as the suspected cause 

of death in some Egyptian mummies circa 3000 BC (204). In the 19th Century tuberculosis, 

known as the ‘white plague’, was a leading cause of death in Europe and the United States of 

America; the estimated mortality rate from tuberculosis was as high as 400 in 100,000 

individuals in the USA during 1830 (124). It was in 1873 that a Norwegian doctor Armauer 

Hansen identified M. leprae from leprosy patients, with M. tuberculosis discovered nine years 

later by Koch in 1882 (109, 137). The incidence of leprosy has since declined to 

192,246 reported cases, according to official reports received during 2011 from 130 countries 

(190). However, to-date, in some developing countries tuberculosis is still a leading cause of 

mortality due to an infectious disease.  

Currently, the genus Mycobacterium contains more than 120 species, the majority of which are 

thought to be free living, ubiquitous bacteria (124, 168). Characteristics used to define 

mycobacteria are the absence of motility, resistance to acid-alcohol following coloration with 

phenicated fuchsin, a guanine/cytosine (G-C) rich (62-71%) genome and a slightly curved and 

rod-shaped morphology (124, 148). For convenience, mycobacteria have traditionally been 

divided into two major divisions based on phenotypic growth differences; rapid growers and 

slow growers. Rapid growers, such as the saprophytic soil bacteria Mycobacterium smegmatis, 

are defined as organisms that produce isolated visible colonies on nutrient-rich solid media 

within seven days of inoculation (134, 148). Slow growers, such as M. tuberculosis, generate 

colonies apparent only after seven days or more (134, 148). M. leprae is documented as the only 

mycobacterial species that has not been cultivated in vitro, special growth requirements are 

necessary such as cultivation on the footpad of mice or within the nine‐banded armadillo (170). 

These growth rate divisions of mycobacteria have no formal taxonomic standing, however they 

are useful clinically in identification schemes. Typically, slow growing mycobacteria cause 

disease in humans and animals, whilst the fast growers do not, however a few notable 

exceptions apply (148). 

Taxonomically, mycobacteria belong to the genus Mycobacterium, which is the single genus 

within the family of Mycobacteriaceae, order Actinomycetales (148). Actinomycetales comprise 

of diverse micro-organisms, including Streptomyces and Corynebacteria. All Actinomycetales 

share a G-C rich genome and are classified, due to phylogenetic analysis, as Gram-positive 
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organisms (18, 134, 148). Within the order Corynebacterium, Mycobacterium and Nocardia form 

a monophyletic taxon, termed the CMN group (43). Members of the CMN group are the only 

micro-organisms that are able to synthesise mycolic acids (43). Mycolic acids are cell wall 

components composed of long β-hydroxy fatty acids with a shorter α-alkyl side chain. Each 

molecule contains between 60 and 90 carbon atoms, however the exact number varies between 

species, in addition to the presence of different functional groups (167). It is the presence of 

mycolic acids that makes the cell envelope of mycobacteria structurally distinct from that of 

both Gram-positive and Gram-negative bacteria; their thick waxy cell envelope is impermeable 

to the Gram-stain. In addition, it is widely believed that the limited permeability of the 

mycobacterial cell envelope is due to the high mycolic acid content, combined with a variety of 

other intercalated lipids (167).   

 

1.1.1 Pathology of M. tuberculosis 

Tuberculosis is predominantly a pulmonary disease, transmitted via aerosolised droplets 

containing infectious M. tuberculosis. Infectious droplets are generated from pulmonary or 

laryngeal tuberculosis, and dispersed via a cough, sneeze or speaking, and subsequently inhaled 

by an uninfected person (53, 86). Upon infection, M. tuberculosis replicates within a membrane 

bound phagosome within human alveolar macrophages. A primary complex develops, 

consisting of a small lesion at the initial site of implantation (53). M. tuberculosis replication 

occurs at local lymph sites within the lung, leading to eventual dissemination of bacilli to remote 

sites of the body. At this stage of infection approximately 95% of infected individuals mount an 

immune response capable of controlling, but not eliminating the infection (140).  

In an infected person who does not succumb to primary tuberculosis, the bacilli enter a latent 

state contained within an aggregate of immune cells. This requires the coordinated recruitment 

of macrophages and lymphocytes, which aggregate to form a granuloma surrounding the 

infected macrophages (140). The granuloma serves to contain the foci of infection, preventing 

dissemination of M. tuberculosis. For the majority of healthy individuals these immune 

structures can prevent disease progression indefinitely, however these quiescent bacilli can 

potentially reactivate at any time during the remainder of the person’s life. Generally, about 5% 

of those infected develop primary tuberculosis within five years of infection, with a further 5-

10% subsequently developing post-primary disease (86, 140). This disease ratio shows some 

regional variation, and it is notably much higher in immunosuppressed individuals or in the 

presence of human immunodeficiency virus (HIV) (140). For instance, co-infection with HIV 
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raises the chance of reactivation of M. tuberculosis from ~10% within the individual’s lifetime to 

~50% (38, 140). Reduction in immune competence significantly raises the chances of 

granuloma disruption and thus progression to active disease.  

Failure of granuloma formation, or its breakdown, may release M. tuberculosis into the lung 

tissue allowing growth and replication. The tuberculosis disease is a chronic wasting illness 

characterised by fever, weight loss and, in the case of pulmonary reactivation, a cough (53). 

Many of the symptoms of tuberculosis, including tissue destruction, are a result of the host 

response against M. tuberculosis, rather than direct toxicity from the bacilli. Cell-mediated 

immunity activates macrophages leading to delayed-type hypersensitivity, resulting in caseous 

necrosis and ultimately killing of M. tuberculosis infected macrophages, however this is at the 

expense and destruction of nearby tissues (53, 86). In the majority of cases (~75%) the 

infection is restricted to the lungs causing pulmonary tuberculosis (101). A more severe, but 

less common, outcome of infection is dissemination from the lungs to other vital organs, leading 

to extra-pulmonary tuberculosis (142).  

 

1.1.2 M. tuberculosis Prevalence and Treatment  

In 1993 the World Health Organization (WHO) launched a global effort to control tuberculosis 

infection. Since then, progress towards the WHO’s global targets for reduction in tuberculosis 

cases and deaths continues. The Millennium Development Goal, to halt and reverse the 

tuberculosis epidemic by 2015, has already been achieved (189). New cases of tuberculosis 

have fallen in recent years, and fell at a rate of 2.2% between 2010 and 2011 (189). The 

tuberculosis mortality rate has also decreased by 41% since 1990. Despite this, the global 

burden of tuberculosis incidence remains high; in 2011, the WHO estimated 8.7 million new 

cases of tuberculosis worldwide (13% co-infected with HIV) and 1.4 million people died from 

tuberculosis (189). To-date, tuberculosis still disproportionately affects those in low-income 

countries, with 22 high-burden countries accounting for over 80% of the world’s tuberculosis 

cases (189).  

A major control policy implemented by the WHO was the introduction of the Directly Observed 

Therapy Short-course (DOTS), which remains central in the effort to control tuberculosis (192). 

The DOTS treatment recommendation is a four drug cocktail consisting of rifampin, isoniazid, 

pyrazinamide and ethambutol, taken daily for two months followed by four to six months of two 

drugs, usually rifampin and isoniazid (194). Poor patient compliance, due to the high drug 

burden, and long treatment regimens reduces treatment effectiveness and increases the risk of 
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drug resistant strains emerging. Consequently, DOTS incorporates a comprehensive 

tuberculosis management programme, a five-element strategy for the control of tuberculosis; 

political commitment, improved laboratory analysis, direct patient observation during drug 

administration, a free drug supply for the complete short course of anti-tuberculosis drugs, and 

a reporting system documenting patient progress. As such, treatment success rates have been 

maintained at high levels for several years; in 2010 the treatment success rate among newly 

diagnosed cases was 85% (189). However, the DOTS policy still requires a developed 

infrastructure with medical expertise and funding, which is lacking in many less economically 

developed countries with high rates of tuberculosis. 

Despite the global DOTS policy, the appearance of multidrug-resistant M. tuberculosis (MDR-TB) 

is an increasing problem. MDR-TB is caused by M. tuberculosis strains that are resistant to the 

most effective anti-tuberculosis drugs, isoniazid and rifampicin (194). MDR-TB results from 

either infection with organisms that are already drug-resistant or may develop during the 

course of the patient's treatment. MDR-TB strains have been detected worldwide and are 

estimated to account globally for approximately 3.7% of new cases and 20% of previously 

treated cases (189). Notably, MDR-TB is found at a higher incidence in less economically 

developed countries where DOTS compliance is difficult; in 2008 1.1% of M. tuberculosis isolates 

were multi-drug resistant in the UK compared to approximately 30% in countries with the 

highest incidence (62, 188). Treatment for MDR-TB is known as DOTS-plus (DOTS plus second 

line drugs), which relies on less effective, more expensive drugs, with a longer treatment period 

and more severe side effects (194). Extensively drug-resistant TB (XDR-TB), has also been 

documented in 84 countries, although with low prevalence (191). XDR-TB is a form of 

tuberculosis caused by organisms that are resistant to isoniazid and rifampicin as well as any 

fluoroquinolone and any of the second-line anti-TB injectable drugs (amikacin, kanamycin or 

capreomycin) (191). XDR-TB is virtually untreatable as few chemotherapeutic options remain.  

New classes of anti-tuberculosis drugs are required to combat the emerging drug resistant M. 

tuberculosis strains. In addition, first-line anti-tuberculosis drugs like isoniazid have limited 

activity against dormant M. tuberculosis and consequently latent M. tuberculosis remains a major 

hindrance to effective chemotherapy (78). It is thought a shift in M. tuberculosis metabolic 

pathways, due to the adverse conditions experienced by the bacilli, enables them to survive in a 

state of dormancy prior to reactivation. Therefore for the design of innovative drugs, a more 

thorough understanding involving the survival strategy of mycobacteria, linked with its ability 

to adapt in changing environments is crucial. One such target would be the ability of the bacilli 

to survive and adapt in a nitrogen-limiting environment. The nitrogen metabolic pathway is of 

particular interest as the pathways assimilate nitrogen into essential biological macromolecules 
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such as proteins, nucleic acids and cell wall constituents. The essential nature of this metabolic 

pathway makes it an attractive system to investigate, potentially providing insight into survival 

strategies employed by mycobacteria, as well as uncovering novel drug targets. 

 

1.1.3 M. smegmatis as a Model Organism 

Despite determination of the entire genomic sequence of M. tuberculosis, attempts to elucidate 

biological pathways, that underlie virulence of the bacilli, have been severely hampered. M. 

tuberculosis, which has a generation time of approximately twenty four hours in optimal 

laboratory conditions, requires two to three weeks to yield colonies on solid medium. In 

addition, biosafety level 3 containment imposes stringent logistic constraints on cultivation of 

the pathogen (147). To this end, it is therefore advantageous to study some aspects of 

mycobacterial biology on fast-growing, non-pathogenic species, such as M. smegmatis.  

M. smegmatis has been used as a non-pathogenic substitute to study the metabolic and 

regulatory pathways of M. tuberculosis. Trevisan in 1889 first applied the name smegmatis to the 

Smegma Bacillus discovered by Alvarez and Tavel (55). Despite initial cultivation from human 

smegma, M. smegmatis is generally a soil-dwelling, saprophytic, avirulent mycobacterial species 

(77). The bacterium is characterised as a fast growing mycobacterial strain with a generation 

time of approximately three to four hours. In rare cases, M. smegmatis has been reported to be 

pathogenic in humans; M. smegmatis was isolated from infected orbital tissue in a patient from 

Thailand and identified the causative agent in a fatal disseminated infection in an immune 

compromised infant (32, 119). The M. smegmatis mc2 155 strain is most frequently used for 

research purposes, due to its relative ease of genetic manipulation. It is a high frequency 

transformation mutant originating from mc26, a single colony isolate of the M. smegmatis 

reference strain ATCC 607 (182). However, the cause of the enhanced transformability of this 

strain is unknown. In 2006 the complete genome of M. smegmatis mc2 155 was sequenced by 

TIGR, adding further to its use as a favourable alternative for the study of mycobacterial 

molecular processes.  
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1.2 Nitrogen Availability 

1.2.1 Nutrient Limitation in M. tuberculosis 

During infection the location of latent M. tuberculosis remains to be precisely established. The 

current paradigm is that quiescent M. tuberculosis resides within fibrotic granulomatous lesions 

in the lung where the bacilli have become dormant, in response to hypoxic conditions (22, 183). 

Hypoxic, non-replicating M. tuberculosis has been studied in vitro in the Wayne model of 

persistence; mycobacterial cultures are exposed to gradual oxygen depletion in a sealed system 

(184). In this in vitro model, mycobacteria undergo changes in their energetic and metabolic 

status (123, 145). The molecular mechanisms involved in the survival of non-replicating 

hypoxic mycobacteria remains largely undefined, however the DosR/DosT two-component 

system has been shown to be essential for anaerobic adaptation (84, 161). In addition to 

hypoxia, M. tuberculosis is exposed to many other environmental stresses during infection 

including nutrient deprivation, altered pH, iron limitation and exposure to reactive nitrogen and 

oxygen species (13). As such, an interplay among regulatory mechanisms is thought to enable 

the bacilli to remain in a quiescent state in these hostile conditions. 

Some evidence suggests that persistent M. tuberculosis in lung lesions experiences nutrient 

deprivation. Nyka (1974) demonstrated that M. tuberculosis cells in lung lesions differ in their 

morphology and staining properties, when compared with bacilli grown in optimum conditions 

in vitro; they are small spherical cells rather than rods and are chromophobic (not stained with 

conventional stains and are not acid fast) (110). Similar morphology and staining properties 

were documented in vitro with M. tuberculosis cultures starved in distilled water, however the 

bacilli recovered growth and regained acid fast properties when added to nutrient-rich medium 

(110). In addition, nutrient starvation of M. tuberculosis, induced in a phosphate-buffered saline 

solution, resulted in a gradual shutdown of respiration to minimal levels; again, the bacilli 

remained viable and recovered when returned to a nutrient rich medium (88). M. smegmatis has 

also been documented to remain viable after prolonged periods of nutrient deprivation; 

cultures starved of carbon, nitrogen or phosphorous remained viable for over 650 days (150). 

As M. tuberculosis is deprived of nutrients in a granuloma, it is assumed the bacilli shut down 

certain metabolic pathways to economise energy consumption. The molecular control of this 

metabolic shift and reactivation, in regards to nutrient utilisation, is therefore of particular 

interest for establishment and revival of infection. 
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1.2.2 Nitrogen Sources  

Ammonium 

Ammonia supports the fastest growth rate of many bacteria, and is considered the preferred 

nitrogen source for E. coli (127). In solution, the protonated ammonium ion (NH4+) is in 

equilibrium with uncharged ammonia (NH3). Ammonia is a lipophilic molecule and able to pass 

bacterial cell membranes by diffusion, which occurs under high ammonia/ammonium 

concentrations outside the cell. When this concentration decreases, passive diffusion is no 

longer sufficient and subsequently the bacterial ammonium transport system, Amt, is 

synthesised (3, 26, 195). Almost all bacteria and archaea encode at least one Amt protein, and 

frequently the gene encoding the transporter (AmtB) is found in an operon with GlnK, encoding 

a small signal transduction protein (7, 163). The Amt proteins are high-affinity ammonia 

transporters that function to scavenge ammonium and recapture ammonium lost from cells by 

diffusion (195). In Saccharomyces cerevisiae and Rhodobacter capsulatus, Amt proteins have also 

been implicated in sensing ammonium in the external medium (89, 200). Once inside the cell, 

ammonium is assimilated under high concentrations by glutamate dehydrogenase (GDH), and at 

low ammonium concentrations, glutamine synthetase and glutamate synthase (GS and GOGAT) 

(Section 1.3). 

The E. coli AmtB transporter is a high-affinity, low capacity ammonia channel (10–10,000 

molecules/s) and provides a paradigm for the Amt protein family (71, 121, 202). Transcription 

of the amtB gene is induced in response to nitrogen limitation and activated by the gene 

activator protein, NtrC (100, 203). Each subunit of AmtB has a narrow, predominantly 

hydrophobic, pore containing a number of highly conserved residues that have a role in 

periplasmic NH4+ binding, NH4+ deprotonation, and NH3 translocation (121, 202). Further 

regulation of the AmtB ammonium channel is provided via protein-protein interactions with 

GlnK, with direct evidence for the interaction of GlnK and AmtB in E. coli provided by crystal 

structure studies (37, 57, 163). GlnK is a member of the PII protein family and in E. coli acts as a 

sensor of cellular nitrogen status. In response to nitrogen deprivation, GlnK is covalently 

modified by uridylylation at residue Tyr51 at the apex of the T-loop, with this process reversed 

during nitrogen sufficiency (8, 68). Therefore in nitrogen sufficient conditions, the un-modified 

T loop of GlnK inserts into the cytoplasmic exit channel of AmtB, blocking ammonium transport 

into the cell (121). The E. coli AmtB-GlnK complex has a stoichiometry of 1:1, and all molecules 

of GlnK within the complex are fully deuridylylated (42). Under nitrogen limitation GlnK is 

uridylylated, resulting in GlnK dissociation from AmtB permitting ammonia influx through the 

channel (Figure 1.1) (37, 70).  
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During infection the availability of ammonium for M. tuberculosis utilisation is unknown; 

therefore the role of ammonium as a nitrogen source is unclear. Despite this homologues of 

AmtB exist in M. tuberculosis and M. smegmatis, suggesting both bacteria have a requirement 

for external ammonium uptake (5). In addition, M. smegmatis contains two further ammonium 

transporters AmtA (msmeg_4635) and Amt1 (msmeg_6259) (5). These additional genes, 

encoding Amt transporters in M. smegmatis, may indicate that ammonium utilisation in this 

species has a greater significance than for the pathogen. In M. smegmatis Amt1 and AmtB have 

been proposed to take up ammonium during nitrogen limitation; this is based on an increase in 

transcription of amtB and amt1 under nitrogen limiting conditions (3). In addition, in M. 

smegmatis transcriptional regulation of amtB and amt1 is controlled by GlnR, a transcriptional 

regulator of nitrogen control in mycobacteria (3). However, no biochemical data is available for 

mycobacteria in the role of AmtB or additional ammonium transporters in the uptake of 

ammonium. 

In actinomycetes the amtB gene is encoded in an operon amtB-glnK-glnD. The additional gene 

present glnD, functions as an adenylyl transferase in C. glutamicum, S. coelicolor and M. 

tuberculosis (64, 158, 193). Recently it has been demonstrated that in response to nitrogen 

limitation GlnD adenylylates GlnK at residue Tyr51 in the T-loop of M. tuberculosis (193). The 

function of GlnK modification in response to nitrogen limitation is unknown; a glnD mutant 

lacking the ability to adenylylate GlnK displayed no impaired growth phenotype compare to the 

wild type strain during nitrogen limitation (193). However, comparing the structure of M. 

tuberculosis GlnK (PII) (apo- and ATP-bound forms) with the E. coli GlnK:AmtB complex, 

suggests that M. tuberculosis GlnK (PII) could form a complex with AmtB, but this has yet to be 

experimentally verified (144).  
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Figure 1.1. Model for the role of GlnK in regulating ammonium uptake via AmtB 
in E. coli. 

 
(A) When the extracellular ammonium concentration is low, GlnK is uridylylated and unable to 
form a complex with AmtB, permitting ammonium influx through the AmtB channels. (B) An 
increase in extracellular ammonium leads to deuridylylation of GlnK, which favours the complex 
formation with AmtB. The process is reversible. Adapted from (121). 
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Nitrate  

M. tuberculosis is phagocytosed by macrophages during infection, which limits nutrient 

availability to the intracellular pathogen (104). Nitric oxide (NO) is produced by activated 

macrophages via a nitric oxide synthase, and functions as a tumoricidal and antimicrobial 

molecule in vitro and in vivo (21). Nitrate is generated spontaneously from NO within the 

macrophage, and nitrate may therefore provide a source of nitrogen during growth. Evidence 

exists for a role of nitrate reductase enzymes during M. tuberculosis infection. Historically, M. 

tuberculosis has been differentiated from Mycobacterium bovis by the fact that only M. 

tuberculosis can reduce significant amounts of nitrate to nitrite (154). High nitrate reductase 

activity has also been correlated with increased virulence of some M. tuberculosis lineages and 

the NarGH locus was found actively transcribed in granulomas from the lungs of M. tuberculosis 

patients (46, 54). These results indicate a role for nitrate and mechanisms involved in its 

reduction during M. tuberculosis infection. 

Assimilation of nitrate by M. tuberculosis as a nitrogen source has been reported previously (40, 

63, 95). Genes encoding components for the complete reduction of nitrate to ammonium have 

been identified in mycobacterial genomes, with the exception of M. leprae (see Table 1.1 for M. 

tuberculosis and M. smegmatis genes) (5). Before assimilation of nitrogen into biomolecules can 

occur nitrate must first be reduced to ammonium. This proceeds via reduction of nitrate to 

nitrite by a nitrate reductase and the subsequent reduction of nitrite to ammonium via a nitrite 

reductase. The M. tuberculosis narGHJI and narX display homology with other prokaryotic 

nitrate reductases (154). However, it has been shown that narGHJI alone is responsible for 

nitrate-reducing activity in culture, the function of narX has yet to be identified (154). Encoded 

in an operon with the inactive nitrate reductase narX, is narK2 (154). In M. tuberculosis four 

genes, narK1, narK2, narK3 and narU, are homologous to the E. coli nitrate/nitrite transporters 

narK and narU. NarK2 is a putative nitrate/nitrite transporter. Early work in E. coli suggested 

that NarK was involved in nitrite export, and consequently the homologous NarK2 in M. 

tuberculosis is annotated as a ‘nitrite extrusion protein’ (133). Subsequent analysis of an E. coli 

narK/narU double mutant indicated that the two proteins could transport nitrate into and 

nitrite out of the cell (34, 73). The M. tuberculosis narK2 could complement this E. coli double 

mutant, supporting a role for narK2 transporter of nitrate into and nitrite out of the cell (154). 

In M. tuberculosis NirBD functions as an assimilatory nitrite reductase, responsible for the 

reduction of nitrite to ammonia, and was able to support growth on nitrite as a sole source of 

nitrogen (95). GlnR regulates the expression of nirBD, and a glnR mutant is unable to grow on 

either nitrate or nitrite as sole nitrogen sources (95). Therefore, it has been recognised that 
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NarGHJI and NirBD mediate the assimilatory reduction of nitrate and nitrite respectively in M. 

tuberculosis (Figure 1.2). 

It is interesting to note that nitrate utilisation in M. tuberculosis can serve one of two functions; 

it can act as an energy source during anaerobic growth, in addition to a nitrogen source. In an 

anaerobic environment, many bacteria are able to use nitrate as a final electron acceptor in 

place of oxygen for the maintenance of a proton motive gradient. Nitrate reductase activity 

occurs at a low level during aerobic growth of M. tuberculosis, but increases significantly upon 

entry into the microaerobic stage (185). The increase in nitrate reductase activity in hypoxic 

culture is due not to increased transcription of narGHJI, which appears to be constituently 

expressed, but to increased levels of the transporter narK2 (145). It has been proposed that 

nitrate is reduced by a nitrate reductase (NarGHJ) to produce nitrite and this excess nitrite, 

which is toxic in large amounts, is then excreted by a nitrite extrusion protein (NarK1, NarK2, 

NarK3) (185). Nitrate reductase does not appear to support anaerobic growth of M. tuberculosis, 

as microaerobic conditions develop the bacilli enter a state of non-replicating persistence. The 

role for nitrate reductase in M. tuberculosis could therefore be in redox balancing, or it may 

serve a temporary function to provide energy during shift-down to non-replicating persistence. 

 

 

Enzyme/function 
Gene 
name 

M. smegmatis 
mc2 155 

M. tuberculosis 
H37Rv 

Assimilatory nitrite 
reductase 

nirB msmeg_0427 Rv0252 

nirD msmeg_0428 Rv0253 

Assimilatory nitrate 
reductase 

narI msmeg_5137 Rv1164 

narJ msmeg_5138 Rv1163 

narH msmeg_5139 Rv1162 

narG msmeg_5140 Rv1161 

narX n/a Rv1736c 

Nitrite/nitrate 
transporter 

narK msmeg_5141 n/a 

narK1 n/a Rv2329c 

narK2 n/a Rv1737c 

narK3 msmeg_0433 Rv0261c 

narU n/a Rv0267 

 
Table 1.1. Genes involved in the reduction of nitrate to ammonium in M. 
tuberculosis and M. smegmatis. 

Adapted from (5). 
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Figure 1.2. Biochemical pathway of nitrate assimilation in mycobacteria via 
nitrate reductase (NarGHJI), nitrite reductase (NirBD) and GS (GlnA1). 

Exogenous nitrate is transported inside the cell through nitrate transporters (NarK2 and 
potentially NarK1, NarK3 and NarU) and reduced to nitrite by nitrate reductase (NarGHJI), 
using the quinol pool as electron donor. Nitrite is subsequently reduced to ammonia by nitrite 
reductase (NirBD) using the NADH pool as electron donor. Ammonium is assimilated into the 
central metabolite glutamate using the GS-GOGAT pathway. 
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Amino acids 

Many micro-organisms utilise amino acids as an energy and nitrogen source, in addition to 

biosynthetic purposes. M. tuberculosis can utilise a variety amino acids as a nitrogen source, 

including L-asparagine, L-alanine and L-glycine (91). In addition, studies with M. smegmatis 

demonstrated that both D- and L-isomers of alanine, glutamic acid, and valine were taken up by 

the bacilli, however the uptake of L-amino acids was greater than that of corresponding D-

amino acids (199).  

Lyon (1974) noted that L-asparagine, as a nitrogen source, was the preferred amino acid for the 

growth of mycobacteria (90). Washed cells as well as cell-free preparations of M. tuberculosis 

H37Rv, H37Ra, M. smegmatis and M. bovis Bacillus Calmette–Guérin (BCG) could deamidate L-

asparagine to aspartic acid and ammonia, by the action of an asparaginase enzyme (112). No 

difference in activity was reported between asparaginase from M. smegmatis and M. tuberculosis 

other than the amount present in the extracts (112). Of note no ammonia was formed when D-

asparagine was incubated with cell-free extract and D-asparagine inhibited the formation of 

ammonia from L-asparagine by extracts from H37Ra (112). Analysis of culture filtrates of 

H37Ra in media containing L-asparagine sole amino acid, displayed an accumulation of 

extracellular amino acids (aspartic acid, glutamine, alanine, and lysine) (90). These particular 

amino acids were rapidly utilised after the disappearance of asparagine from the medium. The 

results reveal a rapid but inefficient metabolism of asparagine and its preferential utilisation in 

the presence of additional amino acids. 

The utilisation of alanine as a nitrogen source has also been documented previously, focusing on 

the role of an alanine dehydrogenase. Alanine dehydrogenases (Ald) are well-studied enzymes 

found in a wide range of bacterial species. In mycobacteria, Ald was first identified as an enzyme 

absent in vaccine strains of M. bovis BCG, but present in virulent M. tuberculosis (31). Ald 

catalyses the oxidative deamination of L-alanine to pyruvate and ammonia (catabolic reaction) 

or, in the reverse direction, the reductive amination of pyruvate to L-alanine (biosynthetic 

reaction) (45). Studies with the Ald enzyme of M. tuberculosis (Rv2790) and M. smegmatis 

(msmeg_2659) suggest that its primary role is the catabolism of alanine for nitrogen utilisation; 

ald null mutants displayed impaired growth with alanine as the sole nitrogen source (45, 51). In 

addition, microarray analysis of the M. tuberculosis ald transcript demonstrated that it was 

overproduced under nutrient starvation and under hypoxic conditions (20, 143). In M. 

smegmatis increased Ald activity was observed in cells grown under anaerobic conditions, and 

analysis of an ald null mutant demonstrated that Ald is necessary for sustained anaerobic 

growth (45). The possible role for Ald under anaerobic conditions was suggested to be involved 
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in NADH recycling, however this requires further investigation. The role of Ald in both nitrogen 

assimilation and hypoxia, is intriguing, suggesting overlap between mechanisms for the two 

pathways in mycobacteria.  

 

Urea 

Urea has been proposed to be available to M. tuberculosis in both its intracellular and 

extracellular locations within the host (87). Ammonia generated by the action of urease may 

serve one of two functions during infection; it may contribute to alkalizing the 

microenvironment of M. tuberculosis, preventing phagosome-lysosome fusion/ phagosome 

acidification and ammonia generated would be available to the bacilli for assimilation of 

nitrogen into biomolecules (35, 87). The concerted action of urease and GS could therefore 

serve to scavenge and assimilate environmental nitrogen during infection. 

M. tuberculosis expresses a functional urease ureABCDFG; Rv1848-Rv1853 (35). Lin et al 2012 

investigated the effect of a urease-deficient M. tuberculosis strain and confirmed the alkalizing 

effect of the urease activity within the mycobacterium-containing vacuole in resting 

macrophages. However, this was not detected in the more acidic phagolysosomal compartment 

of activated macrophages (87). In addition, the urease-mediated alkalizing effect did not confer 

any growth advantage on M. tuberculosis in macrophages, suggesting the alkalizing effect 

provided by the mycobacterial urease activity is somewhat modest (87).   

M. tuberculosis is able to assimilate urea for growth and this ability is urease dependent. A M. 

tuberculosis urease deletion mutant displayed impaired growth in vitro when urea was provided 

as the sole source of nitrogen (87). It was demonstrated that ammonia arising from ureolysis is 

the actual nitrogen source utilised by M. tuberculosis for its in vitro growth (87). Therefore, it is 

proposed that M. tuberculosis assimilates urea via its urease activity and that this process 

generates ammonia, for use as a nitrogen source during growth (Figure 1.3). Despite this, a 

urease-deficient mutant did not have altered growth phenotype in macrophages in culture 

medium containing a variety of carbon and nitrogen sources (87). It is possible that other 

readily available nitrogen sources within the host cell, such as ammonia from the metabolism of 

nitrogenous compounds and nitrate, could bypass the need for M. tuberculosis to metabolise 

urea. The ability to utilise urea as a nitrogen source may however, be critical at specific sites of 

infection where other sources of nitrogen are limited, for instance during intestinal tuberculosis 

infection, urea-containing body fluids such as saliva and tissue exudates could provide a 

constant source of energy for the bacilli. Thus, the absence of in vivo phenotype of a urease-
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deficient M. tuberculosis mutant potentially reflects the metabolic versatility of M. tuberculosis 

with the ability to adapt to any microenvironment encountered in its host (87).  

For M. smegmatis two putative urease encoding operons were found. Only msmeg_3622-3627 

exhibits homology to the ure gene clusters in M. tuberculosis and M. bovis based on gene identity 

and arrangement (5). The second (msmeg_1091-1096) exhibits similarity to the urease subunits 

encoding genes from proteobacteria, with DNA sequence identities between 60 and 70%, and an 

identical operon arrangement (5). No urease operon or urease-related genes were found in M. 

avium and M. leprae (5). Also, M. smegmatis is the only mycobacterial species to feature a 

distinct operon (msmeg_2978-2982) encoding the subunits of a putative urea ABC transporter 

(5). It has been reported previously in M. smegmatis, that the level of urease activity in the crude 

bacterial extract is 11-fold greater than for M. tuberculosis (35). Emphasising, along with the 

presence of an increased number or urea utilisation genes, the potential importance of urea as a 

nitrogen source for this species. 
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Figure 1.3. Proposed route of urea assimilation in M. tuberculosis. 

Urea enters M. tuberculosis via possible diffusion across the cell membrane. Urea is then 
converted to ammonium via a urease enzyme. Ammonium can then enter the GS/GOGAT 
pathway for assimilation into biomolecules. Adapted from (87). 
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1.2.3 Nitrogen Availability Summary 

From the literature it is apparent that the uptake and utilisation of nitrogenous compounds by 

mycobacteria is not well understood. Uncertainty exists as to the main, essential nutrients 

utilised by M. tuberculosis whilst residing inside the host, which may depend on the location of 

M. tuberculosis inside the human body. This could vary from phagosomes in macrophages and 

dendritic cells to granulomas and even fat cells (106, 135, 173). As such, there is a need to 

determine which nutrients are available in different environments and identify the proteins that 

are employed by M. tuberculosis to utilise these. Current data obtained, regarding the utilisation 

of various nitrogen sources for M. tuberculosis, supports the concept that its virulence correlates 

with metabolic versatility and an ability to utilise a variety of nitrogen sources available in its 

environment. 

 

1.3 Nitrogen Assimilation Enzymes 

Two nitrogen incorporating mechanisms are present in most prokaryotes; the glutamate 

dehydrogenase (GDH) pathway and the glutamine synthetase/glutamate synthase pathways 

(GS/GOGAT) (For a review see (4, 58)). Both pathways incorporate nitrogen into glutamate or 

glutamine, which form the major biosynthetic donors for all other nitrogen containing 

components in the cell. Glutamine is a source of nitrogen for the synthesis of purines, 

pyrimidines, asparagine, glucosamine and a variety of amino acids. Conversely, glutamate 

provides nitrogen for most transaminases, and is responsible for 85% of nitrogenous 

compounds within a cell (59). GDH is the energetically more favourable nitrogen incorporating 

pathway, as GS/GOGAT utilises an additional ATP per molecule of ammonium assimilated (58). 

Consequently, during high nitrogen levels the GDH pathway is active. However, at low nitrogen 

levels the GDH pathway is not sufficient due to the low affinity of the enzyme for ammonium; 

instead during nitrogen starvation the higher affinity GS/GOGAT system is active (58).  
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Figure 1.4. Reaction mechanism of enzymes responsible for ammonium 
assimilation.  

Reaction A, catalysed by glutamate dehydrogenase (GDH), reduces NAD(P)H to produce glutamate from 
α-ketoglutarate and ammonium. Reaction B, glutamine synthetase (GS) utilises ATP in the formation of 
glutamine from ammonium and glutamate. Reaction C, glutamate synthase (GOGAT) catalyses the 
formation of glutamate from glutamine and α-ketoglutarate, with the reduction of NADPH. Reactions B 
and C supply glutamate and glutamine to each respective reaction producing a cyclic pathway. 

 
 

 

1.3.1 Nitrogen Assimilation Enzymes: GDH 

Glutamate dehydrogenase (GDH) enzymes catalyse the reversible amination of α- ketoglutarate 

to form glutamate, with the concomitant reduction of NAD(P)H. Furthermore, GDH enzymes 

serve as metabolic branch enzymes regulating a flux of intermediates, such as α- ketoglutarate, 

between the Krebs cycle and nitrogen metabolism (24). In prokaryotes, GDH enzymes function 

with co-factors, NADP+ (EC 1.4.1.4) or NAD+ (EC 1.4.1.2). M. smegmatis, M. tuberculosis and M. 

bovis all encode for a putative NAD+ GDH enzyme. This NAD+ GDH protein has been captured 

from cell free extracts of M. tuberculosis and M. smegmatis, and its activity detected in M. 

smegmatis (59, 111). Additionally, the M. smegmatis genome is thought to encode a second 

putative NAD+ GDH, and a single NADP+ specific GDH enzyme (59, 139). The presence of 

additional GDH genes in M. smegmatis suggests that this pathway is, to a greater extent, central 

to nitrogen utilisation than in other mycobacterial species. 

Recently it has been reported that the activity of NAD+ GDH, in M. smegmatis and M. tuberculosis, 

is modulated by a small soluble protein, glycogen accumulation regulator (GarA; msmeg_3647, 

Rv1827) (111). GarA is highly conserved among actinomycetes; Rv1827 shares 82% identity at 

the amino acid level with Odh1, the GarA analogue in C. glutamicum (107, 178). Native or 
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unphosphorylated GarA has been demonstrated to interact with NAD+ GDH of M. tuberculosis 

and M. smegmatis from cell extracts (111). Binding leads to a reduction in NAD+ GDH activity, in 

M. smegmatis, by altering the affinity of the enzyme for its substrate (111). Phosphorylation of 

GarA, by a serine/threonine protein kinase PknG (Rv0410c, msmeg_0786), prevented binding to 

NAD+ GDH (111, 178). The condition under which PknG is stimulated to phosphorylate GarA has 

not yet been investigated, and it is not clear how this relationship may affect nitrogen 

metabolism in mycobacteria.  

 

1.3.2 Nitrogen Assimilation Enzymes: GS 

Glutamine synthetases (GS; L-glutamate ammonium ligase; EC 3.6.2) are involved in the ATP- 

dependant synthesis of glutamine from glutamate and ammonium. The genome sequence of M. 

tuberculosis contains four glnA gene copies encoding independent GSs; glnA1, glnA2, glnA3 and 

glnA4 (36). Of these glnA1, glnA3 and glnA4 produce L-glutamine, with glnA2 synthesising D-

glutamine and D-isoglutamine used in cell wall biosynthesis (61). To date only the major GS, 

glnA1, has been demonstrated to be essential in M. tuberculosis with deletion mutants 

auxotrophic for glutamine and growth attenuated in the macrophage and guinea pig model of 

infection (171, 172). Activity of the other enzymes has been demonstrated by Harth et al. 2005, 

but their essentiality and physiological role have yet to be verified (61). It is therefore 

considered that GlnA1 is the major GS used for glutamine synthesis in mycobacteria. 

In addition to encoding enzymes that catalyse glutamine synthesis, evidence suggests that in M. 

tuberculosis GlnA1 has evolved to perform other specialised functions, not present in non-

tuberculosis causing mycobacteria. In pathogenic mycobacterial species it has been established 

that GlnA1 is exported from the cell to the extracellular milieu (60, 125). Increasing evidence 

suggests that extracellular GlnA1 is implicated in the production of poly-L-glutamine-glutamate, 

a polymer found only in pathogenic mycobacterial cell-wall. An M. bovis mutant, lacking a 

functional glnA1 gene, contained no detectable poly-L-glutamine in its cell wall and showed 

marked sensitivity to a variety of chemical and physical stresses (30). It has also been 

speculated that this extracellular GlnA1 activity may modulate phagosome pH, thereby 

preventing phagosome lysosome fusion (126). In this instance, adaptive evolution may have led 

to functional promiscuity whereby GlnA1 exerts other functions, whilst maintaining the same 

active site for the original singular activity.  

The genome of M. smegmatis encodes for each of the four classes of GS proteins found in M. 

tuberculosis (3). Of these homologues msmeg_4290 has the greatest amino acid identity with 

34



 

glnA1 of M. tuberculosis, encoding for a type 1 ammonium assimilatory enzyme (61). In contrast 

to the GlnA1 of M. tuberculosis, M. smegmatis GlnA1 does not appear to be expressed at such a 

high level, nor does it appear to be exported to the extracellular milieu (60, 172). Additionally, 

the M. smegmatis genome contains open reading frames encoding GS-like proteins with 

unknown physiological function (msmeg_1116, msmeg_3827, msmeg_5374 and msmeg_6693) 

(5). These additional proteins have similarities shared with other saprophytic soil dwelling 

organisms; msmeg_5374 shares 51% identity with GS-like proteins in the soil dwelling α-

proteobacteria Rhodopseudomonas palustris (5). This suggests that additional M. smegmatis GS-

like genes have been acquired through horizontal gene transfer, but their role in nitrogen 

metabolism has yet to be defined.  

Regulation of GS activity is essential, as failure would lead to depletion of intracellular levels of 

glutamate and ATP. Post-translational modification of GS in E. coli is controlled by a regulatory 

cascade of three proteins GlnD, GlnB (PII) and GlnE (Reviewed; (4, 83, 100, 127)). GlnD is an 

uridylyl transferase, which modifies the GlnB (PII) protein adding a UMP residue during 

nitrogen limiting conditions. The status of GlnB (PII) in turn controls the activity of GlnE; GlnB 

binding to GlnE promotes the adenylylation reaction of GlnE to GS, while GlnB-UMP binding to 

GlnE promotes the deadenylylation reaction of GlnE to GS (48). Therefore, under conditions of 

nitrogen excess the GlnE enzyme transfers an adenylyl group (AMP), from ATP, to the tyrosine 

hydroxyl on GlnA1, converting it into the adenylylated, inactive enzyme (GS-AMP). GS-AMP is 

more sensitive than active GS to feedback inhibition by the end products of glutamine 

metabolism (4). The GlnA1 GS enzyme is composed of 12 identical subunits arranged in two 

superimposed hexagonal rings (52, 60). Activity of GlnA1 GS is directly proportional to the 

number of subunits that are adenylylated; GS0 is an enzyme that does not carry an AMP moiety, 

while GS12 carries a moiety on each subunit. GS can therefore display a range of activities 

depending on the degree of adenylylation.  

In contrast to other bacteria, the glnE gene is essential in M. tuberculosis, with this requirement 

linked to its adenylylation activity of GlnA1 (28, 116). GS does undergo a change in 

adenylylation state in response to nitrogen availability as described in E. coil, however the 

mechanism of this modification is unclear (193). Both M. tuberculosis and M. smegmatis have a 

single PII homologue (GlnK), contained in an operon amtB-GlnK-GlnD (5). Recent, experimental 

determination of the status of GlnK during nitrogen limitation demonstrated that it is 

susceptible to adenylylation by GlnD. However, work with a glnD knockout mutant displayed no 

altered adneylylation phenotype of GS, suggesting modification of GS is not linked to the 

adenylylation state of GlnK (193). This is in agreement with observations made in S. coelicolor 

and C. glutamicum (64, 158). Thus the targets for GlnD and GlnK (PII) in actinomycetes are still 
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to be elucidated, but it appears their function is not analogous to the role in E. coli GS 

modification. 

 

1.3.3 Nitrogen Assimilation Enzymes: GOGAT 

GOGAT (Glutamate synthase; glutamine amide-2-oxoglutarate aminotransferase (NADPH), EC 

1.4.1.13) synthesizes glutamate during nitrogen-limiting conditions (127, 159). The GOGAT 

enzyme exists as a heterodimeric protein consisting of a large and small subunit, forming a 

tetrameric holoezyme (159). Synthesis of glutamate via the GOGAT pathway occurs via a two-

step process. Firstly GS is involved in the amidation of endogenous glutamate to glutamine. 

Glutamine is then fed into the GOGAT pathway and with the concomitant reduction of NADPH, 

GOGAT catalyses the reductive transfer of the glutamine amide-nitrogen to α-ketoglutarate (2-

oxoglutarate). Thereby the GOGAT pathway produces a net synthesis of 2 molecules of L-

glutamate per L-glutamine molecule (159).  

 In silico analysis demonstrated that all mycobacterial genomes contain highly conserved 

operons encoding the large (gltB) and small (gltD) subunits of GOGAT (5). In addition the 

genome of M. smegmatis contained several additional copies of gltB (msmeg_5594, 

msmeg_6263, msmeg_6459) and gltD (msmeg_6262, msmeg_6458) that are not found in other 

mycobacteria (5). Again the presence of these additional GOGAT subunits have yet to be further 

investigated, and as such their role in nitrogen metabolism is unknown. 
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1.4 Transcriptional Regulation of Genes Involved in Nitrogen 

Metabolism 

Regulation of nitrogen metabolism occurs predominately on two levels; transcriptional 

regulation of genes implicated in nitrogen metabolism and post-translational control of enzyme 

activity within the nitrogen assimilatory pathway. Previous work, involving nitrogen regulation 

in mycobacteria, focused largely on the post-translational control of enzymes such as GS and 

more recently GlnK (28, 193). Other than this, little information has been established regarding 

the transcriptional control of nitrogen metabolism in mycobacteria.  

 

1.4.1 Transcriptional Regulation in E. coli: The NtrB/C Response 

Mechanisms involved in the transcriptional response to nitrogen availability have been 

extensively investigated in E. coli. In E. coli, coordination of gene expression for nitrogen 

assimilation is controlled by the NtrB/NtrC two-component system. The signal relay involves 

four key components; the uridylyltransferase GlnD, PII-type signal transduction protein GlnB, 

histidine kinase NtrB and its corresponding response regulator NtrC (for reviews see; (83, 100, 

127)). An interplay of these molecules senses the nitrogen status of the cell, and coordinates the 

transcriptional response accordingly. 

In E. coli the indicator of nitrogen availability is the intracellular concentration of glutamine and 

α-ketoglutarate. During nitrogen excess conditions the level of glutamine is high compared to α-

ketoglutarate; this ratio changes under nitrogen limitation (76). Under nitrogen excess 

conditions GlnD binds glutamine, which is accumulated in the cell. This leads to a 

conformational change of GlnD permitting deuridylylation of GlnB (PII) (75). Unmodified GlnB 

(PII) binds to NtrB activating its phosphatase activity leading to dephosphorylation and 

subsequent inactivation of NtrC under nitrogen surplus (75).  

During growth in nitrogen limiting conditions the nitrogen-regulated (Ntr) response is 

stimulated. Nitrogen limitation is detected via a rise in α-ketoglutarate concentration, and 

binding of ATP and α-ketoglutarate to GlnB (PII). This induces a conformational change resulting 

in uridylylation of GlnB (PII) by GlnD. Under these conditions the GlnB-UMP dissociates from the 

cytoplasmic sensor histidine kinase NtrB. This dissociation activates the kinase activity of NtrB, 

which leads to autophosphorylation at histidine residue 139 (74). Subsequently NtrB 

phosphorylates its corresponding response regulator NtrC at a conserved residue, aspartate 45, 

which in turn activates gene transcription from σ54 dependent promoters (79, 187). In total, 
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approximately 100 genes are regulated by NtrB/C during nitrogen limitation, including genes 

for transcriptional regulation glnLG (NtrB/C) and nac (Nitrogen assimilatory control protein; an 

adapter for σ70 dependent genes), a PII signal transduction protein glnK, and genes involved in 

ammonium utilisation glnA (GS) and amtB (ammonium transporter) (127, 203). 

Regulation of NtrB/C also occurs at the transcriptional level upon nitrogen starvation (reviewed 

in (100)). The genes encoding NtrB (glnL) and NtrC (glnG) are located in an operon glnALG, in 

which glnA encodes GS. Transcription of these genes is strictly regulated by the usage of 

different promoters. The glnA gene is expressed from tandem promoters glnAp1 and glnAp2, 

whereas the downstream glnLG genes are expressed either by read through from the glnA 

promoters or from a separate promoter pglnL, located between glnA and glnLG. Under nitrogen-

sufficient conditions, glnA is expressed at low levels from glnAp1, which is transcribed by the 

major vegetative RNA polymerase, σ70 and expression of glnLG occurs primarily from pglnL 

(128). Under nitrogen limiting conditions, the transcriptional regulator NtrC is activated, which 

inactivates transcription from glnAp1 by competitive binding. NtrC binds to its enhancer 

binding sites upstream of the high affinity glnAp2 leading to elevated sigma σ54 dependent 

expression of glnA and glnLG (128). This mechanism guarantees low level of GS, NtrB and NtrC 

under nitrogen surplus, as well as increased protein concentrations under nitrogen limitation. 

 

 

1.4.2 Transcriptional Control in Response to Nitrogen Limitation in Actinomycetes 

NtrC/B homologues have not been identified in any actinomycetes genomes, suggesting a 

different mechanism of transcriptional regulation of genes involved in nitrogen metabolism. In 

silico analysis of the M. smegmatis genome found two nitrogen metabolism transcriptional 

regulators known in other actinomycetes. These regulators were AmtR, sharing 42% identity 

with AmtR of C. glutamicum, and GlnR sharing 60% identity to GlnR of S. coelicolor, both at the 

amino acid level (5). Other mycobacterial species investigated only revealed high identity with 

their GlnR sequences, M. tuberculosis displayed 65% identity with that of S. coelicolor (165). 

Involvement of the second regulator, AmtR, in other mycobacterial species is questionable; M. 

tuberculosis Rv3160c possesses 27.9% homology with AmtR of C. glutamicum (58). Despite this, 

Betts et al. detected a reduction in transcription of Rv3160c in a nutrient starvation model (20). 

This reduction in Rv3160c transcription may suggest that AmtR is in fact an additional regulator 

of nitrogen metabolism in M. tuberculosis, despite its low sequence homology with other 

actinomycetes. 
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1.4.3 Transcriptional Regulator GlnR 

Transcriptional Regulation in Streptomyces by GlnR 

GlnR is an OmpR-type transcriptional regulator, first identified in Streptomyces coelicolor as a 

protein able to restore glutamine auxotrophy (197). A variety of studies have been conducted in 

Streptomyces to determine the GlnR regulon, these include transcriptional and proteomic 

analysis with a glnR deletion strain and ChIP-chip analysis. From these data at least 50 genes in 

S. coelicolor and 44 genes in Streptomyces venezuelae have been determined to be GlnR 

regulated in response to nitrogen limitation (120, 164, 165). The highly conserved amtB-glnK-

glnD operon has been demonstrated to be under GlnR control in both S. coelicolor and S. 

venezuelae, activated in nitrogen limitation (47, 120). Further genes under positive GlnR control 

include glnA1 (GS), gltBD (GOGAT), nirBD a nitrate reductase, nnaR nitrate/nitrite regulator and 

nasA a periplasmic nitrate reductase (2, 165, 181). Interestingly, GlnR can also act as an 

inhibitor of transcription, repressing the transcription of the gdhA (GDH), ureA and various 

other uncharacterised ORFs (165). This suggests a role for GlnR in both induction and 

repression of gene expression during nitrogen limitation. 

The phosphate response regulator, PhoP, has been reported to have a direct, negative effect on 

transcription of glnR and its most prominent targets in S. coelicolor (131, 132). PhoP competes 

with GlnR in binding to overlapping sites on the DNA, and can also act as a physical block of 

transcription, depending on the structure and organisation of the gene’s promoter region (132). 

PhoP has been demonstrated to block transcription of glnA, glnII and amtB, as well as glnR. 

Paradoxically, transcriptome studies showed no response of the GlnR regulon to phosphate 

limitation (131). As such, the physiological relevance of this observation, between the control of 

phosphate and nitrogen metabolism, is still debatable. 

Signal transduction and regulation of GlnR are still unknown. Observations based on the 

conserved phosphorylation domain, analogous to the situation in E. coli, suggests involvement 

of a protein kinase (47, 201). OmpR-like proteins regularly have a conserved aspartate residue 

in their N-terminal domains, which are sites of specific phosphorylation. In addition conserved 

serine/threonine and tyrosine residues are also assumed to be involved in phosphotransfer. 

GlnR of S. coelicolor does contain a conserved aspartate residue (D-50) at the potential 

phosphorylation site, as well as a tyrosine residue corresponding to the OmpR T-83. However, a 

valine residue (V-95) occupies the position normally allocated to the conserved tyrosine T-83 in 

OmpR (47). Therefore GlnR may be subject to phosphorylation by a sensor kinase, nevertheless 

no operon linked sensor kinase has been identified. Thus the corresponding protein kinase and 

phosphorylation state of GlnR during nitrogen limitation remain unknown. 

39



 

Role of GlnR in Mycobacteria 

Using the GlnR binding motif of S. coelicolor putative GlnR binding sites were found in all the 

available mycobacterial genomes. Three highly conserved cis elements were found in M. 

smegmatis, suggesting a similar mechanism of DNA protein interaction (3). These putative 

binding motifs were located upstream of amtB, amt1 encoding ammonium transporters and 

glnA1 encoding GS (3). As amtB is transcribed in an operon, amtB-glnK-glnD, these two signal 

transduction proteins are also assumed to be under GlnR transcriptional control. Analysis of a 

GlnR deletion mutant confirmed the role of the putative GlnR binding sites; during nitrogen 

starvation transcripts of glnA1, amtB and amt1 showed an increase in WT, yet no increase was 

observed in the mutant (3). In M. tuberculosis GlnR was demonstrated to positively regulate nirB 

a nitrite reductase, and the transcriptional role of GlnR was deemed essential in nitrate/nitrite 

utilisation (95). In total, seven genes have been identified in the mycobacterial GlnR regulon, 

much lower than the total number of genes identified in Streptomyces. Interestingly, GlnR 

transcription itself did not alter under nitrogen starvation conditions suggesting glnR 

transcription is not subject to nitrogen control (3). This conflicts results observed in S. coelicolor 

that suggests transcription of GlnR is dependent on the nitrogen status of the cell (165). GlnR in 

mycobacteria may therefore be subject to posttranslational modification in response to nitrogen 

limitation as with other OmpR family members. 

 

Mechanism of OmpR Transcriptional Regulation in E. coli 

According to sequence homology GlnR is part of the OmpR-family of transcriptional regulators 

(3, 47). Typically, OmpR family proteins contain a conserved N-terminal phosphorylation 

domain that controls activity of the C-terminal DNA-binding domain in a phosphorylation 

dependant manner (23). The mechanism of OmpR activation by EnvZ, the corresponding 

histidine kinase, in E. coli has been well described and represents a two-component His-Asp 

phosphorelay signal transduction system (reviewed in (156)). In response to changing 

osmolarity EnvZ is autophosphorylated at histidine residue 243, and subsequently transfers this 

phosphate group to OmpR at aspartic acid 55 (39, 130). EnvZ has kinase activity to 

phosphorylate OmpR, and also phosphatase activity toward phosphorylated OmpR (OmpR-P). 

Thus EnvZ it is able to regulate the level of OmpR-P in the cell depending upon the medium 

osmolarity. At low medium osmolarity, the phosphatase activity is relatively higher than the 

kinase activity so that the cellular concentration of OmpR-P is maintained at a lower 

concentration .  
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OmpR regulation of two genes, ompC and ompF, has been extensively investigated. OmpC and 

OmpF are outer membrane porins; OmpF is mainly present at low osmolarity and possesses a 

larger pore and a higher flow rate than OmpC, consequently the OmpC porin dominates at high 

osmolarity. Upstream of the ompF and ompC promoters are four F sites (F1, F2, F3, and F4) and 

three C sites (C1, C2, and C3) respectively. Each site consists of 20 base pairs, providing tandem-

binding sites for two OmpR-P molecules (19, 66). The hierarchy of OmpR-P binding to these F 

and C sites was determined to be F1, C1 > F2, F3 > C2 > C3 (19). At low osmolarity OmpR-P 

cooperatively binds to F1-F2/F1-F2-F3 to activate ompF transcription. Under this condition of 

low osmolarity, only the C1 site is occupied by OmpR-P, which is not sufficient to activate ompC 

transcription. However, high osmolarity leads to a higher amount of OmpR-P in the cells, and at 

this elevated level OmpR-P also occupies C2 and C3, resulting in ompC expression. In addition, 

this increase in OmpR-P results in binding to the F4 site, a weak OmpR-P-binding site. OmpR-P 

binding to the F4 site is proposed to form a loop that interacts with OmpR-P molecules binding 

to F1, F2, and F3, thereby blocking ompF transcription (Figure 1.5) (19). Within each of these 

OmpR binding sites (F1, F2, F3, F4, C1, C2 and C3) there are two 10 bp tandem subunits, a low 

affinity “a site” and a high affinity “b site” (201). Yoshida et al., 2006 proposed a hierarchic 

model of DNA binding in a “discontinuous, galloping manner”; OmpR-P first binds with high 

affinity to the “b site”, phosphorylation results in stable protein-protein interactions and leads 

to subsequent recruitment of additional OmpR-P molecules the “a site” (Figure 1.5)(201).  

A discontinuous galloping manner of GlnR:DNA binding has also been proposed in Streptomyces. 

This is based on sequence analysis of consensus binding sites in Streptomyces. In S. coelicolor a 

low affinity “a-site’ and a higher affinity “b-site” were identified via sequence analysis (165). 

However in S. venezuelae two “a-sites” were identified, rather than a “b-site” (120). Further 

investigation in Streptomyces needs to be conducted to establish whether these conserved sites 

represent a similar manor of GlnR:DNA interaction as proposed in OmpR. However, these 

results are interesting, suggesting a conserved mechanism of OmpR-family member DNA 

interaction.  
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Figure 1.5. Model of OmpR transcriptional activation in E. coli. 

A. Activation of OmpR and the “galloping” model of OmpR-P:DNA binding. Phosphorylation, via 
histidine kinase EnvZ, leads to an OmpR conformational change. OmpR-P binds to the high 
affinity “b site” preferentially. Recruitment of a second OmpR-P to the “a site” results in dimer 
formation and a stable complex. Only OmpR-P dimers able to completely bind DNA.  

B. System of OmpR-P recruitment to binding sites, leading to activation or repression of ompF 
and ompC. The oval shape represents an OmpR-P molecule. OmpR-P molecules bind in the order 
depicted by the numbered molecules. F1, F2, F3, and F4 represent the regulatory region of 
the ompF promoter. C1, C2, and C3 represent the regulatory region of the ompC promoter. 
Adapted from (201). 
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1.4.2.2 Transcriptional Control in Response to Nitrogen Limitation in C. glutamicum by 

the Response Regulator AmtR 

Compared to the extended S. coelicolor GlnR regulon, M. smegmatis GlnR has a reduced number 

of target genes (5). Genes that are under control of GlnR in S. coelicolor, for example the NADP-

dependent glutamate dehydrogenase gene gdhA, the urease operon and the nitrite reductase 

genes, do not contain GlnR cis acting elements in M. smegmatis (3). AmtR may therefore be an 

interesting candidate for a second nitrogen regulator, especially since the urease encoding 

genes in C. glutamicum are under AmtR control. 

Little analysis has been carried out with the AmtR response regulator in M. smegmatis, more 

information is known about the closely related bacteria C. glutamicum. In C. glutamicum AmtR 

governs the nitrogen-starvation-dependent gene expression (69). AmtR blocks transcription of 

various genes during growth in nitrogen rich-medium. By a combination of bioinformatics, 

transcriptome and proteome analysis at least 35 genes have been revealed to be directly 

controlled by the AmtR repressor protein (15, 25). These include genes encoding transporters 

and enzymes for ammonium assimilation (amtA, amtB, glnA, gltBD, dapD), creatinine 

metabolism (codA, crnT), urea metabolism (urtABCDE, ureABCEFGD), signal transduction 

proteins GlnK and GlnD, and a number of biochemically uncharacterised enzymes and transport 

systems (for review see (27)).  

AmtR is a TetR family member, sharing homology within their C-terminal DNA binding domain, 

binding in a helix-turn-helix manner (122). The TetR family encompasses a number of repressor 

proteins involved in adaptation to environmental changes. For family members whose function 

has been characterised, regulation of DNA binding is influenced by binding of a small inducer 

molecule to the non-conserved, N-terminal domain. Binding of the effecter molecule produces a 

conformational change in the conserved DNA binding region, resulting in a release of the 

repressor from its operator allowing DNA transcription (122). 

In contrast to most TetR-type regulators, the dissociation of AmtR from its target promoters in 

C. glutamicum is not triggered by the binding of a low-molecular weight ligand, but by a complex 

formation with the PII-type signal transduction protein GlnK (15). GlnK is a tetrameric, PII type 

signal-transduction protein, expressed in an operon with amtB. GlnK, under nitrogen excess 

conditions, is found sequestered to the cytoplasmic membrane by AmtB (Figure 1.6 A). During 

nitrogen limitation, an unknown sensory kinase detects the nitrogen status of the cell and 

activates GlnD to modify GlnK. GlnD then adds an AMP moiety, at tyrosyl residue 51, to GlnK. 

GlnK is subsequently released from AmtB, relocating GlnK-AMP to the cytoplasm (158). GlnK-

AMP then interacts with AmtR releasing it from its target DNA, removing its repressor activity 
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(Figure 1.6 B) (15). GlnD is a bi-functional protein capable of catalysing adenylylation and de-

adenylylation of GlnK. Interestingly truncated C-terminal GlnD is still active for GlnK 

modification, however lacked the ability to demodify GlnK (158). Of note, this kind of GlnK 

modification is observed in mycobacteria and S. coelicolor, yet the targets of GlnK are currently 

unknown (64, 193).  

The signal to which AmtR responds to fluctuating nitrogen levels in C. glutamicum is unknown. 

C. glutamicum accumulates large intracellular pools of amino acids such as glutamate, which 

respond slowly to changes in nitrogen availability, making them unlikely signals for cellular 

nitrogen status (108). Intracellular glutamine concentrations have been shown to vary in 

response to nitrogen availability, however the cellular transcriptional response of gltB, a gene 

demonstrated to be nitrogen regulated, did not alter (103). In addition, protein sequence 

analysis of GlnD in C. glutamicum indicated that the protein does not have a ligand binding 

domain, as found in E. coli which binds glutamine, implying that GlnD does not sense the 

nitrogen status of the cell (166). Supporting this hypothesis, transcription of glnD is not 

constitutive, but varies in response to nitrogen availability, suggesting that GlnD would provide 

a poor sensory mechanism to nitrogen availability (108). Muller et al (2006) demonstrated that 

intracellular α-ketoglutarate and ammonium levels altered rapidly in response to changes in 

nitrogen availability, which corresponded to GlnK adenylylation and the transcriptional 

response of gltB (103). Thus, both ammonium and α-ketoglutarate may play a role as indicators 

of cellular nitrogen status; however, further experimental evidence regarding the nitrogen 

sensors is required. 
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Figure 1.6. Mechanism of AmtR regulation in C. glutamicum. 

(A) High external nitrogen level AmtR binds to the promoter region of nitrogen-regulated genes, 
preventing transcription. GlnK is unmodified and bound to AmtB. (B) Low external nitrogen is 
detected via an unknown mechanism. GlnD is activated and adenylylates GlnK releasing it from 
AmtB. GlnK-AMP relocates to the cytoplasm where it binds AmtR. Binding of GlnK releases the 
repressor activity of AmtR allowing transcription of nitrogen-regulated genes. 
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1.5 Aims of this Study 

A comprehensive understanding of nitrogen assimilation and control of these pathways is 

lacking for mycobacteria. There are many fundamental questions regarding the post-

translational modifications and interactions between proteins of the nitrogen regulation 

cascade. For instance, the signal of nitrogen limitation and regulation of GlnR activity is 

unknown. In addition only 7 genes have been shown to be part of the mycobacterial GlnR 

regulon, approximately 50 genes are GlnR regulated in Streptomyces, suggesting more 

unidentified genes are subject to GlnR regulation in mycobacteria.  

Therefore, the overall aim of this study is to increase our understanding of the transcriptional 

response to nitrogen limitation in mycobacteria, focusing primarily on the transcriptional 

regulator GlnR under nitrogen limiting conditions. As nitrogen-limiting conditions are an 

important aspect of this study I will first develop a defined medium that stimulates a nitrogen 

stress response in mycobacteria. These conditions will then be used for the subsequent analysis. 

To examine the effect of the conserved phosphorylation site of GlnR on transcriptional 

activation, I will create an in vivo point mutant; mutating the conserved aspartic acid-48 to an 

alanine. This will allow me to determine if the conserved residue Asp-48 is important for GlnR 

transcriptional activation. To determine the GlnR regulon in M. smegmatis I will use chromatin 

immunoprecipitation coupled with next generation sequencing (ChIP-seq) to locate GlnR-

binding sites in the M. smegmatis genome. Aligning this data to a microarray of a GlnR deletion 

strain I will be able to identify genes directly and indirectly regulated by GlnR. Finally using the 

methodology from the M. smegmatis study, I will analyse GlnR binding in the pathogenic species 

M. tuberculosis via Chip-seq analysis. Data obtained from the M. smegmatis and M. tuberculosis 

GlnR binding analysis will enable direct comparison of the responses of pathogenic verses 

saprophytic organisms to nitrogen limiting conditions.  
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CHAPTER  2:  Materials and  Methods
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2.1 Bacterial Strains and Culture Conditions  

Plasmids Description and features 
Antibiotic 
resistance 

References 

pET28b+ 

 

Cloning and expression of recombinant 
proteins in E. coli with a thrombin cleavable N-
terminal His6-tag and optional C-terminal His6-
Tag. Expression of target genes is under control 
of the bacteriophage T7 promoter. 
 

Kanamycin     
(50 µg/ml) Novogen 

pYUB854 

 

For the generation of homologous 
recombination substrates containing a HygR 
cassette flanked by γδ–res sites for removal of 
the hygromycin cassette for unmarked 
deletions. Two multiple cloning sites flank the 
HygR cassette. 
 

Hygromycin: 
E. coli 

(200 µg/ml) 
mycobacteria 
(50 µg/ml) 

(12) 

pJV128 

 

Used for the generation of chromosomal point 
mutations in mycobacteria. pJV128 is an 
extrachromosomally-replicating plasmid that 
contains phage encoded Che9c recombineering 
gene 60 cloned downstream of an acetamidase 
expression cassette. Contains oriE, oriM, KanR, 
HygSamber and sacB cassettes. 
 

Kanamycin     
(50 µg/ml) (175) 

pJV126 

 

Used for the generation of chromosomal gene 
replacement mutant in mycobacteria. pJV126 is 
an extrachromosomally-replicating plasmid 
that contains phage encoding Che9c 
recombineering genes 60 and 61  downstream 
of an acetamidase expression cassette. 
Contains OriE, oriM, KanR and sacB cassettes. 
 

Kanamycin     
(50 µg/ml) (177) 

pMV306 

 

Single copy mycobacterial shuttle plasmid used 
for the generation of gene complementation 
strains. Contains attP and int for the 
integration of the plasmid at the attB site on 
Mycobacterial chromosomes. Also contains aph 
for kanamycin resistance. 
 

Kanamycin    
(50 µg/ml) (157) 

pCR2.1 TOPO 

 

Part of the TOPO cloning system for the 
amplification and sequencing of PCR products. 
TOPO vectors are provided linearised with 
topoisomeraseI covalently bound to each 3’ 
phosphate. This enables the vector to readily 
ligate DNA sequences with compatible ends. 
PCR products with an A overhang are suitable 
for TOPO cloning. 
 

Kanamycin     
(50 µg/ml) Invitrogen 

 
Table 2.1. Plasmids used in this study.  

48



 

C
e

ll
 S

tr
a

in
s 

D
e

sc
ri

p
ti

o
n

 a
n

d
 f

e
a

tu
re

s 
G

e
n

o
ty

p
e

 
A

n
ti

b
io

ti
c 

re
si

st
a

n
ce

 
R

e
fe

re
n

ce
s 

 

M
yc

o
b

a
ct

er
iu

m
 

sm
eg

m
a

ti
s 
m
c2

 
15
5 

 

W
ild

 ty
pe

 st
ra
in

 (A
TC
C 
70
00
84
) 

 
 

(1
53
) 

 

 

M
yc

o
b

a
ct

er
iu

m
 

sm
eg

m
a

ti
s 
m
c2

 
1

5
5

 Δ
g

ln
R

 
 

W
ild

 
ty
pe

 
M

. 
sm

eg
m

a
ti

s 
w
ith

 
a 
ge
ne

 
re
pl
ac
em

en
t, 
a 
hy
gr
om

yc
in

 
ca
ss
et
te

, i
n 
th
e 
m
sm

eg
_5
78
4 

g
ln

R
 g
en
e 
re
nd
er
in
g 
th
e 
ge
ne

 in
ac
tiv
e.

 
g

ln
R
- , 
H
yg

R  
H
yg
ro
m
yc
in

   
   

   
 

(5
0

  μ
g/
m
l) 

T
h

is
 s
tu
dy

 

M
yc

o
b

a
ct

er
iu

m
 

sm
eg

m
a

ti
s 
m
c2

 
1

5
5

 Δ
g

ln
R
::g

ln
R

 

 M
. 

sm
eg

m
a

ti
s 

g
ln

R
 d
el
et
io
n 
st
ra
in

 w
ith

 a
 g

ln
R

 r
ep
la
ce
m
en
t g
en
e 
un
de
r 

ac
tiv
at
io
n 
of

 it
s 
ow

n 
pr
om

ot
er

 in
 th
e 
in
te
gr
at
in

g 
ve
ct
or

 p
M
V3
06
. 

 

g
ln

R
- , 

a
p

h
, H
yg

R  
::g

ln
R

 

 

H
yg
ro
m
yc
in

 (5
0 

 
μg
/m

l) 
an

d
 

Ka
na
m
yc
in

 (5
0

  
μg
/m

l) 
 

 
T

h
is

 s
tu
dy

 

M
yc

o
b

a
ct

er
iu

m
 

sm
eg

m
a

ti
s 
m
c2

 
1

5
5

 G
ln
R_
D4
8A

 

 W
ild

 ty
pe

 M
. s

m
eg

m
a

ti
s 
w
ith

 a
 G
ln
R 
(m
sm

eg
_5
78
4)

 c
hr
om

os
om

al
 p
oi
nt

 
m
ut
at
io
n 
at

 a
m
in

o
 a
ci

d
 r
es
id
ue

 4
8

, 
nu
cl
eo
tid
e 
ch
an
ge

 r
es
ul
ts

 i
n 
an

 
as
pa
rt
ic

 a
ci

d
 t

o
 a
la
ni
ne

 su
bs
tit
ut
io
n.

 
 

g
ln

R
D

4
8

A
 

 
T

h
is

 s
tu
dy

 

 

M
yc

o
b

a
ct

er
iu

m
 

sm
eg

m
a

ti
s 
m
c2

 
1

5
5

 
Gl
nR
_D
48
A:
:g

ln
R

 
 

 M
. 

sm
eg

m
a

ti
s 
Gl
nR
_D
48
A 
st
ra
in

 w
ith

 a
 g

ln
R

 r
ep
la
ce
m
en

t 
ge
ne

 u
nd
er

 
ac
tiv
at
io
n 
of

 it
s 
ow

n 
pr
om

ot
er

 in
 th
e 
in
te
gr
at
in

g 
ve
ct
or

 p
M
V3
06
. 

 

g
ln

R
D

4
8

A
 , 

a
p

h
 ::

g
ln

R
 

 
Ka
na
m
yc
in

   
   

   
   

 
(5

0
  μ
g/
m
l) 

 

 
T

h
is

 s
tu
dy

 

 

M
yc

o
b

a
ct

er
iu

m
 

tu
b

er
cu

lo
si

s 
H

3
7

R
v 

 

W
ild

 ty
pe

 st
ra
in

 (A
TC
C 
25
61
8)

 
 

 
 

E
. c

o
li

 D
H
5α

 

An
 E

. 
co

li
 K

1
2

 d
er
iv
ed

 tr
an
sf
or
m
ab
le

 s
tr
ai
n.

 T
h

is
 s
tr
ai
n 

is
 e

n
d

A
1

 (
do
es

 
no

t 
pr
od
uc
e 
En
do
nu
cl
ea
se

 I
) 
th
er
ef
or
e 
av
oi

d
s 
no
n-
sp
ec
ifi
c 
di
ge
st
io
n 

re
su
lti
ng

 in
 h
ig
h 
qu
al

it
y

 p
la
sm

id
 D
N
A.

 D
H
5α

 a
ls

o
 la
ck
s t
he

 a
lp
ha

 p
or
tio
n 

o
f 
th
e 
la
cZ

 g
en
e 
an

d
 i

s 
th

u
s s
ui
ta
bl
e 
fo
r b
lu
e-
w
hi
te

 sc
re
en
in
g.

 

 

F-
, e
nd

A
1

, g
ln

V
4

4
 

th
i-1

 r
ec
A1

 r
el
A1

 
gy

rA
9

6
 d
eo
R 
nu
pG
, 

Φ
80
dl

a
cZ
ΔM

1
5

 
Δ(

la
cZ

Y
A

-
a

rg
F
)U
16

9
, 

hs
dR
17
(r
K-

 m
K+
), 
λ–

 
 

 
Pr
om

eg
a 

49



 T
a

b
le

 2
.2

. 
B

a
c

te
ri

a
l 

st
ra

in
s 

u
se

d
 i

n
 t

h
is

 s
tu

d
y

. 

C
e

ll
 S

tr
a

in
s 

D
e

sc
ri

p
ti

o
n

 a
n

d
 f

e
a

tu
re

s 
G

e
n

o
ty

p
e

 
A

n
ti

b
io

ti
c 

re
si

st
a

n
ce

 
R

e
fe

re
n

ce
s 

E
. c

o
li

 
BL
21
(D
E3
)p
Ly
sS

 

 BL
21
(D
E3
)p
Ly
sS

 
al
lo
w
s 
hi
gh
-e
ffi
ci
en
cy

 
pr
ot
ei
n 
ex
pr
es
si
on

 
o

f 
ta
rg
et

 
ge
ne
s u
nd
er

 th
e 
co
nt
ro
l o

f 
a 

T
7

 p
ro
m
ot
er

. B
L2

1
 (D

E3
) i

s 
ly
so
ge
ni
c 
fo
r λ
-

DE
3

 w
hi
ch

 c
on
ta
in
s 
th
e 
T7

 b
ac
te
ri
op
ha
ge

 g
en
e 

I,
 e
nc
od
in

g 
a 

T
7

 R
N
A 

po
ly
m
er
as
e.

 G
en
e 

I 
is

 u
nd
er

 c
on
tr
ol

 o
f t
he

 l
a

cU
V

5
 p
ro
m
ot
er

, 
in
du
ci
bl
e 

by
 a
dd
iti
on

 o
f 
IP
TG

. 
BL
21
(D
E3
)p
Ly
sS

 c
ar
ri
es

 a
 p
la
sm

id
 e
nc
od
in

g 
a 

T
7

 
ly
so
zy
m
e.

 
T

7
 
ly
so
zy
m
e 
lo
w
er
s 
th
e 
ba
ck
gr
ou
nd

 
ex
pr
es
si
on

 
of

 
ta
rg
et

 
ge
ne
s 
un
de
r 
th
e 

T
7

 p
ro
m
ot
er
, b
ut

 d
oe
s 
no

t 
in
te
rf
er
e 
w
ith

 e
xp
re
ss
io
n 

le
ve
ls

 fo
llo
w
in

g 
in
du
ct
io
n 
w
ith

 I
P

T
G.

 
 

F–
, o

m
p

T
, h

sd
S B

 (r
B–

, 
m

B–
), 

d
cm

, g
a

l, 
λ(
DE
3)

, p
Ly
sS
, C
m

r . 
 

Ch
lo
ra
m
ph
en
ic
ol

 
(3

4
 μ
g/
m
l)

 
 

Pr
om

eg
a 

E
. c

o
li

 H
B1
01

 
 

 H
B1

0
1

 i
s 
a 
hy
br

id
 K
12

 x
 B

 t
ra
ns
fo
rm
ab
le

 s
tr
ai
n.

 T
he

 s
tr
ai
n 

is
 r

ec
A1

3
 

ne
ga
tiv
e,

 w
hi
ch

 m
in
im
iz
es

 u
nd
es
ir
ab
le

 r
ec
om

bi
na
tio
n 
ev
en
ts

 a
nd

 a
id

s 
in
se
rt

 
st
ab
ili
ty
. 
Ad
di
tio
na
lly

, 
th
e 
st
ra
in

 
ca
rr
ie
s 
th
e 

h
sd
S2
0(
r B
-  
m

B-
) 

re
st
ri
ct
io
n 
m
in
us

 
ge
no
ty
pe

 
th
at

 
al
lo
w
s 
be
tt
er

 
re
pr
es
en
ta
tio
n 
w
he
n 

cl
on
in

g 
m
et
hy
la
te

d
 
DN

A 
an

d
 
pr
ev
en
ts

 
cl
ea
va
ge

 
of

 
cl
on
ed

 
DN

A 
by

 
en
do
ge
no
us

 r
es
tr
ic
tio
n 
en
zy
m
es

. 
H
B1

0
1

 c
om

pe
te
nt

 c
el
ls

 a
re

 s
ui
ta
bl
e 

fo
r h
ig

h
 e
ffi
ci
en
cy

 su
b-
cl
on
in

g 
of

 D
N
A 
an
d 
ve
ct
or
s 
th
at

 d
o

 n
ot

 re
qu
ir
e 
α-

co
m
pl
em

en
ta
tio
n 
fo
r b
lu
e/
w
hi
te

 sc
re
en
in
g.

 
 

F-
 m
cr
B 
m
rr

 
hs
dS
20
(r
B-

 m
B-

) 
re
cA

1
3

 l
eu
B6

 a
ra
-

1
4

 p
ro

A
2

 la
cY

1
 

ga
lK

2
 x
yl
-5

 m
tl-

1
 

rp
sL
20
(S
m

R )
 g
ln

V
4

4
 

λ-
 

St
re
pt
om

yc
in

 (5
0

 
μg
/m

l) 
Si
gm

a 

50



 

2.1.2 Bacterial Growth Conditions 

M. smegmatis mc2155 and M. tuberculosis H37Rv were grown aerobically at 37°C with shaking at 

180 rpm and 100 rpm respectively, in modified Sauton’s medium (0.05% (w/v) KH2PO4, 0.05% 

(w/v) MgSO4, 0.2% (w/v) citric acid, 0.005% (w/v) ferric ammonium citrate, 0.2% (v/v) 

glycerol, 0.4% (w/v) asparagine, 0.0001% (v/v) ZnSO4, 0.015% (v/v) Tyloxapol). For nitrogen 

free medium, asparagine was removed and 0.005% (w/v) ferric citrate replaced ferric 

ammonium citrate. Different nitrogen sources were added to the nitrogen free medium in stated 

quantities. Stocks of 100 mM glutamine (99.99% pure; Sigma), 100 mM potassium nitrate 

(Sigma) 100 mM ammonium chloride (99.99% pure; Sigma) and 100 mM ammonium sulphate 

(99.99% pure; Sigma) were made in solution using the nitrogen free medium and filter 

sterilised through a 0.2 µm filter. All medium was stored at 4°C and nitrogen stocks were used 

within 24 hours of preparation. 

When specified M. smegmatis mc2 155 and M. tuberculosis H37Rv was cultured in Middlebrook 

7H9 broth (Difco) supplemented with 0.2% (v/v) glycerol, 10% (v/v) oleic acid-albumin-

dextrose-catalyse (OADC; Becton Dickinson) and 0.05% (v/v) Tween 80 (Sigma), shaking at 180 

rpm (M. smegmatis) or 100 rpm (M. tuberculosis), aerobically at 37°C. For growth on solid 

medium, M. smegmatis was grown aerobically at 37°C on Middlebrook 7H11 agar (Difco) 

supplemented with 0.5% (v/v) glycerol and 10% (v/v) OADC. 

For growth analysis in nitrogen limiting and nitrogen excess medium, a 24 hour M. smegmatis 

mc2 155 culture or 7 day M. tuberculosis H37Rv culture was washed twice by centrifugation at 

4000 x g in nitrogen free Sauton’s medium. The pellet was resuspended in half original volume 

of Sauton’s nitrogen free medium to produce the inoculum. The cell suspension was added to 30 

ml Sauton’s nitrogen free medium supplemented with ammonium sulphate (M. smegmatis) or 

ammonium chloride (M. tuberculosis) at 1 mM (nitrogen limiting) or 30 mM (nitrogen excess), 

to a starting OD600 of 0.08 (Biochrom spectrophotometer). Cultures were grown at 37°C, 180 

rpm for M. smegmatis and 100 rpm for M. tuberculosis. OD600 and cfu/ml readings were taken 

during growth at periodic intervals, cfu counts were conducted as described by (102). 

Ammonium ions in the culture medium during growth were monitored using an Ammonium 

AquaQuant kit (Merck) (Section 2.9.1). 

E. coli strains were cultured in Luria-Bertani (LB) broth (Miller), aerobically at 37°C, unless 

otherwise stated, shaking at 180rpm. For growth on solid medium E. coli strains were grown 

aerobically on LB agar (Miller) at 37°C. 
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Where required, antibiotics were added to the standard growth medium as described in Table 

2.1 and Table 2.2. 

2.2 Molecular Cloning 

2.2.1 Preparation of M. smegmatis Genomic DNA  

Purification of M. smegmatis DNA was carried out as described by Parish et al. (113). Standard 

7H9 growth medium (10 ml) was inoculated with M. smegmatis, from frozen stocks, and grown 

aerobically until the culture reached late log to early stationary phase (OD600 ~ 1.5).  

Bacterial cells were harvested by centrifugation at 4,500 x g for 15 min at room temperature 

and the supernatant discarded. Lysis of the cells was carried out in 450 µl GTE solution (25 mM 

Tris-HCL (pH8.0), 10 mM EDTA, 50 mM glucose) and 50 µl of 10 mg/ml lysozyme (Sigma) 

solution, made up in Tris-HCL buffer (25 mM Tris-HCL (pH8.5)). This suspension was 

transferred to a 2 ml microcentrifuge tube and incubated overnight at 37°C, shaking at 180 rpm.  

Following incubation, cell lysis was stopped with the addition of a final concentration of 2% 

(w/v) sodium dodecyl sulphate (SDS; Gibco), and mixed gently by inversion. Proteinase K 

(Sigma) 1 mg/ml final concentration, was added to the suspension, mixed gently, and incubated 

for 30 min at 55°C. Next, 1.25 M NaCl solution was added and mixed gently by inversion. A 160 

µl volume of preheated (65°C) 10% (w/v) cetyltrimethylammonium bromide (CTAB) solution 

(10 g Cetrimide (Sigma) dissolved in saline solution (4.1 g NaCl dissolved in 90 ml dH2O)) was 

added, mixed gently by inversion and the mixture was incubated at 65°C for 10 min.  

A 1 ml aliquot of chloroform-isoamyl alcohol (24:1) was added, the solution mixed, and 

centrifuged at 16,100 x g for 5 min at room temperature. The aqueous layer was aspirated and 

transferred to a fresh 2 ml microcentrifuge tube. An equal volume of chloroform-isoamyl 

alcohol (24:1) was added, mixed and centrifuged at 16,100 x g for 5 min at room temperature. 

The aqueous layer was aspirated and transferred to a fresh 1.5 ml microcentrifuge tube. To 

precipitate the DNA isopropanol was added at 0.7 x the aliquot volume, and mixed gently by 

inversion until the DNA precipitated out of solution. The solution was incubated for a further 5 

min at room temperature then centrifuged at 16,100 x g for 10 min at room temperature. The 

supernatant was aspirated and the pellet washed with the addition of 1 ml 70% ethanol, and 

centrifuged at 16,100 x g for 5 min at room temperature. The supernatant was discarded and 

the DNA pellet allowed to air dry for 15 min. DNA was re-suspended in 50 µl of dH2O and stored 

at 4°C overnight to allow the pellet to fully dissolve. The DNA solution was stored at -20°C.  
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2.2.2 Polymerase Chain Reaction (PCR) for Amplification of DNA Fragments from 

Mycobacterial Chromosomal DNA 

To amplify target DNA sequences BioMix complete master mix (Bioline) was used. The master 

mix contained required dNTPs, Taq DNA polymerase and produced a 2 mM MgCl2 final 

concentration. Template DNA (50 ng) was added to a PCR reaction mixture consisting of 20 µl 

BioMix (2x), 1 µM of each primer and 5% (v/v) dimethyl sulfoxide (DMSO; Sigma), to a final 

volume of 40 µl with the addition of dH2O. PCR was carried out in a thermocyler, T3000 

(Biometra). Typical PCR conditions are stated below however the annealing temperature was 

optimised for each primer pair (Appendix 1). Five µl of the product was analysed by agarose gel 

electrophoresis; the remaining PCR product was purified using a QIAquick spin column 

(Qiagen), or used immediately without purification for TOPO cloning. 

 

95°C 5 min Denaturing 

95°C 30 sec Denaturing 

55°C 30 sec Primer annealing* 

72°C 1 min/kb Extension 

72°C 8 min  

4°C ∞ Hold 

   *This step was optimised for each reaction 

 

2.2.3 Colony PCR for Amplification of Desired Insert from E. coli Plasmid DNA  

Colonies were screen for the presence of a desired insert by amplification of the region of 

interest with the PCR or vector sequencing primers. A fresh colony was picked from an LB agar 

plate and used to inoculate a PCR solution containing 5 µl BioMix (2x), 1 µM of each primer and 

5% (v/v) DMSO, to a final volume of 10 µl with the addition of dH2O. Cycler conditions were 

used as above. The full 10 µl solution was run on an agarose gel to size the DNA fragments. 

Bacterial colonies, containing plasmids with the correct size insert, were grown up for mini 

preparation of the plasmid DNA. 

  

30 
cycles 
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2.2.4 Gel Electrophoresis of DNA 

DNA was visualised by gel electrophoresis using 0.8% (w/v) agarose (DNA > 200 bp) or 2% 

(w/v) agarose (DNA < 200bp). The gel was prepared by dissolving electrophoresis grade 

agarose in a 1x Tris-Acetate-EDTA buffer (TAE) (Fisher). SYBR Safe solution (Invitrogen) was 

added to the molten agarose according to manufacturer’s instructions, before pouring into the 

mould and allowed to set. The DNA samples were prepared for electrophoresis by adding 1 µl of 

10 x Blue Juice gel loading buffer (Invitrogen) for every 10 µl of DNA sample. A 1 kbp DNA 

ladder (Fermentas) or 100 bp DNA ladder (Biolabs) was run alongside the DNA samples, to size 

the separated DNA fragments. Electrophoresis was carried out in 1x TAE buffer at 100 volts for 

50 minutes. The DNA bound SYBR safe dye was visualised by exposing the gel to ultraviolet light 

using Gel DocTM EZ Imager (BioRad). 

 

2.2.5 DNA Purification  

DNA was purified from PCR and restriction enzyme digest reactions, in preparation for 

downstream applications, using a QIAquick PCR purification kit (Qiagen). Five volumes of Buffer 

PBI (supplied with the kit) was mixed with the sample and loaded onto a QIAquick spin column, 

in a 2 ml collection tube. DNA was bound to the column by centrifugation at 16,200 x g for 60 

seconds. The flow-through was discarded and the column was washed by addition of 0.75 ml of 

buffer PE (supplied) supplemented with 80% ethanol (v/v) (Sigma), and centrifuged again at 

16,200 x g for 60 seconds. The flow-through was discarded once again, and any residual buffer 

was removed by additional centrifugation at 16,200 x g for 60 seconds. The QIAquick spin 

column was then transferred to a clean 1.5 ml Eppendorf tube. DNA was eluted by addition of 

30 µl of dH2O to the centre of the QIAquick membrane and centrifuged at 16,200 x g for 60 

seconds. All samples were stored at -20°C. 

 

2.2.6 Cloning PCR-amplified Target Genes into TOPO pCR 2.1 Vector 

Target genes, amplified by PCR, were cloned into TOPO pCR-2.1 vector (Invitrogen) for DNA 

sequencing prior to cloning into an expression vector. The reaction was carried out according to 

the manufacturer’s instructions using the supplied reagents. Fresh PCR product (1 µl ~ 10 ng) 

was ligated into the pCR 2.1 vector (2 µl ~ 25 ng/µl) with the addition of 1 µl of 10 x ligation 

buffer, 1 µl of T4 ligase in a total volume of 10 µl with sterile water (supplied). The sample was 
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incubated at 14 °C for 16 hours, before being transformed in DH5α E. coli cells as described in 

Section 2.2.10. Transformants were selected on Kanamycin (50 µg/ml) LB agar plates, 

supplemented with 50 µg/ml 5-Bromo-4-Chloro-3-indolyl β-D-galactopyranoside (Sigma). 

Colonies displaying a white phenotype were selected for further analysis.  

 

2.2.7 Restriction Enzyme Digestion 

Restriction Enzymes, bovine serum albumin (BSA) and buffers were all sourced from New 

England Biolabs. 

Analytical digests of ligated vector/ PCR product were carried out using appropriate restriction 

enzymes. Five µl of plasmid DNA, obtained by mini-preparation, was incubated with 0.5 µl of 

restriction enzyme(s), in 1 x appropriate buffer and 10 x BSA diluted (when recommended by 

the manufacturer). A total volume of 10 µl was made up by the addition of dH2O, and samples 

incubated at 37°C for 1 hour. The digests were then separated by electrophoresis.  

Prior to ligation of PCR products into an expression vector, both were digested with appropriate 

enzymes to produce cohesive ends. PCR fragments (30 µl), obtained by PCR amplification or 

expression vector (approximately 600 ng), were incubated with 0.5 µl of restriction enzyme(s) 

in the presence of 1 x reaction buffer and 10 x BSA (when recommended by the manufacturer). 

The final reaction volume of 40 µl was made up by the addition of dH2O. The reactions were 

incubated at 37°C for 3 hours. Double digests were performed with enzymes compatible in a 

single buffer. Digested PCR products were purified using a QIAquick spin column (Qiagen), 

vector digests were purified by gel extraction followed by the QIAquick gel extraction kit. 

 

2.2.8 DNA Purification from Agarose Gels 

Restriction digest products were extracted and purified from agarose gels using the QIAquick 

gel extraction kit (Qiagen). The gels, stained with SYBR Safe (Invitrogen), were viewed under UV 

light in a darkroom, and the desired DNA bands were excised from the gel using a scalpel. The 

excised gel slices were dissolved in 3 volumes of Buffer QG (supplied) and incubated at 60°C for 

10 minutes. The resulting solutions were applied onto QIAquick spin column, placed in 2 ml 

collection tube, and the Qiagen spin column protocol described in Section 2.2.5 followed. 
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2.2.9 DNA Ligation of Plasmid Vector and DNA Insert 

All ligations were carried out on vector/insert DNA with cohesive ends, produced by prior 

enzymatic cleavage. Purified vector and insert were combined at a molar ratio of approximately 

1:3, this was based on quantitative comparison of the purified products using a NanoDrop 1000 

spectrophotometer. The digested vector and DNA insert were added to 1 μl T4 DNA ligase 

buffer (supplied at a 10 x concentration) (NewEngland BioLabs) and 0.5 µl of T4 DNA ligase 

(supplied at 5 units/ml) (NewEngland BioLabs), in a total volume of 10 µl made up with dH2O. 

Reaction mixtures were incubated at RT for 1 hour. Ligations were then transformed into 

selected bacterial strains. 

 

2.2.10 Transformation of E. coli with Plasmid DNA 

Competent BL21(DE3)pLysS, HB101 and DH5α strains of E. coli were used for recombinant 

protein expression or plasmid amplification. Aliquots (50 µl) of the appropriate bacterial cells 

were prepared for transformation by incubation with 5 µl of the ligation mixture, or 50 ng 

plasmid DNA, on ice for 30 minutes. The cells were heat shocked at 42°C for 30 seconds by 

placing in a pre-heated water bath and immediately followed by incubation on ice for 2.5 min. 

Two hundred and fifty µl SOC medium (Invitrogen) was added to the transformed culture and 

incubated at 37°C for 1 hour with moderate shaking (180 rpm). Cell aliquots (20 µl and 200 µl) 

of transformed bacteria were spread on LB agar plates supplemented with appropriate 

antibiotic(s) and incubated at 37°C until colonies were present, usually 12-24 hours. 

 

2.2.11 Plasmid DNA Mini-Preparations from Small-Scale Cultures of Transformed 

Bacteria 

Transformed bacteria were screened for the presence of the required plasmid and insert by 

amplification of a single bacterial colony and extraction of plasmid DNA. Individual colonies 

were selected and grown in 5 ml LB broth, supplemented with appropriate antibiotic(s), and 

shaken (180 rpm) at 37°C overnight. Bacteria were harvested by centrifugation at 4,000 x g for 

10 minutes.  

DNA extraction was carried out using a Mini-Prep Kit (Qiagen). The supernatant was discarded 

and the bacterial pellet re-suspended in 250 µl of Resuspension Solution (containing 100 µg/ml 

RNase A). This was followed by addition of 250 µl of Lysis Solution (supplied), and the contents 
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inverted 4-6 times. Neutralisation Solution (350 µl; supplied) was then added to the cell lysate 

and the tubes were inverted 4-6 times prior to centrifugation at 16,100 x g for 10 minutes. To 

isolate plasmid DNA the supernatants were loaded onto QIAquick columns, in a 2 ml collection 

tubes, and centrifuged at 16,100 x g for 1 minute. Five hundred µl Wash Solution (supplied) was 

applied to the column and centrifuged for a further 60 seconds. The flow through was discarded 

and the wash step repeated. Removal of any residual wash solution was carried out by 

centrifuging the empty column at 16,100 x g for a further 1 minute. The spin columns were then 

transferred to a sterile 1.5 ml Eppendorf tubes; DNA was eluted by addition of 30 µl dH2O to the 

centre of the QIAquick membrane and centrifugation at 16,100 x g for 2 minutes.  

Recovered plasmid DNA was analysed by restriction enzyme digestion, followed by agarose gel 

electrophoresis and visualized with SYBR Safe and UV illumination. Plasmids containing 

correctly sized fragments were submitted for DNA sequencing analysis at Medical Research 

Council genomics core facility (Imperial College Hammersmith campus, UK).  

 

2.2.12 Sequencing of Plasmid DNA 

DNA sequences were determined using the Imperial College Core Sequencing Service at the 

MRC genomics laboratory. Sequencing reactions contained 3.2 pmoles of primer, 150 - 300 ng of 

plasmid DNA per 3 kb or 500 - 600 ng for > 3kb plasmid DNA in 10 μl total dH2O. Samples were 

cycle sequenced using BigDye v 3.1 (Applied Biosystems) as follows:  

94°C 1 min 

94°C 10 sec 

55°C 15 sec             

60°C 4 min 

4°C ∞ 

  

 

Products were purified by EDTA-ethanol precipitation, resuspended in highly deionised 

formamide and run on 3730xl DNA Analyser (Applied Biosystems). All sequences were then 

analysed using Geneious genome viewer. 

 

30 
cycles 
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2.2.13 Quantification of DNA Concentration 

DNA concentrations were determined using a Nanodrop ND 1000 Spectrophotometer 

(NanoDrop Technologies, Inc.). For this, 1.5 μl of DNA sample was placed on the nanodrop stage 

and the sample was analysed spectrophotometrically giving concentration (ng/μl) and purity 

(260 nm/280 nm ratio). The blank used in each case was the buffer in which the DNA was 

resuspended. 

 

2.2.14 Large-Scale Preparation of Plasmid DNA from Bacterial Cultures (Midi Prep)  

For large-scale preparation of plasmid DNA midi preparations were performed. Bacteria were 

transformed with the desired plasmid and grown on LB agar over night at 37°C. LB broth (100 

ml), supplemented with appropriate antibiotic(s), was inoculated with a single colony and the 

culture incubated overnight, shaking 180 rpm at 37°C.  

Plasmid DNA was isolated from the bacterial culture using the DNA Midi-prep Kit (Qiagen). The 

bacteria were harvested by centrifugation at 4,500 x g for 15 minutes at 4°C and supernatants 

discarded. Four ml Buffer P1 (containing 100 µg/ml RNase A; supplied) was used to re-suspend 

the pellet, followed by the addition of 4 ml Buffer P2 (supplied) to lyse the cells; the mixture 

then incubated for 5 minutes at room temperature. Termination of the lysis was conducted by 

addition of 4 ml chilled Buffer P3 (supplied), and the mixed thoroughly by vigorously inverting 

4-6 times. The cell lysate was transferred to the barrel of a QIAfilter Cartridge and incubated at 

RT for 10 min. Buffer QBT (4 ml) (supplied) was applied to a QIAGEN-tip 100, to equilibrate the 

column, and the column allowed to empty by gravity flow. Cell lysate was then filtered through 

the QIAfilter and applied to the equilibrated QIAGEN-tip. The lysate was allowed to enter the 

resin of the tip via gravity flow. Column washes were carried out by applying 2 x 10 ml buffer 

QC (supplied). DNA was eluted from the column with the addition of 5 ml Buffer QF (supplied). 

Eluted DNA was precipitated by the addition of 0.7 volumes of isopropanol and pelleted by 

centrifugation 4,500 x g for 1 hour at 4°C. The supernatant was carefully removed and 5 ml 70% 

ethanol was used to wash the DNA pellet, followed by centrifugation at 4,500 x g for 1 hour. 

Ethanol was removed and the DNA air-dried before dissolving in 50 µl dH2O deionised water. 

Concentrations of resulting plasmid DNA were determined by NanoDrop 1000 

spectrophotometer.  

 

58



 

2.2.15 One-step Preparation of Competent E. coli Cells: Chung Method  

Cells for protein expression, E. coli BL21(DE3)pLysS, were made chemically competent using 

the Chung method (33). From frozen stocks, bacteria were streaked out on LB agar plates, and 

grown at 37°C overnight. One colony was selected and used to inoculate 10 ml LB broth. The 

inoculated culture was grown overnight at 37°C at 180 rpm, until stationary phase reached. 

Fifty ml of LB broth was inoculated with 0.5-1 ml of the overnight culture and grown at 37°C 

180 rpm until cells reached early exponential phase (OD600 ~0.3–0.4). Cells were then harvested 

by gentle centrifugation at 1000 x g, 4°C, for 10 minutes. The supernatant was discarded and the 

pellet re-suspended in 1/10 original culture volume, ice cold, TSS solution (LB broth, 10% (w/v) 

polyethylene glycol (PEG; Sigma), 5% (v/v) DMSO, 50 mM MgSO4, pH 6.5). Cells were divided 

into 0.1 ml aliquots, flash frozen in dry-ice and 100% ethanol and stored at -80°C. 

 

2.2.16 Preparation of Ultra-competent E. coli Cells: Inoue’s Method 

Cells for DNA cloning, DH5α and HB101 strains of E. coli, were made ultra-competent using the 

method describe by Inoue et al. (67). From frozen stocks, bacteria were streaked onto LB agar 

plates and incubated aerobically overnight at 37°C. Ten to twelve colonies were used to 

inoculate 250 ml SOB (Difco) and cultures incubated at 18°C at 180 rpm. When optical density 

reached OD600 ~ 0.6, cells were transferred to 50 ml Falcon tubes and incubated on ice for 10 

minutes. Cells were harvested by centrifuging at 2500 x g for 10 minutes at 4°C. Pellets were re-

suspended in 1/3 original volume in ice-cold Inoue Transformation Buffer (ITB; 55 mM 

MnCl2.4H2O, 15 mM CaCl2.2H2O, 250 mM KCl, 0.5 M PIPES pH6.7). A further incubation on ice 

was carried out for 10 min before centrifugation at 2500 x g at 4°C for 10 min. The pellets were 

then re-suspended in 1/12 original volume of ice cold ITB with the addition of 7.5% (v/v) 

DMSO. The solution was mixed gently before incubation on ice for 10 min. Cells were divided 

into 0.2 ml aliquots, flash frozen in dry-ice and 100% ethanol and stored at -80°C. 
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2.3 Protein Expression and Purification 

2.3.1 Growth of Cells for Protein Expression 

Plasmids were transformed into BL21 (DE3) or BL21 pLysS strains of E. coli for protein 

expression. Transformants were selected by growth on LB agar plates, supplemented with 

appropriate antibiotic(s), and incubated at 37°C overnight. A small scale culture (100 ml) LB 

broth, plus appropriate antibiotic(s), was inoculated with a loop full of colonies and grown 

aerobically shaking at 37°C overnight. A 2 L conical flask containing 800 ml of LB, plus 

appropriate antibiotics, was inoculated with 50 ml of the overnight culture and grown shaking 

at 37°C. When the OD600 ~ 0.4-0.5 the culture was temperature shifted to 20°C in a H2O bath 

shaking at 145 rpm. Expression was induced with the addition of 1 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG; Sigma). The cultures were grown for a further 3 hours, shaking at 

20°C. Cells were harvested by centrifugation at 4, 000 x g at 4°C and the pellet frozen at -20°C 

overnight or until required. 

To test for protein induction, samples (1 ml) were taken before and after addition of IPTG. 

These samples were centrifuged at 16, 100 x g and the pellet re-suspended in 100 µl H2O. Ten µl 

of these samples were analysed by SDS-PAGE using a 4-12% Bis-Tris gel (Invitrogen). 

 

2.3.2 Protein Purification: Cell Lysis 

Soluble protein fractions were obtained by disruption of the E. coli cell wall by probe sonication. 

Bacterial cell pellets were thawed on ice before being re-suspended in 30 ml of lysis buffer 

(Phosphate buffered saline (PBS; Sigma) containing: 3 complete mini EDTA-free protease 

inhibitor tablets (Roche), 100 µg/ml lysozyme, 85.5 units deoxyribonuclease I (Invitrogen)). 

Bacterial suspensions were placed on ice and lysed by sonication (30 second on/off pulses for 

15 minutes at 11 amplitude microns). Cellular debris was removed by centrifugation of the 

lysate at 17, 000 x g, 4°C, for 30 minutes. The supernatant (soluble fraction) was then 

transferred to a chilled tube and kept on ice until affinity purification. Affinity purification was 

carried out directly after cell lysis. A 10 μl sample of the soluble fraction was removed analysed 

by SDS-PAGE using a 4-12% Bis-Tris gel. 
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2.3.4 Protein Purification: Nickel Affinity Chromatography 

Proteins were purified after expression by affinity purification on an AKTA Purifier FPLC system 

(GE Healthcare). Buffers A (25 mM Na2H2PO4 (pH7), 0.5 M NaCl, 5% glycerol), and Buffer B 

(Buffer A + 1 M imidazole (Sigma)), were used. A 5 ml HiTrap Ni affinity column (GE healthcare) 

was prepared for purification by washing with 15 ml 0.1 M EDTA, to remove any residual 

compounds. The column was equilibrated to Buffer A (15 ml), before washing with 15 ml dH2O. 

The column was charged by loading 5 ml of 0.1 M NiCl2, before a repeated wash with H2O. Three 

column washes of 100% Buffer A 15 ml, 100% Buffer B 15 ml and 100% Buffer A 20 ml were 

carried out before loading of the bacterial lysate. Clarified bacteria lysate was loaded onto a 

superloop and injected onto the 5 ml Ni column. Non-specific binding of proteins to the column 

was removed with a 9% buffer B column wash. The hexa-histidine-tagged protein complex was 

eluted from the Ni column in a gradient of 1- 100% buffer B, over 80 ml. Fractions (0.5 ml) were 

collected and 10 µl analysed on a 4-12% Tri-Bis gel, according to the chromatogram UV reading. 

Purified protein fractions were dialysed into storage buffer C (10 mM Tris-HCl pH 8, 50 mM 

NaCl, 20% (v/v) glycerol, 0.1 mM EDTA) for antibody production or storage buffer D (10 mM 

Tris-HCl pH 8, 50 mM NaCl, 5% (v/v) glycerol) for gel shift assays, overnight at 4°C using 

dialysis cassettes (Thermo Scientific) with 20 kDa molecular weight cut off. All proteins were 

split into aliquots and frozen at -20°C. 
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2.4 Analysis of Protein Samples  

2.4.1 BCA Determination of Protein Concentration 

Protein concentration was determined using the BCA protein assay kit (Pierce). Concentrations 

of the neat protein sample or a 1/10 dilution in PBS were analysed. To 50 µl of sample, 1 ml of 

Working Reagent (supplied; 50:1 parts BCA reagent A to BCA reagent B) was applied, mixed and 

incubated at 37°C for 1 hour. A blank standard replicate was also incubated for 1 hour at 37°C, 

containing 50 µl PBS and 1 ml Working Reagent. Absorbance of the samples at 562 nm was 

analysed, using water as the blank. Subtraction of the blank standard replicate from the sample 

readings, gave a corrected absorbance value. This corrected absorbance value was compared to 

a standardised curve with known protein concentrations to determine the sample 

concentration. 

 

2.4.2 SDS Polyacrylamide Gel Electrophoresis (PAGE): NuPAGE Novex 4-12% Bis-Tris Gels 

(Invitrogen) 

Protein samples were analysed by SDS-PAGE using NuPAGE Novex 4-12% Bis-Tris gel according 

to manufacturer’s instructions. Samples were prepared by the addition of 2.5 μl of NuPAGE LDS 

Sample Buffer (4x), 1 μl NuPAGE Reducing agent (10x), and water to a final concentration of 10 

μl. The prepared samples were then heated at 95°C for 10 minutes, before being centrifuged at 

16, 000 x g for 2 min to settle the contents. An XCell SureLock system (Invitrogen) was arranged 

to hold the pre-cast 4-12% Bis-Tris gel. The inner chamber was filled with 200 ml 1 x MES 

buffer (Invitrogen) containing 500 μl NuPAGE Antioxidant (Invitrogen), with 600 ml of 1 x MES 

only filling the outer chamber. Wells were flushed before loading of the sample. A SeeBlue pre-

stained protein ladder (Invitrogen) was run adjacent to the samples to size the resolved 

products. Gels were run for 35 min at 200 V. 

Bands were visualised using SimplyBlue Safe Stain (Invitrogen). Gels were removed from their 

cast and washed in dH2O 3 times for 5 minutes. After washing, 20 ml of SimplyBlue Safe Stain 

was added to cover the gel and incubated with gentle agitation for 1 hour. De-staining was 

carried out by rinsing the gel in dH2O, before covering the gel in dH2O and incubating with 

gentle agitation for 1 hour; the bands were then visualised. For clearer gels, water was replaced 

and the gel incubated for a further 1 hour. De-stained gels were then scanned directly using a 

flatbed scanner (Epson) or dried using the Invitrogen system. 
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2.4.3 Western Blot 

Protein samples were detected using specific antibodies raised against a tag or recombinant 

protein. The Invitrogen XCell SureLock blot module was used to perform the transfer. Proteins 

samples were separated on 4-12% Bis-Tris gels as described in Section 2.4.2. Immediately 

following electrophoresis the blot module was assembled, with all components of the blot 

sandwich pre-soaked in 1 x NuPAGE transfer buffer (Invitrogen). The transfer sandwich 

composed of, from cathode to anode, blotting pads, filter paper, 4-12% Bis-Tris gel, Hybond-C 

extra (Amersham) nitrocellulose transfer membrane, filter paper, blotting pads. The blot 

module was assembled with 1 x transfer buffer covering the transfer sandwich in the inner 

section, and H2O filled the outside chamber. Proteins were electro-blotted onto the membrane 

for 1 hour at constant 30 V. The membrane was removed and blocked overnight at 4°C in a high 

protein block solution (5% (w/v) milk powder in PBS). 

The unbound block solution was removed from the membrane by two washes in PBS/Tween 

(PBS, 0.05% (v/v) Tween-20 (Sigma)), followed by one wash in PBS only. Blocked membranes 

were incubated with primary antibody, amount and type as specified, diluted in 20 ml block 

solution, for 1 hour, gently rocking, at room temperature. Unbound antibody was removed by 

washing as stated previously. Incubation with a secondary antibody, polyclonal HRP conjugated 

swine anti-rabbit (DakoCytomation), diluted 1 in 10,000 with block, followed for 1 hour at room 

temperature. Washing of the membrane occurred as stated earlier.  

Super Signal West Femto (Thermo Scientific) was used to detect the HRP conjugated antibody. 

Equal volumes of the stable peroxide solution and the enhancer solution were mixed before 

applying to the drained membrane. The membrane and solutions were incubated for 5 min 

before chemiluminescence detected via a LAS-3000 Fuji imager.  

 

2.4.4 Affinity Purification of GlnR Polyclonal Antibody 

The polyclonal serum was subject to affinity purification against the recombinant M. smegmatis 

His-GlnR or M. tuberculosis His-GlnR. Purified protein (50 µg) was separated via SDS PAGE and 

transferred to a nitrocellulose membrane. The membrane was stained with Ponceau S (Sigma) 

and rinsed with ddH2O to visualise the bands. A membrane slice was extracted surrounding His-

GlnR, before incubating the membrane for 1 hr at RT in Block (PBS with 5% milk powder). 

Following this 5 ml serum, diluted in 25 ml Block, was incubated with the membrane over night 

at 4°C with gentle agitation. The membrane was washed 4 times in PBS before elution of the 
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antibody. Antibody elution commenced with 2 min incubation with 4 ml 100 mM glycine pH 2.7, 

before transfer of the solution to 300 µl of 1.5 M Tris-HCl pH 8.8.  Purified antibody was dialysed 

against PBS before storage at -20°C.  

 

2.4.5 Preparation of M. smegmatis Cell Lysates 

M. smegmatis cell lysates were prepared from 30 ml samples. Cells were harvested by 

centrifugation at 4000 x g and re-suspended in 0.5 ml PBS buffer (Sigma) with EDTA- free 

complete protease inhibitor cocktail. The solution was transferred to tubes containing 

Zirconium beads (MP Biomedicals) and the cells lysed in a ribolyser Fastprep FP120 (Thermo 

Savant) for two cycles of 30 seconds at 6 m/s. Cell debris was removed by centrifugation at 

16,100 x g for 10 min and supernatant removed and stored in aliquots at -20°C. Lysate 

concentrations were quantified using BCA assay (Pierce). 
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2.5 Generation of M. smegmatis  Mutants: Recombineering Method  

2.5.1 Preparation of Electrocompetent M. smegmatis Cells 

Fifty ml of 7H9 medium was inoculated with M. smegmatis mc2 155 from frozen stocks and 

grown at 37°C at 180 rpm until OD600 ~1.8. Cell cultures were incubated on ice for 1 hour before 

harvesting by centrifuging at 1,500 x g, 4°C for 10 minutes. Pellets were washed with 50 ml ice 

cold 10% (v/v) glycerol. Cells were harvested by re-centrifuging at 1,500 x g, 4°C for 10 min. 

The wash step was repeated a further 3 times. After the final spin cells were re-suspended in 

1/10 original volume of 10% ice-cold glycerol, and split into 200 µl aliquots, before flash 

freezing in dry ice and ethanol and storage at -80°C. 

 

2.5.2 Transformation of Electrocompetent M. smegmatis Cells 

For the uptake of DNA into M. smegmatis, electrocompetent cells were transformed using a 

bench top electroporator, Gene Pulser (BioRad). Competent M. smegmatis cells were thawed on 

ice before the addition of 200 ng of DNA. Cells were mixed by gentle tapping and incubated on 

ice for 20 min. The bench top electroporator was set at: resistance (R) 1000 Ω, capacitance (Q) 

25 µF, voltage (V) 2.5 kV. Samples were transferred to a 2 mm cuvette and tapped to remove 

any air bubbles. The cuvette was attached to the electroporator and the voltage applied. A time 

constant of between 15-23 indicated a successfully applied charge across the cuvette. One ml of 

7H9 medium was added directly to the cuvette, before transferring the sample to a 1.5 ml 

eppendorf tube. Cells were incubated at 37°C for 3 hours, before plating onto selective 7H11 

plates. 

 

2.5.3 Preparation of Recombineering Strain of Electrocompetent M. smegmatis Cells 

M. smegmatis cells, already containing the desired recombineering plasmid via electroporation, 

were induced for protein expression and made electrocompetent. Five ml of 7H9 medium, 

supplemented with appropriate antibiotic(s), were inoculated with recombineering plasmid 

containing cells, and grown at 37°C to log phase. Modified 7H9 medium (Middlebrook 7H9 

broth supplemented with; 0.05% (v/v) Tween, 0.2% (w/v) succinate, antibiotic) was inoculated 

to an OD600 ~0.025 and incubated at 37°C, 180 rpm. When cells reached an OD600~ 0.4 they 

were induced for protein expression with the addition of acetamide to a final concentration of 
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0.2%, and incubated as before for 3 hours. Following protein induction, the culture was placed 

on ice for 1 hour before harvesting of cells by centrifuging at 4,000 x g, 4°C for 10 min. The 

pellet was washed with ½ original volume ice-cold 10% glycerol and cells harvested as before. 

Two further wash steps were carried out in ¼ original volume ice-cold 10% glycerol, and 

harvested as before. The pellet was finally re-suspended in 1/20 original volume 10% glycerol, 

split into 200 µl aliquots and flash frozen in dry ice and 100% ethanol, before storage at -80°C. 

 

2.5.4 Gene Replacement Mutant: Allelic Exchange Substrate (AES) 

Generation of gene replacement mutants was carried out as described by van Kessell et al. (175, 

176). An allelic exchange substrate (AES) was generated by amplification of regions of 

homology flanking the target gene. Homologous regions (~500-1000 bp) were amplified by 

PCR. PCR products were directly cloned into the pCR2.1-TOPO vector system (Section 2.2.6) and 

inserts sequenced. Flanks were excised from the vector with appropriate restriction enzymes 

and purified with gel extraction (Sections 2.27 and 2.2.8 respectively).  

Directional cloning of homologous regions of DNA was achieved by insertion and 

transformation of one flank, before the second. The target vector, pYUB854 containing a HygR 

cassette separating two multiple cloning sites, was digested for a single insertion using 

appropriate enzymes and purified with gel extraction. Concentration comparison of the target 

vector and digested PCR product was carried out with a NanoDrop 1000 spectrophotometer, 

before ligation at a concentration of 1:3 vector:insert (Section 2.2.9). HB101 E. coli cells were 

transformed with the plasmid/insert ligation and positive transformants selected for (Section 

2.2.10). Positive colonies were screened for the presence of the correct sized insertion by mini 

preparation and subsequent restriction digestion (Section 2.2.11). Resulting plasmid, obtained 

via mini preparation, was then subjected to digestion using restriction enzymes for the alternate 

cloning site, with ligation and positive transformant selection repeated as before. Directionality 

of the cloned products was checked by sequence analysis. 

The AES was obtained by digestion of the upstream-HygR-downstream sequence from the 

plasmid backbone via restriction digestion, followed by gel extraction. Resulting AESs were 

checked for purity and size on a 0.8% agarose gel and quantified using a NanoDrop 1000 

spectrophotometer.  
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2.5.5 Gene Replacement Mutant: Recombineering 

Gene replacement mutants were generated by transformation of the linear AES in to M. 

smegmatis cells. AES DNA was prepared by digesting the pYUB85-glnR construct with AfII and 

SpeI. Linear AES DNA (200 ng) was used to transform 200 μl of M. smegmatis cells containing 

the pJV126 recombineering plasmid (a kind gift from Graham Hatfull). Putative null mutants 

were selected on 7H11 agar containing hygromycin (50 mg ml−1) and kanamycin (50 mg ml−1). 

Confirmation of gene deletion was carried out by PCR on gDNA using primers outside the 

upstream and downstream flanking regions in combination with hygromycin cassette specific 

primers. PCR products would only be obtained with insertion of the hygromycin cassette by 

recombination onto the chromosome at the correct location. Further confirmation of glnR 

deletion phenotype was provided by Western analysis using a custom made GlnR polyclonal 

antibody (Eurogentec, Belgium). 

 

2.5.6 GlnR Chromosomal Point Mutation and MAMA PCR Screen 

The point mutation was generated using M. smegmatis containing the pJV128 recombineering 

plasmid (a kind gift from Graham Hatfull). Cells were co-transformed with 100 ng of two ssDNA 

oligonucleotides containing the base pair changes for the required glnR D48A point mutation 

and containing the required base pair changes to convert the hygS cassette contained within the 

pJV128 vector from hygromycin sensitive to hygromycin resistant. This hygromycin resistance 

repair method was used to select colonies that had undergone positive recombination. A 

mismatch amplification mutation assay (MAMA PCR) screen using primer pairs 

MAMA_PCR_F&R was performed to identify glnR containing the desired point mutation (29, 

160). The rationale behind MAMA PCR is that a single nucleotide mismatch at the 3′ extremity of 

the annealed reverse primer renders Taq polymerase unable to extend the primer. Therefore, 

the absence of the specific PCR product reveals a deviation from the desired DNA sequence. 

MAMA PCR conditions were 95°C 5 min, 39 cycles of 95°C 15 sec, 32°C 1 min with final 

extension time of 72°C 7 min. Recombineering plasmids were removed from the mutant strains 

via negative sacB selection (117).  
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2.6 RNA Analysis 

2.6.1 RNA Isolation from M. smegmatis Whole Cell Extracts 

RNA was extracted from M. smegmatis cells grown as specified. Cells were initially mixed with 

an equal volume of GTC solution (5 M guanidine thiocyanate, 0.5% N-lauryl sarcosine, 0.1 M β-

mercaptoethanol, 0.5% Tween-80, 10 mM Tris.HCl pH7.5) and cell pellets recovered by 

centrifugation at 4,000 x g for 10 minutes. The supernatant was discarded and the pellet re-

suspended in 1 ml Trizol (Invitrogen) and stored at -80°C until required. Thawed cells were 

homogenised with ribolyser Fastprep FP120 (Thermo Savant) at 6 msec−1 for 30 sec x 2, with 

cells incubated on ice for 5 minutes between runs. Cell debris was removed by centrifugation at 

16,100 x g for 10 min at 4°C. The supernatant was transferred to a 1.5 ml eppendorf tube and 

mixed with 600 μl chloroform, followed by centrifugation at 4°C 16,100 x g for 5 minutes. The 

aqueous phase was recovered and chloroform extraction repeated. Finally, the RNA was 

precipitated with 100% isopropanol and RNA was recovered via centrifugation at 16,100 x g for 

10 min at 4°C. Supernatant was removed and the pellet washed with 70% ethanol. Following 

this the RNA was purified using the RNeasy kit (Qiagen) according to manufacturer’s 

instructions. Residual DNA was removed from the sample with a TURBO DNA-free (Ambion) 

treatment following the manufacturer’s instructions. RNA was recovered and RNA quality and 

quantity was determined by OD 260/280 and 260/230, gel electrophoresis and bio-analyzer 

analysis. RNAsecure (Ambion) (1 µl) was added to protect the sample and stored at -20°C. 

 

2.6.2 cDNA Preparation 

To determine gene expression levels cDNA was amplified from RNA using the SuperScript III 

first strand synthesis super mix (Invitrogen). To 100 ng RNA the following were added as per 

the manufacturer’s instructions; 10 μl of 2x RT reaction mix, 2 μl RT enzyme mix, DEPC-treated 

water to a final volume of 20 μl. Samples were incubated at 25°C for 10 min followed by 50°c for 

30 min and to terminate the reaction 85°C for 5 min. RNaseH was added to the cooled sample 

and incubated at 37°C for 20min. cDNA was stored at -20 until required.  
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2.6.3 Quantitative Real-Time PCR (qRT-PCR)   

To determine gene expression levels, qRT-PCR was performed on cDNA. qRT-PCR reactions 

were carried out in a final volume of 10 µl (1 µl of cDNA, 5 µl of TaqMan PCR master mix 

(Applied Biosystems), 0.5 µl of the appropriate TaqMan probe (Applied Biosystems)). 

Amplification was performed on an Applied Biosystems 7500 Real-Time System (conditions 

50°C 5 min, 95°C 10 min, and 40 cycles of 95°C 15 sec, 60°C 1 min). Amplification efficiency for 

each TaqMan probe was determined to be 100%, based on amplification of serial dilutions of 

template cDNA, with the slope of linear regression used to determine efficiency. Real-time 

analysis was performed on RNA from three independent cultures and quantification of sigA 

expression served as an internal control. The threshold value CT was converted to gene 

expression, an arbitrary unit in relation to sigA (gene expression = 2-χ, where χ = CT sample gene 

– CT sample sigA). All data displayed reflects the mean of triplicate experiments, with error bars 

indicating the standard deviation. Statistical comparison of means was performed with a 

Student’s t-test, a P value of ≤ 0.05 was considered significant.  

 

2.6.4 Preparation of Labelled cDNA from Total RNA for Microarray Analysis (carried out 

at BUGS @ St. George’s Hospital) 

Labelled cDNA was prepared from 1 µg total RNA using Cy3-dCTP (GE Healthcare) and 

SuperScript II reverse transcriptase with random hexamer primers (Life Technologies – 

Invitrogen division). Agilent One Color Spike-In controls were labelled together with the RNA 

samples according to manufacturer’s instructions. Labelled cDNA was purified by Qiagen 

MinElute column, combined with 10 x CGH blocking agent and 2 x Hi-RPM hybridisation buffer 

(Agilent) and heated at 95°C for 5 minutes prior to loading onto microarray slides which were 

incubated overnight in an Agilent rotating oven at 65°C, 20 rpm. After hybridization, slides were 

washed for 5 minutes at room temperature with CGH Wash Buffer 1 (Agilent) and 1 minute at 

37°C with CGH Wash buffer 2 (Agilent) and scanned immediately, using an Agilent High 

Resolution Microarray Scanner, at 2 µm resolution, 100% PMT.  Scanned images were 

quantified using Feature Extraction software v 10.7.3.1. 

 

2.6.5 M. smegmatis Microarray Design 

The microarray was constructed by determining all unique genes from the 6887 chromosomal 

predicted coding sequences of M. smegmatis strain mc2 155, downloaded from Ensembl Bacteria 
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Release 5 (http://bacteria.ensembl.org/). Multiple optimal hybridisation 60-mer 

oligonucleotide sequences were designed (Oxford Gene Technologies), from which a minimal 

non-redundant subset of oligonucleotides were selected with target coverage of three 60-mers 

per gene. Arrays were manufactured on the Inkjet in-situ synthesized platform (Agilent) using 

the 8 x 60 k format. The full array design is available in BµG@Sbase (BµG@Sbase: A-BUGS-40) 

and also in ArrayExpress (ArrayExpress: A-BUGS-40).  

 

2.6.6 Statistical Analyses of Differential Gene Expression (Conducted in collaboration 

with Geraint Barton at CISBIO) 

Statistical analyses of the gene expression data was carried out using the statistical analysis 

software environment R together with packages available as part of the Bioconductor project 

(http://www.bioconductor.org). Data generated from the Agilent Feature Extraction software 

for each sample was imported into R. Replicate probes were mean summarised and quantile 

normalised using the preprocess Core R package. The limma R package (152) was used to 

compute empirical Bayes moderated t-statistics to identify differentially expressed gene 

between time points. Generated p-values were corrected for multiple testing using the 

Benjamini and Hochberg False Discovery Rate. A corrected p-value cut-off of less than 0.01 was 

used to determine significant differential expression. Fully annotated microarray data has been 

deposited in BμG@Sbase (accession number E-BUGS-143; http://bugs.sgul.ac.uk/E-BUGS-143) 

and also in ArrayExpress (accession number E-BUGS-143). 
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2.7 Chromatin-Immunoprecipitation 

2.7.1 Cell Preparation and Cross-linking 

M. smegmatis or M. tuberculosis (3 x 60 ml cultures) were grown as specified in nitrogen limiting 

and excess medium before cross-linking with the addition of formaldehyde (Sigma) (final 

concentration 1% (v/v)). Cross-linking proceeded for 20 min with continued agitation at 37°C, 

before glycine addition (final concentration 125 mM) and incubation for 5 min at 37°C. Cells 

were harvested by centrifugation at 4,000 x g and washed twice with TBS. The pellet was frozen 

at -80°C until required.  

For DNA fragmentation the pellet was re-suspended in 8 ml immunoprecipitation (IP) buffer 

(50 mM HEPES-KOH pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% (v/v) Triton X-100, 0.1% (w/v) Na 

deoxycholate, 0.1% (w/v) SDS) supplemented with EDTA- free complete protease inhibitor 

cocktail (Roche), before sonication at 100% amplitude in 30 sec pulses for 10 min (Misonix 

Ultrasonic Processor S4000). Debris was removed by centrifugation at 4,000 x g and the 

supernatant recovered. Samples were stored on ice at 4°C and 100 µl sample taken to confirm 

sonication conditions. To the 100 µl sample DNA was precipitated with sodium acetate/ ethanol, 

before analysis on a 2% agarose gel. Sonication was deemed complete when DNA fragments 

were between 100-200 bp and no visible genomic DNA present. Once sonication was confirmed 

a further 100 µl sample was taken and stored at -20°C, this sample was subject to protein 

degradation as the rest of the sonicated extract and used as the control, ‘input’ sample. The rest 

of the sample was subject to immunoprecipitation. 

 

2.7.2 Immunoprecipitation and Elution of DNA 

To the sonicated extract 200 µl of our purified rabbit anti-GlnR specific polyclonal antibody was 

added and incubated overnight on a rotating wheel at 4°C. Sheep anti-rabbit IgG Dynal beads 

(Invitrogen) were prepared by washing in 2x 500 μl PBS and 2x 500 μl IP buffer, before 

saturating the beads overnight at 4°C in 1 ml blocking solution (IP buffer, EDTA-free protease 

inhibitor tablet, 1 mg/ml BSA). Following saturation of the beads the blocking solution was 

removed and sonicated sample plus antibody incubated with the beads for 3 hours at 4°C on a 

rotating wheel. To harvest the bead-antibody-DNA complex a magnet was used (Invitrogen). 

The complex was then subject to a series of washing steps; 2x 500 μl IP buffer, 500 μl IP buffer 

plus 500 mM NaCl, 500 μl wash II (10 mM Tris pH 8, 250 mM  LiCl, 1 mM EDTA, 0.5% Nonidet-

P40, 0.5% (w/v) Na deoxycholate), 500 μl TE buffer (50 mM Tris, 10 mM EDTA pH 7.5). Elution 
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of DNA was performed by addition of 100 μl elution buffer (50 mM Tris-HCl pH 7.5, 10 mM 

EDTA, 1% (w/v) SDS) and incubation at 65°C with rocking for 40 min. Beads were separated by 

magnetism and the supernatant harvested. Elucidate was diluted 2-fold in nuclease free H2O 

(Qiagen), followed by protein degradation with the addition of 4 mg/ml Pronase and incubated 

at 42°C for 2 hours and 65°C for 6 hours. DNA was subsequently purified using the Qiagen 

MiniElute kit and DNA quantified using the HS dsDNA Qubit (Invitrogen).   

 

2.7.3 Library Preparation for Next Generation Sequencing 

DNA was prepared for next generation high throughput sequencing using the Illumina ChIP-seq 

DNA sample prep kit according to the manufacturer’s protocol, with the addition of a second gel 

extraction step after PCR amplification to remove excess primer dimers. DNA size and purity 

was confirmed via HS DNA Bioanalyser (Agilent) and sequencing conducted on an Illumina 

HiSeq2000 sequencer (MRC Clinical Sciences Centre, Hammersmith). 

 

2.7.4 Site Identification from Short Sequence Reads (SISSRs) (Conducted in collaboration 

with Geraint Barton at CISBIO) 

GlnR binding regions were identified using SISSRs as described in (105). An example call of the 

SISSRs script is listed below: 

perl sissrs.pl -i VJ_V1.bed -o V1all_p0.005.bsites -m 1 -s 6988159 -p 0.005 -b 

VJ_V3.reallySorted.bed 

-i = input file in a BED file format (http://www.ensembl.org/info/website/upload/bed.html) 

-o = output results file 

-b = background (input control) file in bed format 

-m = fraction of the genome mappable by reads 

2.7.5 GlnR DNA Binding Consensus Sequence Generated by MEME (Conducted in 

collaboration with Geraint Barton at CISBIO) 

First, a fasta file was created of the 100 bases on either side of each peak, with sequences 

retrieved from the NCBI GenBank | CP000480 | Mycobacterium smegmatis str. MC2 155 

complete genome. (http://www.metalife.com/Genbank/118168627). This was performed in 
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R using the BSgenome library. The fasta file was then imported into motif based analysis online 

tool MEME (http://meme.nbcr.net/meme/) (10). 

2.7.6 COG Functional Classification (Conducted in collaboration with Geraint Barton at 

CISBIO) 

Genes for each of the M. smegmatis main functional roles were downloaded from JCVI 

(http://cmr.jcvi.org/). The Model Based Gene Set Analysis (MGSA)(14) R package was used for 

the functional enrichment analysis of the differentially expressed genes against the functional 

role categories. 
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2.8 DNA Mobility Shift Assay 

2.8.1 DIG 3’ Labelling of DNA for Mobility Shift Assay  

DNA was labelled using a DIG Oligonucleotide 3’ End Labelling Kit (Roche) according to 

manufacturer’s instructions. DNA of the region of interest was amplified using PCR and product 

size checked via agarose gel electrophoresis, before purification by gel extraction. DNA (100 ng) 

was made up to a volume of 10 µl with the addition of dH2O. The following components were 

added on ice directly to the tube containing the DNA; 4 µl of 5 x labelling buffer (final 

concentration 1 x; supplied), 4 µl CoCl2 solution (final concentration 5 mM; supplied), 1 µl DIG 

ddUTP (final concentration 0.05 mM; supplied) and 1 µl terminal transferase (20 Units/ µl; 

supplied). Following addition, the components were mixed and centrifuged briefly, before 

incubation at 37°C for 15 min. After incubation the mixture was placed on ice before the 

addition of 2 µl of 0.2 M EDTA (pH 8.0) to quench the reaction. Three µl of dH2O was then added 

to produce a final volume of 25 µl. 

Calculation of labeling efficiency was carried out by comparison of spot intensity with the 

control pre-labelled DNA (Supplied). Spots (1 µl) were placed on a nylon membrane ranging in 

concentration from neat to 1/1000 in 10-fold dilutions. The Membrane was developed as 

described in Section 2.8.3. Comparison of spot intensity between labelled DNA and the control 

pre-labelled DNA at various concentrations permitted calculation into the amount of labelled 

DNA present. 

 

2.8.2 GlnR:DNA Binding Reaction 

The DNA binding reaction was carried out by the addition, on ice, of; 0.4 ng of labelled DNA, 

specified amounts of protein of interest, 1 µl binding buffer (250 mM Hepes (pH 7.9), 1500 mM 

NaCl, 250 mM MgCl2) made up to a total of 10 µl with the addition of dH2O. The contents were 

mixed briefly and incubated at 37°C for 15 min. After incubation the mixture was returned to ice 

before the addition of 2.5 µl of TBE high density loading buffer (Invitrogen). Samples were 

immediately loaded onto a pre-electrophoresed gel (Section 2.8.3). 
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2.8.3 DNA Retardation Gel Running Conditions 

Pre-cast 6% DNA retardation gels (Invitrogen) were used to resolve DNA from the binding 

reactions. The Invitrogen XCell SureLock system was used to run the gel, assembled as per the 

manufacturer’s instructions. TBE running buffer (0.5 x) (Invitrogen) was used to fill the inside 

and outside chambers of the gel system. The gel was pre-run for 5 min at 100 V, before the wells 

were flushed and samples loaded. Running of the gel was carried out at 100 V ~60 min, until the 

loading dye had migrated 2/3 into the gel.  

 

2.8.4 DNA Transfer from DNA Retardation Gel to Nylon Membrane and Membrane 

Development 

The Invitrogen XCell SureLock Blot module was used to transfer the labelled DNA to a nylon 

membrane. Immediately following electrophoresis the blot module was assembled, with all 

components of the blot sandwich pre-soaked in 0.5 x TBE running buffer. The transfer sandwich 

composed of, from cathode to anode, blotting pads, filter paper, 6% DNA retardation gel, 

Hybond-N membrane (Amersham), filter paper, blotting pads. The blot module was assembled 

with 0.5 x TBE running buffer covering the transfer sandwich in the inner section, and H2O filled 

the outside chamber. DNA was electro-blotted onto the membrane for 1 hour at constant 30 V. 

The membrane was removed and DNA cross-linked to the membrane with a UV stratalinker 

(Stratagene). The membrane was either developed immediately following UV cross linking or 

stored overnight at 4°C. 

All components for the development of the membrane were source for the DIG wash and Block 

buffer set (Roche). Stocks of 1 x buffer concentrations were prepared and autoclaved before use. 

The membrane was rinsed briefly for 1 minute in 1 x washing buffer before incubation in 

blocking solution for 30 min. Anti-DIG-AP antibody solution (Anti-DIG-AP antibody diluted 

1:10,000 with 1x Blocking solution) 30 ml was applied to the membrane and incubated at RT 

with gentle agitation for 30 minutes. Antibody solution was subsequently drained from the 

membrane before addition of Wash buffer (30 ml) and incubated at RT for 15 min with gentle 

agitation. The wash step was repeated with fresh wash buffer for 15 min. Wash buffer was then 

drained from the membrane before it was equilibrated in 20 ml detection buffer for 5 minutes. 

The membrane was placed on a transparent film and 1 ml CSPD working solution (supplied) 

applied to cover the membrane. A transparent film was placed on top to spread the solution 

evenly over the membrane. This was then incubated at RT for 5 min before excess liquid 
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removed and the film containing the membrane incubated at 37°C for 10 min. The resulting 

bands were visualised via a LAS-3000 Fuji imager.  

 

2.9 Analytical techniques 

2.9.1 Aquaquant for Quantification of NH4 Media Concentration 

To detect the ammonium concentration in cell free medium Aquaquant (Merk) NH4 estimations 

were performed. Fifty µl of culture was centrifuged at 16, 000 x g for 2 minutes. A 10 µl sample 

of the supernatant was removed and transferred to a new eppendorf. Samples were diluted 50-

fold with the addition of 450 µl H20. A further 325 µl H2O was added to the solution, in addition 

to 125 µl NH4-1B (supplied). One micro spoon (supplied) of NH4-2B was dissolved in 1 ml H2O 

and 50 µl of this suspension add to the sample. The sample was mixed and incubated at RT for 5 

min. Two µl of NH4-3B was added to the solution, mixed, and incubated further for 7 min at RT. 

The colour change was detected via OD readings of the samples at 690 nm. These readings were 

compared to a standard curve of known ammonium concentrations. 
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CHAPTER  3:  Optimisation of Nitrogen Limiting  Conditions for 
Mycobacteria  
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3.1 Aim 

To optimise a defined mycobacterial growth medium that supports growth of M. smegmatis and 

M. tuberculosis and, using this defined medium, determine nitrogen limiting conditions in M. 

smegmatis. 

 

3.2 Introduction 

To date, limited reports are available which investigate mycobacterial growth during nitrogen 

limitation (3, 28, 58-61, 116, 126). Discrepancies exist regarding the nitrogen limiting 

conditions used, the nitrogen source, and the justification behind its use (Table 3.1). This 

inconsistency is confounded by the lack of supporting experimental evidence that during 

mycobacterial growth the medium used in these studies did limit nitrogen availability. As the 

aim of this project was to investigate the response of M. smegmatis to nitrogen limitation, it was 

important to first optimise and define our nitrogen limiting conditions.  

For the growth of mycobacteria a variety of complex and defined mediums are already 

developed (113). Most commonly used is the commercially sourced Middlebrook medium 

range. Commercially manufactured growth mediums offer less batch variation; however the 

manipulation of individual ingredients is arduous, in particular for this project, which requires 

the addition and removal of individual nitrogen sources. Sauton’s medium is a defined 

mycobacterial growth medium produced in house (113), which permits the manipulation of 

individual ingredients medium. In addition, Sauton’s medium has been used in liquid form since 

1912, and permits large scale growth of M. tuberculosis (113). With the addition of Tyloxapol 

and Zinc, it permits homogeneous growth of mycobacteria at comparable rate to that obtained 

in the widely used Middlebrook 7H9 medium (Data not shown). As such, Sauton’s medium was 

an appealing choice and it was subsequently chosen for use in this study. 
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Table 3.1. Previously published nitrogen-limiting mycobacterial growth medium. 

a Represents concentration of nitrogen source used or MSX added. First number represents 
nitrogen limiting conditions followed by nitrogen excess 
b Observed result in this study 
c Observed result Figure 3.4 
d MSX methionine sulfoximine. Blocks glutamine synthetase activity. 
 
  

Organism Medium 
Nitrogen 

source 
Conc a Comments Ref 

 

M. 
tuberculosis 

 

TSA 

 

Ammonium 
sulphate 

 

0.3 mM/ 
30 mM 

 

Contains OADC (potential 
nitrogen source).  

No differential growth 
phenotype noted between 

0.3 mM and 30 mM 
 

 

(28, 
116, 
126) 

M. 
tuberculosis 

7H9 
Ammonium 
sulphate 

3.8 mM/ 
38 mM 

3.8 mM ammonium 
sulphate is not limiting 

nitrogenb 
 

(60, 
61) 

M. smegmatis Kirchner’s 
Ammonium 
sulphate 

3 mM / 
60 mM 

60 mM ammonium 
sulphate causes a notable 

pH shiftb 

3 mM not limiting 

nitrogenc 
 

(59) 

M. smegmatis 7H9 MSX starvation 200 µM 
Non-specific MSXd affects 

may influence data 
 

(3) 

M. smegmatis 

7H9 
(lacking 

ammonium 
sulphate, 

glutamic acid 
and iron 

ammonium 
sulphate) 

No additional 
nitrogen 
source 

N/A 

Contains OADC (nitrogen 
source from bovine 

albumin V fraction and 
catalase) 

(3) 
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3.3 Results 

3.3.1 Modification of Sauton’s Medium for Optimal Growth of M. smegmatis and M. 

tuberculosis 

In order to study the nitrogen stress response in both M. smegmatis (this project) and M. 

tuberculosis (BBSRC LoLa project, Kerstin Williams), an important consideration was the 

development an identical defined culture medium that permitted growth of both mycobacterial 

species. Initial growth studies with M. tuberculosis revealed that the concentration of glycerol in 

the original Sauton’s medium (6%) was detrimental to M. tuberculosis growth (KW, Figure 3.1). 

In the standard Middlebrook 7H9 medium the glycerol concentration is 0.2% (v/v), making this 

a logical choice for the glycerol content in Sauton’s medium. Reduction of the glycerol content to 

0.2% enhanced the growth of M. tuberculosis and did not significantly alter the M. smegmatis 

growth rate (Figure 3.1). NMR analysis of the culture medium during M. smegmatis growth in 

0.2% glycerol also confirmed that the decreased glycerol concentration was not a limiting factor 

to growth (VB, Figure 3.2). Consequently, 0.2% (v/v) glycerol was used for all subsequent 

mycobacterial studies.  

Sauton’s medium contains Tyloxapol (0.025%), a non-ionic detergent to prevent bacterial 

clumping; however these detergents can present a problem with some downstream analysis 

applications, for example LC-MS analysis required for metabolomics for the LoLa project. As 

such, the minimum level of detergent that could be used without compromising bacterial 

growth was investigated. Based on studies carried out on M. tuberculosis (Kerstin Williams) the 

lowest level of detergent that did not affect growth based on OD600, and gave a homogenous 

suspension, was 0.015% Tyloxapol, reduced from the original 0.025% (Figure 3.3 A). Similar 

studies in M. smegmatis confirmed that 0.015% Tyloxapol levels did not affect growth (data not 

shown) and produced a homogenous cell suspension (Figure 3.3 B). Tyloxapol (0.015%) was 

therefore used in all subsequent mycobacterial studies. The optimised defined Sauton’s medium 

is displayed in Table 3.2; this medium was used for all subsequent growth curves (Figure 3.4 - 

Figure 3.8).  
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Table 3.2. Sauton's Medium Recipe; Original and Modified. 

The left-hand column displays the original Sauton’s medium recipe as described in (113). On the 
right, the modified Sauton’s recipe, with the changes highlighted in bold. 

* For nitrogen limiting medium asparagine is removed and ferric citrate used instead of ferric 
ammonium citrate. 

  

Original Sauton’s Medium Recipe 

 (113) 

Modified Sauton’s Medium Recipe  

(This study) 

KH2PO4 0.05 % (w/v) KH2PO4 0.05 % (w/v) 

MgSO4 0.05 % (w/v) MgSO4 0.05 % (w/v) 

Citric acid 0.2 % (w/v) Citric acid 0.2 % (w/v) 

* Ferric ammonium citrate 0.005% (w/v) * Ferric ammonium citrate 0.005% (w/v) 

Glycerol 6 % (v/v) Glycerol 0.2 % (v/v) 

* Asparagine 0.4 % (w/v) * Asparagine 0.4 % (w/v) 

ZnSO4 0.0001 % (v/v) ZnSO4 0.0001 % (v/v) 

Tyloxapol 0.025 % (v/v) Tyloxapol 0.015 % (v/v) 
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Figure 3.1. Effect of glycerol concentration on the growth of (A) M. tuberculosis 
(KW) and (B) M. smegmatis. 

M. tuberculosis and M. smegmatis were grown in Sauton’s modified medium (0.025% (v/v) 
Tyloxapol) with the addition of 0.2% (open triangles) or 6% (closed squares) (v/v) glycerol. 
Growth was measured by OD600nm.  
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Figure 3.2. NMR analysis of glycerol concentration in modified Sauton’s medium 
(0.2% v/v glycerol) during M. smegmatis growth (VB). 

M. smegmatis was grown in Sauton’s modified medium with the addition of 0.2% (v/v) glycerol 
and either 30 mM (open shapes) or 1 mM (closed shapes) ammonium sulphate (triangles) or 
glutamine (squares). Growth, measured by OD600nm, is displayed in Figure 3.1. Culture 
supernatant was subject to NMR analysis and glycerol intensity plotted as a percentage of 
original concentration.  
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Figure 3.3. Effect of Tyloxapol concentration on the growth of (A) M. tuberculosis 
and (B) M. smegmatis (KW). 

(A) M. tuberculosis was grown in Sauton’s modified medium (0.2% (v/v) glycerol) with a range 
of Tyloxapol concentrations. Growth was measured by OD600nm. (B) Image displaying growth of 
M. smegmatis in medium with 0.015% Tyloxapol or without Tyloxapol addition. Cells appeared 
to adhere to the side of the flask in medium containing no Tyloxapol. 
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3.3.2 Optimisation of Nitrogen Limiting Conditions for M. smegmatis 

Nitrogen limiting medium was optimised by analysing the growth of M. smegmatis in a range of 

glutamine and ammonium sulphate concentrations. As the preferred nitrogen source for 

mycobacteria is unknown, two different nitrogen sources were chosen for initial study. M. 

smegmatis was grown as described in Section 2.1.2. Essentially, nitrogen free Sauton’s medium, 

was supplemented with the addition of a single nitrogen source at various concentrations. 

Bacterial growth was monitored over a 24 hour period by OD600nm and cfu/ml. Growth of M. 

smegmatis was proportional to the concentration of nitrogen source contained within the 

medium. Minimal growth was observed in medium containing no nitrogen source (Figure 3.4).  

For nitrogen limiting medium, a nitrogen concentration had to be determined that would 

stimulate an observable nitrogen-stress response by OD600, yet yield enough cells for 

downstream analysis. At very low nitrogen levels (0.3 mM), although growth rate of M. 

smegmatis was greatly reduced in comparison to the non-nitrogen limiting medium, the density 

of cells (OD600nm ~0.4 corresponding to a cfu/ml of 5 x107) was quite low. Potentially, this low 

cell number may have proved problematic when obtaining sufficient cells for downstream 

analyses, such as RNA extraction for microarray analysis. However, a concentration of 1 mM 

nitrogen source produced a reduction in growth rate observed by OD600nm and a cfu/ml of 5 x108 

at the point of nitrogen limitation (Figure 3.5 and Figure 3.6). This was deemed more suitable 

for the downstream applications required in this study.  

To confirm our optimised medium was nitrogen limiting, the concentration of nitrogen present 

in the supernatant during M. smegmatis growth, was determined. Aquaquant analysis was 

performed to determine the concentration of ammonium ions in the medium. Samples were 

centrifuged to pellet the cells and the supernatant retained for further analysis. The first stage of 

the Aquaquant reaction adjusts the pH to 13, which converts the equilibrium of ammonium to 

ammonia. Ammonia then reacts with a chlorinating agent to form a monochoramine, which in 

turn reacts with thymol to form a blue indophenol derivative producing a detectable colour 

change. The ammonium concentration was then calculated by OD690nm comparison to a standard 

curve of known ammonium concentrations. 

Aquaquant analysis revealed that no ammonium remained in the culture medium after 11 hours 

M. smegmatis growth, in medium containing 1 mM ammonium sulphate (Figure 3.7). This 

correlated with a decrease in M. smegmatis growth rate from this time point onwards (Figure 

3.6). NMR analysis was conducted on culture supernatants collected from bacteria grown in 1 

mM glutamine and readings indicated that glutamine was depleted from at 11 hours (VB; data 

not shown), which again correlated with a decrease in growth rate (Figure 3.5). This suggests 
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that nitrogen depletion leads to the reduction in growth rate seen in our nitrogen limiting 

medium when compared to our nitrogen excess medium. 

A non-limiting, nitrogen excess medium was also established. Initial results indicated that 30 

mM or 3 mM of both glutamine and ammonium sulphate produced similar growth dynamics to 

the original un-modified Sauton’s medium (Figure 3.4). Analysis using Aquaquant to determine 

the ammonium concentration left in the medium at a given point indicated that in the 3 mM 

cultures ammonium levels were close to depletion by 24 hours (Data not shown). In contrast, 

Aquaquant of the high (30 mM ammonium sulphate) supernatant showed nitrogen did not run-

out (Figure 3.7) and NMR analysis showed no run-out of glutamine (Data not shown; VB). In 

addition, analysis of the medium’s pH showed that for concentrations greater than 30 mM 

ammonium sulphate there was a notable shift in the starting pH of the medium (ammonium 

sulphate 1 mM: pH 7.4, 30 mM: pH 7.2 and 60 mM: pH 7.1). Therefore, 1 mM nitrogen source 

was used for our nitrogen limiting medium and 30 mM for our nitrogen excess medium. 

In general, both glutamine and ammonium sulphate gave similar growth rates and phenotypes 

in excess and nitrogen limiting conditions (Figure 3.5 and Figure 3.6). As the phenotypes were 

similar it was assumed that the responses generated, as a consequence of nitrogen limitation, 

would be analogous. With Aquaquant detection permitting a fast and relatively simple measure 

of the rate of ammonium depletion, ammonium sulphate was consequently chosen for use from 

this point on as the nitrogen source in Sauton’s medium.  
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Figure 3.4. Growth of M. smegmatis in Sauton’s modified medium with nitrogen 
sources at various concentrations. 

M. smegmatis was grown in Sauton’s modified medium with either (A) glutamine or (B) 
ammonium sulphate at concentrations of 30 mM (open circles), 3 mM (open squares) or 0.3 mM 
(closed triangles). Sauton’s modified medium with no nitrogen addition (X) and Original 
Sauton’s medium (closed circles), with asparagine and ferric ammonium citrate as the nitrogen 
source included as controls. Growth was measured by monitoring OD600nm, data represents the 
average (±SD) of three independent experiments.  
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Figure 3.5. Growth of M. smegmatis in Sauton’s modified medium with 1 mM or 30 
mM glutamine. 

M. smegmatis was grown in Sauton’s minimal medium with the addition of either 30 mM (open 
circles) or 1 mM (closed triangles) glutamine. Growth was monitored by (A) OD600nm  or (B) 
cfu/ml. Nitrogen run out in the (1 mM) glutamine containing medium was determined to be at 
11 hours by NMR analysis (highlighted by the red oval). Data represents the average (±SD) of 
three independent experiments.  
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Figure 3.6. Growth of M. smegmatis in Sauton’s modified medium with 1 mM or 30 
mM ammonium sulphate. 

M. smegmatis was grown in Sauton’s minimal medium with either 30 mM (open circles) or 1 
mM (closed triangles) ammonium sulphate. Growth was monitored by (A) OD600 or (B) cfu/ml. 
Nitrogen run out in the (1 mM) nitrogen containing medium was determined by Aquaquant 
analysis to be at 11 hours (highlighted by a red oval) (Figure 3.7). Data represents the average 
(±SD) of three independent experiments.   
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Figure 3.7. Aquaquant analysis of ammonium concentration in Sauton’s modified 
medium during M. smegmatis growth. 

Aquaquant analysis was conducted on the supernatants taken during M. smegmatis growth 
(Figure 3.6) in Sauton’s modified medium containing low (closed triangles) 1 mM ammonium 
sulphate or (open circles) 30 mM ammonium sulphate. The graph displays the Aquaquant 
analysis readings as a percentage of the starting ammonium concentration. Depletion of 
ammonium from the 1 mM medium occurred at 11 hours, correlating with the reduction in 
growth rate observed in Figure 3.6.  
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3.3.3 Spiking of M. smegmatis Cultures in Nitrogen Excess and Limiting Medium with 

Nitrogen Source 

In order to confirm conditions were limiting for only nitrogen and not any other substance, 

cultures were spiked with the addition of an exogenous nitrogen source at the time of nitrogen 

limitation. Cells were grown for 12 hours in Sauton’s medium, containing 1 mM or 30 mM 

ammonium sulphate. It was assumed, that if nitrogen limitation was limiting growth of M. 

smegmatis, nitrogen addition would promote growth. Both nitrogen limiting and excess 

ammonium sulphate containing medium was spiked with the addition of 10 mM ammonium 

sulphate, made up in water; water alone was added as a no nitrogen-spike control. Growth was 

monitored by measuring OD600nm and cfu/ml, with Aquaquant readings taken to confirm 

nitrogen run out in the low nitrogen sample. 

As expected, growth was not affected by the addition of 10 mM ammonium sulphate to the 

nitrogen excess (30 mM) cultures (Figure 3.8). Addition of water alone did not alter the growth 

dynamics of the control sample and Aquaquant readings confirmed the presence of nitrogen in 

these samples at the point of nitrogen addition. 

In both the control and the spiked nitrogen limiting cultures (1 mM ammonium) the nitrogen 

had run out by 12 hours (Figure 3.8). With the addition of 10 mM ammonium sulphate to the 

culture at 12 hours, growth rate increased compared to the water-spiked control (Figure 3.8 A); 

cfu/ml readings confirmed this observation (Figure 3.8 B). Growth of the nitrogen-spiked 

culture was at a similar rate to the nitrogen excess, non-limiting, medium and the final OD600nm 

was similar. This observation provides definitive evidence that 1 mM nitrogen is limiting 

growth rate in our optimised medium. Therefore, for all subsequent analysis nitrogen excess 

medium contained 30 mM nitrogen and nitrogen limiting medium contained 1 mM. 
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Figure 3.8. Growth of M. smegmatis following addition of exogenous (10 mM) 
ammonium sulphate after nitrogen depletion.  

M. smegmatis was grown in Sauton’s minimal medium with 1 mM (triangles) or 30 mM (circles) 
ammonium sulphate for 12 hours. At 12 hours 10 mM ammonium sulphate was added to the 
cultures (spike, open shapes), or water alone (control, coloured shapes). Growth was measured 
with change in (A) OD600nm and (B) cfu/ml. (C) Aquaquant analysis on the culture supernatants 
confirming nitrogen run out at 12 hours for the low cultures (closed triangles) and ammonium 
addition (10 mM) at 12 hours to the spiked sample (open triangles). Data represents the 
average (±SD) of three independent experiments. 
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3.4 Discussion 

The overall aim of this project was to investigate mycobacterial adaptation to nitrogen-

limitation, therefore it was a fundamental prerequisite that our defined liquid medium was 

limiting for nitrogen. To date, a few reports are available that investigate mycobacterial growth 

during nitrogen limitation (3, 28, 58-61, 116, 126). However, inconsistency between the 

nitrogen limiting conditions used, and the reasons behind their use, made reliance on these 

studies difficult.   

Mycobacterial nitrogen-limiting conditions exist in the literature, however each study fails to 

convincingly justify the medium choice and nitrogen concentrations used (Table 3.1) (28, 58-61, 

116, 126). Pashley et al. developed a M. tuberculosis liquid medium, TSA, supplemented with 0.1 

mM and 30 mM ammonium sulphate for nitrogen limiting and excess conditions (116). 

However, no difference in the growth dynamics of M. tuberculosis were observed between the 

two conditions (116). One possibility for the lack of variation is that OADC, a supplement in TSA, 

contains protein sources (Bovine Albumin V fraction and catalase), and possible degradation 

may lead to the availability of an alternative nitrogen source. Harth et al. used 7H9 medium, 

supplemented with ammonium sulphate (3.8 mM limiting and 38 mM excess) (60, 61). While 

Harper et al. used Kirchner's minimal medium in which asparagine was replaced with 

ammonium sulphate concentrations of 3 mM and 60 mM (59). We noted that the pH of our 

medium, containing greater than 30 mM ammonium sulphate, decreased from pH 7.4 to 7.1, 

possibly influencing the growth dynamics seen for the medium containing 60 mM ammonium 

sulphate. In addition, Aquaquant analysis during our investigations indicated that 3 mM 

ammonium sulphate was only depleted from M. smegmatis cultures when the cells had reached 

stationary phase, after 24 hours growth. As the samples in these studies were taken at mid-log it 

queries whether this medium did limit nitrogen availability and whether their conclusions with 

respect to nitrogen-limitation are valid (59-61).  

An alternative approach to investigate M. smegmatis growth under nitrogen-limitation is to 

induce nitrogen-starvation with the addition of methionine sulfoximine (MSX) (3, 60). MSX 

addition to growing cells has been demonstrated to block glutamine synthetase (GS) activity, 

preventing glutamine metabolism via this pathway (60, 96). A concern using this approach 

arises; the nitrogen starvation response is not necessarily being investigated, but rather the 

effect of a non-functional GS. Transcriptional data may then only reflect the product, glutamine, 

starvation in the cell rather than complete nitrogen starvation, as other nitrogen sources are 

contained in the growth medium. In addition, non-specific effects of MSX may result in 

inaccurate representation of cellular responses. Consequently, this approach was determined to 
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be unsuitable for use in this study. Thus we concluded, after examination of the published 

medium, for confidence in our results we first needed to optimise our own nitrogen-limiting 

conditions. 

For the growth of mycobacteria a variety of complex and defined mediums are already 

developed (113). Most commonly used is the commercially sourced Middlebrook range. 

Commercially manufactured growth mediums offer less batch variation, however the 

manipulation of individual ingredients is laborious. Defined mycobacterial growth medium 

produced in house, such as Sauton’s, permits the manipulation of individual ingredients. 

Sauton’s medium has been used as a mycobacterial liquid growth medium since 1912, and 

supports large scale growth of M. tuberculosis (113). As such Sauton’s medium was assessed for 

its suitability for use in this study.  

Despite the established use of Sauton’s as a mycobacterial liquid growth medium, problems 

were noted with initial growth analysis. The high glycerol content of the medium proved to be 

detrimental to M. tuberculosis H37Rv growth. Middlebrook 7H9 contains 0.2% (v/v) glycerol, 

and this concentration was used in Sauton’s medium. Reduction of the glycerol content in 

Sauton’s medium to 0.2% (v/v) enhanced the growth of M. tuberculosis and did not significantly 

alter the M. smegmatis growth rate. NMR analysis of the culture-supernatant collected during M. 

smegmatis growth in 0.2% glycerol also confirmed that the decreased glycerol concentration 

was not a limiting factor to growth. Further modification, to reduce the level of Tyloxapol (a 

non-ionic detergent) in the medium, was examined. In the absence of a detergent the 

hydrophobic nature of the mycobacterial cell-surface results in clumping of bacilli and reduced 

bacterial growth (162). A non-ionic detergent prevents clumping, providing a homogenous 

solution, resulting in a reproducible and increased growth rate (162). Despite their advantages, 

detergents can be problematic for some analysis applications, such as LC-MS metabolomic 

profiling required for the LoLa project (Kerstin Williams and Volker Behrends). As such, the 

minimum level of Tyloxapol that could be used without compromising bacterial growth was 

determined to be 0.015%, reduced from 0.025%. These alterations, reduction in glycerol (0.2% 

v/v) and Tyloxapol (0.015% v/v) concentrations, gave us the basis for our standard liquid 

growth medium, permitting further investigation into the effects of nitrogen availability on 

mycobacterial growth.  

Once the composition of Sauton’s medium had been optimised, M. smegmatis growth in various 

concentrations of nitrogen sources was examined. As the preferred nitrogen source and signal 

for nitrogen-limitation in mycobacteria is unknown two nitrogen containing compounds, 

ammonium sulphate and glutamine, were investigated. Initially, growth analysis in 0.3 mM 
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ammonium sulphate and glutamine, indicated that at the point of nitrogen-limitation cell 

density was low, problematic for downstream applications such as ChIP-seq and microarray 

analysis. A nitrogen concentration of 3 mM was also examined, as this concentration had been 

used previously for nitrogen-limitation (59-61). However, at 3 mM a growth phenotype similar 

to 30 mM control and the original Sauton’s medium was observed, suggesting that 3 mM 

nitrogen was not limiting. Finally, M. smegmatis grown in a nitrogen concentration of 1 mM 

produced a clear phenotype when compared to 30 mM and the original Sauton’s medium. 

Quantification of nitrogen remaining in the medium confirmed a correlation between reduced 

growth rate and nitrogen depletion. In addition, at the point the growth rate started to reduce 

under nitrogen limitation (1 mM glutamine or 1mM ammonium sulphate) cell density was 

approximately 5 x108 cfu/ml, a level considered more suitable for downstream applications. To 

further confirm 1 mM ammonium sulphate was limiting M. smegmatis for nitrogen only, 

exogenous ammonium sulphate was added back to the medium at the point of nitrogen run-out. 

Spiking of the 1 mM medium with exogenous nitrogen increased growth rate, when compared 

to the non-spiked control, to a level comparable to the 30 mM medium. This observation 

provides further evidence that 1 mM nitrogen is limiting growth rate and nitrogen addition after 

run-out can restore growth. Consequently 1 mM nitrogen source, glutamine or ammonium 

sulphate, was chosen for our nitrogen limiting medium. 

A nitrogen excess medium, which did not limit the growth rate of mycobacteria, was also 

required for comparison in this study. Early observations had demonstrated that a 

concentration of 3 mM for glutamine and ammonium sulphate produced a similar phenotype to 

the 30 mM nitrogen source and the original Sauton’s medium. However, Aquaquant analysis on 

the 3 mM ammonium sulphate sample indicated that nitrogen was depleted after 24 hours 

growth when the cells had entered stationary phase, unsuitable for a nitrogen-excess medium. 

Growth rate similar to the original Sauton’s medium was also noted for 30 mM ammonium 

sulphate and glutamine concentrations. Aquaquant and NMR analysis confirmed that for the 30 

mM concentrations the nitrogen contained in the medium had not been depleted during growth. 

Spiking of the medium at 12 hours, the point of nitrogen run out for the limiting medium, did 

not affect the growth rate of M. smegmatis, indicating that nitrogen was not a limiting factor to 

growth in Sauton’s medium containing 30 mM ammonium sulphate. Consequently our nitrogen 

excess medium was determined to be 30 mM ammonium sulphate and 30 mM glutamine.  

Due to insufficient evidence regarding the merits of published nitrogen-limiting conditions, we 

began by establishing and characterising a new medium to limit nitrogen availability for 

mycobacteria with two nitrogen sources. However, the growth phenotypes for ammonium 

sulphate and glutamine were comparable, and due to the relative ease of quantifying the 
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amount of ammonium ions in the medium, ammonium sulphate was chosen as the nitrogen 

source for all subsequent analysis. Nitrogen limiting and excess conditions were therefore 

established to be 1 mM and 30 mM ammonium sulphate.   
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CHAPTER  4:  Aspartate  48  is Essential  for the  GlnR-Mediated  

Transcriptional  Response  to Nitrogen Limitation in 

Mycobacterium smegmatis  
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4.1 Aim 

To investigate the role of the putative GlnR phosphorylation site, Asp-48, with regards to M 

smegmatis GlnR functionality during nitrogen limitation. Primarily focusing on the role of GlnR 

Asp-48 with regards to the transcriptional response of GlnR regulated genes during nitrogen 

limitation. 

 

4.2 Introduction  

GlnR is thought to be the global transcriptional regulator in mycobacteria in response to 

nitrogen limitation, however the activation mechanism and post-translational modifications of 

GlnR are unknown. Transcript levels of glnR do not significantly alter during nitrogen limitation, 

suggesting glnR transcription is not regulated in response to nitrogen availability, but rather 

GlnR activity is subject to an alternate control mechanism (3). Bioinformatic analysis of M. 

smegmatis GlnR places the protein within the OmpR family of two-component response 

regulators (3). Typically, OmpR-type response regulators are transcriptional activators, 

phosphorylated by a sensor kinase in response to extracellular stimuli (80). A prominent 

feature of the OmpR family is a highly conserved aspartate residue, which undergoes 

phosphorylation by a sensor kinase. Known phosphorylation sites for related proteins include 

OmpR Asp-55, phosphorylated by OmpZ, PhoB Asp-53 phosphorylated by PhoR, and CheY Asp-

57 phosphorylated by CheA (39, 41, 205). Sequence alignments of M. smegmatis GlnR to other 

OmpR-family response regulators indicates the presence of a corresponding conserved residue, 

Asp-48, suggesting that GlnR may undergo phosphorylation during nitrogen limitation (Figure 

4.1) (3). However, phosphorylation of GlnR has yet to be confirmed, possibly due to the labile 

nature of the phospho-aspartate bond making the detection of this modification by conventional 

methods problematic.  

Consequently, the importance of this putative phosphorylation site, with regard to the 

functionality of GlnR in response to nitrogen limiting conditions, was investigated. In this study, 

a recombineering approach was applied to create a chromosomal point mutation in M. 

smegmatis, changing the GlnR Asp-48 residue to alanine, and the effects studied. 
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4.3 Results  

4.3.1 Construction of GlnR_D48A Mutant  

M. smegmatis cells containing the recombineering vector pJV128 were used to generate a 

chromosomal point mutation. The pJV128 plasmid contains a mycobacterial phage gene 

product, Che9c 61, which facilitates ssDNA recombination (174). In addition, the plasmid 

pJV128 contains a hygromycin resistance gene with two adjacent nonsense mutations 

inactivating its function (hygS). Colonies that have undergone recombination can therefore be 

selected by co-electroporation of a 100 base oligonucleotide to correct the hygS mutation, 

producing hygromycin resistant colonies. As such, a chromosomal glnR aspartate 48 to alanine 

(GlnR_D48A) substitution was generated using this approach. Two single-stranded 

oligonucleotides one containing the GlnR_D48A point mutation, the other to repair the hygS 

cassette, were co-transformed into M. smegmatis_ pJV128 cells.  

A mismatch amplification mutation assay (MAMA) screen was performed to selectively amplify 

the glnR point mutation (Section 2.5.6). The principal of MAMA PCR is that a single nucleotide 

mismatch at the 3′ extremity of the annealed reverse primer renders Taq polymerase unable to 

extend the primer (29, 160). Therefore, the absence of the specific PCR product reveals a 

deviation from the desired DNA sequence. As we were searching for a two base pair change 

within the msmeg_5784 gene, we incorporated these changes into the 3’ extremity of the 

reverse primer. As such a PCR product would be produced if the D48A mutation were present, 

while the wild type produces no product. Over 100 colonies were screened to find a positive 

result for the GlnR_D48A substitution, and Figure 4.2 displays a positive PCR product for the 

chromosomal point mutation (Figure 4.2 A). Genome sequencing of the glnR gene was 

subsequently performed on the GlnR_D48A mutant to confirm the desired chromosomal point 

mutation and that no other changes were present.  

Counter selection of the sacB gene on pJV128 allowed removal of the plasmid and was 

confirmed via PCR. The pJV128 plasmid contained a sacB casette that confers sucrose 

sensitivity, allowing selection on sucrose for colonies that no longer contain pJV128 (117, 118). 

Serial dilutions of the mutant were plated on 2% sucrose and replica plated on medium 

supplemented with hygromycin and kanamycin. Colonies which displayed sucrose resistance 

and antibiotic sensitivity, had lost plasmid pJV128. PCR was then performed as described on a 

sucrose resistant colony with primers designed to amplify the hygromycin cassette present on 

the pJV128 plasmid. Figure 4.2 B indicates the colony had lost pJV128. As a result we obtained 

an unmarked chromosomal point mutation. 
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Figure 4.2. MAMA PCR of M. smegmatis GlnR_D48A mutant and PCR to confirm 
loss of plasmid pJV128 after sucrose selection. 

 
(A) MAMA PCR on M. smegmatis WT and GlnR_D48A genomic DNA. GlnR_D48A displays a 350bp 
fragment indicating required incorporation of the point mutation onto the chromosome in this 
strain. (B) PCR on the hygromycin cassette on the pJV128 vector. PCR was performed on mini 
preparations from selected strains. Strains containing the hygromycin cassette show product 
amplification at 600 bp. Lack of amplification in the M. smegmatis GlnR_D48A strain indicates 
plasmid loss. 
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4.3.2 Construction of the glnR Deletion Strain 

In order to study GlnR mediated transcriptional activation during nitrogen limitation, a M. 

smegmatis glnR deletion strain was required for comparison. For the generation of the glnR 

deletion mutant, the recombineering approach was again utilised (175, 176). M. smegmatis 

strains containing the pJV126 plasmid were used. This plasmid again contained a sacB cassette 

for selective removal of pJV126, and also phage genes encoding Che9c 60 and 61 enabling 

homologous recombination of linear dsDNA (118, 175, 176). As such an allelic exchange 

substrate (AES) was generated as described in Section 2.5.4, permitting homologous 

recombination of 800 bp regions flanking the glnR gene. A hygromycin cassette was inserted 

between the flanking regions, ultimately creating a marked deletion strain. Linear AES dsDNA 

was transformed into M. smegmatis_pJV126 and putative glnR deletion colonies were then 

selected on hygromycin plates. 

 

Putative null mutants were confirmed by PCR with oligonucleotides specific for the hygromycin 

cassette and a site outside the glnR flanking regions used to construct the mutant. As such, PCR 

products would only be obtained if the hygromycin cassette had inserted into the correct 

location on the chromosome. PCR products of the expected size (approximately 1.5 kb) were 

obtained for the GlnR deletion mutant; no products were obtained for the wild type strain 

(Figure 4.3 A). Additional confirmation that the glnR gene had been disrupted was provided by 

Western blot, using a polyclonal GlnR specific antibody (Section 2.4.3), showing the absence of 

the corresponding 27.9 kDa GlnR protein in the mutant strain compared to the wild type (Figure 

4.3 B).  
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Figure 4.3. Confirmation of a M. smegmatis glnR deletion strain. 

(A) PCR confirming the construction of a glnR deletion strain. Amplification of 1.5 kbp 
fragments indicate inclusion of the hygromycin cassette at the site of the glnR gene. (B) Western 
blot analysis of M. smegmatis strains incubated with an affinity purified polyclonal anti-GlnR 
antibody. Lane 1: 12.5ng of recombinant M. smegmatis His-GlnR protein, Lane 2: M. smegmatis 
wild type cell extracts (20 µg) and Lane 3: M. smegmatis GlnR deletion strain cell extracts (20 
µg). Lane 2 displays a band at 28 kDa corresponding to the native GlnR protein, which is absent 
in the mutant.  
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4.3.3 Generation of GlnR_D48A and ΔglnR Complementation Strains 

For complementation of the M. smegmatis glnR mutants, plasmid pMV306 was chosen (157). 

Plasmid pMV306 is an integrating vector, integrating at the attB site on the mycobacterial 

chromosome, providing plasmid stability for long-term growth analysis (157). The glnR gene 

was cloned into the vector under its own predicted promoter; an 80 bp region up-stream of the 

glnR gene was incorporated to allow inclusion of promoter elements. Cloning was performed as 

described and the construct sequence was confirmed via plasmid sequencing. Mutant M. 

smegmatis strains were transformed with the plasmid and glnR expression from the plasmid 

was confirmed via qRT-PCR (Figure 4.4).  

 

 

 

 

 

Figure 4.4. qRT-PCR to show glnR expression levels during nitrogen limitation. 

Figure represents the average expression of glnR from three independent experiments relative 
to sigA. Expression of glnR is restored in the glnR deletion strain by complementation of the 
glnR gene on the pMV306 plasmid. 
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4.3.4 GlnR Mutants Exhibit Reduced Growth Rates During Nitrogen Limitation  

Growth kinetics of the M. smegmatis wild type, D48A and ΔglnR strains grown in the optimised 

nitrogen limiting and nitrogen excess conditions were analysed. Growth dynamics of each strain 

were monitored by OD600 and CFU/ml over 24 hours. Aquaquant readings were also taken to 

determine ammonium levels in the supernatant.  

 

All M. smegmatis strains grew similarly in nitrogen excess conditions (Figure 4.5). However, 

during nitrogen limitation the glnR deletion and GlnR_D48A mutants exhibited a reduced 

growth rate when compared to the wild type (Figure 4.6). Growth rate could be restored by 

complementing both mutants by reintroduction of the glnR gene on the pMV306 vector (Figure 

4.6). Another interesting observation was the increased levels of ammonium in the media, 

suggesting reduced uptake of ammonium by both mutants (Figure 4.6). Again ammonium 

uptake levels could be restored to wild type levels by reintroduction of a functional glnR gene. 

As such it is apparent that both mutants exhibit a reduced growth phenotype during nitrogen 

limitation, with both the glnR deletion strain and GlnR_D48A mutant having very similar 

phenotype to each other, suggesting that the D48A residue is important for wild type growth 

rate in nitrogen limiting media. As such the transcriptomic effect of the D48A and ΔglnR 

mutants were investigated.  

  

105



 

 

 

 

 

 

 

 

 

Figure 4.5. Growth analysis of wild type M. smegmatis and glnR mutants in 
nitrogen excess medium (30 mM ammonium sulphate). 

Growth analysis monitored by OD600 of M. smegmatis wild type (open diamonds), GlnR_D48A 
(closed squares) and GlnR deletion (open triangles). Data represents the average (±SD) of three 
independent experiments. 
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Figure 4.6. Growth analysis of wild type M. smegmatis and glnR mutants in 
nitrogen limiting medium (1 mM ammonium sulphate). 

(A & B) Growth analysis monitored by OD600 and CFU/ml respectively. (C) External ammonium 
concentration during growth in nitrogen limitation.  

M. smegmatis wild type (open diamonds), GlnR_D48A (closed squares), GlnR deletion (open 
triangles) strains grown in nitrogen limiting conditions. Complementation strains indicated 
with a hashed line. Data represents the average (±SD) of three independent experiments.   
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4.3.5 Transcriptomic Response to Nitrogen Limitation is Abolished in GlnR Mutants  

Due to the reduction in growth rate of the GlnR_D48A strain the transcriptomic response during 

nitrogen limitation was investigated. M. smegmatis GlnR has previously been shown to control 

the transcription of five nitrogen metabolism genes during nitrogen limitation. As such three of 

these genes glnA1 (msmeg_4290), amtB (msmeg_2425) and amt1 (msmeg_6259) were chosen 

for initial analysis (3). Four other genes were also chosen for investigation due to their 

proposed role in nitrogen metabolism in mycobacteria (5). These were amtA (msmeg_4635), 

nirB (msmeg_0427), gltD (msmeg_3226), and glnE (msmeg_4293). Expression of glnR 

(msmeg_5784) was also analysed, to confirm that any transcriptional difference observed was a 

direct result of the point mutation and not reduced GlnR expression levels. Wild type and 

mutant strains were grown in nitrogen limiting or nitrogen excess conditions for 13 hours. 

Expression values for each gene analysed were compared to the housekeeping gene sigA 

(msmeg_2758) whose expression did not alter in the conditions tested (data not shown).  

Genes previously shown to be under GlnR control, glnA1, amtB and amt1, were all highly up 

regulated in the wild type during nitrogen limitation when compared to their expression in 

nitrogen excess conditions (Figure 4.7, Table 4.1). Expression of glnA1 was induced in wild type 

from nitrogen excess to nitrogen limiting conditions by approximately 13-fold, amtB 153-fold 

and amt1 219-fold (Table 4.1), confirming that the conditions used were stimulating a nitrogen 

stress response in M. smegmatis. However, there was no induction of these genes in both GlnR 

mutant strains grown under nitrogen limitation (Figure 4.7, Table 4.1). To account for the fact 

that the GlnR mutants deplete the external ammonium at a slower rate than the wild type 

(Figure 4.6), and therefore may not initiate a stress response at 13 hours, qRT-PCR was 

repeated using RNA samples taken at 19 hours, when external nitrogen was no longer 

detectable. However, there was also no induction of glnA1, amtB or amt1 gene expression in 

either mutant strain at this later time point (data not shown).  

To exclude the possibility that the GlnR_D48A mutation inhibited glnR expression, leading to the 

observed null phenotype of this strain, transcriptomic analysis of glnR levels were performed. 

No significant change in glnR expression was observed under nitrogen limiting conditions for 

either the wild type or GlnR_D48A mutant (Figure 4.7, Table 4.1), confirming previous 

observations that M. smegmatis glnR expression levels are not subject to transcriptional 

regulation during nitrogen limitation (3). As expected there was no detectable glnR expression 

in the GlnR deletion strain (Figure 4.7, Table 4.1). 

Transcriptional control of other genes proposed to be involved in mycobacterial nitrogen 

metabolism, not shown previously to be under GlnR control, was subsequently investigated. 
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Fold change represents the change in gene expression from nitrogen excess to nitrogen limiting 

conditions, with positive values representing genes that are significantly upregulated upon 

nitrogen limiting conditions. Figure 4.8 and Table 4.1 displays that amtA, gltD and nirB were up-

regulated in the wild type strain in response to nitrogen limitation at 13 hours, compared to 

nitrogen excess, while glnE expression was down regulated. During nitrogen limitation, amtA 

was induced approximately 337-fold, nirB 103-fold, and gltD 8-fold; glnE was down regulated 3-

fold. Again, no significant change in the expression levels of these genes was observed in the 

GlnR mutants at either 13 hours (Figure 4.8, Table 4.1) or 19 hours (data not shown). Indicating 

that a functional GlnR is necessary to induce expression of these genes upon nitrogen limitation. 

 

 

 

 

a Average fold change of nitrogen excess vs nitrogen limitation. Data normalised to sigA and 
represents three independent samples.  
b Expression not detected 

 

Table 4.1. Relative changes in gene expression in wild type and GlnR mutants 
during nitrogen limitation. 

Positive fold change values represent an up-regulation of gene expression during nitrogen 
limitation (1 mM ammonium sulphate) compared to nitrogen excess (30 mM ammonium 
sulphate); negative fold change values indicate a down-regulation in gene expression during 
nitrogen limitation compared to nitrogen excess. Significant changes (P<0.01) in gene 
expression are shown in bold.  

 

 Wild Type GlnR_D48A glnR Deletion 

  
Fold 

changea 
 

 
SD 

      
     P 

 
Fold 
change 

 
SD 

    
  P  

 
Fold 
change 

 
SD 

  
   P  

amt1 218.7 ± 34.1 < 0.01   0.56 ± 0.05 0.02 0.64 ± 0.21 0.22 
amtB 152.9 ± 68.2 < 0.01  1.0 ± 0.07 0.54 0.91 ± 0.14 0.32 
glnA1 13.2 ± 0.86 < 0.01  1.0 ± 0.14 0.95 0.93 ± 0.26 0.76 
amtA 336.5 ± 101.2 < 0.01  1.2 ± 0.3 0.29 1.3 ±0.31 0.35 
nirB 102.6 ± 30.0 < 0.01   NDb   ND  ND  ND    ND  ND 

gltD 7.5 ± 1.2 < 0.01  1.7 ± 0.12 0.02 2.6 ± 0.56 0.03 
glnE -3.2 ± 0.42 < 0.01 -1.4 ± 0.19 0.07 -1.4 ± 0.15 0.05 
glnR 2.5 ± 0.05   0.28  1.6 ± 0.54 0.19  ND   ND  ND 
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Figure 4.7. qRT-PCR analysis of (A) amtB, (B) glnA1 and (C) glnR expression in 
response to nitrogen availability. 

Cells were grown in nitrogen excess (30 mM ammonium sulphate) (light bars) or nitrogen 
limiting (1 mM ammonium sulphate) (dark bars) conditions for 13 hours. Complemented 
mutant strains were only examined under nitrogen limiting condition. Expression level of 
mRNA is given as expression normalised to sigA. Data presented is the mean expression value 
from three independent biological samples. Error bars represent standard deviation with 
statistically significant mRNA expression values (P<0.01) between nitrogen excess and limiting 

conditions denoted by *.  
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Figure 4.8. qRT-PCR analysis of (A) amtA (B) nirB and (C) glnE, expression in 
response to nitrogen availability. 

Cells were grown in nitrogen excess (30 mM ammonium sulphate) (light bars) or nitrogen 
limiting (1 mM ammonium sulphate) (dark bars) conditions for 13 hours. Complemented 
mutant strains were only examined under nitrogen limiting condition. Expression level of 
mRNA is given as expression normalised to sigA. Data presented is the mean expression value 
from three independent biological samples. Error bars represent standard deviation with 
statistically significant mRNA expression values (P<0.01) between nitrogen excess and limiting 
conditions denoted by *.  
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4.3.6 GlnR Mutants Fail to Grow in Nitrate as Sole Nitrogen Source 

To further our analysis of the growth phenotype of the glnR mutants, we examined growth in 

potassium nitrate as the sole nitrogen source. Potassium nitrate was chosen as a nitrogen 

source as the nirB gene (msmeg_0427) was shown to be GlnR regulated in this study. NirB is a 

nitrite reductase responsible for the conversation of nitrite to ammonium, the second step in 

nitrate assimilation. It had been previously demonstrated that NirB is essential for M. 

tuberculosis growth in nitrate as a sole nitrogen source, and mutants lacking glnR and nirB were 

unable to assimilate nitrate (95). Consequently both mutants and wild type strains were tested 

for a growth phenotype in nitrate. 

Cells were grown as previously described in 10 mM potassium nitrate and monitored via OD600. 

The phenotype in 10 mM potassium nitrate was far more striking than that seen in ammonium 

sulphate; both mutants failed to grow in the medium when compared to the wild type strain 

(Figure 4.9). Restoration of growth could be achieved via the complementation of the mutants 

with glnR. Suggesting a functional GlnR is required for growth with nitrate as the sole nitrogen 

source.  

 

Figure 4.9. Growth analysis of wild type M. smegmatis and glnR mutants in 
potassium nitrate. 

Growth monitored by OD600 of M. smegmatis wild type (open diamonds), GlnR_D48A (closed 
squares), GlnR deletion (open triangles) strains grown in nitrate as sole nitrogen source. 
Complementation strains indicated with a hashed line. Data represents the average (±SD) of 
three independent experiments. 
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4.4 Discussion 

GlnR belongs to the OmpR family of two-component transcriptional regulators. OmpR-type 

regulators are typically regulated in a phosphorylation dependant manner at a conserved 

aspartate residue. Although GlnR is an orphan regulator, lacking a corresponding histidine 

kinase adjacent to its chromosomal location, GlnR still contains a conserved phosphorylation 

site (3). As such, the presence of the conserved phosphorylation site in GlnR (Asp_48) and the 

lack of regulation of glnR at the transcriptional level during nitrogen limitation, prompted the 

investigation into the role of aspartate 48 in mediating the transcriptomic response to nitrogen 

limitation (3).  

Conventional methods to detect phosphorylation are problematic when investigating 

phosphorylation of aspartate residues. The labile nature of the phospho-aspartate bond results 

in the loss of the phosphate during sample processing for applications such as mass 

spectrometry (9). Previous methods to identify phosphorylation have used in vitro 

phosphorylation assays with the corresponding kinase (98); however as the kinase is unknown 

for GlnR these assays could not be preformed. Other attempts to establish the phosphorylation 

state of GlnR were attempted with PhosTag and IEF protein separation, however these were 

unsuccessful (Kerstin Williams unpublished data). As such the role of the Asp-48 residue was 

explored by investigating the function of GlnR_D48A in nitrogen limitation. 

To investigate the role of the conserved aspartate (D48) for GlnR in M. smegmatis, an in vivo 

point mutation was created. Based on structural similarity, the most conservative amino acid 

substitution for an aspartate residue would be asparagine. However, as reported by Wolanin et 

al., (2003) asparagine can spontaneously deaminate, regenerating an aspartate residue (196). 

Consequently, several investigations with related response regulators have used the 

substitution of an alanine for an aspartate residue, creating an inactive protein. Notable 

examples include an E. coli PhoB_D53A mutant which was unable to undergo phosphorylation in 

vitro (205), while chemotaxis studies with a CheY_D57A mutation rendered an inactive 

phenotype; no in vivo phosphorylation was observed and the flagella machinery was not 

activated (41). As such, the aspartate 48 to alanine chromosomal substitution was made in M. 

smegmatis by a recombineering method described by van Kessel (174-176).  

In addition a glnR deletion strain was constructed, where the glnR gene was replace with a hygR 

cassette. This provided a negative control to compare any affect observed for the GlnR_D48A 

mutant; previously a glnR deletion mutant had failed to up regulate genes implicated in nitrogen 

metabolism (3). Therefore, a hygromycin marked deletion strain was generated to compare the 
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effect of the point mutation on GlnR activity, with respect to transcription activation and growth 

on nitrate. 

Initially the growth of the glnR deletion and GlnR_D48A strains were compared to wild type 

when grown in nitrogen limiting and excess conditions. The M. smegmatis strains grew similarly 

in nitrogen excess conditions (Figure 4.5) while the glnR and GlnR_D48A mutants exhibited a 

reduced growth rate when compared to the wild type under nitrogen limiting conditions 

(Figure 4.6). Despite this, no major growth defect was noted for either mutant strain; this is 

intriguing, suggesting that the M. smegmatis GlnR-mediated transcriptomic response is not 

essential for growth during nitrogen limitation in ammonium. Another interesting observation 

was the reduced uptake of ammonium from the medium by both mutants. Two ammonium 

transporters (AmtB and Amt1) are regulated by GlnR during nitrogen limitation (3). The 

inability of the GlnR mutant strains to induce expression of ammonium transporters could lead 

to a reduction in ammonium uptake in these mutants and reduced growth rate. As such the 

transcriptomic effect of the GlnR_D48A mutant was probed further, to analyse if the point 

mutation was responsible for the growth phenotype observed. 

Previous studies in M. smegmatis have implicated GlnR in the expression of five nitrogen 

metabolism genes during nitrogen limitation. These are a glutamine synthetase (GS) enzyme 

glnA1 (msmeg_4290), responsible for glutamine synthesis during nitrogen limitation, and the 

ammonium transporters amtB (msmeg_2425) and amt1 (msmeg_6259) (3). In addition two 

further genes, glnD and glnK, contained in an operon with amtB, have been demonstrated to be 

GlnR regulated (3). As such, three known GlnR regulated genes, glnA1, amtB and amt1 were 

selected for analysis in this study. Four other genes were also chosen for investigation due to 

their proposed role in nitrogen metabolism in mycobacteria (5). These were amtA 

(msmeg_4635) an ammonium transporter, nirB (msmeg_0427) a nitrite reductase enzyme, gltD 

(msmeg_3226) a glutamate synthase enzyme involved in glutamate synthesis during nitrogen 

limitation, and glnE (msmeg_4293) a bi-functional adenylyl-transferase thought to modulate GS 

enzymatic activity in response to nitrogen availability. Expression levels of glnR (msmeg_5784) 

were also monitored.  

Genes previously shown to be under GlnR control, glnA1, amtB and amt1, were all highly up 

regulated in the wild type during nitrogen limitation when compared to their expression levels 

in nitrogen excess conditions (Figure 4.7). This provided additional confirmation that a nitrogen 

stress response was being induced in our optimised conditions. However, no induction of these 

genes was noted when either glnR mutant was grown under nitrogen limitation (Figure 4.7, 

Table 4.1), suggesting that GlnR controls the transcriptional response of these genes and the 
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D48 residue is important for GlnR function with respect to the transcriptional response to 

nitrogen limitation. Transcriptional regulation of other genes proposed to be involved in 

nitrogen metabolism, not shown previously to be under GlnR control, was also investigated. The 

data displayed that amtA, gltD and nirB were up-regulated in the wild type strain in response to 

nitrogen limitation at 13 hours, compared to nitrogen excess, while glnE expression was down 

regulated (Table 4.1). Again, no significant change in the expression levels of these genes was 

observed during nitrogen limitation in either of the GlnR mutants (Figure 4.8, Table 4.1). To 

exclude the possibility that the GlnR_D48A mutation inhibited glnR expression, leading to the 

observed null phenotype of this strain, transcriptomic analysis of glnR was performed. No 

significant change in glnR expression was observed under nitrogen limiting conditions between 

the wild type and the GlnR_D48A mutant (Figure 4.7, Table 4.1), confirming previous 

observations that M. smegmatis glnR expression levels are not subject to transcriptional 

regulation during nitrogen limitation (3). This transcriptomic data indicates that the D48A 

residue is essential for GlnR mediated transcriptomic response to nitrogen limitation.  

Finally growth of the two glnR mutants was assessed in potassium nitrate. In this study the 

nitrate reductase nirB gene was demonstrated to be GlnR regulated; both mutant strains failed 

to up regulate nirB expression, when compare to the wild type, under nitrogen limiting 

conditions. Failure to up regulate the nirB gene would prevent conversion of nitrate into 

ammonium and, as such, the GS or GDH enzymes would not assimilate the nitrogen source. As 

predicted both mutant strains failed to grow in potassium nitrate, while the wild type strain 

grew as expected (Figure 4.9). The growth phenotype could be restored by reintroduction of a 

functional glnR gene. Consequently, it can be concluded that GlnR is required for nitrate 

assimilation in M. smegmatis.  

In summary, this study demonstrates that the proposed phosphorylation site of GlnR (D48) is 

essential for the GlnR-mediated transcriptional response to nitrogen limitation in mycobacteria. 

It has also been shown that GlnR mediates the transcriptional response of at least 9 genes; 

amtB-glnK-glnD, glnA1, amt1 demonstrated by (3) and confirmed in this study, amtA, nirB, gltD 

and glnE. Genes in operons include nirB-nirD and gltD-gltB extending the total number of 

expected GlnR regulated genes to 11. The GlnR transcriptional response is not essential for 

growth during nitrogen limitation in 1 mM ammonium sulphate, however growth is reduced 

when compare to wild type. GlnR and the GlnR residue D48 are essential however for growth in 

nitrate as the soul nitrogen source. The effect of the mutated GlnR D48 residue indicates that 

this residue is important for GlnR function, suggesting that GlnR activation occurs at this 

residue. However, as GlnR activation was not directly demonstrated the effects of the 

GlnR_D48A mutation on protein structure, structural changes in the phosphorylation pocket 
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and effects on possible dimer formation cannot be dismissed. In other OmpR family regulators 

phosphorylation at this conserved aspartate residue leads to dimerization, resulting in a stable 

DNA-Protein complex, thus leading to transcriptional activation. The lack of GlnR mediated 

transcriptional response in the GlnR_D48A mutant suggests that this form of activation may 

occur in mycobacteria. 
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CHAPTER  5:  Optimisation and  Validation of Mycobacterial  ChIP-
seq  Conditions using  Mycobacterium smegmatis  
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5.1 Aim 

To develop a GlnR-specific antibody and an optimised protocol to permit the genome-wide 

identification of GlnR-binding sites in M. smegmatis by ChIP-seq. 

 

5.2 Introduction 

DNA-binding proteins play a crucial role in many major cellular processes, such as the 

regulation of gene transcription. Therefore, identification of the genomic location of these 

proteins, and the specific DNA sequences to which the proteins preferentially bind, is of 

particular interest to understand the mechanism of global transcriptional response to 

environmental stress conditions. The genomic locations of bound transcription factors, such as 

GlnR, have been predicted using in silico DNA sequence analysis (3). However, additional 

functional assays are necessary to identify and confirm these bio-informatically predicted 

protein:DNA interactions. As such, chromatin immunoprecipitation coupled with short-tag 

sequencing (ChIP–seq) has become a standard technique to identify the genomic location of 

DNA-binding proteins (49, 114).  

The basic steps of the ChIP–seq assay have been reviewed in (114) and are depicted in Figure 

5.1. Given the diversity of cell types, conditions and DNA binding proteins assayed it is 

impossible to comprehensively define common guidelines that are appropriate for all studies. 

As such methods for each step of the ChIP-seq analysis should be validated for each organism 

and DNA binding protein investigated (49). 
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Figure 5.1. Diagrammatic representation of the steps involved in ChIP-seq 
analysis. 

 

1: At a pre-determined time point formaldehyde is added to the bacterial cultures to reversibly 
cross-link all proteins bound to DNA. 2: Cells are lysed and DNA is fragmented by sonication. 3: 
The protein bound DNA is immunoprecipitated using an antibody against the protein of interest. 
4: Cross-linking is reversed and proteins are degraded. 5-7 represents steps from the Illumina 
ChIP-seq library preparation kit. 5: DNA fragments are ligated to specific adaptor sequences. 6: 
PCR amplification of DNA using primers specific to the adaptor sequences. 7: Amplified DNA is 
sequenced on the Illumina Solexa platform using next-generation sequencing. 8: Alignment of 
DNA sequences to the genome of interest, permitting identification of DNA regions enriched 
(peaks) by the immunoprecipitation. 
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5.3 Results 

5.3.1 Sonication 

Sonication conditions for M. smegmatis cells cross-linked with formaldehyde were optimised to 

ensure sufficient cell lysis and DNA fragmentation to the optimum size of 200-400 bp. Bacteria 

were grown in nitrogen limiting and excess conditions, and cross-linked with formaldehyde as 

described (Section 2.7.1). The cells were then stored at -80°C overnight before sonication. A 

range of sonication times and amplitudes were tested, Figure 5.2 A and B displays DNA samples 

after 5 minutes of sonication (30 sec on 30 sec off, 100% amplitude). Incomplete fragmentation 

is observed with DNA fragments larger than 400 bp in both samples (Figure 5.2 A, B). Increasing 

the sonication time to 10 minutes (30 sec on 30 sec off, 100% amplitude) resulted in complete 

fragmentation of the M. smegmatis genomic DNA (Figure 5.2 C). 

 

 

 

Figure 5.2. Sonication of M. smegmatis cells for ChIP-seq analysis. 

M. smegmatis cells were grown in nitrogen limiting (1 mM ammonium sulphate) or nitrogen 
excess (30 mM ammonium sulphate) for 13 hours, before the addition of formaldehyde. Cells 
were harvested by centrifugation and subject to sonication, either 5 minutes in total (30 sec on 
30 sec off, 100% amplitude, panel A and B), or 10 minutes in total (30 sec on 30 sec off, 100% 
amplitude, panel C).   

120



 

5.3.2 GlnR Polyclonal Antibody Production  

Specific antibodies are required for the immunoprecipitation step of ChIP (Figure 5.1), and M. 

tuberculosis GlnR protein (Rv0818) was chosen as the antigen for this purpose. M. tuberculosis 

and M. smegmatis GlnR proteins share high amino acid identity (73%), therefore it was 

predicted that the antibody generated against Rv0818 would also recognise the M. smegmatis 

GlnR protein, and be suitable for ChIP-seq studies in both organisms (5).  

 

Cloning of glnR into pET28b+  

The GlnR coding sequence was cloned into the pET28b+ vector to create a fusion with a 

hexahistidine tag (His-tag) at the N-terminus, allowing purification by nickel affinity 

chromatography. Located between the N-terminal His-tag and the coding sequence of the 

desired gene is a thrombin cleavage site, allowing removal of the His-tag if required. The vector 

also contained a ribosome-binding site for the T7 RNA polymerase, permitting expression in the 

BL21(DE3)pLysS strain of E. coli cells. The BL21(DE3)pLysS strain of E. coli is lysogenic for λ-

DE3 which contains the bacteriophage gene I, encoding a T7 RNA polymerase. Gene I is under 

control of the lacUV5 promoter, inducible with the addition of IPTG. In addition 

BL21(DE3)pLysS E. coli contain a plasmid encoding a T7 lysozyme which lowers background 

expression of target genes under the T7 promoter before induction with IPTG. 

Rv0818 was amplified by PCR from M. tuberculosis genomic DNA then ligated into the linearised 

pET28b+ vector. PCR primers were designed to incorporate a NdeI restriction site at the 5’ end 

of the gene, resulting in fusion to the N-terminal His-tag when expressed and a stop codon at the 

3’ end of the gene. The addition of a stop codon prevented the translation of the optional C-

terminal His-tag contained within the vector. PCR amplification was carried out as described in 

Section 2.2.2 and specific PCR products purified, before restriction endonuclease digestion and 

ligation into the vector (Sections 2.2.7 and 2.2.9). Sequencing of the inserted DNA fragment into 

pET28b+ was carried out as described, to confirm 100% identity to the native gene and that 

protein translation was in frame with the His tag. 
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GlnR Protein Expression and Purification 

BL21(DE3)pLysS E. coli cells were used to express the His-GlnR protein, and transformed and 

grown as described in Section 2.2.10 and 2.3.1. His-GlnR expression in E. coli appeared insoluble 

when cultures were grown at 37C (Data not shown). Solubility of the expressed protein was 

improved by reducing the temperature after induction with 1 mM IPTG to 20C, when cultures 

reached mid-log phase (OD600~0.45).  

Recombinant His-GlnR was purified from bacterial lysates by capture on a nickel affinity 

column, using FPLC to wash and elute His-tagged proteins. Initially the eluted extracts 

contained a high proportion of a higher molecular weight contaminant (Figure 5.3). In order to 

fully saturate the column with the His-GlnR the amount of lysate loaded was doubled. The 

column wash was also increased from 3% to 9% buffer B, increasing the imidazole 

concentration of the wash buffer to remove non-specific binding, before elution with a gradient 

of imidazole. Eluted fractions were measured at OD280 and readings displayed on a 

chromatogram (Figure 5.4 A). Fractions were separated on SDS PAGE gel to check the purity of 

the protein product (Figures 5.4 B), then selected fractions were pooled and dialysed into a 

storage buffer containing 20% glycerol before storage at -20°C (Section 2.2.4). Protein 

concentration was determined by BCA analysis described in Section 2.4.1. Ten µl of the protein 

was separated on an SDS PAGE gel to check purity and then a Western blot probed with an anti-

His antibody, to confirm the product was the desired recombinant His-tagged protein (Figure 

5.5). The purified His-GlnR protein was subsequently sent for antibody production at 

Eurogentec, Germany.  

The M. smegmatis GlnR protein was purified and used to test the specific reactivity of the 

polyclonal antibody. This was carried out using the same cloning procedure described for M. 

tuberculosis and the same protein expression and purification conditions. Figure 5.6 displays the 

fractions from the FPLC elution and the final pooled GlnR product. 
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Figure 5.3. High molecular weight contaminants were observed in the initial 
purification of M. tuberculosis His-GlnR protein. 

 

(A) Chromatogram of His-GlnR purification on a FPLC. Absorbance (blue line) is read at 280 nm, 
the green line represents percentage of Buffer B, this is indicative of imidazole concentration. 
(B) SDS PAGE gel of fractions taken from the protein purification displayed in the 
chromatogram. Lane 1 displays 10 µl of the soluble fraction of the cell lysate before purification. 
Lane 2 contains the wash fraction on the FPLC at 3% buffer B (fraction 15). Lanes 3-9 show 10 
µl samples of the eluted fractions 30-36 selected based on absorbance at 280nm on the FPLC.  
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Figure 5.4. M. tuberculosis His-GlnR protein purification with increased imidazole 
wash step. 

 

(A) Chromatogram of His-GlnR purification by FPLC. Absorbance (blue line) is read at 280 nm, 
the green line represents percentage of Buffer B, this is indicative of imidazole concentration. 
(B) SDS PAGE gel of fractions taken from the protein purification displayed in the 
chromatogram. Lane 1 displays 10 µl of the soluble fraction of the cell lysate before purification. 
Lane 2 exhibits the wash fraction on the FPLC at 9% buffer B (fraction 5). Lanes 3-11 show 10 µl 
samples of the eluted fractions 30-38 analysed selected based on absorbance at 280nm. 
Fractions 34-37 were pooled and dialysed for future use (Figure 5.5).  
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Figure 5.5. Confirmation of M. tuberculosis His-GlnR protein purification. 

 

(A) SDS PAGE displaying 10 µl sample of the purified M. tuberculosis His-GlnR protein from 
pooled and dialysed fractions 34-37 in Figure 5.4. (B) Western blot of the purified M tuberculosis 
His-GlnR protein (0.54 µg) reacted with an anti-His tag antibody, and visualised by 
chemiluminescence. 
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Figure 5.6. M. smegmatis His-GlnR protein purification.  

(A) SDS PAGE gel of fractions taken from the protein purification. Lane 1 displays 10 µl of the 
soluble fraction of the cell lysate before purification. Lane 2 exhibits the wash fraction on the 
FPLC at 9% buffer B. Lanes 3-9 show 10 µl samples of the eluted fractions 76-82 analysed 
selected on the basis of absorbance at 280nm. Fractions 78-82 were pooled and dialysed for 
future use. (B) SDS PAGE displaying 10 µl sample of the purified M. smegmatis His-GlnR protein 
from pooled and dialysed fractions 78-82.   
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GlnR Antibody Specificity 

Western blot analysis confirmed the specific reactivity of the antibodies produced against the 

recombinant proteins in vitro and in vivo. Purified recombinant M. smegmatis His-GlnR (250 ng) 

and M. smegmatis cell lysates (20 µg) from wild type and a glnR deletion strain (Chapter 4), 

were tested. The polyclonal GlnR antibody recognised the M. smegmatis protein specifically, but 

cross reactivity was seen in both cell lysates (Figure 5.7 A). As such the polyclonal antibody was 

affinity purified against the M. smegmatis His-GlnR protein as described (Section 2.4.4). Ranges 

of antibody concentrations were tested to give the optimum detection signal for GlnR in the cell 

lysates; a 1 in 50 dilution was subsequently used (Data not shown). The purified polyclonal 

GlnR antibody specifically detected the His-GlnR purified protein and the GlnR protein in wild 

type M. smegmatis cell lysate, represented by a band at 28 kDa that was absent in the glnR 

deletion strain (Figure 5.7 B). Further analysis was conducted on the M. smegmatis cell lysates 

using the same conditions to be used in ChIP-seq analysis. In both nitrogen limiting and excess 

conditions a single band representing GlnR was present, which was absent in the glnR deletion 

strains (Figure 5.7 C). Only single bands were obtained suggesting that the anti-GlnR reaction is 

specific, with very little background cross-reactivity, confirming the suitability of this purified 

GlnR antibody for ChIP-seq analysis. 

 

 

 

 

127



 

 

 

Figure 5.7. Western blot analysis of M. smegmatis cell lysates with the polyclonal 
anti-GlnR antibody. 

 

(A) Western blot analysis with the polyclonal anti-GlnR antibody 1:1000 dilution (not purified) 
against M. smegmatis His-GlnR (250 ng) and M. smegmatis wild type and glnR deletion lysates 
(20 µg). (B) Western blot analysis using the purified anti-GlnR antibody at 1:50 dilution against 
M. smegmatis His-GlnR (12.5 ng) and M. smegmatis wild type and glnR deletion lysates (20 µg). 
(C) Western blot analysis using the purified anti-GlnR antibody at 1:50 dilution of M. smegmatis 
cell lysates under the conditions used for ChIP-seq. Cell lysates (20 µg) were taken at 13 hours.   
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5.3.3 Immunoprecipitation of M. smegmatis Cross-linked and Sonicated DNA with anti-

GlnR Antibody 

The immunoprecipitation step of M. smegmatis fragmented DNA with the purified GlnR 

antibody was optimised. Samples from nitrogen limiting cultures at 13 hours were processed 

for ChIP-seq up to the point of immunoprecipitation (Section 2.7.1). Samples were then divided 

and immunoprecipitation proceeded with a range of volumes of the neat, purified anti-GlnR 

antibody. A rate limiting PCR was conducted on the glnA1 promoter region in order to 

determine which concentration of antibody precipitated the most fragmented DNA. GlnR had 

been previously shown to bind the glnA1 promoter region via EMSA analysis (3). The purpose of 

the rate limiting PCR was to determine which concentration of antibody precipitated the most 

fragmented DNA without overloading the beads used for precipitation of the complex. 

Overloading of the beads would result in saturation of the beads with antibody only. Figure 5.8 

displays amplification of DNA precipitated with 20 μl and 100 μl of neat purified antibody, with 

100 μl clearly showing greater enrichment of the DNA fragment. Since the band intensity from 

the 100 μl sample and the input control (10 ng of total sonicated DNA) were similar, this volume 

of antibody was chosen for ChIP-seq analysis. 
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Figure 5.8. Rate-limiting PCR of glnA1 promoter region from DNA precipitated 
with a range of anti-GlnR volumes. 

 

Rate limiting PCR involved 23 cycles amplification of 180 bp promoter region of glnA1, using 0.3 
ng of template DNA. No antibody represents a sample which did not have the GlnR antibody 
present for immunoprecipitation of DNA, 10 μl and 100 μl indicates the volume of neat purified 
antibody added to the M. smegmatis cell lysate. Input represents 10 ng of total sonicated M. 
smegmatis DNA before immunoprecipitation. 
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5.3.4 Illumina Next Generation ChIP-seq Library Preparation 

The GlnR ChIP DNA library was prepared for sequencing on the Illumina Solexa platform as per 

the manufacturer’s instructions, with the addition of a second gel extraction step (Section 2.7.3). 

Briefly, 10 ng of ChIP DNA or Input sample was processed; the DNA overhangs were converted 

into phosphorylated blunt ends, before addition of A bases to the 3’ end of the DNA fragments. 

The 3’ A overhangs were subsequently utilised to allow annealing of the adaptor fragments, 

which contained a 3’ T base overhang. To remove excess adaptor dimers, and to select only DNA 

in the region of 200-400 bp, the sample was gel extracted. The next step involved PCR 

amplification, using primers specific to the adaptor sequences. The DNA library was 

subsequently examined on a bioanalyser to confirm DNA size and purity. During this analysis it 

became apparent that a large volume of primer dimers remained in the sample after the PCR 

amplification step. Consequently an additional gel extraction step was integrated into the 

protocol to remove this primer dimer contaminant (Figure 5.9 A). This resulted in a DNA library 

that was free from contaminants with DNA in the optimum size range for sequencing (Figure 5.9 

B). 
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Figure 5.9. (A) Second gel extraction step to remove primer dimer contaminants 
and (B) the subsequent bioanalyser reading to confirm purity of DNA.  

 

(A) A 2% agarose gel showing the gel slice extracted from the PCR amplified DNA fragments 
between 200-400 bp. Primer dimer contaminants are highlighted. (B) The bioanalyser reading 
of the purified gel extracted sample. The two peaks at 35 and 10,380 are DNA markers, the large 
peak between 200 and 350 bp represents the DNA library sample. 

  

132



 

5.4 Conclusion 

A validated protocol was optimised for the identification of genome-wide GlnR binding sites in 

M. smegmatis, using ChIP-seq analysis (Section 2.7). Optimisation of the sonication conditions 

ensured all M. smegmatis genomic DNA was sheared to fragments of between 200-400 bp. A 

polyclonal anti-GlnR antibody was generated against the M. tuberculosis His-GlnR recombinant 

protein, and after affinity purification against M. smegmatis His-GlnR, the antibody specifically 

recognised GlnR in M. smegmatis cell lysates. Analysis of the DNA fragments co-

immunoprecipitated with GlnR gave an optimum quantity of antibody to precipitate the 

GlnR:DNA complexes. Finally the addition of a second gel extraction step after PCR amplification 

of the GlnR DNA ChIP library meant that samples were in the correct size range for next-

generation sequencing and contaminant free. This optimised protocol was used in Chapter 6 to 

identify GlnR binding sites across the genome during nitrogen limitation. 
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CHAPTER  6:  Genome  Wide  Analysis  of the  GlnR  Regulon During  
Nitrogen Stress in Mycobacterium smegmatis  
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6.1 Aim 

To determine the entire GlnR regulon in M. smegmatis during nitrogen limitation, using ChIP-

seq to determine in vivo GlnR binding sites, and transcriptomic data analysis of wild type and 

glnR deletion strains to characterise direct and indirect GlnR regulated transcripts. 

 

6.2 Introduction  

In Streptomyces, GlnR acts as a global transcriptional regulator for genes encoding proteins 

related to nitrogen uptake, metabolism and regulation (198). In S. coelicolor a global proteomic 

analysis of a glnR deletion strain compared to wild type and transcriptome data showed 50 

genes to be GlnR regulated in response to nitrogen limitation (164, 165). Recent analysis in S. 

venezuelae combined ChIP-CHIP with gene expression microarray data, and 44 genes were 

demonstrated to be GlnR regulated (120), indicating GlnR as a global transcriptional regular of 

genes involved in nitrogen metabolism in Streptomyces. 

GlnR of M. smegmatis shares 60% identity at the amino acid level with GlnR of Streptomyces (3). 

Using the GlnR consensus binding motifs from S. coelicolor, putative GlnR binding sites were 

found in all the available mycobacterial genomes. Three highly conserved cis elements were 

found in M. smegmatis upstream of glnA1 and amt1 genes, and the amtB-glnK-glnD operon (3). 

In this study GlnR was also shown to regulate the expression of amtA, glnE, nirB/D (nitrite 

reductase) and gltB/D in M. smegmatis in response to nitrogen stress. This expanded the M. 

smegmatis GlnR regulon to 11 genes. However, given the number of nitrogen metabolism-

related genes in the M. smegmatis genome, it is likely that many other GlnR-regulated genes 

exist.  

As such, to gain insight into the regulatory role of GlnR during nitrogen-limitation in M. 

smegmatis, a global in vivo approach was applied. Chromatin Immunoprecipitation (ChIP) 

coupled with high-throughput sequencing (ChIP-seq), permitted identification of in vivo 

GlnR:DNA interactions. GlnR regulated transcripts were identified by combining this with WT 

and glnR mutant genome-wide expression profiles during nitrogen limitation. Using these 

techniques direct and indirect regulated GlnR genes could be identified. 
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6.3 Results 

6.3.1 Global GlnR Regulated Gene Expression in Nitrogen Limitation 

In order to identify all the GlnR regulated transcripts during nitrogen limitation, global 

expression profiles of M. smegmatis wild type and glnR deletion strains grown in nitrogen 

limiting conditions were analysed by microarray. M. smegmatis wild type and glnR deletion 

strains were harvested one hour after nitrogen run-out. Total RNA was extracted and cDNA 

hybridised to the M. smegmatis microarray as described (Section 2.6.4). Data was normalised 

(Section 2.6.6) and genes showing greater than 2 fold difference in expression between the wild 

type and glnR deletion strain, with an FDR corrected p value of <0.01, were considered 

significant. The microarray confirmed earlier studies; previously identified GlnR-regulated 

genes were controlled by GlnR under nitrogen stress (Table 6.1). 

In total 392 genes were significantly up regulated and 291 genes were significantly down 

regulated in wild type compared to the glnR deletion strain under nitrogen limitation. Fully 

annotated microarray data is available at BμG@Sbase (accession number E-BUGS-143; 

http://bugs.sgul.ac.uk/E-BUGS-143) and also ArrayExpress (accession number E-BUGS-143). 

Intriguingly, several response regulators were up regulated only in the wild type strain, 

suggesting that these are GlnR-activated response regulators. This indicates that GlnR has both 

a direct and indirect effect on the transcriptional response of M. smegmatis to nitrogen stress.  
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Gene ID Name 
Fold change 
WT vs ΔglnR 

this study 

Reference  
GlnR regulated in 
previous studies 

msmeg_6259 amt1 255.9 (3) 
msmeg_4635 amtA 102.0 (72) 
msmeg_2425 amtB 98.8 (3) 
msmeg_4290 glnA1 20.0 (3) 
msmeg_0427 nirB 76.4 (72) 
msmeg_4293 glnE -3.1 (72) 
msmeg_2426 glnK 29.8 (3) 
msmeg_2427 glnD 29.1 (3) 

    

Table 6.1. Differential gene expression between M. smegmatis wild type vs ΔglnR 
during nitrogen limitation (this study). 

Data obtained from the microarray analysis in this study of genes previously shown to be GlnR 
regulated. 

 

 

6.3.2 Global GlnR Binding Regions in Nitrogen Limitation  

In order to determine which 681 genes identified by microarray are directly regulated by GlnR, 

rather than indirectly through GlnR activation of other response regulators, a ChIP-seq 

approach was applied. ChIP-seq enabled the identification of in vivo GlnR binding sites during 

nitrogen limitation. Cells were grown in 1 mM (limiting) or 30 mM (excess) ammonium sulphate 

and were cross-linked one hour after external ammonium depletion in the limiting cultures; 

nitrogen excess samples were cross-linked at the same time point. After cross-linking, cells were 

lysed and the DNA sheared by sonication. Immunoprecipitation of GlnR-bound DNA fragments 

was carried out using a purified anti-GlnR polyclonal antibody as described in Chapter 5.  

To confirm enrichment of the GlnR binding regions during nitrogen limitation in the 

immunoprecipitated DNA fragments, a rate limiting PCR was performed. Two known GlnR 

regulated genes were chosen for analysis; the glutamine synthetase (glnA1) and nitrite 

reductase (nirB) promoter regions (Figure 6.1 A and B). A gene not thought to be GlnR regulated 

(msmeg_3224) was included as a negative control (Figure 6.1 C). The rate limiting PCR 

confirmed that DNA enrichment was seen in the immonoprecipitated sample for nitrogen 

limiting conditions, compared with the nitrogen excess sample, and no enrichment was seen for 

the negative control in either condition.  
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Figure 6.1. Rate limiting PCR confirmed enrichment of GlnR immunoprecipitated 
DNA. 

(A) Promoter region of glnA1. (B) Promoter region of nirB. (C) Promoter region of msmeg_3224, 
negative control. 
 
Rate limiting PCR involved 23 cycles of 200 bp promoter regions, using 0.3 ng of template DNA. 
ChIP DNA represents DNA that has been immunoprecipitated with a GlnR specific antibody 
during nitrogen excess or nitrogen limiting conditions. Input DNA represents the total amount 
of DNA that was subject to immunoprecipitation. 
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Immunoprecipitated DNA was prepared for sequencing using the Illumina ChIP-seq library kit 

as described in Section 2.7.3. High-throughput next generation sequencing of the DNA libraries, 

using the Illumina HiSeq2000, generated approximately 160 million reads per sample which 

were mapped to the M. smegmatis genome using Bowtie (81).  GlnR binding regions were 

identified using the peak calling algorithm SISSRs (Site Identification for Short Sequence Reads) 

(105). GlnR binding sites were defined as regions showing greater than 5-fold enrichment in the 

immunoprecipitated sample compared to the input control with p value of < 0.005. This 

identified 53 GlnR binding sites in nitrogen limitation and 5 GlnR binding sites in nitrogen 

excess (Figure 6.2, Table 6.2 and Table 6.3 respectively). However all binding sites identified in 

nitrogen excess conditions were also observed in nitrogen limiting conditions, but with much 

lower peak intensity value. For example a GlnR binding site identified in both conditions 

upstream of glnA1 (msmeg_4290) had a peak intensity of 6.3 in nitrogen excess and 184.7 in 

nitrogen limitation (Table 6.3). All GlnR binding sites (except peak number 52) were located in 

intergenic regions, close to promoter regions of genes. 

 

Figure 6.2. Whole genome view of GlnR binding sites identified by ChIP-seq in M. 
smegmatis. 

Whole genome view of GlnR binding sites identified by ChIP-seq in M. smegmatis displayed in 
IGV. GlnR binding sites are represented by peaks indicating DNA enrichment in the ChIP 
samples. Upper track displays nitrogen excess (30 mM ammonium sulphate), middle track 
nitrogen limiting (1 mM ammonium sulphate), bottom track is the input control (total DNA 
without immunoprecipitation).  
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Peaka Chrb 
start 

Chrb   
end 

Peak 

Intensityc 

D. 

regd 

Gene 
Fold 

Changee 

Gene ID Gene Description 

1 501431 501471 8.4  76.4 MSMEG_0427* nirB Nitrite reductase, large subunit 
2 508651 508691 42.9  18.3 MSMEG_0432* nnaR Transcriptional regulator 
3 510091 510131 8.4  24.6 MSMEG_0433 narK3 Nitrate extrusion protein 
4 647871 647911 27.1  263.4 MSMEG_0572* Putative uncharacterised protein 
5 864391 864431 6.1 5L 23.0 MSMEG_0780* Phosphotransferase enzyme family 

protein 
    5R 8.4 MSMEG_0781 Amino acid permease 
6 1121631 1121671 54.3  6.3 MSMEG_1052 Amino acid carrier protein 
7 1142851 1142891 6.5 7L -3.8 MSMEG_1078 Hydrolase 
    7R 3.4 MSMEG_1079* Putative uncharacterised protein 
8 1146711 1146751 71.9  277.4 MSMEG_1082 Putative response regulator, LuxR 

family 
9 1238491 1238531 19.3 9L 10.7 MSMEG_1177 Cytosine/purines/uracil/thiamine/allantoin 

permease 

    9R 3.5 MSMEG_1178 Transcriptional regulator 
10 1385631 1385671 6.48 10L 2.4 MSMEG_1292* Dehydrogenase protein 

    10R 4.2 MSMEG_1293* Xanthine/uracil permeases family 
protein 

11 1684231 1684271 64.6  2.8 MSMEG_1597 Transcription factor WhiB 
12 1832291 1832331 46.5  -13.2 MSMEG_1738 Probable conserved transmembrane 

protein 
13 1965171 1965211 19.3  No DE MSMEG_1886 Fatty acid desaturase 
14 2000471 2000511 10.9  No DE MSMEG_1919 Transcription factor WhiB 
15 2070111 2070151 9.9  120.7 MSMEG_1987* Putative uncharacterised protein 
16 2081471 2081511 19.5  -2.1 MSMEG_1999 Putative uncharacterised protein 
17 2260871 2260911 39.9 17L 2.3 MSMEG_2183 Conserved hypothetical protein 

    17R 38.8 MSMEG_2184* Amino acid permease 
18 2414891 2414931 67.9  10.1 MSMEG_2332 Amino acid carrier protein 
19 2508191 2508231 101.5  98.8 MSMEG_2425* amtB Ammonium transporter 
20 2592931 2592971 18.6  -4.1 MSMEG_2506* Carboxyvinyl-carboxyphosphonate 

phosphorylmutase 

21 2608351 2608391 171.1  165.9 MSMEG_2522* Efflux ABC transporter, permease 
protein 

22 2612531 2612571 331.2  782.4 MSMEG_2526 Copper amine oxidase 
23 2655531 2655571 56.3  50.8 MSMEG_2570* Xanthine/uracil permease 
24 3048291 3048331 105.9  583.8 MSMEG_2982* Putative periplasmic binding protein 
25 3206851 3206891 8.7 25L No DE MSMEG_3131 Polypeptide: AMP-binding protein 

    25R No DE MSMEG_3132 Polypeptide: DNA-binding protein 
26 3237471 3237511 6.5  No DE MSMEG_3166 Enzyme: beta-lactamase 
27 3471571 3471611 8.2  228.0 MSMEG_3400* Glutamyl-tRNA(Gln) amidotransferase 

subunit A 
28 4043191 4043231 22.8  2.1 MSMEG_3975 Putative regulatory protein, PucR 

family 
29 4069251 4069291 58.9  9.7 MSMEG_3995 N-carbomoyl-L-amino acid 

amidohydrolase 
30 4070051 4070091 13.2 30L 8.3 MSMEG_3996 hydA Dihydropyrimidinase 

    30R 6.5 MSMEG_3997 Regulatory protein, PucR family 
31 4082411 4082451 77.2  49.2 MSMEG_4008* Oxidoreductase, 2OG-Fe(II) oxygenase 

family protein 

32 4136531 4136571 7.4  No DE MSMEG_4063 Polypeptide: amidohydrolase 
33 4290471 4290511 8.0  115.7 MSMEG_4206 Molybdopterin oxidoreductase 
34 4374791 4374831 184.7  20.0 MSMEG_4290 glnA Glutamine synthetase 
35 4381891 4381931 49.8  12.6 MSMEG_4294 glnA Glutamine synthetase, type I 
36 4580191 4580231 384.4  103.3 MSMEG_4501 Sodium:dicarboxylate symporter 
37 4722511 4722551 17.1  102.0 MSMEG_4635* amtA Ammonium transporter 
38 4726751 4726791 63.6  57.3 MSMEG_4639* Putative uncharacterised protein 
39 4729431 4729471 11.1  No DE MSMEG_4643 Resuscitation-promoting factor 
40 4729931 4729971 34.4  No DE MSMEG_4643 Resuscitation-promoting factor 
41 5183411 5183451 57.5  27.1 MSMEG_5084* Glycosyl transferase, group 2 family 

protein 
42 5440611 5440651 233.9  14.9 MSMEG_5358 Acetamidase/Formamidase family 

protein 
43 5442051 5442091 27.2  29.1 MSMEG_5360* Formate/nitrate transporter 
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Table 6.2. GlnR binding sites identified in M. smegmatis during nitrogen 
limitation and corresponding gene expression levels of WT vs ΔglnR during 
nitrogen limitation. 

aOrdered by chromosome position, the table displays enriched binding regions, peaks, with the 
bcoordinates on the M. smegmatis genome. CPeak intensity was calculated using SISSRs, based 

on the number of sequenced tags at each site vs the input control sample. dD.reg indicates the 
direction of the gene in relation to GlnR binding (L=left and R=right), where GlnR may have a 

divergent role. eGene fold change represent the fold change value between M. smegmatis WT vs 
ΔglnR strain during nitrogen limitation. Genes in operons are denoted by *. Genes highlighted in 
grey displayed no DE (differential expression) on the microarray; these genes are potential GlnR 
regulated genes, but not included in our analysis. 

 

 

 

 

 

Table 6.3. GlnR binding sites identified in M. smegmatis during nitrogen excess. 

aOrdered by chromosome position, the table displays enriched binding regions, peaks, with the 
bcoordinates on the M. smegmatis genome. cPeak intensity of each peak was calculated using 
SISSRs, based on the number of sequenced tags at each site vs the input control sample. Genes in 
operons are denoted by *. Peak intensity during nitrogen limitation is included in the table for 
direct comparison at the binding sites. 

 

  

44 5651011 5651051 18.6  No DE MSMEG_5561 HPP family protein 
45 5840591 5840631 11.6  4.1 MSMEG_5765 glbN Globin 
46 6177591 6177631 31.6  24.8 MSMEG_6116 Putative allantoicase 
47 6323551 6323591 23.7  255.9 MSMEG_6259 amt1 Ammonium transporter 
48 6714291 6714331 16.3  8.1 MSMEG_6660 Permease, 

cytosine/purine/uracil/thiamine/allantoin 

49 6747051 6747091 9.9 49L No DE MSMEG_6695 Cytochrome P450 
    49R No DE MSMEG_6697 IS1096, tnpA protein 
50 6782771 6782811 17.7  128.3 MSMEG_6735* Amino acid permease, putative 
51 6865371 6865411 199.7  385.3 MSMEG_6816 Molybdopterin oxidoreductase 
52 6867931 6867971 12.7  Inside MSMEG_6817  
53 6930751 6930791 10.8  5.8 MSMEG_6881 Transcriptional regulator, GntR family 

Peaka 
Chrb 
start 

Chrb   
end 

Peak 
Intensity 

Excessc 

Peak 
Intensity 

Limitingc 

Gene ID Gene Description 

1 1832291 1832331 6.7 46.5 MSMEG_1738 
Probable conserved transmembrane 
protein 

2 2508171 2508211 5.38 101.46 MSMEG_2425* amtB Ammonium transporter 
3 4374771 4374811 6.27 184.71 MSMEG_4290 glnA Glutamine synthetase 
4 4381891 4381931 6.94 49.84 MSMEG_4294 glnA Glutamine synthetase, type I 
5 5651011 5651051 5.51 18.6 MSMEG_5561 HPP family protein  
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Identification of three previously known GlnR binding sites, upstream of amt1, amtB and glnA1, 

confirmed that the ChIP-seq approach had successfully identified specific GlnR binding regions 

(Figure 6.3) (3). Further validation of the ChIP-seq results was provided by performing 

electromobility shift assays (EMSAs) using purified recombinant His-GlnR protein and four 

novel GlnR DNA binding regions. DNA sequences of 200 bp representing promoter regions of 

peak 19 (amtB), included as a positive control, peak 17 (msmeg_2184), peak 21 (msmeg_2522), 

peak 22 (msmeg_2526), and peak 42 (msmeg_5358), were assayed for specific GlnR binding. All 

putative binding sites analysed bound GlnR specifically with a protein-concentration dependent 

shift (Figure 6.4). The promoter region of msmeg_3224, a region not identified as a GlnR binding 

site in this study and included as a negative control, displayed no GlnR binding (Figure 6.4). No 

difference was observed in GlnR binding to the different DNA regions assayed, despite notable 

differences in fold peak enrichment. For example the GlnR binding site of msmeg_2526, with a 

peak fold enrichment of 331.2, displayed similar protein:DNA binding  (determined by EMSA) to 

the GlnR protein, as did msmeg_2184 which had a peak fold enrichment of 39.9 (Figure 6.4). 
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Figure 6.3. ChIP-seq confirmed GlnR binding during nitrogen limitation upstream 
of (A) amtB (B) glnA1 (C) amt1. 

 

Binding data was visualised using the Integrated Genome Viewer (IGV). Upper track in each 
panel indicates ChIP-seq data from nitrogen excess conditions (30 mM ammonium sulphate), 
middle track ChIP-seq data from nitrogen limiting conditions (1 mM ammonium sulphate) and 
the total DNA input in aligned at the bottom track. The black bars at the bottom signify gene 
transcripts, location of known GlnR regulated genes are labelled accordingly. 
 
(A) GlnR binding upstream of amtB during nitrogen limitation. (B) GlnR binding upstream of 
glnA1 during nitrogen limitation. (C) GlnR binding upstream of amt1 during nitrogen limitation. 
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Figure 6.4. Confirmation of GlnR binding to DNA by EMSA. 

EMSAs were carried out with increasing amounts of His-GlnR 0-0.9 μg with labelled 200 bp DNA 
corresponding to the promoter regions of the genes. Specific and non-specific cold competitor 
DNA was added at 1000 x excess to the labelled probe. GlnR ChIP-seq data is visualised in IGV, 
with the top track representing the total DNA input, with nitrogen excess (30 mM ammonium 
sulphate) and limiting (1 mM ammonium sulphate) conditions in the second and third track 
respectively. Gene expression is indicated by vertical black bars on the bottom track at the start 
site of each gene; bar height is representative of fold change in gene expression (WT vs glnR 
deletion strain). The location of the GlnR consensus binding site, determine via MEME, is 
indicated by parallel vertical lines through the peak. 
 
(A) Peak 9 msmeg_ 2425 (amtB). (B) Negative control msmeg_3224. (C) Peak 17 msmeg_2184. 
(D) Peak 21 msmeg_2522. (E) Peak 22 msmeg_2526. (F) Peak 42 msmeg_5358. 
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6.3.3 Determination of the GlnR Regulon in Nitrogen Limitation 

In order to determine the regulon, the GlnR binding sites and transcripts regulated by GlnR 

under nitrogen limitation were combined. Array expression data was mapped onto the ChIP-seq 

GlnR binding site data using IGV, such that GlnR binding and GlnR regulated gene expression 

could be visualised (Figure 6.5). Specific binding sites could also be visualised by zooming into 

the region of interest (Figure 6.5 B). Figure 6.5 displays GlnR bound adjacently to differentially 

expressed genes for the amtB operon. From the 53 peaks identified by ChIP-seq analysis, 44 

binding sites were associated with differential gene expression of 103 genes (Table 6.4). Genes 

were classified into operons according to annotation on Biocyc Data base collection 

(http://biocyc.org/MSME246196/NEW-IMAGE?type=ORGANISM&object=TAX-1763).  

Of the 53 GlnR binding sites identified, 8 of the associated downstream genes did not show any 

evidence of differential expression in nitrogen limitation, suggesting that these genes are either 

not GlnR-regulated under these conditions, or are expressed at a different time point to that 

taken in this study. In addition 2 peaks were upstream of genes not represented on the 

microarray. These genes were analysed for differentia expression by qRT-PCR. Msmeg_2332 

was differentially expressed in the wild type compared to glnR deletion strain (up regulated 

10.1 fold) and deemed to be in GlnR regulated, but the other, msmeg_6697 was not differentially 

expressed.  

Further analysis was conducted on the 9 genes that had adjacent GlnR binding sites but did not 

exhibit significant GlnR mediated gene expression. Rate limiting PCR was carried out for all 9 

binding sites on independent ChIP samples, to confirm that the amplification observed was not 

a result of sample processing during library preparation, and all the binding sites, except peak 

52, displayed enrichment (Figure 6.6 and Figure 6.7). Analysing the IGV view of peak 52 this 

was determined to be a miscall by SISSRs (Figure 6.7). In addition, GlnR binding to peak 13 was 

confirmed by EMSA (Figure 6.8). This suggests that these 8 peaks do represent GlnR binding 

sites in nitrogen limitation and therefore the 8 genes downstream of these binding sites are 

categorised as putative GlnR regulated genes (Table 6.2).  

Interestingly, as well as the 96 genes up-regulated by GlnR during nitrogen limitation, 7 genes 

were down regulated. Down regulated genes represent 6.8 % of all genes under GlnR control, 

indicating that GlnR can both activate and repress transcription, with the main role as an 

activator. Six GlnR binding sites are associated with divergently transcribed genes under 

nitrogen limitation, suggesting GlnR may act in a bidirectional manner at some binding sites.  
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Figure 6.5. GlnR ChIP-seq binding data for the amtB-glnK-glnD operon. 

Binding data was visualised using IGV. Excess track indicates ChIP-seq data from nitrogen 
excess conditions, the limiting track ChIP-seq data from nitrogen limiting conditions and the 
total DNA input in aligned in the bottom input track. The black vertical bars represent gene 
expression during nitrogen limitation; fold change of the WT vs glnR mutant. Scale for gene 
expression is 0-100 fold with the height of the bars representing the fold change value. The 
location of the GlnR consensus binding site, determine via MEME, is indicated by parallel 
vertical lines through the peak. 

(A) GlnR binding and gene expression data for the amtB-glnK-glnD operon window size 5243 

bp. (B) Zoomed in image to 322 bp of the GlnR consensus sequence in relation to gene start site. 
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Figure 6.6. Rate limiting PCR indicating enrichment of the 8 GlnR 
immunoprecipitated DNA for genes that showed no significant DE during 
nitrogen limitation. 

Rate limiting PCR involved 23 cycles amplification of 200 bp promoter regions, using 0.3 ng of 
template DNA. ChIP DNA represents DNA that has been immunoprecipitated with a GlnR 
specific antibody during nitrogen excess or nitrogen limiting conditions. Input DNA represents 
the total amount of DNA that was subject to immunoprecipitation. 
 
A. Promoter of msmeg_3224 negative control 
B. Promoter region representing peak 13 
C. Promoter region representing peak 14 
D. Promoter region representing peak 26 
E. Promoter region representing peak 32 
F. Promoter region representing peak 39 
G. Promoter region representing peak 40 
H. Promoter region representing peak 44 
I. Promoter region representing peak 49 
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Figure 6.7. Rate limiting PCR of peak 52 showing no enrichment and IGV view of 
peak 52. 

(A) Rate limiting PCR of promoter region of peak 52 involved 23 cycles amplification of 200 bp 
promoter regions, using 0.3 ng of template DNA. ChIP DNA represents DNA that has been 
immunoprecipitated with a GlnR specific antibody during nitrogen excess or nitrogen limiting 
conditions. Input DNA represents the total amount of DNA that was subject to 
immunoprecipitation. No enrichment is seen in nitrogen limiting conditions. (B) Binding data 
was visualised using IGV. Upper track indicates ChIP-seq data from the Input sample 
representing the total DNA, middle track is nitrogen excess conditions and then ChIP-seq data 
from nitrogen limiting conditions. Aligned to the bottom track is the SISSRs value for the peaks 
highlighted by the vertical black bars.  
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Figure 6.8. EMSA of GlnR binding to 200 bp region, peak 13 alongside ChIP -seq 
data. 

 
Increasing amounts His-GlnR (0-0.9 μg) were incubated with 200 bp around peak 13. Specific 
and non-specific cold competitor DNA was added at 1000x excess to the labelled probe. Binding 
data was visualised using IGV. Upper track indicates ChIP-seq data from the Input sample 
representing the total DNA, middle track is nitrogen excess conditions and the ChIP-seq data 
from nitrogen limiting conditions aligned at the bottom track. The black bars at the bottom 
signifying genes are labelled accordingly. The location of the consensus binding site is indicated 
by the vertical line through the peak. 
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The 103 GlnR regulated genes were categorised using Clusters of Orthologous Groups of 

Proteins (COG) functional classifications (Section 2.7.6). Most genes annotated are involved in 

nitrogen uptake and metabolism, as well as a large number of genes with unknown function 

(Table 6.5). Nitrogen transport genes represented the largest group upregulated during 

nitrogen limitation with 26 genes in total. In addition genes that encoding enzymes predicted to 

be involved in the release of ammonia from cellular sources, such as amine oxidase and 

hydrolases, are listed in Table 6.6. These genes are of particular interest as they suggest a 

nitrogen scavenging response from alternate nitrogen sources. The largest category was 

proteins of unknown function (FUN) and although these need confirming experimentally, it 

seems likely that these genes encode proteins involved in nitrogen metabolic processes. 

 
 
 
 
 

COG functional Classification 
 

Number of 
genes 

Amino Acid 4 

Cell Envelope 3 

Cellular Process 1 

Central Intermediary Metabolism 16 

DNA Metabolism 1 

Energy Metabolism 11 

FUN 29 

Protein Fate 1 

Protein Synthesis 2 

Regulatory Functions 9 

Transport And Binding Proteins 26 

 
Table 6.5. Functional classification of genes in the GlnR regulon. 
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6.3.4 Identification and Analysis of the M. smegmatis GlnR DNA Binding Motif  

To identify a consensus GlnR DNA binding motif, a 200 bp nucleotide sequence corresponding 

to the centre of the enriched peak was extracted using the R package Biostrings and submitted 

to the motif discovery tool Multiple EM (Expectation Maximization) for Motif Elicitation 

(MEME) (11). A consensus DNA binding motif was identified that was present once in all 52 

GlnR binding sites identified by ChIP-seq (E value of 6.5E-30) (Figure 6.9). No direct correlation 

between the specific GlnR binding DNA sequence, its genomic location and the levels of gene 

expression was observed (Table 6.7). Key residues required for specific GlnR binding were 

identified by mutational analysis of the highly conserved AC-n9-AC and AT-n9-AC sequences. 

Figure 6.10 shows that the AC bases at position 5 & 6 and 16 & 17 in the MEME sequence 

(Figure 6.9) are critical for GlnR binding, since reduced GlnR:DNA binding is observed when 

these residues are mutated to G. The spacing of 9 nucleotides between these key AC residues at 

positions 5 & 6 and 16 & 17 was also investigated. Figure 6.10 displays that the spacing between 

these two adenosine residues was essential for strong GlnR:DNA binding. 
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Figure 6.9. MEME-derived consensus sequence from GlnR binding regions 
identified via ChIP-seq. 

 
(A) MEME consensus of GlnR binding regions generated from 200 bp regions from the centre of 
each peak. (B) Alignment of MEME-generated motifs in different peaks. Conserved residues are 
highlighted in grey. 
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Figure 6.10. EMSA of GlnR binding to 30 bp consensus region with diminished 
GlnR binding observed upon mutation of highly conserved residues. 

EMSAs were carried out with 30 bp annealed complementary oligonucleotides, incubated with 
increasing amounts of His-GlnR (0-0.9 μg).  

(A) WT represents consensus site of peak 24, with the conserved AT n9 Ac residues mutated. 
(B) WT represents consensus site of peak 2, with the conserved AC n9 AC residues mutated.  
(C) WT represents consensus site of peak 2, with the distance between AC n9 AC altered to 
increase the spacing by 3 nucleotides and decrease the spacing by 3 nucleotides. 
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6.4 Discussion 

The OmpR-type response regulator GlnR is the global transcriptional regulator during 

nitrogen stress in Streptomyces. In Streptomyces GlnR is thought to regulate around 50 

genes during times of nitrogen deficiency, including those involved in the uptake and 

assimilation of nitrogen (120, 164, 165). GlnR is predicted to be the global 

transcriptional regulator in mycobacteria during times of nitrogen limitation, yet to date 

this has not been fully investigated (3). Therefore, to investigate the role of GlnR in the 

adaption of M. smegmatis to nitrogen stress, a transcriptomic and ChIP-seq approach 

was applied to determine the entire GlnR nitrogen regulon.  

Initially, the transcriptomic response was determined by comparing the global 

expression profile of M. smegmatis wild type to a glnR deletion mutant when both were 

exposed to nitrogen limitation. In total 680 genes were differentially expressed during 

nitrogen limitation in the wild type strain compared to the mutant; 392 genes were 

significantly upregulated and 291 down regulated in the wild type strain compared to 

the glnR mutant, indicating that GlnR acts as both an activator and a repressor. 

However, these GlnR-dependant effects may be direct or indirect. For instance, many 

response regulators were also upregulated in the wild type strain and therefore genes 

under control of these regulators (discussed later) could be incorrectly included in the 

GlnR regulon if relying on transcriptomic data alone. Consequently ChIP-seq was used to 

differentiate genes directly and indirectly controlled by GlnR.  

Using a GlnR specific antibody to identify where GlnR binds to DNA during nitrogen 

limitation, we identified 53 GlnR binding sites in M. smegmatis. Of these 53 binding sites, 

44 sites were upstream of transcripts identified as GlnR-controlled in the microarray. 

These genes, including genes predicted to be in corresponding operons, were therefore 

included in the GlnR regulon (Table 6.4). In addition to the 44 sites directly controlling 

GlnR transcripts, two of the GlnR binding sites identified in this study were located 

upstream of genes not represented on the microarray and therefore these genes were 

analysed for differential expression by qRT-PCR. Msmeg_2332, encoding an amino acid 

carrier protein, was shown to be under GlnR control whereas the other gene 

(msmeg_6697) was not.  

In total, 9 binding sites identified by ChIP-seq were not associated with GlnR specific 

differential gene expression during nitrogen limitation. Therefore, these binding sites 

were investigated further to determine if they were true GlnR binding sites during 
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nitrogen limitation. Rate limiting PCR confirmed enrichment of 8 binding sites in 

independent ChIP samples to those sent for sequencing. Peak 52 did not show 

enrichment via rate limiting PCR and a closer visual examination of the region identified 

in IGV, lead to a conclusion that this was a miscall by SISSRs as no clear peak was 

observed. EMSA studies further confirmed specific binding of GlnR to one binding site 

(peak 13). These 8 sites were therefore deemed true GlnR binding sites; the genes 

downstream of these genes were assumed to be under GlnR control, but may be 

expressed at a different time point to the one taken for the global expression profiling or 

requires additional transcription factors not yet recruited for expression.  

 

Genes Involved in Nitrogen Metabolism 

The main nitrogen metabolism pathway during nitrogen limitation utilises the 

glutamine synthetase enzyme GS. The glnA1 gene encoding a type-I glutamine 

synthetase (GS) in M. tuberculosis has been found to be essential, and has been 

implicated in virulence as well as nitrogen metabolism (171). In Streptomyces the type-I 

GS in this species (glnA), has been demonstrated to be GlnR regulated, indicating the 

importance of GlnR in GS regulation (120, 165). In this study both glnA1 and a second 

glutamine synthetase glnA2 were upregulated in the M. smegmatis WT compared to the 

glnR deletion mutant, and thus under GlnR control. Located between the two genes on 

the genome is glnE, which been implicated in post-translational modification of GS 

during nitrogen limitation. Whilst glnE does not contain a GlnR binding site up stream of 

its predicted transcriptional start site, it was down regulated in the wild type array 

when compared to the glnR mutant. GlnE is thought to modulate GS activity via 

adenylylation, inactivating GS activity. Down regulation of glnE would result in less GS 

adenylylation and consequently a more active GS under conditions of nitrogen stress. 

According to the data presented here, GlnR appears to be involved in the indirect 

regulation of GlnE at the transcriptional level, suggesting it has a pivotal role in GS 

transcriptional regulation during nitrogen stress. 

Other notable nitrogen metabolism genes under GlnR control are nitrate reductases. 

Nitrate is an important molecule for bacteria not only under nitrogen stress but also 

during times of hypoxia. M. tuberculosis is predicted to experience hypoxic conditions 

within macrophages during infection. As such, during hypoxic conditions the terminal 

electron acceptor would shift from oxygen to nitrate. Regulation of genes involved in 

nitrate metabolism are therefore important, not only to provide an alternate nitrogen 
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source that will provide nitrogen compounds for metabolism, but also other areas of 

energy production. As such we identified GlnR dependant regulation of nirB and nirD. A 

nitrate transcriptional regulator (nnaR) was also determined to be in the GlnR regulon 

(discussed later) suggesting the fine tuning of genes involved in nitrate metabolism. 

Again these results are analogous to Streptomyces, with nitrate reductase genes and the 

nitrate transcriptional regulator under GlnR control (2). 

As the external nitrogen source runs out, genes are upregulated that are involved in 

processes that utilise other cellular compounds as nitrogen sources. Therefore in times 

of austerity cells appear to switch to using alternative nitrogen sources. Genes that 

encode enzymes that enable the release of ammonium from other sources (Table 6.6), 

includes uricase, urea amidolase, hydrolases and amine oxidases. Whilst the pathways 

and COG classification for these genes may vary, what is apparent is that they all result 

in the release of ammonium from a variety of cellular or environmental sources. This 

release of ammonium can then be targeted to the nitrogen assimilation pathways in the 

cell, providing a valuable source of nitrogen. 

Transport and binding proteins represent another major category of genes under GlnR 

control during nitrogen limitation; 27 genes in total. In addition to the ammonium 

transporters, amtA, amtB and amt1, several other genes (such as, msmeg_0781, 

msmeg_1052, msmeg_2522 and msmeg_2524) are predicted to encode ABC transport 

systems for substrates such as amino acids and small peptides. These observations 

suggest that the transport of various other nitrogenous compounds into the cell from 

the environment is important. M. smegmatis is predicted to encode many more 

transporters than other mycobacterial species, probably due to the soil environment in 

which it has evolved. An operon (msmeg_2978-2982) encoding genes similar to the C. 

glutamicum urease transport operon was shown to be under positive GlnR regulation in 

this study (5). M. smegmatis is the only mycobacterial species to feature such a urea ABC 

transporter, emphasising the importance of urea as a nitrogen source for this species. 

From these results it is clear that the major response of M. smegmatis to nitrogen 

limitation is to scavenge all available nitrogen sources from the environment. Genes 

involved in scavenging ammonium (amt1, amtA, amtB, glnA1 and glnA2), urea 

(transporters; msmeg_2978–2982, urea amidolyase, uricase, urea carboxylase-

associated protein), nitrate (nirB, nirD), guanine deaminase (msmeg_1298) are all 

upregulated during nitrogen limitation and controlled by GlnR. This would make sense 

from an evolutionary perspective, as a soil dwelling organism M. smegmatis would 
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encounter numerous nitrogen sources in the environment, and it appears that M. 

smegmatis has evolved to be able take up and assimilate these sources. In addition, in 

the genus M. smegmatis is the species with the most genes annotated as being involved 

in nitrogen metabolism, showing its importance for survival in this species.  

 

Regulatory Proteins 

Nine regulatory proteins are included in the GlnR regulon and are upregulated during 

nitrogen limitation; this includes seven transcription factors (TF). In Streptomyces it was 

noted that out of 70 genes differentially expressed in the glnR deletion mutant, eight 

were putative TF, suggesting GlnR acts as a global regulator in both species (120). These 

TF may play a role in fine-tuning nitrogen utilisation. One such example is msmeg_0432 

(upregulated 18.3 fold in WT vs glnR), which shares 56% identity with SCO2958 (nnar) 

from S. coelicolor. Recently, nnar in S. coelicolor was reported to be GlnR regulated and 

bound upstream of the nitrate reductases, suggesting NnaR may play a further 

regulatory role in nitrate assimilation (2). Another notable GlnR regulated transcription 

factor is WhiB3, which in M. tuberculosis is an effector molecule controlling several 

aspects of virulence (136). M. tuberculosis WhiB3 senses fluctuations in the intracellular 

redox environment associated with O2 depletion and the metabolic switchover to the 

favoured in vivo carbon source, fatty acids (149). GlnR may, therefore, regulate 

additional regulatory molecules with roles in other aspects of metabolism and survival. 

In addition to transcriptional regulatory proteins, GlnR regulates proteins involved in 

post-translational modifications. Two proteins, GlnD and GlnK, have been well described 

in their role during nitrogen metabolism. They form part of the highly conserved amtB-

glnK-glnD operon in Actinomycetes, encoding an ammonium transporter (AmtB), PII 

signalling protein (GlnK) and an adenylyl transferase (GlnD). In C. glutamicum, it is 

thought that ammonium levels are detected by GlnD which adenylylates the GlnK (PII) 

protein. Upon adenylylation by GlnD, GlnK dissociates from AmtB porin channel 

permitting an increase in ammonium influx. It is unclear if this pathway is conserved in 

mycobacteria. However, it indicates the importance of a cascade of responses during 

nitrogen limitation, not only at the transcriptional level, but also the regulation of 

proteins involved in post-translational modification. 
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Dual Function 

GlnR can act as a dual transcriptional regulator, both activating and repressing gene 

expression in nitrogen limitation, although only 6.8% of GlnR-regulated genes were 

repressed in M. smegmatis. GlnR repression of gene transcription was also documented 

using proteomics and qRT-PCR of selected genes in a glnR deletion mutant of S. 

coelicolor (164, 165). This dual repressor/activator function has been described for 

other OmpR-like regulators. In E. coli OmpR controls the transcription of ompF and 

ompC, two genes encoding porin proteins. Under conditions of high osmolarity, OmpR 

represses ompF and activates ompC transcription (201). It has been demonstrated in E. 

coli that OmpR-P bind to promoters in a hierarchical model; the OmpF promoter regions 

are F1>F2>F3>F4. Binding of OmpR to F1 and F2 activates transcription of OmpF, 

however an increase in OmpR-P results in binding to the F4 site, a weak OmpR-P-

binding site. OmpR-P binding to the F4 site is proposed to form a loop that interacts 

with OmpR-P molecules binding to F1, F2, and F3, thereby blocking ompF transcription 

(201). The mechanism by which GlnR mutually activates and represses transcription is 

unclear, however it may involve conformational changes in DNA topology. 

Of the genes repressed by GlnR in M. smegmatis, msmeg_1738 was down regulated to 

the greatest extent (-13.15). Msmeg_1738 is annotated as a probable conserved 

membrane protein, predicted to be part of the DosR regulon in M. tuberculosis (179). 

This suggests that the decrease in growth rate under nitrogen limitation stimulates 

other pathways, such as factors associated with dormancy. In addition, subunits of 3-

isopro-pylmalate dehydratase, involved in amino acid biosynthesis, a hydrolase 

(msmeg_1078) and carboxyvinyl-carboxyphosphonate phosphorylmutase 

(msmeg_2506) were again down regulated. These changes indicate a shift in the 

biosynthesis pathways utilised by M. smegmatis under nitrogen limitation, possibly due 

to the observed reduction in growth rate.   

 

GlnR DNA Binding 

In order to identify a consensus GlnR DNA binding motif, the DNA sequence 200 bp from 

the centre of the 52 identified GlnR binding sites, were analysed using the MEME 

algorithm (Figure 6.9). A consensus sequence of Gn2AC-n6GnAACA was determined and 

found to be present once in all GlnR binding sites identified in this study. Amon et al. 

(2008) previous in silico study only reported 3 binding sites in M. smegmatis, however 

165



 

they used a 44 bp region defined by earlier Streptomyces studies (3). Later studies in 

Streptomyces by Tiffert and Pullan further defined the GlnR DNA binding motif to 16 bp, 

which is similar to the mycobacterial GlnR binding motif identified in this study (120, 

165). Using the M. smegmatis GlnR DNA binding motif generated by MEME we 

attempted to search the M. smegmatis genome using FIMO (Find Individual Motif 

Occurrences) for additional putative GlnR binding sites. This generated over 2000 hits, 

possibly due to the small consensus sequence, and as such was not deemed useful for 

further analysis. 

 

Tiffert et al. proposed the existence of two separate GlnR binding sites within the 

binding motif in S. coelicolor (165). The two binding sites have been termed an “a site” 

(gTnAc) and a highly conserved “b site” (GaAAc), located 6 bp apart, in which the highly 

conserved “b site” has a higher affinity for GlnR than the “a site”. However, the motif 

identified in S. venezuelae, GTnAC-n6-GTnAC does not provide a distinction between an 

“a” and “b site”, but rather two copies of an “a site” (120). In M. smegmatis the GlnR 

binding motif contains an “a site” (Gn2AC) separated by 6 bp followed by a “b site” 

(GnAAC). Whilst the “b site” sequence is highly similar to the S. coelicolor “b site” 

sequence, the “a site” is more variable. Pullan et al. suggested that conservation of the “b 

site” might be indicative of strong GlnR regulation. Yet combining the ChIP-seq binding 

data with transcriptomic data in this study, it is apparent some of the most up-regulated 

genes contain a highly conserved “b site” (msmeg_4501 and msmeg_5358), whilst 

others (msmeg_6816, msmeg_2982 and msmeg_2526) do not possess a highly 

conserved “b site”, yet the genes are expressed at similar levels (Table 6.7). This 

indicates that the conserved “b site” is not solely an indication of the effect of GlnR 

regulation. Other factors such as binding of additional transcription factors or sigma 

factor usage may also be a contributing factor to gene expression. 

 

While there is some discrepancy between the “a” and “b sites” for each species, what is 

apparent is the conserved region Ac-n9-Ac present in the motif search for M. smegmatis 

and Streptomyces. Further investigations were made into the requirements for these key 

residues and the distance between residues in the GlnR DNA binding motif. Mutating the 

highly conserved A residues ablated specific GlnR binding, indicating its importance for 

GlnR-DNA interactions (Figure 6.10). Furthermore the distance between these 

conserved residues was shown to be crucial for specific GlnR binding. The separation of 

these residues, 9 bp, represents one turn of the major groove of the DNA helix, which 

may be an important factor for determining the GlnR DNA interaction.  
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Comparison of the Streptomyces Regulon 

Homologues of GlnR regulated genes in M. smegmatis are also responsive to changes in 

nitrogen limitation in Streptomyces. A ChIP-seq approach in S. venezuelae identified 36 

GlnR binding sites compared to the 52 identified here in M. smegmatis. Targets found in 

both species include glnA, amtB and nnaR (uroporphyrinogen-III synthase). However, 

some clear differences were noted. Fewer transporter genes were GlnR regulated in S. 

venezuelae when compared to M. smegmatis, maybe reflecting difference in 

environmental nitrogenous compounds, or reflective of the experimental procedures 

used. In the Streptomyces study genes in operons failed to be included in the regulon, 

possibly accounting for the reduced number of GlnR regulated genes in this species 

(120). Other notable differences include a glutamate synthetase gene Sven_1677 which 

contained a GlnR binding site in S. venezuelae, whilst glutamate synthetases in M. 

smegmatis (msmeg_6263 and msmeg_6262) do not contain a GlnR-binding site 

upstream of the genes, even though they are up-regulated (20 and 5 fold respectively) in 

WT compared to the glnR mutant. Again the same was seen for ureA in S. venezuelae 

deemed to be GlnR regulated via ChIP-ChIP analysis, and whilst upregulated 2-fold in 

our array, msmeg_3627 was not under direct GlnR regulation. This indicates that some 

differences exist between the regulatory roles of GlnR in these species, however in both 

GlnR has a primary role in regulation of genes required during nitrogen limitation. 

 

Conclusion  

In summary, it has been confirmed that GlnR is the global nitrogen response regulator in 

M. smegmatis. The GlnR regulon has considerably increased in size from 11 to at least 

103 genes; the majority of which are involved in scavenging and assimilating alternative 

environmental nitrogen sources when the cell experiences nitrogen starvation.  

 

 

  

167



 

 

 

CHAPTER  7:  ChIP-seq  Analysis of Global  GlnR  DNA  Binding  
Sites in Mycobacterium tuberculosis  During  Nitrogen Stress  
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7.1 Aim 

To establish GlnR binding sites in M. tuberculosis during nitrogen excess and limiting 

growth conditions, allowing identification of potentially GlnR regulated genes. To 

compare these GlnR binding sites with previously identified GlnR regulated genes in M. 

smegmatis to evaluate the role of GlnR in both organisms. 

 

7.2 Introduction  

In this study GlnR has been demonstrated to play a pivotal role in regulation of nitrogen 

metabolism genes during nitrogen limitation in M. smegmatis, therefore we sought to 

investigate the role of GlnR in M. tuberculosis. Previous analysis of the M. tuberculosis 

genome identified a GlnR protein that shares 73% identity with GlnR of M. smegmatis 

(5). In addition, 8 GlnR regulated nitrogen metabolism genes in M. smegmatis share 

homology to genes present in the M. tuberculosis genome (Table 7.1).  

Despite this, the two mycobacterial species vary significantly with respect to the 

environmental niche in which they reside. M. smegmatis contains many more nitrogen 

metabolism genes, when compared to the genome of M. tuberculosis (5). For instance 

three ammonium transporters are found in the genome of M. smegmatis (amtA, amtB 

and amt1) whereas only amtB is located in the genome of M. tuberculosis (5). M. 

smegmatis also contains a greater number of genes for assimilation of various other 

nitrogen sources, such as an additional urease transport operon (msmeg_2978-2982) 

and hydrolases releasing ammonium from other nitrogenous compounds ((5), this 

study). Conversely, M. tuberculosis is a pathogenic organism that resides inside nutrient 

poor conditions of the host, such as macrophages. In this environment it is expected that 

M. tuberculosis experiences a hostile environment, with a limit on nitrogen sources 

available and/or competition with the host.  

During infection M. tuberculosis is phagocytosed by macrophages, which is thought to 

limit nutrient availability to the intracellular pathogen, however the exact nitrogen 

source available to the bacilli is unknown. In infected tissue nitrate is available; nitrate is 

generated spontaneously from nitric oxide (NO), the product of nitric oxide synthase. 

For utilisation as a nitrogen source nitrate must be converted by M. tuberculosis to 

ammonium before entering the GS/GOGAT pathway. Genes encoding enzymes to 

assimilate nitrate to nitrite then to ammonium are present in the M. tuberculosis genome 
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and were demonstrated by Malm et al. to be functional (95). This would put a greater 

emphasis on genes involved in nitrate uptake and conversion to ammonium for M. 

tuberculosis survival within macrophages. The M. tuberculosis genome also contains a 

conserved ammonium transporter amtB suggesting that ammonium transport is 

important for survival (5). Other interesting nitrogen metabolism operons include genes 

encoding a urease enzyme, responsible for the conversion of urea to ammonium (87). 

Indicating that the M. tuberculosis genome encodes a variety of genes for the utilisation 

of various nitrogen sources, that may potentially be GlnR regulated. Consequently we 

sought to identify all GlnR binding sites in the M. tuberculosis genome.  

 

Protein Putative Function M. smegmatis M. tuberculosis % Identity 

NirB Assimilatory nitrate reductase msmeg_0427 Rv0252 76 

NirD Assimilatory nitrate reductase msmeg_0428 Rv0253 74 

Nark3 Nitrite/nitrate transporter msmeg_0433 RV0261 62 

GlnK PII Protein (signal transduction) msmeg_2426 Rv2919c 88 

GlnD Post-translational modification of 
GlnK 

msmeg_2427 Rv2918c 58 

AmtB Ammonium uptake msmeg_2425 Rv2920c 48 

GlnA1 GS Ammonium assimilation msmeg_4290 Rv2220 84 

GlnA2 GS  Ammonium assimilation msmeg_4294 Rv2222 88 

 
Table 7.1. Percentage identity at the amino acid level of GlnR regulated 
nitrogen metabolism genes (from this study) in M. smegmatis to 
homologues in M. tuberculosis. (Adapted from (5)).  
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7.3 Results 

7.3.1 Global GlnR Binding Regions in Nitrogen Limitation 

To identify putative GlnR regulated genes in the M. tuberculosis genome we applied our 

optimised ChIP-seq approach. Cells were grown with 1 mM (limiting) or 30 mM (excess) 

ammonium chloride as the nitrogen source. Due to previous growth analysis of M. 

tuberculosis conducted by Dr. K. Williams, the equivalent ammonium source utilised in 

the M. smegmatis study could not be investigated. M. tuberculosis failed to grow as 

expected when ammonium sulphate was used at the soul nitrogen source; growth in 1 

mM ammonium sulphate was at a faster rate than 30 mM ammonium sulphate, 

suggesting high ammonium sulphate levels were impeding growth (Figure 7.1 KW). 

However, M. tuberculosis displayed the preferential growth dynamics when grown in 

ammonium chloride; after ammonium run-out in the 1 mM culture growth rate slowed, 

whist in the 30 mM culture growth rate was maintained (Figure 7.1 KW). Ammonium 

chloride was subsequently used in this study, with M. tuberculosis growth monitored via 

OD600 and external ammonium concentration examined by Aquaquant analysis as 

before.   
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Figure 7.1. Growth of M. tuberculosis in (A) ammonium sulphate and (B) 
ammonium chloride (KW). 

 

M. tuberculosis was grown in Sauton’s minimal medium with either (A) ammonium 
sulphate or (B) ammonium chloride at concentrations of 1 mM (closed triangle), 30 mM 
(closed circle) or no nitrogen (open square). Growth was monitored by OD600. Nitrogen 
run out in this experiment for the 1 mM ammonium chloride medium was determined 
by Aquaquant analysis to be at day 8. Data represents the average (±SD) of three 
independent experiments. 
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For ChIP M. tuberculosis cells were cross-linked one day after ammonium had run out in 

the limiting cultures, with nitrogen excess samples cross-linked at the same time point. 

Nitrogen run out in the 1 mM medium for this analysis corresponded to day 11, this 

varied from Figure 7.1 as 60 ml cultures were used rather than 30 ml to generate 

enough cells for ChIP analysis. After cross-linking, cells were lysed and the DNA sheared 

by sonication. M. tuberculosis cells required three rounds of sonication, compared to the 

one round used previously for M. smegmatis. The sonication conditions were optimised 

until all genomic DNA was sheared to between 200 and 500 bp fragments in size (Figure 

7.2). The polyclonal GlnR antibody was purified against the M. tuberculosis His-GlnR 

protein as described in Section 2.4.3 and a Western blot conducted on M. tuberculosis 

whole cells lysate to confirm specific reactivity of the purified anti-GlnR antibody with 

GlnR (Figure 7.3). Immunoprecipitation of GlnR-bound DNA fragments was carried out 

using purified anti-GlnR (M. tuberculosis) polyclonal antibody, as described (Section 

2.7.2).  

 

 

Figure 7.2. Sonication of M. tuberculosis DNA for ChIP-seq. 

 

Two per cent agarose gel of M. tuberculosis DNA with (A) one round of sonication, as 
used for M. smegmatis, and (B) three rounds of sonication. Genomic DNA can still be 
visualised in (A), while in (B) all DNA is sheared to between 200 and 500 bp.  
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Figure 7.3 Western blot of M. tuberculosis whole cell lysate with M. 
tuberculosis purified anti-GlnR antibody.  

Western blot demonstrating the specificity of the purified M. tuberculosis anti-GlnR 
antibody, with 25 ng of M. tuberculosis His-GlnR recombinant protein and 20 μg of M. 
tuberculosis whole cell lysate. Antibody was used at a 1:50 dilution. GlnR is visualised at 
28 kDa (slightly higher for His-GlnR due to His tag). At 62 kDa a dimer of His-GlnR is 
visible. 

 

 

To confirm that GlnR binding regions were enriched in the DNA fragments 

immunoprecipitated during nitrogen limitation compared to nitrogen excess, a rate 

limiting PCR was performed. One known GlnR regulated M. tuberculosis gene, the nitrite 

reductase (nirB; Rv0252) promoter region, was chosen for analysis. A gene not thought 

to be GlnR regulated (Rv1360) was included as a negative control (Figure 7.4). The nirB 

promoter region was enriched in nitrogen limiting conditions when compared to excess, 

indicating that GlnR was binding to the known site in our conditions. 
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Figure 7.4. Rate limiting PCR indicating enrichment of GlnR 
immunoprecipitated DNA in M. tuberculosis. 

Rate limiting PCR involved 23 cycles amplification of 200 bp promoter regions, using 0.3 
ng of template DNA. ChIP represents DNA that has been immunoprecipitated with a 
GlnR specific antibody during nitrogen excess or nitrogen limiting conditions. Input 
represents the total amount of DNA that was subject to immunoprecipitation. 

(A) Promoter region of nirB (Rv0252). (B) Promoter region of Rv1360 (negative 
control)  
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Immunoprecipitated DNA was prepared for sequencing using the Illumina ChIP-seq 

library kit according to the manufacturer’s instructions. Sequencing of the DNA libraries 

using the Illumina HiSeq2000 generated approximately 144 million reads per sample 

which were mapped to the M. tuberculosis genome using Bowtie (81). GlnR binding 

regions were identified using the peak calling algorithm SISSRs (105). GlnR binding sites 

were defined as regions showing greater than 5-fold enrichment in the 

immunoprecipitated sample compared to the input control with p value of < 0.005. This 

analysis identified 36 GlnR binding sites during nitrogen limitation including 2 also 

observed in nitrogen excess (Figure 7.5, Tables 7.2 and 7.3). These binding regions and 

genes adjacent to the peaks are listed in Table 7.2. Eight of these GlnR binding sites were 

in similar regions to those described in the GlnR regulon for M. smegmatis (Table 7.2 

highlighted in grey).  

Unlike M. smegmatis, where all GlnR binding sites were identified in intergenic regions, 

in M. tuberculosis six GlnR binding sites were located within genes. Two examples, peaks 

10 and 11, are displayed in Figure 7.6. Binding sites observed within gene transcription 

units are noted for peak 5 inside umaA, peak 10 inside narG, peak 11 binding inside 

Rv1173, peak 27 inside moaA1, peak 33 inside Rv3528 and peak 34 inside Rv3533. The 

role of GlnR binding within predicted genes is intriguing and further analysis of gene 

expression may indicate how GlnR is acting on these genes.  

 

Figure 7.5. Whole genome view of GlnR binding sites in M. tuberculosis 
identified via ChIP-seq. 

Whole genome view of GlnR binding sites identified by ChIP-seq in M. tuberculosis 
displayed in IGV. Upper track displays the input control (total DNA without 
immunoprecipitation), middle track nitrogen limiting (1 mM ammonium sulphate), 
bottom track is nitrogen excess (30 mM ammonium sulphate). 
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Figure 7.6. Two examples of GlnR binding sites identified within gene 
coding sequences in M. tuberculosis. 

(A) Peak 10 within Rv1161 (highlighted by arrow). (B) Peak 11 within Rv1173. 

The upper track represents the input control sample of total genomic DNA. The middle 
and bottom tracks represent sequencing of DNA immunoprecipitated from the nitrogen 
limiting and excess samples respectively. Horizontal black lines represent the gene 
transcription units. 
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7.3.2 Confirmation of GlnR Binding Sites  

Identification of the GlnR binding site for the previously known nirB promoter region in 

our analysis confirmed that ChIP-seq had identified specific GlnR binding sequences 

(Figure 7.7). Further validation was provided by performing electromobility shift assays 

(EMSA). Two hundred base pair DNA regions, representing the binding regions from 4 

novel binding sites, were incubated with purified M. tuberculosis GlnR protein. Using the 

same conditions as in the M. smegmatis EMSAs (this study), peak 18 was confirmed as a 

GlnR binding site, whilst the negative control Rv1360 displayed no GlnR:DNA binding 

(Figure 7.8).  

Problems with the migration of protein-DNA complexes made identification of the 3 

other binding sites via EMSA difficult (Figure 7.9). The GlnR:DNA complex appeared to 

be aggregating in the well rather than migrating through the gel. Reducing the 

percentage of acrylamide within the gel from 6% to 4%, permitted migration of the 

protein-DNA complex for peak 13 into the gel (Figure 7.8). Confirming peak 13 as a 

specific GlnR binding site. However, the two additional peaks (17 and 20) could not be 

confirmed by EMSA using the M. tuberculosis GlnR protein due to the aggregation issue. 

As the DNA binding region of the M. smegmatis and M. tuberculosis GlnR proteins are 

similar in sequence and predicted structure (Figure 7.10), binding analysis of these 2 M. 

tuberculosis DNA binding regions was conducted with the M. smegmatis purified GlnR 

protein. Peak 18 region bound specifically to the M. smegmatis GlnR protein (data not 

shown), as observed with the M. tuberculosis GlnR protein. Peaks 13, 17 and 20 also 

bound specifically with the M. smegmatis His-GlnR protein (Figure 7.11). Again no GlnR 

binding was observed for the negative control Rv1360 (Figure 7.11). This confirms that 

GlnR binds specifically to these promoter regions with a protein-concentration 

dependent shift. 
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Figure 7.7. Confirmation that M. tuberculosis ChIP-seq data identified 
known GlnR binding site, the nirB promoter region. 

 

Binding data for known GlnR-regulated gene nirB was visualised using IGV. Upper track 
indicates total DNA input with the middle and bottom tracks corresponding to ChIP-seq 
data from nitrogen limiting and excess conditions respectively. The black bars at the 
bottom signify gene transcripts. 
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Figure 7.8. EMSA of GlnR binding to 200 bp DNA region and corresponding 
IGV sequence alignment of: (A) Peak 18, (B) Rv1360 negative control, and 
(C) Peak 13. 

M. tuberculosis His-GlnR was incubated in increasing amounts, 0-0.9 μg, with 200 bp 
region of labelled DNA. Specific and non-specific competitor cold DNA was added at 
1000x excess to labelled probe. Binding data was visualised using IGV. Upper track 
indicates total DNA sequenced with middle and bottom track displaying ChIP-seq data 
from nitrogen limiting (1 mM) and nitrogen excess (30 mM) conditions respectively. 
The black bars at the bottom signifying genes are labelled accordingly. 
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Figure 7.9. Purified M. tuberculosis His-GlnR:DNA complexes do not 
migrate during EMSA analysis.  

M. tuberculosis His-GlnR was incubated in increasing amounts, 0-0.9 μg, with 200 bp 
region of labelled DNA. Specific and non-specific competitor cold DNA was added at 
1000x excess to labelled probe. Binding data was visualised using IGV. Upper track 
indicates total DNA sequenced with middle and bottom track displaying ChIP-seq data 
from nitrogen limiting (1 mM) and nitrogen excess (30 mM) conditions respectively. 
The black bars at the bottom signifying genes are labelled accordingly. 
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Figure 7.11. M. smegmatis GlnR binds to M. tuberculosis DNA sequences. 

M. smegmatis His-GlnR was incubated in increasing amounts, 0-0.9 μg, with 200 bp 
region of labelled DNA. Specific and non-specific competitor cold DNA was added at 
1000x excess to labelled probe. Binding data was visualised in IGV. Upper track 
indicates total DNA sequenced with middle and bottom track displaying ChIP-seq data 
from nitrogen limiting (1 mM) and nitrogen excess (30 mM) conditions respectively. 
The black bars at the bottom signifying genes are labelled accordingly. 

(A) Peak 13 (B) Peak 17 (C) Peak 20 (D) Rv1360 (negative control). 
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7.3.3 Identification and Analysis of the M. tuberculosis GlnR DNA Binding Motif  

To identify potential GlnR DNA binding motifs within the nucleotide sequences obtained 

by ChIP-seq, 200 bp regions centred around the peak identified by SSISRs were 

submitted to MEME. This generated a consensus motif sequence displayed in Figure 

7.12 with an E-value 7.3x10-3. However, this consensus motif generated was only found 

in 18 of the 36 GlnR binding sites identified via ChIP-seq, with 3 sequences located in 

intergenic regions; these peaks and the neighbouring genes are listed in Table 7.4.  

In order to ascertain a more comprehensive motif search, sequences of 50 bp 

representing the GlnR DNA binding site was submitted to MEME. This approach 

identified 6 different consensus sequences (Figure 7.13). Motif 1 was identified to be the 

most common motif, located in 10 peaks, with motif 2 located in 9 peaks. Motifs 3, 4, 5 

and 6 were all located in two peaks each. Interestingly peak 33 was the only region to 

contain two binding motifs, 2 and 6. The motif number and genes these controlled are 

listed in Table 7.5.  

As the consensus DNA-binding motif varied between GlnR binding sites in M. 

tuberculosis we sought further verification that the peaks identified via ChIP-seq were 

due to enrichment of GlnR immunoprecipitated DNA and not due to sequencing error. 

As such, 4 peaks were chosen for further analysis; peaks 2, 10, 11 and 23. Peak 2 and 

peak 23 were chosen as no consensus DNA binding motif was detected in these regions. 

To confirm that GlnR binding sites detected inside genes were true binding sites, peak 

10 and 11 were chosen for analysis. Peak 10 bound inside narG and had a consensus 

motif from the second 50 bp MEME search of motif 5, with peak 11 binding inside fbiC 

and containing motif 1 from the 50 bp MEME search. Rate limiting PCR was conducted 

on independent immunoprecipitated DNA in nitrogen excess and limiting conditions. 

Figure 7.14 displays that enrichment of DNA is seen in all samples tested in nitrogen 

limitation, compared to nitrogen excess for the peak regions tested. This confirms that 

the Peaks identified via ChIP-seq are due to GlnR binding and enrichment. 
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   Left Gene Right Gene 

Peaka p-valueb 
Peak 

intensityc 
Gene ID 

Gene 
Name 

Gene ID Gene Name 

4 5.1E-07 11.21 Rv0469 umaA   

5 1.6E-06 7.77 Inside Rv0469 umaA   

7 1.8E-09 50.83 Rv1040c PE8   

8 1.4E-06 5.08   Rv1088 PE9 

9 7.6E-07 60.55   Rv1161 narG 

10 4.4E-06 7.14 Inside Rv1161 narG   

11 1.7E-08 34.76 Rv1172c PE12 Inside Rv1173 fbiC 

17 8.4E-07 30.01 Rv1542c glbN Rv1543  

18 4.4E-06 30.04 Rv1548 PPE21 Rv1549 fadD11.1 

21 7.7E-11 41.8 Rv2222c glnA2   

22 7.6E-06 47.26   Rv2281 pitB 

25 1.0E-06 12.79   Rv2425c  

26 5.7E-07 6.27 Rv2769c PE27   

28 5.1E-06 5.47   Rv3110 moaB1 

29 1.4E-06 6.07 Rv3219 whiB1   

30 1.6E-06 14.79 Rv3370c dnaE2 RV3371  

32 9.2E-07 26.47 Rv3415c  Rv3416 whiB3 

36 5.1E-07 48.07 Rv3622c PE32 Rv3623 IpqG 

 

Table 7.4. Peaks containing the GlnR DNA binding motif generated by MEME.  

All apeaks identified via ChIP-seq containing the MEME motif generated in Figure 7.11 are 
displayed in the table. bP value is generated via MEME and relates to the similarity of each site 
with the MEME derived sequence. cPeak intensity corresponds to fold enrichment of each peak 
calculated using SISSRs, and is based on the number of sequenced tags at each site vs the input 
control sample. Right gene/left gene indicates the direction of the gene in relation to GlnR 
binding. Genes highlighted in grey displayed GlnR regulated gene expression in M. smegmatis. 
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Figure 7.13. Alternate MEME-derived GlnR consensus binding sequences from 
ChIP-seq data. 

MEME consensus of GlnR binding regions generated from 50 bp regions surrounding the peak. 

(A) Motif 1 (B) Motif 2 (C) Motif 3 (D) Motif 4 (E) Motif 5 (F) Motif 6. 
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    Left Gene Right Gene 

Peaka p-valueb Motifc 
Peak 

intensityd 
Gene ID 

Gene 
Name 

Gene ID 
Gene 
Name 

1 3.4E-05 3 54.53 Rv0251c hsp Rv0252 nirB 

3 9.3E-03 2 11.84 Rv0261c narK3   

4 7.6E-05 1 11.21 Rv0469 umaA   

7 7.0E-03 1 50.83 Rv1040c PE8   

8 6.7E-05 4 5.08   Rv1088 PE9 

9 1.5E-04 4 60.55   Rv1161 narG 

10 3.7E-04 5 7.14 Inside Rv1161 narG   

11 2.8E-06 1 34.76 Rv1172c PE12 Inside Rv1173 fbiC 

13 3.0E-03 1 12.06   Rv1386 PE15 

14 4.7E-02 2 10.62 Rv1527c pks5   

15 1.0E-04 1 12.52   Rv1529 fadD24 

17 3.9E-03 2 30.01 Rv1542c glbN Rv1543  

18 8.4E-04 1 30.04 Rv1548 PPE21 RV1549 fadD11.1 

19 4.9E-03 1 5.38 Rv1791 PE19   

20 1.2E-03 2 9.56 Rv2219A  RV2220 glnA1 

21 6.1E-03 2 41.8 Rv2222c glnA2   

24 1.5E-02 2 42.33 Rv2329c narK1   

25 6.7E-04 1 12.79   Rv2425c FUN 

27 1.6E-03 1 6.29 Inside Rv3109 moaA1 Rv3110 moaB1 

28 1.0E-04 5 5.47   Rv3110 moaB1 

30 6.7E-04 1 14.79 Rv3370c dnaE2 Rv3371  

31 4.6E-03 2 15.45 Rv3385c vapB46 Rv3386  

33 3.5E-04 6 & 2 5.15 Inside Rv3528c FUN   

34 1.3E-02 2 8.71 Inside Rv3533c PPE62   

35 1.3E-01 6 8.02 Rv3620c esxW   
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36 8.2E-05 3 48.07 Rv3622c PE32 Rv3623 IpqG 

 

Table 7.5. Peaks containing the various GlnR DNA binding motifs generated by 
MEME. 

All apeaks identified via ChIP-seq containing the cdifferent MEME motifs generated in Figure 
7.13 are displayed in the table. bP value is generated via MEME and relates to the similarity of 
each site with the MEME derived sequence. dPeak intensity corresponds to fold enrichment of 
each peak calculated using SISSRs, and is based on the number of sequenced tags at each site vs 
the input control sample. Right gene/left gene indicates the direction of the gene in relation to 
GlnR binding. Genes highlighted in grey displayed GlnR regulated gene expression in M. 
smegmatis. 

 

 

 

Figure 7.14. Rate limiting PCR on M. tuberculosis GlnR immunoprecipitated DNA. 

Rate limiting PCR involved 23 cycles of 200 bp promoter regions, using 0.3 ng of template DNA.  
(A) Peak 2 (B) Peak 10 (C) Peak 11 (D) Peak 23 
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7.4 Discussion 

The aim of this study was to identify GlnR binding sites in M. tuberculosis during nitrogen 

limitation and to compare any conserved GlnR-regulated nitrogen pathways in M. smegmatis 

and M. tuberculosis. In addition the identification of novel or unique GlnR binding regions in M. 

tuberculosis could highlight novel mechanisms associated with the establishment of infection in 

the host. 

Unlike M. smegmatis, where GlnR binding sites were only identified in intergenic regions, in M. 

tuberculosis six GlnR binding sites were located within genes. The role of GlnR binding within 

gene coding sequences is intriguing. Three of these sites, namely peak 5 inside umaA, peak 10 

inside narG and peak 27 moaA1 contained additional GlnR binding sites adjacent to these peaks 

in gene promoter regions, which may indicate multiple binding of GlnR regulating gene 

transcription. Peak 11 binds inside Rv1173, however this binding site may regulate a gene 

adjacent to this location Rv1172, and this could be confirmed via microarray analysis of a glnR 

deletion strain. Peak 33 and peak 34 again were located within gene transcription units and it is 

not clear from the binding data alone whether GlnR binding influences activation or repression 

of transcription. As such further analysis of gene expression may indicate how GlnR is acting on 

these genes.  

M. tuberculosis GlnR binding sites were identified upstream of genes also identified in the M. 

smegmatis as GlnR regulon. These include genes involved in nitrite metabolism, nirB, nnaR and 

narK3 (discussed later), in addition to glnA1 and glnA2 encoding type-I glutamine synthetases. 

Interestingly GlnN a globular protein involved in O2 transport, and the transcriptional 

regulators WhiB1 and WhiB3 also contain GlnR binding sites upstream of the gene start sites in 

both species. Of note, whiB1 in M. smegmatis has a GlnR binding site yet no differential 

expression was observed compared to a glnR deletion mutant during nitrogen limitation. The 

regulation of other transcriptional regulators is intriguing, and extends the possible number of 

genes and processes controlled by GlnR and potentially links different regulons.  

Nitrogen metabolism genes glnA1 and glnA2, encode type-I glutamine synthetases, and contain 

GlnR binding sites in both M. smegmatis and M. tuberculosis. GlnR also regulates glnA in 

Streptomyces, indicating some conservation of GlnR binding within the Actinomycetes (120, 

165). GlnR regulation of GlnA1 in M. tuberculosis is interesting, as GlnA1 appears to play a role 

in virulence as well as nitrogen metabolism. In contrast to M. smegmatis, GlnA1 of M. 

tuberculosis is secreted extracellularly and is thought to play an important role in the 

biosynthesis of the cell wall polymer poly L-glutamate/glutamine (60, 171). In addition, in 

human mononuclear phagocytic cells (THP-1) infected with M. tuberculosis, the bacilli displayed 
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reduce survival when treated with L-methionine-S-sulfoximine, an inhibitor of the glutamine 

synthase enzyme (171). As such the effect of GlnR binding on the transcription of glnA1 in M. 

tuberculosis is intriguing, highlighting a conserved binding site between mycobacterial species, 

but with a potentially adapted role in pathogenicity. 

The majority of genes containing GlnR binding sites in M. tuberculosis were different to those 

described in the M. smegmatis GlnR regulon (Figure 7.15). Genes with known homologues in M. 

smegmatis, that are not GlnR regulated in this species, contain a GlnR binding site in M. 

tuberculosis, for instance narG, psk and umaA. These are interesting as the proteins may serve 

different roles in the two species during nitrogen limitation since they have a different control 

mechanism. In addition genes containing no known homologues in M. smegmatis contained 

GlnR binding sites, for example the PE/PPE and ESAT-6 family proteins. This may indicate a 

novel role for GlnR in the pathogenic species.  

 

 

 

Figure 7.15. Venn diagram of GlnR binding sites in M. smegmatis and M. 
tuberculosis displaying the common and unique GlnR binding sites for each 
species. 

A Venn diagram representing binding sites for M. smegmatis (yellow) and M. tuberculosis (blue). 
Common GlnR binding sites shared by the two organisms are indicated in green. 
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PE/PPE Proteins 

An interesting category of genes are those that are under GlnR regulation in M. tuberculosis 

without direct homologues in M. smegmatis. These include a variety of PPE and PE family 

proteins. These were designated the pe and ppe genes, after highly conserved Proline-Glutamate 

and Proline-Proline-Glutamate residues near the start of their encoded proteins (138). It has 

been speculated that these proteins play a role in evasion of host immune responses, possibly 

via antigenic variation. Although a comprehensive understanding of their function has yet to be 

established, emerging data increasingly supports a role for the PE/PPE proteins at multiple 

levels of infection. It is known, however, that these genes are unique to mycobacteria and are 

particularly abundant in pathogenic mycobacteria, such as M. tuberculosis (138). 

It is probable that GlnR regulates at least six PE and PPE proteins (peaks 7, 8, 13, 19, 26 and 34). 

However this number may increase; the direction of GlnR action at peaks 11, 18 and 36 is 

uncertain as genes are divergent from GlnR DNA binding sites and therefore GlnR could regulate 

additional pe/ppe genes. The high number of PE and PPE genes under GlnR control may not be 

surprising, analysis of the M. tuberculosis H37Rv genome revealed PE and PPE proteins 

comprise almost 10% of the genome coding capacity (36). In addition, regulation of a subset of 

PE and PPE proteins has been described during characterisation of other regulatory proteins 

(138, 180). In one example, disruption of the PhoPR two-component regulator resulted in 

altered expression of at least 14 pe/ppe genes (180). Of note all pe/ppe genes identified in the 

PhoPR study were different to those identified in this analysis. This could indicate that GlnR, as 

well as other two-component systems, provides regulation of these virulence factors in M. 

tuberculosis. 

The GlnR regulated PE/PPE proteins identified in this study all have unknown functions. Table 

7.6 summarises known characteristics of each protein. Cell-mediated immunity is important in 

the control of M. tuberculosis infection, so the role of PE and PPE proteins in eliciting this are of 

particular interest. At least 20 PE/PPE proteins have been reported to elicit CD4 and/or CD8 

responses. One potentially GlnR regulated protein PE19 (Rv1791) has been reported previously 

to elicit a T-cell response (115). Other interesting characteristics are their cellular localisation, 

PE15 (Rv1386) is cell-membrane-associated and has been identified in exported fractions (93, 

94). Comparing transcriptome data on the pe/ppe genes and aligning this to GlnR binding would 

provide a valuable way to investigate the regulation of these PE/PPE proteins and how nutrient 

availability, in this instance nitrogen, effects their expression. 
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PE/ 
PPE 
Noa 

Gene ID Peakb Peak 
intensityc 

pe/ 
ppe 

paird 

Esx 
clustere 

Sub-
groupf 

Surface 
associated 

Exported T cell 
response 

PE8 Rv1040c 7 50.83 Yes Yes IV    

PE9 Rv1088 8 5.08 ? ? V    

PE12 Rv1172c 11 34.76 ? ? V    

PE15 Rv1386 13 12.06 Yes No II Yes (94) Yes (93)  

PE19 Rv1791 19 5.38 Yes Yes IV   Yes (115) 

PE27 Rv2769c 26 6.27 Yes No IV    

PE32 Rv3622c 36 48.07 Yes Yes IV    

PPE21 Rv1548 18 30.04 No No V    

PPE62 RV3533 34 8.71 No No V    

 

Table 7.6. Putative GlnR regulated PE and PPE proteins identified in this study.  

aPE/PPE name. bGlnR peak number identified in this study. cPeak intensity corresponds to fold 
enrichment of each peak calculated using SISSRs, and is based on the number of sequenced tags 
at each site vs the input control sample. dPE/PPE protein pair refers to genome localisation of 
the gene and corresponding pair location adjacent on the genome. eESX cluster refers to PE/PPE 
protein pair situated within an ESX region. fSub-group is determined by (50). 

Table adapted from (138). 

  

198



 

Nitrate/ Nitrite Metabolism 

Six GlnR binding sites corresponded to promoter regions for genes involved in nitrate/nitrite 

metabolism and uptake. It has been demonstrated that M. tuberculosis can use nitrate as a 

nitrogen source, which may be vital for bacterial survival during infection (95). M. tuberculosis is 

phagocytosed by macrophages during infection, which could limit nutrient availability to the 

intracellular pathogen. However, nitrate is available in infected tissue, generated spontaneously 

from nitric oxide (NO), the product of nitric oxide synthase. For utilisation as a nitrogen source 

nitrate must be converted by M. tuberculosis to ammonium before entering the GS/GOGAT 

pathway. Nitrate is converted to ammonium via a two-step process; the first step involves 

reduction of nitrate (NO3-) to nitrite (NO2-) by NarGHJI, which is succeeded by a second step, 

nitrite reduction to ammonia (NH4+) by NirBD (Figure 7.16). Consequently regulation of the 

nitrate/nitrite genes involved in this process are of particular interest for M. tuberculosis 

survival. 

 

 

Figure 7.16. Conversion of nitrate to ammonium and subsequent entry into the 
GS/GOGAT pathway in M. tuberculosis. 

Nitrate enters M. tuberculosis, possibly via the transporters NarK1-3 and NarU, and is converted 
to nitrate by NarG/H/I. Subsequent conversation of nitrite to ammonium proceeds via NirB/D 
before ammonium assimilation into glutamate and glutamine via the GS/GOGAT pathway. 
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GlnR has been demonstrated to regulate the nitrite reductase genes nirB/D in both M. 

smegmatis (this study) and M. tuberculosis (95). The promoter region of the nirB gene in M. 

smegmatis (this study) and M. tuberculosis (Rv0252; (95)) both contain a GlnR binding site and 

regulation of the nirB/D operon is disrupted in a glnR deletion mutant for both species ((95), 

this study). In this study it was confirmed that GlnR binds to the nirB promoter region in M. 

tuberculosis. In addition GlnR binding sites were identified upstream of a putative 

transcriptional regulator NnaR (Rv0260c), and a nitrite extrusion protein NarK3 (Rv0261c). All 

of these were identified in the M. smegmatis GlnR regulon (this study). An additional nitrite 

extrusion protein NarK1 (Rv2329c) also possessed a GlnR binding site, which is not present in 

M. smegmatis. This confirms previous studies that GlnR regulates genes involved in nitrite 

metabolism in both M. smegmatis and M. tuberculosis. 

In M. tuberculosis the nitrate reductase genes also contained a GlnR binding site. Homologues of 

these genes are present in M. smegmatis (msmeg_5140-5137), but they were not GlnR 

regulated. NarG (Rv1161) contained a GlnR binding site within its promoter region and also 

within the gene itself. NarG is found in an operon with narH, narJ and narI (Rv1161-1164) in 

addition to Rv1165 (typA; possible GTP-binding translation elongation factor TYPA). Studies on 

M. tuberculosis NarGHJI found the enzyme to be functionally similar to that of E. coli; M. 

tuberculosis NarGHJI complemented a narGHJI-defective strain of E. coli supporting anaerobic 

growth, suggesting a role for this protein in M. tuberculosis in anaerobic metabolism (154). 

However, it was also reported that M. tuberculosis, unlike E. coli, constitutively expressed 

narGHJI independent of oxygen levels. Interestingly M. tuberculosis NarGHJI mediates reduction 

of nitrate under both anaerobic and aerobic conditions (155, 186), indicating that M. 

tuberculosis provides the first example of a narGHJI-encoded nitrate reductase that mediates 

assimilation of nitrate under aerobic conditions. One explanation for this observation is that in 

M. tuberculosis GlnR controls the expression of narGHJI and nirBD in response to nitrogen levels 

in the cell, rather than oxygen levels, suggesting a novel control mechanism of nitrate 

metabolism.  

 

Molybdenum Cofactor Biosynthesis (moa operon) 

Two GlnR binding sites were identified for genes encoding proteins involved in molybdenum 

cofactor biosynthesis. One binding site was inside moaA1 (Rv3109) and the second in the 

promoter region of moaB1 (Rv3110). The molybdenum cofactor is part of the active site of all 

molybdenum enzymes. There are several molybdenum enzymes in mycobacteria exerting 

important physiological functions, such as dormancy regulation and metabolism of energy 
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sources and nitrogen sources (Nitrate reductase NarGHJI being one example) (146). Pterin-

based Mo cofactor is the most common cofactor of the molybdenum enzymes in mycobacteria 

(146).  

Pterin-based Mo cofactor is synthesised by a conserved pathway. In E. coli more than 15 genes 

are involved in cofactor biosynthesis, and the function these genes is well understood (6). One 

locus involved in biosynthesis of Pterin-based Mo cofactor is moa. Whilst homologues for moa 

exist in M. tuberculosis, its activity has not been characterised biochemically. moaA1 is probably 

part of an operon in M. tuberculosis due to the location of the moaABCD genes, which are 

organised in a cluster similar to that described in E. coli. In E. coli the ModE protein mediates 

transcriptional regulation of moaABCD (6). ModE has also been implicated in the regulation of 

narG in E. coli, however ModE does not bind directly to the narG promoter region, but binds to 

the narK-narXL intragenic region (141). In mycobacterial genomes no homologue of modE was 

identified. In this study possible GlnR regulation of narG is described, which in E. coli is ModE 

regulated. This evidence, and the lack of modE in mycobacterial genomes, may suggest that GlnR 

is involved in transcriptional regulation of the moa operon as well as other pterin-based Mo 

dependent enzymes in mycobacteria. 

 

Genes Involved in Lipid Metabolism  

ChIP-seq identified many GlnR binding sites upstream of genes involved in lipid metabolism. 

Sequence analysis of the M. tuberculosis genome showed that the bacillus encodes a wide range 

of proteins involved in lipid metabolism (36). In E. coli approximately 50 enzymes are involved 

in lipid metabolism, whereas the M. tuberculosis genome contains at least 250 genes, 

highlighting the importance of lipid metabolism in M. tuberculosis (36). 

Two members of the FadD family of lipid degradation enzymes (fadD24 (Rv1529) and fadD11.1 

(Rv1549)), contain GlnR binding sites, which may represent a switch in times of nitrogen poor 

conditions to an alternate carbon source. In vivo-grown mycobacteria are thought to be largely 

lipolytic, rather than lipogenic, because of the variety and quantity of lipids available within 

mammalian cells and the tubercle (36). The mycobacterial FadD proteins show homology to 

acyl-CoA synthetases that convert free fatty acids into acyl-coenzyme A (CoA) thioesters, the 

first step in fatty acid degradation (169). As such GlnR may regulate genes involved in 

scavenging alternate carbon sources, as well as a role in nitrogen metabolism. 

A GlnR binding site was identified upstream of pks5 (Rv1527c) a probable polyketide synthase. 

M. smegmatis contains a homologue MSMEG_4727, however it is not GlnR regulated. The role of 
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pks5 in M. tuberculosis has yet to be investigated, although studies in M. smegmatis described 

pks5 as essential in the synthesis of lipooligosaccharides (44). Lipooligosaccharides are highly 

antigenic glycolipids, but their precise role in mycobacterial virulence is still a matter of debate 

(17, 85). Despite this, recent work demonstrated that lipooligosaccharides play a role in sliding 

motility, biofilm formation, and infection of murine macrophage-like cells by M. marinum (129). 

As such, lipooligosaccharide synthesis and its regulation in M. tuberculosis could provide an 

interesting study into the role of these compounds during infection. 

A gene potentially involved in mycolic acid synthesis umaA (Rv0469) also contains a GlnR 

binding site. Mycolic acids are a major constituent of the lipid-rich envelope of mycobacteria 

and form an outer barrier with extremely low permeability that may explain their intrinsic 

resistance to many antibiotics. Structural analyses established the function of msmeg_0913, the 

M. smegmatis homologue of umaA, as an enzyme that adds a methyl branch to the vicinal 

position of both a cis double bond and cyclopropyl group, to yield trans mycolic acid 

homologues (82). However msmeg_0913 is not under GlnR regulation, which may indicate 

different roles for the umaA gene in each species. M. tuberculosis CDC1551, which carries a 

natural frame shift mutation in umaA, contains the same mycolate phenotype as M. tuberculosis 

H37Rv (82). Despite this, McAdam et al. revealed that Tn disruption of M. tuberculosis umaA 

resulted in hypervirulence in SCID mice (99). This suggests that the umaA gene is functional in 

H37Rv. It may therefore depend on environmental factors whether umaA has a role in M. 

tuberculosis and GlnR may regulate this during stress conditions. Consequently investigation 

into the effect of GlnR on lipid composition may determine whether control of umaA affects the 

cell wall composition during times of nitrogen deficiency. 

 

ESAT-6 Like Proteins Rv3620c and Rv3219 

A GlnR binding site was identified up stream of an ESAT-6 family member esxW (Rv3620c), 

suggesting GlnR controlled transcriptional regulation. Contained in an operon with Rv3620c is 

esxV (Rv3619), indicating GlnR regulation of both proteins. Rv3619c and Rv3620c are members 

of the Esx family of virulence factors, with in silico analysis predicting their presence in M. 

leprae, M. avium and M. marinum (97). Rv3619:Rv3620 interact in a 1:1 heteromeric structure 

and are secretory, antigenic proteins (92). One of the major functions associated with ESAT-6 

family members is cytolytic activity. Cytolysis of host cells has been demonstrated by analysis of 

ESAT-6 protein Rv3875 (65). In M. marinum the ESAT-6 protein was demonstrated to induce 

pore formation, enabling the bacterium to escape from the vacuole to the host cell cytosol (151). 

However, to-date no studies have been performed on other ESAT-6 paralogs to determine 
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whether other members have similar membrane-destabilising functions. Analysis of 

Rv3619:Rv3620 function in pore formation may highlight a role for GlnR during M. tuberculosis 

infection. 

In addition, ESAT-6 family proteins have been demonstrated to be potent T-cell antigens (1). As 

such, the antigenic properties of Rv3620c and Rv3619c have been utilised as part of a fusion 

protein (ID93), in efforts to boost immunity in BCG vaccinated individuals. The fusion protein 

ID93 incorporates PPE_MPTR42 (PPE family protein), Rv1813 (latency antigen), Rv3620c and 

Rv3619c (EsX family virulence factors). Recent studies demonstrated that ID93/GLA-SE 

vaccination elicits protection against M. tuberculosis in both mice and guinea pigs (138). 

Furthermore, ID93 is immunogenic in cynomolgous macaques and elicits polyfunctional CD4 

and CD8 responses in peripheral blood mononuclear cells from BCG-vaccinated humans (138). 

As such the antigenic properties of Rv3620c and Rv3619c are of particular interest and their 

regulation and expression during infection may provide insight into the immunological 

response to M. tuberculosis infection. 

 

Two GlnR binding Sites Located in Region of Deletion 9 

M. tuberculosis shares over 99.9% identity at the DNA level with the other members of the 

tubercle complex, which includes M. bovis. Although highly related, distinct differences exist 

between host range, virulence in humans and physiological characteristics. As such genomic 

regions unique to M. tuberculosis are of particular interest to understand the pathogenicity of 

this species with respect to infection in humans. 

Comparative genome studies identified 16 regions absent in M. bovis with respect to M. 

tuberculosis (16). One region of deletion (RD), classified as RD9 by Behr et al. encompasses 

seven ORFs (Rv3617 to Rv3623) (of note this region is alternatively denoted as RD8 by Gordon 

et al.). RD9 is a stretch of 5516 bp absent in all virulent M. bovis strains and the M. bovis BCG 

vaccination strain (16, 56). Within this region two GlnR binding sites were identified in M. 

tuberculosis. One GlnR binding site was located up stream of an ESAT-6 family member 

Rv3620c, which is contained in an operon with Rv3619c. The second GlnR binding site was 

positioned upstream of Rv3622c, which is contained in an operon with Rv3621c. ORFs Rv3621c 

and Rv3622c encode PPE and PE family proteins respectively. The presence of multiple GlnR 

binding sites in RD9 suggests a novel mechanism of gene regulation for this region in M. 

tuberculosis, potentially indicating a role for GlnR in the pathogenicity of M. tuberculosis. 
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Consensus DNA Binding Motif 

To determine a GlnR consensus binding sequence in M. tuberculosis 200 bp regions centred 

from the peaks were submitted to MEME. This generated a motif found in only 18 of the 36 

peaks, in contrast to the M. smegmatis GlnR DNA motif that was present in all 52 peaks. 

Consequently, a further investigation was conducted to identify other potential motif sequences 

present in the M. tuberculosis peaks. A MEME search was repeated with 50 bp of the peak 

sequence identified via ChIP-seq, which generated 6 different motifs. Interestingly genes known 

to be GlnR regulated in M. smegmatis contained GlnR consensus motif 2, with the exception of 

nirB which contained motif 3 (Figure 7.13). Neither motif 2 or 3 are similar to the M. smegmatis 

consensus motif so the results here are intriguing, suggesting other factors play a role in GlnR 

binding specificity in M. tuberculosis.  

In contrast to M. smegmatis and Streptomyces, where the GlnR consensus sequence contained 

the same AC-n9-AC spacing (Figure 7.17), the M. tuberculosis GlnR motif did not contain a clear 

AC-n9-AC pattern and varied from the two previously identified binding regions (Figure 7.17). 

The C-terminal DNA binding domains of the GlnR proteins for M. smegmatis and M. tuberculosis 

are highly similar, therefore it is surprising that the consensus binding motifs differ (Figure 

7.10, Figure 7.17). In addition, gel shift assays with peak regions identified from M. tuberculosis 

using recombinant His-GlnR protein from M. smegmatis, suggested that some conservation in C-

terminal DNA binding domain of GlnR existed. As the M. smegmatis GlnR protein binds to the 

consensus sites in the M. tuberculosis peaks, it suggests that GlnR can recognise additional motif 

sequences that may be utilised by M. tuberculosis. It may be the difference in motif sequence in 

the pathogenic M. tuberculosis has switched the function of GlnR regulation from one of nitrogen 

metabolism to one associated with survival within host cells. 
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Figure 7.17. Comparison of MEME generated GlnR DNA binding consensus motif 
sequences. 

 

(A) M. tuberculosis (this study from 200 bp MEME search) 

(B) M. smegmatis (this study) 

(C) S. venezuelae (120) 
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8.1 Discussion 

Nitrogen is an important bacterial cellular constituent and is required for growth, as such the 

ability to sense and initiate a response to situations of nitrogen-limitation is essential for 

bacterial survival. Compared to other extensively investigated organisms such as E. coli, 

information regarding the mechanisms underlying the regulation and assimilation of nitrogen in 

mycobacteria is limited. The nitrogen stress response has been studied in related Actinomycetes 

namely C. glutamicum and S. coelicolor, however the nitrogen stress response in these species 

differs to E. coli and to each other. It is clear that each organism has their own nitrogen-stress 

response and direct studies in mycobacteria are required.  

In M. smegmatis the global transcriptional response to nitrogen-limitation is thought to be 

regulated by GlnR, based on homology to the global nitrogen response regulator GlnR in 

Streptomyces. However, in M. smegmatis only seven nitrogen metabolism genes have been 

reported to be under its direct control (3). For M. tuberculosis only one gene, nirB, has been 

demonstrated to be regulated by GlnR (95). In S. coelicolor GlnR mediates the expression of at 

least 50 genes in response to nitrogen limitation (120, 164, 165). Therefore it is likely that many 

unidentified genes are GlnR regulated, or another response regulator controls the nitrogen 

stress response in mycobacteria. Consequently, the aim of this study was to investigate the role 

of GlnR in the nitrogen-stress response and characterise the GlnR regulon in M. smegmatis. In 

addition, initial identification and characterisation of GlnR binding sites in the M. tuberculosis 

genome in nitrogen limitation were performed and the role of GlnR in the pathogenic versus 

saprophytic species discussed. 

 

Development of Mycobacterial Nitrogen Limiting Growth Medium 

Few publications are available that study nitrogen limitation in mycobacteria. These 

investigations vary in the concentration of nitrogen source used as “limiting”, often without 

experimental confirmation of nitrogen limitation or explanation as to why these concentrations 

were chosen (3, 28, 58-61, 116, 126). Therefore, prior to our comprehensive global analyses 

using ChIP-seq and expression arrays, it was imperative we optimised our nitrogen limiting 

conditions. We chose the defined mycobacterial medium Sauton’s as the basis of a liquid growth 

medium which, although would be subject to slight batch to batch variation, permitted the 

manipulation of nitrogenous components (113). For M. smegmatis, we determined the nitrogen 

limiting conditions to be 1 mM ammonium sulphate and nitrogen excess to be 30 mM 

ammonium sulphate. Applying these optimised conditions to M. smegmatis, a reduced growth 
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rate was observed in nitrogen limitation after 11 hours of growth, concurrent with external 

ammonium depletion. To confirm that this growth rate was solely due to nitrogen limitation, 

ammonium was added back to the limited cultures at this time point and a growth rate similar 

to nitrogen excess was observed (Figure 3.9). Expression levels of genes known to be induced in 

nitrogen limitation (amt1, glnK, glnA1 and amtB) were obtained by qRT-PCR for further 

confirmation that M. smegmatis was limited for nitrogen; these genes were induced in our 

nitrogen limiting but not nitrogen excess conditions (Table 4.1). Therefore, unless stated 

otherwise, these conditions were applied throughout this study and can be used for any future 

nitrogen limitation mycobacterial studies.  

 

Investigation into the Mechanism of GlnR Activation 

The signal for low nitrogen and how this is translated into a GlnR mediated transcriptomic 

response is unknown. It was reported previously, and confirmed in this study, that glnR 

expression is not auto-regulated and glnR transcripts do not increase during nitrogen limitation 

(3)(Figure 4.7). GlnR belongs to the OmpR-family of transcriptional regulators that are typically 

activated by phosphorylation at a conserved aspartate residue. GlnR contains this conserved 

putative phosphorylation site Asp48, and therefore it is a reasonable assumption that GlnR is 

activated by phosphorylation during nitrogen limitation (3). However, to date this has not been 

reported possibly due to the labile nature of the phospho-aspartate bond, making direct 

investigation difficult. Therefore, to investigate the role the putative phosphorylation site 

further I generated an in vivo GlnR aspartate to alanine mutation, and analysed the 

transcriptomic response to nitrogen limitation. The GlnR aspartate to alanine mutation resulted 

in loss of transcriptional activation of known GlnR regulated genes under nitrogen limitation 

(Table 4.1), indicating that this residue is essential for GlnR function. Although this suggests that 

that GlnR is activated by modification at Asp48, potentially by phosphorylation, we cannot rule 

out conformational changes of GlnR induced by this amino acid change. Furthermore, 

phosphorylation of GlnR was not observed in this study using several approaches (Phos-Tag, 

IEF and radiolabelling: unpublished data). Consequently, we cannot rule out another 

mechanism of activation such as modification by protein:protein interaction with PII proteins, as 

in E. coli and C. glutamicum. 
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Deciphering the GlnR Regulon in M. smegmatis 

To gain a global insight into the genes regulated by GlnR under nitrogen limitation, a ChIP-seq 

approach combined with a global expression analysis of WT and glnR deletion strain in nitrogen 

limitation was applied. ChIP-seq permitted identification of in vivo GlnR binding sites during 

nitrogen limitation, and combining this with the microarray data, allowed genes that were 

directly regulated by GlnR binding to be identified. In vivo GlnR genome binding sites under 

nitrogen limitation were examined and 52 binding sites confirmed. Combined with microarray 

analysis, 103 genes were assigned as being directly GlnR regulated during nitrogen limitation; 7 

genes were down regulated and 96 genes up regulated, indicating that GlnR is the main nitrogen 

response regulator in M. smegmatis and that GlnR acts as a dual activator and repressor. 

Under nitrogen limiting conditions the majority of GlnR regulated genes are involved in a 

nitrogen scavenging response. This is suggested by up regulation of 27 genes for various 

transporters including amino acids (msmeg_0781, msmeg_1052, msmeg_2184, msmeg_2332, 

msmeg_2522-2524, msmeg_6735), nucleobases (msmeg_1177, msmeg_1293, msmeg_2570, 

msmeg_3402, msmeg_4011, msmeg_6660), urea (msmeg_2978-2982), nitrate (narK3) and 

ammonium (amt1, amtA, amtB). GlnR also up regulated 34 genes encoding enzymes for the 

conversation and break down of compounds to release ammonium. These include nitrite 

reductase (nirBD), guanine deaminase, hydrolases and amine oxidases (Table 6.6). The 

breakdown of nitrogen containing compounds would lead to a release of ammonium that could 

then subsequently enter the GS/GOGAT and GDH pathways. An overview of the nitrogen 

scavenging response and possible assimilation processes are depicted in Figure 8.1. 

Eight genes did not show differential gene expression in our microarray analysis despite GlnR 

binding. This may indicate a role for another, as yet unidentified transcription factor enabling 

gene regulation at these sites. Binding of additional transcription factors to GlnR regulated 

genes has been demonstrated in S. coelicolor with PhoP binding to promoter regions of amtB 

and glnA (132). However, the relevance of this dual GlnR/PhoP binding has yet to be 

demonstrated. There also appears to be a multi-level control of gene expression during nitrogen 

limitation, with GlnR regulating 7 other transcription factors. This is not surprising as metabolic 

pathways do not operate in isolation, which means that there may be cross-talk of regulatory 

proteins between different pathways. In addition, 29 GlnR regulated genes were classified with 

function unknown, and further analysis of these may expand our knowledge of the mechanism 

of nitrogen scavenging in M. smegmatis. From this study it is clear however that the majority of 

GlnR regulated genes in M. smegmatis are involved in scavenging, breakdown and assimilation 

of nitrogen (Figure 8.1).  

209



 

 

 

 

 

 

 

Figure 8.1. Proposed model for the GlnR-mediated nitrogen scavenging response 
in M. smegmatis. 

In response to nitrogen limitation GlnR is activated by an unknown mechanism; potentially 
phosphorylated by an unknown sensor kinase that could serve to detect the level of 
extracellular NH4 (unknown kinase depicted in blue). In nitrogen limitation, GlnR binds to 52 
sites and up-regulates the transcription of 96 genes and the repression of 7 genes (up-regulated 
GlnR genes are depicted in red; genes not GlnR regulated are depicted in purple). GlnR 
activation leads to increased expression of genes encoding numerous nitrogen transporters 
including AmtB, AmtA, Amt1 (ammonium transporters), NarK3 (nitrate/nitrite transporter), 
amino acid transporters/ permeases and nucleobase symporters. Genes that encode enzymes to 
break down nitrogen containing molecules into ammonium are also up-regulated by GlnR, 
including NirBD (nitrite reductase), guanine deaminase and various amino acid hydrolases and 
oxidases. Ammonium can subsequently enter the GOGAT/GS pathway or GDH pathway for 
assimilation into glutamate and glutamine and other biomolecules.  
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GlnR Binding Sites in M. tuberculosis 

ChIP-seq methodology optimised in M. smegmatis was then applied to analyse the in vivo 

binding sites of GlnR in M tuberculosis, providing a preliminary insight into the role of GlnR in 

pathogenic species. In addition, this permitted direct comparison of the role of GlnR in the 

pathogenic and saprophytic species. M. smegmatis is often used as a model organism for M. 

tuberculosis, however the regulatory mechanisms with respect to GlnR in the nitrogen stress 

response are unknown.  

In M. tuberculosis 36 GlnR binding sites were identified in nitrogen limitation. As for M. 

smegmatis a selection of binding sites were confirmed via EMSA and rate limiting PCR analysis. 

However, the expression array of WT vs glnR mutant in nitrogen limitation, to compare binding 

to GlnR binding to gene expression levels, is still in progress and could not be used for analysis 

in this study. Initial ChIP-seq analysis provided interesting data, suggesting that GlnR performs 

a different role in M. tuberculosis under nitrogen limiting conditions. In M. smegmatis the 

majority of GlnR regulated genes (where known) were involved in nitrogen metabolism, 

however in M. tuberculosis the only known nitrogen metabolism genes to contain GlnR binding 

sites upstream were glnA1, glnA2 (both GS) and genes involved in nitrate/ nitrite metabolism. 

Common binding sites to both species were identified upstream of glnA1, glnA2, nirB, nnaR, 

narK3, whiB1, whiB3, and glbN, while other binding sites were unique to M. tuberculosis. For an 

overview and direct comparison of nitrogen metabolism genes putatively regulated by GlnR in 

M. tuberculosis see Figure 8.2. An interesting observation is that GlnR does not regulate a 

nitrogen scavenging response in M. tuberculosis, but does regulate nitrate metabolism in both 

species. Potentially highlighting the importance of nitrate as a nitrogen source for M. 

tuberculosis in vivo as GlnR has retained this regulatory function, whereas regulation of other 

nitrogen metabolism genes has been lost, presumably due to reductive evolution. 

In M. tuberculosis initial analysis suggests GlnR may have adapted to a more a global role, with a 

general stress response. Genes potentially regulated by GlnR include those involved in fatty acid 

metabolism, PE and PPE proteins with potential roles in virulence, and two binding sites located 

in the RD8 region. The latter region is particularly interesting as it may provide a novel 

mechanism of regulation involving GlnR that is unique to the pathogenic strain. This work 

requires further validation before genes can be formally assigned to the GlnR regulon in M. 

tuberculosis. However, the results from ChIP-seq provide an interesting initial insight into the 

regulatory pathways involving GlnR in M. tuberculosis, whereby GlnR in M. smegmatis and M. 

tuberculosis appears to have different roles during nitrogen limitation.  
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Figure 8.2. GlnR regulated nitrogen metabolism genes in M. tuberculosis. 

 

In response to nitrogen limitation, GlnR is activated by an unknown mechanism, potentially 
phosphorylated by an unknown sensor kinase that could detect the level of extracellular NH4 
(unknown kinase depicted in blue). Activation of GlnR leads to binding to 36 regions on the M. 
tuberculosis genome, the transcriptional activation and repression of genes is unknown. For 
proteins involved in nitrogen metabolism GlnR binding (depicted in red) occurs up stream of 
NarK1, NarK3 (nitrate/nitrite transporters), NarGHJ (nitrate reductase), NirBD (nitrite 
reductase), and GS (glnA1 and glnA2).  
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Comparison of GlnR DNA Binding Consensus Sequences 

Combining the GlnR binding site DNA sequences a consensus DNA binding motif for M. 

smegmatis, but not M. tuberculosis was identified. Using MEME, a GlnR consensus motif of 

Gn2AC-n6GnAACA was identified in all 52 binding sites and was highly similar in sequence to the 

GlnR binding motif identified in Streptomyces. What is strikingly apparent from these motifs is 

the conservation of the AC-n9-AC sequence in GlnR binding motifs in M. smegmatis and 

Streptomyces. The AC residues and the spacing between them was shown to be essential for 

DNA binding by a mutagenesis approach. These key residues are spaced 9 bp apart, 

representing one turn of the major groove of the DNA helix, and it would be interesting to see if 

this mechanism of DNA interaction and the importance of these key residues is conserved in 

Streptomyces. 

A consensus GlnR DNA binding sequence for M. tuberculosis could not be identified. The 

“putative” binding motif for GlnR in M. tuberculosis was Cn7AnAn3Tn2T and only identified in 18 

of the 36 GlnR binding sites. Deviations from the consensus binding sequence have been noted 

in Streptomyces, where nine of the thirty-six GlnR binding regions identified by ChIP-CHIP did 

not contain the “consensus” GlnR DNA binding motif (120). An additional Streptomyces study 

investigated the consensus GlnR binding motif upstream of nasA by DNase digestion, confirming 

GlnR DNA binding to a “non-consensus” site; GlnR bound to two distantly separated copies of a 

GTAAC-n18-GTAAC motif (181). Pullan et al. suggested local changes in DNA topology and/or the 

co-operative interactions of multiple transcriptional factors reduce the requirement for a 

consensus sequence and facilitate GlnR binding to these “non-consensus” sites (120); a similar 

situation may be occurring in M. tuberculosis. Confirmation and characterisation of the GlnR 

binding sites in M. tuberculosis are in progress and it is hoped that upon analysis of the 

expression array of WT vs glnR mutant, GlnR binding sites can be further investigated. 

Understanding the requirements for GlnR:DNA binding in M. tuberculosis in comparison to M. 

smegmatis may identify novel GlnR control mechanisms in pathogenic species, where GlnR may 

serve a different regulatory function.   
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8.2 Future Work 

This study provides a global understanding of the GlnR mediated transcriptional response to 

nitrogen limitation in mycobacteria. However, this project has also raised several interesting 

questions regarding the control of nitrogen metabolism in mycobacteria:  

 What is the mechanism of GlnR activation and the signal to which GlnR responds to in 

nitrogen limitation? Although it has been demonstrated that GlnR Asp-48 residue is 

essential for the GlnR mediated transcriptomic response to nitrogen limitation, whether 

this residue is modified under nitrogen limiting conditions is unknown. Determination 

of the post-translational status of GlnR during nitrogen limitation is a key area for future 

work. In vitro phosphorylation assays, or immunoprecipitaion of GlnR from whole cell 

lysates followed by sensitive detection analysis such as LC-MS could be used. The 

corresponding kinase, if GlnR is phosphorylated, would also be an interesting area of 

study; generating a library of kinase mutants may permit identification of the 

corresponding kinase. As the transcription of GlnR does not increase during nitrogen 

limitation, the cellular localisation of GlnR during nitrogen excess conditions is of 

particular interest, and may provide a mechanism of GlnR activation. Cell fractionation 

would permit detection of GlnR at the cell membrane or cytoplasm and this location may 

alter depending on the nitrogen status of the media and the cell.  

 To confirm the role of GlnR in nitrogen limitation in M. tuberculosis the GlnR binding 

sites identified via ChIP-seq need to be aligned to RNA microarray data from WT versus 

glnR deletion strain grown under nitrogen limiting conditions. Assigning these genes 

would confirm whether the response to nitrogen limitation in M. tuberculosis is a general 

stress response, or a specific up regulation of genes in the nitrogen metabolism pathway.  

 Investigation into the role of GlnR in in vitro and in vivo models of M. tuberculosis 

infection. Analysing an M. tuberculosis glnR deletion mutant in in vitro stress tests (such 

as the Wayne model of dormancy) and in vivo infection (in particular macrophage 

infection models). This would identify whether the GlnR transcriptomic response 

impacts on M. tuberculosis survival during infection.  

 Several other transcriptional regulators are potentially involved in the M. smegmatis 

transcriptomic response during nitrogen limitation. The involvement of AmtR, PhoP and 

GlnR mediated transcription factors such are NnaR could be investigated by a similar 

combined approach (ChIP-seq and micro array analysis). 

214



 

 Chemostat versus batch nitrogen limitation experiments. As we investigated the 

transcriptional response to nitrogen limitation in batch culture, metabolic changes due 

to the observed reduction in growth rate between the nitrogen limiting and excess 

conditions will be included in our ‘nitrogen stress’ response. To delineate the effect of 

growth rate from the effect of nitrogen limitation the ChIP-seq and microarray analysis 

should be repeated using a chemostat where growth rate could be accurately controlled.  

 

  

215



 

REFERENCES  

1. Alderson, M. R., T. Bement, C. H. Day, L. Zhu, D. Molesh, Y. A. Skeiky, R. Coler, D. M. 
Lewinsohn, S. G. Reed, and D. C. Dillon. 2000. Expression cloning of an 
immunodominant family of Mycobacterium tuberculosis antigens using human CD4(+) T 
cells. Journal of Experimental Medicine 191:551-560. 

2. Amin, R., J. Reuther, A. Bera, W. Wohlleben, and Y. Mast. 2012. A novel GlnR target 
gene, nnaR, is involved in nitrate/nitrite assimilation in Streptomyces coelicolor. 
Microbiology 158:1172-1182. 

3. Amon, J., T. Brau, A. Grimrath, E. Hanssler, K. Hasselt, M. Holler, N. Jessberger, L. 
Ott, J. Szokol, F. Titgemeyer, and A. Burkovski. 2008. Nitrogen control in 
Mycobacterium smegmatis: nitrogen-dependent expression of ammonium transport and 
assimilation proteins depends on the OmpR-type regulator GlnR. Journal Bacteriology 
190:7108-7116. 

4. Amon, J., F. Titgemeyer, and A. Burkovski. 2010. Common patterns - unique features: 
nitrogen metabolism and regulation in Gram-positive bacteria. FEMS microbiology 
reviews 34:588-605. 

5. Amon, J., F. Titgemeyer, and A. Burkovski. 2009. A genomic view on nitrogen 
metabolism and nitrogen control in mycobacteria. Journal of molecular microbiology 
and biotechnology 17:20-29. 

6. Anderson, L. A., E. McNairn, T. Lubke, R. N. Pau, and D. H. Boxer. 2000. ModE-
dependent molybdate regulation of the molybdenum cofactor operon moa in Escherichia 
coli. Journal of bacteriology 182:7035-7043. 

7. Arcondeguy, T., R. Jack, and M. Merrick. 2001. P(II) signal transduction proteins, 
pivotal players in microbial nitrogen control. Microbiology and molecular biology 
reviews : MMBR 65:80-105. 

8. Atkinson, M. R., and A. J. Ninfa. 1999. Characterization of the GlnK protein of 
Escherichia coli. Molecular microbiology 32:301-313. 

9. Attwood, P. V., P. G. Besant, and M. J. Piggott. 2011. Focus on phosphoaspartate and 
phosphoglutamate. Amino acids 40:1035-1051. 

10. Bailey, T. L., M. Boden, F. A. Buske, M. Frith, C. E. Grant, L. Clementi, J. Ren, W. W. Li, 
and W. S. Noble. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic 
acids research 37:W202-208. 

11. Bailey, T. L., and C. Elkan. 1994. Fitting a mixture model by expectation maximization 
to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28-36. 

12. Bardarov, S., S. Bardarov Jr, Jr., M. S. Pavelka Jr, Jr., V. Sambandamurthy, M. Larsen, 
J. Tufariello, J. Chan, G. Hatfull, and W. R. Jacobs Jr, Jr. 2002. Specialized transduction: 
an efficient method for generating marked and unmarked targeted gene disruptions in 
Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148:3007-
3017. 

13. Barry, C. E., 3rd, H. I. Boshoff, V. Dartois, T. Dick, S. Ehrt, J. Flynn, D. Schnappinger, 
R. J. Wilkinson, and D. Young. 2009. The spectrum of latent tuberculosis: rethinking 
the biology and intervention strategies. Nature Reviews Microbiology 7:845-855. 

14. Bauer, S., P. N. Robinson, and J. Gagneur. 2011. Model-based gene set analysis for 
Bioconductor. Bioinformatics 27:1882-1883. 

15. Beckers, G., J. Strosser, U. Hildebrandt, J. Kalinowski, M. Farwick, R. Kramer, and A. 
Burkovski. 2005. Regulation of AmtR-controlled gene expression in Corynebacterium 
glutamicum: mechanism and characterization of the AmtR regulon. Molecular 
microbiology 58:580-595. 

16. Behr, M. A., M. A. Wilson, W. P. Gill, H. Salamon, G. K. Schoolnik, S. Rane, and P. M. 
Small. 1999. Comparative genomics of BCG vaccines by whole-genome DNA microarray. 
Science 284:1520-1523. 

216



 

17. Belisle, J. T., and P. J. Brennan. 1989. Chemical basis of rough and smooth variation in 
mycobacteria. Journal of bacteriology 171:3465-3470. 

18. Bergey, D. H., G. M. Garrity, D. R. Boone, and R. W. Castenholz. 2001. Bergey's manual 
of systematic bacteriology/ Vol 1, The archaea and the deeply branching and 
phototrophic bacteria. Springer, London. 

19. Bergstrom, L. C., L. Qin, S. L. Harlocker, L. A. Egger, and M. Inouye. 1998. Hierarchical 
and co-operative binding of OmpR to a fusion construct containing the ompC and ompF 
upstream regulatory sequences of Escherichia coli. Genes to cells : devoted to molecular 
& cellular mechanisms 3:777-788. 

20. Betts, J. C., P. T. Lukey, L. C. Robb, R. A. McAdam, and K. Duncan. 2002. Evaluation of 
a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and 
protein expression profiling. Molecular microbiology 43:717-731. 

21. Bogdan, C. 2001. Nitric oxide and the immune response. Nature immunology 2:907-
916. 

22. Boshoff, H. I., and C. E. Barry, 3rd. 2005. Tuberculosis - metabolism and respiration in 
the absence of growth. Nature Reviews Microbiology 3:70-80. 

23. Bourret, R. B., J. F. Hess, and M. I. Simon. 1990. Conserved aspartate residues and 
phosphorylation in signal transduction by the chemotaxis protein CheY. Proc Natl Acad 
Sci U S A 87:41-45. 

24. Britton, K. L., P. J. Baker, D. W. Rice, and T. J. Stillman. 1992. Structural relationship 
between the hexameric and tetrameric family of glutamate dehydrogenases. European 
Journal of Biochemistry 209:851-859. 

25. Buchinger, S., J. Strosser, N. Rehm, E. Hanssler, S. Hans, B. Bathe, D. Schomburg, R. 
Kramer, and A. Burkovski. 2009. A combination of metabolome and transcriptome 
analyses reveals new targets of the Corynebacterium glutamicum nitrogen regulator 
AmtR. Journal Biotechnology 140:68-74. 

26. Burkovski, A. 2003. I do it my way: Regulation of ammonium uptake and ammonium 
assimilation in Corynebacterium glutamicum. Arch Microbiol 179:83-88. 

27. Burkovski, A. 2007. Nitrogen control in Corynebacterium glutamicum: proteins, 
mechanisms, signals. Journal Microbiology Biotechnology 17:187-194. 

28. Carroll, P., C. A. Pashley, and T. Parish. 2008. Functional analysis of GlnE, an essential 
adenylyl transferase in Mycobacterium tuberculosis. Journal of bacteriology 190:4894-
4902. 

29. Cha, R. S., H. Zarbl, P. Keohavong, and W. G. Thilly. 1992. Mismatch amplification 
mutation assay (MAMA): application to the c-H-ras gene. PCR Methods Appl 2:14-20. 

30. Chandra, H., S. F. Basir, M. Gupta, and N. Banerjee. 2010. Glutamine synthetase 
encoded by glnA-1 is necessary for cell wall resistance and pathogenicity of 
Mycobacterium bovis. Microbiology. 

31. Chen, J. M., D. C. Alexander, M. A. Behr, and J. Liu. 2003. Mycobacterium bovis BCG 
vaccines exhibit defects in alanine and serine catabolism. Infection and immunity 
71:708-716. 

32. Chierakul N, M. P., Nana A, Jearanaisilavong J, Sriumpai S, Bovornkitti S. 1993. 
Mycobacterium smegmatis Infection in a Thai Woman. Journal of Infection and Disease 
Antimicrobial Agents 10:25-28. 

33. Chung, C. T., and R. H. Miller. 1993. Preparation and storage of competent Escherichia 
coli cells. Methods in Enzymology 218:621-627. 

34. Clegg, S., F. Yu, L. Griffiths, and J. A. Cole. 2002. The roles of the polytopic membrane 
proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite 
transporters. Molecular microbiology 44:143-155. 

35. Clemens, D. L., B. Y. Lee, and M. A. Horwitz. 1995. Purification, characterization, and 
genetic analysis of Mycobacterium tuberculosis urease, a potentially critical determinant 
of host-pathogen interaction. Journal of bacteriology 177:5644-5652. 

36. Cole, S. T., R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon, K. 
Eiglmeier, S. Gas, C. E. Barry, 3rd, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. 

217



 

Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. 
Holroyd, T. Hornsby, K. Jagels, A. Krogh, J. McLean, S. Moule, L. Murphy, K. Oliver, J. 
Osborne, M. A. Quail, M. A. Rajandream, J. Rogers, S. Rutter, K. Seeger, J. Skelton, R. 
Squares, S. Squares, J. E. Sulston, K. Taylor, S. Whitehead, and B. G. Barrell. 1998. 
Deciphering the biology of Mycobacterium tuberculosis from the complete genome 
sequence. Nature 393:537-544. 

37. Conroy, M. J., A. Durand, D. Lupo, X. D. Li, P. A. Bullough, F. K. Winkler, and M. 
Merrick. 2007. The crystal structure of the Escherichia coli AmtB-GlnK complex reveals 
how GlnK regulates the ammonia channel. Proc Natl Acad Sci U S A 104:1213-1218. 

38. Corbett, E. L. 2003. The growing burden of tuberculosis - Global trends and interactions 
with the HIV epidemic. Archives of internal medicine 163:1009-1021. 

39. Delgado, J., S. Forst, S. Harlocker, and M. Inouye. 1993. Identification of a 
phosphorylation site and functional analysis of conserved aspartic acid residues of 
OmpR, a transcriptional activator for ompF and ompC in Escherichia coli. Molecular 
microbiology 10:1037-1047. 

40. Deturk, W. E., and F. Bernheim. 1958. Effects of ammonia, methylamine, and 
hydroxylamine on the adaptive assimilation of nitrite and nitrate by a Mycobacterium. 
Journal of bacteriology 75:691-696. 

41. Drake, S. K., R. B. Bourret, L. A. Luck, M. I. Simon, and J. J. Falke. 1993. Activation of 
the phosphosignaling protein CheY. I. Analysis of the phosphorylated conformation by 
19F NMR and protein engineering. The Journal of biological chemistry 268:13081-
13088. 

42. Durand, A., and M. Merrick. 2006. In vitro analysis of the Escherichia coli AmtB-GlnK 
complex reveals a stoichiometric interaction and sensitivity to ATP and 2-oxoglutarate. 
The Journal of biological chemistry 281:29558-29567. 

43. Embley, T. M., and E. Stackebrandt. 1994. The molecular phylogeny and systematics of 
the actinomycetes. Annual Reviews Microbiology 48:257-289. 

44. Etienne, G., W. Malaga, F. Laval, A. Lemassu, C. Guilhot, and M. Daffe. 2009. 
Identification of the polyketide synthase involved in the biosynthesis of the surface-
exposed lipooligosaccharides in mycobacteria. Journal of bacteriology 191:2613-2621. 

45. Feng, Z., N. E. Caceres, G. Sarath, and R. G. Barletta. 2002. Mycobacterium smegmatis 
L-alanine dehydrogenase (Ald) is required for proficient utilization of alanine as a sole 
nitrogen source and sustained anaerobic growth. Journal of bacteriology 184:5001-
5010. 

46. Fenhalls, G., L. Stevens, L. Moses, J. Bezuidenhout, J. C. Betts, P. Helden Pv, P. T. 
Lukey, and K. Duncan. 2002. In situ detection of Mycobacterium tuberculosis transcripts 
in human lung granulomas reveals differential gene expression in necrotic lesions. 
Infection and immunity 70:6330-6338. 

47. Fink, D., N. Weissschuh, J. Reuther, W. Wohlleben, and A. Engels. 2002. Two 
transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen 
metabolism in Streptomyces coelicolor A3(2). Molecular microbiology 46:331-347. 

48. Forchhammer, K. 2004. Global carbon/nitrogen control by PII signal transduction in 
cyanobacteria: from signals to targets. FEMS microbiology reviews 28:319-333. 

49. Furey, T. S. 2012. ChIP-seq and beyond: new and improved methodologies to detect and 
characterize protein-DNA interactions. Nature Reviews Genetics 13:840-852. 

50. Gey van Pittius, N. C., S. L. Sampson, H. Lee, Y. Kim, P. D. van Helden, and R. M. 
Warren. 2006. Evolution and expansion of the Mycobacterium tuberculosis PE and PPE 
multigene families and their association with the duplication of the ESAT-6 (esx) gene 
cluster regions. BMC evolutionary biology 6:95. 

51. Giffin, M. M., L. Modesti, R. W. Raab, L. G. Wayne, and C. D. Sohaskey. 2012. ald of 
Mycobacterium tuberculosis encodes both the alanine dehydrogenase and the putative 
glycine dehydrogenase. Journal of bacteriology 194:1045-1054. 

218



 

52. Gill, H. S., G. M. Pfluegl, and D. Eisenberg. 2002. Multicopy crystallographic refinement 
of a relaxed glutamine synthetase from Mycobacterium tuberculosis highlights flexible 
loops in the enzymatic mechanism and its regulation. Biochemistry 41:9863-9872. 

53. Glickman, M. S., and W. R. Jacobs, Jr. 2001. Microbial pathogenesis of Mycobacterium 
tuberculosis: dawn of a discipline. Cell 104:477-485. 

54. Goh, K. S., N. Rastogi, M. Berchel, R. C. Huard, and C. Sola. 2005. Molecular 
evolutionary history of tubercle bacilli assessed by study of the polymorphic nucleotide 
within the nitrate reductase (narGHJI) operon promoter. Journal of clinical microbiology 
43:4010-4014. 

55. Gordon, R. E., and M. M. Smith. 1953. Rapidly growing, acid fast bacteria. I. Species' 
descriptions of Mycobacterium phlei Lehmann and Neumann and Mycobacterium 
smegmatis (Trevisan) Lehmann and Neumann. Journal of bacteriology 66:41-48. 

56. Gordon, S. V., R. Brosch, A. Billault, T. Garnier, K. Eiglmeier, and S. T. Cole. 1999. 
Identification of variable regions in the genomes of tubercle bacilli using bacterial 
artificial chromosome arrays. Molecular microbiology 32:643-655. 

57. Gruswitz, F., J. O'Connell, 3rd, and R. M. Stroud. 2007. Inhibitory complex of the 
transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 
1.96 A. Proc Natl Acad Sci U S A 104:42-47. 

58. Harper, C., D. Hayward, I. Wiid, and P. van Helden. 2008. Regulation of nitrogen 
metabolism in Mycobacterium tuberculosis: a comparison with mechanisms in 
Corynebacterium glutamicum and Streptomyces coelicolor. IUBMB Life 60:643-650. 

59. Harper, C. J., D. Hayward, M. Kidd, I. Wiid, and P. van Helden. 2010. Glutamate 
dehydrogenase and glutamine synthetase are regulated in response to nitrogen 
availability in Myocbacterium smegmatis. BMC microbiology 10:138. 

60. Harth, G., D. L. Clemens, and M. A. Horwitz. 1994. Glutamine synthetase of 
Mycobacterium tuberculosis: extracellular release and characterization of its enzymatic 
activity. Proc Natl Acad Sci U S A 91:9342-9346. 

61. Harth, G., S. Maslesa-Galic, M. V. Tullius, and M. A. Horwitz. 2005. All four 
Mycobacterium tuberculosis glnA genes encode glutamine synthetase activities but only 
GlnA1 is abundantly expressed and essential for bacterial homeostasis. Molecular 
microbiology 58:1157-1172. 

62. Health Protection Agency Centre for, I. 2009. Tuberculosis in the UK: Annual report 
on tuberculosis surveillance in the UK 2009. Health Protection Agency Centre for 
Infections. 

63. Hedgecock, L. W., and R. L. Costello. 1962. Utilization of nitrate by pathogenic and 
saprophytic mycobacteria. Journal Bacteriology 84:195-205. 

64. Hesketh, A., D. Fink, B. Gust, H. U. Rexer, B. Scheel, K. Chater, W. Wohlleben, and A. 
Engels. 2002. The GlnD and GlnK homologues of Streptomyces coelicolor A3(2) are 
functionally dissimilar to their nitrogen regulatory system counterparts from enteric 
bacteria. Molecular microbiology 46:319-330. 

65. Hsu, T., S. M. Hingley-Wilson, B. Chen, M. Chen, A. Z. Dai, P. M. Morin, C. B. Marks, J. 
Padiyar, C. Goulding, M. Gingery, D. Eisenberg, R. G. Russell, S. C. Derrick, F. M. 
Collins, S. L. Morris, C. H. King, and W. R. Jacobs, Jr. 2003. The primary mechanism of 
attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for 
invasion of lung interstitial tissue. Proc Natl Acad Sci U S A 100:12420-12425. 

66. Huang, K. J., C. Y. Lan, and M. M. Igo. 1997. Phosphorylation stimulates the cooperative 
DNA-binding properties of the transcription factor OmpR. Proc Natl Acad Sci U S A 
94:2828-2832. 

67. Inoue, H., H. Nojima, and H. Okayama. 1990. High efficiency transformation of 
Escherichia coli with plasmids. Gene 96:23-28. 

68. Jaggi, R., W. Ybarlucea, E. Cheah, P. D. Carr, K. J. Edwards, D. L. Ollis, and S. G. 
Vasudevan. 1996. The role of the T-loop of the signal transducing protein PII from 
Escherichia coli. FEBS letters 391:223-228. 

219



 

69. Jakoby, M., L. Nolden, J. Meier-Wagner, R. Kramer, and A. Burkovski. 2000. AmtR, a 
global repressor in the nitrogen regulation system of Corynebacterium glutamicum. 
Molecular microbiology 37:964-977. 

70. Javelle, A., E. Severi, J. Thornton, and M. Merrick. 2004. Ammonium sensing in 
Escherichia coli. Role of the ammonium transporter AmtB and AmtB-GlnK complex 
formation. The Journal of biological chemistry 279:8530-8538. 

71. Javelle, A., G. Thomas, A. M. Marini, R. Kramer, and M. Merrick. 2005. In vivo 
functional characterization of the Escherichia coli ammonium channel AmtB: evidence 
for metabolic coupling of AmtB to glutamine synthetase. Biochemical Journal 390:215-
222. 

72. Jenkins, V. A., B. D. Robertson, and K. J. Williams. 2012. Aspartate D48 is essential for 
the GlnR-mediated transcriptional response to nitrogen limitation in Mycobacterium 
smegmatis. FEMS Microbiology Letters. 

73. Jia, W., and J. A. Cole. 2005. Nitrate and nitrite transport in Escherichia coli. Biochemical 
Society transactions 33:159-161. 

74. Jiang, P., and A. J. Ninfa. 2009. Alpha-ketoglutarate controls the ability of the 
Escherichia coli PII signal transduction protein to regulate the activities of NRII (NrB but 
does not control the binding of PII to NRII). Biochemistry 48:11514-11521. 

75. Jiang, P., J. A. Peliska, and A. J. Ninfa. 1998. Reconstitution of the signal-transduction 
bicyclic cascade responsible for the regulation of Ntr gene transcription in Escherichia 
coli. Biochemistry 37:12795-12801. 

76. Jiang, P., J. A. Peliska, and A. J. Ninfa. 1998. The regulation of Escherichia coli glutamine 
synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase 
adenylylation state. Biochemistry 37:12802-12810. 

77. Kamala, T., C. N. Paramasivan, D. Herbert, P. Venkatesan, and R. Prabhakar. 1994. 
Isolation and Identification of Environmental Mycobacteria in the Mycobacterium bovis 
BCG Trial Area of South India. Applied and environmental microbiology 60:2180-2183. 

78. Karakousis, P. C., E. P. Williams, and W. R. Bishai. 2008. Altered expression of 
isoniazid-regulated genes in drug-treated dormant Mycobacterium tuberculosis. The 
Journal of antimicrobial chemotherapy 61:323-331. 

79. Keener, J., and S. Kustu. 1988. Protein kinase and phosphoprotein phosphatase 
activities of nitrogen regulatory proteins NtrB and NtrC of enteric bacteria: roles of the 
conserved amino-terminal domain of NtrC. Proc Natl Acad Sci U S A 85:4976-4980. 

80. Kenney, L. J. 2002. Structure/function relationships in OmpR and other winged-helix 
transcription factors. Current opinion in microbiology 5:135-141. 

81. Langmead, B., C. Trapnell, M. Pop, and S. L. Salzberg. 2009. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome Biology 
10:R25. 

82. Laval, F., R. Haites, F. Movahedzadeh, A. Lemassu, C. Y. Wong, N. Stoker, H. Billman-
Jacobe, and M. Daffe. 2008. Investigating the function of the putative mycolic acid 
methyltransferase UmaA: divergence between the Mycobacterium smegmatis and 
Mycobacterium tuberculosis proteins. The Journal of biological chemistry 283:1419-
1427. 

83. Leigh, J. A., and J. A. Dodsworth. 2007. Nitrogen regulation in bacteria and archaea. 
Annual review of microbiology 61:349-377. 

84. Leistikow, R. L., R. A. Morton, I. L. Bartek, I. Frimpong, K. Wagner, and M. I. Voskuil. 
2010. The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis 
and enables rapid recovery from nonrespiring dormancy. Journal Bacteriology 
192:1662-1670. 

85. Lemassu, A., V. V. Levy-Frebault, M. A. Laneelle, and M. Daffe. 1992. Lack of 
correlation between colony morphology and lipooligosaccharide content in the 
Mycobacterium tuberculosis complex. Journal of general microbiology 138:1535-1541. 

86. Leung, A. N. 1999. Pulmonary tuberculosis: the essentials. Radiology 210:307-322. 

220



 

87. Lin, W., V. Mathys, E. L. Ang, V. H. Koh, J. M. Martinez Gomez, M. L. Ang, S. Z. Zainul 
Rahim, M. P. Tan, K. Pethe, and S. Alonso. 2012. Urease activity represents an 
alternative pathway for Mycobacterium tuberculosis nitrogen metabolism. Infection and 
immunity 80:2771-2779. 

88. Loebel, R. O., E. Shorr, and H. B. Richardson. 1933. The Influence of Adverse 
Conditions upon the Respiratory Metabolism and Growth of Human Tubercle Bacilli. 
Journal of bacteriology 26:167-200. 

89. Lorenz, M. C., and J. Heitman. 1998. The MEP2 ammonium permease regulates 
pseudohyphal differentiation in Saccharomyces cerevisiae. The EMBO journal 17:1236-
1247. 

90. Lyon, R. H., W. H. Hall, and C. Costas-Martinez. 1974. Effect of L-asparagine on growth 
of Mycobacterium tuberculosis and on utilization of other amino acids. Journal of 
bacteriology 117:151-156. 

91. Lyon, R. H., W. H. Hall, and C. Costas-Martinez. 1970. Utilization of Amino Acids 
During Growth of Mycobacterium tuberculosis in Rotary Cultures. Infection and 
immunity 1:513-520. 

92. Mahmood, A., S. Srivastava, S. Tripathi, M. A. Ansari, M. Owais, and A. Arora. 2011. 
Molecular characterization of secretory proteins Rv3619c and Rv3620c from 
Mycobacterium tuberculosis H37Rv. The FEBS journal 278:341-353. 

93. Malen, H., F. S. Berven, K. E. Fladmark, and H. G. Wiker. 2007. Comprehensive 
analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics 
7:1702-1718. 

94. Malen, H., S. Pathak, T. Softeland, G. A. de Souza, and H. G. Wiker. 2010. Definition of 
novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium 
tuberculosis H37Rv. BMC microbiology 10:132. 

95. Malm, S., Y. Tiffert, J. Micklinghoff, S. Schultze, I. Joost, I. Weber, S. Horst, B. 
Ackermann, M. Schmidt, W. Wohlleben, S. Ehlers, R. Geffers, J. Reuther, and F. C. 
Bange. 2009. The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and 
the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. 
Microbiology 155:1332-1339. 

96. Manning, J. M., S. Moore, W. B. Rowe, and A. Meister. 1969. Identification of L-
methionine S-sulfoximine as the diastereoisomer of L-methionine SR-sulfoximine that 
inhibits glutamine synthetase. Biochemistry 8:2681-2685. 

97. Marmiesse, M., P. Brodin, C. Buchrieser, C. Gutierrez, N. Simoes, V. Vincent, P. 
Glaser, S. T. Cole, and R. Brosch. 2004. Macro-array and bioinformatic analyses reveal 
mycobacterial 'core' genes, variation in the ESAT-6 gene family and new phylogenetic 
markers for the Mycobacterium tuberculosis complex. Microbiology 150:483-496. 

98. Mattison, K., and L. J. Kenney. 2002. Phosphorylation alters the interaction of the 
response regulator OmpR with its sensor kinase EnvZ. The Journal of biological 
chemistry 277:11143-11148. 

99. McAdam, R. A., S. Quan, D. A. Smith, S. Bardarov, J. C. Betts, F. C. Cook, E. U. Hooker, 
A. P. Lewis, P. Woollard, M. J. Everett, P. T. Lukey, G. J. Bancroft, W. R. Jacobs Jr, Jr., 
and K. Duncan. 2002. Characterization of a Mycobacterium tuberculosis H37Rv 
transposon library reveals insertions in 351 ORFs and mutants with altered virulence. 
Microbiology 148:2975-2986. 

100. Merrick, M. J., and R. A. Edwards. 1995. Nitrogen control in bacteria. Microbiological 
Reviews 59:604-622. 

101. Meya, D. B. 2007. The TB pandemic: an old problem seeking new solutions. Journal of 
Internal Medicine 261:309-329. 

102. Miles, A. A., S. S. Misra, and J. O. Irwin. 1938. The estimation of the bactericidal power 
of the blood. J Hyg (Lond) 38:732-749. 

103. Muller, T., J. Strosser, S. Buchinger, L. Nolden, A. Wirtz, R. Kramer, and A. 
Burkovski. 2006. Mutation-induced metabolite pool alterations in Corynebacterium 

221



 

glutamicum: towards the identification of nitrogen control signals. Journal 
Biotechnology 126:440-453. 

104. Munoz-Elias, E. J., and J. D. McKinney. 2006. Carbon metabolism of intracellular 
bacteria. Cell Microbiology 8:10-22. 

105. Narlikar, L., and R. Jothi. 2012. ChIP-Seq data analysis: identification of protein-DNA 
binding sites with SISSRs peak-finder. Methods Molecular Biology 802:305-322. 

106. Neyrolles, O., R. Hernandez-Pando, F. Pietri-Rouxel, P. Fornes, L. Tailleux, J. A. 
Barrios Payan, E. Pivert, Y. Bordat, D. Aguilar, M. C. Prevost, C. Petit, and B. Gicquel. 
2006. Is adipose tissue a place for Mycobacterium tuberculosis persistence? PloS one 
1:e43. 

107. Niebisch, A., A. Kabus, C. Schultz, B. Weil, and M. Bott. 2006. Corynebacterial protein 
kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status 
of the OdhI protein. The Journal of biological chemistry 281:12300-12307. 

108. Nolden, L., C. E. Ngouoto-Nkili, A. K. Bendt, R. Kramer, and A. Burkovski. 2001. 
Sensing nitrogen limitation in Corynebacterium glutamicum: the role of glnK and glnD. 
Molecular microbiology 42:1281-1295. 

109. Nyfors, A. 1997. Armauer Hansen (1841-1912): The life of the discoverer of the 
aetiology of leprosy. Journal of the European Academy of Dermatology and Venereology 
9:135-135. 

110. Nyka, W. 1974. Studies on the effect of starvation on Mycobacteria. Infection and 
immunity 9:843-850. 

111. O'Hare, H. M., R. Duran, C. Cervenansky, M. Bellinzoni, A. M. Wehenkel, O. Pritsch, 
G. Obal, J. Baumgartner, J. Vialaret, K. Johnsson, and P. M. Alzari. 2008. Regulation of 
glutamate metabolism by protein kinases in mycobacteria. Molecular microbiology 
70:1408-1423. 

112. Ott, J. L. 1960. Asparaginase from mycobacteria. Journal of bacteriology 80:355-361. 
113. Parish, T., and N. G. Stoker. 1998. Mycobacteria protocols. Humana Press, Totowa, N.J. 
114. Park, P. J. 2009. ChIP-seq: advantages and challenges of a maturing technology. Nature 

Reviews Genetics 10:669-680. 
115. Parra, M., N. Cadieux, T. Pickett, V. Dheenadhayalan, and M. J. Brennan. 2006. A PE 

protein expressed by Mycobacterium avium is an effective T-cell immunogen. Infection 
and immunity 74:786-789. 

116. Pashley, C. A., A. C. Brown, D. Robertson, and T. Parish. 2006. Identification of the 
Mycobacterium tuberculosis GlnE promoter and its response to nitrogen availability. 
Microbiology 152:2727-2734. 

117. Pelicic, V., J. M. Reyrat, and B. Gicquel. 1996. Expression of the Bacillus subtilis sacB 
gene confers sucrose sensitivity on mycobacteria. Journal of bacteriology 178:1197-
1199. 

118. Pelicic, V., J. M. Reyrat, and B. Gicquel. 1996. Generation of unmarked directed 
mutations in mycobacteria, using sucrose counter-selectable suicide vectors. Molecular 
microbiology 20:919-925. 

119. Pierre-Audigier, C., E. Jouanguy, S. Lamhamedi, F. Altare, J. Rauzier, V. Vincent, D. 
Canioni, J. F. Emile, A. Fischer, S. Blanche, J. L. Gaillard, and J. L. Casanova. 1997. 
Fatal disseminated Mycobacterium smegmatis infection in a child with inherited 
interferon gamma receptor deficiency. Clinical Infectious Diseases 24:982-984. 

120. Pullan, S. T., G. Chandra, M. J. Bibb, and M. Merrick. 2011. Genome-wide analysis of 
the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen 
regulation in actinomycetes. BMC Genomics 12:175. 

121. Radchenko, M. V., J. Thornton, and M. Merrick. 2010. Control of AmtB-GlnK complex 
formation by intracellular levels of ATP, ADP, and 2-oxoglutarate. The Journal of 
biological chemistry 285:31037-31045. 

122. Ramos, J. L., M. Martinez-Bueno, A. J. Molina-Henares, W. Teran, K. Watanabe, X. 
Zhang, M. T. Gallegos, R. Brennan, and R. Tobes. 2005. The TetR family of 

222



 

transcriptional repressors. Microbiology and molecular biology reviews : MMBR 
69:326-356. 

123. Rao, S. P., S. Alonso, L. Rand, T. Dick, and K. Pethe. 2008. The protonmotive force is 
required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating 
Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 105:11945-11950. 

124. Rastogi, N., E. Legrand, and C. Sola. 2001. The mycobacteria: an introduction to 
nomenclature and pathogenesis. Revue scientifique et technique 20:21-54. 

125. Raynaud, C., G. Etienne, P. Peyron, M. A. Laneelle, and M. Daffe. 1998. Extracellular 
enzyme activities potentially involved in the pathogenicity of Mycobacterium 
tuberculosis. Microbiology 144 ( Pt 2):577-587. 

126. Read, R., C. A. Pashley, D. Smith, and T. Parish. 2007. The role of GlnD in ammonia 
assimilation in Mycobacterium tuberculosis. Tuberculosis 87:384-390. 

127. Reitzer, L. 2003. Nitrogen assimilation and global regulation in Escherichia coli. Annual 
Reviews Microbiology 57:155-176. 

128. Reitzer, L. J., and B. Magasanik. 1985. Expression of glnA in Escherichia coli is 
regulated at tandem promoters. Proc Natl Acad Sci U S A 82:1979-1983. 

129. Ren, H., L. G. Dover, S. T. Islam, D. C. Alexander, J. M. Chen, G. S. Besra, and J. Liu. 
2007. Identification of the lipooligosaccharide biosynthetic gene cluster from 
Mycobacterium marinum. Molecular microbiology 63:1345-1359. 

130. Roberts, D. L., D. W. Bennett, and S. A. Forst. 1994. Identification of the site of 
phosphorylation on the osmosensor, EnvZ, of Escherichia coli. The Journal of biological 
chemistry 269:8728-8733. 

131. Rodriguez-Garcia, A., C. Barreiro, F. Santos-Beneit, A. Sola-Landa, and J. F. Martin. 
2007. Genome-wide transcriptomic and proteomic analysis of the primary response to 
phosphate limitation in Streptomyces coelicolor M145 and in a phoP mutant. Proteomics 
7:2410-2429. 

132. Rodriguez-Garcia, A., A. Sola-Landa, K. Apel, F. Santos-Beneit, and J. F. Martin. 2009. 
Phosphate control over nitrogen metabolism in Streptomyces coelicolor: direct and 
indirect negative control of glnR, glnA, glnII and amtB expression by the response 
regulator PhoP. Nucleic acids research 37:3230-3242. 

133. Rowe, J. J., T. Ubbink-Kok, D. Molenaar, W. N. Konings, and A. J. Driessen. 1994. 
NarK is a nitrite-extrusion system involved in anaerobic nitrate respiration by 
Escherichia coli. Molecular microbiology 12:579-586. 

134. Runyon, E. H., W. G. Lawrence, G. P. Kubica, R. E. Buchanan, and N. E. Gibbons. 1974. 
Mycobacteriaceae, p. 681-701, Bergey's Manual of Determinative Bacteriology, vol. 8. 
The Williams and Wilkins Company. 

135. Russell, D. G. 2003. Phagosomes, fatty acids and tuberculosis. Nature cell biology 5:776-
778. 

136. Saini, V., A. Farhana, and A. J. Steyn. 2012. Mycobacterium tuberculosis WhiB3: a novel 
iron-sulfur cluster protein that regulates redox homeostasis and virulence. Antioxidants 
& redox signaling 16:687-697. 

137. Sakula, A. 1983. Robert koch: centenary of the discovery of the tubercle bacillus, 1882. 
The Canadian veterinary journal. La revue veterinaire canadienne 24:127-131. 

138. Sampson, S. L. 2011. Mycobacterial PE/PPE proteins at the host-pathogen interface. 
Clinical and Developmental Immunology 2011:497203. 

139. Sarada, K. V., N. A. Rao, and T. A. Venkitasubramanian. 1980. Isolation and 
characterisation of glutamate dehydrogenase from Mycobacterium smegmatis CDC 46. 
Biochim Biophys Acta 615:299-308. 

140. Saunders, B. M., and W. J. Britton. 2007. Life and death in the granuloma: 
immunopathology of tuberculosis. Immunology and Cell Biology 85:103-111. 

141. Self, W. T., A. M. Grunden, A. Hasona, and K. T. Shanmugam. 1999. Transcriptional 
regulation of molybdoenzyme synthesis in Escherichia coli in response to molybdenum: 
ModE-molybdate, a repressor of the modABCD (molybdate transport) operon is a 

223



 

secondary transcriptional activator for the hyc and nar operons. Microbiology 145 ( Pt 
1):41-55. 

142. Sharma, S. K., A. Mohan, A. Sharma, and D. K. Mitra. 2005. Miliary tuberculosis: new 
insights into an old disease. The Lancet Infectious Diseases 5:415-430. 

143. Sherman, D. R., M. Voskuil, D. Schnappinger, R. Liao, M. I. Harrell, and G. K. 
Schoolnik. 2001. Regulation of the Mycobacterium tuberculosis hypoxic response gene 
encoding alpha -crystallin. Proc Natl Acad Sci U S A 98:7534-7539. 

144. Shetty, N. D., M. C. Reddy, S. K. Palaninathan, J. L. Owen, and J. C. Sacchettini. 2010. 
Crystal structures of the apo and ATP bound Mycobacterium tuberculosis nitrogen 
regulatory PII protein. Protein Science 19:1513-1524. 

145. Shi, L., C. D. Sohaskey, B. D. Kana, S. Dawes, R. J. North, V. Mizrahi, and M. L. 
Gennaro. 2005. Changes in energy metabolism of Mycobacterium tuberculosis in mouse 
lung and under in vitro conditions affecting aerobic respiration. Proc Natl Acad Sci U S A 
102:15629-15634. 

146. Shi, T., and J. Xie. 2011. Molybdenum enzymes and molybdenum cofactor in 
mycobacteria. Journal of cellular biochemistry 112:2721-2728. 

147. Shiloh, M. U., and P. A. DiGiuseppe Champion. 2010. To catch a killer. What can 
mycobacterial models teach us about Mycobacterium tuberculosis pathogenesis? Current 
opinion in microbiology 13:86-92. 

148. Shinnick, T. M., and R. C. Good. 1994. Mycobacterial taxonomy. European journal of 
clinical microbiology & infectious diseases : official publication of the European Society 
of Clinical Microbiology 13:884-901. 

149. Singh, A., D. K. Crossman, D. Mai, L. Guidry, M. I. Voskuil, M. B. Renfrow, and A. J. 
Steyn. 2009. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by 
regulating virulence lipid anabolism to modulate macrophage response. PLoS pathogens 
5:e1000545. 

150. Smeulders, M. J., J. Keer, R. A. Speight, and H. D. Williams. 1999. Adaptation of 
Mycobacterium smegmatis to Stationary Phase. Journal of bacteriology 181:270-283. 

151. Smith, J., J. Manoranjan, M. Pan, A. Bohsali, J. Xu, J. Liu, K. L. McDonald, A. Szyk, N. 
LaRonde-LeBlanc, and L. Y. Gao. 2008. Evidence for pore formation in host cell 
membranes by ESX-1-secreted ESAT-6 and its role in Mycobacterium marinum escape 
from the vacuole. Infection and immunity 76:5478-5487. 

152. Smyth, G. K. 2004. Linear models and empirical bayes methods for assessing differential 
expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article3. 

153. Snapper, S. B., R. E. Melton, S. Mustafa, T. Kieser, and W. R. Jacobs, Jr. 1990. Isolation 
and characterization of efficient plasmid transformation mutants of Mycobacterium 
smegmatis. Molecular microbiology 4:1911-1919. 

154. Sohaskey, C. D., and L. G. Wayne. 2003. Role of narK2X and narGHJI in hypoxic 
upregulation of nitrate reduction by Mycobacterium tuberculosis. Journal of bacteriology 
185:7247-7256. 

155. Stermann, M., L. Sedlacek, S. Maass, and F. C. Bange. 2004. A promoter mutation 
causes differential nitrate reductase activity of Mycobacterium tuberculosis and 
Mycobacterium bovis. Journal of bacteriology 186:2856-2861. 

156. Stock, A. M., V. L. Robinson, and P. N. Goudreau. 2000. Two-component signal 
transduction. Annual review of biochemistry 69:183-215. 

157. Stover, C. K., V. F. de la Cruz, T. R. Fuerst, J. E. Burlein, L. A. Benson, L. T. Bennett, G. 
P. Bansal, J. F. Young, M. H. Lee, G. F. Hatfull, and et al. 1991. New use of BCG for 
recombinant vaccines. Nature 351:456-460. 

158. Strosser, J., A. Ludke, S. Schaffer, R. Kramer, and A. Burkovski. 2004. Regulation of 
GlnK activity: modification, membrane sequestration and proteolysis as regulatory 
principles in the network of nitrogen control in Corynebacterium glutamicum. Molecular 
microbiology 54:132-147. 

224



 

159. Suzuki, A., and D. B. Knaff. 2005. Glutamate synthase: structural, mechanistic and 
regulatory properties, and role in the amino acid metabolism. Photosynthesis research 
83:191-217. 

160. Swaminathan, S., H. M. Ellis, L. S. Waters, D. Yu, E. C. Lee, D. L. Court, and S. K. 
Sharan. 2001. Rapid engineering of bacterial artificial chromosomes using 
oligonucleotides. Genesis 29:14-21. 

161. Tan, M. P., P. Sequeira, W. W. Lin, W. Y. Phong, P. Cliff, S. H. Ng, B. H. Lee, L. 
Camacho, D. Schnappinger, S. Ehrt, T. Dick, K. Pethe, and S. Alonso. 2010. Nitrate 
respiration protects hypoxic Mycobacterium tuberculosis against acid- and reactive 
nitrogen species stresses. PloS one 5:e13356. 

162. Tang, Y. J., W. Shui, S. Myers, X. Feng, C. Bertozzi, and J. D. Keasling. 2009. Central 
metabolism in Mycobacterium smegmatis during the transition from O2-rich to O2-poor 
conditions as studied by isotopomer-assisted metabolite analysis. Biotechnology letters 
31:1233-1240. 

163. Thomas, G., G. Coutts, and M. Merrick. 2000. The glnKamtB operon. A conserved gene 
pair in prokaryotes. Trends in Genetics 16:11-14. 

164. Tiffert, Y., M. Franz-Wachtel, C. Fladerer, A. Nordheim, J. Reuther, W. Wohlleben, 
and Y. Mast. 2011. Proteomic analysis of the GlnR-mediated response to nitrogen 
limitation in Streptomyces coelicolor M145. Applied Microbiology and Biotechnology 
89:1149-1159. 

165. Tiffert, Y., P. Supra, R. Wurm, W. Wohlleben, R. Wagner, and J. Reuther. 2008. The 
Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence 
for a central role of GlnR in nitrogen metabolism in actinomycetes. Molecular 
microbiology 67:861-880. 

166. Tondervik, A., H. R. Torgersen, H. K. Botnmark, and A. R. Strom. 2006. Transposon 
mutations in the 5' end of glnD, the gene for a nitrogen regulatory sensor, that suppress 
the osmosensitive phenotype caused by otsBA lesions in Escherichia coli. Journal of 
bacteriology 188:4218-4226. 

167. Tortoli, E. 2003. Impact of genotypic studies on mycobacterial taxonomy: the new 
mycobacteria of the 1990s. Clinical Microbiology Reviews 16:319. 

168. Tortoli, E. 2006. The new mycobacteria: an update. FEMS immunology and medical 
microbiology 48:159-178. 

169. Trivedi, O. A., P. Arora, V. Sridharan, R. Tickoo, D. Mohanty, and R. S. Gokhale. 2004. 
Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 
428:441-445. 

170. Truman, R., and P. E. Fine. 2010. 'Environmental' sources of Mycobacterium leprae: 
issues and evidence. Leprosy review 81:89-95. 

171. Tullius, M. V., G. Harth, and M. A. Horwitz. 2003. Glutamine synthetase GlnA1 is 
essential for growth of Mycobacterium tuberculosis in human THP-1 macrophages and 
guinea pigs. Infection and immunity 71:3927-3936. 

172. Tullius, M. V., G. Harth, and M. A. Horwitz. 2001. High extracellular levels of 
Mycobacterium tuberculosis glutamine synthetase and superoxide dismutase in actively 
growing cultures are due to high expression and extracellular stability rather than to a 
protein-specific export mechanism. Infection and immunity 69:6348-6363. 

173. Ulrichs, T., and S. H. Kaufmann. 2006. New insights into the function of granulomas in 
human tuberculosis. Journal of Pathology 208:261-269. 

174. van Kessel, J. C., and G. F. Hatfull. 2008. Efficient point mutagenesis in mycobacteria 
using single-stranded DNA recombineering: characterization of antimycobacterial drug 
targets. Molecular microbiology 67:1094-1107. 

175. van Kessel, J. C., and G. F. Hatfull. 2008. Mycobacterial recombineering. Methods in 
molecular biology (Clifton, N.J 435:203-215. 

176. van Kessel, J. C., and G. F. Hatfull. 2007. Recombineering in Mycobacterium 
tuberculosis. Nature methods 4:147-152. 

225



 

177. van Kessel, J. C., L. J. Marinelli, and G. F. Hatfull. 2008. Recombineering mycobacteria 
and their phages. Nature Reviews Microbiology 6:851-857. 

178. Villarino, A., R. Duran, A. Wehenkel, P. Fernandez, P. England, P. Brodin, S. T. Cole, 
U. Zimny-Arndt, P. R. Jungblut, C. Cervenansky, and P. M. Alzari. 2005. Proteomic 
identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA 
domain-containing protein, through activation loop-mediated interactions. Journal of 
molecular biology 350:953-963. 

179. Voskuil, M. I., D. Schnappinger, K. C. Visconti, M. I. Harrell, G. M. Dolganov, D. R. 
Sherman, and G. K. Schoolnik. 2003. Inhibition of respiration by nitric oxide induces a 
Mycobacterium tuberculosis dormancy program. Journal of Experimental Medicine 
198:705-713. 

180. Walters, S. B., E. Dubnau, I. Kolesnikova, F. Laval, M. Daffe, and I. Smith. 2006. The 
Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for 
virulence and complex lipid biosynthesis. Molecular microbiology 60:312-330. 

181. Wang, J., and G. P. Zhao. 2009. GlnR positively regulates nasA transcription in 
Streptomyces coelicolor. Biochem Biophys Res Commun 386:77-81. 

182. Warner, D. F., G. Etienne, X. M. Wang, L. G. Matsoso, S. S. Dawes, K. Soetaert, N. G. 
Stoker, J. Content, and V. Mizrahi. 2006. A derivative of Mycobacterium smegmatis 
mc(2)155 that lacks the duplicated chromosomal region. Tuberculosis 86:438-444. 

183. Wayne, L. G. 1994. Dormancy of Mycobacterium tuberculosis and latency of disease. 
European journal of clinical microbiology & infectious diseases : official publication of 
the European Society of Clinical Microbiology 13:908-914. 

184. Wayne, L. G., and L. G. Hayes. 1996. An in vitro model for sequential study of shiftdown 
of Mycobacterium tuberculosis through two stages of nonreplicating persistence. 
Infection and immunity 64:2062-2069. 

185. Wayne, L. G., and L. G. Hayes. 1998. Nitrate reduction as a marker for hypoxic 
shiftdown of Mycobacterium tuberculosis. Tuberculosis and Lung Disease 79:127-132. 

186. Weber, I., C. Fritz, S. Ruttkowski, A. Kreft, and F. C. Bange. 2000. Anaerobic nitrate 
reductase (narGHJI) activity of Mycobacterium bovis BCG in vitro and its contribution to 
virulence in immunodeficient mice. Molecular microbiology 35:1017-1025. 

187. Weiss, V., G. Kramer, T. Dunnebier, and A. Flotho. 2002. Mechanism of regulation of 
the bifunctional histidine kinase NtrB in Escherichia coli. Journal of molecular 
microbiology and biotechnology 4:229-233. 

188. WHO. 2009. Global Tuberculosis Control A short update to the 2009 report. World 
Health Organization. 

189. WHO. 2012. Global Tuberculosis Report 2012. 
190. WHO. 2012. Leprosy Fact sheet N°101. 
191. WHO. 2012. Multidrug-resistant tuberculosis (MDR-TB) 2012 Update. 
192. WHO. 2006. The Stop TB Strategy. World Health Organization. 
193. Williams, K. J., M. H. Bennett, G. R. Barton, V. A. Jenkins, and B. D. Robertson. 2013. 

Adenylylation of mycobacterial Glnk (PII) protein is induced by nitrogen limitation. 
Tuberculosis. 

194. Williams, K. J., and K. Duncan. 2007. Current Strategies for Identifying and Validating 
Targets for New Treatment-Shortening Drugs for TB. Current Molecular Medicine 
7:297-307. 

195. Wirén, N. M., M. 2004. Regulation and function of ammonium carriers in bacteria, fungi 
and plants. Trends in Current Genetics:95–120. 

196. Wolanin, P. M., D. J. Webre, and J. B. Stock. 2003. Mechanism of phosphatase activity 
in the chemotaxis response regulator CheY. Biochemistry 42:14075-14082. 

197. Wray, L. V., Jr., M. R. Atkinson, and S. H. Fisher. 1991. Identification and cloning of the 
glnR locus, which is required for transcription of the glnA gene in Streptomyces 
coelicolor A3(2). Journal of bacteriology 173:7351-7360. 

198. Wray, L. V., Jr., and S. H. Fisher. 1993. The Streptomyces coelicolor glnR gene encodes a 
protein similar to other bacterial response regulators. Gene 130:145-150. 

226



 

199. Yabu, K. 1970. Amino acid transport in Mycobacterium smegmatis. Journal of 
bacteriology 102:6-13. 

200. Yakunin, A. F., and P. C. Hallenbeck. 2002. AmtB is necessary for NH(4)(+)-induced 
nitrogenase switch-off and ADP-ribosylation in Rhodobacter capsulatus. Journal of 
bacteriology 184:4081-4088. 

201. Yoshida, T., L. Qin, L. A. Egger, and M. Inouye. 2006. Transcription regulation of ompF 
and ompC by a single transcription factor, OmpR. The Journal of biological chemistry 
281:17114-17123. 

202. Zheng, L., D. Kostrewa, S. Berneche, F. K. Winkler, and X. D. Li. 2004. The mechanism 
of ammonia transport based on the crystal structure of AmtB of Escherichia coli. Proc 
Natl Acad Sci U S A 101:17090-17095. 

203. Zimmer, D. P., E. Soupene, H. L. Lee, V. F. Wendisch, A. B. Khodursky, B. J. Peter, R. 
A. Bender, and S. Kustu. 2000. Nitrogen regulatory protein C-controlled genes of 
Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci U 
S A 97:14674-14679. 

204. Zink, A., C. J. Haas, U. Reischl, U. Szeimies, and A. G. Nerlich. 2001. Molecular analysis 
of skeletal tuberculosis in an ancient Egyptian population. Journal of medical 
microbiology 50:355-366. 

205. Zundel, C. J., D. C. Capener, and W. R. McCleary. 1998. Analysis of the conserved acidic 
residues in the regulatory domain of PhoB. FEBS letters 441:242-246. 

 

 

  

227



 

 

 

APPENDIX

228



  N
a

m
e

 
A

p
p

li
ca

ti
o

n
 

S
e

q
u

e
n

ce
 (

5
’ –

 3
’)

 
S

E
Q

U
E

N
C

IN
G

 
 

 
T7
F 

Se
qu
en
ci
ng

 in
 p
ET
28
b_
T7
_P
ro
m
ot
er
_F

 
TA
AT
AC
GA
CT
CA
CT
AT
AG
GG

 
T7
R 

Se
qu
en
ci
ng

 in
 p
ET
28
b_
T7
_T
er
m
in
at
or
_R

 
GC
TA
GT
TA
TT
GC
TC
AG
CG
G 

M
13
R 

Se
qu
en
ci
ng

 in
 p
CR
2.
1-

 T
OP
O 

 
CA
GG
AA
AC
AG
CT
AT
GA
C 

M
13
F 

Se
qu
en
ci
ng

 in
 p
CR
2.
1-
TO
PO

 
TA
AA
AC
GA
CG
GC
CA
G 

 
C

H
A

P
T

E
R

 4
 

 
 

Gl
nR
_D
ow

n_
R 

Di
re
ct
io

n
al

 c
lo
ni
ng

 o
f 

g
ln

R
 u
ps
tr
ea
m

 r
eg
io

n
 in

to
 p
YU
B8
54

 
GA
CT
AT

 A
AG
CT
T 
GT
GA
CG
AC
GT
AG
AT
G 

Gl
nR
_D
ow

n_
F 

“ 
GA
CT
AT

 A
CT
AG
T 
GT
AA
CC
GA
GG
CC
AC
G 

 

Gl
nR
_U
p_
R 

Di
re
ct
io

n
al

 c
lo
ni
ng

 o
f 

g
ln

R
 d
ow

ns
tr
ea
m

 r
eg
io

n
 in
to

  
GA
CT
AT

 T
CT
AG
A 
TA
GC
AG
TA
GA
TC
CA
AC

 
Gl
nR
_U
p_
F 

pY
UB

85
4 

 
GA
CT
AT

 C
TT
AA
G 
TG
CC
GC
CA
TC
GA
TG
AG
C 

 

Gl
nR
_D
ow

n_
Se
q 

Co
nf
ir
m
at
io

n
 o

f 
g

ln
R

 d
el
et
io

n
 –

 d
ow

ns
tr
ea
m

 r
eg
io
n 

GA
CT
AT
AC
TA
GT
AC
AG
GC
GC
GA
GG
CG
TC
AA
C 

H
yg
_o
ut
_1

 
“ 

GC
AT
GC
AA
GC
TC
AG
GA
TG
TC

 
 

Gl
nR
_U
p_
Se
q 

Co
nf
ir
m
at
io

n
 o

f 
g

ln
R

 d
el
et
io

n
 –

 u
ps
tr
ea
m

 r
eg
io
n 

AG
CT
TA
CC
CA
AT
GA
CC
CT
CG

 
H
yg
_o
ut
_2

 
“ 

TT
CG
AG
GT
GT
TC
GA
GG
AG
AC

 
 

H
yg
S_
Re
pa
ir

 
Co
nv
er
ts

 H
yg

S  
in

to
 H
yg

R  
GC
CA
GC
GG
CT
CC
CA
GA
AT
TC
CT
GG
TC
GT
TC
CG
CA
GG
CT
CG
CG
TA
GG

 
AA
TC
TC
CG
AA
TC
AA
TA
CG
GT
CG
AG
AA
GT
AA
CA
GG
GA
TT
CT
TG
TG
TC

 
AC
AG
CG
G 

Gl
nR
_P
oi
nt
_m
ut

 
Gl
nR

 a
sp
ar
tic

 a
ci

d
 4

8
 t

o
 a

la
n

in
e 
(c
ha
ng

e 
in

 b
o

ld
) 

GT
AG
TG
CC
GA
CG
TC
GC
GA
TC
GT
CG

C
G
GC
TC
GC
AC
AG
AT
CT
GG
CC
GC

 
CG
CG

 
 

M
AM

A_
PC
R_
F 

Sc
re
en
in
g 

fo
r 
Gl
nR
_D

4
8

 A
 m

u
ta
tio
n 

TA
GT
GC
CG
AC
GT
CG
CG
AT
CG
TC
GC

G
 

M
AM

A_
PC
R_
R 

“ 
GA
GG
TA
CT
TG
AG
GA
GC
TC
GA
AT
TC
CT
TG

 
 

Gl
nR
_D
48
A_
Se
qF

 
Co
nf
ir
m
at
io

n
 o

f 
th

e 
G
ln
R_

D
4

8
A

 m
ut
at
io
n 

CT
AC
AT
GT
CA
GT
CA
TG
AA
TC

 
Gl
nR
_D
48
A_
Se
qR

 
“ 

TT
CC
CG
CA
GC
AC
TT
GG
TC

 
 

Gl
nR
_r
eg
_F

 
Am

pl
ifi
ca
tio

n
 o

f 
1

2
0
0b

p
 re
gi

o
n

 co
nt
ai
ni
ng

 g
ln

R
 

AC
AT
TG
TT
GC
CC
AC
GA
GA
C 

Gl
nR
_r
eg
_R

 
“ 

GA
GG
TT
GA
GG
TA
TC
CG
AC

 
 

 
 

229



 C
H

A
P

T
E

R
 5

&
6

 
 

 
M
S_
H
is
-G
ln
R_
F 

Cl
on
in
g 

M
. 

sm
eg

m
a

ti
s 

g
ln

R
 
w
ith

 
N

 
te
rm
in

al
 
H
is
6 
ta
g 
in
to

 
pE
T2
8b

 
GA
CT
AT
CA
TA
TG
TT
GG
AT
CT
AC
TG
CT
AC
TG

 

M
S_
H
is
-G
ln
R_
R 

“ 
GA
CT
AT
CT
CG
AG
TC
AC
TG
AC
TG
GT
CA
AC
CG

 
 

TB
_H
is
-G
ln
R_
F 

Cl
on
in
g 

M
. 

tu
b

er
cu

lo
si

s 
g

ln
R

 w
ith

 N
 t
er
m
in

al
 H
is
6 
ta
g 
in
to

 
pE
T2
8b

 
GA
CT
AT
CA
TA
TG
TT
GT
TG
GA
GT
TA
TT
AC
TG

 

TB
_H
is
-G
ln
R_
R 

“ 
GA
CT
AT
CT
CG
AG
TC
AC
TG
AC
TG
CG
CA
AC
GG

 
 

P
ea

k
 9
F 

Am
pl
ifi
ca
tio

n
 o

f 
M
S 

p
ea

k
 9

 f
o

r 
E

M
SA

 
GA
GT
GT
TT
GC
GG
GG
CG
TT
AC

 
P

ea
k

 9
R 

“ 
TT
TG
TG
TG
AA
CC
TC
CT
TG
G 

 

P
ea

k
 1
7F

 
Am

pl
ifi
ca
tio

n
 o

f 
M
S 

p
ea

k
 1

7
 f

o
r 

E
M
SA

 
CG
TC
GA
TG
TG
GC
GC
TG
CA
C 

P
ea

k
 1
7R

 
“ 

GC
GC
TG
CT
GG
TC
AT
GG

 
 

P
ea

k
 2
1F

 
Am

pl
ifi
ca
tio

n
 o

f 
M
S 

p
ea

k
 2

1
 f

o
r 

E
M
SA

 
AG
CT
TG
CC
TA
CG
AG
CT
CG

 
P

ea
k

 2
2R

 
“ 

AA
TG
AG
GG
AT
GC
TG
CG
AG

 
 

P
ea

k
 2
2F

 
Am

pl
ifi
ca
tio

n
 o

f 
M
S 

p
ea

k
 2

2
 f

o
r 

E
M
SA

 
CT
AC
CG
GA
CA
CA
CA
AC
G 

P
ea

k
 2
2R

 
“ 

AA
CG
GT
GT
GC
TT
CC
TC
C 

 

P
ea

k
 4
2F

 
Am

pl
ifi
ca
tio

n
 o

f 
M
S 

p
ea

k
 4

2
 f

o
r 

E
M
SA

 
CA
TG
AG
CG
CC
AT
CA
AC
TT
C 

P
ea

k
 4
2R

 
“ 

GA
CG
CG
TC
CA
TT
CG
GT
TG
TC

 
 

3
2

2
4

 F
 

Am
pl
ifi
ca
tio

n
 o

f 
m
sm

eg
_3

2
2

4
 u

p
st
re
am

 r
eg
io

n
 f

o
r 
EM

SA
 a

n
d

  
GC
CT
GT
TG
CA
GT
TG
AT
CG

 
3

2
2

4
 R

 
ra

te
 li
m
iti
ng

 P
CR

 
GT
AC
GG
GT
CG
CG
CA
CC
TT
GT
C 

 

P
ea

k
 1
F 

Am
pl
ifi
ca
tio

n
 o

f 
M
S 

p
ea

k
 1

 f
o

r 
ra

te
 li
m
iti
ng

 P
CR

 
TT
GT
GG
CC
TG
AC
TG
TG
GT
CC

 
P

ea
k

 1
R 

 
AG
GC
TA
AG
AA
CC
CG
AT
AT
TG

 
 

P
ea

k
 3
4F

 
Am

pl
ifi
ca
tio

n
 o

f 
M
S 

p
ea

k
 3

4
 f

o
r 

ra
te

 li
m
iti
ng

 P
CR

 
AT
AG
GC
GC
GT
GC
GG
AT
GT
C 

AA
CC
CG
AT
GT
TG
CG
CC
GA
C 

 

P
ea

k
 1
3F

 
Am

pl
ifi
ca
tio

n
 o

f 
M
S 

p
ea

k
 1

3
 f

o
r 

E
M
SA

 a
n

d
 r

at
e 

lim
iti
ng

 P
CR

 
AA
GC
CG
GA
TC
CA
GA
CG
TG

 

P
ea

k
 1
3R

 
“ 

GC
TC
GA
TA
CC
CA
GG
TT
CT
C 

 

P
ea

k
 1
4F

 
Am

pl
ifi
ca
tio

n
 o

f 
M
S 

p
ea

k
 1

4
 f

o
r 

ra
te

 li
m
iti
ng

 P
CR

 
AC
TC
GA
CA
GG
CG
AT
CG
GA
AG

 
P

ea
k

 1
4R

 
“ 

GA
AA
CA
GC
GT
TT
CT
TA
C 

 

P
ea

k
 2
6F

 
Am

pl
ifi
ca
tio

n
 o

f 
M
S 

p
ea

k
 2

6
 f

o
r 

ra
te

 li
m
iti
ng

 P
CR

 
GT
CA
CG
GC
AA
GG
GT
GG
AC

 

230



 P
ea

k
 2
6R

 
“ 

GT
TG
TG
AC
CG
GA
CA
CA
C 

 

P
ea

k
 3
2F

 
Am

pl
ifi
ca
tio

n
 o

f 
M
S 

p
ea

k
 3

2
 f

o
r 

ra
te

 li
m
iti
ng

 P
CR

 
CG
AC
AA
GA
GA
AA
TG
GC
CG
AG

 
P

ea
k

 3
2R

 
“ 

AA
GG
CA
AG
AG
TG
CG
AA
TG
AC

 
 

P
ea

k
 3
9F

 
Am

pl
ifi
ca
tio

n
 o

f 
M
S 

p
ea

k
 3

9
 f

o
r 

ra
te

 li
m
iti
ng

 P
CR

 
AG
AT
AA
CG
GT
CC
GA
TA
AC

 

P
ea

k
 3
9R

 
“ 

TT
GC
CG
TC
TA
CC
TG
CA
TG

 
 

P
ea

k
 4
0F

 
Am

pl
ifi
ca
tio

n
 o

f 
M
S 

p
ea

k
 4

0
 f

o
r 

ra
te

 li
m
iti
ng

 P
CR

 
CA
AC
AA
AC
CC
CG
TG
GT
CA
G 

P
ea

k
 4
0R

 
“ 

GA
AT
TT
AT
CG
TT
TC
GA
G 

 

P
ea

k
 4
4F

 
Am

pl
ifi
ca
tio

n
 o

f 
M
S 

p
ea

k
 4

4
 f

o
r 

ra
te

 li
m
iti
ng

 P
CR

 
GA
TG
TC
TC
GG
CA
TC
GA
GC
AA
C 

P
ea

k
 4
4R

 
“ 

CG
AT
AA
CC
GG
TG
TC
GA
TC

 
 

P
ea

k
 4
9F

 
Am

pl
ifi
ca
tio

n
 o

f 
M
S 

p
ea

k
 4

9
 f

o
r 

ra
te

 li
m
iti
ng

 P
CR

 
TC
AG
TG
CT
AC
CT
CC
AA
G 

P
ea

k
 4
9R

 
“ 

CG
AC
GA
CC
TC
TA
CA
CC

 
 

P
ea

k
 2
W
T 

F
  

W
T 
ol
ig
on
uc
le
ot
id
es

 f
o

r 
M
S 
bi
nd
in
g 
si

te
 a
na
ly
si
s 

o
f 
pe
ak

 2
 

EM
SA

 
GC
AA
TC
GC
GG
GG
TA
AC
GC
CG
TG
GA
AA
CA
GA
GC
CT
GC
CT

 

P
ea

k
 2
W
T 

R
 

“ 
AG
GC
AG
GC
TC
TG
TT
TC
CA
CG
GC
GT
TA
CC
CC
GC
GA
TT
GC

 
 

P
ea

k
 2
GG

 F
 

AC
 t

o
 G
G 
m
ut
at
io

n
 f

o
r 
M
S 
bi
nd
in
g 
si

te
 a
na
ly
si
s 

o
f 

p
ea

k
 2

 
EM

SA
 

GC
AA
TC
GC
GG
GG
TA

G
G
GC
CG
TG
GA
AG

G
AG
AG
CC
TG
CC
T 

P
ea

k
 2
GG

 F
 

“ 
AG
GC
AG
GC
TC
TC

C
TT
CC
AC
GG
CC

C
TA
CC
CC
GC
GA
TT
GC

 
 

P
ea

k
 2

G
 F

 
A 

to
 G

 m
u
ta
tio

n
 f

o
r 

M
S 

b
in
di
ng

 s
it

e 
an
al
ys
is

 o
f 

p
ea

k
 2

 E
M

SA
 

GC
AA
TC
GC
GG
GG
TA

G
CG
CC
GT
GG
AA

G
CA
GA
GC
CT
GC
CT

 
P

ea
k

 2
G

 R
 

“ 
AG
GC
AG
GC
TC
TG

C
TT
CC
AC
GG
CG

C
TA
CC
CC
GC
GA
TT
GC

 
 

P
ea

k
 2
4W

T 
F

 
W
T 
ol
ig
on
uc
le
ot
id
es

 fo
r 
M
S 
bi
nd
in
g 
si
te

 a
na
ly
si
s 

o
f 

p
ea

k
 2
4 

EM
SA

 
TC
AT
GT
CG
AG
GT
TA
AT
TT
GT
TC
GT
CA
CA
CA
CA
GA
CA
TT

 

P
ea

k
 2
4W

T 
R

 
“ 

AA
TG
TC
TG
TG
TG
TG
AC
GA
AC
AA
AT
TA
AC
CT
CG
AC
AT
GA

 
 

P
ea

k
 2
4G
G 

F
 

AT
 t

o
 G
G 
m
ut
at
io

n
 f

o
r 
M
S 
bi
nd
in
g 
si

te
 a
na
ly
si
s 

o
f 

p
ea

k
 2
4 

EM
SA

 
TC
AT
GT
CG
AG
GT
TA

G
G
TT
GT
TC
GT
CG

G
AC
AC
AG
AC
AT
T 

P
ea

k
 2
4G
G 

R
 

“ 
AA
TG
TC
TG
TG
TC

C
GA
CG
AA
CA
AC

C
TA
AC
CT
CG
AC
AT
GA

 
 

P
ea

k
 2

4
G

 F
 

A 
to

 G
 m

u
ta
tio

n
 f

o
r 

M
S 

b
in
di
ng

 s
it

e 
an
al
ys
is

 o
f 

p
ea

k
 2

4
 E

M
SA

 
TC
AT
GT
CG
AG
GT
TA

G
TT
TG
TT
CG
TC

G
CA
CA
CA
GA
CA
TT

 

P
ea

k
 2

4
G

 R
 

“ 
AA
TG
TC
TG
TG
TG

C
GA
CG
AA
CA
AA

C
TA
AC
CT
CG
AC
AT
GA

 
 

P
ea

k
 2
lo
ng

 F
 

Ol
ig
on
uc
le
ot
id
es

 in
cr
ea
si
ng

 A
Cn
9A

C
 d
is
ta
nc

e 
to

 A
Cn
12
AC

 
GC
AA
TC
GC
GG
GG
TA
AC

G
C

C
G

T
C

C
C

G
G

A
A
AC
AG
AG
CC
TG
CC
T 

231



 P
ea

k
 2
lo
ng

 R
 

“ 
AG
GC
AG
GC
TC
TG
TT

T
C

C
G

G
G

A
C

G
G

C
GT
TA
CC
CC
GC
GA
TT
GC

 
 

P
ea

k
 2
sh

o
rt

 F
 

Ol
ig
on
uc
le
ot
id
es

 d
ec
re
as
in
g 

A
Cn
9A

C
 d

is
ta
nc

e 
to

 A
Cn
6A
C 

GC
AA
TC
GC
GG
GG
TA
AC

G
T

G
G

A
A
AC
AG
AG
CC
TG
CC
T 

P
ea

k
 2
sh

o
rt

 R
 

“ 
AG
GC
AG
GC
TC
TG
TT

T
C

C
A

C
GT
TA
CC
CC
GC
GA
TT
GC

 
 

C
H

A
P

T
E

R
 7

 
 

 
TB
_p
ea
k1
8F

 
Am

pl
ifi
ca
tio

n
 o

f 
T

B
 p
ea

k
 1

8
 f

o
r 

E
M
SA

 
AC
CA
TC
CC
GT
CA
GC
CG
GC
CA
CA
C 

TB
_p
ea
k1
8R

 
“ 

GT
AC
GT
CC
AC
AA
TC
GA
AG
GA

 
 

TB
_p
ea
k1
3R

 
Am

pl
ifi
ca
tio

n
 o

f 
T

B
 p
ea

k
 1

3
 f

o
r 

E
M
SA

 
GC
TA
AA
TC
CC
AC
CA
GC
AT
G 

TB
_p
ea
k1
3R

 
“ 

CA
CA
GA
CT
CC
AT
CT
GT
TG

 
 

TB
_1
36
0R

 
Am

pl
ifi
ca
tio

n
 o

f 
R

v1
36

0
 u
ps
tr
ea
m

 r
eg
io

n
 f

o
r 

E
M
SA

 
AC
TC
CC
TG
CG
GC
AA
GG
TG

 

TB
_1
36
0R

 
“ 

GA
CA
TA
CG
TG
GA
TG
TG
CT
G 

 

TB
_p
ea
k1
7F

 
Am

pl
ifi
ca
tio

n
 o

f 
T

B
 p
ea

k
 1

7
 f

o
r 

E
M
SA

 
GA
TC
TT
GT
CG
TA
GA
TG
CT
G 

TB
_p
ea
k1
7R

 
“ 

CA
TG
AG
CT
GA
TG
AA
TG
GA
GT

 
 

TB
_p
ea
k2
0F

 
Am

pl
ifi
ca
tio

n
 o

f 
T

B
 p
ea

k
 2

0
 f

o
r 

E
M
SA

 
GA
TA
TT
GC
CC
GT
CA
GT
C 

TB
_p
ea
k2
0R

 
“ 

TT
CG
GC
AT
GC
CA
CC
GG
TT
AC

 
 

TB
_n
ir
B_
F 

Am
pl
ifi
ca
tio

n
 o

f 
TB

 p
ea

k
 1

 f
o

r 
ra

te
 li
m
iti
ng

 P
CR

 
CT
TC
GT
TG
TG
AG
TT
AG
C 

TB
_n
ir
B_
R 

“ 
AT
CG
CC
GA
AT
GT
GA
CG
CA
C 

TB
_p
ea
k2
F 

Am
pl
ifi
ca
tio

n
 o

f 
TB

 p
ea

k
 2

 f
o

r 
ra

te
 li
m
iti
ng

 P
CR

 
CG
AA
GC
AA
TG
CG
CA
CA
G 

TB
_p
ea
k2
R 

“ 
TG
GC
CT
AC
GT
CT
AG
CG

 
TB
_p
ea
k1
0F

 
Am

pl
ifi
ca
tio

n
 o

f 
TB

 p
ea

k
 1
0 

fo
r 

ra
te

 li
m
iti
ng

 P
CR

 
GA
CA
AC
AC
CA
AG
TT
CG
C 

TB
_p
ea
k1
0R

 
“ 

AC
GG
CA
GG
TC
GG
TG
TA
GC

 
TB
_p
ea
k1
1F

 
Am

pl
ifi
ca
tio

n
 o

f 
TB

 p
ea

k
 1
1 

fo
r 

ra
te

 li
m
iti
ng

 P
CR

 
GC
TT
GC
CA
CC
GC
CG
AC

 

TB
_p
ea
k1
1R

 
“ 

AC
CG
AC
AG
CG
AG
TA
GG
C 

TB
_p
ea
k2
3F

 
Am

pl
ifi
ca
tio

n
 o

f 
TB

 p
ea

k
 2
3 

fo
r 

ra
te

 li
m
iti
ng

 P
CR

 
TC
GA
AG
CG
AC
CA
GG
CA
G 

TB
_p
ea
k2
3R

 
“ 

AC
CT
CC
GT
GT
TG
CC
TG
C 

  
 

 

A
p

p
e

n
d

ix
 1

. 
P

ri
m

e
r 

se
q

u
e

n
c

e
s 

u
se

d
 i

n
 t

h
is

 s
tu

d
y

. 

Un
de
rl
in

ed
 s
eq
ue
nc
es

 a
re

 r
es
tr
ic
tio

n
 si
te
s u
se

d
 f

o
r 
cl
on
in
g.

 M
u

ta
te

d
 r

es
id
ue
s a

re
 h
ig
hl
ig

h
te

d
 in

 b
o

ld
. 

232



 
 

 

PUBLICATIONS  AND PRESENTATIONS  

PUBLICATIONS 

Jenkins, V.A., Barton, G.R., Robertson, B.D., and Williams, K.J. (2013). Genome Wide Analysis of 
the Complete GlnR Nitrogen-response Regulon in Mycobacterium smegmatis. BMC Genomics: 
14: 301. 

Williams, K.J, Bryant, W.A., Jenkins, V.A., Barton, G.R., Witney, A.A., Pinney, J.W., and Robertson, 
B.D. (2013). Deciphering the Response of Mycobacterium smegmatis to Nitrogen Stress Using 
Bipartite Active Modules. Submitted BMC Genomics. 

Willams, K. J., Bennett, M., Barton, G., Jenkins, V. A., and Robertson, B. D. (2013). Adenylylation 
of Mycobacterial Glnk (PII) Protein is Induced by Nitrogen Limitation. Tuberculosis: 93(2):198-
206. 

Jenkins, V.A., Robertson, B.D., and Williams, K.J. (2012). Aspartate D48 is Essential for the GlnR 
Mediated Transcriptional Response to Nitrogen Limitation in Mycobacterium smegmatis. FEMS 
Microbiology Letters: 330(1):38-45. 

Behrends, V., Williams, K.J., Jenkins, V.A., Robertson, B.D., Bundy, J.G. (2012). Free 
Glucosylglycerate is a Novel Marker of Nitrogen Stress in Mycobacterium smegmatis. Journal of 
Proteome Research: 11(7):3888-96 

 

ORAL PRESENTATIONS 

Acid Fast Club Meeting. Brighton and Hove Medical School, Brighton, UK. (2012). Genome Wide 
Analysis of the GlnR Regulon in M. smegmatis. *Prize for best talk* 

Departmental Work in Progress Talk. Imperial College London, UK. (2012). Genome Wide 
Analysis of the GlnR Regulon in M. smegmatis. 

 

POSTER PRESENTATIONS 

EMBO Tuberculosis Conference: Institut Pasteur, Paris, France. (2012). Genome Wide Analysis 
of the GlnR Regulon in M. smegmatis. 

Department of Medicine Young Scientist Day: Imperial College London, Hammersmith Campus. 
(2012). Genome Wide Analysis of the GlnR Regulon in M. smegmatis. 

Keystone Symposia: Mycobacteria: Physiology, Metabolism and Pathogenesis- Back to the 
Basics (J4): Vancouver, Canada. (2011). Analysis of AmtR binding in M. smegmatis. 

233


	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Aknowledgments
	Declaration of Originality
	Abbreviations
	Chapter 1: Introduction
	1.1 Mycobacteria
	1.1.1 Pathology of M. tuberculosis
	1.1.2 M. tuberculosis Prevalence and Treatment
	1.1.3 M. smegmatis as a Model Organism

	1.2 Nitrogen Availability
	1.2.1 Nutrient Limitation in M. tuberculosis
	1.2.2 Nitrogen Sources
	1.2.3 Nitrogen Availability Summary

	1.3 Nitrogen Assimilation Enzymes
	1.3.1 Nitrogen Assimilation Enzymes: GDH
	1.3.2 Nitrogen Assimilation Enzymes: GS
	1.3.3 Nitrogen Assimilation Enzymes: GOGAT

	1.4 Transcriptional Regulation of Genes Involved in Nitrogen Metabolism
	1.4.1 Transcriptional Regulation in E. coli: The NtrB/C Response
	1.4.2 Transcriptional Control in Response to Nitrogen Limitation in Actinomycetes
	1.4.3 Transcriptional Regulator GlnR
	1.4.2.2 Transcriptional Control in Response to Nitrogen Limitation in C. glutamicum by the Response Regulator AmtR

	1.5 Aims of this Study

	Chapter 2: Materials and Methods
	2.1 Bacterial Strains and Culture Conditions
	2.1.2 Bacterial Growth Conditions

	2.2 Molecular Cloning
	2.2.1 Preparation of M. smegmatis Genomic DNA
	2.2.2 Polymerase Chain Reaction (PCR) for Amplification of DNA Fragments from Mycobacterial Chromosomal DNA
	2.2.3 Colony PCR for Amplification of Desired Insert from E. coli Plasmid DNA
	2.2.4 Gel Electrophoresis of DNA
	2.2.5 DNA Purification
	2.2.6 Cloning PCR-amplified Target Genes into TOPO pCR 2.1 Vector
	2.2.7 Restriction Enzyme Digestion
	2.2.8 DNA Purification from Agarose Gels
	2.2.9 DNA Ligation of Plasmid Vector and DNA Insert
	2.2.10 Transformation of E. coli with Plasmid DNA
	2.2.11 Plasmid DNA Mini-Preparations from Small-Scale Cultures of Transformed Bacteria
	2.2.12 Sequencing of Plasmid DNA
	2.2.13 Quantification of DNA Concentration
	2.2.14 Large-Scale Preparation of Plasmid DNA from Bacterial Cultures (Midi Prep)
	2.2.15 One-step Preparation of Competent E. coli Cells: Chung Method
	2.2.16 Preparation of Ultra-competent E. coli Cells: Inoue’s Method

	2.3 Protein Expression and Purification
	2.3.1 Growth of Cells for Protein Expression
	2.3.2 Protein Purification: Cell Lysis
	2.3.4 Protein Purification: Nickel Affinity Chromatography

	2.4 Analysis of Protein Samples
	2.4.1 BCA Determination of Protein Concentration
	2.4.2 SDS Polyacrylamide Gel Electrophoresis (PAGE): NuPAGE Novex 4-12% Bis-Tris Gels (Invitrogen)
	2.4.3 Western Blot
	2.4.4 Affinity Purification of GlnR Polyclonal Antibody
	2.4.5 Preparation of M. smegmatis Cell Lysates

	2.5 Generation of M. smegmatis Mutants: Recombineering Method
	2.5.1 Preparation of Electrocompetent M. smegmatis Cells
	2.5.2 Transformation of Electrocompetent M. smegmatis Cells
	2.5.3 Preparation of Recombineering Strain of Electrocompetent M. smegmatis Cells
	2.5.4 Gene Replacement Mutant: Allelic Exchange Substrate (AES)
	2.5.5 Gene Replacement Mutant: Recombineering
	2.5.6 GlnR Chromosomal Point Mutation and MAMA PCR Screen

	2.6 RNA Analysis
	2.6.1 RNA Isolation from M. smegmatis Whole Cell Extracts
	2.6.2 cDNA Preparation
	2.6.3 Quantitative Real-Time PCR (qRT-PCR)
	2.6.4 Preparation of Labelled cDNA from Total RNA for Microarray Analysis (carried out at BUGS @ St. George’s Hospital)
	2.6.5 M. smegmatis Microarray Design
	2.6.6 Statistical Analyses of Differential Gene Expression (Conducted in collaboration with Geraint Barton at CISBIO)

	2.7 Chromatin-Immunoprecipitation
	2.7.1 Cell Preparation and Cross-linking
	2.7.2 Immunoprecipitation and Elution of DNA
	2.7.3 Library Preparation for Next Generation Sequencing
	2.7.4 Site Identification from Short Sequence Reads (SISSRs) (Conducted in collaboration with Geraint Barton at CISBIO)
	2.7.5 GlnR DNA Binding Consensus Sequence Generated by MEME (Conducted in collaboration with Geraint Barton at CISBIO)
	2.7.6 COG Functional Classification (Conducted in collaboration with Geraint Barton at CISBIO)

	2.8 DNA Mobility Shift Assay
	2.8.1 DIG 3’ Labelling of DNA for Mobility Shift Assay
	2.8.2 GlnR:DNA Binding Reaction
	2.8.3 DNA Retardation Gel Running Conditions
	2.8.4 DNA Transfer from DNA Retardation Gel to Nylon Membrane and Membrane Development

	2.9 Analytical techniques
	2.9.1 Aquaquant for Quantification of NH4 Media Concentration


	Chapter 3: Optimisation of Nitrogen Limiting Conditions for Mycobacteria
	3.1 Aim
	3.2 Introduction
	3.3 Results
	3.3.1 Modification of Sauton’s Medium for Optimal Growth of M. smegmatis and M. tuberculosis
	3.3.2 Optimisation of Nitrogen Limiting Conditions for M. smegmatis
	3.3.3 Spiking of M. smegmatis Cultures in Nitrogen Excess and Limiting Medium with Nitrogen Source

	3.4 Discussion

	Chapter 4: Aspartate 48 is Essential for the GlnR-Mediated Transcriptional Response to Nitrogen Limitation in Mycobacterium smegmatis
	4.1 Aim
	4.2 Introduction
	4.3 Results
	4.3.1 Construction of GlnR_D48A Mutant
	4.3.2 Construction of the glnR Deletion Strain
	4.3.3 Generation of GlnR_D48A and ΔglnR Complementation Strains
	4.3.4 GlnR Mutants Exhibit Reduced Growth Rates During Nitrogen Limitation
	4.3.5 Transcriptomic Response to Nitrogen Limitation is Abolished in GlnR Mutants
	4.3.6 GlnR Mutants Fail to Grow in Nitrate as Sole Nitrogen Source

	4.4 Discussion

	Chapter 5: Optimisation and Validation of Mycobacterial ChIP-seq Conditions using Mycobacterium smegmatis
	5.1 Aim
	5.2 Introduction
	5.3 Results
	5.3.1 Sonication
	5.3.2 GlnR Polyclonal Antibody Production
	5.3.3 Immunoprecipitation of M. smegmatis Cross-linked and Sonicated DNA with anti-GlnR Antibody
	5.3.4 Illumina Next Generation ChIP-seq Library Preparation

	5.4 Conclusion

	Chapter 6: Genome Wide Analysis of the GlnR Regulon During Nitrogen Stress in Mycobacterium smegmatis
	6.1 Aim
	6.2 Introduction
	6.3 Results
	6.3.1 Global GlnR Regulated Gene Expression in Nitrogen Limitation
	6.3.2 Global GlnR Binding Regions in Nitrogen Limitation
	6.3.3 Determination of the GlnR Regulon in Nitrogen Limitation
	6.3.4 Identification and Analysis of the M. smegmatis GlnR DNA Binding Motif

	6.4 Discussion

	Chapter 7: ChIP-seq Analysis of Global GlnR DNA Binding Sites in Mycobacterium tuberculosis During Nitrogen Stress
	7.1 Aim
	7.2 Introduction
	7.3 Results
	7.3.1 Global GlnR Binding Regions in Nitrogen Limitation
	7.3.2 Confirmation of GlnR Binding Sites
	7.3.3 Identification and Analysis of the M. tuberculosis GlnR DNA Binding Motif

	7.4 Discussion

	Chapter 8: Final Discussion
	8.1 Discussion
	8.2 Future Work

	References
	Appendix
	Publications and Presentations



